]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Return error from i915_gem_object_get_fence_reg() when failing.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
c0d90829
KP
37static void
38i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39 uint32_t read_domains,
40 uint32_t write_domain);
e47c68e9
EA
41static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
44static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
45 int write);
46static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
47 uint64_t offset,
48 uint64_t size);
49static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b
EA
50static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
d9ddcb96 55static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj);
de151cf6
JB
56static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
58static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
59 struct drm_i915_gem_pwrite *args,
60 struct drm_file *file_priv);
673a394b 61
79e53945
JB
62int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63 unsigned long end)
673a394b
EA
64{
65 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 66
79e53945
JB
67 if (start >= end ||
68 (start & (PAGE_SIZE - 1)) != 0 ||
69 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
70 return -EINVAL;
71 }
72
79e53945
JB
73 drm_mm_init(&dev_priv->mm.gtt_space, start,
74 end - start);
673a394b 75
79e53945
JB
76 dev->gtt_total = (uint32_t) (end - start);
77
78 return 0;
79}
673a394b 80
79e53945
JB
81int
82i915_gem_init_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file_priv)
84{
85 struct drm_i915_gem_init *args = data;
86 int ret;
87
88 mutex_lock(&dev->struct_mutex);
89 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
90 mutex_unlock(&dev->struct_mutex);
91
79e53945 92 return ret;
673a394b
EA
93}
94
5a125c3c
EA
95int
96i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97 struct drm_file *file_priv)
98{
5a125c3c 99 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
100
101 if (!(dev->driver->driver_features & DRIVER_GEM))
102 return -ENODEV;
103
104 args->aper_size = dev->gtt_total;
2678d9d6
KP
105 args->aper_available_size = (args->aper_size -
106 atomic_read(&dev->pin_memory));
5a125c3c
EA
107
108 return 0;
109}
110
673a394b
EA
111
112/**
113 * Creates a new mm object and returns a handle to it.
114 */
115int
116i915_gem_create_ioctl(struct drm_device *dev, void *data,
117 struct drm_file *file_priv)
118{
119 struct drm_i915_gem_create *args = data;
120 struct drm_gem_object *obj;
121 int handle, ret;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
134
135 if (ret)
136 return ret;
137
138 args->handle = handle;
139
140 return 0;
141}
142
143/**
144 * Reads data from the object referenced by handle.
145 *
146 * On error, the contents of *data are undefined.
147 */
148int
149i915_gem_pread_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file_priv)
151{
152 struct drm_i915_gem_pread *args = data;
153 struct drm_gem_object *obj;
154 struct drm_i915_gem_object *obj_priv;
155 ssize_t read;
156 loff_t offset;
157 int ret;
158
159 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
160 if (obj == NULL)
161 return -EBADF;
162 obj_priv = obj->driver_private;
163
164 /* Bounds check source.
165 *
166 * XXX: This could use review for overflow issues...
167 */
168 if (args->offset > obj->size || args->size > obj->size ||
169 args->offset + args->size > obj->size) {
170 drm_gem_object_unreference(obj);
171 return -EINVAL;
172 }
173
174 mutex_lock(&dev->struct_mutex);
175
e47c68e9
EA
176 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
177 args->size);
673a394b
EA
178 if (ret != 0) {
179 drm_gem_object_unreference(obj);
180 mutex_unlock(&dev->struct_mutex);
e7d22bc3 181 return ret;
673a394b
EA
182 }
183
184 offset = args->offset;
185
186 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
187 args->size, &offset);
188 if (read != args->size) {
189 drm_gem_object_unreference(obj);
190 mutex_unlock(&dev->struct_mutex);
191 if (read < 0)
192 return read;
193 else
194 return -EINVAL;
195 }
196
197 drm_gem_object_unreference(obj);
198 mutex_unlock(&dev->struct_mutex);
199
200 return 0;
201}
202
0839ccb8
KP
203/* This is the fast write path which cannot handle
204 * page faults in the source data
9b7530cc 205 */
0839ccb8
KP
206
207static inline int
208fast_user_write(struct io_mapping *mapping,
209 loff_t page_base, int page_offset,
210 char __user *user_data,
211 int length)
9b7530cc 212{
9b7530cc 213 char *vaddr_atomic;
0839ccb8 214 unsigned long unwritten;
9b7530cc 215
0839ccb8
KP
216 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
217 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
218 user_data, length);
219 io_mapping_unmap_atomic(vaddr_atomic);
220 if (unwritten)
221 return -EFAULT;
222 return 0;
223}
224
225/* Here's the write path which can sleep for
226 * page faults
227 */
228
229static inline int
230slow_user_write(struct io_mapping *mapping,
231 loff_t page_base, int page_offset,
232 char __user *user_data,
233 int length)
234{
235 char __iomem *vaddr;
236 unsigned long unwritten;
237
238 vaddr = io_mapping_map_wc(mapping, page_base);
239 if (vaddr == NULL)
240 return -EFAULT;
241 unwritten = __copy_from_user(vaddr + page_offset,
242 user_data, length);
243 io_mapping_unmap(vaddr);
244 if (unwritten)
245 return -EFAULT;
9b7530cc 246 return 0;
9b7530cc
LT
247}
248
673a394b
EA
249static int
250i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pwrite *args,
252 struct drm_file *file_priv)
253{
254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 255 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 256 ssize_t remain;
0839ccb8 257 loff_t offset, page_base;
673a394b 258 char __user *user_data;
0839ccb8
KP
259 int page_offset, page_length;
260 int ret;
673a394b
EA
261
262 user_data = (char __user *) (uintptr_t) args->data_ptr;
263 remain = args->size;
264 if (!access_ok(VERIFY_READ, user_data, remain))
265 return -EFAULT;
266
267
268 mutex_lock(&dev->struct_mutex);
269 ret = i915_gem_object_pin(obj, 0);
270 if (ret) {
271 mutex_unlock(&dev->struct_mutex);
272 return ret;
273 }
2ef7eeaa 274 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
275 if (ret)
276 goto fail;
277
278 obj_priv = obj->driver_private;
279 offset = obj_priv->gtt_offset + args->offset;
280 obj_priv->dirty = 1;
281
282 while (remain > 0) {
283 /* Operation in this page
284 *
0839ccb8
KP
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
673a394b 288 */
0839ccb8
KP
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
294
295 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
296 page_offset, user_data, page_length);
297
298 /* If we get a fault while copying data, then (presumably) our
299 * source page isn't available. In this case, use the
300 * non-atomic function
301 */
302 if (ret) {
303 ret = slow_user_write (dev_priv->mm.gtt_mapping,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
673a394b 307 goto fail;
673a394b
EA
308 }
309
0839ccb8
KP
310 remain -= page_length;
311 user_data += page_length;
312 offset += page_length;
673a394b 313 }
673a394b
EA
314
315fail:
316 i915_gem_object_unpin(obj);
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320}
321
3043c60c 322static int
673a394b
EA
323i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
324 struct drm_i915_gem_pwrite *args,
325 struct drm_file *file_priv)
326{
327 int ret;
328 loff_t offset;
329 ssize_t written;
330
331 mutex_lock(&dev->struct_mutex);
332
e47c68e9 333 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b
EA
334 if (ret) {
335 mutex_unlock(&dev->struct_mutex);
336 return ret;
337 }
338
339 offset = args->offset;
340
341 written = vfs_write(obj->filp,
342 (char __user *)(uintptr_t) args->data_ptr,
343 args->size, &offset);
344 if (written != args->size) {
345 mutex_unlock(&dev->struct_mutex);
346 if (written < 0)
347 return written;
348 else
349 return -EINVAL;
350 }
351
352 mutex_unlock(&dev->struct_mutex);
353
354 return 0;
355}
356
357/**
358 * Writes data to the object referenced by handle.
359 *
360 * On error, the contents of the buffer that were to be modified are undefined.
361 */
362int
363i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
365{
366 struct drm_i915_gem_pwrite *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
369 int ret = 0;
370
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
375
376 /* Bounds check destination.
377 *
378 * XXX: This could use review for overflow issues...
379 */
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
384 }
385
386 /* We can only do the GTT pwrite on untiled buffers, as otherwise
387 * it would end up going through the fenced access, and we'll get
388 * different detiling behavior between reading and writing.
389 * pread/pwrite currently are reading and writing from the CPU
390 * perspective, requiring manual detiling by the client.
391 */
71acb5eb
DA
392 if (obj_priv->phys_obj)
393 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
394 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
395 dev->gtt_total != 0)
673a394b
EA
396 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
397 else
398 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
399
400#if WATCH_PWRITE
401 if (ret)
402 DRM_INFO("pwrite failed %d\n", ret);
403#endif
404
405 drm_gem_object_unreference(obj);
406
407 return ret;
408}
409
410/**
2ef7eeaa
EA
411 * Called when user space prepares to use an object with the CPU, either
412 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
413 */
414int
415i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
416 struct drm_file *file_priv)
417{
418 struct drm_i915_gem_set_domain *args = data;
419 struct drm_gem_object *obj;
2ef7eeaa
EA
420 uint32_t read_domains = args->read_domains;
421 uint32_t write_domain = args->write_domain;
673a394b
EA
422 int ret;
423
424 if (!(dev->driver->driver_features & DRIVER_GEM))
425 return -ENODEV;
426
2ef7eeaa
EA
427 /* Only handle setting domains to types used by the CPU. */
428 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
429 return -EINVAL;
430
431 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
432 return -EINVAL;
433
434 /* Having something in the write domain implies it's in the read
435 * domain, and only that read domain. Enforce that in the request.
436 */
437 if (write_domain != 0 && read_domains != write_domain)
438 return -EINVAL;
439
673a394b
EA
440 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
441 if (obj == NULL)
442 return -EBADF;
443
444 mutex_lock(&dev->struct_mutex);
445#if WATCH_BUF
446 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 447 obj, obj->size, read_domains, write_domain);
673a394b 448#endif
2ef7eeaa
EA
449 if (read_domains & I915_GEM_DOMAIN_GTT) {
450 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
451
452 /* Silently promote "you're not bound, there was nothing to do"
453 * to success, since the client was just asking us to
454 * make sure everything was done.
455 */
456 if (ret == -EINVAL)
457 ret = 0;
2ef7eeaa 458 } else {
e47c68e9 459 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
460 }
461
673a394b
EA
462 drm_gem_object_unreference(obj);
463 mutex_unlock(&dev->struct_mutex);
464 return ret;
465}
466
467/**
468 * Called when user space has done writes to this buffer
469 */
470int
471i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
472 struct drm_file *file_priv)
473{
474 struct drm_i915_gem_sw_finish *args = data;
475 struct drm_gem_object *obj;
476 struct drm_i915_gem_object *obj_priv;
477 int ret = 0;
478
479 if (!(dev->driver->driver_features & DRIVER_GEM))
480 return -ENODEV;
481
482 mutex_lock(&dev->struct_mutex);
483 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
484 if (obj == NULL) {
485 mutex_unlock(&dev->struct_mutex);
486 return -EBADF;
487 }
488
489#if WATCH_BUF
490 DRM_INFO("%s: sw_finish %d (%p %d)\n",
491 __func__, args->handle, obj, obj->size);
492#endif
493 obj_priv = obj->driver_private;
494
495 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
496 if (obj_priv->pin_count)
497 i915_gem_object_flush_cpu_write_domain(obj);
498
673a394b
EA
499 drm_gem_object_unreference(obj);
500 mutex_unlock(&dev->struct_mutex);
501 return ret;
502}
503
504/**
505 * Maps the contents of an object, returning the address it is mapped
506 * into.
507 *
508 * While the mapping holds a reference on the contents of the object, it doesn't
509 * imply a ref on the object itself.
510 */
511int
512i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file_priv)
514{
515 struct drm_i915_gem_mmap *args = data;
516 struct drm_gem_object *obj;
517 loff_t offset;
518 unsigned long addr;
519
520 if (!(dev->driver->driver_features & DRIVER_GEM))
521 return -ENODEV;
522
523 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
524 if (obj == NULL)
525 return -EBADF;
526
527 offset = args->offset;
528
529 down_write(&current->mm->mmap_sem);
530 addr = do_mmap(obj->filp, 0, args->size,
531 PROT_READ | PROT_WRITE, MAP_SHARED,
532 args->offset);
533 up_write(&current->mm->mmap_sem);
534 mutex_lock(&dev->struct_mutex);
535 drm_gem_object_unreference(obj);
536 mutex_unlock(&dev->struct_mutex);
537 if (IS_ERR((void *)addr))
538 return addr;
539
540 args->addr_ptr = (uint64_t) addr;
541
542 return 0;
543}
544
de151cf6
JB
545/**
546 * i915_gem_fault - fault a page into the GTT
547 * vma: VMA in question
548 * vmf: fault info
549 *
550 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
551 * from userspace. The fault handler takes care of binding the object to
552 * the GTT (if needed), allocating and programming a fence register (again,
553 * only if needed based on whether the old reg is still valid or the object
554 * is tiled) and inserting a new PTE into the faulting process.
555 *
556 * Note that the faulting process may involve evicting existing objects
557 * from the GTT and/or fence registers to make room. So performance may
558 * suffer if the GTT working set is large or there are few fence registers
559 * left.
560 */
561int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
562{
563 struct drm_gem_object *obj = vma->vm_private_data;
564 struct drm_device *dev = obj->dev;
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 struct drm_i915_gem_object *obj_priv = obj->driver_private;
567 pgoff_t page_offset;
568 unsigned long pfn;
569 int ret = 0;
570
571 /* We don't use vmf->pgoff since that has the fake offset */
572 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
573 PAGE_SHIFT;
574
575 /* Now bind it into the GTT if needed */
576 mutex_lock(&dev->struct_mutex);
577 if (!obj_priv->gtt_space) {
578 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
579 if (ret) {
580 mutex_unlock(&dev->struct_mutex);
581 return VM_FAULT_SIGBUS;
582 }
583 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
584 }
585
586 /* Need a new fence register? */
587 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96
EA
588 obj_priv->tiling_mode != I915_TILING_NONE) {
589 ret = i915_gem_object_get_fence_reg(obj);
590 if (ret != 0)
591 return VM_FAULT_SIGBUS;
592 }
de151cf6
JB
593
594 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
595 page_offset;
596
597 /* Finally, remap it using the new GTT offset */
598 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
599
600 mutex_unlock(&dev->struct_mutex);
601
602 switch (ret) {
603 case -ENOMEM:
604 case -EAGAIN:
605 return VM_FAULT_OOM;
606 case -EFAULT:
607 case -EBUSY:
608 DRM_ERROR("can't insert pfn?? fault or busy...\n");
609 return VM_FAULT_SIGBUS;
610 default:
611 return VM_FAULT_NOPAGE;
612 }
613}
614
615/**
616 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
617 * @obj: obj in question
618 *
619 * GEM memory mapping works by handing back to userspace a fake mmap offset
620 * it can use in a subsequent mmap(2) call. The DRM core code then looks
621 * up the object based on the offset and sets up the various memory mapping
622 * structures.
623 *
624 * This routine allocates and attaches a fake offset for @obj.
625 */
626static int
627i915_gem_create_mmap_offset(struct drm_gem_object *obj)
628{
629 struct drm_device *dev = obj->dev;
630 struct drm_gem_mm *mm = dev->mm_private;
631 struct drm_i915_gem_object *obj_priv = obj->driver_private;
632 struct drm_map_list *list;
633 struct drm_map *map;
634 int ret = 0;
635
636 /* Set the object up for mmap'ing */
637 list = &obj->map_list;
638 list->map = drm_calloc(1, sizeof(struct drm_map_list),
639 DRM_MEM_DRIVER);
640 if (!list->map)
641 return -ENOMEM;
642
643 map = list->map;
644 map->type = _DRM_GEM;
645 map->size = obj->size;
646 map->handle = obj;
647
648 /* Get a DRM GEM mmap offset allocated... */
649 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
650 obj->size / PAGE_SIZE, 0, 0);
651 if (!list->file_offset_node) {
652 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
653 ret = -ENOMEM;
654 goto out_free_list;
655 }
656
657 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
658 obj->size / PAGE_SIZE, 0);
659 if (!list->file_offset_node) {
660 ret = -ENOMEM;
661 goto out_free_list;
662 }
663
664 list->hash.key = list->file_offset_node->start;
665 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
666 DRM_ERROR("failed to add to map hash\n");
667 goto out_free_mm;
668 }
669
670 /* By now we should be all set, any drm_mmap request on the offset
671 * below will get to our mmap & fault handler */
672 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
673
674 return 0;
675
676out_free_mm:
677 drm_mm_put_block(list->file_offset_node);
678out_free_list:
679 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
680
681 return ret;
682}
683
684/**
685 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
686 * @obj: object to check
687 *
688 * Return the required GTT alignment for an object, taking into account
689 * potential fence register mapping if needed.
690 */
691static uint32_t
692i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
693{
694 struct drm_device *dev = obj->dev;
695 struct drm_i915_gem_object *obj_priv = obj->driver_private;
696 int start, i;
697
698 /*
699 * Minimum alignment is 4k (GTT page size), but might be greater
700 * if a fence register is needed for the object.
701 */
702 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
703 return 4096;
704
705 /*
706 * Previous chips need to be aligned to the size of the smallest
707 * fence register that can contain the object.
708 */
709 if (IS_I9XX(dev))
710 start = 1024*1024;
711 else
712 start = 512*1024;
713
714 for (i = start; i < obj->size; i <<= 1)
715 ;
716
717 return i;
718}
719
720/**
721 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
722 * @dev: DRM device
723 * @data: GTT mapping ioctl data
724 * @file_priv: GEM object info
725 *
726 * Simply returns the fake offset to userspace so it can mmap it.
727 * The mmap call will end up in drm_gem_mmap(), which will set things
728 * up so we can get faults in the handler above.
729 *
730 * The fault handler will take care of binding the object into the GTT
731 * (since it may have been evicted to make room for something), allocating
732 * a fence register, and mapping the appropriate aperture address into
733 * userspace.
734 */
735int
736i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
737 struct drm_file *file_priv)
738{
739 struct drm_i915_gem_mmap_gtt *args = data;
740 struct drm_i915_private *dev_priv = dev->dev_private;
741 struct drm_gem_object *obj;
742 struct drm_i915_gem_object *obj_priv;
743 int ret;
744
745 if (!(dev->driver->driver_features & DRIVER_GEM))
746 return -ENODEV;
747
748 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
749 if (obj == NULL)
750 return -EBADF;
751
752 mutex_lock(&dev->struct_mutex);
753
754 obj_priv = obj->driver_private;
755
756 if (!obj_priv->mmap_offset) {
757 ret = i915_gem_create_mmap_offset(obj);
758 if (ret)
759 return ret;
760 }
761
762 args->offset = obj_priv->mmap_offset;
763
764 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
765
766 /* Make sure the alignment is correct for fence regs etc */
767 if (obj_priv->agp_mem &&
768 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
769 drm_gem_object_unreference(obj);
770 mutex_unlock(&dev->struct_mutex);
771 return -EINVAL;
772 }
773
774 /*
775 * Pull it into the GTT so that we have a page list (makes the
776 * initial fault faster and any subsequent flushing possible).
777 */
778 if (!obj_priv->agp_mem) {
779 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
780 if (ret) {
781 drm_gem_object_unreference(obj);
782 mutex_unlock(&dev->struct_mutex);
783 return ret;
784 }
785 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
786 }
787
788 drm_gem_object_unreference(obj);
789 mutex_unlock(&dev->struct_mutex);
790
791 return 0;
792}
793
673a394b
EA
794static void
795i915_gem_object_free_page_list(struct drm_gem_object *obj)
796{
797 struct drm_i915_gem_object *obj_priv = obj->driver_private;
798 int page_count = obj->size / PAGE_SIZE;
799 int i;
800
801 if (obj_priv->page_list == NULL)
802 return;
803
804
805 for (i = 0; i < page_count; i++)
806 if (obj_priv->page_list[i] != NULL) {
807 if (obj_priv->dirty)
808 set_page_dirty(obj_priv->page_list[i]);
809 mark_page_accessed(obj_priv->page_list[i]);
810 page_cache_release(obj_priv->page_list[i]);
811 }
812 obj_priv->dirty = 0;
813
814 drm_free(obj_priv->page_list,
815 page_count * sizeof(struct page *),
816 DRM_MEM_DRIVER);
817 obj_priv->page_list = NULL;
818}
819
820static void
ce44b0ea 821i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
822{
823 struct drm_device *dev = obj->dev;
824 drm_i915_private_t *dev_priv = dev->dev_private;
825 struct drm_i915_gem_object *obj_priv = obj->driver_private;
826
827 /* Add a reference if we're newly entering the active list. */
828 if (!obj_priv->active) {
829 drm_gem_object_reference(obj);
830 obj_priv->active = 1;
831 }
832 /* Move from whatever list we were on to the tail of execution. */
833 list_move_tail(&obj_priv->list,
834 &dev_priv->mm.active_list);
ce44b0ea 835 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
836}
837
ce44b0ea
EA
838static void
839i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
840{
841 struct drm_device *dev = obj->dev;
842 drm_i915_private_t *dev_priv = dev->dev_private;
843 struct drm_i915_gem_object *obj_priv = obj->driver_private;
844
845 BUG_ON(!obj_priv->active);
846 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
847 obj_priv->last_rendering_seqno = 0;
848}
673a394b
EA
849
850static void
851i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
852{
853 struct drm_device *dev = obj->dev;
854 drm_i915_private_t *dev_priv = dev->dev_private;
855 struct drm_i915_gem_object *obj_priv = obj->driver_private;
856
857 i915_verify_inactive(dev, __FILE__, __LINE__);
858 if (obj_priv->pin_count != 0)
859 list_del_init(&obj_priv->list);
860 else
861 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
862
ce44b0ea 863 obj_priv->last_rendering_seqno = 0;
673a394b
EA
864 if (obj_priv->active) {
865 obj_priv->active = 0;
866 drm_gem_object_unreference(obj);
867 }
868 i915_verify_inactive(dev, __FILE__, __LINE__);
869}
870
871/**
872 * Creates a new sequence number, emitting a write of it to the status page
873 * plus an interrupt, which will trigger i915_user_interrupt_handler.
874 *
875 * Must be called with struct_lock held.
876 *
877 * Returned sequence numbers are nonzero on success.
878 */
879static uint32_t
880i915_add_request(struct drm_device *dev, uint32_t flush_domains)
881{
882 drm_i915_private_t *dev_priv = dev->dev_private;
883 struct drm_i915_gem_request *request;
884 uint32_t seqno;
885 int was_empty;
886 RING_LOCALS;
887
888 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
889 if (request == NULL)
890 return 0;
891
892 /* Grab the seqno we're going to make this request be, and bump the
893 * next (skipping 0 so it can be the reserved no-seqno value).
894 */
895 seqno = dev_priv->mm.next_gem_seqno;
896 dev_priv->mm.next_gem_seqno++;
897 if (dev_priv->mm.next_gem_seqno == 0)
898 dev_priv->mm.next_gem_seqno++;
899
900 BEGIN_LP_RING(4);
901 OUT_RING(MI_STORE_DWORD_INDEX);
902 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
903 OUT_RING(seqno);
904
905 OUT_RING(MI_USER_INTERRUPT);
906 ADVANCE_LP_RING();
907
908 DRM_DEBUG("%d\n", seqno);
909
910 request->seqno = seqno;
911 request->emitted_jiffies = jiffies;
673a394b
EA
912 was_empty = list_empty(&dev_priv->mm.request_list);
913 list_add_tail(&request->list, &dev_priv->mm.request_list);
914
ce44b0ea
EA
915 /* Associate any objects on the flushing list matching the write
916 * domain we're flushing with our flush.
917 */
918 if (flush_domains != 0) {
919 struct drm_i915_gem_object *obj_priv, *next;
920
921 list_for_each_entry_safe(obj_priv, next,
922 &dev_priv->mm.flushing_list, list) {
923 struct drm_gem_object *obj = obj_priv->obj;
924
925 if ((obj->write_domain & flush_domains) ==
926 obj->write_domain) {
927 obj->write_domain = 0;
928 i915_gem_object_move_to_active(obj, seqno);
929 }
930 }
931
932 }
933
6dbe2772 934 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
935 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
936 return seqno;
937}
938
939/**
940 * Command execution barrier
941 *
942 * Ensures that all commands in the ring are finished
943 * before signalling the CPU
944 */
3043c60c 945static uint32_t
673a394b
EA
946i915_retire_commands(struct drm_device *dev)
947{
948 drm_i915_private_t *dev_priv = dev->dev_private;
949 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
950 uint32_t flush_domains = 0;
951 RING_LOCALS;
952
953 /* The sampler always gets flushed on i965 (sigh) */
954 if (IS_I965G(dev))
955 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
956 BEGIN_LP_RING(2);
957 OUT_RING(cmd);
958 OUT_RING(0); /* noop */
959 ADVANCE_LP_RING();
960 return flush_domains;
961}
962
963/**
964 * Moves buffers associated only with the given active seqno from the active
965 * to inactive list, potentially freeing them.
966 */
967static void
968i915_gem_retire_request(struct drm_device *dev,
969 struct drm_i915_gem_request *request)
970{
971 drm_i915_private_t *dev_priv = dev->dev_private;
972
973 /* Move any buffers on the active list that are no longer referenced
974 * by the ringbuffer to the flushing/inactive lists as appropriate.
975 */
976 while (!list_empty(&dev_priv->mm.active_list)) {
977 struct drm_gem_object *obj;
978 struct drm_i915_gem_object *obj_priv;
979
980 obj_priv = list_first_entry(&dev_priv->mm.active_list,
981 struct drm_i915_gem_object,
982 list);
983 obj = obj_priv->obj;
984
985 /* If the seqno being retired doesn't match the oldest in the
986 * list, then the oldest in the list must still be newer than
987 * this seqno.
988 */
989 if (obj_priv->last_rendering_seqno != request->seqno)
990 return;
de151cf6 991
673a394b
EA
992#if WATCH_LRU
993 DRM_INFO("%s: retire %d moves to inactive list %p\n",
994 __func__, request->seqno, obj);
995#endif
996
ce44b0ea
EA
997 if (obj->write_domain != 0)
998 i915_gem_object_move_to_flushing(obj);
999 else
673a394b 1000 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1001 }
1002}
1003
1004/**
1005 * Returns true if seq1 is later than seq2.
1006 */
1007static int
1008i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1009{
1010 return (int32_t)(seq1 - seq2) >= 0;
1011}
1012
1013uint32_t
1014i915_get_gem_seqno(struct drm_device *dev)
1015{
1016 drm_i915_private_t *dev_priv = dev->dev_private;
1017
1018 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1019}
1020
1021/**
1022 * This function clears the request list as sequence numbers are passed.
1023 */
1024void
1025i915_gem_retire_requests(struct drm_device *dev)
1026{
1027 drm_i915_private_t *dev_priv = dev->dev_private;
1028 uint32_t seqno;
1029
1030 seqno = i915_get_gem_seqno(dev);
1031
1032 while (!list_empty(&dev_priv->mm.request_list)) {
1033 struct drm_i915_gem_request *request;
1034 uint32_t retiring_seqno;
1035
1036 request = list_first_entry(&dev_priv->mm.request_list,
1037 struct drm_i915_gem_request,
1038 list);
1039 retiring_seqno = request->seqno;
1040
1041 if (i915_seqno_passed(seqno, retiring_seqno) ||
1042 dev_priv->mm.wedged) {
1043 i915_gem_retire_request(dev, request);
1044
1045 list_del(&request->list);
1046 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1047 } else
1048 break;
1049 }
1050}
1051
1052void
1053i915_gem_retire_work_handler(struct work_struct *work)
1054{
1055 drm_i915_private_t *dev_priv;
1056 struct drm_device *dev;
1057
1058 dev_priv = container_of(work, drm_i915_private_t,
1059 mm.retire_work.work);
1060 dev = dev_priv->dev;
1061
1062 mutex_lock(&dev->struct_mutex);
1063 i915_gem_retire_requests(dev);
6dbe2772
KP
1064 if (!dev_priv->mm.suspended &&
1065 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1066 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1067 mutex_unlock(&dev->struct_mutex);
1068}
1069
1070/**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
3043c60c 1074static int
673a394b
EA
1075i915_wait_request(struct drm_device *dev, uint32_t seqno)
1076{
1077 drm_i915_private_t *dev_priv = dev->dev_private;
1078 int ret = 0;
1079
1080 BUG_ON(seqno == 0);
1081
1082 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1083 dev_priv->mm.waiting_gem_seqno = seqno;
1084 i915_user_irq_get(dev);
1085 ret = wait_event_interruptible(dev_priv->irq_queue,
1086 i915_seqno_passed(i915_get_gem_seqno(dev),
1087 seqno) ||
1088 dev_priv->mm.wedged);
1089 i915_user_irq_put(dev);
1090 dev_priv->mm.waiting_gem_seqno = 0;
1091 }
1092 if (dev_priv->mm.wedged)
1093 ret = -EIO;
1094
1095 if (ret && ret != -ERESTARTSYS)
1096 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1097 __func__, ret, seqno, i915_get_gem_seqno(dev));
1098
1099 /* Directly dispatch request retiring. While we have the work queue
1100 * to handle this, the waiter on a request often wants an associated
1101 * buffer to have made it to the inactive list, and we would need
1102 * a separate wait queue to handle that.
1103 */
1104 if (ret == 0)
1105 i915_gem_retire_requests(dev);
1106
1107 return ret;
1108}
1109
1110static void
1111i915_gem_flush(struct drm_device *dev,
1112 uint32_t invalidate_domains,
1113 uint32_t flush_domains)
1114{
1115 drm_i915_private_t *dev_priv = dev->dev_private;
1116 uint32_t cmd;
1117 RING_LOCALS;
1118
1119#if WATCH_EXEC
1120 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1121 invalidate_domains, flush_domains);
1122#endif
1123
1124 if (flush_domains & I915_GEM_DOMAIN_CPU)
1125 drm_agp_chipset_flush(dev);
1126
1127 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1128 I915_GEM_DOMAIN_GTT)) {
1129 /*
1130 * read/write caches:
1131 *
1132 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1133 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1134 * also flushed at 2d versus 3d pipeline switches.
1135 *
1136 * read-only caches:
1137 *
1138 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1139 * MI_READ_FLUSH is set, and is always flushed on 965.
1140 *
1141 * I915_GEM_DOMAIN_COMMAND may not exist?
1142 *
1143 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1144 * invalidated when MI_EXE_FLUSH is set.
1145 *
1146 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1147 * invalidated with every MI_FLUSH.
1148 *
1149 * TLBs:
1150 *
1151 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1152 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1153 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1154 * are flushed at any MI_FLUSH.
1155 */
1156
1157 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1158 if ((invalidate_domains|flush_domains) &
1159 I915_GEM_DOMAIN_RENDER)
1160 cmd &= ~MI_NO_WRITE_FLUSH;
1161 if (!IS_I965G(dev)) {
1162 /*
1163 * On the 965, the sampler cache always gets flushed
1164 * and this bit is reserved.
1165 */
1166 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1167 cmd |= MI_READ_FLUSH;
1168 }
1169 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1170 cmd |= MI_EXE_FLUSH;
1171
1172#if WATCH_EXEC
1173 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1174#endif
1175 BEGIN_LP_RING(2);
1176 OUT_RING(cmd);
1177 OUT_RING(0); /* noop */
1178 ADVANCE_LP_RING();
1179 }
1180}
1181
1182/**
1183 * Ensures that all rendering to the object has completed and the object is
1184 * safe to unbind from the GTT or access from the CPU.
1185 */
1186static int
1187i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1188{
1189 struct drm_device *dev = obj->dev;
1190 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1191 int ret;
1192
e47c68e9
EA
1193 /* This function only exists to support waiting for existing rendering,
1194 * not for emitting required flushes.
673a394b 1195 */
e47c68e9 1196 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1197
1198 /* If there is rendering queued on the buffer being evicted, wait for
1199 * it.
1200 */
1201 if (obj_priv->active) {
1202#if WATCH_BUF
1203 DRM_INFO("%s: object %p wait for seqno %08x\n",
1204 __func__, obj, obj_priv->last_rendering_seqno);
1205#endif
1206 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1207 if (ret != 0)
1208 return ret;
1209 }
1210
1211 return 0;
1212}
1213
1214/**
1215 * Unbinds an object from the GTT aperture.
1216 */
1217static int
1218i915_gem_object_unbind(struct drm_gem_object *obj)
1219{
1220 struct drm_device *dev = obj->dev;
1221 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1222 loff_t offset;
673a394b
EA
1223 int ret = 0;
1224
1225#if WATCH_BUF
1226 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1227 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1228#endif
1229 if (obj_priv->gtt_space == NULL)
1230 return 0;
1231
1232 if (obj_priv->pin_count != 0) {
1233 DRM_ERROR("Attempting to unbind pinned buffer\n");
1234 return -EINVAL;
1235 }
1236
673a394b
EA
1237 /* Move the object to the CPU domain to ensure that
1238 * any possible CPU writes while it's not in the GTT
1239 * are flushed when we go to remap it. This will
1240 * also ensure that all pending GPU writes are finished
1241 * before we unbind.
1242 */
e47c68e9 1243 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1244 if (ret) {
e47c68e9
EA
1245 if (ret != -ERESTARTSYS)
1246 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1247 return ret;
1248 }
1249
1250 if (obj_priv->agp_mem != NULL) {
1251 drm_unbind_agp(obj_priv->agp_mem);
1252 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1253 obj_priv->agp_mem = NULL;
1254 }
1255
1256 BUG_ON(obj_priv->active);
1257
de151cf6
JB
1258 /* blow away mappings if mapped through GTT */
1259 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1260 if (dev->dev_mapping)
1261 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1262
1263 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1264 i915_gem_clear_fence_reg(obj);
1265
673a394b
EA
1266 i915_gem_object_free_page_list(obj);
1267
1268 if (obj_priv->gtt_space) {
1269 atomic_dec(&dev->gtt_count);
1270 atomic_sub(obj->size, &dev->gtt_memory);
1271
1272 drm_mm_put_block(obj_priv->gtt_space);
1273 obj_priv->gtt_space = NULL;
1274 }
1275
1276 /* Remove ourselves from the LRU list if present. */
1277 if (!list_empty(&obj_priv->list))
1278 list_del_init(&obj_priv->list);
1279
1280 return 0;
1281}
1282
1283static int
1284i915_gem_evict_something(struct drm_device *dev)
1285{
1286 drm_i915_private_t *dev_priv = dev->dev_private;
1287 struct drm_gem_object *obj;
1288 struct drm_i915_gem_object *obj_priv;
1289 int ret = 0;
1290
1291 for (;;) {
1292 /* If there's an inactive buffer available now, grab it
1293 * and be done.
1294 */
1295 if (!list_empty(&dev_priv->mm.inactive_list)) {
1296 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1297 struct drm_i915_gem_object,
1298 list);
1299 obj = obj_priv->obj;
1300 BUG_ON(obj_priv->pin_count != 0);
1301#if WATCH_LRU
1302 DRM_INFO("%s: evicting %p\n", __func__, obj);
1303#endif
1304 BUG_ON(obj_priv->active);
1305
1306 /* Wait on the rendering and unbind the buffer. */
1307 ret = i915_gem_object_unbind(obj);
1308 break;
1309 }
1310
1311 /* If we didn't get anything, but the ring is still processing
1312 * things, wait for one of those things to finish and hopefully
1313 * leave us a buffer to evict.
1314 */
1315 if (!list_empty(&dev_priv->mm.request_list)) {
1316 struct drm_i915_gem_request *request;
1317
1318 request = list_first_entry(&dev_priv->mm.request_list,
1319 struct drm_i915_gem_request,
1320 list);
1321
1322 ret = i915_wait_request(dev, request->seqno);
1323 if (ret)
1324 break;
1325
1326 /* if waiting caused an object to become inactive,
1327 * then loop around and wait for it. Otherwise, we
1328 * assume that waiting freed and unbound something,
1329 * so there should now be some space in the GTT
1330 */
1331 if (!list_empty(&dev_priv->mm.inactive_list))
1332 continue;
1333 break;
1334 }
1335
1336 /* If we didn't have anything on the request list but there
1337 * are buffers awaiting a flush, emit one and try again.
1338 * When we wait on it, those buffers waiting for that flush
1339 * will get moved to inactive.
1340 */
1341 if (!list_empty(&dev_priv->mm.flushing_list)) {
1342 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1343 struct drm_i915_gem_object,
1344 list);
1345 obj = obj_priv->obj;
1346
1347 i915_gem_flush(dev,
1348 obj->write_domain,
1349 obj->write_domain);
1350 i915_add_request(dev, obj->write_domain);
1351
1352 obj = NULL;
1353 continue;
1354 }
1355
1356 DRM_ERROR("inactive empty %d request empty %d "
1357 "flushing empty %d\n",
1358 list_empty(&dev_priv->mm.inactive_list),
1359 list_empty(&dev_priv->mm.request_list),
1360 list_empty(&dev_priv->mm.flushing_list));
1361 /* If we didn't do any of the above, there's nothing to be done
1362 * and we just can't fit it in.
1363 */
1364 return -ENOMEM;
1365 }
1366 return ret;
1367}
1368
ac94a962
KP
1369static int
1370i915_gem_evict_everything(struct drm_device *dev)
1371{
1372 int ret;
1373
1374 for (;;) {
1375 ret = i915_gem_evict_something(dev);
1376 if (ret != 0)
1377 break;
1378 }
15c35334
OA
1379 if (ret == -ENOMEM)
1380 return 0;
ac94a962
KP
1381 return ret;
1382}
1383
673a394b
EA
1384static int
1385i915_gem_object_get_page_list(struct drm_gem_object *obj)
1386{
1387 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1388 int page_count, i;
1389 struct address_space *mapping;
1390 struct inode *inode;
1391 struct page *page;
1392 int ret;
1393
1394 if (obj_priv->page_list)
1395 return 0;
1396
1397 /* Get the list of pages out of our struct file. They'll be pinned
1398 * at this point until we release them.
1399 */
1400 page_count = obj->size / PAGE_SIZE;
1401 BUG_ON(obj_priv->page_list != NULL);
1402 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1403 DRM_MEM_DRIVER);
1404 if (obj_priv->page_list == NULL) {
1405 DRM_ERROR("Faled to allocate page list\n");
1406 return -ENOMEM;
1407 }
1408
1409 inode = obj->filp->f_path.dentry->d_inode;
1410 mapping = inode->i_mapping;
1411 for (i = 0; i < page_count; i++) {
1412 page = read_mapping_page(mapping, i, NULL);
1413 if (IS_ERR(page)) {
1414 ret = PTR_ERR(page);
1415 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1416 i915_gem_object_free_page_list(obj);
1417 return ret;
1418 }
1419 obj_priv->page_list[i] = page;
1420 }
1421 return 0;
1422}
1423
de151cf6
JB
1424static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1425{
1426 struct drm_gem_object *obj = reg->obj;
1427 struct drm_device *dev = obj->dev;
1428 drm_i915_private_t *dev_priv = dev->dev_private;
1429 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1430 int regnum = obj_priv->fence_reg;
1431 uint64_t val;
1432
1433 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1434 0xfffff000) << 32;
1435 val |= obj_priv->gtt_offset & 0xfffff000;
1436 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1437 if (obj_priv->tiling_mode == I915_TILING_Y)
1438 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1439 val |= I965_FENCE_REG_VALID;
1440
1441 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1442}
1443
1444static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1445{
1446 struct drm_gem_object *obj = reg->obj;
1447 struct drm_device *dev = obj->dev;
1448 drm_i915_private_t *dev_priv = dev->dev_private;
1449 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1450 int regnum = obj_priv->fence_reg;
1451 uint32_t val;
1452 uint32_t pitch_val;
1453
1454 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1455 (obj_priv->gtt_offset & (obj->size - 1))) {
9b4778f6 1456 WARN(1, "%s: object not 1M or size aligned\n", __func__);
de151cf6
JB
1457 return;
1458 }
1459
1460 if (obj_priv->tiling_mode == I915_TILING_Y && (IS_I945G(dev) ||
1461 IS_I945GM(dev) ||
1462 IS_G33(dev)))
1463 pitch_val = (obj_priv->stride / 128) - 1;
1464 else
1465 pitch_val = (obj_priv->stride / 512) - 1;
1466
1467 val = obj_priv->gtt_offset;
1468 if (obj_priv->tiling_mode == I915_TILING_Y)
1469 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1470 val |= I915_FENCE_SIZE_BITS(obj->size);
1471 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1472 val |= I830_FENCE_REG_VALID;
1473
1474 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1475}
1476
1477static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1478{
1479 struct drm_gem_object *obj = reg->obj;
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
1482 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1483 int regnum = obj_priv->fence_reg;
1484 uint32_t val;
1485 uint32_t pitch_val;
1486
1487 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1488 (obj_priv->gtt_offset & (obj->size - 1))) {
9b4778f6 1489 WARN(1, "%s: object not 1M or size aligned\n", __func__);
de151cf6
JB
1490 return;
1491 }
1492
1493 pitch_val = (obj_priv->stride / 128) - 1;
1494
1495 val = obj_priv->gtt_offset;
1496 if (obj_priv->tiling_mode == I915_TILING_Y)
1497 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1498 val |= I830_FENCE_SIZE_BITS(obj->size);
1499 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1500 val |= I830_FENCE_REG_VALID;
1501
1502 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1503
1504}
1505
1506/**
1507 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1508 * @obj: object to map through a fence reg
1509 *
1510 * When mapping objects through the GTT, userspace wants to be able to write
1511 * to them without having to worry about swizzling if the object is tiled.
1512 *
1513 * This function walks the fence regs looking for a free one for @obj,
1514 * stealing one if it can't find any.
1515 *
1516 * It then sets up the reg based on the object's properties: address, pitch
1517 * and tiling format.
1518 */
d9ddcb96 1519static int
de151cf6
JB
1520i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
1521{
1522 struct drm_device *dev = obj->dev;
79e53945 1523 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1524 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1525 struct drm_i915_fence_reg *reg = NULL;
1526 int i, ret;
1527
1528 switch (obj_priv->tiling_mode) {
1529 case I915_TILING_NONE:
1530 WARN(1, "allocating a fence for non-tiled object?\n");
1531 break;
1532 case I915_TILING_X:
1533 WARN(obj_priv->stride & (512 - 1),
1534 "object is X tiled but has non-512B pitch\n");
1535 break;
1536 case I915_TILING_Y:
1537 WARN(obj_priv->stride & (128 - 1),
1538 "object is Y tiled but has non-128B pitch\n");
1539 break;
1540 }
1541
1542 /* First try to find a free reg */
1543 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1544 reg = &dev_priv->fence_regs[i];
1545 if (!reg->obj)
1546 break;
1547 }
1548
1549 /* None available, try to steal one or wait for a user to finish */
1550 if (i == dev_priv->num_fence_regs) {
1551 struct drm_i915_gem_object *old_obj_priv = NULL;
1552 loff_t offset;
1553
1554try_again:
1555 /* Could try to use LRU here instead... */
1556 for (i = dev_priv->fence_reg_start;
1557 i < dev_priv->num_fence_regs; i++) {
1558 reg = &dev_priv->fence_regs[i];
1559 old_obj_priv = reg->obj->driver_private;
1560 if (!old_obj_priv->pin_count)
1561 break;
1562 }
1563
1564 /*
1565 * Now things get ugly... we have to wait for one of the
1566 * objects to finish before trying again.
1567 */
1568 if (i == dev_priv->num_fence_regs) {
d9ddcb96 1569 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
de151cf6 1570 if (ret) {
d9ddcb96
EA
1571 WARN(ret != -ERESTARTSYS,
1572 "switch to GTT domain failed: %d\n", ret);
1573 return ret;
de151cf6
JB
1574 }
1575 goto try_again;
1576 }
1577
1578 /*
1579 * Zap this virtual mapping so we can set up a fence again
1580 * for this object next time we need it.
1581 */
1582 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1583 if (dev->dev_mapping)
1584 unmap_mapping_range(dev->dev_mapping, offset,
1585 reg->obj->size, 1);
de151cf6
JB
1586 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1587 }
1588
1589 obj_priv->fence_reg = i;
1590 reg->obj = obj;
1591
1592 if (IS_I965G(dev))
1593 i965_write_fence_reg(reg);
1594 else if (IS_I9XX(dev))
1595 i915_write_fence_reg(reg);
1596 else
1597 i830_write_fence_reg(reg);
d9ddcb96
EA
1598
1599 return 0;
de151cf6
JB
1600}
1601
1602/**
1603 * i915_gem_clear_fence_reg - clear out fence register info
1604 * @obj: object to clear
1605 *
1606 * Zeroes out the fence register itself and clears out the associated
1607 * data structures in dev_priv and obj_priv.
1608 */
1609static void
1610i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1611{
1612 struct drm_device *dev = obj->dev;
79e53945 1613 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1614 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1615
1616 if (IS_I965G(dev))
1617 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1618 else
1619 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1620
1621 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1622 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1623}
1624
673a394b
EA
1625/**
1626 * Finds free space in the GTT aperture and binds the object there.
1627 */
1628static int
1629i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1630{
1631 struct drm_device *dev = obj->dev;
1632 drm_i915_private_t *dev_priv = dev->dev_private;
1633 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1634 struct drm_mm_node *free_space;
1635 int page_count, ret;
1636
9bb2d6f9
EA
1637 if (dev_priv->mm.suspended)
1638 return -EBUSY;
673a394b
EA
1639 if (alignment == 0)
1640 alignment = PAGE_SIZE;
1641 if (alignment & (PAGE_SIZE - 1)) {
1642 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1643 return -EINVAL;
1644 }
1645
1646 search_free:
1647 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1648 obj->size, alignment, 0);
1649 if (free_space != NULL) {
1650 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1651 alignment);
1652 if (obj_priv->gtt_space != NULL) {
1653 obj_priv->gtt_space->private = obj;
1654 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1655 }
1656 }
1657 if (obj_priv->gtt_space == NULL) {
1658 /* If the gtt is empty and we're still having trouble
1659 * fitting our object in, we're out of memory.
1660 */
1661#if WATCH_LRU
1662 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1663#endif
1664 if (list_empty(&dev_priv->mm.inactive_list) &&
1665 list_empty(&dev_priv->mm.flushing_list) &&
1666 list_empty(&dev_priv->mm.active_list)) {
1667 DRM_ERROR("GTT full, but LRU list empty\n");
1668 return -ENOMEM;
1669 }
1670
1671 ret = i915_gem_evict_something(dev);
1672 if (ret != 0) {
ac94a962
KP
1673 if (ret != -ERESTARTSYS)
1674 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
1675 return ret;
1676 }
1677 goto search_free;
1678 }
1679
1680#if WATCH_BUF
1681 DRM_INFO("Binding object of size %d at 0x%08x\n",
1682 obj->size, obj_priv->gtt_offset);
1683#endif
1684 ret = i915_gem_object_get_page_list(obj);
1685 if (ret) {
1686 drm_mm_put_block(obj_priv->gtt_space);
1687 obj_priv->gtt_space = NULL;
1688 return ret;
1689 }
1690
1691 page_count = obj->size / PAGE_SIZE;
1692 /* Create an AGP memory structure pointing at our pages, and bind it
1693 * into the GTT.
1694 */
1695 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1696 obj_priv->page_list,
1697 page_count,
ba1eb1d8
KP
1698 obj_priv->gtt_offset,
1699 obj_priv->agp_type);
673a394b
EA
1700 if (obj_priv->agp_mem == NULL) {
1701 i915_gem_object_free_page_list(obj);
1702 drm_mm_put_block(obj_priv->gtt_space);
1703 obj_priv->gtt_space = NULL;
1704 return -ENOMEM;
1705 }
1706 atomic_inc(&dev->gtt_count);
1707 atomic_add(obj->size, &dev->gtt_memory);
1708
1709 /* Assert that the object is not currently in any GPU domain. As it
1710 * wasn't in the GTT, there shouldn't be any way it could have been in
1711 * a GPU cache
1712 */
1713 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1714 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1715
1716 return 0;
1717}
1718
1719void
1720i915_gem_clflush_object(struct drm_gem_object *obj)
1721{
1722 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1723
1724 /* If we don't have a page list set up, then we're not pinned
1725 * to GPU, and we can ignore the cache flush because it'll happen
1726 * again at bind time.
1727 */
1728 if (obj_priv->page_list == NULL)
1729 return;
1730
1731 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1732}
1733
e47c68e9
EA
1734/** Flushes any GPU write domain for the object if it's dirty. */
1735static void
1736i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1737{
1738 struct drm_device *dev = obj->dev;
1739 uint32_t seqno;
1740
1741 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1742 return;
1743
1744 /* Queue the GPU write cache flushing we need. */
1745 i915_gem_flush(dev, 0, obj->write_domain);
1746 seqno = i915_add_request(dev, obj->write_domain);
1747 obj->write_domain = 0;
1748 i915_gem_object_move_to_active(obj, seqno);
1749}
1750
1751/** Flushes the GTT write domain for the object if it's dirty. */
1752static void
1753i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1754{
1755 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1756 return;
1757
1758 /* No actual flushing is required for the GTT write domain. Writes
1759 * to it immediately go to main memory as far as we know, so there's
1760 * no chipset flush. It also doesn't land in render cache.
1761 */
1762 obj->write_domain = 0;
1763}
1764
1765/** Flushes the CPU write domain for the object if it's dirty. */
1766static void
1767i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1768{
1769 struct drm_device *dev = obj->dev;
1770
1771 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1772 return;
1773
1774 i915_gem_clflush_object(obj);
1775 drm_agp_chipset_flush(dev);
1776 obj->write_domain = 0;
1777}
1778
2ef7eeaa
EA
1779/**
1780 * Moves a single object to the GTT read, and possibly write domain.
1781 *
1782 * This function returns when the move is complete, including waiting on
1783 * flushes to occur.
1784 */
79e53945 1785int
2ef7eeaa
EA
1786i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1787{
2ef7eeaa 1788 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 1789 int ret;
2ef7eeaa 1790
02354392
EA
1791 /* Not valid to be called on unbound objects. */
1792 if (obj_priv->gtt_space == NULL)
1793 return -EINVAL;
1794
e47c68e9
EA
1795 i915_gem_object_flush_gpu_write_domain(obj);
1796 /* Wait on any GPU rendering and flushing to occur. */
1797 ret = i915_gem_object_wait_rendering(obj);
1798 if (ret != 0)
1799 return ret;
1800
1801 /* If we're writing through the GTT domain, then CPU and GPU caches
1802 * will need to be invalidated at next use.
2ef7eeaa 1803 */
e47c68e9
EA
1804 if (write)
1805 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 1806
e47c68e9 1807 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 1808
e47c68e9
EA
1809 /* It should now be out of any other write domains, and we can update
1810 * the domain values for our changes.
1811 */
1812 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1813 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1814 if (write) {
1815 obj->write_domain = I915_GEM_DOMAIN_GTT;
1816 obj_priv->dirty = 1;
2ef7eeaa
EA
1817 }
1818
e47c68e9
EA
1819 return 0;
1820}
1821
1822/**
1823 * Moves a single object to the CPU read, and possibly write domain.
1824 *
1825 * This function returns when the move is complete, including waiting on
1826 * flushes to occur.
1827 */
1828static int
1829i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1830{
1831 struct drm_device *dev = obj->dev;
1832 int ret;
1833
1834 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 1835 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
1836 ret = i915_gem_object_wait_rendering(obj);
1837 if (ret != 0)
1838 return ret;
2ef7eeaa 1839
e47c68e9 1840 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 1841
e47c68e9
EA
1842 /* If we have a partially-valid cache of the object in the CPU,
1843 * finish invalidating it and free the per-page flags.
2ef7eeaa 1844 */
e47c68e9 1845 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 1846
e47c68e9
EA
1847 /* Flush the CPU cache if it's still invalid. */
1848 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa
EA
1849 i915_gem_clflush_object(obj);
1850 drm_agp_chipset_flush(dev);
1851
e47c68e9 1852 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
1853 }
1854
1855 /* It should now be out of any other write domains, and we can update
1856 * the domain values for our changes.
1857 */
e47c68e9
EA
1858 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1859
1860 /* If we're writing through the CPU, then the GPU read domains will
1861 * need to be invalidated at next use.
1862 */
1863 if (write) {
1864 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1865 obj->write_domain = I915_GEM_DOMAIN_CPU;
1866 }
2ef7eeaa
EA
1867
1868 return 0;
1869}
1870
673a394b
EA
1871/*
1872 * Set the next domain for the specified object. This
1873 * may not actually perform the necessary flushing/invaliding though,
1874 * as that may want to be batched with other set_domain operations
1875 *
1876 * This is (we hope) the only really tricky part of gem. The goal
1877 * is fairly simple -- track which caches hold bits of the object
1878 * and make sure they remain coherent. A few concrete examples may
1879 * help to explain how it works. For shorthand, we use the notation
1880 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1881 * a pair of read and write domain masks.
1882 *
1883 * Case 1: the batch buffer
1884 *
1885 * 1. Allocated
1886 * 2. Written by CPU
1887 * 3. Mapped to GTT
1888 * 4. Read by GPU
1889 * 5. Unmapped from GTT
1890 * 6. Freed
1891 *
1892 * Let's take these a step at a time
1893 *
1894 * 1. Allocated
1895 * Pages allocated from the kernel may still have
1896 * cache contents, so we set them to (CPU, CPU) always.
1897 * 2. Written by CPU (using pwrite)
1898 * The pwrite function calls set_domain (CPU, CPU) and
1899 * this function does nothing (as nothing changes)
1900 * 3. Mapped by GTT
1901 * This function asserts that the object is not
1902 * currently in any GPU-based read or write domains
1903 * 4. Read by GPU
1904 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1905 * As write_domain is zero, this function adds in the
1906 * current read domains (CPU+COMMAND, 0).
1907 * flush_domains is set to CPU.
1908 * invalidate_domains is set to COMMAND
1909 * clflush is run to get data out of the CPU caches
1910 * then i915_dev_set_domain calls i915_gem_flush to
1911 * emit an MI_FLUSH and drm_agp_chipset_flush
1912 * 5. Unmapped from GTT
1913 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1914 * flush_domains and invalidate_domains end up both zero
1915 * so no flushing/invalidating happens
1916 * 6. Freed
1917 * yay, done
1918 *
1919 * Case 2: The shared render buffer
1920 *
1921 * 1. Allocated
1922 * 2. Mapped to GTT
1923 * 3. Read/written by GPU
1924 * 4. set_domain to (CPU,CPU)
1925 * 5. Read/written by CPU
1926 * 6. Read/written by GPU
1927 *
1928 * 1. Allocated
1929 * Same as last example, (CPU, CPU)
1930 * 2. Mapped to GTT
1931 * Nothing changes (assertions find that it is not in the GPU)
1932 * 3. Read/written by GPU
1933 * execbuffer calls set_domain (RENDER, RENDER)
1934 * flush_domains gets CPU
1935 * invalidate_domains gets GPU
1936 * clflush (obj)
1937 * MI_FLUSH and drm_agp_chipset_flush
1938 * 4. set_domain (CPU, CPU)
1939 * flush_domains gets GPU
1940 * invalidate_domains gets CPU
1941 * wait_rendering (obj) to make sure all drawing is complete.
1942 * This will include an MI_FLUSH to get the data from GPU
1943 * to memory
1944 * clflush (obj) to invalidate the CPU cache
1945 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1946 * 5. Read/written by CPU
1947 * cache lines are loaded and dirtied
1948 * 6. Read written by GPU
1949 * Same as last GPU access
1950 *
1951 * Case 3: The constant buffer
1952 *
1953 * 1. Allocated
1954 * 2. Written by CPU
1955 * 3. Read by GPU
1956 * 4. Updated (written) by CPU again
1957 * 5. Read by GPU
1958 *
1959 * 1. Allocated
1960 * (CPU, CPU)
1961 * 2. Written by CPU
1962 * (CPU, CPU)
1963 * 3. Read by GPU
1964 * (CPU+RENDER, 0)
1965 * flush_domains = CPU
1966 * invalidate_domains = RENDER
1967 * clflush (obj)
1968 * MI_FLUSH
1969 * drm_agp_chipset_flush
1970 * 4. Updated (written) by CPU again
1971 * (CPU, CPU)
1972 * flush_domains = 0 (no previous write domain)
1973 * invalidate_domains = 0 (no new read domains)
1974 * 5. Read by GPU
1975 * (CPU+RENDER, 0)
1976 * flush_domains = CPU
1977 * invalidate_domains = RENDER
1978 * clflush (obj)
1979 * MI_FLUSH
1980 * drm_agp_chipset_flush
1981 */
c0d90829
KP
1982static void
1983i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
1984 uint32_t read_domains,
1985 uint32_t write_domain)
673a394b
EA
1986{
1987 struct drm_device *dev = obj->dev;
1988 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1989 uint32_t invalidate_domains = 0;
1990 uint32_t flush_domains = 0;
e47c68e9
EA
1991
1992 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
1993 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
1994
1995#if WATCH_BUF
1996 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1997 __func__, obj,
1998 obj->read_domains, read_domains,
1999 obj->write_domain, write_domain);
2000#endif
2001 /*
2002 * If the object isn't moving to a new write domain,
2003 * let the object stay in multiple read domains
2004 */
2005 if (write_domain == 0)
2006 read_domains |= obj->read_domains;
2007 else
2008 obj_priv->dirty = 1;
2009
2010 /*
2011 * Flush the current write domain if
2012 * the new read domains don't match. Invalidate
2013 * any read domains which differ from the old
2014 * write domain
2015 */
2016 if (obj->write_domain && obj->write_domain != read_domains) {
2017 flush_domains |= obj->write_domain;
2018 invalidate_domains |= read_domains & ~obj->write_domain;
2019 }
2020 /*
2021 * Invalidate any read caches which may have
2022 * stale data. That is, any new read domains.
2023 */
2024 invalidate_domains |= read_domains & ~obj->read_domains;
2025 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2026#if WATCH_BUF
2027 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2028 __func__, flush_domains, invalidate_domains);
2029#endif
673a394b
EA
2030 i915_gem_clflush_object(obj);
2031 }
2032
2033 if ((write_domain | flush_domains) != 0)
2034 obj->write_domain = write_domain;
673a394b
EA
2035 obj->read_domains = read_domains;
2036
2037 dev->invalidate_domains |= invalidate_domains;
2038 dev->flush_domains |= flush_domains;
2039#if WATCH_BUF
2040 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2041 __func__,
2042 obj->read_domains, obj->write_domain,
2043 dev->invalidate_domains, dev->flush_domains);
2044#endif
673a394b
EA
2045}
2046
2047/**
e47c68e9 2048 * Moves the object from a partially CPU read to a full one.
673a394b 2049 *
e47c68e9
EA
2050 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2051 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2052 */
e47c68e9
EA
2053static void
2054i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2055{
e47c68e9 2056 struct drm_device *dev = obj->dev;
673a394b 2057 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2058
e47c68e9
EA
2059 if (!obj_priv->page_cpu_valid)
2060 return;
2061
2062 /* If we're partially in the CPU read domain, finish moving it in.
2063 */
2064 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2065 int i;
2066
2067 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2068 if (obj_priv->page_cpu_valid[i])
2069 continue;
2070 drm_clflush_pages(obj_priv->page_list + i, 1);
2071 }
2072 drm_agp_chipset_flush(dev);
2073 }
2074
2075 /* Free the page_cpu_valid mappings which are now stale, whether
2076 * or not we've got I915_GEM_DOMAIN_CPU.
2077 */
2078 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2079 DRM_MEM_DRIVER);
2080 obj_priv->page_cpu_valid = NULL;
2081}
2082
2083/**
2084 * Set the CPU read domain on a range of the object.
2085 *
2086 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2087 * not entirely valid. The page_cpu_valid member of the object flags which
2088 * pages have been flushed, and will be respected by
2089 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2090 * of the whole object.
2091 *
2092 * This function returns when the move is complete, including waiting on
2093 * flushes to occur.
2094 */
2095static int
2096i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2097 uint64_t offset, uint64_t size)
2098{
2099 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2100 int i, ret;
673a394b 2101
e47c68e9
EA
2102 if (offset == 0 && size == obj->size)
2103 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2104
e47c68e9
EA
2105 i915_gem_object_flush_gpu_write_domain(obj);
2106 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2107 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2108 if (ret != 0)
6a47baa6 2109 return ret;
e47c68e9
EA
2110 i915_gem_object_flush_gtt_write_domain(obj);
2111
2112 /* If we're already fully in the CPU read domain, we're done. */
2113 if (obj_priv->page_cpu_valid == NULL &&
2114 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2115 return 0;
673a394b 2116
e47c68e9
EA
2117 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2118 * newly adding I915_GEM_DOMAIN_CPU
2119 */
673a394b
EA
2120 if (obj_priv->page_cpu_valid == NULL) {
2121 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2122 DRM_MEM_DRIVER);
e47c68e9
EA
2123 if (obj_priv->page_cpu_valid == NULL)
2124 return -ENOMEM;
2125 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2126 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2127
2128 /* Flush the cache on any pages that are still invalid from the CPU's
2129 * perspective.
2130 */
e47c68e9
EA
2131 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2132 i++) {
673a394b
EA
2133 if (obj_priv->page_cpu_valid[i])
2134 continue;
2135
2136 drm_clflush_pages(obj_priv->page_list + i, 1);
2137
2138 obj_priv->page_cpu_valid[i] = 1;
2139 }
2140
e47c68e9
EA
2141 /* It should now be out of any other write domains, and we can update
2142 * the domain values for our changes.
2143 */
2144 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2145
2146 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2147
673a394b
EA
2148 return 0;
2149}
2150
673a394b
EA
2151/**
2152 * Pin an object to the GTT and evaluate the relocations landing in it.
2153 */
2154static int
2155i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2156 struct drm_file *file_priv,
2157 struct drm_i915_gem_exec_object *entry)
2158{
2159 struct drm_device *dev = obj->dev;
0839ccb8 2160 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2161 struct drm_i915_gem_relocation_entry reloc;
2162 struct drm_i915_gem_relocation_entry __user *relocs;
2163 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2164 int i, ret;
0839ccb8 2165 void __iomem *reloc_page;
673a394b
EA
2166
2167 /* Choose the GTT offset for our buffer and put it there. */
2168 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2169 if (ret)
2170 return ret;
2171
2172 entry->offset = obj_priv->gtt_offset;
2173
2174 relocs = (struct drm_i915_gem_relocation_entry __user *)
2175 (uintptr_t) entry->relocs_ptr;
2176 /* Apply the relocations, using the GTT aperture to avoid cache
2177 * flushing requirements.
2178 */
2179 for (i = 0; i < entry->relocation_count; i++) {
2180 struct drm_gem_object *target_obj;
2181 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2182 uint32_t reloc_val, reloc_offset;
2183 uint32_t __iomem *reloc_entry;
673a394b
EA
2184
2185 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2186 if (ret != 0) {
2187 i915_gem_object_unpin(obj);
2188 return ret;
2189 }
2190
2191 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2192 reloc.target_handle);
2193 if (target_obj == NULL) {
2194 i915_gem_object_unpin(obj);
2195 return -EBADF;
2196 }
2197 target_obj_priv = target_obj->driver_private;
2198
2199 /* The target buffer should have appeared before us in the
2200 * exec_object list, so it should have a GTT space bound by now.
2201 */
2202 if (target_obj_priv->gtt_space == NULL) {
2203 DRM_ERROR("No GTT space found for object %d\n",
2204 reloc.target_handle);
2205 drm_gem_object_unreference(target_obj);
2206 i915_gem_object_unpin(obj);
2207 return -EINVAL;
2208 }
2209
2210 if (reloc.offset > obj->size - 4) {
2211 DRM_ERROR("Relocation beyond object bounds: "
2212 "obj %p target %d offset %d size %d.\n",
2213 obj, reloc.target_handle,
2214 (int) reloc.offset, (int) obj->size);
2215 drm_gem_object_unreference(target_obj);
2216 i915_gem_object_unpin(obj);
2217 return -EINVAL;
2218 }
2219 if (reloc.offset & 3) {
2220 DRM_ERROR("Relocation not 4-byte aligned: "
2221 "obj %p target %d offset %d.\n",
2222 obj, reloc.target_handle,
2223 (int) reloc.offset);
2224 drm_gem_object_unreference(target_obj);
2225 i915_gem_object_unpin(obj);
2226 return -EINVAL;
2227 }
2228
e47c68e9
EA
2229 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2230 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2231 DRM_ERROR("reloc with read/write CPU domains: "
2232 "obj %p target %d offset %d "
2233 "read %08x write %08x",
2234 obj, reloc.target_handle,
2235 (int) reloc.offset,
2236 reloc.read_domains,
2237 reloc.write_domain);
2238 return -EINVAL;
2239 }
2240
673a394b
EA
2241 if (reloc.write_domain && target_obj->pending_write_domain &&
2242 reloc.write_domain != target_obj->pending_write_domain) {
2243 DRM_ERROR("Write domain conflict: "
2244 "obj %p target %d offset %d "
2245 "new %08x old %08x\n",
2246 obj, reloc.target_handle,
2247 (int) reloc.offset,
2248 reloc.write_domain,
2249 target_obj->pending_write_domain);
2250 drm_gem_object_unreference(target_obj);
2251 i915_gem_object_unpin(obj);
2252 return -EINVAL;
2253 }
2254
2255#if WATCH_RELOC
2256 DRM_INFO("%s: obj %p offset %08x target %d "
2257 "read %08x write %08x gtt %08x "
2258 "presumed %08x delta %08x\n",
2259 __func__,
2260 obj,
2261 (int) reloc.offset,
2262 (int) reloc.target_handle,
2263 (int) reloc.read_domains,
2264 (int) reloc.write_domain,
2265 (int) target_obj_priv->gtt_offset,
2266 (int) reloc.presumed_offset,
2267 reloc.delta);
2268#endif
2269
2270 target_obj->pending_read_domains |= reloc.read_domains;
2271 target_obj->pending_write_domain |= reloc.write_domain;
2272
2273 /* If the relocation already has the right value in it, no
2274 * more work needs to be done.
2275 */
2276 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2277 drm_gem_object_unreference(target_obj);
2278 continue;
2279 }
2280
2ef7eeaa
EA
2281 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2282 if (ret != 0) {
2283 drm_gem_object_unreference(target_obj);
2284 i915_gem_object_unpin(obj);
2285 return -EINVAL;
673a394b
EA
2286 }
2287
2288 /* Map the page containing the relocation we're going to
2289 * perform.
2290 */
2291 reloc_offset = obj_priv->gtt_offset + reloc.offset;
0839ccb8
KP
2292 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2293 (reloc_offset &
2294 ~(PAGE_SIZE - 1)));
3043c60c 2295 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2296 (reloc_offset & (PAGE_SIZE - 1)));
673a394b
EA
2297 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2298
2299#if WATCH_BUF
2300 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2301 obj, (unsigned int) reloc.offset,
2302 readl(reloc_entry), reloc_val);
2303#endif
2304 writel(reloc_val, reloc_entry);
0839ccb8 2305 io_mapping_unmap_atomic(reloc_page);
673a394b
EA
2306
2307 /* Write the updated presumed offset for this entry back out
2308 * to the user.
2309 */
2310 reloc.presumed_offset = target_obj_priv->gtt_offset;
2311 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2312 if (ret != 0) {
2313 drm_gem_object_unreference(target_obj);
2314 i915_gem_object_unpin(obj);
2315 return ret;
2316 }
2317
2318 drm_gem_object_unreference(target_obj);
2319 }
2320
673a394b
EA
2321#if WATCH_BUF
2322 if (0)
2323 i915_gem_dump_object(obj, 128, __func__, ~0);
2324#endif
2325 return 0;
2326}
2327
2328/** Dispatch a batchbuffer to the ring
2329 */
2330static int
2331i915_dispatch_gem_execbuffer(struct drm_device *dev,
2332 struct drm_i915_gem_execbuffer *exec,
2333 uint64_t exec_offset)
2334{
2335 drm_i915_private_t *dev_priv = dev->dev_private;
2336 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2337 (uintptr_t) exec->cliprects_ptr;
2338 int nbox = exec->num_cliprects;
2339 int i = 0, count;
2340 uint32_t exec_start, exec_len;
2341 RING_LOCALS;
2342
2343 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2344 exec_len = (uint32_t) exec->batch_len;
2345
2346 if ((exec_start | exec_len) & 0x7) {
2347 DRM_ERROR("alignment\n");
2348 return -EINVAL;
2349 }
2350
2351 if (!exec_start)
2352 return -EINVAL;
2353
2354 count = nbox ? nbox : 1;
2355
2356 for (i = 0; i < count; i++) {
2357 if (i < nbox) {
2358 int ret = i915_emit_box(dev, boxes, i,
2359 exec->DR1, exec->DR4);
2360 if (ret)
2361 return ret;
2362 }
2363
2364 if (IS_I830(dev) || IS_845G(dev)) {
2365 BEGIN_LP_RING(4);
2366 OUT_RING(MI_BATCH_BUFFER);
2367 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2368 OUT_RING(exec_start + exec_len - 4);
2369 OUT_RING(0);
2370 ADVANCE_LP_RING();
2371 } else {
2372 BEGIN_LP_RING(2);
2373 if (IS_I965G(dev)) {
2374 OUT_RING(MI_BATCH_BUFFER_START |
2375 (2 << 6) |
2376 MI_BATCH_NON_SECURE_I965);
2377 OUT_RING(exec_start);
2378 } else {
2379 OUT_RING(MI_BATCH_BUFFER_START |
2380 (2 << 6));
2381 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2382 }
2383 ADVANCE_LP_RING();
2384 }
2385 }
2386
2387 /* XXX breadcrumb */
2388 return 0;
2389}
2390
2391/* Throttle our rendering by waiting until the ring has completed our requests
2392 * emitted over 20 msec ago.
2393 *
2394 * This should get us reasonable parallelism between CPU and GPU but also
2395 * relatively low latency when blocking on a particular request to finish.
2396 */
2397static int
2398i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2399{
2400 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2401 int ret = 0;
2402 uint32_t seqno;
2403
2404 mutex_lock(&dev->struct_mutex);
2405 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2406 i915_file_priv->mm.last_gem_throttle_seqno =
2407 i915_file_priv->mm.last_gem_seqno;
2408 if (seqno)
2409 ret = i915_wait_request(dev, seqno);
2410 mutex_unlock(&dev->struct_mutex);
2411 return ret;
2412}
2413
2414int
2415i915_gem_execbuffer(struct drm_device *dev, void *data,
2416 struct drm_file *file_priv)
2417{
2418 drm_i915_private_t *dev_priv = dev->dev_private;
2419 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2420 struct drm_i915_gem_execbuffer *args = data;
2421 struct drm_i915_gem_exec_object *exec_list = NULL;
2422 struct drm_gem_object **object_list = NULL;
2423 struct drm_gem_object *batch_obj;
2424 int ret, i, pinned = 0;
2425 uint64_t exec_offset;
2426 uint32_t seqno, flush_domains;
ac94a962 2427 int pin_tries;
673a394b
EA
2428
2429#if WATCH_EXEC
2430 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2431 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2432#endif
2433
4f481ed2
EA
2434 if (args->buffer_count < 1) {
2435 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2436 return -EINVAL;
2437 }
673a394b
EA
2438 /* Copy in the exec list from userland */
2439 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2440 DRM_MEM_DRIVER);
2441 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2442 DRM_MEM_DRIVER);
2443 if (exec_list == NULL || object_list == NULL) {
2444 DRM_ERROR("Failed to allocate exec or object list "
2445 "for %d buffers\n",
2446 args->buffer_count);
2447 ret = -ENOMEM;
2448 goto pre_mutex_err;
2449 }
2450 ret = copy_from_user(exec_list,
2451 (struct drm_i915_relocation_entry __user *)
2452 (uintptr_t) args->buffers_ptr,
2453 sizeof(*exec_list) * args->buffer_count);
2454 if (ret != 0) {
2455 DRM_ERROR("copy %d exec entries failed %d\n",
2456 args->buffer_count, ret);
2457 goto pre_mutex_err;
2458 }
2459
2460 mutex_lock(&dev->struct_mutex);
2461
2462 i915_verify_inactive(dev, __FILE__, __LINE__);
2463
2464 if (dev_priv->mm.wedged) {
2465 DRM_ERROR("Execbuf while wedged\n");
2466 mutex_unlock(&dev->struct_mutex);
2467 return -EIO;
2468 }
2469
2470 if (dev_priv->mm.suspended) {
2471 DRM_ERROR("Execbuf while VT-switched.\n");
2472 mutex_unlock(&dev->struct_mutex);
2473 return -EBUSY;
2474 }
2475
ac94a962 2476 /* Look up object handles */
673a394b
EA
2477 for (i = 0; i < args->buffer_count; i++) {
2478 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2479 exec_list[i].handle);
2480 if (object_list[i] == NULL) {
2481 DRM_ERROR("Invalid object handle %d at index %d\n",
2482 exec_list[i].handle, i);
2483 ret = -EBADF;
2484 goto err;
2485 }
ac94a962 2486 }
673a394b 2487
ac94a962
KP
2488 /* Pin and relocate */
2489 for (pin_tries = 0; ; pin_tries++) {
2490 ret = 0;
2491 for (i = 0; i < args->buffer_count; i++) {
2492 object_list[i]->pending_read_domains = 0;
2493 object_list[i]->pending_write_domain = 0;
2494 ret = i915_gem_object_pin_and_relocate(object_list[i],
2495 file_priv,
2496 &exec_list[i]);
2497 if (ret)
2498 break;
2499 pinned = i + 1;
2500 }
2501 /* success */
2502 if (ret == 0)
2503 break;
2504
2505 /* error other than GTT full, or we've already tried again */
2506 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
2507 if (ret != -ERESTARTSYS)
2508 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
2509 goto err;
2510 }
ac94a962
KP
2511
2512 /* unpin all of our buffers */
2513 for (i = 0; i < pinned; i++)
2514 i915_gem_object_unpin(object_list[i]);
b1177636 2515 pinned = 0;
ac94a962
KP
2516
2517 /* evict everyone we can from the aperture */
2518 ret = i915_gem_evict_everything(dev);
2519 if (ret)
2520 goto err;
673a394b
EA
2521 }
2522
2523 /* Set the pending read domains for the batch buffer to COMMAND */
2524 batch_obj = object_list[args->buffer_count-1];
2525 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2526 batch_obj->pending_write_domain = 0;
2527
2528 i915_verify_inactive(dev, __FILE__, __LINE__);
2529
646f0f6e
KP
2530 /* Zero the global flush/invalidate flags. These
2531 * will be modified as new domains are computed
2532 * for each object
2533 */
2534 dev->invalidate_domains = 0;
2535 dev->flush_domains = 0;
2536
673a394b
EA
2537 for (i = 0; i < args->buffer_count; i++) {
2538 struct drm_gem_object *obj = object_list[i];
673a394b 2539
646f0f6e 2540 /* Compute new gpu domains and update invalidate/flush */
c0d90829
KP
2541 i915_gem_object_set_to_gpu_domain(obj,
2542 obj->pending_read_domains,
2543 obj->pending_write_domain);
673a394b
EA
2544 }
2545
2546 i915_verify_inactive(dev, __FILE__, __LINE__);
2547
646f0f6e
KP
2548 if (dev->invalidate_domains | dev->flush_domains) {
2549#if WATCH_EXEC
2550 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2551 __func__,
2552 dev->invalidate_domains,
2553 dev->flush_domains);
2554#endif
2555 i915_gem_flush(dev,
2556 dev->invalidate_domains,
2557 dev->flush_domains);
2558 if (dev->flush_domains)
2559 (void)i915_add_request(dev, dev->flush_domains);
2560 }
673a394b
EA
2561
2562 i915_verify_inactive(dev, __FILE__, __LINE__);
2563
2564#if WATCH_COHERENCY
2565 for (i = 0; i < args->buffer_count; i++) {
2566 i915_gem_object_check_coherency(object_list[i],
2567 exec_list[i].handle);
2568 }
2569#endif
2570
2571 exec_offset = exec_list[args->buffer_count - 1].offset;
2572
2573#if WATCH_EXEC
2574 i915_gem_dump_object(object_list[args->buffer_count - 1],
2575 args->batch_len,
2576 __func__,
2577 ~0);
2578#endif
2579
673a394b
EA
2580 /* Exec the batchbuffer */
2581 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2582 if (ret) {
2583 DRM_ERROR("dispatch failed %d\n", ret);
2584 goto err;
2585 }
2586
2587 /*
2588 * Ensure that the commands in the batch buffer are
2589 * finished before the interrupt fires
2590 */
2591 flush_domains = i915_retire_commands(dev);
2592
2593 i915_verify_inactive(dev, __FILE__, __LINE__);
2594
2595 /*
2596 * Get a seqno representing the execution of the current buffer,
2597 * which we can wait on. We would like to mitigate these interrupts,
2598 * likely by only creating seqnos occasionally (so that we have
2599 * *some* interrupts representing completion of buffers that we can
2600 * wait on when trying to clear up gtt space).
2601 */
2602 seqno = i915_add_request(dev, flush_domains);
2603 BUG_ON(seqno == 0);
2604 i915_file_priv->mm.last_gem_seqno = seqno;
2605 for (i = 0; i < args->buffer_count; i++) {
2606 struct drm_gem_object *obj = object_list[i];
673a394b 2607
ce44b0ea 2608 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
2609#if WATCH_LRU
2610 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2611#endif
2612 }
2613#if WATCH_LRU
2614 i915_dump_lru(dev, __func__);
2615#endif
2616
2617 i915_verify_inactive(dev, __FILE__, __LINE__);
2618
2619 /* Copy the new buffer offsets back to the user's exec list. */
2620 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2621 (uintptr_t) args->buffers_ptr,
2622 exec_list,
2623 sizeof(*exec_list) * args->buffer_count);
2624 if (ret)
2625 DRM_ERROR("failed to copy %d exec entries "
2626 "back to user (%d)\n",
2627 args->buffer_count, ret);
2628err:
aad87dff
JL
2629 for (i = 0; i < pinned; i++)
2630 i915_gem_object_unpin(object_list[i]);
2631
2632 for (i = 0; i < args->buffer_count; i++)
2633 drm_gem_object_unreference(object_list[i]);
673a394b 2634
673a394b
EA
2635 mutex_unlock(&dev->struct_mutex);
2636
2637pre_mutex_err:
2638 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2639 DRM_MEM_DRIVER);
2640 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2641 DRM_MEM_DRIVER);
2642
2643 return ret;
2644}
2645
2646int
2647i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2648{
2649 struct drm_device *dev = obj->dev;
2650 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2651 int ret;
2652
2653 i915_verify_inactive(dev, __FILE__, __LINE__);
2654 if (obj_priv->gtt_space == NULL) {
2655 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2656 if (ret != 0) {
9bb2d6f9 2657 if (ret != -EBUSY && ret != -ERESTARTSYS)
f1acec93 2658 DRM_ERROR("Failure to bind: %d", ret);
673a394b
EA
2659 return ret;
2660 }
2661 }
2662 obj_priv->pin_count++;
2663
2664 /* If the object is not active and not pending a flush,
2665 * remove it from the inactive list
2666 */
2667 if (obj_priv->pin_count == 1) {
2668 atomic_inc(&dev->pin_count);
2669 atomic_add(obj->size, &dev->pin_memory);
2670 if (!obj_priv->active &&
2671 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2672 I915_GEM_DOMAIN_GTT)) == 0 &&
2673 !list_empty(&obj_priv->list))
2674 list_del_init(&obj_priv->list);
2675 }
2676 i915_verify_inactive(dev, __FILE__, __LINE__);
2677
2678 return 0;
2679}
2680
2681void
2682i915_gem_object_unpin(struct drm_gem_object *obj)
2683{
2684 struct drm_device *dev = obj->dev;
2685 drm_i915_private_t *dev_priv = dev->dev_private;
2686 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2687
2688 i915_verify_inactive(dev, __FILE__, __LINE__);
2689 obj_priv->pin_count--;
2690 BUG_ON(obj_priv->pin_count < 0);
2691 BUG_ON(obj_priv->gtt_space == NULL);
2692
2693 /* If the object is no longer pinned, and is
2694 * neither active nor being flushed, then stick it on
2695 * the inactive list
2696 */
2697 if (obj_priv->pin_count == 0) {
2698 if (!obj_priv->active &&
2699 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2700 I915_GEM_DOMAIN_GTT)) == 0)
2701 list_move_tail(&obj_priv->list,
2702 &dev_priv->mm.inactive_list);
2703 atomic_dec(&dev->pin_count);
2704 atomic_sub(obj->size, &dev->pin_memory);
2705 }
2706 i915_verify_inactive(dev, __FILE__, __LINE__);
2707}
2708
2709int
2710i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2711 struct drm_file *file_priv)
2712{
2713 struct drm_i915_gem_pin *args = data;
2714 struct drm_gem_object *obj;
2715 struct drm_i915_gem_object *obj_priv;
2716 int ret;
2717
2718 mutex_lock(&dev->struct_mutex);
2719
2720 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2721 if (obj == NULL) {
2722 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2723 args->handle);
2724 mutex_unlock(&dev->struct_mutex);
2725 return -EBADF;
2726 }
2727 obj_priv = obj->driver_private;
2728
79e53945
JB
2729 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2730 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2731 args->handle);
673a394b 2732 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2733 return -EINVAL;
2734 }
2735
2736 obj_priv->user_pin_count++;
2737 obj_priv->pin_filp = file_priv;
2738 if (obj_priv->user_pin_count == 1) {
2739 ret = i915_gem_object_pin(obj, args->alignment);
2740 if (ret != 0) {
2741 drm_gem_object_unreference(obj);
2742 mutex_unlock(&dev->struct_mutex);
2743 return ret;
2744 }
673a394b
EA
2745 }
2746
2747 /* XXX - flush the CPU caches for pinned objects
2748 * as the X server doesn't manage domains yet
2749 */
e47c68e9 2750 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
2751 args->offset = obj_priv->gtt_offset;
2752 drm_gem_object_unreference(obj);
2753 mutex_unlock(&dev->struct_mutex);
2754
2755 return 0;
2756}
2757
2758int
2759i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2760 struct drm_file *file_priv)
2761{
2762 struct drm_i915_gem_pin *args = data;
2763 struct drm_gem_object *obj;
79e53945 2764 struct drm_i915_gem_object *obj_priv;
673a394b
EA
2765
2766 mutex_lock(&dev->struct_mutex);
2767
2768 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2769 if (obj == NULL) {
2770 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2771 args->handle);
2772 mutex_unlock(&dev->struct_mutex);
2773 return -EBADF;
2774 }
2775
79e53945
JB
2776 obj_priv = obj->driver_private;
2777 if (obj_priv->pin_filp != file_priv) {
2778 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2779 args->handle);
2780 drm_gem_object_unreference(obj);
2781 mutex_unlock(&dev->struct_mutex);
2782 return -EINVAL;
2783 }
2784 obj_priv->user_pin_count--;
2785 if (obj_priv->user_pin_count == 0) {
2786 obj_priv->pin_filp = NULL;
2787 i915_gem_object_unpin(obj);
2788 }
673a394b
EA
2789
2790 drm_gem_object_unreference(obj);
2791 mutex_unlock(&dev->struct_mutex);
2792 return 0;
2793}
2794
2795int
2796i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2797 struct drm_file *file_priv)
2798{
2799 struct drm_i915_gem_busy *args = data;
2800 struct drm_gem_object *obj;
2801 struct drm_i915_gem_object *obj_priv;
2802
2803 mutex_lock(&dev->struct_mutex);
2804 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2805 if (obj == NULL) {
2806 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2807 args->handle);
2808 mutex_unlock(&dev->struct_mutex);
2809 return -EBADF;
2810 }
2811
2812 obj_priv = obj->driver_private;
c4de0a5d
EA
2813 /* Don't count being on the flushing list against the object being
2814 * done. Otherwise, a buffer left on the flushing list but not getting
2815 * flushed (because nobody's flushing that domain) won't ever return
2816 * unbusy and get reused by libdrm's bo cache. The other expected
2817 * consumer of this interface, OpenGL's occlusion queries, also specs
2818 * that the objects get unbusy "eventually" without any interference.
2819 */
2820 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
2821
2822 drm_gem_object_unreference(obj);
2823 mutex_unlock(&dev->struct_mutex);
2824 return 0;
2825}
2826
2827int
2828i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2829 struct drm_file *file_priv)
2830{
2831 return i915_gem_ring_throttle(dev, file_priv);
2832}
2833
2834int i915_gem_init_object(struct drm_gem_object *obj)
2835{
2836 struct drm_i915_gem_object *obj_priv;
2837
2838 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2839 if (obj_priv == NULL)
2840 return -ENOMEM;
2841
2842 /*
2843 * We've just allocated pages from the kernel,
2844 * so they've just been written by the CPU with
2845 * zeros. They'll need to be clflushed before we
2846 * use them with the GPU.
2847 */
2848 obj->write_domain = I915_GEM_DOMAIN_CPU;
2849 obj->read_domains = I915_GEM_DOMAIN_CPU;
2850
ba1eb1d8
KP
2851 obj_priv->agp_type = AGP_USER_MEMORY;
2852
673a394b
EA
2853 obj->driver_private = obj_priv;
2854 obj_priv->obj = obj;
de151cf6 2855 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 2856 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 2857
673a394b
EA
2858 return 0;
2859}
2860
2861void i915_gem_free_object(struct drm_gem_object *obj)
2862{
de151cf6
JB
2863 struct drm_device *dev = obj->dev;
2864 struct drm_gem_mm *mm = dev->mm_private;
2865 struct drm_map_list *list;
2866 struct drm_map *map;
673a394b
EA
2867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2868
2869 while (obj_priv->pin_count > 0)
2870 i915_gem_object_unpin(obj);
2871
71acb5eb
DA
2872 if (obj_priv->phys_obj)
2873 i915_gem_detach_phys_object(dev, obj);
2874
673a394b
EA
2875 i915_gem_object_unbind(obj);
2876
de151cf6
JB
2877 list = &obj->map_list;
2878 drm_ht_remove_item(&mm->offset_hash, &list->hash);
2879
2880 if (list->file_offset_node) {
2881 drm_mm_put_block(list->file_offset_node);
2882 list->file_offset_node = NULL;
2883 }
2884
2885 map = list->map;
2886 if (map) {
2887 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2888 list->map = NULL;
2889 }
2890
673a394b
EA
2891 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2892 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2893}
2894
673a394b
EA
2895/** Unbinds all objects that are on the given buffer list. */
2896static int
2897i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2898{
2899 struct drm_gem_object *obj;
2900 struct drm_i915_gem_object *obj_priv;
2901 int ret;
2902
2903 while (!list_empty(head)) {
2904 obj_priv = list_first_entry(head,
2905 struct drm_i915_gem_object,
2906 list);
2907 obj = obj_priv->obj;
2908
2909 if (obj_priv->pin_count != 0) {
2910 DRM_ERROR("Pinned object in unbind list\n");
2911 mutex_unlock(&dev->struct_mutex);
2912 return -EINVAL;
2913 }
2914
2915 ret = i915_gem_object_unbind(obj);
2916 if (ret != 0) {
2917 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2918 ret);
2919 mutex_unlock(&dev->struct_mutex);
2920 return ret;
2921 }
2922 }
2923
2924
2925 return 0;
2926}
2927
2928static int
2929i915_gem_idle(struct drm_device *dev)
2930{
2931 drm_i915_private_t *dev_priv = dev->dev_private;
2932 uint32_t seqno, cur_seqno, last_seqno;
2933 int stuck, ret;
2934
6dbe2772
KP
2935 mutex_lock(&dev->struct_mutex);
2936
2937 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2938 mutex_unlock(&dev->struct_mutex);
673a394b 2939 return 0;
6dbe2772 2940 }
673a394b
EA
2941
2942 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2943 * We need to replace this with a semaphore, or something.
2944 */
2945 dev_priv->mm.suspended = 1;
2946
6dbe2772
KP
2947 /* Cancel the retire work handler, wait for it to finish if running
2948 */
2949 mutex_unlock(&dev->struct_mutex);
2950 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2951 mutex_lock(&dev->struct_mutex);
2952
673a394b
EA
2953 i915_kernel_lost_context(dev);
2954
2955 /* Flush the GPU along with all non-CPU write domains
2956 */
2957 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2958 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 2959 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
2960
2961 if (seqno == 0) {
2962 mutex_unlock(&dev->struct_mutex);
2963 return -ENOMEM;
2964 }
2965
2966 dev_priv->mm.waiting_gem_seqno = seqno;
2967 last_seqno = 0;
2968 stuck = 0;
2969 for (;;) {
2970 cur_seqno = i915_get_gem_seqno(dev);
2971 if (i915_seqno_passed(cur_seqno, seqno))
2972 break;
2973 if (last_seqno == cur_seqno) {
2974 if (stuck++ > 100) {
2975 DRM_ERROR("hardware wedged\n");
2976 dev_priv->mm.wedged = 1;
2977 DRM_WAKEUP(&dev_priv->irq_queue);
2978 break;
2979 }
2980 }
2981 msleep(10);
2982 last_seqno = cur_seqno;
2983 }
2984 dev_priv->mm.waiting_gem_seqno = 0;
2985
2986 i915_gem_retire_requests(dev);
2987
28dfe52a
EA
2988 if (!dev_priv->mm.wedged) {
2989 /* Active and flushing should now be empty as we've
2990 * waited for a sequence higher than any pending execbuffer
2991 */
2992 WARN_ON(!list_empty(&dev_priv->mm.active_list));
2993 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
2994 /* Request should now be empty as we've also waited
2995 * for the last request in the list
2996 */
2997 WARN_ON(!list_empty(&dev_priv->mm.request_list));
2998 }
673a394b 2999
28dfe52a
EA
3000 /* Empty the active and flushing lists to inactive. If there's
3001 * anything left at this point, it means that we're wedged and
3002 * nothing good's going to happen by leaving them there. So strip
3003 * the GPU domains and just stuff them onto inactive.
673a394b 3004 */
28dfe52a
EA
3005 while (!list_empty(&dev_priv->mm.active_list)) {
3006 struct drm_i915_gem_object *obj_priv;
673a394b 3007
28dfe52a
EA
3008 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3009 struct drm_i915_gem_object,
3010 list);
3011 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3012 i915_gem_object_move_to_inactive(obj_priv->obj);
3013 }
3014
3015 while (!list_empty(&dev_priv->mm.flushing_list)) {
3016 struct drm_i915_gem_object *obj_priv;
3017
151903d5 3018 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3019 struct drm_i915_gem_object,
3020 list);
3021 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3022 i915_gem_object_move_to_inactive(obj_priv->obj);
3023 }
3024
3025
3026 /* Move all inactive buffers out of the GTT. */
673a394b 3027 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3028 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3029 if (ret) {
3030 mutex_unlock(&dev->struct_mutex);
673a394b 3031 return ret;
6dbe2772 3032 }
673a394b 3033
6dbe2772
KP
3034 i915_gem_cleanup_ringbuffer(dev);
3035 mutex_unlock(&dev->struct_mutex);
3036
673a394b
EA
3037 return 0;
3038}
3039
3040static int
3041i915_gem_init_hws(struct drm_device *dev)
3042{
3043 drm_i915_private_t *dev_priv = dev->dev_private;
3044 struct drm_gem_object *obj;
3045 struct drm_i915_gem_object *obj_priv;
3046 int ret;
3047
3048 /* If we need a physical address for the status page, it's already
3049 * initialized at driver load time.
3050 */
3051 if (!I915_NEED_GFX_HWS(dev))
3052 return 0;
3053
3054 obj = drm_gem_object_alloc(dev, 4096);
3055 if (obj == NULL) {
3056 DRM_ERROR("Failed to allocate status page\n");
3057 return -ENOMEM;
3058 }
3059 obj_priv = obj->driver_private;
ba1eb1d8 3060 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3061
3062 ret = i915_gem_object_pin(obj, 4096);
3063 if (ret != 0) {
3064 drm_gem_object_unreference(obj);
3065 return ret;
3066 }
3067
3068 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3069
ba1eb1d8
KP
3070 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3071 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3072 DRM_ERROR("Failed to map status page.\n");
3073 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3074 drm_gem_object_unreference(obj);
3075 return -EINVAL;
3076 }
3077 dev_priv->hws_obj = obj;
673a394b
EA
3078 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3079 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3080 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3081 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3082
3083 return 0;
3084}
3085
79e53945 3086int
673a394b
EA
3087i915_gem_init_ringbuffer(struct drm_device *dev)
3088{
3089 drm_i915_private_t *dev_priv = dev->dev_private;
3090 struct drm_gem_object *obj;
3091 struct drm_i915_gem_object *obj_priv;
79e53945 3092 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3093 int ret;
50aa253d 3094 u32 head;
673a394b
EA
3095
3096 ret = i915_gem_init_hws(dev);
3097 if (ret != 0)
3098 return ret;
3099
3100 obj = drm_gem_object_alloc(dev, 128 * 1024);
3101 if (obj == NULL) {
3102 DRM_ERROR("Failed to allocate ringbuffer\n");
3103 return -ENOMEM;
3104 }
3105 obj_priv = obj->driver_private;
3106
3107 ret = i915_gem_object_pin(obj, 4096);
3108 if (ret != 0) {
3109 drm_gem_object_unreference(obj);
3110 return ret;
3111 }
3112
3113 /* Set up the kernel mapping for the ring. */
79e53945
JB
3114 ring->Size = obj->size;
3115 ring->tail_mask = obj->size - 1;
673a394b 3116
79e53945
JB
3117 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3118 ring->map.size = obj->size;
3119 ring->map.type = 0;
3120 ring->map.flags = 0;
3121 ring->map.mtrr = 0;
673a394b 3122
79e53945
JB
3123 drm_core_ioremap_wc(&ring->map, dev);
3124 if (ring->map.handle == NULL) {
673a394b
EA
3125 DRM_ERROR("Failed to map ringbuffer.\n");
3126 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3127 drm_gem_object_unreference(obj);
3128 return -EINVAL;
3129 }
79e53945
JB
3130 ring->ring_obj = obj;
3131 ring->virtual_start = ring->map.handle;
673a394b
EA
3132
3133 /* Stop the ring if it's running. */
3134 I915_WRITE(PRB0_CTL, 0);
673a394b 3135 I915_WRITE(PRB0_TAIL, 0);
50aa253d 3136 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
3137
3138 /* Initialize the ring. */
3139 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
3140 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3141
3142 /* G45 ring initialization fails to reset head to zero */
3143 if (head != 0) {
3144 DRM_ERROR("Ring head not reset to zero "
3145 "ctl %08x head %08x tail %08x start %08x\n",
3146 I915_READ(PRB0_CTL),
3147 I915_READ(PRB0_HEAD),
3148 I915_READ(PRB0_TAIL),
3149 I915_READ(PRB0_START));
3150 I915_WRITE(PRB0_HEAD, 0);
3151
3152 DRM_ERROR("Ring head forced to zero "
3153 "ctl %08x head %08x tail %08x start %08x\n",
3154 I915_READ(PRB0_CTL),
3155 I915_READ(PRB0_HEAD),
3156 I915_READ(PRB0_TAIL),
3157 I915_READ(PRB0_START));
3158 }
3159
673a394b
EA
3160 I915_WRITE(PRB0_CTL,
3161 ((obj->size - 4096) & RING_NR_PAGES) |
3162 RING_NO_REPORT |
3163 RING_VALID);
3164
50aa253d
KP
3165 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3166
3167 /* If the head is still not zero, the ring is dead */
3168 if (head != 0) {
3169 DRM_ERROR("Ring initialization failed "
3170 "ctl %08x head %08x tail %08x start %08x\n",
3171 I915_READ(PRB0_CTL),
3172 I915_READ(PRB0_HEAD),
3173 I915_READ(PRB0_TAIL),
3174 I915_READ(PRB0_START));
3175 return -EIO;
3176 }
3177
673a394b 3178 /* Update our cache of the ring state */
79e53945
JB
3179 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3180 i915_kernel_lost_context(dev);
3181 else {
3182 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3183 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3184 ring->space = ring->head - (ring->tail + 8);
3185 if (ring->space < 0)
3186 ring->space += ring->Size;
3187 }
673a394b
EA
3188
3189 return 0;
3190}
3191
79e53945 3192void
673a394b
EA
3193i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3194{
3195 drm_i915_private_t *dev_priv = dev->dev_private;
3196
3197 if (dev_priv->ring.ring_obj == NULL)
3198 return;
3199
3200 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3201
3202 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3203 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3204 dev_priv->ring.ring_obj = NULL;
3205 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3206
3207 if (dev_priv->hws_obj != NULL) {
ba1eb1d8
KP
3208 struct drm_gem_object *obj = dev_priv->hws_obj;
3209 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3210
3211 kunmap(obj_priv->page_list[0]);
3212 i915_gem_object_unpin(obj);
3213 drm_gem_object_unreference(obj);
673a394b
EA
3214 dev_priv->hws_obj = NULL;
3215 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
ba1eb1d8 3216 dev_priv->hw_status_page = NULL;
673a394b
EA
3217
3218 /* Write high address into HWS_PGA when disabling. */
3219 I915_WRITE(HWS_PGA, 0x1ffff000);
3220 }
3221}
3222
3223int
3224i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3225 struct drm_file *file_priv)
3226{
3227 drm_i915_private_t *dev_priv = dev->dev_private;
3228 int ret;
3229
79e53945
JB
3230 if (drm_core_check_feature(dev, DRIVER_MODESET))
3231 return 0;
3232
673a394b
EA
3233 if (dev_priv->mm.wedged) {
3234 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3235 dev_priv->mm.wedged = 0;
3236 }
3237
673a394b 3238 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3239 dev_priv->mm.suspended = 0;
3240
3241 ret = i915_gem_init_ringbuffer(dev);
3242 if (ret != 0)
3243 return ret;
3244
673a394b
EA
3245 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3246 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3247 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3248 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 3249 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
3250
3251 drm_irq_install(dev);
3252
673a394b
EA
3253 return 0;
3254}
3255
3256int
3257i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3258 struct drm_file *file_priv)
3259{
3260 int ret;
3261
79e53945
JB
3262 if (drm_core_check_feature(dev, DRIVER_MODESET))
3263 return 0;
3264
673a394b 3265 ret = i915_gem_idle(dev);
dbb19d30
KH
3266 drm_irq_uninstall(dev);
3267
6dbe2772 3268 return ret;
673a394b
EA
3269}
3270
3271void
3272i915_gem_lastclose(struct drm_device *dev)
3273{
3274 int ret;
673a394b 3275
e806b495
EA
3276 if (drm_core_check_feature(dev, DRIVER_MODESET))
3277 return;
3278
6dbe2772
KP
3279 ret = i915_gem_idle(dev);
3280 if (ret)
3281 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3282}
3283
3284void
3285i915_gem_load(struct drm_device *dev)
3286{
3287 drm_i915_private_t *dev_priv = dev->dev_private;
3288
3289 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3290 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3291 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3292 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3293 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3294 i915_gem_retire_work_handler);
3295 dev_priv->mm.next_gem_seqno = 1;
3296
de151cf6
JB
3297 /* Old X drivers will take 0-2 for front, back, depth buffers */
3298 dev_priv->fence_reg_start = 3;
3299
3300 if (IS_I965G(dev))
3301 dev_priv->num_fence_regs = 16;
3302 else
3303 dev_priv->num_fence_regs = 8;
3304
673a394b
EA
3305 i915_gem_detect_bit_6_swizzle(dev);
3306}
71acb5eb
DA
3307
3308/*
3309 * Create a physically contiguous memory object for this object
3310 * e.g. for cursor + overlay regs
3311 */
3312int i915_gem_init_phys_object(struct drm_device *dev,
3313 int id, int size)
3314{
3315 drm_i915_private_t *dev_priv = dev->dev_private;
3316 struct drm_i915_gem_phys_object *phys_obj;
3317 int ret;
3318
3319 if (dev_priv->mm.phys_objs[id - 1] || !size)
3320 return 0;
3321
3322 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3323 if (!phys_obj)
3324 return -ENOMEM;
3325
3326 phys_obj->id = id;
3327
3328 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3329 if (!phys_obj->handle) {
3330 ret = -ENOMEM;
3331 goto kfree_obj;
3332 }
3333#ifdef CONFIG_X86
3334 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3335#endif
3336
3337 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3338
3339 return 0;
3340kfree_obj:
3341 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3342 return ret;
3343}
3344
3345void i915_gem_free_phys_object(struct drm_device *dev, int id)
3346{
3347 drm_i915_private_t *dev_priv = dev->dev_private;
3348 struct drm_i915_gem_phys_object *phys_obj;
3349
3350 if (!dev_priv->mm.phys_objs[id - 1])
3351 return;
3352
3353 phys_obj = dev_priv->mm.phys_objs[id - 1];
3354 if (phys_obj->cur_obj) {
3355 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3356 }
3357
3358#ifdef CONFIG_X86
3359 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3360#endif
3361 drm_pci_free(dev, phys_obj->handle);
3362 kfree(phys_obj);
3363 dev_priv->mm.phys_objs[id - 1] = NULL;
3364}
3365
3366void i915_gem_free_all_phys_object(struct drm_device *dev)
3367{
3368 int i;
3369
260883c8 3370 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3371 i915_gem_free_phys_object(dev, i);
3372}
3373
3374void i915_gem_detach_phys_object(struct drm_device *dev,
3375 struct drm_gem_object *obj)
3376{
3377 struct drm_i915_gem_object *obj_priv;
3378 int i;
3379 int ret;
3380 int page_count;
3381
3382 obj_priv = obj->driver_private;
3383 if (!obj_priv->phys_obj)
3384 return;
3385
3386 ret = i915_gem_object_get_page_list(obj);
3387 if (ret)
3388 goto out;
3389
3390 page_count = obj->size / PAGE_SIZE;
3391
3392 for (i = 0; i < page_count; i++) {
3393 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3394 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3395
3396 memcpy(dst, src, PAGE_SIZE);
3397 kunmap_atomic(dst, KM_USER0);
3398 }
3399 drm_clflush_pages(obj_priv->page_list, page_count);
3400 drm_agp_chipset_flush(dev);
3401out:
3402 obj_priv->phys_obj->cur_obj = NULL;
3403 obj_priv->phys_obj = NULL;
3404}
3405
3406int
3407i915_gem_attach_phys_object(struct drm_device *dev,
3408 struct drm_gem_object *obj, int id)
3409{
3410 drm_i915_private_t *dev_priv = dev->dev_private;
3411 struct drm_i915_gem_object *obj_priv;
3412 int ret = 0;
3413 int page_count;
3414 int i;
3415
3416 if (id > I915_MAX_PHYS_OBJECT)
3417 return -EINVAL;
3418
3419 obj_priv = obj->driver_private;
3420
3421 if (obj_priv->phys_obj) {
3422 if (obj_priv->phys_obj->id == id)
3423 return 0;
3424 i915_gem_detach_phys_object(dev, obj);
3425 }
3426
3427
3428 /* create a new object */
3429 if (!dev_priv->mm.phys_objs[id - 1]) {
3430 ret = i915_gem_init_phys_object(dev, id,
3431 obj->size);
3432 if (ret) {
aeb565df 3433 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
3434 goto out;
3435 }
3436 }
3437
3438 /* bind to the object */
3439 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3440 obj_priv->phys_obj->cur_obj = obj;
3441
3442 ret = i915_gem_object_get_page_list(obj);
3443 if (ret) {
3444 DRM_ERROR("failed to get page list\n");
3445 goto out;
3446 }
3447
3448 page_count = obj->size / PAGE_SIZE;
3449
3450 for (i = 0; i < page_count; i++) {
3451 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3452 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3453
3454 memcpy(dst, src, PAGE_SIZE);
3455 kunmap_atomic(src, KM_USER0);
3456 }
3457
3458 return 0;
3459out:
3460 return ret;
3461}
3462
3463static int
3464i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3465 struct drm_i915_gem_pwrite *args,
3466 struct drm_file *file_priv)
3467{
3468 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3469 void *obj_addr;
3470 int ret;
3471 char __user *user_data;
3472
3473 user_data = (char __user *) (uintptr_t) args->data_ptr;
3474 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3475
3476 DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3477 ret = copy_from_user(obj_addr, user_data, args->size);
3478 if (ret)
3479 return -EFAULT;
3480
3481 drm_agp_chipset_flush(dev);
3482 return 0;
3483}