]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915/ringbuffer: Remove broken intel_fill_struct()
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88{
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91}
92
93static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95{
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98}
99
100static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102{
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105}
106
107static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112}
113
30dbf0c0
CW
114int
115i915_gem_check_is_wedged(struct drm_device *dev)
116{
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142}
143
76c1dec1
CW
144static int i915_mutex_lock_interruptible(struct drm_device *dev)
145{
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
23bc5982 162 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
163 return 0;
164}
30dbf0c0 165
7d1c4804
CW
166static inline bool
167i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168{
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172}
173
73aa808f
CW
174int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
79e53945 176 unsigned long end)
673a394b
EA
177{
178 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 179
79e53945
JB
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
183 return -EINVAL;
184 }
185
79e53945
JB
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
673a394b 188
73aa808f 189 dev_priv->mm.gtt_total = end - start;
79e53945
JB
190
191 return 0;
192}
673a394b 193
79e53945
JB
194int
195i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197{
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
203 mutex_unlock(&dev->struct_mutex);
204
79e53945 205 return ret;
673a394b
EA
206}
207
5a125c3c
EA
208int
209i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211{
73aa808f 212 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 213 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
73aa808f
CW
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
222
223 return 0;
224}
225
673a394b
EA
226
227/**
228 * Creates a new mm object and returns a handle to it.
229 */
230int
231i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233{
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b
EA
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
ac52bc56 242 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 247 if (ret) {
202f2fef
CW
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
673a394b 251 return ret;
1dfd9754 252 }
673a394b 253
202f2fef
CW
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
1dfd9754 258 args->handle = handle;
673a394b
EA
259 return 0;
260}
261
eb01459f
EA
262static inline int
263fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267{
b5e4feb6 268 char *vaddr;
4f27b75d 269 int ret;
eb01459f
EA
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
4f27b75d 272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
273 kunmap_atomic(vaddr, KM_USER0);
274
4f27b75d 275 return ret;
eb01459f
EA
276}
277
280b713b
EA
278static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279{
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285}
286
99a03df5 287static inline void
40123c1f
EA
288slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293{
294 char *dst_vaddr, *src_vaddr;
295
99a03df5
CW
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
40123c1f
EA
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
99a03df5
CW
301 kunmap(src_page);
302 kunmap(dst_page);
40123c1f
EA
303}
304
99a03df5 305static inline void
280b713b
EA
306slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312{
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
99a03df5
CW
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
280b713b
EA
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
99a03df5
CW
350 kunmap(cpu_page);
351 kunmap(gpu_page);
280b713b
EA
352}
353
eb01459f
EA
354/**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359static int
360i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363{
23010e43 364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
eb01459f
EA
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
23010e43 373 obj_priv = to_intel_bo(obj);
eb01459f
EA
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
4f27b75d
CW
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
eb01459f
EA
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
4f27b75d 399 return 0;
eb01459f
EA
400}
401
07f73f69
CW
402static int
403i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404{
405 int ret;
406
4bdadb97 407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
07f73f69 414
0108a3ed
DV
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
417 if (ret)
418 return ret;
419
4bdadb97 420 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
421 }
422
423 return ret;
424}
425
eb01459f
EA
426/**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432static int
433i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436{
23010e43 437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
280b713b 448 int do_bit17_swizzling;
eb01459f
EA
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
4f27b75d 460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
461 if (user_pages == NULL)
462 return -ENOMEM;
463
4f27b75d 464 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 467 num_pages, 1, 0, user_pages, NULL);
eb01459f 468 up_read(&mm->mmap_sem);
4f27b75d 469 mutex_lock(&dev->struct_mutex);
eb01459f
EA
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
4f27b75d 472 goto out;
eb01459f
EA
473 }
474
4f27b75d
CW
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
07f73f69 478 if (ret)
4f27b75d 479 goto out;
eb01459f 480
4f27b75d 481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 482
23010e43 483 obj_priv = to_intel_bo(obj);
eb01459f
EA
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
280b713b 506 if (do_bit17_swizzling) {
99a03df5 507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 508 shmem_page_offset,
99a03df5
CW
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
280b713b 519 }
eb01459f
EA
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
4f27b75d 526out:
eb01459f
EA
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
8e7d2b2c 531 drm_free_large(user_pages);
eb01459f
EA
532
533 return ret;
534}
535
673a394b
EA
536/**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541int
542i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544{
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
35b62a89 548 int ret = 0;
673a394b 549
4f27b75d 550 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 551 if (ret)
4f27b75d 552 return ret;
1d7cfea1
CW
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
4f27b75d 558 }
1d7cfea1 559 obj_priv = to_intel_bo(obj);
4f27b75d 560
7dcd2499
CW
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 563 ret = -EINVAL;
35b62a89 564 goto out;
ce9d419d
CW
565 }
566
35b62a89
CW
567 if (args->size == 0)
568 goto out;
569
ce9d419d
CW
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
35b62a89 574 goto out;
673a394b
EA
575 }
576
b5e4feb6
CW
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
582 }
583
4f27b75d
CW
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 599
4f27b75d
CW
600out_put:
601 i915_gem_object_put_pages(obj);
35b62a89 602out:
4f27b75d 603 drm_gem_object_unreference(obj);
1d7cfea1 604unlock:
4f27b75d 605 mutex_unlock(&dev->struct_mutex);
eb01459f 606 return ret;
673a394b
EA
607}
608
0839ccb8
KP
609/* This is the fast write path which cannot handle
610 * page faults in the source data
9b7530cc 611 */
0839ccb8
KP
612
613static inline int
614fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
9b7530cc 618{
9b7530cc 619 char *vaddr_atomic;
0839ccb8 620 unsigned long unwritten;
9b7530cc 621
fca3ec01 622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
fca3ec01 625 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
fbd5a26d 626 return unwritten;
0839ccb8
KP
627}
628
629/* Here's the write path which can sleep for
630 * page faults
631 */
632
ab34c226 633static inline void
3de09aa3
EA
634slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
0839ccb8 638{
ab34c226
CW
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
0839ccb8 641
ab34c226
CW
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
651}
652
40123c1f
EA
653static inline int
654fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658{
b5e4feb6 659 char *vaddr;
fbd5a26d 660 int ret;
40123c1f
EA
661
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
fbd5a26d 663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
664 kunmap_atomic(vaddr, KM_USER0);
665
fbd5a26d 666 return ret;
40123c1f
EA
667}
668
3de09aa3
EA
669/**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673a394b 673static int
3de09aa3
EA
674i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
673a394b 677{
23010e43 678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 679 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 680 ssize_t remain;
0839ccb8 681 loff_t offset, page_base;
673a394b 682 char __user *user_data;
0839ccb8 683 int page_offset, page_length;
673a394b
EA
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
673a394b 687
23010e43 688 obj_priv = to_intel_bo(obj);
673a394b 689 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
0839ccb8
KP
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
673a394b 697 */
0839ccb8
KP
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
0839ccb8 704 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
0839ccb8 707 */
fbd5a26d
CW
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
673a394b 712
0839ccb8
KP
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
673a394b 716 }
673a394b 717
fbd5a26d 718 return 0;
673a394b
EA
719}
720
3de09aa3
EA
721/**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
3043c60c 728static int
3de09aa3
EA
729i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
673a394b 732{
23010e43 733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 742 int ret;
3de09aa3
EA
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
fbd5a26d 755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
756 if (user_pages == NULL)
757 return -ENOMEM;
758
fbd5a26d 759 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
fbd5a26d 764 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
673a394b 769
3de09aa3
EA
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
fbd5a26d 772 goto out_unpin_pages;
3de09aa3 773
23010e43 774 obj_priv = to_intel_bo(obj);
3de09aa3
EA
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
ab34c226
CW
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
3de09aa3
EA
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
3de09aa3
EA
808out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
8e7d2b2c 811 drm_free_large(user_pages);
3de09aa3
EA
812
813 return ret;
814}
815
40123c1f
EA
816/**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
3043c60c 820static int
40123c1f
EA
821i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
673a394b 824{
23010e43 825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
40123c1f
EA
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
673a394b 833
23010e43 834 obj_priv = to_intel_bo(obj);
40123c1f
EA
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
fbd5a26d 851 if (fast_shmem_write(obj_priv->pages,
40123c1f 852 page_base, page_offset,
fbd5a26d
CW
853 user_data, page_length))
854 return -EFAULT;
40123c1f
EA
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
fbd5a26d 861 return 0;
40123c1f
EA
862}
863
864/**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871static int
872i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875{
23010e43 876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
280b713b 887 int do_bit17_swizzling;
40123c1f
EA
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
4f27b75d 899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
900 if (user_pages == NULL)
901 return -ENOMEM;
902
fbd5a26d 903 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
fbd5a26d 908 mutex_lock(&dev->struct_mutex);
40123c1f
EA
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
fbd5a26d 911 goto out;
673a394b
EA
912 }
913
fbd5a26d 914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 915 if (ret)
fbd5a26d 916 goto out;
40123c1f 917
fbd5a26d 918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 919
23010e43 920 obj_priv = to_intel_bo(obj);
673a394b 921 offset = args->offset;
40123c1f 922 obj_priv->dirty = 1;
673a394b 923
40123c1f
EA
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
280b713b 944 if (do_bit17_swizzling) {
99a03df5 945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
99a03df5
CW
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
280b713b 957 }
40123c1f
EA
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
673a394b
EA
962 }
963
fbd5a26d 964out:
40123c1f
EA
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
8e7d2b2c 967 drm_free_large(user_pages);
673a394b 968
40123c1f 969 return ret;
673a394b
EA
970}
971
972/**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977int
978i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 979 struct drm_file *file)
673a394b
EA
980{
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
fbd5a26d 986 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 987 if (ret)
fbd5a26d 988 return ret;
1d7cfea1
CW
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
fbd5a26d 994 }
1d7cfea1
CW
995 obj_priv = to_intel_bo(obj);
996
fbd5a26d 997
7dcd2499
CW
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1000 ret = -EINVAL;
35b62a89 1001 goto out;
ce9d419d
CW
1002 }
1003
35b62a89
CW
1004 if (args->size == 0)
1005 goto out;
1006
ce9d419d
CW
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
35b62a89 1011 goto out;
673a394b
EA
1012 }
1013
b5e4feb6
CW
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1019 }
1020
673a394b
EA
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
71acb5eb 1027 if (obj_priv->phys_obj)
fbd5a26d 1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1030 obj_priv->gtt_space &&
9b8c4a0b 1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d
CW
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044out_unpin:
1045 i915_gem_object_unpin(obj);
40123c1f 1046 } else {
fbd5a26d
CW
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
673a394b 1050
fbd5a26d
CW
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1054
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
673a394b 1064
35b62a89 1065out:
fbd5a26d 1066 drm_gem_object_unreference(obj);
1d7cfea1 1067unlock:
fbd5a26d 1068 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1069 return ret;
1070}
1071
1072/**
2ef7eeaa
EA
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1075 */
1076int
1077i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079{
a09ba7fa 1080 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
652c393a 1083 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
673a394b
EA
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
2ef7eeaa 1091 /* Only handle setting domains to types used by the CPU. */
21d509e3 1092 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1093 return -EINVAL;
1094
21d509e3 1095 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
76c1dec1 1104 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1105 if (ret)
76c1dec1 1106 return ret;
1d7cfea1
CW
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
76c1dec1 1112 }
1d7cfea1 1113 obj_priv = to_intel_bo(obj);
652c393a
JB
1114
1115 intel_mark_busy(dev, obj);
1116
2ef7eeaa
EA
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1119
a09ba7fa
EA
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1127 &dev_priv->mm.fence_list);
1128 }
1129
02354392
EA
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
2ef7eeaa 1136 } else {
e47c68e9 1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1138 }
1139
7d1c4804
CW
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1142 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1143
673a394b 1144 drm_gem_object_unreference(obj);
1d7cfea1 1145unlock:
673a394b
EA
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148}
1149
1150/**
1151 * Called when user space has done writes to this buffer
1152 */
1153int
1154i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156{
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
673a394b
EA
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
76c1dec1 1164 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1165 if (ret)
76c1dec1 1166 return ret;
1d7cfea1
CW
1167
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
673a394b
EA
1172 }
1173
673a394b 1174 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1175 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
673a394b 1178 drm_gem_object_unreference(obj);
1d7cfea1 1179unlock:
673a394b
EA
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182}
1183
1184/**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191int
1192i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194{
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
bf79cb91 1205 return -ENOENT;
673a394b
EA
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
bc9025bd 1214 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221}
1222
de151cf6
JB
1223/**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240{
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
7d1c4804 1243 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
0f973f27 1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
e67b8ce1 1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1258 if (ret)
1259 goto unlock;
07f4f3e8 1260
07f4f3e8 1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1262 if (ret)
1263 goto unlock;
de151cf6
JB
1264 }
1265
1266 /* Need a new fence register? */
a09ba7fa 1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1268 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1269 if (ret)
1270 goto unlock;
d9ddcb96 1271 }
de151cf6 1272
7d1c4804 1273 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1274 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1275
de151cf6
JB
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1281unlock:
de151cf6
JB
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
c715089f
CW
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
de151cf6
JB
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
de151cf6 1291 default:
c715089f 1292 return VM_FAULT_SIGBUS;
de151cf6
JB
1293 }
1294}
1295
1296/**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307static int
1308i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309{
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1313 struct drm_map_list *list;
f77d390c 1314 struct drm_local_map *map;
de151cf6
JB
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
9a298b2a 1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1333 ret = -ENOSPC;
de151cf6
JB
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
de151cf6
JB
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359out_free_list:
9a298b2a 1360 kfree(list->map);
de151cf6
JB
1361
1362 return ret;
1363}
1364
901782b2
CW
1365/**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
af901ca1 1369 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
d05ca301 1379void
901782b2
CW
1380i915_gem_release_mmap(struct drm_gem_object *obj)
1381{
1382 struct drm_device *dev = obj->dev;
23010e43 1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388}
1389
ab00b3e5
JB
1390static void
1391i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392{
1393 struct drm_device *dev = obj->dev;
23010e43 1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
9a298b2a 1407 kfree(list->map);
ab00b3e5
JB
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412}
1413
de151cf6
JB
1414/**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421static uint32_t
1422i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423{
1424 struct drm_device *dev = obj->dev;
23010e43 1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
a6c45cf0 1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
a6c45cf0 1439 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448}
1449
1450/**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465int
1466i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468{
1469 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
76c1dec1 1477 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1478 if (ret)
76c1dec1 1479 return ret;
de151cf6 1480
1d7cfea1
CW
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
23010e43 1486 obj_priv = to_intel_bo(obj);
de151cf6 1487
ab18282d
CW
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1490 ret = -EINVAL;
1491 goto out;
ab18282d
CW
1492 }
1493
de151cf6
JB
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1496 if (ret)
1497 goto out;
de151cf6
JB
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
de151cf6
JB
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
e67b8ce1 1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1d7cfea1
CW
1508 if (ret)
1509 goto out;
de151cf6
JB
1510 }
1511
1d7cfea1 1512out:
de151cf6 1513 drm_gem_object_unreference(obj);
1d7cfea1 1514unlock:
de151cf6 1515 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1516 return ret;
de151cf6
JB
1517}
1518
5cdf5881 1519static void
856fa198 1520i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1521{
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
856fa198 1526 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1528
856fa198
EA
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
673a394b 1531
280b713b
EA
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
3ef94daa 1535 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1536 obj_priv->dirty = 0;
3ef94daa
CW
1537
1538 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1543 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
673a394b
EA
1547 obj_priv->dirty = 0;
1548
8e7d2b2c 1549 drm_free_large(obj_priv->pages);
856fa198 1550 obj_priv->pages = NULL;
673a394b
EA
1551}
1552
a56ba56c
CW
1553static uint32_t
1554i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556{
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561}
1562
673a394b 1563static void
617dbe27 1564i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1565 struct intel_ring_buffer *ring)
673a394b 1566{
a56ba56c 1567 struct drm_device *dev = obj->dev;
69dc4987 1568 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1569 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1570 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1571
852835f3
ZN
1572 BUG_ON(ring == NULL);
1573 obj_priv->ring = ring;
673a394b
EA
1574
1575 /* Add a reference if we're newly entering the active list. */
1576 if (!obj_priv->active) {
1577 drm_gem_object_reference(obj);
1578 obj_priv->active = 1;
1579 }
e35a41de 1580
673a394b 1581 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1582 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1583 list_move_tail(&obj_priv->ring_list, &ring->active_list);
a56ba56c 1584 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1585}
1586
ce44b0ea
EA
1587static void
1588i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1589{
1590 struct drm_device *dev = obj->dev;
1591 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1593
1594 BUG_ON(!obj_priv->active);
69dc4987
CW
1595 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1596 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1597 obj_priv->last_rendering_seqno = 0;
1598}
673a394b 1599
963b4836
CW
1600/* Immediately discard the backing storage */
1601static void
1602i915_gem_object_truncate(struct drm_gem_object *obj)
1603{
23010e43 1604 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1605 struct inode *inode;
963b4836 1606
ae9fed6b
CW
1607 /* Our goal here is to return as much of the memory as
1608 * is possible back to the system as we are called from OOM.
1609 * To do this we must instruct the shmfs to drop all of its
1610 * backing pages, *now*. Here we mirror the actions taken
1611 * when by shmem_delete_inode() to release the backing store.
1612 */
bb6baf76 1613 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1614 truncate_inode_pages(inode->i_mapping, 0);
1615 if (inode->i_op->truncate_range)
1616 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1617
1618 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1619}
1620
1621static inline int
1622i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1623{
1624 return obj_priv->madv == I915_MADV_DONTNEED;
1625}
1626
673a394b
EA
1627static void
1628i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1629{
1630 struct drm_device *dev = obj->dev;
1631 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1632 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1633
673a394b 1634 if (obj_priv->pin_count != 0)
69dc4987 1635 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1636 else
69dc4987
CW
1637 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1638 list_del_init(&obj_priv->ring_list);
673a394b 1639
99fcb766
DV
1640 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1641
ce44b0ea 1642 obj_priv->last_rendering_seqno = 0;
852835f3 1643 obj_priv->ring = NULL;
673a394b
EA
1644 if (obj_priv->active) {
1645 obj_priv->active = 0;
1646 drm_gem_object_unreference(obj);
1647 }
23bc5982 1648 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1649}
1650
9220434a 1651static void
63560396 1652i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1653 uint32_t flush_domains,
852835f3 1654 struct intel_ring_buffer *ring)
63560396
DV
1655{
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 struct drm_i915_gem_object *obj_priv, *next;
1658
1659 list_for_each_entry_safe(obj_priv, next,
1660 &dev_priv->mm.gpu_write_list,
1661 gpu_write_list) {
a8089e84 1662 struct drm_gem_object *obj = &obj_priv->base;
63560396 1663
2b6efaa4
CW
1664 if (obj->write_domain & flush_domains &&
1665 obj_priv->ring == ring) {
63560396
DV
1666 uint32_t old_write_domain = obj->write_domain;
1667
1668 obj->write_domain = 0;
1669 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1670 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1671
1672 /* update the fence lru list */
007cc8ac
DV
1673 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1674 struct drm_i915_fence_reg *reg =
1675 &dev_priv->fence_regs[obj_priv->fence_reg];
1676 list_move_tail(&reg->lru_list,
63560396 1677 &dev_priv->mm.fence_list);
007cc8ac 1678 }
63560396
DV
1679
1680 trace_i915_gem_object_change_domain(obj,
1681 obj->read_domains,
1682 old_write_domain);
1683 }
1684 }
1685}
8187a2b7 1686
5a5a0c64 1687uint32_t
8a1a49f9 1688i915_add_request(struct drm_device *dev,
f787a5f5 1689 struct drm_file *file,
8dc5d147 1690 struct drm_i915_gem_request *request,
8a1a49f9 1691 struct intel_ring_buffer *ring)
673a394b
EA
1692{
1693 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1694 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1695 uint32_t seqno;
1696 int was_empty;
673a394b 1697
f787a5f5
CW
1698 if (file != NULL)
1699 file_priv = file->driver_priv;
b962442e 1700
8dc5d147
CW
1701 if (request == NULL) {
1702 request = kzalloc(sizeof(*request), GFP_KERNEL);
1703 if (request == NULL)
1704 return 0;
1705 }
673a394b 1706
f787a5f5 1707 seqno = ring->add_request(dev, ring, 0);
a56ba56c 1708 ring->outstanding_lazy_request = false;
673a394b
EA
1709
1710 request->seqno = seqno;
852835f3 1711 request->ring = ring;
673a394b 1712 request->emitted_jiffies = jiffies;
852835f3
ZN
1713 was_empty = list_empty(&ring->request_list);
1714 list_add_tail(&request->list, &ring->request_list);
1715
f787a5f5 1716 if (file_priv) {
1c25595f 1717 spin_lock(&file_priv->mm.lock);
f787a5f5 1718 request->file_priv = file_priv;
b962442e 1719 list_add_tail(&request->client_list,
f787a5f5 1720 &file_priv->mm.request_list);
1c25595f 1721 spin_unlock(&file_priv->mm.lock);
b962442e 1722 }
673a394b 1723
f65d9421 1724 if (!dev_priv->mm.suspended) {
b3b079db
CW
1725 mod_timer(&dev_priv->hangcheck_timer,
1726 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1727 if (was_empty)
b3b079db
CW
1728 queue_delayed_work(dev_priv->wq,
1729 &dev_priv->mm.retire_work, HZ);
f65d9421 1730 }
673a394b
EA
1731 return seqno;
1732}
1733
1734/**
1735 * Command execution barrier
1736 *
1737 * Ensures that all commands in the ring are finished
1738 * before signalling the CPU
1739 */
8a1a49f9 1740static void
852835f3 1741i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1742{
673a394b 1743 uint32_t flush_domains = 0;
673a394b
EA
1744
1745 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1746 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1747 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1748
1749 ring->flush(dev, ring,
1750 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1751}
1752
f787a5f5
CW
1753static inline void
1754i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1755{
1c25595f
CW
1756 struct drm_i915_file_private *file_priv = request->file_priv;
1757
1758 if (!file_priv)
1759 return;
1760
1761 spin_lock(&file_priv->mm.lock);
1762 list_del(&request->client_list);
1763 request->file_priv = NULL;
1764 spin_unlock(&file_priv->mm.lock);
673a394b
EA
1765}
1766
dfaae392
CW
1767static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1768 struct intel_ring_buffer *ring)
9375e446 1769{
dfaae392
CW
1770 while (!list_empty(&ring->request_list)) {
1771 struct drm_i915_gem_request *request;
9375e446 1772
dfaae392
CW
1773 request = list_first_entry(&ring->request_list,
1774 struct drm_i915_gem_request,
1775 list);
1776
1777 list_del(&request->list);
f787a5f5 1778 i915_gem_request_remove_from_client(request);
dfaae392
CW
1779 kfree(request);
1780 }
1781
1782 while (!list_empty(&ring->active_list)) {
9375e446
CW
1783 struct drm_i915_gem_object *obj_priv;
1784
dfaae392 1785 obj_priv = list_first_entry(&ring->active_list,
9375e446 1786 struct drm_i915_gem_object,
69dc4987 1787 ring_list);
9375e446
CW
1788
1789 obj_priv->base.write_domain = 0;
dfaae392 1790 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1791 i915_gem_object_move_to_inactive(&obj_priv->base);
1792 }
1793}
1794
069efc1d 1795void i915_gem_reset(struct drm_device *dev)
77f01230
CW
1796{
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798 struct drm_i915_gem_object *obj_priv;
069efc1d 1799 int i;
77f01230 1800
dfaae392 1801 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1802 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
dfaae392
CW
1803
1804 /* Remove anything from the flushing lists. The GPU cache is likely
1805 * to be lost on reset along with the data, so simply move the
1806 * lost bo to the inactive list.
1807 */
1808 while (!list_empty(&dev_priv->mm.flushing_list)) {
1809 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1810 struct drm_i915_gem_object,
69dc4987 1811 mm_list);
dfaae392
CW
1812
1813 obj_priv->base.write_domain = 0;
1814 list_del_init(&obj_priv->gpu_write_list);
1815 i915_gem_object_move_to_inactive(&obj_priv->base);
1816 }
1817
1818 /* Move everything out of the GPU domains to ensure we do any
1819 * necessary invalidation upon reuse.
1820 */
77f01230
CW
1821 list_for_each_entry(obj_priv,
1822 &dev_priv->mm.inactive_list,
69dc4987 1823 mm_list)
77f01230
CW
1824 {
1825 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1826 }
069efc1d
CW
1827
1828 /* The fence registers are invalidated so clear them out */
1829 for (i = 0; i < 16; i++) {
1830 struct drm_i915_fence_reg *reg;
1831
1832 reg = &dev_priv->fence_regs[i];
1833 if (!reg->obj)
1834 continue;
1835
1836 i915_gem_clear_fence_reg(reg->obj);
1837 }
77f01230
CW
1838}
1839
673a394b
EA
1840/**
1841 * This function clears the request list as sequence numbers are passed.
1842 */
b09a1fec
CW
1843static void
1844i915_gem_retire_requests_ring(struct drm_device *dev,
1845 struct intel_ring_buffer *ring)
673a394b
EA
1846{
1847 drm_i915_private_t *dev_priv = dev->dev_private;
1848 uint32_t seqno;
1849
b84d5f0c
CW
1850 if (!ring->status_page.page_addr ||
1851 list_empty(&ring->request_list))
6c0594a3
KW
1852 return;
1853
23bc5982
CW
1854 WARN_ON(i915_verify_lists(dev));
1855
f787a5f5 1856 seqno = ring->get_seqno(dev, ring);
852835f3 1857 while (!list_empty(&ring->request_list)) {
673a394b 1858 struct drm_i915_gem_request *request;
673a394b 1859
852835f3 1860 request = list_first_entry(&ring->request_list,
673a394b
EA
1861 struct drm_i915_gem_request,
1862 list);
673a394b 1863
dfaae392 1864 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1865 break;
1866
1867 trace_i915_gem_request_retire(dev, request->seqno);
1868
1869 list_del(&request->list);
f787a5f5 1870 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1871 kfree(request);
1872 }
1873
1874 /* Move any buffers on the active list that are no longer referenced
1875 * by the ringbuffer to the flushing/inactive lists as appropriate.
1876 */
1877 while (!list_empty(&ring->active_list)) {
1878 struct drm_gem_object *obj;
1879 struct drm_i915_gem_object *obj_priv;
1880
1881 obj_priv = list_first_entry(&ring->active_list,
1882 struct drm_i915_gem_object,
69dc4987 1883 ring_list);
673a394b 1884
dfaae392 1885 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1886 break;
b84d5f0c
CW
1887
1888 obj = &obj_priv->base;
b84d5f0c
CW
1889 if (obj->write_domain != 0)
1890 i915_gem_object_move_to_flushing(obj);
1891 else
1892 i915_gem_object_move_to_inactive(obj);
673a394b 1893 }
9d34e5db
CW
1894
1895 if (unlikely (dev_priv->trace_irq_seqno &&
1896 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1897 ring->user_irq_put(dev, ring);
9d34e5db
CW
1898 dev_priv->trace_irq_seqno = 0;
1899 }
23bc5982
CW
1900
1901 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1902}
1903
b09a1fec
CW
1904void
1905i915_gem_retire_requests(struct drm_device *dev)
1906{
1907 drm_i915_private_t *dev_priv = dev->dev_private;
1908
be72615b
CW
1909 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1910 struct drm_i915_gem_object *obj_priv, *tmp;
1911
1912 /* We must be careful that during unbind() we do not
1913 * accidentally infinitely recurse into retire requests.
1914 * Currently:
1915 * retire -> free -> unbind -> wait -> retire_ring
1916 */
1917 list_for_each_entry_safe(obj_priv, tmp,
1918 &dev_priv->mm.deferred_free_list,
69dc4987 1919 mm_list)
be72615b
CW
1920 i915_gem_free_object_tail(&obj_priv->base);
1921 }
1922
b09a1fec 1923 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1924 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
b09a1fec
CW
1925}
1926
75ef9da2 1927static void
673a394b
EA
1928i915_gem_retire_work_handler(struct work_struct *work)
1929{
1930 drm_i915_private_t *dev_priv;
1931 struct drm_device *dev;
1932
1933 dev_priv = container_of(work, drm_i915_private_t,
1934 mm.retire_work.work);
1935 dev = dev_priv->dev;
1936
891b48cf
CW
1937 /* Come back later if the device is busy... */
1938 if (!mutex_trylock(&dev->struct_mutex)) {
1939 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1940 return;
1941 }
1942
b09a1fec 1943 i915_gem_retire_requests(dev);
d1b851fc 1944
6dbe2772 1945 if (!dev_priv->mm.suspended &&
d1b851fc 1946 (!list_empty(&dev_priv->render_ring.request_list) ||
87acb0a5 1947 !list_empty(&dev_priv->bsd_ring.request_list)))
9c9fe1f8 1948 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1949 mutex_unlock(&dev->struct_mutex);
1950}
1951
5a5a0c64 1952int
852835f3 1953i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1954 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1955{
1956 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1957 u32 ier;
673a394b
EA
1958 int ret = 0;
1959
1960 BUG_ON(seqno == 0);
1961
30dbf0c0
CW
1962 if (atomic_read(&dev_priv->mm.wedged))
1963 return -EAGAIN;
1964
a56ba56c 1965 if (ring->outstanding_lazy_request) {
8dc5d147 1966 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1967 if (seqno == 0)
1968 return -ENOMEM;
1969 }
a56ba56c 1970 BUG_ON(seqno == dev_priv->next_seqno);
e35a41de 1971
f787a5f5 1972 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1973 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1974 ier = I915_READ(DEIER) | I915_READ(GTIER);
1975 else
1976 ier = I915_READ(IER);
802c7eb6
JB
1977 if (!ier) {
1978 DRM_ERROR("something (likely vbetool) disabled "
1979 "interrupts, re-enabling\n");
1980 i915_driver_irq_preinstall(dev);
1981 i915_driver_irq_postinstall(dev);
1982 }
1983
1c5d22f7
CW
1984 trace_i915_gem_request_wait_begin(dev, seqno);
1985
852835f3 1986 ring->waiting_gem_seqno = seqno;
8187a2b7 1987 ring->user_irq_get(dev, ring);
48764bf4 1988 if (interruptible)
852835f3
ZN
1989 ret = wait_event_interruptible(ring->irq_queue,
1990 i915_seqno_passed(
f787a5f5 1991 ring->get_seqno(dev, ring), seqno)
852835f3 1992 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1993 else
852835f3
ZN
1994 wait_event(ring->irq_queue,
1995 i915_seqno_passed(
f787a5f5 1996 ring->get_seqno(dev, ring), seqno)
852835f3 1997 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1998
8187a2b7 1999 ring->user_irq_put(dev, ring);
852835f3 2000 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
2001
2002 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2003 }
ba1234d1 2004 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2005 ret = -EAGAIN;
673a394b
EA
2006
2007 if (ret && ret != -ERESTARTSYS)
8bff917c 2008 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 2009 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 2010 dev_priv->next_seqno);
673a394b
EA
2011
2012 /* Directly dispatch request retiring. While we have the work queue
2013 * to handle this, the waiter on a request often wants an associated
2014 * buffer to have made it to the inactive list, and we would need
2015 * a separate wait queue to handle that.
2016 */
2017 if (ret == 0)
b09a1fec 2018 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2019
2020 return ret;
2021}
2022
48764bf4
DV
2023/**
2024 * Waits for a sequence number to be signaled, and cleans up the
2025 * request and object lists appropriately for that event.
2026 */
2027static int
852835f3 2028i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2029 struct intel_ring_buffer *ring)
48764bf4 2030{
852835f3 2031 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2032}
2033
20f0cd55 2034static void
9220434a 2035i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2036 struct drm_file *file_priv,
9220434a
CW
2037 struct intel_ring_buffer *ring,
2038 uint32_t invalidate_domains,
2039 uint32_t flush_domains)
2040{
2041 ring->flush(dev, ring, invalidate_domains, flush_domains);
2042 i915_gem_process_flushing_list(dev, flush_domains, ring);
2043}
2044
8187a2b7
ZN
2045static void
2046i915_gem_flush(struct drm_device *dev,
c78ec30b 2047 struct drm_file *file_priv,
8187a2b7 2048 uint32_t invalidate_domains,
9220434a
CW
2049 uint32_t flush_domains,
2050 uint32_t flush_rings)
8187a2b7
ZN
2051{
2052 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2053
8187a2b7
ZN
2054 if (flush_domains & I915_GEM_DOMAIN_CPU)
2055 drm_agp_chipset_flush(dev);
8bff917c 2056
9220434a
CW
2057 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2058 if (flush_rings & RING_RENDER)
c78ec30b 2059 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2060 &dev_priv->render_ring,
2061 invalidate_domains, flush_domains);
2062 if (flush_rings & RING_BSD)
c78ec30b 2063 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2064 &dev_priv->bsd_ring,
2065 invalidate_domains, flush_domains);
2066 }
8187a2b7
ZN
2067}
2068
673a394b
EA
2069/**
2070 * Ensures that all rendering to the object has completed and the object is
2071 * safe to unbind from the GTT or access from the CPU.
2072 */
2073static int
2cf34d7b
CW
2074i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2075 bool interruptible)
673a394b
EA
2076{
2077 struct drm_device *dev = obj->dev;
23010e43 2078 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2079 int ret;
2080
e47c68e9
EA
2081 /* This function only exists to support waiting for existing rendering,
2082 * not for emitting required flushes.
673a394b 2083 */
e47c68e9 2084 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2085
2086 /* If there is rendering queued on the buffer being evicted, wait for
2087 * it.
2088 */
2089 if (obj_priv->active) {
2cf34d7b
CW
2090 ret = i915_do_wait_request(dev,
2091 obj_priv->last_rendering_seqno,
2092 interruptible,
2093 obj_priv->ring);
2094 if (ret)
673a394b
EA
2095 return ret;
2096 }
2097
2098 return 0;
2099}
2100
2101/**
2102 * Unbinds an object from the GTT aperture.
2103 */
0f973f27 2104int
673a394b
EA
2105i915_gem_object_unbind(struct drm_gem_object *obj)
2106{
2107 struct drm_device *dev = obj->dev;
73aa808f 2108 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2109 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2110 int ret = 0;
2111
673a394b
EA
2112 if (obj_priv->gtt_space == NULL)
2113 return 0;
2114
2115 if (obj_priv->pin_count != 0) {
2116 DRM_ERROR("Attempting to unbind pinned buffer\n");
2117 return -EINVAL;
2118 }
2119
5323fd04
EA
2120 /* blow away mappings if mapped through GTT */
2121 i915_gem_release_mmap(obj);
2122
673a394b
EA
2123 /* Move the object to the CPU domain to ensure that
2124 * any possible CPU writes while it's not in the GTT
2125 * are flushed when we go to remap it. This will
2126 * also ensure that all pending GPU writes are finished
2127 * before we unbind.
2128 */
e47c68e9 2129 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2130 if (ret == -ERESTARTSYS)
673a394b 2131 return ret;
8dc1775d
CW
2132 /* Continue on if we fail due to EIO, the GPU is hung so we
2133 * should be safe and we need to cleanup or else we might
2134 * cause memory corruption through use-after-free.
2135 */
812ed492
CW
2136 if (ret) {
2137 i915_gem_clflush_object(obj);
2138 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2139 }
673a394b 2140
96b47b65
DV
2141 /* release the fence reg _after_ flushing */
2142 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2143 i915_gem_clear_fence_reg(obj);
2144
73aa808f
CW
2145 drm_unbind_agp(obj_priv->agp_mem);
2146 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2147
856fa198 2148 i915_gem_object_put_pages(obj);
a32808c0 2149 BUG_ON(obj_priv->pages_refcount);
673a394b 2150
73aa808f 2151 i915_gem_info_remove_gtt(dev_priv, obj->size);
69dc4987 2152 list_del_init(&obj_priv->mm_list);
673a394b 2153
73aa808f
CW
2154 drm_mm_put_block(obj_priv->gtt_space);
2155 obj_priv->gtt_space = NULL;
9af90d19 2156 obj_priv->gtt_offset = 0;
73aa808f 2157
963b4836
CW
2158 if (i915_gem_object_is_purgeable(obj_priv))
2159 i915_gem_object_truncate(obj);
2160
1c5d22f7
CW
2161 trace_i915_gem_object_unbind(obj);
2162
8dc1775d 2163 return ret;
673a394b
EA
2164}
2165
a56ba56c
CW
2166static int i915_ring_idle(struct drm_device *dev,
2167 struct intel_ring_buffer *ring)
2168{
2169 i915_gem_flush_ring(dev, NULL, ring,
2170 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2171 return i915_wait_request(dev,
2172 i915_gem_next_request_seqno(dev, ring),
2173 ring);
2174}
2175
b47eb4a2 2176int
4df2faf4
DV
2177i915_gpu_idle(struct drm_device *dev)
2178{
2179 drm_i915_private_t *dev_priv = dev->dev_private;
2180 bool lists_empty;
852835f3 2181 int ret;
4df2faf4 2182
d1b851fc
ZN
2183 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2184 list_empty(&dev_priv->render_ring.active_list) &&
87acb0a5 2185 list_empty(&dev_priv->bsd_ring.active_list));
4df2faf4
DV
2186 if (lists_empty)
2187 return 0;
2188
2189 /* Flush everything onto the inactive list. */
a56ba56c 2190 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2191 if (ret)
2192 return ret;
d1b851fc 2193
87acb0a5
CW
2194 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2195 if (ret)
2196 return ret;
d1b851fc 2197
8a1a49f9 2198 return 0;
4df2faf4
DV
2199}
2200
5cdf5881 2201static int
4bdadb97
CW
2202i915_gem_object_get_pages(struct drm_gem_object *obj,
2203 gfp_t gfpmask)
673a394b 2204{
23010e43 2205 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2206 int page_count, i;
2207 struct address_space *mapping;
2208 struct inode *inode;
2209 struct page *page;
673a394b 2210
778c3544
DV
2211 BUG_ON(obj_priv->pages_refcount
2212 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2213
856fa198 2214 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2215 return 0;
2216
2217 /* Get the list of pages out of our struct file. They'll be pinned
2218 * at this point until we release them.
2219 */
2220 page_count = obj->size / PAGE_SIZE;
856fa198 2221 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2222 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2223 if (obj_priv->pages == NULL) {
856fa198 2224 obj_priv->pages_refcount--;
673a394b
EA
2225 return -ENOMEM;
2226 }
2227
2228 inode = obj->filp->f_path.dentry->d_inode;
2229 mapping = inode->i_mapping;
2230 for (i = 0; i < page_count; i++) {
4bdadb97 2231 page = read_cache_page_gfp(mapping, i,
985b823b 2232 GFP_HIGHUSER |
4bdadb97 2233 __GFP_COLD |
cd9f040d 2234 __GFP_RECLAIMABLE |
4bdadb97 2235 gfpmask);
1f2b1013
CW
2236 if (IS_ERR(page))
2237 goto err_pages;
2238
856fa198 2239 obj_priv->pages[i] = page;
673a394b 2240 }
280b713b
EA
2241
2242 if (obj_priv->tiling_mode != I915_TILING_NONE)
2243 i915_gem_object_do_bit_17_swizzle(obj);
2244
673a394b 2245 return 0;
1f2b1013
CW
2246
2247err_pages:
2248 while (i--)
2249 page_cache_release(obj_priv->pages[i]);
2250
2251 drm_free_large(obj_priv->pages);
2252 obj_priv->pages = NULL;
2253 obj_priv->pages_refcount--;
2254 return PTR_ERR(page);
673a394b
EA
2255}
2256
4e901fdc
EA
2257static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2258{
2259 struct drm_gem_object *obj = reg->obj;
2260 struct drm_device *dev = obj->dev;
2261 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2262 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2263 int regnum = obj_priv->fence_reg;
2264 uint64_t val;
2265
2266 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2267 0xfffff000) << 32;
2268 val |= obj_priv->gtt_offset & 0xfffff000;
2269 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2270 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2271
2272 if (obj_priv->tiling_mode == I915_TILING_Y)
2273 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2274 val |= I965_FENCE_REG_VALID;
2275
2276 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2277}
2278
de151cf6
JB
2279static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2280{
2281 struct drm_gem_object *obj = reg->obj;
2282 struct drm_device *dev = obj->dev;
2283 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2284 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2285 int regnum = obj_priv->fence_reg;
2286 uint64_t val;
2287
2288 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2289 0xfffff000) << 32;
2290 val |= obj_priv->gtt_offset & 0xfffff000;
2291 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2292 if (obj_priv->tiling_mode == I915_TILING_Y)
2293 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2294 val |= I965_FENCE_REG_VALID;
2295
2296 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2297}
2298
2299static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2300{
2301 struct drm_gem_object *obj = reg->obj;
2302 struct drm_device *dev = obj->dev;
2303 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2304 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2305 int regnum = obj_priv->fence_reg;
0f973f27 2306 int tile_width;
dc529a4f 2307 uint32_t fence_reg, val;
de151cf6
JB
2308 uint32_t pitch_val;
2309
2310 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2311 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2312 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2313 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2314 return;
2315 }
2316
0f973f27
JB
2317 if (obj_priv->tiling_mode == I915_TILING_Y &&
2318 HAS_128_BYTE_Y_TILING(dev))
2319 tile_width = 128;
de151cf6 2320 else
0f973f27
JB
2321 tile_width = 512;
2322
2323 /* Note: pitch better be a power of two tile widths */
2324 pitch_val = obj_priv->stride / tile_width;
2325 pitch_val = ffs(pitch_val) - 1;
de151cf6 2326
c36a2a6d
DV
2327 if (obj_priv->tiling_mode == I915_TILING_Y &&
2328 HAS_128_BYTE_Y_TILING(dev))
2329 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2330 else
2331 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2332
de151cf6
JB
2333 val = obj_priv->gtt_offset;
2334 if (obj_priv->tiling_mode == I915_TILING_Y)
2335 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2336 val |= I915_FENCE_SIZE_BITS(obj->size);
2337 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2338 val |= I830_FENCE_REG_VALID;
2339
dc529a4f
EA
2340 if (regnum < 8)
2341 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2342 else
2343 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2344 I915_WRITE(fence_reg, val);
de151cf6
JB
2345}
2346
2347static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2348{
2349 struct drm_gem_object *obj = reg->obj;
2350 struct drm_device *dev = obj->dev;
2351 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2353 int regnum = obj_priv->fence_reg;
2354 uint32_t val;
2355 uint32_t pitch_val;
8d7773a3 2356 uint32_t fence_size_bits;
de151cf6 2357
8d7773a3 2358 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2359 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2360 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2361 __func__, obj_priv->gtt_offset);
de151cf6
JB
2362 return;
2363 }
2364
e76a16de
EA
2365 pitch_val = obj_priv->stride / 128;
2366 pitch_val = ffs(pitch_val) - 1;
2367 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2368
de151cf6
JB
2369 val = obj_priv->gtt_offset;
2370 if (obj_priv->tiling_mode == I915_TILING_Y)
2371 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2372 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2373 WARN_ON(fence_size_bits & ~0x00000f00);
2374 val |= fence_size_bits;
de151cf6
JB
2375 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2376 val |= I830_FENCE_REG_VALID;
2377
2378 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2379}
2380
2cf34d7b
CW
2381static int i915_find_fence_reg(struct drm_device *dev,
2382 bool interruptible)
ae3db24a
DV
2383{
2384 struct drm_i915_fence_reg *reg = NULL;
2385 struct drm_i915_gem_object *obj_priv = NULL;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct drm_gem_object *obj = NULL;
2388 int i, avail, ret;
2389
2390 /* First try to find a free reg */
2391 avail = 0;
2392 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2393 reg = &dev_priv->fence_regs[i];
2394 if (!reg->obj)
2395 return i;
2396
23010e43 2397 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2398 if (!obj_priv->pin_count)
2399 avail++;
2400 }
2401
2402 if (avail == 0)
2403 return -ENOSPC;
2404
2405 /* None available, try to steal one or wait for a user to finish */
2406 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2407 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2408 lru_list) {
2409 obj = reg->obj;
2410 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2411
2412 if (obj_priv->pin_count)
2413 continue;
2414
2415 /* found one! */
2416 i = obj_priv->fence_reg;
2417 break;
2418 }
2419
2420 BUG_ON(i == I915_FENCE_REG_NONE);
2421
2422 /* We only have a reference on obj from the active list. put_fence_reg
2423 * might drop that one, causing a use-after-free in it. So hold a
2424 * private reference to obj like the other callers of put_fence_reg
2425 * (set_tiling ioctl) do. */
2426 drm_gem_object_reference(obj);
2cf34d7b 2427 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2428 drm_gem_object_unreference(obj);
2429 if (ret != 0)
2430 return ret;
2431
2432 return i;
2433}
2434
de151cf6
JB
2435/**
2436 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2437 * @obj: object to map through a fence reg
2438 *
2439 * When mapping objects through the GTT, userspace wants to be able to write
2440 * to them without having to worry about swizzling if the object is tiled.
2441 *
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
2447 */
8c4b8c3f 2448int
2cf34d7b
CW
2449i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2450 bool interruptible)
de151cf6
JB
2451{
2452 struct drm_device *dev = obj->dev;
79e53945 2453 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2454 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2455 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2456 int ret;
de151cf6 2457
a09ba7fa
EA
2458 /* Just update our place in the LRU if our fence is getting used. */
2459 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2460 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2461 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2462 return 0;
2463 }
2464
de151cf6
JB
2465 switch (obj_priv->tiling_mode) {
2466 case I915_TILING_NONE:
2467 WARN(1, "allocating a fence for non-tiled object?\n");
2468 break;
2469 case I915_TILING_X:
0f973f27
JB
2470 if (!obj_priv->stride)
2471 return -EINVAL;
2472 WARN((obj_priv->stride & (512 - 1)),
2473 "object 0x%08x is X tiled but has non-512B pitch\n",
2474 obj_priv->gtt_offset);
de151cf6
JB
2475 break;
2476 case I915_TILING_Y:
0f973f27
JB
2477 if (!obj_priv->stride)
2478 return -EINVAL;
2479 WARN((obj_priv->stride & (128 - 1)),
2480 "object 0x%08x is Y tiled but has non-128B pitch\n",
2481 obj_priv->gtt_offset);
de151cf6
JB
2482 break;
2483 }
2484
2cf34d7b 2485 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2486 if (ret < 0)
2487 return ret;
de151cf6 2488
ae3db24a
DV
2489 obj_priv->fence_reg = ret;
2490 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2491 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2492
de151cf6
JB
2493 reg->obj = obj;
2494
e259befd
CW
2495 switch (INTEL_INFO(dev)->gen) {
2496 case 6:
4e901fdc 2497 sandybridge_write_fence_reg(reg);
e259befd
CW
2498 break;
2499 case 5:
2500 case 4:
de151cf6 2501 i965_write_fence_reg(reg);
e259befd
CW
2502 break;
2503 case 3:
de151cf6 2504 i915_write_fence_reg(reg);
e259befd
CW
2505 break;
2506 case 2:
de151cf6 2507 i830_write_fence_reg(reg);
e259befd
CW
2508 break;
2509 }
d9ddcb96 2510
ae3db24a
DV
2511 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2512 obj_priv->tiling_mode);
1c5d22f7 2513
d9ddcb96 2514 return 0;
de151cf6
JB
2515}
2516
2517/**
2518 * i915_gem_clear_fence_reg - clear out fence register info
2519 * @obj: object to clear
2520 *
2521 * Zeroes out the fence register itself and clears out the associated
2522 * data structures in dev_priv and obj_priv.
2523 */
2524static void
2525i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2526{
2527 struct drm_device *dev = obj->dev;
79e53945 2528 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2529 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2530 struct drm_i915_fence_reg *reg =
2531 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2532 uint32_t fence_reg;
de151cf6 2533
e259befd
CW
2534 switch (INTEL_INFO(dev)->gen) {
2535 case 6:
4e901fdc
EA
2536 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2537 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2538 break;
2539 case 5:
2540 case 4:
de151cf6 2541 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2542 break;
2543 case 3:
9b74f734 2544 if (obj_priv->fence_reg >= 8)
e259befd 2545 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2546 else
e259befd
CW
2547 case 2:
2548 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2549
2550 I915_WRITE(fence_reg, 0);
e259befd 2551 break;
dc529a4f 2552 }
de151cf6 2553
007cc8ac 2554 reg->obj = NULL;
de151cf6 2555 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2556 list_del_init(&reg->lru_list);
de151cf6
JB
2557}
2558
52dc7d32
CW
2559/**
2560 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2561 * to the buffer to finish, and then resets the fence register.
2562 * @obj: tiled object holding a fence register.
2cf34d7b 2563 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2564 *
2565 * Zeroes out the fence register itself and clears out the associated
2566 * data structures in dev_priv and obj_priv.
2567 */
2568int
2cf34d7b
CW
2569i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2570 bool interruptible)
52dc7d32
CW
2571{
2572 struct drm_device *dev = obj->dev;
53640e1d 2573 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2574 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2575 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2576
2577 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2578 return 0;
2579
10ae9bd2
DV
2580 /* If we've changed tiling, GTT-mappings of the object
2581 * need to re-fault to ensure that the correct fence register
2582 * setup is in place.
2583 */
2584 i915_gem_release_mmap(obj);
2585
52dc7d32
CW
2586 /* On the i915, GPU access to tiled buffers is via a fence,
2587 * therefore we must wait for any outstanding access to complete
2588 * before clearing the fence.
2589 */
53640e1d
CW
2590 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2591 if (reg->gpu) {
52dc7d32
CW
2592 int ret;
2593
2cf34d7b 2594 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2595 if (ret)
2596 return ret;
2597
2cf34d7b 2598 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2599 if (ret)
52dc7d32 2600 return ret;
53640e1d
CW
2601
2602 reg->gpu = false;
52dc7d32
CW
2603 }
2604
4a726612 2605 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2606 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2607
2608 return 0;
2609}
2610
673a394b
EA
2611/**
2612 * Finds free space in the GTT aperture and binds the object there.
2613 */
2614static int
2615i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2616{
2617 struct drm_device *dev = obj->dev;
2618 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2619 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2620 struct drm_mm_node *free_space;
4bdadb97 2621 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2622 int ret;
673a394b 2623
bb6baf76 2624 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2625 DRM_ERROR("Attempting to bind a purgeable object\n");
2626 return -EINVAL;
2627 }
2628
673a394b 2629 if (alignment == 0)
0f973f27 2630 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2631 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2632 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2633 return -EINVAL;
2634 }
2635
654fc607
CW
2636 /* If the object is bigger than the entire aperture, reject it early
2637 * before evicting everything in a vain attempt to find space.
2638 */
73aa808f 2639 if (obj->size > dev_priv->mm.gtt_total) {
654fc607
CW
2640 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2641 return -E2BIG;
2642 }
2643
673a394b
EA
2644 search_free:
2645 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2646 obj->size, alignment, 0);
9af90d19 2647 if (free_space != NULL)
673a394b
EA
2648 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2649 alignment);
673a394b
EA
2650 if (obj_priv->gtt_space == NULL) {
2651 /* If the gtt is empty and we're still having trouble
2652 * fitting our object in, we're out of memory.
2653 */
0108a3ed 2654 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2655 if (ret)
673a394b 2656 return ret;
9731129c 2657
673a394b
EA
2658 goto search_free;
2659 }
2660
4bdadb97 2661 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2662 if (ret) {
2663 drm_mm_put_block(obj_priv->gtt_space);
2664 obj_priv->gtt_space = NULL;
07f73f69
CW
2665
2666 if (ret == -ENOMEM) {
2667 /* first try to clear up some space from the GTT */
0108a3ed
DV
2668 ret = i915_gem_evict_something(dev, obj->size,
2669 alignment);
07f73f69 2670 if (ret) {
07f73f69 2671 /* now try to shrink everyone else */
4bdadb97
CW
2672 if (gfpmask) {
2673 gfpmask = 0;
2674 goto search_free;
07f73f69
CW
2675 }
2676
2677 return ret;
2678 }
2679
2680 goto search_free;
2681 }
2682
673a394b
EA
2683 return ret;
2684 }
2685
673a394b
EA
2686 /* Create an AGP memory structure pointing at our pages, and bind it
2687 * into the GTT.
2688 */
2689 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2690 obj_priv->pages,
07f73f69 2691 obj->size >> PAGE_SHIFT,
9af90d19 2692 obj_priv->gtt_space->start,
ba1eb1d8 2693 obj_priv->agp_type);
673a394b 2694 if (obj_priv->agp_mem == NULL) {
856fa198 2695 i915_gem_object_put_pages(obj);
673a394b
EA
2696 drm_mm_put_block(obj_priv->gtt_space);
2697 obj_priv->gtt_space = NULL;
07f73f69 2698
0108a3ed 2699 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2700 if (ret)
07f73f69 2701 return ret;
07f73f69
CW
2702
2703 goto search_free;
673a394b 2704 }
673a394b 2705
bf1a1092 2706 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2707 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
73aa808f 2708 i915_gem_info_add_gtt(dev_priv, obj->size);
bf1a1092 2709
673a394b
EA
2710 /* Assert that the object is not currently in any GPU domain. As it
2711 * wasn't in the GTT, there shouldn't be any way it could have been in
2712 * a GPU cache
2713 */
21d509e3
CW
2714 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2715 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2716
9af90d19 2717 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1c5d22f7
CW
2718 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2719
673a394b
EA
2720 return 0;
2721}
2722
2723void
2724i915_gem_clflush_object(struct drm_gem_object *obj)
2725{
23010e43 2726 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2727
2728 /* If we don't have a page list set up, then we're not pinned
2729 * to GPU, and we can ignore the cache flush because it'll happen
2730 * again at bind time.
2731 */
856fa198 2732 if (obj_priv->pages == NULL)
673a394b
EA
2733 return;
2734
1c5d22f7 2735 trace_i915_gem_object_clflush(obj);
cfa16a0d 2736
856fa198 2737 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2738}
2739
e47c68e9 2740/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2741static int
ba3d8d74
DV
2742i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2743 bool pipelined)
e47c68e9
EA
2744{
2745 struct drm_device *dev = obj->dev;
1c5d22f7 2746 uint32_t old_write_domain;
e47c68e9
EA
2747
2748 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2749 return 0;
e47c68e9
EA
2750
2751 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2752 old_write_domain = obj->write_domain;
c78ec30b 2753 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2754 to_intel_bo(obj)->ring,
2755 0, obj->write_domain);
48b956c5 2756 BUG_ON(obj->write_domain);
1c5d22f7
CW
2757
2758 trace_i915_gem_object_change_domain(obj,
2759 obj->read_domains,
2760 old_write_domain);
ba3d8d74
DV
2761
2762 if (pipelined)
2763 return 0;
2764
2cf34d7b 2765 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2766}
2767
2768/** Flushes the GTT write domain for the object if it's dirty. */
2769static void
2770i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2771{
1c5d22f7
CW
2772 uint32_t old_write_domain;
2773
e47c68e9
EA
2774 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2775 return;
2776
2777 /* No actual flushing is required for the GTT write domain. Writes
2778 * to it immediately go to main memory as far as we know, so there's
2779 * no chipset flush. It also doesn't land in render cache.
2780 */
1c5d22f7 2781 old_write_domain = obj->write_domain;
e47c68e9 2782 obj->write_domain = 0;
1c5d22f7
CW
2783
2784 trace_i915_gem_object_change_domain(obj,
2785 obj->read_domains,
2786 old_write_domain);
e47c68e9
EA
2787}
2788
2789/** Flushes the CPU write domain for the object if it's dirty. */
2790static void
2791i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2792{
2793 struct drm_device *dev = obj->dev;
1c5d22f7 2794 uint32_t old_write_domain;
e47c68e9
EA
2795
2796 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2797 return;
2798
2799 i915_gem_clflush_object(obj);
2800 drm_agp_chipset_flush(dev);
1c5d22f7 2801 old_write_domain = obj->write_domain;
e47c68e9 2802 obj->write_domain = 0;
1c5d22f7
CW
2803
2804 trace_i915_gem_object_change_domain(obj,
2805 obj->read_domains,
2806 old_write_domain);
e47c68e9
EA
2807}
2808
2ef7eeaa
EA
2809/**
2810 * Moves a single object to the GTT read, and possibly write domain.
2811 *
2812 * This function returns when the move is complete, including waiting on
2813 * flushes to occur.
2814 */
79e53945 2815int
2ef7eeaa
EA
2816i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2817{
23010e43 2818 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2819 uint32_t old_write_domain, old_read_domains;
e47c68e9 2820 int ret;
2ef7eeaa 2821
02354392
EA
2822 /* Not valid to be called on unbound objects. */
2823 if (obj_priv->gtt_space == NULL)
2824 return -EINVAL;
2825
ba3d8d74 2826 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2827 if (ret != 0)
2828 return ret;
2829
7213342d 2830 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2831
ba3d8d74 2832 if (write) {
2cf34d7b 2833 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2834 if (ret)
2835 return ret;
ba3d8d74 2836 }
2ef7eeaa 2837
7213342d
CW
2838 old_write_domain = obj->write_domain;
2839 old_read_domains = obj->read_domains;
2ef7eeaa 2840
e47c68e9
EA
2841 /* It should now be out of any other write domains, and we can update
2842 * the domain values for our changes.
2843 */
2844 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2845 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2846 if (write) {
7213342d 2847 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2848 obj->write_domain = I915_GEM_DOMAIN_GTT;
2849 obj_priv->dirty = 1;
2ef7eeaa
EA
2850 }
2851
1c5d22f7
CW
2852 trace_i915_gem_object_change_domain(obj,
2853 old_read_domains,
2854 old_write_domain);
2855
e47c68e9
EA
2856 return 0;
2857}
2858
b9241ea3
ZW
2859/*
2860 * Prepare buffer for display plane. Use uninterruptible for possible flush
2861 * wait, as in modesetting process we're not supposed to be interrupted.
2862 */
2863int
48b956c5
CW
2864i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2865 bool pipelined)
b9241ea3 2866{
23010e43 2867 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2868 uint32_t old_read_domains;
b9241ea3
ZW
2869 int ret;
2870
2871 /* Not valid to be called on unbound objects. */
2872 if (obj_priv->gtt_space == NULL)
2873 return -EINVAL;
2874
ced270fa 2875 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
48b956c5 2876 if (ret)
e35a41de 2877 return ret;
b9241ea3 2878
ced270fa
CW
2879 /* Currently, we are always called from an non-interruptible context. */
2880 if (!pipelined) {
2881 ret = i915_gem_object_wait_rendering(obj, false);
2882 if (ret)
2883 return ret;
2884 }
2885
b118c1e3
CW
2886 i915_gem_object_flush_cpu_write_domain(obj);
2887
b9241ea3 2888 old_read_domains = obj->read_domains;
c78ec30b 2889 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2890
2891 trace_i915_gem_object_change_domain(obj,
2892 old_read_domains,
ba3d8d74 2893 obj->write_domain);
b9241ea3
ZW
2894
2895 return 0;
2896}
2897
e47c68e9
EA
2898/**
2899 * Moves a single object to the CPU read, and possibly write domain.
2900 *
2901 * This function returns when the move is complete, including waiting on
2902 * flushes to occur.
2903 */
2904static int
2905i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2906{
1c5d22f7 2907 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2908 int ret;
2909
ba3d8d74 2910 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2911 if (ret != 0)
2912 return ret;
2ef7eeaa 2913
e47c68e9 2914 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2915
e47c68e9
EA
2916 /* If we have a partially-valid cache of the object in the CPU,
2917 * finish invalidating it and free the per-page flags.
2ef7eeaa 2918 */
e47c68e9 2919 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2920
7213342d 2921 if (write) {
2cf34d7b 2922 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2923 if (ret)
2924 return ret;
2925 }
2926
1c5d22f7
CW
2927 old_write_domain = obj->write_domain;
2928 old_read_domains = obj->read_domains;
2929
e47c68e9
EA
2930 /* Flush the CPU cache if it's still invalid. */
2931 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2932 i915_gem_clflush_object(obj);
2ef7eeaa 2933
e47c68e9 2934 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2935 }
2936
2937 /* It should now be out of any other write domains, and we can update
2938 * the domain values for our changes.
2939 */
e47c68e9
EA
2940 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2941
2942 /* If we're writing through the CPU, then the GPU read domains will
2943 * need to be invalidated at next use.
2944 */
2945 if (write) {
c78ec30b 2946 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2947 obj->write_domain = I915_GEM_DOMAIN_CPU;
2948 }
2ef7eeaa 2949
1c5d22f7
CW
2950 trace_i915_gem_object_change_domain(obj,
2951 old_read_domains,
2952 old_write_domain);
2953
2ef7eeaa
EA
2954 return 0;
2955}
2956
673a394b
EA
2957/*
2958 * Set the next domain for the specified object. This
2959 * may not actually perform the necessary flushing/invaliding though,
2960 * as that may want to be batched with other set_domain operations
2961 *
2962 * This is (we hope) the only really tricky part of gem. The goal
2963 * is fairly simple -- track which caches hold bits of the object
2964 * and make sure they remain coherent. A few concrete examples may
2965 * help to explain how it works. For shorthand, we use the notation
2966 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2967 * a pair of read and write domain masks.
2968 *
2969 * Case 1: the batch buffer
2970 *
2971 * 1. Allocated
2972 * 2. Written by CPU
2973 * 3. Mapped to GTT
2974 * 4. Read by GPU
2975 * 5. Unmapped from GTT
2976 * 6. Freed
2977 *
2978 * Let's take these a step at a time
2979 *
2980 * 1. Allocated
2981 * Pages allocated from the kernel may still have
2982 * cache contents, so we set them to (CPU, CPU) always.
2983 * 2. Written by CPU (using pwrite)
2984 * The pwrite function calls set_domain (CPU, CPU) and
2985 * this function does nothing (as nothing changes)
2986 * 3. Mapped by GTT
2987 * This function asserts that the object is not
2988 * currently in any GPU-based read or write domains
2989 * 4. Read by GPU
2990 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2991 * As write_domain is zero, this function adds in the
2992 * current read domains (CPU+COMMAND, 0).
2993 * flush_domains is set to CPU.
2994 * invalidate_domains is set to COMMAND
2995 * clflush is run to get data out of the CPU caches
2996 * then i915_dev_set_domain calls i915_gem_flush to
2997 * emit an MI_FLUSH and drm_agp_chipset_flush
2998 * 5. Unmapped from GTT
2999 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3000 * flush_domains and invalidate_domains end up both zero
3001 * so no flushing/invalidating happens
3002 * 6. Freed
3003 * yay, done
3004 *
3005 * Case 2: The shared render buffer
3006 *
3007 * 1. Allocated
3008 * 2. Mapped to GTT
3009 * 3. Read/written by GPU
3010 * 4. set_domain to (CPU,CPU)
3011 * 5. Read/written by CPU
3012 * 6. Read/written by GPU
3013 *
3014 * 1. Allocated
3015 * Same as last example, (CPU, CPU)
3016 * 2. Mapped to GTT
3017 * Nothing changes (assertions find that it is not in the GPU)
3018 * 3. Read/written by GPU
3019 * execbuffer calls set_domain (RENDER, RENDER)
3020 * flush_domains gets CPU
3021 * invalidate_domains gets GPU
3022 * clflush (obj)
3023 * MI_FLUSH and drm_agp_chipset_flush
3024 * 4. set_domain (CPU, CPU)
3025 * flush_domains gets GPU
3026 * invalidate_domains gets CPU
3027 * wait_rendering (obj) to make sure all drawing is complete.
3028 * This will include an MI_FLUSH to get the data from GPU
3029 * to memory
3030 * clflush (obj) to invalidate the CPU cache
3031 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3032 * 5. Read/written by CPU
3033 * cache lines are loaded and dirtied
3034 * 6. Read written by GPU
3035 * Same as last GPU access
3036 *
3037 * Case 3: The constant buffer
3038 *
3039 * 1. Allocated
3040 * 2. Written by CPU
3041 * 3. Read by GPU
3042 * 4. Updated (written) by CPU again
3043 * 5. Read by GPU
3044 *
3045 * 1. Allocated
3046 * (CPU, CPU)
3047 * 2. Written by CPU
3048 * (CPU, CPU)
3049 * 3. Read by GPU
3050 * (CPU+RENDER, 0)
3051 * flush_domains = CPU
3052 * invalidate_domains = RENDER
3053 * clflush (obj)
3054 * MI_FLUSH
3055 * drm_agp_chipset_flush
3056 * 4. Updated (written) by CPU again
3057 * (CPU, CPU)
3058 * flush_domains = 0 (no previous write domain)
3059 * invalidate_domains = 0 (no new read domains)
3060 * 5. Read by GPU
3061 * (CPU+RENDER, 0)
3062 * flush_domains = CPU
3063 * invalidate_domains = RENDER
3064 * clflush (obj)
3065 * MI_FLUSH
3066 * drm_agp_chipset_flush
3067 */
c0d90829 3068static void
8b0e378a 3069i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3070{
3071 struct drm_device *dev = obj->dev;
9220434a 3072 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3073 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3074 uint32_t invalidate_domains = 0;
3075 uint32_t flush_domains = 0;
1c5d22f7 3076 uint32_t old_read_domains;
e47c68e9 3077
652c393a
JB
3078 intel_mark_busy(dev, obj);
3079
673a394b
EA
3080 /*
3081 * If the object isn't moving to a new write domain,
3082 * let the object stay in multiple read domains
3083 */
8b0e378a
EA
3084 if (obj->pending_write_domain == 0)
3085 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3086 else
3087 obj_priv->dirty = 1;
3088
3089 /*
3090 * Flush the current write domain if
3091 * the new read domains don't match. Invalidate
3092 * any read domains which differ from the old
3093 * write domain
3094 */
8b0e378a
EA
3095 if (obj->write_domain &&
3096 obj->write_domain != obj->pending_read_domains) {
673a394b 3097 flush_domains |= obj->write_domain;
8b0e378a
EA
3098 invalidate_domains |=
3099 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3100 }
3101 /*
3102 * Invalidate any read caches which may have
3103 * stale data. That is, any new read domains.
3104 */
8b0e378a 3105 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3106 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3107 i915_gem_clflush_object(obj);
673a394b 3108
1c5d22f7
CW
3109 old_read_domains = obj->read_domains;
3110
efbeed96
EA
3111 /* The actual obj->write_domain will be updated with
3112 * pending_write_domain after we emit the accumulated flush for all
3113 * of our domain changes in execbuffers (which clears objects'
3114 * write_domains). So if we have a current write domain that we
3115 * aren't changing, set pending_write_domain to that.
3116 */
3117 if (flush_domains == 0 && obj->pending_write_domain == 0)
3118 obj->pending_write_domain = obj->write_domain;
8b0e378a 3119 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3120
3121 dev->invalidate_domains |= invalidate_domains;
3122 dev->flush_domains |= flush_domains;
9220434a
CW
3123 if (obj_priv->ring)
3124 dev_priv->mm.flush_rings |= obj_priv->ring->id;
1c5d22f7
CW
3125
3126 trace_i915_gem_object_change_domain(obj,
3127 old_read_domains,
3128 obj->write_domain);
673a394b
EA
3129}
3130
3131/**
e47c68e9 3132 * Moves the object from a partially CPU read to a full one.
673a394b 3133 *
e47c68e9
EA
3134 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3135 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3136 */
e47c68e9
EA
3137static void
3138i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3139{
23010e43 3140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3141
e47c68e9
EA
3142 if (!obj_priv->page_cpu_valid)
3143 return;
3144
3145 /* If we're partially in the CPU read domain, finish moving it in.
3146 */
3147 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3148 int i;
3149
3150 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3151 if (obj_priv->page_cpu_valid[i])
3152 continue;
856fa198 3153 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3154 }
e47c68e9
EA
3155 }
3156
3157 /* Free the page_cpu_valid mappings which are now stale, whether
3158 * or not we've got I915_GEM_DOMAIN_CPU.
3159 */
9a298b2a 3160 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3161 obj_priv->page_cpu_valid = NULL;
3162}
3163
3164/**
3165 * Set the CPU read domain on a range of the object.
3166 *
3167 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3168 * not entirely valid. The page_cpu_valid member of the object flags which
3169 * pages have been flushed, and will be respected by
3170 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3171 * of the whole object.
3172 *
3173 * This function returns when the move is complete, including waiting on
3174 * flushes to occur.
3175 */
3176static int
3177i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3178 uint64_t offset, uint64_t size)
3179{
23010e43 3180 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3181 uint32_t old_read_domains;
e47c68e9 3182 int i, ret;
673a394b 3183
e47c68e9
EA
3184 if (offset == 0 && size == obj->size)
3185 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3186
ba3d8d74 3187 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3188 if (ret != 0)
6a47baa6 3189 return ret;
e47c68e9
EA
3190 i915_gem_object_flush_gtt_write_domain(obj);
3191
3192 /* If we're already fully in the CPU read domain, we're done. */
3193 if (obj_priv->page_cpu_valid == NULL &&
3194 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3195 return 0;
673a394b 3196
e47c68e9
EA
3197 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3198 * newly adding I915_GEM_DOMAIN_CPU
3199 */
673a394b 3200 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3201 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3202 GFP_KERNEL);
e47c68e9
EA
3203 if (obj_priv->page_cpu_valid == NULL)
3204 return -ENOMEM;
3205 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3206 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3207
3208 /* Flush the cache on any pages that are still invalid from the CPU's
3209 * perspective.
3210 */
e47c68e9
EA
3211 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3212 i++) {
673a394b
EA
3213 if (obj_priv->page_cpu_valid[i])
3214 continue;
3215
856fa198 3216 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3217
3218 obj_priv->page_cpu_valid[i] = 1;
3219 }
3220
e47c68e9
EA
3221 /* It should now be out of any other write domains, and we can update
3222 * the domain values for our changes.
3223 */
3224 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3225
1c5d22f7 3226 old_read_domains = obj->read_domains;
e47c68e9
EA
3227 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3228
1c5d22f7
CW
3229 trace_i915_gem_object_change_domain(obj,
3230 old_read_domains,
3231 obj->write_domain);
3232
673a394b
EA
3233 return 0;
3234}
3235
673a394b
EA
3236/**
3237 * Pin an object to the GTT and evaluate the relocations landing in it.
3238 */
3239static int
9af90d19
CW
3240i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3241 struct drm_file *file_priv,
3242 struct drm_i915_gem_exec_object2 *entry)
673a394b 3243{
9af90d19 3244 struct drm_device *dev = obj->base.dev;
0839ccb8 3245 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3246 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3247 struct drm_gem_object *target_obj = NULL;
3248 uint32_t target_handle = 0;
3249 int i, ret = 0;
53640e1d 3250
2549d6c2 3251 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3252 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3253 struct drm_i915_gem_relocation_entry reloc;
9af90d19
CW
3254 uint32_t target_offset;
3255
3256 if (__copy_from_user_inatomic(&reloc,
3257 user_relocs+i,
3258 sizeof(reloc))) {
3259 ret = -EFAULT;
3260 break;
2549d6c2
CW
3261 }
3262
9af90d19
CW
3263 if (reloc.target_handle != target_handle) {
3264 drm_gem_object_unreference(target_obj);
3265
3266 target_obj = drm_gem_object_lookup(dev, file_priv,
3267 reloc.target_handle);
3268 if (target_obj == NULL) {
3269 ret = -ENOENT;
3270 break;
3271 }
3272
3273 target_handle = reloc.target_handle;
673a394b 3274 }
9af90d19 3275 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3276
8542a0bb
CW
3277#if WATCH_RELOC
3278 DRM_INFO("%s: obj %p offset %08x target %d "
3279 "read %08x write %08x gtt %08x "
3280 "presumed %08x delta %08x\n",
3281 __func__,
3282 obj,
2549d6c2
CW
3283 (int) reloc.offset,
3284 (int) reloc.target_handle,
3285 (int) reloc.read_domains,
3286 (int) reloc.write_domain,
9af90d19 3287 (int) target_offset,
2549d6c2
CW
3288 (int) reloc.presumed_offset,
3289 reloc.delta);
8542a0bb
CW
3290#endif
3291
673a394b
EA
3292 /* The target buffer should have appeared before us in the
3293 * exec_object list, so it should have a GTT space bound by now.
3294 */
9af90d19 3295 if (target_offset == 0) {
673a394b 3296 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3297 reloc.target_handle);
9af90d19
CW
3298 ret = -EINVAL;
3299 break;
673a394b
EA
3300 }
3301
8542a0bb 3302 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3303 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3304 DRM_ERROR("reloc with multiple write domains: "
3305 "obj %p target %d offset %d "
3306 "read %08x write %08x",
2549d6c2
CW
3307 obj, reloc.target_handle,
3308 (int) reloc.offset,
3309 reloc.read_domains,
3310 reloc.write_domain);
9af90d19
CW
3311 ret = -EINVAL;
3312 break;
16edd550 3313 }
2549d6c2
CW
3314 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3315 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3316 DRM_ERROR("reloc with read/write CPU domains: "
3317 "obj %p target %d offset %d "
3318 "read %08x write %08x",
2549d6c2
CW
3319 obj, reloc.target_handle,
3320 (int) reloc.offset,
3321 reloc.read_domains,
3322 reloc.write_domain);
9af90d19
CW
3323 ret = -EINVAL;
3324 break;
e47c68e9 3325 }
2549d6c2
CW
3326 if (reloc.write_domain && target_obj->pending_write_domain &&
3327 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3328 DRM_ERROR("Write domain conflict: "
3329 "obj %p target %d offset %d "
3330 "new %08x old %08x\n",
2549d6c2
CW
3331 obj, reloc.target_handle,
3332 (int) reloc.offset,
3333 reloc.write_domain,
673a394b 3334 target_obj->pending_write_domain);
9af90d19
CW
3335 ret = -EINVAL;
3336 break;
673a394b
EA
3337 }
3338
2549d6c2 3339 target_obj->pending_read_domains |= reloc.read_domains;
9af90d19 3340 target_obj->pending_write_domain = reloc.write_domain;
673a394b
EA
3341
3342 /* If the relocation already has the right value in it, no
3343 * more work needs to be done.
3344 */
9af90d19 3345 if (target_offset == reloc.presumed_offset)
673a394b 3346 continue;
673a394b 3347
8542a0bb 3348 /* Check that the relocation address is valid... */
9af90d19 3349 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3350 DRM_ERROR("Relocation beyond object bounds: "
3351 "obj %p target %d offset %d size %d.\n",
2549d6c2 3352 obj, reloc.target_handle,
9af90d19
CW
3353 (int) reloc.offset, (int) obj->base.size);
3354 ret = -EINVAL;
3355 break;
8542a0bb 3356 }
2549d6c2 3357 if (reloc.offset & 3) {
8542a0bb
CW
3358 DRM_ERROR("Relocation not 4-byte aligned: "
3359 "obj %p target %d offset %d.\n",
2549d6c2
CW
3360 obj, reloc.target_handle,
3361 (int) reloc.offset);
9af90d19
CW
3362 ret = -EINVAL;
3363 break;
8542a0bb
CW
3364 }
3365
3366 /* and points to somewhere within the target object. */
2549d6c2 3367 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3368 DRM_ERROR("Relocation beyond target object bounds: "
3369 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3370 obj, reloc.target_handle,
3371 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3372 ret = -EINVAL;
3373 break;
8542a0bb
CW
3374 }
3375
9af90d19
CW
3376 reloc.delta += target_offset;
3377 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3378 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3379 char *vaddr;
673a394b 3380
9af90d19 3381 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
f0c43d9b
CW
3382 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3383 kunmap_atomic(vaddr, KM_USER0);
3384 } else {
3385 uint32_t __iomem *reloc_entry;
3386 void __iomem *reloc_page;
f0c43d9b 3387
9af90d19
CW
3388 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3389 if (ret)
3390 break;
f0c43d9b
CW
3391
3392 /* Map the page containing the relocation we're going to perform. */
9af90d19 3393 reloc.offset += obj->gtt_offset;
f0c43d9b
CW
3394 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3395 reloc.offset & PAGE_MASK,
3396 KM_USER0);
3397 reloc_entry = (uint32_t __iomem *)
3398 (reloc_page + (reloc.offset & ~PAGE_MASK));
3399 iowrite32(reloc.delta, reloc_entry);
3400 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3401 }
b5dc608c
CW
3402
3403 /* and update the user's relocation entry */
3404 reloc.presumed_offset = target_offset;
3405 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3406 &reloc.presumed_offset,
3407 sizeof(reloc.presumed_offset))) {
3408 ret = -EFAULT;
3409 break;
3410 }
9af90d19
CW
3411 }
3412
3413 drm_gem_object_unreference(target_obj);
3414 return ret;
3415}
3416
3417static int
3418i915_gem_execbuffer_pin(struct drm_device *dev,
3419 struct drm_file *file,
3420 struct drm_gem_object **object_list,
3421 struct drm_i915_gem_exec_object2 *exec_list,
3422 int count)
3423{
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425 int ret, i, retry;
3426
3427 /* attempt to pin all of the buffers into the GTT */
3428 for (retry = 0; retry < 2; retry++) {
3429 ret = 0;
3430 for (i = 0; i < count; i++) {
3431 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3432 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3433 bool need_fence =
3434 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3435 obj->tiling_mode != I915_TILING_NONE;
3436
3437 /* Check fence reg constraints and rebind if necessary */
3438 if (need_fence &&
3439 !i915_gem_object_fence_offset_ok(&obj->base,
3440 obj->tiling_mode)) {
3441 ret = i915_gem_object_unbind(&obj->base);
3442 if (ret)
3443 break;
3444 }
3445
3446 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3447 if (ret)
3448 break;
3449
3450 /*
3451 * Pre-965 chips need a fence register set up in order
3452 * to properly handle blits to/from tiled surfaces.
3453 */
3454 if (need_fence) {
3455 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3456 if (ret) {
3457 i915_gem_object_unpin(&obj->base);
3458 break;
3459 }
3460
3461 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3462 }
3463
3464 entry->offset = obj->gtt_offset;
3465 }
3466
3467 while (i--)
3468 i915_gem_object_unpin(object_list[i]);
3469
3470 if (ret == 0)
3471 break;
673a394b 3472
9af90d19
CW
3473 if (ret != -ENOSPC || retry)
3474 return ret;
3475
3476 ret = i915_gem_evict_everything(dev);
3477 if (ret)
3478 return ret;
673a394b
EA
3479 }
3480
673a394b
EA
3481 return 0;
3482}
3483
673a394b
EA
3484/* Throttle our rendering by waiting until the ring has completed our requests
3485 * emitted over 20 msec ago.
3486 *
b962442e
EA
3487 * Note that if we were to use the current jiffies each time around the loop,
3488 * we wouldn't escape the function with any frames outstanding if the time to
3489 * render a frame was over 20ms.
3490 *
673a394b
EA
3491 * This should get us reasonable parallelism between CPU and GPU but also
3492 * relatively low latency when blocking on a particular request to finish.
3493 */
3494static int
f787a5f5 3495i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
673a394b 3496{
f787a5f5
CW
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3499 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3500 struct drm_i915_gem_request *request;
3501 struct intel_ring_buffer *ring = NULL;
3502 u32 seqno = 0;
3503 int ret;
673a394b 3504
1c25595f 3505 spin_lock(&file_priv->mm.lock);
f787a5f5 3506 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3507 if (time_after_eq(request->emitted_jiffies, recent_enough))
3508 break;
3509
f787a5f5
CW
3510 ring = request->ring;
3511 seqno = request->seqno;
b962442e 3512 }
1c25595f 3513 spin_unlock(&file_priv->mm.lock);
f787a5f5
CW
3514
3515 if (seqno == 0)
3516 return 0;
3517
3518 ret = 0;
3519 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3520 /* And wait for the seqno passing without holding any locks and
3521 * causing extra latency for others. This is safe as the irq
3522 * generation is designed to be run atomically and so is
3523 * lockless.
3524 */
3525 ring->user_irq_get(dev, ring);
3526 ret = wait_event_interruptible(ring->irq_queue,
3527 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3528 || atomic_read(&dev_priv->mm.wedged));
3529 ring->user_irq_put(dev, ring);
3530
3531 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3532 ret = -EIO;
3533 }
3534
3535 if (ret == 0)
3536 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
b962442e 3537
673a394b
EA
3538 return ret;
3539}
3540
40a5f0de 3541static int
2549d6c2
CW
3542i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3543 uint64_t exec_offset)
40a5f0de 3544{
2549d6c2 3545 uint32_t exec_start, exec_len;
40a5f0de 3546
2549d6c2
CW
3547 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3548 exec_len = (uint32_t) exec->batch_len;
40a5f0de 3549
2549d6c2
CW
3550 if ((exec_start | exec_len) & 0x7)
3551 return -EINVAL;
40a5f0de 3552
2549d6c2
CW
3553 if (!exec_start)
3554 return -EINVAL;
40a5f0de 3555
2bc43b5c 3556 return 0;
40a5f0de
EA
3557}
3558
3559static int
2549d6c2
CW
3560validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3561 int count)
40a5f0de 3562{
2549d6c2 3563 int i;
40a5f0de 3564
2549d6c2
CW
3565 for (i = 0; i < count; i++) {
3566 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3567 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
2bc43b5c 3568
2549d6c2
CW
3569 if (!access_ok(VERIFY_READ, ptr, length))
3570 return -EFAULT;
40a5f0de 3571
b5dc608c
CW
3572 /* we may also need to update the presumed offsets */
3573 if (!access_ok(VERIFY_WRITE, ptr, length))
3574 return -EFAULT;
3575
2549d6c2
CW
3576 if (fault_in_pages_readable(ptr, length))
3577 return -EFAULT;
40a5f0de
EA
3578 }
3579
83d60795
CW
3580 return 0;
3581}
3582
8dc5d147 3583static int
76446cac 3584i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3585 struct drm_file *file,
76446cac
JB
3586 struct drm_i915_gem_execbuffer2 *args,
3587 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3588{
3589 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3590 struct drm_gem_object **object_list = NULL;
3591 struct drm_gem_object *batch_obj;
b70d11da 3592 struct drm_i915_gem_object *obj_priv;
201361a5 3593 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3594 struct drm_i915_gem_request *request = NULL;
9af90d19 3595 int ret, i, flips;
673a394b 3596 uint64_t exec_offset;
673a394b 3597
852835f3
ZN
3598 struct intel_ring_buffer *ring = NULL;
3599
30dbf0c0
CW
3600 ret = i915_gem_check_is_wedged(dev);
3601 if (ret)
3602 return ret;
3603
2549d6c2
CW
3604 ret = validate_exec_list(exec_list, args->buffer_count);
3605 if (ret)
3606 return ret;
3607
673a394b
EA
3608#if WATCH_EXEC
3609 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3610 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3611#endif
d1b851fc
ZN
3612 if (args->flags & I915_EXEC_BSD) {
3613 if (!HAS_BSD(dev)) {
3614 DRM_ERROR("execbuf with wrong flag\n");
3615 return -EINVAL;
3616 }
3617 ring = &dev_priv->bsd_ring;
3618 } else {
3619 ring = &dev_priv->render_ring;
3620 }
3621
4f481ed2
EA
3622 if (args->buffer_count < 1) {
3623 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3624 return -EINVAL;
3625 }
c8e0f93a 3626 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3627 if (object_list == NULL) {
3628 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3629 args->buffer_count);
3630 ret = -ENOMEM;
3631 goto pre_mutex_err;
3632 }
673a394b 3633
201361a5 3634 if (args->num_cliprects != 0) {
9a298b2a
EA
3635 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3636 GFP_KERNEL);
a40e8d31
OA
3637 if (cliprects == NULL) {
3638 ret = -ENOMEM;
201361a5 3639 goto pre_mutex_err;
a40e8d31 3640 }
201361a5
EA
3641
3642 ret = copy_from_user(cliprects,
3643 (struct drm_clip_rect __user *)
3644 (uintptr_t) args->cliprects_ptr,
3645 sizeof(*cliprects) * args->num_cliprects);
3646 if (ret != 0) {
3647 DRM_ERROR("copy %d cliprects failed: %d\n",
3648 args->num_cliprects, ret);
c877cdce 3649 ret = -EFAULT;
201361a5
EA
3650 goto pre_mutex_err;
3651 }
3652 }
3653
8dc5d147
CW
3654 request = kzalloc(sizeof(*request), GFP_KERNEL);
3655 if (request == NULL) {
3656 ret = -ENOMEM;
3657 goto pre_mutex_err;
3658 }
3659
76c1dec1
CW
3660 ret = i915_mutex_lock_interruptible(dev);
3661 if (ret)
3662 goto pre_mutex_err;
673a394b 3663
673a394b 3664 if (dev_priv->mm.suspended) {
673a394b 3665 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3666 ret = -EBUSY;
3667 goto pre_mutex_err;
673a394b
EA
3668 }
3669
ac94a962 3670 /* Look up object handles */
673a394b 3671 for (i = 0; i < args->buffer_count; i++) {
9af90d19 3672 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3673 exec_list[i].handle);
3674 if (object_list[i] == NULL) {
3675 DRM_ERROR("Invalid object handle %d at index %d\n",
3676 exec_list[i].handle, i);
0ce907f8
CW
3677 /* prevent error path from reading uninitialized data */
3678 args->buffer_count = i + 1;
bf79cb91 3679 ret = -ENOENT;
673a394b
EA
3680 goto err;
3681 }
b70d11da 3682
23010e43 3683 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3684 if (obj_priv->in_execbuffer) {
3685 DRM_ERROR("Object %p appears more than once in object list\n",
3686 object_list[i]);
0ce907f8
CW
3687 /* prevent error path from reading uninitialized data */
3688 args->buffer_count = i + 1;
bf79cb91 3689 ret = -EINVAL;
b70d11da
KH
3690 goto err;
3691 }
3692 obj_priv->in_execbuffer = true;
ac94a962 3693 }
673a394b 3694
9af90d19
CW
3695 /* Move the objects en-masse into the GTT, evicting if necessary. */
3696 ret = i915_gem_execbuffer_pin(dev, file,
3697 object_list, exec_list,
3698 args->buffer_count);
3699 if (ret)
3700 goto err;
ac94a962 3701
9af90d19
CW
3702 /* The objects are in their final locations, apply the relocations. */
3703 for (i = 0; i < args->buffer_count; i++) {
3704 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3705 obj->base.pending_read_domains = 0;
3706 obj->base.pending_write_domain = 0;
3707 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3708 if (ret)
ac94a962 3709 goto err;
673a394b
EA
3710 }
3711
3712 /* Set the pending read domains for the batch buffer to COMMAND */
3713 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3714 if (batch_obj->pending_write_domain) {
3715 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3716 ret = -EINVAL;
3717 goto err;
3718 }
3719 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3720
9af90d19
CW
3721 /* Sanity check the batch buffer */
3722 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3723 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3724 if (ret != 0) {
3725 DRM_ERROR("execbuf with invalid offset/length\n");
3726 goto err;
3727 }
3728
646f0f6e
KP
3729 /* Zero the global flush/invalidate flags. These
3730 * will be modified as new domains are computed
3731 * for each object
3732 */
3733 dev->invalidate_domains = 0;
3734 dev->flush_domains = 0;
9220434a 3735 dev_priv->mm.flush_rings = 0;
646f0f6e 3736
673a394b
EA
3737 for (i = 0; i < args->buffer_count; i++) {
3738 struct drm_gem_object *obj = object_list[i];
673a394b 3739
646f0f6e 3740 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3741 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3742 }
3743
646f0f6e
KP
3744 if (dev->invalidate_domains | dev->flush_domains) {
3745#if WATCH_EXEC
3746 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3747 __func__,
3748 dev->invalidate_domains,
3749 dev->flush_domains);
3750#endif
9af90d19 3751 i915_gem_flush(dev, file,
646f0f6e 3752 dev->invalidate_domains,
9220434a
CW
3753 dev->flush_domains,
3754 dev_priv->mm.flush_rings);
a6910434
DV
3755 }
3756
efbeed96
EA
3757 for (i = 0; i < args->buffer_count; i++) {
3758 struct drm_gem_object *obj = object_list[i];
23010e43 3759 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3760 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3761
3762 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3763 if (obj->write_domain)
3764 list_move_tail(&obj_priv->gpu_write_list,
3765 &dev_priv->mm.gpu_write_list);
99fcb766 3766
1c5d22f7
CW
3767 trace_i915_gem_object_change_domain(obj,
3768 obj->read_domains,
3769 old_write_domain);
efbeed96
EA
3770 }
3771
673a394b
EA
3772#if WATCH_COHERENCY
3773 for (i = 0; i < args->buffer_count; i++) {
3774 i915_gem_object_check_coherency(object_list[i],
3775 exec_list[i].handle);
3776 }
3777#endif
3778
673a394b 3779#if WATCH_EXEC
6911a9b8 3780 i915_gem_dump_object(batch_obj,
673a394b
EA
3781 args->batch_len,
3782 __func__,
3783 ~0);
3784#endif
3785
e59f2bac
CW
3786 /* Check for any pending flips. As we only maintain a flip queue depth
3787 * of 1, we can simply insert a WAIT for the next display flip prior
3788 * to executing the batch and avoid stalling the CPU.
3789 */
3790 flips = 0;
3791 for (i = 0; i < args->buffer_count; i++) {
3792 if (object_list[i]->write_domain)
3793 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3794 }
3795 if (flips) {
3796 int plane, flip_mask;
3797
3798 for (plane = 0; flips >> plane; plane++) {
3799 if (((flips >> plane) & 1) == 0)
3800 continue;
3801
3802 if (plane)
3803 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3804 else
3805 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3806
3807 intel_ring_begin(dev, ring, 2);
3808 intel_ring_emit(dev, ring,
3809 MI_WAIT_FOR_EVENT | flip_mask);
3810 intel_ring_emit(dev, ring, MI_NOOP);
3811 intel_ring_advance(dev, ring);
3812 }
3813 }
3814
673a394b 3815 /* Exec the batchbuffer */
852835f3 3816 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
e59f2bac 3817 cliprects, exec_offset);
673a394b
EA
3818 if (ret) {
3819 DRM_ERROR("dispatch failed %d\n", ret);
3820 goto err;
3821 }
3822
3823 /*
3824 * Ensure that the commands in the batch buffer are
3825 * finished before the interrupt fires
3826 */
8a1a49f9 3827 i915_retire_commands(dev, ring);
673a394b 3828
617dbe27
DV
3829 for (i = 0; i < args->buffer_count; i++) {
3830 struct drm_gem_object *obj = object_list[i];
3831 obj_priv = to_intel_bo(obj);
3832
3833 i915_gem_object_move_to_active(obj, ring);
617dbe27 3834 }
a56ba56c 3835
9af90d19 3836 i915_add_request(dev, file, request, ring);
8dc5d147 3837 request = NULL;
673a394b 3838
673a394b 3839err:
b70d11da
KH
3840 for (i = 0; i < args->buffer_count; i++) {
3841 if (object_list[i]) {
23010e43 3842 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3843 obj_priv->in_execbuffer = false;
3844 }
aad87dff 3845 drm_gem_object_unreference(object_list[i]);
b70d11da 3846 }
673a394b 3847
673a394b
EA
3848 mutex_unlock(&dev->struct_mutex);
3849
93533c29 3850pre_mutex_err:
8e7d2b2c 3851 drm_free_large(object_list);
9a298b2a 3852 kfree(cliprects);
8dc5d147 3853 kfree(request);
673a394b
EA
3854
3855 return ret;
3856}
3857
76446cac
JB
3858/*
3859 * Legacy execbuffer just creates an exec2 list from the original exec object
3860 * list array and passes it to the real function.
3861 */
3862int
3863i915_gem_execbuffer(struct drm_device *dev, void *data,
3864 struct drm_file *file_priv)
3865{
3866 struct drm_i915_gem_execbuffer *args = data;
3867 struct drm_i915_gem_execbuffer2 exec2;
3868 struct drm_i915_gem_exec_object *exec_list = NULL;
3869 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3870 int ret, i;
3871
3872#if WATCH_EXEC
3873 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3874 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3875#endif
3876
3877 if (args->buffer_count < 1) {
3878 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3879 return -EINVAL;
3880 }
3881
3882 /* Copy in the exec list from userland */
3883 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3884 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3885 if (exec_list == NULL || exec2_list == NULL) {
3886 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3887 args->buffer_count);
3888 drm_free_large(exec_list);
3889 drm_free_large(exec2_list);
3890 return -ENOMEM;
3891 }
3892 ret = copy_from_user(exec_list,
3893 (struct drm_i915_relocation_entry __user *)
3894 (uintptr_t) args->buffers_ptr,
3895 sizeof(*exec_list) * args->buffer_count);
3896 if (ret != 0) {
3897 DRM_ERROR("copy %d exec entries failed %d\n",
3898 args->buffer_count, ret);
3899 drm_free_large(exec_list);
3900 drm_free_large(exec2_list);
3901 return -EFAULT;
3902 }
3903
3904 for (i = 0; i < args->buffer_count; i++) {
3905 exec2_list[i].handle = exec_list[i].handle;
3906 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3907 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3908 exec2_list[i].alignment = exec_list[i].alignment;
3909 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3910 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3911 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3912 else
3913 exec2_list[i].flags = 0;
3914 }
3915
3916 exec2.buffers_ptr = args->buffers_ptr;
3917 exec2.buffer_count = args->buffer_count;
3918 exec2.batch_start_offset = args->batch_start_offset;
3919 exec2.batch_len = args->batch_len;
3920 exec2.DR1 = args->DR1;
3921 exec2.DR4 = args->DR4;
3922 exec2.num_cliprects = args->num_cliprects;
3923 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3924 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3925
3926 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3927 if (!ret) {
3928 /* Copy the new buffer offsets back to the user's exec list. */
3929 for (i = 0; i < args->buffer_count; i++)
3930 exec_list[i].offset = exec2_list[i].offset;
3931 /* ... and back out to userspace */
3932 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3933 (uintptr_t) args->buffers_ptr,
3934 exec_list,
3935 sizeof(*exec_list) * args->buffer_count);
3936 if (ret) {
3937 ret = -EFAULT;
3938 DRM_ERROR("failed to copy %d exec entries "
3939 "back to user (%d)\n",
3940 args->buffer_count, ret);
3941 }
76446cac
JB
3942 }
3943
3944 drm_free_large(exec_list);
3945 drm_free_large(exec2_list);
3946 return ret;
3947}
3948
3949int
3950i915_gem_execbuffer2(struct drm_device *dev, void *data,
3951 struct drm_file *file_priv)
3952{
3953 struct drm_i915_gem_execbuffer2 *args = data;
3954 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3955 int ret;
3956
3957#if WATCH_EXEC
3958 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3959 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3960#endif
3961
3962 if (args->buffer_count < 1) {
3963 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3964 return -EINVAL;
3965 }
3966
3967 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3968 if (exec2_list == NULL) {
3969 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3970 args->buffer_count);
3971 return -ENOMEM;
3972 }
3973 ret = copy_from_user(exec2_list,
3974 (struct drm_i915_relocation_entry __user *)
3975 (uintptr_t) args->buffers_ptr,
3976 sizeof(*exec2_list) * args->buffer_count);
3977 if (ret != 0) {
3978 DRM_ERROR("copy %d exec entries failed %d\n",
3979 args->buffer_count, ret);
3980 drm_free_large(exec2_list);
3981 return -EFAULT;
3982 }
3983
3984 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3985 if (!ret) {
3986 /* Copy the new buffer offsets back to the user's exec list. */
3987 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3988 (uintptr_t) args->buffers_ptr,
3989 exec2_list,
3990 sizeof(*exec2_list) * args->buffer_count);
3991 if (ret) {
3992 ret = -EFAULT;
3993 DRM_ERROR("failed to copy %d exec entries "
3994 "back to user (%d)\n",
3995 args->buffer_count, ret);
3996 }
3997 }
3998
3999 drm_free_large(exec2_list);
4000 return ret;
4001}
4002
673a394b
EA
4003int
4004i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4005{
4006 struct drm_device *dev = obj->dev;
f13d3f73 4007 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4008 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4009 int ret;
4010
778c3544 4011 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4012 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4013
4014 if (obj_priv->gtt_space != NULL) {
4015 if (alignment == 0)
4016 alignment = i915_gem_get_gtt_alignment(obj);
4017 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4018 WARN(obj_priv->pin_count,
4019 "bo is already pinned with incorrect alignment:"
4020 " offset=%x, req.alignment=%x\n",
4021 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4022 ret = i915_gem_object_unbind(obj);
4023 if (ret)
4024 return ret;
4025 }
4026 }
4027
673a394b
EA
4028 if (obj_priv->gtt_space == NULL) {
4029 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4030 if (ret)
673a394b 4031 return ret;
22c344e9 4032 }
76446cac 4033
673a394b
EA
4034 obj_priv->pin_count++;
4035
4036 /* If the object is not active and not pending a flush,
4037 * remove it from the inactive list
4038 */
4039 if (obj_priv->pin_count == 1) {
73aa808f 4040 i915_gem_info_add_pin(dev_priv, obj->size);
f13d3f73 4041 if (!obj_priv->active)
69dc4987 4042 list_move_tail(&obj_priv->mm_list,
f13d3f73 4043 &dev_priv->mm.pinned_list);
673a394b 4044 }
673a394b 4045
23bc5982 4046 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4047 return 0;
4048}
4049
4050void
4051i915_gem_object_unpin(struct drm_gem_object *obj)
4052{
4053 struct drm_device *dev = obj->dev;
4054 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4055 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4056
23bc5982 4057 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4058 obj_priv->pin_count--;
4059 BUG_ON(obj_priv->pin_count < 0);
4060 BUG_ON(obj_priv->gtt_space == NULL);
4061
4062 /* If the object is no longer pinned, and is
4063 * neither active nor being flushed, then stick it on
4064 * the inactive list
4065 */
4066 if (obj_priv->pin_count == 0) {
f13d3f73 4067 if (!obj_priv->active)
69dc4987 4068 list_move_tail(&obj_priv->mm_list,
673a394b 4069 &dev_priv->mm.inactive_list);
73aa808f 4070 i915_gem_info_remove_pin(dev_priv, obj->size);
673a394b 4071 }
23bc5982 4072 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4073}
4074
4075int
4076i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4077 struct drm_file *file_priv)
4078{
4079 struct drm_i915_gem_pin *args = data;
4080 struct drm_gem_object *obj;
4081 struct drm_i915_gem_object *obj_priv;
4082 int ret;
4083
1d7cfea1
CW
4084 ret = i915_mutex_lock_interruptible(dev);
4085 if (ret)
4086 return ret;
4087
673a394b
EA
4088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4089 if (obj == NULL) {
1d7cfea1
CW
4090 ret = -ENOENT;
4091 goto unlock;
673a394b 4092 }
23010e43 4093 obj_priv = to_intel_bo(obj);
673a394b 4094
bb6baf76
CW
4095 if (obj_priv->madv != I915_MADV_WILLNEED) {
4096 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4097 ret = -EINVAL;
4098 goto out;
3ef94daa
CW
4099 }
4100
79e53945
JB
4101 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4102 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4103 args->handle);
1d7cfea1
CW
4104 ret = -EINVAL;
4105 goto out;
79e53945
JB
4106 }
4107
4108 obj_priv->user_pin_count++;
4109 obj_priv->pin_filp = file_priv;
4110 if (obj_priv->user_pin_count == 1) {
4111 ret = i915_gem_object_pin(obj, args->alignment);
1d7cfea1
CW
4112 if (ret)
4113 goto out;
673a394b
EA
4114 }
4115
4116 /* XXX - flush the CPU caches for pinned objects
4117 * as the X server doesn't manage domains yet
4118 */
e47c68e9 4119 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4120 args->offset = obj_priv->gtt_offset;
1d7cfea1 4121out:
673a394b 4122 drm_gem_object_unreference(obj);
1d7cfea1 4123unlock:
673a394b 4124 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4125 return ret;
673a394b
EA
4126}
4127
4128int
4129i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4130 struct drm_file *file_priv)
4131{
4132 struct drm_i915_gem_pin *args = data;
4133 struct drm_gem_object *obj;
79e53945 4134 struct drm_i915_gem_object *obj_priv;
76c1dec1 4135 int ret;
673a394b 4136
1d7cfea1
CW
4137 ret = i915_mutex_lock_interruptible(dev);
4138 if (ret)
4139 return ret;
4140
673a394b
EA
4141 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4142 if (obj == NULL) {
1d7cfea1
CW
4143 ret = -ENOENT;
4144 goto unlock;
673a394b 4145 }
23010e43 4146 obj_priv = to_intel_bo(obj);
76c1dec1 4147
79e53945
JB
4148 if (obj_priv->pin_filp != file_priv) {
4149 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4150 args->handle);
1d7cfea1
CW
4151 ret = -EINVAL;
4152 goto out;
79e53945
JB
4153 }
4154 obj_priv->user_pin_count--;
4155 if (obj_priv->user_pin_count == 0) {
4156 obj_priv->pin_filp = NULL;
4157 i915_gem_object_unpin(obj);
4158 }
673a394b 4159
1d7cfea1 4160out:
673a394b 4161 drm_gem_object_unreference(obj);
1d7cfea1 4162unlock:
673a394b 4163 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4164 return ret;
673a394b
EA
4165}
4166
4167int
4168i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4169 struct drm_file *file_priv)
4170{
4171 struct drm_i915_gem_busy *args = data;
4172 struct drm_gem_object *obj;
4173 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4174 int ret;
4175
76c1dec1 4176 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4177 if (ret)
76c1dec1 4178 return ret;
1d7cfea1
CW
4179
4180 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4181 if (obj == NULL) {
4182 ret = -ENOENT;
4183 goto unlock;
30dbf0c0 4184 }
1d7cfea1 4185 obj_priv = to_intel_bo(obj);
30dbf0c0 4186
0be555b6
CW
4187 /* Count all active objects as busy, even if they are currently not used
4188 * by the gpu. Users of this interface expect objects to eventually
4189 * become non-busy without any further actions, therefore emit any
4190 * necessary flushes here.
c4de0a5d 4191 */
0be555b6
CW
4192 args->busy = obj_priv->active;
4193 if (args->busy) {
4194 /* Unconditionally flush objects, even when the gpu still uses this
4195 * object. Userspace calling this function indicates that it wants to
4196 * use this buffer rather sooner than later, so issuing the required
4197 * flush earlier is beneficial.
4198 */
c78ec30b
CW
4199 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4200 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4201 obj_priv->ring,
4202 0, obj->write_domain);
0be555b6
CW
4203
4204 /* Update the active list for the hardware's current position.
4205 * Otherwise this only updates on a delayed timer or when irqs
4206 * are actually unmasked, and our working set ends up being
4207 * larger than required.
4208 */
4209 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4210
4211 args->busy = obj_priv->active;
4212 }
673a394b
EA
4213
4214 drm_gem_object_unreference(obj);
1d7cfea1 4215unlock:
673a394b 4216 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4217 return ret;
673a394b
EA
4218}
4219
4220int
4221i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4222 struct drm_file *file_priv)
4223{
4224 return i915_gem_ring_throttle(dev, file_priv);
4225}
4226
3ef94daa
CW
4227int
4228i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4229 struct drm_file *file_priv)
4230{
4231 struct drm_i915_gem_madvise *args = data;
4232 struct drm_gem_object *obj;
4233 struct drm_i915_gem_object *obj_priv;
76c1dec1 4234 int ret;
3ef94daa
CW
4235
4236 switch (args->madv) {
4237 case I915_MADV_DONTNEED:
4238 case I915_MADV_WILLNEED:
4239 break;
4240 default:
4241 return -EINVAL;
4242 }
4243
1d7cfea1
CW
4244 ret = i915_mutex_lock_interruptible(dev);
4245 if (ret)
4246 return ret;
4247
3ef94daa
CW
4248 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4249 if (obj == NULL) {
1d7cfea1
CW
4250 ret = -ENOENT;
4251 goto unlock;
3ef94daa 4252 }
23010e43 4253 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4254
4255 if (obj_priv->pin_count) {
1d7cfea1
CW
4256 ret = -EINVAL;
4257 goto out;
3ef94daa
CW
4258 }
4259
bb6baf76
CW
4260 if (obj_priv->madv != __I915_MADV_PURGED)
4261 obj_priv->madv = args->madv;
3ef94daa 4262
2d7ef395
CW
4263 /* if the object is no longer bound, discard its backing storage */
4264 if (i915_gem_object_is_purgeable(obj_priv) &&
4265 obj_priv->gtt_space == NULL)
4266 i915_gem_object_truncate(obj);
4267
bb6baf76
CW
4268 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4269
1d7cfea1 4270out:
3ef94daa 4271 drm_gem_object_unreference(obj);
1d7cfea1 4272unlock:
3ef94daa 4273 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4274 return ret;
3ef94daa
CW
4275}
4276
ac52bc56
DV
4277struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4278 size_t size)
4279{
73aa808f 4280 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4281 struct drm_i915_gem_object *obj;
ac52bc56 4282
c397b908
DV
4283 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4284 if (obj == NULL)
4285 return NULL;
673a394b 4286
c397b908
DV
4287 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4288 kfree(obj);
4289 return NULL;
4290 }
673a394b 4291
73aa808f
CW
4292 i915_gem_info_add_obj(dev_priv, size);
4293
c397b908
DV
4294 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4295 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4296
c397b908 4297 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4298 obj->base.driver_private = NULL;
c397b908 4299 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4300 INIT_LIST_HEAD(&obj->mm_list);
4301 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4302 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4303 obj->madv = I915_MADV_WILLNEED;
de151cf6 4304
c397b908
DV
4305 return &obj->base;
4306}
4307
4308int i915_gem_init_object(struct drm_gem_object *obj)
4309{
4310 BUG();
de151cf6 4311
673a394b
EA
4312 return 0;
4313}
4314
be72615b 4315static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4316{
de151cf6 4317 struct drm_device *dev = obj->dev;
be72615b 4318 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4320 int ret;
673a394b 4321
be72615b
CW
4322 ret = i915_gem_object_unbind(obj);
4323 if (ret == -ERESTARTSYS) {
69dc4987 4324 list_move(&obj_priv->mm_list,
be72615b
CW
4325 &dev_priv->mm.deferred_free_list);
4326 return;
4327 }
673a394b 4328
7e616158
CW
4329 if (obj_priv->mmap_offset)
4330 i915_gem_free_mmap_offset(obj);
de151cf6 4331
c397b908 4332 drm_gem_object_release(obj);
73aa808f 4333 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4334
9a298b2a 4335 kfree(obj_priv->page_cpu_valid);
280b713b 4336 kfree(obj_priv->bit_17);
c397b908 4337 kfree(obj_priv);
673a394b
EA
4338}
4339
be72615b
CW
4340void i915_gem_free_object(struct drm_gem_object *obj)
4341{
4342 struct drm_device *dev = obj->dev;
4343 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4344
4345 trace_i915_gem_object_destroy(obj);
4346
4347 while (obj_priv->pin_count > 0)
4348 i915_gem_object_unpin(obj);
4349
4350 if (obj_priv->phys_obj)
4351 i915_gem_detach_phys_object(dev, obj);
4352
4353 i915_gem_free_object_tail(obj);
4354}
4355
29105ccc
CW
4356int
4357i915_gem_idle(struct drm_device *dev)
4358{
4359 drm_i915_private_t *dev_priv = dev->dev_private;
4360 int ret;
28dfe52a 4361
29105ccc 4362 mutex_lock(&dev->struct_mutex);
1c5d22f7 4363
87acb0a5 4364 if (dev_priv->mm.suspended) {
29105ccc
CW
4365 mutex_unlock(&dev->struct_mutex);
4366 return 0;
28dfe52a
EA
4367 }
4368
29105ccc 4369 ret = i915_gpu_idle(dev);
6dbe2772
KP
4370 if (ret) {
4371 mutex_unlock(&dev->struct_mutex);
673a394b 4372 return ret;
6dbe2772 4373 }
673a394b 4374
29105ccc
CW
4375 /* Under UMS, be paranoid and evict. */
4376 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4377 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4378 if (ret) {
4379 mutex_unlock(&dev->struct_mutex);
4380 return ret;
4381 }
4382 }
4383
4384 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4385 * We need to replace this with a semaphore, or something.
4386 * And not confound mm.suspended!
4387 */
4388 dev_priv->mm.suspended = 1;
bc0c7f14 4389 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4390
4391 i915_kernel_lost_context(dev);
6dbe2772 4392 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4393
6dbe2772
KP
4394 mutex_unlock(&dev->struct_mutex);
4395
29105ccc
CW
4396 /* Cancel the retire work handler, which should be idle now. */
4397 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4398
673a394b
EA
4399 return 0;
4400}
4401
e552eb70
JB
4402/*
4403 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4404 * over cache flushing.
4405 */
8187a2b7 4406static int
e552eb70
JB
4407i915_gem_init_pipe_control(struct drm_device *dev)
4408{
4409 drm_i915_private_t *dev_priv = dev->dev_private;
4410 struct drm_gem_object *obj;
4411 struct drm_i915_gem_object *obj_priv;
4412 int ret;
4413
34dc4d44 4414 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4415 if (obj == NULL) {
4416 DRM_ERROR("Failed to allocate seqno page\n");
4417 ret = -ENOMEM;
4418 goto err;
4419 }
4420 obj_priv = to_intel_bo(obj);
4421 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4422
4423 ret = i915_gem_object_pin(obj, 4096);
4424 if (ret)
4425 goto err_unref;
4426
4427 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4428 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4429 if (dev_priv->seqno_page == NULL)
4430 goto err_unpin;
4431
4432 dev_priv->seqno_obj = obj;
4433 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4434
4435 return 0;
4436
4437err_unpin:
4438 i915_gem_object_unpin(obj);
4439err_unref:
4440 drm_gem_object_unreference(obj);
4441err:
4442 return ret;
4443}
4444
8187a2b7
ZN
4445
4446static void
e552eb70
JB
4447i915_gem_cleanup_pipe_control(struct drm_device *dev)
4448{
4449 drm_i915_private_t *dev_priv = dev->dev_private;
4450 struct drm_gem_object *obj;
4451 struct drm_i915_gem_object *obj_priv;
4452
4453 obj = dev_priv->seqno_obj;
4454 obj_priv = to_intel_bo(obj);
4455 kunmap(obj_priv->pages[0]);
4456 i915_gem_object_unpin(obj);
4457 drm_gem_object_unreference(obj);
4458 dev_priv->seqno_obj = NULL;
4459
4460 dev_priv->seqno_page = NULL;
673a394b
EA
4461}
4462
8187a2b7
ZN
4463int
4464i915_gem_init_ringbuffer(struct drm_device *dev)
4465{
4466 drm_i915_private_t *dev_priv = dev->dev_private;
4467 int ret;
68f95ba9 4468
8187a2b7
ZN
4469 if (HAS_PIPE_CONTROL(dev)) {
4470 ret = i915_gem_init_pipe_control(dev);
4471 if (ret)
4472 return ret;
4473 }
68f95ba9 4474
5c1143bb 4475 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4476 if (ret)
4477 goto cleanup_pipe_control;
4478
4479 if (HAS_BSD(dev)) {
5c1143bb 4480 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4481 if (ret)
4482 goto cleanup_render_ring;
d1b851fc 4483 }
68f95ba9 4484
6f392d54
CW
4485 dev_priv->next_seqno = 1;
4486
68f95ba9
CW
4487 return 0;
4488
4489cleanup_render_ring:
4490 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4491cleanup_pipe_control:
4492 if (HAS_PIPE_CONTROL(dev))
4493 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4494 return ret;
4495}
4496
4497void
4498i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4499{
4500 drm_i915_private_t *dev_priv = dev->dev_private;
4501
4502 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
87acb0a5 4503 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4504 if (HAS_PIPE_CONTROL(dev))
4505 i915_gem_cleanup_pipe_control(dev);
4506}
4507
673a394b
EA
4508int
4509i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4510 struct drm_file *file_priv)
4511{
4512 drm_i915_private_t *dev_priv = dev->dev_private;
4513 int ret;
4514
79e53945
JB
4515 if (drm_core_check_feature(dev, DRIVER_MODESET))
4516 return 0;
4517
ba1234d1 4518 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4519 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4520 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4521 }
4522
673a394b 4523 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4524 dev_priv->mm.suspended = 0;
4525
4526 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4527 if (ret != 0) {
4528 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4529 return ret;
d816f6ac 4530 }
9bb2d6f9 4531
69dc4987 4532 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4533 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4534 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4535 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4536 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4537 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4538 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4539 mutex_unlock(&dev->struct_mutex);
dbb19d30 4540
5f35308b
CW
4541 ret = drm_irq_install(dev);
4542 if (ret)
4543 goto cleanup_ringbuffer;
dbb19d30 4544
673a394b 4545 return 0;
5f35308b
CW
4546
4547cleanup_ringbuffer:
4548 mutex_lock(&dev->struct_mutex);
4549 i915_gem_cleanup_ringbuffer(dev);
4550 dev_priv->mm.suspended = 1;
4551 mutex_unlock(&dev->struct_mutex);
4552
4553 return ret;
673a394b
EA
4554}
4555
4556int
4557i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4558 struct drm_file *file_priv)
4559{
79e53945
JB
4560 if (drm_core_check_feature(dev, DRIVER_MODESET))
4561 return 0;
4562
dbb19d30 4563 drm_irq_uninstall(dev);
e6890f6f 4564 return i915_gem_idle(dev);
673a394b
EA
4565}
4566
4567void
4568i915_gem_lastclose(struct drm_device *dev)
4569{
4570 int ret;
673a394b 4571
e806b495
EA
4572 if (drm_core_check_feature(dev, DRIVER_MODESET))
4573 return;
4574
6dbe2772
KP
4575 ret = i915_gem_idle(dev);
4576 if (ret)
4577 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4578}
4579
4580void
4581i915_gem_load(struct drm_device *dev)
4582{
b5aa8a0f 4583 int i;
673a394b
EA
4584 drm_i915_private_t *dev_priv = dev->dev_private;
4585
69dc4987 4586 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4587 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4588 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4589 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4590 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4591 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4592 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4593 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4594 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
87acb0a5
CW
4595 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4596 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
007cc8ac
DV
4597 for (i = 0; i < 16; i++)
4598 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4599 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4600 i915_gem_retire_work_handler);
30dbf0c0 4601 init_completion(&dev_priv->error_completion);
31169714
CW
4602 spin_lock(&shrink_list_lock);
4603 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4604 spin_unlock(&shrink_list_lock);
4605
94400120
DA
4606 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4607 if (IS_GEN3(dev)) {
4608 u32 tmp = I915_READ(MI_ARB_STATE);
4609 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4610 /* arb state is a masked write, so set bit + bit in mask */
4611 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4612 I915_WRITE(MI_ARB_STATE, tmp);
4613 }
4614 }
4615
de151cf6 4616 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4617 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4618 dev_priv->fence_reg_start = 3;
de151cf6 4619
a6c45cf0 4620 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4621 dev_priv->num_fence_regs = 16;
4622 else
4623 dev_priv->num_fence_regs = 8;
4624
b5aa8a0f 4625 /* Initialize fence registers to zero */
a6c45cf0
CW
4626 switch (INTEL_INFO(dev)->gen) {
4627 case 6:
4628 for (i = 0; i < 16; i++)
4629 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4630 break;
4631 case 5:
4632 case 4:
b5aa8a0f
GH
4633 for (i = 0; i < 16; i++)
4634 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4635 break;
4636 case 3:
b5aa8a0f
GH
4637 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4638 for (i = 0; i < 8; i++)
4639 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4640 case 2:
4641 for (i = 0; i < 8; i++)
4642 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4643 break;
b5aa8a0f 4644 }
673a394b 4645 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4646 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4647}
71acb5eb
DA
4648
4649/*
4650 * Create a physically contiguous memory object for this object
4651 * e.g. for cursor + overlay regs
4652 */
995b6762
CW
4653static int i915_gem_init_phys_object(struct drm_device *dev,
4654 int id, int size, int align)
71acb5eb
DA
4655{
4656 drm_i915_private_t *dev_priv = dev->dev_private;
4657 struct drm_i915_gem_phys_object *phys_obj;
4658 int ret;
4659
4660 if (dev_priv->mm.phys_objs[id - 1] || !size)
4661 return 0;
4662
9a298b2a 4663 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4664 if (!phys_obj)
4665 return -ENOMEM;
4666
4667 phys_obj->id = id;
4668
6eeefaf3 4669 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4670 if (!phys_obj->handle) {
4671 ret = -ENOMEM;
4672 goto kfree_obj;
4673 }
4674#ifdef CONFIG_X86
4675 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4676#endif
4677
4678 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4679
4680 return 0;
4681kfree_obj:
9a298b2a 4682 kfree(phys_obj);
71acb5eb
DA
4683 return ret;
4684}
4685
995b6762 4686static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4687{
4688 drm_i915_private_t *dev_priv = dev->dev_private;
4689 struct drm_i915_gem_phys_object *phys_obj;
4690
4691 if (!dev_priv->mm.phys_objs[id - 1])
4692 return;
4693
4694 phys_obj = dev_priv->mm.phys_objs[id - 1];
4695 if (phys_obj->cur_obj) {
4696 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4697 }
4698
4699#ifdef CONFIG_X86
4700 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4701#endif
4702 drm_pci_free(dev, phys_obj->handle);
4703 kfree(phys_obj);
4704 dev_priv->mm.phys_objs[id - 1] = NULL;
4705}
4706
4707void i915_gem_free_all_phys_object(struct drm_device *dev)
4708{
4709 int i;
4710
260883c8 4711 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4712 i915_gem_free_phys_object(dev, i);
4713}
4714
4715void i915_gem_detach_phys_object(struct drm_device *dev,
4716 struct drm_gem_object *obj)
4717{
4718 struct drm_i915_gem_object *obj_priv;
4719 int i;
4720 int ret;
4721 int page_count;
4722
23010e43 4723 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4724 if (!obj_priv->phys_obj)
4725 return;
4726
4bdadb97 4727 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4728 if (ret)
4729 goto out;
4730
4731 page_count = obj->size / PAGE_SIZE;
4732
4733 for (i = 0; i < page_count; i++) {
856fa198 4734 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4735 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4736
4737 memcpy(dst, src, PAGE_SIZE);
4738 kunmap_atomic(dst, KM_USER0);
4739 }
856fa198 4740 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4741 drm_agp_chipset_flush(dev);
d78b47b9
CW
4742
4743 i915_gem_object_put_pages(obj);
71acb5eb
DA
4744out:
4745 obj_priv->phys_obj->cur_obj = NULL;
4746 obj_priv->phys_obj = NULL;
4747}
4748
4749int
4750i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4751 struct drm_gem_object *obj,
4752 int id,
4753 int align)
71acb5eb
DA
4754{
4755 drm_i915_private_t *dev_priv = dev->dev_private;
4756 struct drm_i915_gem_object *obj_priv;
4757 int ret = 0;
4758 int page_count;
4759 int i;
4760
4761 if (id > I915_MAX_PHYS_OBJECT)
4762 return -EINVAL;
4763
23010e43 4764 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4765
4766 if (obj_priv->phys_obj) {
4767 if (obj_priv->phys_obj->id == id)
4768 return 0;
4769 i915_gem_detach_phys_object(dev, obj);
4770 }
4771
71acb5eb
DA
4772 /* create a new object */
4773 if (!dev_priv->mm.phys_objs[id - 1]) {
4774 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4775 obj->size, align);
71acb5eb 4776 if (ret) {
aeb565df 4777 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4778 goto out;
4779 }
4780 }
4781
4782 /* bind to the object */
4783 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4784 obj_priv->phys_obj->cur_obj = obj;
4785
4bdadb97 4786 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4787 if (ret) {
4788 DRM_ERROR("failed to get page list\n");
4789 goto out;
4790 }
4791
4792 page_count = obj->size / PAGE_SIZE;
4793
4794 for (i = 0; i < page_count; i++) {
856fa198 4795 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4796 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4797
4798 memcpy(dst, src, PAGE_SIZE);
4799 kunmap_atomic(src, KM_USER0);
4800 }
4801
d78b47b9
CW
4802 i915_gem_object_put_pages(obj);
4803
71acb5eb
DA
4804 return 0;
4805out:
4806 return ret;
4807}
4808
4809static int
4810i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4811 struct drm_i915_gem_pwrite *args,
4812 struct drm_file *file_priv)
4813{
23010e43 4814 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4815 void *obj_addr;
4816 int ret;
4817 char __user *user_data;
4818
4819 user_data = (char __user *) (uintptr_t) args->data_ptr;
4820 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4821
44d98a61 4822 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4823 ret = copy_from_user(obj_addr, user_data, args->size);
4824 if (ret)
4825 return -EFAULT;
4826
4827 drm_agp_chipset_flush(dev);
4828 return 0;
4829}
b962442e 4830
f787a5f5 4831void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4832{
f787a5f5 4833 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4834
4835 /* Clean up our request list when the client is going away, so that
4836 * later retire_requests won't dereference our soon-to-be-gone
4837 * file_priv.
4838 */
1c25595f 4839 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4840 while (!list_empty(&file_priv->mm.request_list)) {
4841 struct drm_i915_gem_request *request;
4842
4843 request = list_first_entry(&file_priv->mm.request_list,
4844 struct drm_i915_gem_request,
4845 client_list);
4846 list_del(&request->client_list);
4847 request->file_priv = NULL;
4848 }
1c25595f 4849 spin_unlock(&file_priv->mm.lock);
b962442e 4850}
31169714 4851
1637ef41
CW
4852static int
4853i915_gpu_is_active(struct drm_device *dev)
4854{
4855 drm_i915_private_t *dev_priv = dev->dev_private;
4856 int lists_empty;
4857
1637ef41 4858 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5
CW
4859 list_empty(&dev_priv->render_ring.active_list) &&
4860 list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4861
4862 return !lists_empty;
4863}
4864
31169714 4865static int
7f8275d0 4866i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4867{
4868 drm_i915_private_t *dev_priv, *next_dev;
4869 struct drm_i915_gem_object *obj_priv, *next_obj;
4870 int cnt = 0;
4871 int would_deadlock = 1;
4872
4873 /* "fast-path" to count number of available objects */
4874 if (nr_to_scan == 0) {
4875 spin_lock(&shrink_list_lock);
4876 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4877 struct drm_device *dev = dev_priv->dev;
4878
4879 if (mutex_trylock(&dev->struct_mutex)) {
4880 list_for_each_entry(obj_priv,
4881 &dev_priv->mm.inactive_list,
69dc4987 4882 mm_list)
31169714
CW
4883 cnt++;
4884 mutex_unlock(&dev->struct_mutex);
4885 }
4886 }
4887 spin_unlock(&shrink_list_lock);
4888
4889 return (cnt / 100) * sysctl_vfs_cache_pressure;
4890 }
4891
4892 spin_lock(&shrink_list_lock);
4893
1637ef41 4894rescan:
31169714
CW
4895 /* first scan for clean buffers */
4896 list_for_each_entry_safe(dev_priv, next_dev,
4897 &shrink_list, mm.shrink_list) {
4898 struct drm_device *dev = dev_priv->dev;
4899
4900 if (! mutex_trylock(&dev->struct_mutex))
4901 continue;
4902
4903 spin_unlock(&shrink_list_lock);
b09a1fec 4904 i915_gem_retire_requests(dev);
31169714
CW
4905
4906 list_for_each_entry_safe(obj_priv, next_obj,
4907 &dev_priv->mm.inactive_list,
69dc4987 4908 mm_list) {
31169714 4909 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4910 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4911 if (--nr_to_scan <= 0)
4912 break;
4913 }
4914 }
4915
4916 spin_lock(&shrink_list_lock);
4917 mutex_unlock(&dev->struct_mutex);
4918
963b4836
CW
4919 would_deadlock = 0;
4920
31169714
CW
4921 if (nr_to_scan <= 0)
4922 break;
4923 }
4924
4925 /* second pass, evict/count anything still on the inactive list */
4926 list_for_each_entry_safe(dev_priv, next_dev,
4927 &shrink_list, mm.shrink_list) {
4928 struct drm_device *dev = dev_priv->dev;
4929
4930 if (! mutex_trylock(&dev->struct_mutex))
4931 continue;
4932
4933 spin_unlock(&shrink_list_lock);
4934
4935 list_for_each_entry_safe(obj_priv, next_obj,
4936 &dev_priv->mm.inactive_list,
69dc4987 4937 mm_list) {
31169714 4938 if (nr_to_scan > 0) {
a8089e84 4939 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4940 nr_to_scan--;
4941 } else
4942 cnt++;
4943 }
4944
4945 spin_lock(&shrink_list_lock);
4946 mutex_unlock(&dev->struct_mutex);
4947
4948 would_deadlock = 0;
4949 }
4950
1637ef41
CW
4951 if (nr_to_scan) {
4952 int active = 0;
4953
4954 /*
4955 * We are desperate for pages, so as a last resort, wait
4956 * for the GPU to finish and discard whatever we can.
4957 * This has a dramatic impact to reduce the number of
4958 * OOM-killer events whilst running the GPU aggressively.
4959 */
4960 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4961 struct drm_device *dev = dev_priv->dev;
4962
4963 if (!mutex_trylock(&dev->struct_mutex))
4964 continue;
4965
4966 spin_unlock(&shrink_list_lock);
4967
4968 if (i915_gpu_is_active(dev)) {
4969 i915_gpu_idle(dev);
4970 active++;
4971 }
4972
4973 spin_lock(&shrink_list_lock);
4974 mutex_unlock(&dev->struct_mutex);
4975 }
4976
4977 if (active)
4978 goto rescan;
4979 }
4980
31169714
CW
4981 spin_unlock(&shrink_list_lock);
4982
4983 if (would_deadlock)
4984 return -1;
4985 else if (cnt > 0)
4986 return (cnt / 100) * sysctl_vfs_cache_pressure;
4987 else
4988 return 0;
4989}
4990
4991static struct shrinker shrinker = {
4992 .shrink = i915_gem_shrink,
4993 .seeks = DEFAULT_SEEKS,
4994};
4995
4996__init void
4997i915_gem_shrinker_init(void)
4998{
4999 register_shrinker(&shrinker);
5000}
5001
5002__exit void
5003i915_gem_shrinker_exit(void)
5004{
5005 unregister_shrinker(&shrinker);
5006}