]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use pipe state to tell when pipe is off
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 40static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
43static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 49static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
50static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 unsigned alignment);
de151cf6 52static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
53static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
be72615b 56static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
7d1c4804
CW
61static inline bool
62i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
63{
64 return obj_priv->gtt_space &&
65 !obj_priv->active &&
66 obj_priv->pin_count == 0;
67}
68
79e53945
JB
69int i915_gem_do_init(struct drm_device *dev, unsigned long start,
70 unsigned long end)
673a394b
EA
71{
72 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 73
79e53945
JB
74 if (start >= end ||
75 (start & (PAGE_SIZE - 1)) != 0 ||
76 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
77 return -EINVAL;
78 }
79
79e53945
JB
80 drm_mm_init(&dev_priv->mm.gtt_space, start,
81 end - start);
673a394b 82
79e53945
JB
83 dev->gtt_total = (uint32_t) (end - start);
84
85 return 0;
86}
673a394b 87
79e53945
JB
88int
89i915_gem_init_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91{
92 struct drm_i915_gem_init *args = data;
93 int ret;
94
95 mutex_lock(&dev->struct_mutex);
96 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
97 mutex_unlock(&dev->struct_mutex);
98
79e53945 99 return ret;
673a394b
EA
100}
101
5a125c3c
EA
102int
103i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
104 struct drm_file *file_priv)
105{
5a125c3c 106 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
107
108 if (!(dev->driver->driver_features & DRIVER_GEM))
109 return -ENODEV;
110
111 args->aper_size = dev->gtt_total;
2678d9d6
KP
112 args->aper_available_size = (args->aper_size -
113 atomic_read(&dev->pin_memory));
5a125c3c
EA
114
115 return 0;
116}
117
673a394b
EA
118
119/**
120 * Creates a new mm object and returns a handle to it.
121 */
122int
123i915_gem_create_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file_priv)
125{
126 struct drm_i915_gem_create *args = data;
127 struct drm_gem_object *obj;
a1a2d1d3
PP
128 int ret;
129 u32 handle;
673a394b
EA
130
131 args->size = roundup(args->size, PAGE_SIZE);
132
133 /* Allocate the new object */
ac52bc56 134 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
135 if (obj == NULL)
136 return -ENOMEM;
137
138 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
139 if (ret) {
140 drm_gem_object_unreference_unlocked(obj);
673a394b 141 return ret;
1dfd9754 142 }
673a394b 143
1dfd9754
CW
144 /* Sink the floating reference from kref_init(handlecount) */
145 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 146
1dfd9754 147 args->handle = handle;
673a394b
EA
148 return 0;
149}
150
eb01459f
EA
151static inline int
152fast_shmem_read(struct page **pages,
153 loff_t page_base, int page_offset,
154 char __user *data,
155 int length)
156{
157 char __iomem *vaddr;
2bc43b5c 158 int unwritten;
eb01459f
EA
159
160 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
161 if (vaddr == NULL)
162 return -ENOMEM;
2bc43b5c 163 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
164 kunmap_atomic(vaddr, KM_USER0);
165
2bc43b5c
FM
166 if (unwritten)
167 return -EFAULT;
168
169 return 0;
eb01459f
EA
170}
171
280b713b
EA
172static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
173{
174 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 175 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
176
177 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
178 obj_priv->tiling_mode != I915_TILING_NONE;
179}
180
99a03df5 181static inline void
40123c1f
EA
182slow_shmem_copy(struct page *dst_page,
183 int dst_offset,
184 struct page *src_page,
185 int src_offset,
186 int length)
187{
188 char *dst_vaddr, *src_vaddr;
189
99a03df5
CW
190 dst_vaddr = kmap(dst_page);
191 src_vaddr = kmap(src_page);
40123c1f
EA
192
193 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194
99a03df5
CW
195 kunmap(src_page);
196 kunmap(dst_page);
40123c1f
EA
197}
198
99a03df5 199static inline void
280b713b
EA
200slow_shmem_bit17_copy(struct page *gpu_page,
201 int gpu_offset,
202 struct page *cpu_page,
203 int cpu_offset,
204 int length,
205 int is_read)
206{
207 char *gpu_vaddr, *cpu_vaddr;
208
209 /* Use the unswizzled path if this page isn't affected. */
210 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211 if (is_read)
212 return slow_shmem_copy(cpu_page, cpu_offset,
213 gpu_page, gpu_offset, length);
214 else
215 return slow_shmem_copy(gpu_page, gpu_offset,
216 cpu_page, cpu_offset, length);
217 }
218
99a03df5
CW
219 gpu_vaddr = kmap(gpu_page);
220 cpu_vaddr = kmap(cpu_page);
280b713b
EA
221
222 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
223 * XORing with the other bits (A9 for Y, A9 and A10 for X)
224 */
225 while (length > 0) {
226 int cacheline_end = ALIGN(gpu_offset + 1, 64);
227 int this_length = min(cacheline_end - gpu_offset, length);
228 int swizzled_gpu_offset = gpu_offset ^ 64;
229
230 if (is_read) {
231 memcpy(cpu_vaddr + cpu_offset,
232 gpu_vaddr + swizzled_gpu_offset,
233 this_length);
234 } else {
235 memcpy(gpu_vaddr + swizzled_gpu_offset,
236 cpu_vaddr + cpu_offset,
237 this_length);
238 }
239 cpu_offset += this_length;
240 gpu_offset += this_length;
241 length -= this_length;
242 }
243
99a03df5
CW
244 kunmap(cpu_page);
245 kunmap(gpu_page);
280b713b
EA
246}
247
eb01459f
EA
248/**
249 * This is the fast shmem pread path, which attempts to copy_from_user directly
250 * from the backing pages of the object to the user's address space. On a
251 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
252 */
253static int
254i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
255 struct drm_i915_gem_pread *args,
256 struct drm_file *file_priv)
257{
23010e43 258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
259 ssize_t remain;
260 loff_t offset, page_base;
261 char __user *user_data;
262 int page_offset, page_length;
263 int ret;
264
265 user_data = (char __user *) (uintptr_t) args->data_ptr;
266 remain = args->size;
267
268 mutex_lock(&dev->struct_mutex);
269
4bdadb97 270 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
271 if (ret != 0)
272 goto fail_unlock;
273
274 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
275 args->size);
276 if (ret != 0)
277 goto fail_put_pages;
278
23010e43 279 obj_priv = to_intel_bo(obj);
eb01459f
EA
280 offset = args->offset;
281
282 while (remain > 0) {
283 /* Operation in this page
284 *
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
288 */
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
294
295 ret = fast_shmem_read(obj_priv->pages,
296 page_base, page_offset,
297 user_data, page_length);
298 if (ret)
299 goto fail_put_pages;
300
301 remain -= page_length;
302 user_data += page_length;
303 offset += page_length;
304 }
305
306fail_put_pages:
307 i915_gem_object_put_pages(obj);
308fail_unlock:
309 mutex_unlock(&dev->struct_mutex);
310
311 return ret;
312}
313
07f73f69
CW
314static int
315i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
316{
317 int ret;
318
4bdadb97 319 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
320
321 /* If we've insufficient memory to map in the pages, attempt
322 * to make some space by throwing out some old buffers.
323 */
324 if (ret == -ENOMEM) {
325 struct drm_device *dev = obj->dev;
07f73f69 326
0108a3ed
DV
327 ret = i915_gem_evict_something(dev, obj->size,
328 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
329 if (ret)
330 return ret;
331
4bdadb97 332 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
333 }
334
335 return ret;
336}
337
eb01459f
EA
338/**
339 * This is the fallback shmem pread path, which allocates temporary storage
340 * in kernel space to copy_to_user into outside of the struct_mutex, so we
341 * can copy out of the object's backing pages while holding the struct mutex
342 * and not take page faults.
343 */
344static int
345i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
346 struct drm_i915_gem_pread *args,
347 struct drm_file *file_priv)
348{
23010e43 349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
350 struct mm_struct *mm = current->mm;
351 struct page **user_pages;
352 ssize_t remain;
353 loff_t offset, pinned_pages, i;
354 loff_t first_data_page, last_data_page, num_pages;
355 int shmem_page_index, shmem_page_offset;
356 int data_page_index, data_page_offset;
357 int page_length;
358 int ret;
359 uint64_t data_ptr = args->data_ptr;
280b713b 360 int do_bit17_swizzling;
eb01459f
EA
361
362 remain = args->size;
363
364 /* Pin the user pages containing the data. We can't fault while
365 * holding the struct mutex, yet we want to hold it while
366 * dereferencing the user data.
367 */
368 first_data_page = data_ptr / PAGE_SIZE;
369 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
370 num_pages = last_data_page - first_data_page + 1;
371
8e7d2b2c 372 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
373 if (user_pages == NULL)
374 return -ENOMEM;
375
376 down_read(&mm->mmap_sem);
377 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 378 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
379 up_read(&mm->mmap_sem);
380 if (pinned_pages < num_pages) {
381 ret = -EFAULT;
382 goto fail_put_user_pages;
383 }
384
280b713b
EA
385 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
386
eb01459f
EA
387 mutex_lock(&dev->struct_mutex);
388
07f73f69
CW
389 ret = i915_gem_object_get_pages_or_evict(obj);
390 if (ret)
eb01459f
EA
391 goto fail_unlock;
392
393 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
394 args->size);
395 if (ret != 0)
396 goto fail_put_pages;
397
23010e43 398 obj_priv = to_intel_bo(obj);
eb01459f
EA
399 offset = args->offset;
400
401 while (remain > 0) {
402 /* Operation in this page
403 *
404 * shmem_page_index = page number within shmem file
405 * shmem_page_offset = offset within page in shmem file
406 * data_page_index = page number in get_user_pages return
407 * data_page_offset = offset with data_page_index page.
408 * page_length = bytes to copy for this page
409 */
410 shmem_page_index = offset / PAGE_SIZE;
411 shmem_page_offset = offset & ~PAGE_MASK;
412 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
413 data_page_offset = data_ptr & ~PAGE_MASK;
414
415 page_length = remain;
416 if ((shmem_page_offset + page_length) > PAGE_SIZE)
417 page_length = PAGE_SIZE - shmem_page_offset;
418 if ((data_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - data_page_offset;
420
280b713b 421 if (do_bit17_swizzling) {
99a03df5 422 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 423 shmem_page_offset,
99a03df5
CW
424 user_pages[data_page_index],
425 data_page_offset,
426 page_length,
427 1);
428 } else {
429 slow_shmem_copy(user_pages[data_page_index],
430 data_page_offset,
431 obj_priv->pages[shmem_page_index],
432 shmem_page_offset,
433 page_length);
280b713b 434 }
eb01459f
EA
435
436 remain -= page_length;
437 data_ptr += page_length;
438 offset += page_length;
439 }
440
441fail_put_pages:
442 i915_gem_object_put_pages(obj);
443fail_unlock:
444 mutex_unlock(&dev->struct_mutex);
445fail_put_user_pages:
446 for (i = 0; i < pinned_pages; i++) {
447 SetPageDirty(user_pages[i]);
448 page_cache_release(user_pages[i]);
449 }
8e7d2b2c 450 drm_free_large(user_pages);
eb01459f
EA
451
452 return ret;
453}
454
673a394b
EA
455/**
456 * Reads data from the object referenced by handle.
457 *
458 * On error, the contents of *data are undefined.
459 */
460int
461i915_gem_pread_ioctl(struct drm_device *dev, void *data,
462 struct drm_file *file_priv)
463{
464 struct drm_i915_gem_pread *args = data;
465 struct drm_gem_object *obj;
466 struct drm_i915_gem_object *obj_priv;
673a394b
EA
467 int ret;
468
469 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
470 if (obj == NULL)
bf79cb91 471 return -ENOENT;
23010e43 472 obj_priv = to_intel_bo(obj);
673a394b
EA
473
474 /* Bounds check source.
475 *
476 * XXX: This could use review for overflow issues...
477 */
478 if (args->offset > obj->size || args->size > obj->size ||
479 args->offset + args->size > obj->size) {
bc9025bd 480 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
481 return -EINVAL;
482 }
483
280b713b 484 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 485 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
486 } else {
487 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
488 if (ret != 0)
489 ret = i915_gem_shmem_pread_slow(dev, obj, args,
490 file_priv);
491 }
673a394b 492
bc9025bd 493 drm_gem_object_unreference_unlocked(obj);
673a394b 494
eb01459f 495 return ret;
673a394b
EA
496}
497
0839ccb8
KP
498/* This is the fast write path which cannot handle
499 * page faults in the source data
9b7530cc 500 */
0839ccb8
KP
501
502static inline int
503fast_user_write(struct io_mapping *mapping,
504 loff_t page_base, int page_offset,
505 char __user *user_data,
506 int length)
9b7530cc 507{
9b7530cc 508 char *vaddr_atomic;
0839ccb8 509 unsigned long unwritten;
9b7530cc 510
fca3ec01 511 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
512 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
513 user_data, length);
fca3ec01 514 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
515 if (unwritten)
516 return -EFAULT;
517 return 0;
518}
519
520/* Here's the write path which can sleep for
521 * page faults
522 */
523
ab34c226 524static inline void
3de09aa3
EA
525slow_kernel_write(struct io_mapping *mapping,
526 loff_t gtt_base, int gtt_offset,
527 struct page *user_page, int user_offset,
528 int length)
0839ccb8 529{
ab34c226
CW
530 char __iomem *dst_vaddr;
531 char *src_vaddr;
0839ccb8 532
ab34c226
CW
533 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
534 src_vaddr = kmap(user_page);
535
536 memcpy_toio(dst_vaddr + gtt_offset,
537 src_vaddr + user_offset,
538 length);
539
540 kunmap(user_page);
541 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
542}
543
40123c1f
EA
544static inline int
545fast_shmem_write(struct page **pages,
546 loff_t page_base, int page_offset,
547 char __user *data,
548 int length)
549{
550 char __iomem *vaddr;
d0088775 551 unsigned long unwritten;
40123c1f
EA
552
553 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
554 if (vaddr == NULL)
555 return -ENOMEM;
d0088775 556 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
557 kunmap_atomic(vaddr, KM_USER0);
558
d0088775
DA
559 if (unwritten)
560 return -EFAULT;
40123c1f
EA
561 return 0;
562}
563
3de09aa3
EA
564/**
565 * This is the fast pwrite path, where we copy the data directly from the
566 * user into the GTT, uncached.
567 */
673a394b 568static int
3de09aa3
EA
569i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
570 struct drm_i915_gem_pwrite *args,
571 struct drm_file *file_priv)
673a394b 572{
23010e43 573 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 574 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 575 ssize_t remain;
0839ccb8 576 loff_t offset, page_base;
673a394b 577 char __user *user_data;
0839ccb8
KP
578 int page_offset, page_length;
579 int ret;
673a394b
EA
580
581 user_data = (char __user *) (uintptr_t) args->data_ptr;
582 remain = args->size;
583 if (!access_ok(VERIFY_READ, user_data, remain))
584 return -EFAULT;
585
586
587 mutex_lock(&dev->struct_mutex);
588 ret = i915_gem_object_pin(obj, 0);
589 if (ret) {
590 mutex_unlock(&dev->struct_mutex);
591 return ret;
592 }
2ef7eeaa 593 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
594 if (ret)
595 goto fail;
596
23010e43 597 obj_priv = to_intel_bo(obj);
673a394b 598 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
599
600 while (remain > 0) {
601 /* Operation in this page
602 *
0839ccb8
KP
603 * page_base = page offset within aperture
604 * page_offset = offset within page
605 * page_length = bytes to copy for this page
673a394b 606 */
0839ccb8
KP
607 page_base = (offset & ~(PAGE_SIZE-1));
608 page_offset = offset & (PAGE_SIZE-1);
609 page_length = remain;
610 if ((page_offset + remain) > PAGE_SIZE)
611 page_length = PAGE_SIZE - page_offset;
612
613 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
614 page_offset, user_data, page_length);
615
616 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
617 * source page isn't available. Return the error and we'll
618 * retry in the slow path.
0839ccb8 619 */
3de09aa3
EA
620 if (ret)
621 goto fail;
673a394b 622
0839ccb8
KP
623 remain -= page_length;
624 user_data += page_length;
625 offset += page_length;
673a394b 626 }
673a394b
EA
627
628fail:
629 i915_gem_object_unpin(obj);
630 mutex_unlock(&dev->struct_mutex);
631
632 return ret;
633}
634
3de09aa3
EA
635/**
636 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
637 * the memory and maps it using kmap_atomic for copying.
638 *
639 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
640 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
641 */
3043c60c 642static int
3de09aa3
EA
643i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
644 struct drm_i915_gem_pwrite *args,
645 struct drm_file *file_priv)
673a394b 646{
23010e43 647 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
648 drm_i915_private_t *dev_priv = dev->dev_private;
649 ssize_t remain;
650 loff_t gtt_page_base, offset;
651 loff_t first_data_page, last_data_page, num_pages;
652 loff_t pinned_pages, i;
653 struct page **user_pages;
654 struct mm_struct *mm = current->mm;
655 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 656 int ret;
3de09aa3
EA
657 uint64_t data_ptr = args->data_ptr;
658
659 remain = args->size;
660
661 /* Pin the user pages containing the data. We can't fault while
662 * holding the struct mutex, and all of the pwrite implementations
663 * want to hold it while dereferencing the user data.
664 */
665 first_data_page = data_ptr / PAGE_SIZE;
666 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
667 num_pages = last_data_page - first_data_page + 1;
668
8e7d2b2c 669 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
670 if (user_pages == NULL)
671 return -ENOMEM;
672
673 down_read(&mm->mmap_sem);
674 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
675 num_pages, 0, 0, user_pages, NULL);
676 up_read(&mm->mmap_sem);
677 if (pinned_pages < num_pages) {
678 ret = -EFAULT;
679 goto out_unpin_pages;
680 }
673a394b
EA
681
682 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
683 ret = i915_gem_object_pin(obj, 0);
684 if (ret)
685 goto out_unlock;
686
687 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
688 if (ret)
689 goto out_unpin_object;
690
23010e43 691 obj_priv = to_intel_bo(obj);
3de09aa3
EA
692 offset = obj_priv->gtt_offset + args->offset;
693
694 while (remain > 0) {
695 /* Operation in this page
696 *
697 * gtt_page_base = page offset within aperture
698 * gtt_page_offset = offset within page in aperture
699 * data_page_index = page number in get_user_pages return
700 * data_page_offset = offset with data_page_index page.
701 * page_length = bytes to copy for this page
702 */
703 gtt_page_base = offset & PAGE_MASK;
704 gtt_page_offset = offset & ~PAGE_MASK;
705 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
706 data_page_offset = data_ptr & ~PAGE_MASK;
707
708 page_length = remain;
709 if ((gtt_page_offset + page_length) > PAGE_SIZE)
710 page_length = PAGE_SIZE - gtt_page_offset;
711 if ((data_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - data_page_offset;
713
ab34c226
CW
714 slow_kernel_write(dev_priv->mm.gtt_mapping,
715 gtt_page_base, gtt_page_offset,
716 user_pages[data_page_index],
717 data_page_offset,
718 page_length);
3de09aa3
EA
719
720 remain -= page_length;
721 offset += page_length;
722 data_ptr += page_length;
723 }
724
725out_unpin_object:
726 i915_gem_object_unpin(obj);
727out_unlock:
728 mutex_unlock(&dev->struct_mutex);
729out_unpin_pages:
730 for (i = 0; i < pinned_pages; i++)
731 page_cache_release(user_pages[i]);
8e7d2b2c 732 drm_free_large(user_pages);
3de09aa3
EA
733
734 return ret;
735}
736
40123c1f
EA
737/**
738 * This is the fast shmem pwrite path, which attempts to directly
739 * copy_from_user into the kmapped pages backing the object.
740 */
3043c60c 741static int
40123c1f
EA
742i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
673a394b 745{
23010e43 746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
747 ssize_t remain;
748 loff_t offset, page_base;
749 char __user *user_data;
750 int page_offset, page_length;
673a394b 751 int ret;
40123c1f
EA
752
753 user_data = (char __user *) (uintptr_t) args->data_ptr;
754 remain = args->size;
673a394b
EA
755
756 mutex_lock(&dev->struct_mutex);
757
4bdadb97 758 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
759 if (ret != 0)
760 goto fail_unlock;
673a394b 761
e47c68e9 762 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
763 if (ret != 0)
764 goto fail_put_pages;
765
23010e43 766 obj_priv = to_intel_bo(obj);
40123c1f
EA
767 offset = args->offset;
768 obj_priv->dirty = 1;
769
770 while (remain > 0) {
771 /* Operation in this page
772 *
773 * page_base = page offset within aperture
774 * page_offset = offset within page
775 * page_length = bytes to copy for this page
776 */
777 page_base = (offset & ~(PAGE_SIZE-1));
778 page_offset = offset & (PAGE_SIZE-1);
779 page_length = remain;
780 if ((page_offset + remain) > PAGE_SIZE)
781 page_length = PAGE_SIZE - page_offset;
782
783 ret = fast_shmem_write(obj_priv->pages,
784 page_base, page_offset,
785 user_data, page_length);
786 if (ret)
787 goto fail_put_pages;
788
789 remain -= page_length;
790 user_data += page_length;
791 offset += page_length;
792 }
793
794fail_put_pages:
795 i915_gem_object_put_pages(obj);
796fail_unlock:
797 mutex_unlock(&dev->struct_mutex);
798
799 return ret;
800}
801
802/**
803 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
804 * the memory and maps it using kmap_atomic for copying.
805 *
806 * This avoids taking mmap_sem for faulting on the user's address while the
807 * struct_mutex is held.
808 */
809static int
810i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
811 struct drm_i915_gem_pwrite *args,
812 struct drm_file *file_priv)
813{
23010e43 814 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
815 struct mm_struct *mm = current->mm;
816 struct page **user_pages;
817 ssize_t remain;
818 loff_t offset, pinned_pages, i;
819 loff_t first_data_page, last_data_page, num_pages;
820 int shmem_page_index, shmem_page_offset;
821 int data_page_index, data_page_offset;
822 int page_length;
823 int ret;
824 uint64_t data_ptr = args->data_ptr;
280b713b 825 int do_bit17_swizzling;
40123c1f
EA
826
827 remain = args->size;
828
829 /* Pin the user pages containing the data. We can't fault while
830 * holding the struct mutex, and all of the pwrite implementations
831 * want to hold it while dereferencing the user data.
832 */
833 first_data_page = data_ptr / PAGE_SIZE;
834 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
835 num_pages = last_data_page - first_data_page + 1;
836
8e7d2b2c 837 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
838 if (user_pages == NULL)
839 return -ENOMEM;
840
841 down_read(&mm->mmap_sem);
842 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
843 num_pages, 0, 0, user_pages, NULL);
844 up_read(&mm->mmap_sem);
845 if (pinned_pages < num_pages) {
846 ret = -EFAULT;
847 goto fail_put_user_pages;
673a394b
EA
848 }
849
280b713b
EA
850 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
851
40123c1f
EA
852 mutex_lock(&dev->struct_mutex);
853
07f73f69
CW
854 ret = i915_gem_object_get_pages_or_evict(obj);
855 if (ret)
40123c1f
EA
856 goto fail_unlock;
857
858 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
859 if (ret != 0)
860 goto fail_put_pages;
861
23010e43 862 obj_priv = to_intel_bo(obj);
673a394b 863 offset = args->offset;
40123c1f 864 obj_priv->dirty = 1;
673a394b 865
40123c1f
EA
866 while (remain > 0) {
867 /* Operation in this page
868 *
869 * shmem_page_index = page number within shmem file
870 * shmem_page_offset = offset within page in shmem file
871 * data_page_index = page number in get_user_pages return
872 * data_page_offset = offset with data_page_index page.
873 * page_length = bytes to copy for this page
874 */
875 shmem_page_index = offset / PAGE_SIZE;
876 shmem_page_offset = offset & ~PAGE_MASK;
877 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
878 data_page_offset = data_ptr & ~PAGE_MASK;
879
880 page_length = remain;
881 if ((shmem_page_offset + page_length) > PAGE_SIZE)
882 page_length = PAGE_SIZE - shmem_page_offset;
883 if ((data_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - data_page_offset;
885
280b713b 886 if (do_bit17_swizzling) {
99a03df5 887 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
888 shmem_page_offset,
889 user_pages[data_page_index],
890 data_page_offset,
99a03df5
CW
891 page_length,
892 0);
893 } else {
894 slow_shmem_copy(obj_priv->pages[shmem_page_index],
895 shmem_page_offset,
896 user_pages[data_page_index],
897 data_page_offset,
898 page_length);
280b713b 899 }
40123c1f
EA
900
901 remain -= page_length;
902 data_ptr += page_length;
903 offset += page_length;
673a394b
EA
904 }
905
40123c1f
EA
906fail_put_pages:
907 i915_gem_object_put_pages(obj);
908fail_unlock:
673a394b 909 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
910fail_put_user_pages:
911 for (i = 0; i < pinned_pages; i++)
912 page_cache_release(user_pages[i]);
8e7d2b2c 913 drm_free_large(user_pages);
673a394b 914
40123c1f 915 return ret;
673a394b
EA
916}
917
918/**
919 * Writes data to the object referenced by handle.
920 *
921 * On error, the contents of the buffer that were to be modified are undefined.
922 */
923int
924i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
925 struct drm_file *file_priv)
926{
927 struct drm_i915_gem_pwrite *args = data;
928 struct drm_gem_object *obj;
929 struct drm_i915_gem_object *obj_priv;
930 int ret = 0;
931
932 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
933 if (obj == NULL)
bf79cb91 934 return -ENOENT;
23010e43 935 obj_priv = to_intel_bo(obj);
673a394b
EA
936
937 /* Bounds check destination.
938 *
939 * XXX: This could use review for overflow issues...
940 */
941 if (args->offset > obj->size || args->size > obj->size ||
942 args->offset + args->size > obj->size) {
bc9025bd 943 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
944 return -EINVAL;
945 }
946
947 /* We can only do the GTT pwrite on untiled buffers, as otherwise
948 * it would end up going through the fenced access, and we'll get
949 * different detiling behavior between reading and writing.
950 * pread/pwrite currently are reading and writing from the CPU
951 * perspective, requiring manual detiling by the client.
952 */
71acb5eb
DA
953 if (obj_priv->phys_obj)
954 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
955 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
956 dev->gtt_total != 0 &&
957 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
958 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
959 if (ret == -EFAULT) {
960 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
961 file_priv);
962 }
280b713b
EA
963 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
965 } else {
966 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
967 if (ret == -EFAULT) {
968 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
969 file_priv);
970 }
971 }
673a394b
EA
972
973#if WATCH_PWRITE
974 if (ret)
975 DRM_INFO("pwrite failed %d\n", ret);
976#endif
977
bc9025bd 978 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
979
980 return ret;
981}
982
983/**
2ef7eeaa
EA
984 * Called when user space prepares to use an object with the CPU, either
985 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
986 */
987int
988i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
989 struct drm_file *file_priv)
990{
a09ba7fa 991 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
992 struct drm_i915_gem_set_domain *args = data;
993 struct drm_gem_object *obj;
652c393a 994 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
995 uint32_t read_domains = args->read_domains;
996 uint32_t write_domain = args->write_domain;
673a394b
EA
997 int ret;
998
999 if (!(dev->driver->driver_features & DRIVER_GEM))
1000 return -ENODEV;
1001
2ef7eeaa 1002 /* Only handle setting domains to types used by the CPU. */
21d509e3 1003 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1004 return -EINVAL;
1005
21d509e3 1006 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
1009 /* Having something in the write domain implies it's in the read
1010 * domain, and only that read domain. Enforce that in the request.
1011 */
1012 if (write_domain != 0 && read_domains != write_domain)
1013 return -EINVAL;
1014
673a394b
EA
1015 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1016 if (obj == NULL)
bf79cb91 1017 return -ENOENT;
23010e43 1018 obj_priv = to_intel_bo(obj);
673a394b
EA
1019
1020 mutex_lock(&dev->struct_mutex);
652c393a
JB
1021
1022 intel_mark_busy(dev, obj);
1023
673a394b 1024#if WATCH_BUF
cfd43c02 1025 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1026 obj, obj->size, read_domains, write_domain);
673a394b 1027#endif
2ef7eeaa
EA
1028 if (read_domains & I915_GEM_DOMAIN_GTT) {
1029 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1030
a09ba7fa
EA
1031 /* Update the LRU on the fence for the CPU access that's
1032 * about to occur.
1033 */
1034 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1035 struct drm_i915_fence_reg *reg =
1036 &dev_priv->fence_regs[obj_priv->fence_reg];
1037 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1038 &dev_priv->mm.fence_list);
1039 }
1040
02354392
EA
1041 /* Silently promote "you're not bound, there was nothing to do"
1042 * to success, since the client was just asking us to
1043 * make sure everything was done.
1044 */
1045 if (ret == -EINVAL)
1046 ret = 0;
2ef7eeaa 1047 } else {
e47c68e9 1048 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1049 }
1050
7d1c4804
CW
1051
1052 /* Maintain LRU order of "inactive" objects */
1053 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1054 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1055
673a394b
EA
1056 drm_gem_object_unreference(obj);
1057 mutex_unlock(&dev->struct_mutex);
1058 return ret;
1059}
1060
1061/**
1062 * Called when user space has done writes to this buffer
1063 */
1064int
1065i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1066 struct drm_file *file_priv)
1067{
1068 struct drm_i915_gem_sw_finish *args = data;
1069 struct drm_gem_object *obj;
1070 struct drm_i915_gem_object *obj_priv;
1071 int ret = 0;
1072
1073 if (!(dev->driver->driver_features & DRIVER_GEM))
1074 return -ENODEV;
1075
1076 mutex_lock(&dev->struct_mutex);
1077 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1078 if (obj == NULL) {
1079 mutex_unlock(&dev->struct_mutex);
bf79cb91 1080 return -ENOENT;
673a394b
EA
1081 }
1082
1083#if WATCH_BUF
cfd43c02 1084 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1085 __func__, args->handle, obj, obj->size);
1086#endif
23010e43 1087 obj_priv = to_intel_bo(obj);
673a394b
EA
1088
1089 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1090 if (obj_priv->pin_count)
1091 i915_gem_object_flush_cpu_write_domain(obj);
1092
673a394b
EA
1093 drm_gem_object_unreference(obj);
1094 mutex_unlock(&dev->struct_mutex);
1095 return ret;
1096}
1097
1098/**
1099 * Maps the contents of an object, returning the address it is mapped
1100 * into.
1101 *
1102 * While the mapping holds a reference on the contents of the object, it doesn't
1103 * imply a ref on the object itself.
1104 */
1105int
1106i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1107 struct drm_file *file_priv)
1108{
1109 struct drm_i915_gem_mmap *args = data;
1110 struct drm_gem_object *obj;
1111 loff_t offset;
1112 unsigned long addr;
1113
1114 if (!(dev->driver->driver_features & DRIVER_GEM))
1115 return -ENODEV;
1116
1117 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1118 if (obj == NULL)
bf79cb91 1119 return -ENOENT;
673a394b
EA
1120
1121 offset = args->offset;
1122
1123 down_write(&current->mm->mmap_sem);
1124 addr = do_mmap(obj->filp, 0, args->size,
1125 PROT_READ | PROT_WRITE, MAP_SHARED,
1126 args->offset);
1127 up_write(&current->mm->mmap_sem);
bc9025bd 1128 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1129 if (IS_ERR((void *)addr))
1130 return addr;
1131
1132 args->addr_ptr = (uint64_t) addr;
1133
1134 return 0;
1135}
1136
de151cf6
JB
1137/**
1138 * i915_gem_fault - fault a page into the GTT
1139 * vma: VMA in question
1140 * vmf: fault info
1141 *
1142 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1143 * from userspace. The fault handler takes care of binding the object to
1144 * the GTT (if needed), allocating and programming a fence register (again,
1145 * only if needed based on whether the old reg is still valid or the object
1146 * is tiled) and inserting a new PTE into the faulting process.
1147 *
1148 * Note that the faulting process may involve evicting existing objects
1149 * from the GTT and/or fence registers to make room. So performance may
1150 * suffer if the GTT working set is large or there are few fence registers
1151 * left.
1152 */
1153int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1154{
1155 struct drm_gem_object *obj = vma->vm_private_data;
1156 struct drm_device *dev = obj->dev;
7d1c4804 1157 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1158 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1159 pgoff_t page_offset;
1160 unsigned long pfn;
1161 int ret = 0;
0f973f27 1162 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1163
1164 /* We don't use vmf->pgoff since that has the fake offset */
1165 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1166 PAGE_SHIFT;
1167
1168 /* Now bind it into the GTT if needed */
1169 mutex_lock(&dev->struct_mutex);
1170 if (!obj_priv->gtt_space) {
e67b8ce1 1171 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1172 if (ret)
1173 goto unlock;
07f4f3e8 1174
07f4f3e8 1175 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1176 if (ret)
1177 goto unlock;
de151cf6
JB
1178 }
1179
1180 /* Need a new fence register? */
a09ba7fa 1181 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1182 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1183 if (ret)
1184 goto unlock;
d9ddcb96 1185 }
de151cf6 1186
7d1c4804
CW
1187 if (i915_gem_object_is_inactive(obj_priv))
1188 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1189
de151cf6
JB
1190 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1191 page_offset;
1192
1193 /* Finally, remap it using the new GTT offset */
1194 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1195unlock:
de151cf6
JB
1196 mutex_unlock(&dev->struct_mutex);
1197
1198 switch (ret) {
c715089f
CW
1199 case 0:
1200 case -ERESTARTSYS:
1201 return VM_FAULT_NOPAGE;
de151cf6
JB
1202 case -ENOMEM:
1203 case -EAGAIN:
1204 return VM_FAULT_OOM;
de151cf6 1205 default:
c715089f 1206 return VM_FAULT_SIGBUS;
de151cf6
JB
1207 }
1208}
1209
1210/**
1211 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1212 * @obj: obj in question
1213 *
1214 * GEM memory mapping works by handing back to userspace a fake mmap offset
1215 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1216 * up the object based on the offset and sets up the various memory mapping
1217 * structures.
1218 *
1219 * This routine allocates and attaches a fake offset for @obj.
1220 */
1221static int
1222i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1223{
1224 struct drm_device *dev = obj->dev;
1225 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1226 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1227 struct drm_map_list *list;
f77d390c 1228 struct drm_local_map *map;
de151cf6
JB
1229 int ret = 0;
1230
1231 /* Set the object up for mmap'ing */
1232 list = &obj->map_list;
9a298b2a 1233 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1234 if (!list->map)
1235 return -ENOMEM;
1236
1237 map = list->map;
1238 map->type = _DRM_GEM;
1239 map->size = obj->size;
1240 map->handle = obj;
1241
1242 /* Get a DRM GEM mmap offset allocated... */
1243 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1244 obj->size / PAGE_SIZE, 0, 0);
1245 if (!list->file_offset_node) {
1246 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1247 ret = -ENOMEM;
1248 goto out_free_list;
1249 }
1250
1251 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1252 obj->size / PAGE_SIZE, 0);
1253 if (!list->file_offset_node) {
1254 ret = -ENOMEM;
1255 goto out_free_list;
1256 }
1257
1258 list->hash.key = list->file_offset_node->start;
1259 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1260 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1261 ret = -ENOMEM;
de151cf6
JB
1262 goto out_free_mm;
1263 }
1264
1265 /* By now we should be all set, any drm_mmap request on the offset
1266 * below will get to our mmap & fault handler */
1267 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1268
1269 return 0;
1270
1271out_free_mm:
1272 drm_mm_put_block(list->file_offset_node);
1273out_free_list:
9a298b2a 1274 kfree(list->map);
de151cf6
JB
1275
1276 return ret;
1277}
1278
901782b2
CW
1279/**
1280 * i915_gem_release_mmap - remove physical page mappings
1281 * @obj: obj in question
1282 *
af901ca1 1283 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1284 * relinquish ownership of the pages back to the system.
1285 *
1286 * It is vital that we remove the page mapping if we have mapped a tiled
1287 * object through the GTT and then lose the fence register due to
1288 * resource pressure. Similarly if the object has been moved out of the
1289 * aperture, than pages mapped into userspace must be revoked. Removing the
1290 * mapping will then trigger a page fault on the next user access, allowing
1291 * fixup by i915_gem_fault().
1292 */
d05ca301 1293void
901782b2
CW
1294i915_gem_release_mmap(struct drm_gem_object *obj)
1295{
1296 struct drm_device *dev = obj->dev;
23010e43 1297 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1298
1299 if (dev->dev_mapping)
1300 unmap_mapping_range(dev->dev_mapping,
1301 obj_priv->mmap_offset, obj->size, 1);
1302}
1303
ab00b3e5
JB
1304static void
1305i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1306{
1307 struct drm_device *dev = obj->dev;
23010e43 1308 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1309 struct drm_gem_mm *mm = dev->mm_private;
1310 struct drm_map_list *list;
1311
1312 list = &obj->map_list;
1313 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1314
1315 if (list->file_offset_node) {
1316 drm_mm_put_block(list->file_offset_node);
1317 list->file_offset_node = NULL;
1318 }
1319
1320 if (list->map) {
9a298b2a 1321 kfree(list->map);
ab00b3e5
JB
1322 list->map = NULL;
1323 }
1324
1325 obj_priv->mmap_offset = 0;
1326}
1327
de151cf6
JB
1328/**
1329 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1330 * @obj: object to check
1331 *
1332 * Return the required GTT alignment for an object, taking into account
1333 * potential fence register mapping if needed.
1334 */
1335static uint32_t
1336i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1337{
1338 struct drm_device *dev = obj->dev;
23010e43 1339 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1340 int start, i;
1341
1342 /*
1343 * Minimum alignment is 4k (GTT page size), but might be greater
1344 * if a fence register is needed for the object.
1345 */
1346 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1347 return 4096;
1348
1349 /*
1350 * Previous chips need to be aligned to the size of the smallest
1351 * fence register that can contain the object.
1352 */
1353 if (IS_I9XX(dev))
1354 start = 1024*1024;
1355 else
1356 start = 512*1024;
1357
1358 for (i = start; i < obj->size; i <<= 1)
1359 ;
1360
1361 return i;
1362}
1363
1364/**
1365 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1366 * @dev: DRM device
1367 * @data: GTT mapping ioctl data
1368 * @file_priv: GEM object info
1369 *
1370 * Simply returns the fake offset to userspace so it can mmap it.
1371 * The mmap call will end up in drm_gem_mmap(), which will set things
1372 * up so we can get faults in the handler above.
1373 *
1374 * The fault handler will take care of binding the object into the GTT
1375 * (since it may have been evicted to make room for something), allocating
1376 * a fence register, and mapping the appropriate aperture address into
1377 * userspace.
1378 */
1379int
1380i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1381 struct drm_file *file_priv)
1382{
1383 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1384 struct drm_gem_object *obj;
1385 struct drm_i915_gem_object *obj_priv;
1386 int ret;
1387
1388 if (!(dev->driver->driver_features & DRIVER_GEM))
1389 return -ENODEV;
1390
1391 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1392 if (obj == NULL)
bf79cb91 1393 return -ENOENT;
de151cf6
JB
1394
1395 mutex_lock(&dev->struct_mutex);
1396
23010e43 1397 obj_priv = to_intel_bo(obj);
de151cf6 1398
ab18282d
CW
1399 if (obj_priv->madv != I915_MADV_WILLNEED) {
1400 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1401 drm_gem_object_unreference(obj);
1402 mutex_unlock(&dev->struct_mutex);
1403 return -EINVAL;
1404 }
1405
1406
de151cf6
JB
1407 if (!obj_priv->mmap_offset) {
1408 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1409 if (ret) {
1410 drm_gem_object_unreference(obj);
1411 mutex_unlock(&dev->struct_mutex);
de151cf6 1412 return ret;
13af1062 1413 }
de151cf6
JB
1414 }
1415
1416 args->offset = obj_priv->mmap_offset;
1417
de151cf6
JB
1418 /*
1419 * Pull it into the GTT so that we have a page list (makes the
1420 * initial fault faster and any subsequent flushing possible).
1421 */
1422 if (!obj_priv->agp_mem) {
e67b8ce1 1423 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1424 if (ret) {
1425 drm_gem_object_unreference(obj);
1426 mutex_unlock(&dev->struct_mutex);
1427 return ret;
1428 }
de151cf6
JB
1429 }
1430
1431 drm_gem_object_unreference(obj);
1432 mutex_unlock(&dev->struct_mutex);
1433
1434 return 0;
1435}
1436
6911a9b8 1437void
856fa198 1438i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1439{
23010e43 1440 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1441 int page_count = obj->size / PAGE_SIZE;
1442 int i;
1443
856fa198 1444 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1445 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1446
856fa198
EA
1447 if (--obj_priv->pages_refcount != 0)
1448 return;
673a394b 1449
280b713b
EA
1450 if (obj_priv->tiling_mode != I915_TILING_NONE)
1451 i915_gem_object_save_bit_17_swizzle(obj);
1452
3ef94daa 1453 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1454 obj_priv->dirty = 0;
3ef94daa
CW
1455
1456 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1457 if (obj_priv->dirty)
1458 set_page_dirty(obj_priv->pages[i]);
1459
1460 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1461 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1462
1463 page_cache_release(obj_priv->pages[i]);
1464 }
673a394b
EA
1465 obj_priv->dirty = 0;
1466
8e7d2b2c 1467 drm_free_large(obj_priv->pages);
856fa198 1468 obj_priv->pages = NULL;
673a394b
EA
1469}
1470
1471static void
852835f3
ZN
1472i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1473 struct intel_ring_buffer *ring)
673a394b
EA
1474{
1475 struct drm_device *dev = obj->dev;
1476 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1477 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1478 BUG_ON(ring == NULL);
1479 obj_priv->ring = ring;
673a394b
EA
1480
1481 /* Add a reference if we're newly entering the active list. */
1482 if (!obj_priv->active) {
1483 drm_gem_object_reference(obj);
1484 obj_priv->active = 1;
1485 }
1486 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1487 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1488 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1489 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1490 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1491}
1492
ce44b0ea
EA
1493static void
1494i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1495{
1496 struct drm_device *dev = obj->dev;
1497 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1498 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1499
1500 BUG_ON(!obj_priv->active);
1501 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1502 obj_priv->last_rendering_seqno = 0;
1503}
673a394b 1504
963b4836
CW
1505/* Immediately discard the backing storage */
1506static void
1507i915_gem_object_truncate(struct drm_gem_object *obj)
1508{
23010e43 1509 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1510 struct inode *inode;
963b4836 1511
ae9fed6b
CW
1512 /* Our goal here is to return as much of the memory as
1513 * is possible back to the system as we are called from OOM.
1514 * To do this we must instruct the shmfs to drop all of its
1515 * backing pages, *now*. Here we mirror the actions taken
1516 * when by shmem_delete_inode() to release the backing store.
1517 */
bb6baf76 1518 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1519 truncate_inode_pages(inode->i_mapping, 0);
1520 if (inode->i_op->truncate_range)
1521 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1522
1523 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1524}
1525
1526static inline int
1527i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1528{
1529 return obj_priv->madv == I915_MADV_DONTNEED;
1530}
1531
673a394b
EA
1532static void
1533i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1534{
1535 struct drm_device *dev = obj->dev;
1536 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1537 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1538
1539 i915_verify_inactive(dev, __FILE__, __LINE__);
1540 if (obj_priv->pin_count != 0)
1541 list_del_init(&obj_priv->list);
1542 else
1543 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1544
99fcb766
DV
1545 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1546
ce44b0ea 1547 obj_priv->last_rendering_seqno = 0;
852835f3 1548 obj_priv->ring = NULL;
673a394b
EA
1549 if (obj_priv->active) {
1550 obj_priv->active = 0;
1551 drm_gem_object_unreference(obj);
1552 }
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554}
1555
63560396
DV
1556static void
1557i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1558 uint32_t flush_domains, uint32_t seqno,
1559 struct intel_ring_buffer *ring)
63560396
DV
1560{
1561 drm_i915_private_t *dev_priv = dev->dev_private;
1562 struct drm_i915_gem_object *obj_priv, *next;
1563
1564 list_for_each_entry_safe(obj_priv, next,
1565 &dev_priv->mm.gpu_write_list,
1566 gpu_write_list) {
a8089e84 1567 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1568
1569 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1570 obj->write_domain &&
1571 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1572 uint32_t old_write_domain = obj->write_domain;
1573
1574 obj->write_domain = 0;
1575 list_del_init(&obj_priv->gpu_write_list);
852835f3 1576 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1577
1578 /* update the fence lru list */
007cc8ac
DV
1579 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1580 struct drm_i915_fence_reg *reg =
1581 &dev_priv->fence_regs[obj_priv->fence_reg];
1582 list_move_tail(&reg->lru_list,
63560396 1583 &dev_priv->mm.fence_list);
007cc8ac 1584 }
63560396
DV
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591}
8187a2b7 1592
5a5a0c64 1593uint32_t
b962442e 1594i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1595 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1596{
1597 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1598 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1599 struct drm_i915_gem_request *request;
1600 uint32_t seqno;
1601 int was_empty;
673a394b 1602
b962442e
EA
1603 if (file_priv != NULL)
1604 i915_file_priv = file_priv->driver_priv;
1605
9a298b2a 1606 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1607 if (request == NULL)
1608 return 0;
1609
852835f3 1610 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1611
1612 request->seqno = seqno;
852835f3 1613 request->ring = ring;
673a394b 1614 request->emitted_jiffies = jiffies;
852835f3
ZN
1615 was_empty = list_empty(&ring->request_list);
1616 list_add_tail(&request->list, &ring->request_list);
1617
b962442e
EA
1618 if (i915_file_priv) {
1619 list_add_tail(&request->client_list,
1620 &i915_file_priv->mm.request_list);
1621 } else {
1622 INIT_LIST_HEAD(&request->client_list);
1623 }
673a394b 1624
ce44b0ea
EA
1625 /* Associate any objects on the flushing list matching the write
1626 * domain we're flushing with our flush.
1627 */
63560396 1628 if (flush_domains != 0)
852835f3 1629 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1630
f65d9421
BG
1631 if (!dev_priv->mm.suspended) {
1632 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1633 if (was_empty)
1634 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1635 }
673a394b
EA
1636 return seqno;
1637}
1638
1639/**
1640 * Command execution barrier
1641 *
1642 * Ensures that all commands in the ring are finished
1643 * before signalling the CPU
1644 */
3043c60c 1645static uint32_t
852835f3 1646i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1647{
673a394b 1648 uint32_t flush_domains = 0;
673a394b
EA
1649
1650 /* The sampler always gets flushed on i965 (sigh) */
1651 if (IS_I965G(dev))
1652 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1653
1654 ring->flush(dev, ring,
1655 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1656 return flush_domains;
1657}
1658
1659/**
1660 * Moves buffers associated only with the given active seqno from the active
1661 * to inactive list, potentially freeing them.
1662 */
1663static void
1664i915_gem_retire_request(struct drm_device *dev,
1665 struct drm_i915_gem_request *request)
1666{
1667 drm_i915_private_t *dev_priv = dev->dev_private;
1668
1c5d22f7
CW
1669 trace_i915_gem_request_retire(dev, request->seqno);
1670
673a394b
EA
1671 /* Move any buffers on the active list that are no longer referenced
1672 * by the ringbuffer to the flushing/inactive lists as appropriate.
1673 */
5e118f41 1674 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1675 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1676 struct drm_gem_object *obj;
1677 struct drm_i915_gem_object *obj_priv;
1678
852835f3 1679 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1680 struct drm_i915_gem_object,
1681 list);
a8089e84 1682 obj = &obj_priv->base;
673a394b
EA
1683
1684 /* If the seqno being retired doesn't match the oldest in the
1685 * list, then the oldest in the list must still be newer than
1686 * this seqno.
1687 */
1688 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1689 goto out;
de151cf6 1690
673a394b
EA
1691#if WATCH_LRU
1692 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1693 __func__, request->seqno, obj);
1694#endif
1695
ce44b0ea
EA
1696 if (obj->write_domain != 0)
1697 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1698 else {
1699 /* Take a reference on the object so it won't be
1700 * freed while the spinlock is held. The list
1701 * protection for this spinlock is safe when breaking
1702 * the lock like this since the next thing we do
1703 * is just get the head of the list again.
1704 */
1705 drm_gem_object_reference(obj);
673a394b 1706 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1707 spin_unlock(&dev_priv->mm.active_list_lock);
1708 drm_gem_object_unreference(obj);
1709 spin_lock(&dev_priv->mm.active_list_lock);
1710 }
673a394b 1711 }
5e118f41
CW
1712out:
1713 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1714}
1715
1716/**
1717 * Returns true if seq1 is later than seq2.
1718 */
22be1724 1719bool
673a394b
EA
1720i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1721{
1722 return (int32_t)(seq1 - seq2) >= 0;
1723}
1724
1725uint32_t
852835f3 1726i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1727 struct intel_ring_buffer *ring)
673a394b 1728{
852835f3 1729 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1730}
1731
1732/**
1733 * This function clears the request list as sequence numbers are passed.
1734 */
b09a1fec
CW
1735static void
1736i915_gem_retire_requests_ring(struct drm_device *dev,
1737 struct intel_ring_buffer *ring)
673a394b
EA
1738{
1739 drm_i915_private_t *dev_priv = dev->dev_private;
1740 uint32_t seqno;
1741
8187a2b7 1742 if (!ring->status_page.page_addr
852835f3 1743 || list_empty(&ring->request_list))
6c0594a3
KW
1744 return;
1745
852835f3 1746 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1747
852835f3 1748 while (!list_empty(&ring->request_list)) {
673a394b
EA
1749 struct drm_i915_gem_request *request;
1750 uint32_t retiring_seqno;
1751
852835f3 1752 request = list_first_entry(&ring->request_list,
673a394b
EA
1753 struct drm_i915_gem_request,
1754 list);
1755 retiring_seqno = request->seqno;
1756
1757 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1758 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1759 i915_gem_retire_request(dev, request);
1760
1761 list_del(&request->list);
b962442e 1762 list_del(&request->client_list);
9a298b2a 1763 kfree(request);
673a394b
EA
1764 } else
1765 break;
1766 }
9d34e5db
CW
1767
1768 if (unlikely (dev_priv->trace_irq_seqno &&
1769 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1770
1771 ring->user_irq_put(dev, ring);
9d34e5db
CW
1772 dev_priv->trace_irq_seqno = 0;
1773 }
673a394b
EA
1774}
1775
b09a1fec
CW
1776void
1777i915_gem_retire_requests(struct drm_device *dev)
1778{
1779 drm_i915_private_t *dev_priv = dev->dev_private;
1780
be72615b
CW
1781 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1782 struct drm_i915_gem_object *obj_priv, *tmp;
1783
1784 /* We must be careful that during unbind() we do not
1785 * accidentally infinitely recurse into retire requests.
1786 * Currently:
1787 * retire -> free -> unbind -> wait -> retire_ring
1788 */
1789 list_for_each_entry_safe(obj_priv, tmp,
1790 &dev_priv->mm.deferred_free_list,
1791 list)
1792 i915_gem_free_object_tail(&obj_priv->base);
1793 }
1794
b09a1fec
CW
1795 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1796 if (HAS_BSD(dev))
1797 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1798}
1799
673a394b
EA
1800void
1801i915_gem_retire_work_handler(struct work_struct *work)
1802{
1803 drm_i915_private_t *dev_priv;
1804 struct drm_device *dev;
1805
1806 dev_priv = container_of(work, drm_i915_private_t,
1807 mm.retire_work.work);
1808 dev = dev_priv->dev;
1809
1810 mutex_lock(&dev->struct_mutex);
b09a1fec 1811 i915_gem_retire_requests(dev);
d1b851fc 1812
6dbe2772 1813 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1814 (!list_empty(&dev_priv->render_ring.request_list) ||
1815 (HAS_BSD(dev) &&
1816 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1817 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1818 mutex_unlock(&dev->struct_mutex);
1819}
1820
5a5a0c64 1821int
852835f3
ZN
1822i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1823 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1824{
1825 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1826 u32 ier;
673a394b
EA
1827 int ret = 0;
1828
1829 BUG_ON(seqno == 0);
1830
ba1234d1 1831 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1832 return -EIO;
1833
852835f3 1834 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1835 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1836 ier = I915_READ(DEIER) | I915_READ(GTIER);
1837 else
1838 ier = I915_READ(IER);
802c7eb6
JB
1839 if (!ier) {
1840 DRM_ERROR("something (likely vbetool) disabled "
1841 "interrupts, re-enabling\n");
1842 i915_driver_irq_preinstall(dev);
1843 i915_driver_irq_postinstall(dev);
1844 }
1845
1c5d22f7
CW
1846 trace_i915_gem_request_wait_begin(dev, seqno);
1847
852835f3 1848 ring->waiting_gem_seqno = seqno;
8187a2b7 1849 ring->user_irq_get(dev, ring);
48764bf4 1850 if (interruptible)
852835f3
ZN
1851 ret = wait_event_interruptible(ring->irq_queue,
1852 i915_seqno_passed(
1853 ring->get_gem_seqno(dev, ring), seqno)
1854 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1855 else
852835f3
ZN
1856 wait_event(ring->irq_queue,
1857 i915_seqno_passed(
1858 ring->get_gem_seqno(dev, ring), seqno)
1859 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1860
8187a2b7 1861 ring->user_irq_put(dev, ring);
852835f3 1862 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1863
1864 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1865 }
ba1234d1 1866 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1867 ret = -EIO;
1868
1869 if (ret && ret != -ERESTARTSYS)
1870 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1871 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1872
1873 /* Directly dispatch request retiring. While we have the work queue
1874 * to handle this, the waiter on a request often wants an associated
1875 * buffer to have made it to the inactive list, and we would need
1876 * a separate wait queue to handle that.
1877 */
1878 if (ret == 0)
b09a1fec 1879 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1880
1881 return ret;
1882}
1883
48764bf4
DV
1884/**
1885 * Waits for a sequence number to be signaled, and cleans up the
1886 * request and object lists appropriately for that event.
1887 */
1888static int
852835f3
ZN
1889i915_wait_request(struct drm_device *dev, uint32_t seqno,
1890 struct intel_ring_buffer *ring)
48764bf4 1891{
852835f3 1892 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1893}
1894
8187a2b7
ZN
1895static void
1896i915_gem_flush(struct drm_device *dev,
1897 uint32_t invalidate_domains,
1898 uint32_t flush_domains)
1899{
1900 drm_i915_private_t *dev_priv = dev->dev_private;
1901 if (flush_domains & I915_GEM_DOMAIN_CPU)
1902 drm_agp_chipset_flush(dev);
1903 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1904 invalidate_domains,
1905 flush_domains);
d1b851fc
ZN
1906
1907 if (HAS_BSD(dev))
1908 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1909 invalidate_domains,
1910 flush_domains);
8187a2b7
ZN
1911}
1912
673a394b
EA
1913/**
1914 * Ensures that all rendering to the object has completed and the object is
1915 * safe to unbind from the GTT or access from the CPU.
1916 */
1917static int
1918i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1919{
1920 struct drm_device *dev = obj->dev;
23010e43 1921 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1922 int ret;
1923
e47c68e9
EA
1924 /* This function only exists to support waiting for existing rendering,
1925 * not for emitting required flushes.
673a394b 1926 */
e47c68e9 1927 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1928
1929 /* If there is rendering queued on the buffer being evicted, wait for
1930 * it.
1931 */
1932 if (obj_priv->active) {
1933#if WATCH_BUF
1934 DRM_INFO("%s: object %p wait for seqno %08x\n",
1935 __func__, obj, obj_priv->last_rendering_seqno);
1936#endif
852835f3
ZN
1937 ret = i915_wait_request(dev,
1938 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1939 if (ret != 0)
1940 return ret;
1941 }
1942
1943 return 0;
1944}
1945
1946/**
1947 * Unbinds an object from the GTT aperture.
1948 */
0f973f27 1949int
673a394b
EA
1950i915_gem_object_unbind(struct drm_gem_object *obj)
1951{
1952 struct drm_device *dev = obj->dev;
4a87b8ca 1953 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1954 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1955 int ret = 0;
1956
1957#if WATCH_BUF
1958 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1959 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1960#endif
1961 if (obj_priv->gtt_space == NULL)
1962 return 0;
1963
1964 if (obj_priv->pin_count != 0) {
1965 DRM_ERROR("Attempting to unbind pinned buffer\n");
1966 return -EINVAL;
1967 }
1968
5323fd04
EA
1969 /* blow away mappings if mapped through GTT */
1970 i915_gem_release_mmap(obj);
1971
673a394b
EA
1972 /* Move the object to the CPU domain to ensure that
1973 * any possible CPU writes while it's not in the GTT
1974 * are flushed when we go to remap it. This will
1975 * also ensure that all pending GPU writes are finished
1976 * before we unbind.
1977 */
e47c68e9 1978 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1979 if (ret == -ERESTARTSYS)
673a394b 1980 return ret;
8dc1775d
CW
1981 /* Continue on if we fail due to EIO, the GPU is hung so we
1982 * should be safe and we need to cleanup or else we might
1983 * cause memory corruption through use-after-free.
1984 */
673a394b 1985
96b47b65
DV
1986 /* release the fence reg _after_ flushing */
1987 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1988 i915_gem_clear_fence_reg(obj);
1989
673a394b
EA
1990 if (obj_priv->agp_mem != NULL) {
1991 drm_unbind_agp(obj_priv->agp_mem);
1992 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1993 obj_priv->agp_mem = NULL;
1994 }
1995
856fa198 1996 i915_gem_object_put_pages(obj);
a32808c0 1997 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1998
1999 if (obj_priv->gtt_space) {
2000 atomic_dec(&dev->gtt_count);
2001 atomic_sub(obj->size, &dev->gtt_memory);
2002
2003 drm_mm_put_block(obj_priv->gtt_space);
2004 obj_priv->gtt_space = NULL;
2005 }
2006
2007 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2008 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2009 if (!list_empty(&obj_priv->list))
2010 list_del_init(&obj_priv->list);
4a87b8ca 2011 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2012
963b4836
CW
2013 if (i915_gem_object_is_purgeable(obj_priv))
2014 i915_gem_object_truncate(obj);
2015
1c5d22f7
CW
2016 trace_i915_gem_object_unbind(obj);
2017
8dc1775d 2018 return ret;
673a394b
EA
2019}
2020
b47eb4a2 2021int
4df2faf4
DV
2022i915_gpu_idle(struct drm_device *dev)
2023{
2024 drm_i915_private_t *dev_priv = dev->dev_private;
2025 bool lists_empty;
d1b851fc 2026 uint32_t seqno1, seqno2;
852835f3 2027 int ret;
4df2faf4
DV
2028
2029 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2030 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2031 list_empty(&dev_priv->render_ring.active_list) &&
2032 (!HAS_BSD(dev) ||
2033 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2034 spin_unlock(&dev_priv->mm.active_list_lock);
2035
2036 if (lists_empty)
2037 return 0;
2038
2039 /* Flush everything onto the inactive list. */
2040 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2041 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2042 &dev_priv->render_ring);
d1b851fc 2043 if (seqno1 == 0)
4df2faf4 2044 return -ENOMEM;
d1b851fc
ZN
2045 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2046
2047 if (HAS_BSD(dev)) {
2048 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2049 &dev_priv->bsd_ring);
2050 if (seqno2 == 0)
2051 return -ENOMEM;
2052
2053 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2054 if (ret)
2055 return ret;
2056 }
2057
4df2faf4 2058
852835f3 2059 return ret;
4df2faf4
DV
2060}
2061
6911a9b8 2062int
4bdadb97
CW
2063i915_gem_object_get_pages(struct drm_gem_object *obj,
2064 gfp_t gfpmask)
673a394b 2065{
23010e43 2066 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2067 int page_count, i;
2068 struct address_space *mapping;
2069 struct inode *inode;
2070 struct page *page;
673a394b 2071
778c3544
DV
2072 BUG_ON(obj_priv->pages_refcount
2073 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2074
856fa198 2075 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2076 return 0;
2077
2078 /* Get the list of pages out of our struct file. They'll be pinned
2079 * at this point until we release them.
2080 */
2081 page_count = obj->size / PAGE_SIZE;
856fa198 2082 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2083 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2084 if (obj_priv->pages == NULL) {
856fa198 2085 obj_priv->pages_refcount--;
673a394b
EA
2086 return -ENOMEM;
2087 }
2088
2089 inode = obj->filp->f_path.dentry->d_inode;
2090 mapping = inode->i_mapping;
2091 for (i = 0; i < page_count; i++) {
4bdadb97 2092 page = read_cache_page_gfp(mapping, i,
985b823b 2093 GFP_HIGHUSER |
4bdadb97 2094 __GFP_COLD |
cd9f040d 2095 __GFP_RECLAIMABLE |
4bdadb97 2096 gfpmask);
1f2b1013
CW
2097 if (IS_ERR(page))
2098 goto err_pages;
2099
856fa198 2100 obj_priv->pages[i] = page;
673a394b 2101 }
280b713b
EA
2102
2103 if (obj_priv->tiling_mode != I915_TILING_NONE)
2104 i915_gem_object_do_bit_17_swizzle(obj);
2105
673a394b 2106 return 0;
1f2b1013
CW
2107
2108err_pages:
2109 while (i--)
2110 page_cache_release(obj_priv->pages[i]);
2111
2112 drm_free_large(obj_priv->pages);
2113 obj_priv->pages = NULL;
2114 obj_priv->pages_refcount--;
2115 return PTR_ERR(page);
673a394b
EA
2116}
2117
4e901fdc
EA
2118static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2119{
2120 struct drm_gem_object *obj = reg->obj;
2121 struct drm_device *dev = obj->dev;
2122 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2123 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2124 int regnum = obj_priv->fence_reg;
2125 uint64_t val;
2126
2127 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2128 0xfffff000) << 32;
2129 val |= obj_priv->gtt_offset & 0xfffff000;
2130 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2131 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2132
2133 if (obj_priv->tiling_mode == I915_TILING_Y)
2134 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2135 val |= I965_FENCE_REG_VALID;
2136
2137 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2138}
2139
de151cf6
JB
2140static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2141{
2142 struct drm_gem_object *obj = reg->obj;
2143 struct drm_device *dev = obj->dev;
2144 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2145 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2146 int regnum = obj_priv->fence_reg;
2147 uint64_t val;
2148
2149 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2150 0xfffff000) << 32;
2151 val |= obj_priv->gtt_offset & 0xfffff000;
2152 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2153 if (obj_priv->tiling_mode == I915_TILING_Y)
2154 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2155 val |= I965_FENCE_REG_VALID;
2156
2157 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2158}
2159
2160static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2161{
2162 struct drm_gem_object *obj = reg->obj;
2163 struct drm_device *dev = obj->dev;
2164 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2165 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2166 int regnum = obj_priv->fence_reg;
0f973f27 2167 int tile_width;
dc529a4f 2168 uint32_t fence_reg, val;
de151cf6
JB
2169 uint32_t pitch_val;
2170
2171 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2172 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2173 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2174 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2175 return;
2176 }
2177
0f973f27
JB
2178 if (obj_priv->tiling_mode == I915_TILING_Y &&
2179 HAS_128_BYTE_Y_TILING(dev))
2180 tile_width = 128;
de151cf6 2181 else
0f973f27
JB
2182 tile_width = 512;
2183
2184 /* Note: pitch better be a power of two tile widths */
2185 pitch_val = obj_priv->stride / tile_width;
2186 pitch_val = ffs(pitch_val) - 1;
de151cf6 2187
c36a2a6d
DV
2188 if (obj_priv->tiling_mode == I915_TILING_Y &&
2189 HAS_128_BYTE_Y_TILING(dev))
2190 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2191 else
2192 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2193
de151cf6
JB
2194 val = obj_priv->gtt_offset;
2195 if (obj_priv->tiling_mode == I915_TILING_Y)
2196 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2197 val |= I915_FENCE_SIZE_BITS(obj->size);
2198 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2199 val |= I830_FENCE_REG_VALID;
2200
dc529a4f
EA
2201 if (regnum < 8)
2202 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2203 else
2204 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2205 I915_WRITE(fence_reg, val);
de151cf6
JB
2206}
2207
2208static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2209{
2210 struct drm_gem_object *obj = reg->obj;
2211 struct drm_device *dev = obj->dev;
2212 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2213 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2214 int regnum = obj_priv->fence_reg;
2215 uint32_t val;
2216 uint32_t pitch_val;
8d7773a3 2217 uint32_t fence_size_bits;
de151cf6 2218
8d7773a3 2219 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2220 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2221 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2222 __func__, obj_priv->gtt_offset);
de151cf6
JB
2223 return;
2224 }
2225
e76a16de
EA
2226 pitch_val = obj_priv->stride / 128;
2227 pitch_val = ffs(pitch_val) - 1;
2228 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2229
de151cf6
JB
2230 val = obj_priv->gtt_offset;
2231 if (obj_priv->tiling_mode == I915_TILING_Y)
2232 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2233 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2234 WARN_ON(fence_size_bits & ~0x00000f00);
2235 val |= fence_size_bits;
de151cf6
JB
2236 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2237 val |= I830_FENCE_REG_VALID;
2238
2239 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2240}
2241
ae3db24a
DV
2242static int i915_find_fence_reg(struct drm_device *dev)
2243{
2244 struct drm_i915_fence_reg *reg = NULL;
2245 struct drm_i915_gem_object *obj_priv = NULL;
2246 struct drm_i915_private *dev_priv = dev->dev_private;
2247 struct drm_gem_object *obj = NULL;
2248 int i, avail, ret;
2249
2250 /* First try to find a free reg */
2251 avail = 0;
2252 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2253 reg = &dev_priv->fence_regs[i];
2254 if (!reg->obj)
2255 return i;
2256
23010e43 2257 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2258 if (!obj_priv->pin_count)
2259 avail++;
2260 }
2261
2262 if (avail == 0)
2263 return -ENOSPC;
2264
2265 /* None available, try to steal one or wait for a user to finish */
2266 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2267 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2268 lru_list) {
2269 obj = reg->obj;
2270 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2271
2272 if (obj_priv->pin_count)
2273 continue;
2274
2275 /* found one! */
2276 i = obj_priv->fence_reg;
2277 break;
2278 }
2279
2280 BUG_ON(i == I915_FENCE_REG_NONE);
2281
2282 /* We only have a reference on obj from the active list. put_fence_reg
2283 * might drop that one, causing a use-after-free in it. So hold a
2284 * private reference to obj like the other callers of put_fence_reg
2285 * (set_tiling ioctl) do. */
2286 drm_gem_object_reference(obj);
2287 ret = i915_gem_object_put_fence_reg(obj);
2288 drm_gem_object_unreference(obj);
2289 if (ret != 0)
2290 return ret;
2291
2292 return i;
2293}
2294
de151cf6
JB
2295/**
2296 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2297 * @obj: object to map through a fence reg
2298 *
2299 * When mapping objects through the GTT, userspace wants to be able to write
2300 * to them without having to worry about swizzling if the object is tiled.
2301 *
2302 * This function walks the fence regs looking for a free one for @obj,
2303 * stealing one if it can't find any.
2304 *
2305 * It then sets up the reg based on the object's properties: address, pitch
2306 * and tiling format.
2307 */
8c4b8c3f
CW
2308int
2309i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2310{
2311 struct drm_device *dev = obj->dev;
79e53945 2312 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2314 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2315 int ret;
de151cf6 2316
a09ba7fa
EA
2317 /* Just update our place in the LRU if our fence is getting used. */
2318 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2319 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2320 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2321 return 0;
2322 }
2323
de151cf6
JB
2324 switch (obj_priv->tiling_mode) {
2325 case I915_TILING_NONE:
2326 WARN(1, "allocating a fence for non-tiled object?\n");
2327 break;
2328 case I915_TILING_X:
0f973f27
JB
2329 if (!obj_priv->stride)
2330 return -EINVAL;
2331 WARN((obj_priv->stride & (512 - 1)),
2332 "object 0x%08x is X tiled but has non-512B pitch\n",
2333 obj_priv->gtt_offset);
de151cf6
JB
2334 break;
2335 case I915_TILING_Y:
0f973f27
JB
2336 if (!obj_priv->stride)
2337 return -EINVAL;
2338 WARN((obj_priv->stride & (128 - 1)),
2339 "object 0x%08x is Y tiled but has non-128B pitch\n",
2340 obj_priv->gtt_offset);
de151cf6
JB
2341 break;
2342 }
2343
ae3db24a
DV
2344 ret = i915_find_fence_reg(dev);
2345 if (ret < 0)
2346 return ret;
de151cf6 2347
ae3db24a
DV
2348 obj_priv->fence_reg = ret;
2349 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2350 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2351
de151cf6
JB
2352 reg->obj = obj;
2353
e259befd
CW
2354 switch (INTEL_INFO(dev)->gen) {
2355 case 6:
4e901fdc 2356 sandybridge_write_fence_reg(reg);
e259befd
CW
2357 break;
2358 case 5:
2359 case 4:
de151cf6 2360 i965_write_fence_reg(reg);
e259befd
CW
2361 break;
2362 case 3:
de151cf6 2363 i915_write_fence_reg(reg);
e259befd
CW
2364 break;
2365 case 2:
de151cf6 2366 i830_write_fence_reg(reg);
e259befd
CW
2367 break;
2368 }
d9ddcb96 2369
ae3db24a
DV
2370 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2371 obj_priv->tiling_mode);
1c5d22f7 2372
d9ddcb96 2373 return 0;
de151cf6
JB
2374}
2375
2376/**
2377 * i915_gem_clear_fence_reg - clear out fence register info
2378 * @obj: object to clear
2379 *
2380 * Zeroes out the fence register itself and clears out the associated
2381 * data structures in dev_priv and obj_priv.
2382 */
2383static void
2384i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2385{
2386 struct drm_device *dev = obj->dev;
79e53945 2387 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2388 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2389 struct drm_i915_fence_reg *reg =
2390 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2391 uint32_t fence_reg;
de151cf6 2392
e259befd
CW
2393 switch (INTEL_INFO(dev)->gen) {
2394 case 6:
4e901fdc
EA
2395 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2396 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2397 break;
2398 case 5:
2399 case 4:
de151cf6 2400 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2401 break;
2402 case 3:
9b74f734 2403 if (obj_priv->fence_reg >= 8)
e259befd 2404 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2405 else
e259befd
CW
2406 case 2:
2407 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2408
2409 I915_WRITE(fence_reg, 0);
e259befd 2410 break;
dc529a4f 2411 }
de151cf6 2412
007cc8ac 2413 reg->obj = NULL;
de151cf6 2414 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2415 list_del_init(&reg->lru_list);
de151cf6
JB
2416}
2417
52dc7d32
CW
2418/**
2419 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2420 * to the buffer to finish, and then resets the fence register.
2421 * @obj: tiled object holding a fence register.
2422 *
2423 * Zeroes out the fence register itself and clears out the associated
2424 * data structures in dev_priv and obj_priv.
2425 */
2426int
2427i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2428{
2429 struct drm_device *dev = obj->dev;
23010e43 2430 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2431
2432 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2433 return 0;
2434
10ae9bd2
DV
2435 /* If we've changed tiling, GTT-mappings of the object
2436 * need to re-fault to ensure that the correct fence register
2437 * setup is in place.
2438 */
2439 i915_gem_release_mmap(obj);
2440
52dc7d32
CW
2441 /* On the i915, GPU access to tiled buffers is via a fence,
2442 * therefore we must wait for any outstanding access to complete
2443 * before clearing the fence.
2444 */
2445 if (!IS_I965G(dev)) {
2446 int ret;
2447
2dafb1e0
CW
2448 ret = i915_gem_object_flush_gpu_write_domain(obj);
2449 if (ret != 0)
2450 return ret;
2451
52dc7d32
CW
2452 ret = i915_gem_object_wait_rendering(obj);
2453 if (ret != 0)
2454 return ret;
2455 }
2456
4a726612 2457 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2458 i915_gem_clear_fence_reg (obj);
2459
2460 return 0;
2461}
2462
673a394b
EA
2463/**
2464 * Finds free space in the GTT aperture and binds the object there.
2465 */
2466static int
2467i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2468{
2469 struct drm_device *dev = obj->dev;
2470 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2471 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2472 struct drm_mm_node *free_space;
4bdadb97 2473 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2474 int ret;
673a394b 2475
bb6baf76 2476 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2477 DRM_ERROR("Attempting to bind a purgeable object\n");
2478 return -EINVAL;
2479 }
2480
673a394b 2481 if (alignment == 0)
0f973f27 2482 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2483 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2484 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2485 return -EINVAL;
2486 }
2487
654fc607
CW
2488 /* If the object is bigger than the entire aperture, reject it early
2489 * before evicting everything in a vain attempt to find space.
2490 */
2491 if (obj->size > dev->gtt_total) {
2492 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2493 return -E2BIG;
2494 }
2495
673a394b
EA
2496 search_free:
2497 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2498 obj->size, alignment, 0);
2499 if (free_space != NULL) {
2500 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2501 alignment);
db3307a9 2502 if (obj_priv->gtt_space != NULL)
673a394b 2503 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2504 }
2505 if (obj_priv->gtt_space == NULL) {
2506 /* If the gtt is empty and we're still having trouble
2507 * fitting our object in, we're out of memory.
2508 */
2509#if WATCH_LRU
2510 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2511#endif
0108a3ed 2512 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2513 if (ret)
673a394b 2514 return ret;
9731129c 2515
673a394b
EA
2516 goto search_free;
2517 }
2518
2519#if WATCH_BUF
cfd43c02 2520 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2521 obj->size, obj_priv->gtt_offset);
2522#endif
4bdadb97 2523 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2524 if (ret) {
2525 drm_mm_put_block(obj_priv->gtt_space);
2526 obj_priv->gtt_space = NULL;
07f73f69
CW
2527
2528 if (ret == -ENOMEM) {
2529 /* first try to clear up some space from the GTT */
0108a3ed
DV
2530 ret = i915_gem_evict_something(dev, obj->size,
2531 alignment);
07f73f69 2532 if (ret) {
07f73f69 2533 /* now try to shrink everyone else */
4bdadb97
CW
2534 if (gfpmask) {
2535 gfpmask = 0;
2536 goto search_free;
07f73f69
CW
2537 }
2538
2539 return ret;
2540 }
2541
2542 goto search_free;
2543 }
2544
673a394b
EA
2545 return ret;
2546 }
2547
673a394b
EA
2548 /* Create an AGP memory structure pointing at our pages, and bind it
2549 * into the GTT.
2550 */
2551 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2552 obj_priv->pages,
07f73f69 2553 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2554 obj_priv->gtt_offset,
2555 obj_priv->agp_type);
673a394b 2556 if (obj_priv->agp_mem == NULL) {
856fa198 2557 i915_gem_object_put_pages(obj);
673a394b
EA
2558 drm_mm_put_block(obj_priv->gtt_space);
2559 obj_priv->gtt_space = NULL;
07f73f69 2560
0108a3ed 2561 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2562 if (ret)
07f73f69 2563 return ret;
07f73f69
CW
2564
2565 goto search_free;
673a394b
EA
2566 }
2567 atomic_inc(&dev->gtt_count);
2568 atomic_add(obj->size, &dev->gtt_memory);
2569
bf1a1092
CW
2570 /* keep track of bounds object by adding it to the inactive list */
2571 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2572
673a394b
EA
2573 /* Assert that the object is not currently in any GPU domain. As it
2574 * wasn't in the GTT, there shouldn't be any way it could have been in
2575 * a GPU cache
2576 */
21d509e3
CW
2577 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2578 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2579
1c5d22f7
CW
2580 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2581
673a394b
EA
2582 return 0;
2583}
2584
2585void
2586i915_gem_clflush_object(struct drm_gem_object *obj)
2587{
23010e43 2588 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2589
2590 /* If we don't have a page list set up, then we're not pinned
2591 * to GPU, and we can ignore the cache flush because it'll happen
2592 * again at bind time.
2593 */
856fa198 2594 if (obj_priv->pages == NULL)
673a394b
EA
2595 return;
2596
1c5d22f7 2597 trace_i915_gem_object_clflush(obj);
cfa16a0d 2598
856fa198 2599 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2600}
2601
e47c68e9 2602/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2603static int
e47c68e9
EA
2604i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2605{
2606 struct drm_device *dev = obj->dev;
1c5d22f7 2607 uint32_t old_write_domain;
852835f3 2608 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2609
2610 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2611 return 0;
e47c68e9
EA
2612
2613 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2614 old_write_domain = obj->write_domain;
e47c68e9 2615 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2616 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2617 return -ENOMEM;
1c5d22f7
CW
2618
2619 trace_i915_gem_object_change_domain(obj,
2620 obj->read_domains,
2621 old_write_domain);
2dafb1e0 2622 return 0;
e47c68e9
EA
2623}
2624
2625/** Flushes the GTT write domain for the object if it's dirty. */
2626static void
2627i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2628{
1c5d22f7
CW
2629 uint32_t old_write_domain;
2630
e47c68e9
EA
2631 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2632 return;
2633
2634 /* No actual flushing is required for the GTT write domain. Writes
2635 * to it immediately go to main memory as far as we know, so there's
2636 * no chipset flush. It also doesn't land in render cache.
2637 */
1c5d22f7 2638 old_write_domain = obj->write_domain;
e47c68e9 2639 obj->write_domain = 0;
1c5d22f7
CW
2640
2641 trace_i915_gem_object_change_domain(obj,
2642 obj->read_domains,
2643 old_write_domain);
e47c68e9
EA
2644}
2645
2646/** Flushes the CPU write domain for the object if it's dirty. */
2647static void
2648i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2649{
2650 struct drm_device *dev = obj->dev;
1c5d22f7 2651 uint32_t old_write_domain;
e47c68e9
EA
2652
2653 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2654 return;
2655
2656 i915_gem_clflush_object(obj);
2657 drm_agp_chipset_flush(dev);
1c5d22f7 2658 old_write_domain = obj->write_domain;
e47c68e9 2659 obj->write_domain = 0;
1c5d22f7
CW
2660
2661 trace_i915_gem_object_change_domain(obj,
2662 obj->read_domains,
2663 old_write_domain);
e47c68e9
EA
2664}
2665
2dafb1e0 2666int
6b95a207
KH
2667i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2668{
2dafb1e0
CW
2669 int ret = 0;
2670
6b95a207
KH
2671 switch (obj->write_domain) {
2672 case I915_GEM_DOMAIN_GTT:
2673 i915_gem_object_flush_gtt_write_domain(obj);
2674 break;
2675 case I915_GEM_DOMAIN_CPU:
2676 i915_gem_object_flush_cpu_write_domain(obj);
2677 break;
2678 default:
2dafb1e0 2679 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2680 break;
2681 }
2dafb1e0
CW
2682
2683 return ret;
6b95a207
KH
2684}
2685
2ef7eeaa
EA
2686/**
2687 * Moves a single object to the GTT read, and possibly write domain.
2688 *
2689 * This function returns when the move is complete, including waiting on
2690 * flushes to occur.
2691 */
79e53945 2692int
2ef7eeaa
EA
2693i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2694{
23010e43 2695 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2696 uint32_t old_write_domain, old_read_domains;
e47c68e9 2697 int ret;
2ef7eeaa 2698
02354392
EA
2699 /* Not valid to be called on unbound objects. */
2700 if (obj_priv->gtt_space == NULL)
2701 return -EINVAL;
2702
2dafb1e0
CW
2703 ret = i915_gem_object_flush_gpu_write_domain(obj);
2704 if (ret != 0)
2705 return ret;
2706
e47c68e9
EA
2707 /* Wait on any GPU rendering and flushing to occur. */
2708 ret = i915_gem_object_wait_rendering(obj);
2709 if (ret != 0)
2710 return ret;
2711
1c5d22f7
CW
2712 old_write_domain = obj->write_domain;
2713 old_read_domains = obj->read_domains;
2714
e47c68e9
EA
2715 /* If we're writing through the GTT domain, then CPU and GPU caches
2716 * will need to be invalidated at next use.
2ef7eeaa 2717 */
e47c68e9
EA
2718 if (write)
2719 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2720
e47c68e9 2721 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2722
e47c68e9
EA
2723 /* It should now be out of any other write domains, and we can update
2724 * the domain values for our changes.
2725 */
2726 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2727 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2728 if (write) {
2729 obj->write_domain = I915_GEM_DOMAIN_GTT;
2730 obj_priv->dirty = 1;
2ef7eeaa
EA
2731 }
2732
1c5d22f7
CW
2733 trace_i915_gem_object_change_domain(obj,
2734 old_read_domains,
2735 old_write_domain);
2736
e47c68e9
EA
2737 return 0;
2738}
2739
b9241ea3
ZW
2740/*
2741 * Prepare buffer for display plane. Use uninterruptible for possible flush
2742 * wait, as in modesetting process we're not supposed to be interrupted.
2743 */
2744int
2745i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2746{
2747 struct drm_device *dev = obj->dev;
23010e43 2748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2749 uint32_t old_write_domain, old_read_domains;
2750 int ret;
2751
2752 /* Not valid to be called on unbound objects. */
2753 if (obj_priv->gtt_space == NULL)
2754 return -EINVAL;
2755
2dafb1e0
CW
2756 ret = i915_gem_object_flush_gpu_write_domain(obj);
2757 if (ret)
2758 return ret;
b9241ea3
ZW
2759
2760 /* Wait on any GPU rendering and flushing to occur. */
2761 if (obj_priv->active) {
2762#if WATCH_BUF
2763 DRM_INFO("%s: object %p wait for seqno %08x\n",
2764 __func__, obj, obj_priv->last_rendering_seqno);
2765#endif
852835f3
ZN
2766 ret = i915_do_wait_request(dev,
2767 obj_priv->last_rendering_seqno,
2768 0,
2769 obj_priv->ring);
b9241ea3
ZW
2770 if (ret != 0)
2771 return ret;
2772 }
2773
b118c1e3
CW
2774 i915_gem_object_flush_cpu_write_domain(obj);
2775
b9241ea3
ZW
2776 old_write_domain = obj->write_domain;
2777 old_read_domains = obj->read_domains;
2778
b9241ea3
ZW
2779 /* It should now be out of any other write domains, and we can update
2780 * the domain values for our changes.
2781 */
2782 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2783 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2784 obj->write_domain = I915_GEM_DOMAIN_GTT;
2785 obj_priv->dirty = 1;
2786
2787 trace_i915_gem_object_change_domain(obj,
2788 old_read_domains,
2789 old_write_domain);
2790
2791 return 0;
2792}
2793
e47c68e9
EA
2794/**
2795 * Moves a single object to the CPU read, and possibly write domain.
2796 *
2797 * This function returns when the move is complete, including waiting on
2798 * flushes to occur.
2799 */
2800static int
2801i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2802{
1c5d22f7 2803 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2804 int ret;
2805
2dafb1e0
CW
2806 ret = i915_gem_object_flush_gpu_write_domain(obj);
2807 if (ret)
2808 return ret;
2809
2ef7eeaa 2810 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2811 ret = i915_gem_object_wait_rendering(obj);
2812 if (ret != 0)
2813 return ret;
2ef7eeaa 2814
e47c68e9 2815 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2816
e47c68e9
EA
2817 /* If we have a partially-valid cache of the object in the CPU,
2818 * finish invalidating it and free the per-page flags.
2ef7eeaa 2819 */
e47c68e9 2820 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2821
1c5d22f7
CW
2822 old_write_domain = obj->write_domain;
2823 old_read_domains = obj->read_domains;
2824
e47c68e9
EA
2825 /* Flush the CPU cache if it's still invalid. */
2826 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2827 i915_gem_clflush_object(obj);
2ef7eeaa 2828
e47c68e9 2829 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2830 }
2831
2832 /* It should now be out of any other write domains, and we can update
2833 * the domain values for our changes.
2834 */
e47c68e9
EA
2835 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2836
2837 /* If we're writing through the CPU, then the GPU read domains will
2838 * need to be invalidated at next use.
2839 */
2840 if (write) {
2841 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2842 obj->write_domain = I915_GEM_DOMAIN_CPU;
2843 }
2ef7eeaa 2844
1c5d22f7
CW
2845 trace_i915_gem_object_change_domain(obj,
2846 old_read_domains,
2847 old_write_domain);
2848
2ef7eeaa
EA
2849 return 0;
2850}
2851
673a394b
EA
2852/*
2853 * Set the next domain for the specified object. This
2854 * may not actually perform the necessary flushing/invaliding though,
2855 * as that may want to be batched with other set_domain operations
2856 *
2857 * This is (we hope) the only really tricky part of gem. The goal
2858 * is fairly simple -- track which caches hold bits of the object
2859 * and make sure they remain coherent. A few concrete examples may
2860 * help to explain how it works. For shorthand, we use the notation
2861 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2862 * a pair of read and write domain masks.
2863 *
2864 * Case 1: the batch buffer
2865 *
2866 * 1. Allocated
2867 * 2. Written by CPU
2868 * 3. Mapped to GTT
2869 * 4. Read by GPU
2870 * 5. Unmapped from GTT
2871 * 6. Freed
2872 *
2873 * Let's take these a step at a time
2874 *
2875 * 1. Allocated
2876 * Pages allocated from the kernel may still have
2877 * cache contents, so we set them to (CPU, CPU) always.
2878 * 2. Written by CPU (using pwrite)
2879 * The pwrite function calls set_domain (CPU, CPU) and
2880 * this function does nothing (as nothing changes)
2881 * 3. Mapped by GTT
2882 * This function asserts that the object is not
2883 * currently in any GPU-based read or write domains
2884 * 4. Read by GPU
2885 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2886 * As write_domain is zero, this function adds in the
2887 * current read domains (CPU+COMMAND, 0).
2888 * flush_domains is set to CPU.
2889 * invalidate_domains is set to COMMAND
2890 * clflush is run to get data out of the CPU caches
2891 * then i915_dev_set_domain calls i915_gem_flush to
2892 * emit an MI_FLUSH and drm_agp_chipset_flush
2893 * 5. Unmapped from GTT
2894 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2895 * flush_domains and invalidate_domains end up both zero
2896 * so no flushing/invalidating happens
2897 * 6. Freed
2898 * yay, done
2899 *
2900 * Case 2: The shared render buffer
2901 *
2902 * 1. Allocated
2903 * 2. Mapped to GTT
2904 * 3. Read/written by GPU
2905 * 4. set_domain to (CPU,CPU)
2906 * 5. Read/written by CPU
2907 * 6. Read/written by GPU
2908 *
2909 * 1. Allocated
2910 * Same as last example, (CPU, CPU)
2911 * 2. Mapped to GTT
2912 * Nothing changes (assertions find that it is not in the GPU)
2913 * 3. Read/written by GPU
2914 * execbuffer calls set_domain (RENDER, RENDER)
2915 * flush_domains gets CPU
2916 * invalidate_domains gets GPU
2917 * clflush (obj)
2918 * MI_FLUSH and drm_agp_chipset_flush
2919 * 4. set_domain (CPU, CPU)
2920 * flush_domains gets GPU
2921 * invalidate_domains gets CPU
2922 * wait_rendering (obj) to make sure all drawing is complete.
2923 * This will include an MI_FLUSH to get the data from GPU
2924 * to memory
2925 * clflush (obj) to invalidate the CPU cache
2926 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2927 * 5. Read/written by CPU
2928 * cache lines are loaded and dirtied
2929 * 6. Read written by GPU
2930 * Same as last GPU access
2931 *
2932 * Case 3: The constant buffer
2933 *
2934 * 1. Allocated
2935 * 2. Written by CPU
2936 * 3. Read by GPU
2937 * 4. Updated (written) by CPU again
2938 * 5. Read by GPU
2939 *
2940 * 1. Allocated
2941 * (CPU, CPU)
2942 * 2. Written by CPU
2943 * (CPU, CPU)
2944 * 3. Read by GPU
2945 * (CPU+RENDER, 0)
2946 * flush_domains = CPU
2947 * invalidate_domains = RENDER
2948 * clflush (obj)
2949 * MI_FLUSH
2950 * drm_agp_chipset_flush
2951 * 4. Updated (written) by CPU again
2952 * (CPU, CPU)
2953 * flush_domains = 0 (no previous write domain)
2954 * invalidate_domains = 0 (no new read domains)
2955 * 5. Read by GPU
2956 * (CPU+RENDER, 0)
2957 * flush_domains = CPU
2958 * invalidate_domains = RENDER
2959 * clflush (obj)
2960 * MI_FLUSH
2961 * drm_agp_chipset_flush
2962 */
c0d90829 2963static void
8b0e378a 2964i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2965{
2966 struct drm_device *dev = obj->dev;
88f356b7 2967 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2968 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2969 uint32_t invalidate_domains = 0;
2970 uint32_t flush_domains = 0;
1c5d22f7 2971 uint32_t old_read_domains;
e47c68e9 2972
8b0e378a
EA
2973 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2974 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2975
652c393a
JB
2976 intel_mark_busy(dev, obj);
2977
673a394b
EA
2978#if WATCH_BUF
2979 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2980 __func__, obj,
8b0e378a
EA
2981 obj->read_domains, obj->pending_read_domains,
2982 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2983#endif
2984 /*
2985 * If the object isn't moving to a new write domain,
2986 * let the object stay in multiple read domains
2987 */
8b0e378a
EA
2988 if (obj->pending_write_domain == 0)
2989 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2990 else
2991 obj_priv->dirty = 1;
2992
2993 /*
2994 * Flush the current write domain if
2995 * the new read domains don't match. Invalidate
2996 * any read domains which differ from the old
2997 * write domain
2998 */
8b0e378a
EA
2999 if (obj->write_domain &&
3000 obj->write_domain != obj->pending_read_domains) {
673a394b 3001 flush_domains |= obj->write_domain;
8b0e378a
EA
3002 invalidate_domains |=
3003 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3004 }
3005 /*
3006 * Invalidate any read caches which may have
3007 * stale data. That is, any new read domains.
3008 */
8b0e378a 3009 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3010 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3011#if WATCH_BUF
3012 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3013 __func__, flush_domains, invalidate_domains);
3014#endif
673a394b
EA
3015 i915_gem_clflush_object(obj);
3016 }
3017
1c5d22f7
CW
3018 old_read_domains = obj->read_domains;
3019
efbeed96
EA
3020 /* The actual obj->write_domain will be updated with
3021 * pending_write_domain after we emit the accumulated flush for all
3022 * of our domain changes in execbuffers (which clears objects'
3023 * write_domains). So if we have a current write domain that we
3024 * aren't changing, set pending_write_domain to that.
3025 */
3026 if (flush_domains == 0 && obj->pending_write_domain == 0)
3027 obj->pending_write_domain = obj->write_domain;
8b0e378a 3028 obj->read_domains = obj->pending_read_domains;
673a394b 3029
88f356b7
CW
3030 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3031 if (obj_priv->ring == &dev_priv->render_ring)
3032 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3033 else if (obj_priv->ring == &dev_priv->bsd_ring)
3034 dev_priv->flush_rings |= FLUSH_BSD_RING;
3035 }
3036
673a394b
EA
3037 dev->invalidate_domains |= invalidate_domains;
3038 dev->flush_domains |= flush_domains;
3039#if WATCH_BUF
3040 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3041 __func__,
3042 obj->read_domains, obj->write_domain,
3043 dev->invalidate_domains, dev->flush_domains);
3044#endif
1c5d22f7
CW
3045
3046 trace_i915_gem_object_change_domain(obj,
3047 old_read_domains,
3048 obj->write_domain);
673a394b
EA
3049}
3050
3051/**
e47c68e9 3052 * Moves the object from a partially CPU read to a full one.
673a394b 3053 *
e47c68e9
EA
3054 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3055 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3056 */
e47c68e9
EA
3057static void
3058i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3059{
23010e43 3060 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3061
e47c68e9
EA
3062 if (!obj_priv->page_cpu_valid)
3063 return;
3064
3065 /* If we're partially in the CPU read domain, finish moving it in.
3066 */
3067 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3068 int i;
3069
3070 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3071 if (obj_priv->page_cpu_valid[i])
3072 continue;
856fa198 3073 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3074 }
e47c68e9
EA
3075 }
3076
3077 /* Free the page_cpu_valid mappings which are now stale, whether
3078 * or not we've got I915_GEM_DOMAIN_CPU.
3079 */
9a298b2a 3080 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3081 obj_priv->page_cpu_valid = NULL;
3082}
3083
3084/**
3085 * Set the CPU read domain on a range of the object.
3086 *
3087 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3088 * not entirely valid. The page_cpu_valid member of the object flags which
3089 * pages have been flushed, and will be respected by
3090 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3091 * of the whole object.
3092 *
3093 * This function returns when the move is complete, including waiting on
3094 * flushes to occur.
3095 */
3096static int
3097i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3098 uint64_t offset, uint64_t size)
3099{
23010e43 3100 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3101 uint32_t old_read_domains;
e47c68e9 3102 int i, ret;
673a394b 3103
e47c68e9
EA
3104 if (offset == 0 && size == obj->size)
3105 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3106
2dafb1e0
CW
3107 ret = i915_gem_object_flush_gpu_write_domain(obj);
3108 if (ret)
3109 return ret;
3110
e47c68e9 3111 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3112 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3113 if (ret != 0)
6a47baa6 3114 return ret;
e47c68e9
EA
3115 i915_gem_object_flush_gtt_write_domain(obj);
3116
3117 /* If we're already fully in the CPU read domain, we're done. */
3118 if (obj_priv->page_cpu_valid == NULL &&
3119 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3120 return 0;
673a394b 3121
e47c68e9
EA
3122 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3123 * newly adding I915_GEM_DOMAIN_CPU
3124 */
673a394b 3125 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3126 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3127 GFP_KERNEL);
e47c68e9
EA
3128 if (obj_priv->page_cpu_valid == NULL)
3129 return -ENOMEM;
3130 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3131 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3132
3133 /* Flush the cache on any pages that are still invalid from the CPU's
3134 * perspective.
3135 */
e47c68e9
EA
3136 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3137 i++) {
673a394b
EA
3138 if (obj_priv->page_cpu_valid[i])
3139 continue;
3140
856fa198 3141 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3142
3143 obj_priv->page_cpu_valid[i] = 1;
3144 }
3145
e47c68e9
EA
3146 /* It should now be out of any other write domains, and we can update
3147 * the domain values for our changes.
3148 */
3149 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3150
1c5d22f7 3151 old_read_domains = obj->read_domains;
e47c68e9
EA
3152 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3153
1c5d22f7
CW
3154 trace_i915_gem_object_change_domain(obj,
3155 old_read_domains,
3156 obj->write_domain);
3157
673a394b
EA
3158 return 0;
3159}
3160
673a394b
EA
3161/**
3162 * Pin an object to the GTT and evaluate the relocations landing in it.
3163 */
3164static int
3165i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3166 struct drm_file *file_priv,
76446cac 3167 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3168 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3169{
3170 struct drm_device *dev = obj->dev;
0839ccb8 3171 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3172 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3173 int i, ret;
0839ccb8 3174 void __iomem *reloc_page;
76446cac
JB
3175 bool need_fence;
3176
3177 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3178 obj_priv->tiling_mode != I915_TILING_NONE;
3179
3180 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3181 if (need_fence &&
3182 !i915_gem_object_fence_offset_ok(obj,
3183 obj_priv->tiling_mode)) {
3184 ret = i915_gem_object_unbind(obj);
3185 if (ret)
3186 return ret;
3187 }
673a394b
EA
3188
3189 /* Choose the GTT offset for our buffer and put it there. */
3190 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3191 if (ret)
3192 return ret;
3193
76446cac
JB
3194 /*
3195 * Pre-965 chips need a fence register set up in order to
3196 * properly handle blits to/from tiled surfaces.
3197 */
3198 if (need_fence) {
3199 ret = i915_gem_object_get_fence_reg(obj);
3200 if (ret != 0) {
76446cac
JB
3201 i915_gem_object_unpin(obj);
3202 return ret;
3203 }
3204 }
3205
673a394b
EA
3206 entry->offset = obj_priv->gtt_offset;
3207
673a394b
EA
3208 /* Apply the relocations, using the GTT aperture to avoid cache
3209 * flushing requirements.
3210 */
3211 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3212 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3213 struct drm_gem_object *target_obj;
3214 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3215 uint32_t reloc_val, reloc_offset;
3216 uint32_t __iomem *reloc_entry;
673a394b 3217
673a394b 3218 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3219 reloc->target_handle);
673a394b
EA
3220 if (target_obj == NULL) {
3221 i915_gem_object_unpin(obj);
bf79cb91 3222 return -ENOENT;
673a394b 3223 }
23010e43 3224 target_obj_priv = to_intel_bo(target_obj);
673a394b 3225
8542a0bb
CW
3226#if WATCH_RELOC
3227 DRM_INFO("%s: obj %p offset %08x target %d "
3228 "read %08x write %08x gtt %08x "
3229 "presumed %08x delta %08x\n",
3230 __func__,
3231 obj,
3232 (int) reloc->offset,
3233 (int) reloc->target_handle,
3234 (int) reloc->read_domains,
3235 (int) reloc->write_domain,
3236 (int) target_obj_priv->gtt_offset,
3237 (int) reloc->presumed_offset,
3238 reloc->delta);
3239#endif
3240
673a394b
EA
3241 /* The target buffer should have appeared before us in the
3242 * exec_object list, so it should have a GTT space bound by now.
3243 */
3244 if (target_obj_priv->gtt_space == NULL) {
3245 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3246 reloc->target_handle);
673a394b
EA
3247 drm_gem_object_unreference(target_obj);
3248 i915_gem_object_unpin(obj);
3249 return -EINVAL;
3250 }
3251
8542a0bb 3252 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3253 if (reloc->write_domain & (reloc->write_domain - 1)) {
3254 DRM_ERROR("reloc with multiple write domains: "
3255 "obj %p target %d offset %d "
3256 "read %08x write %08x",
3257 obj, reloc->target_handle,
3258 (int) reloc->offset,
3259 reloc->read_domains,
3260 reloc->write_domain);
929f49bf
JL
3261 drm_gem_object_unreference(target_obj);
3262 i915_gem_object_unpin(obj);
16edd550
DV
3263 return -EINVAL;
3264 }
40a5f0de
EA
3265 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3266 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3267 DRM_ERROR("reloc with read/write CPU domains: "
3268 "obj %p target %d offset %d "
3269 "read %08x write %08x",
40a5f0de
EA
3270 obj, reloc->target_handle,
3271 (int) reloc->offset,
3272 reloc->read_domains,
3273 reloc->write_domain);
491152b8
CW
3274 drm_gem_object_unreference(target_obj);
3275 i915_gem_object_unpin(obj);
e47c68e9
EA
3276 return -EINVAL;
3277 }
40a5f0de
EA
3278 if (reloc->write_domain && target_obj->pending_write_domain &&
3279 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3280 DRM_ERROR("Write domain conflict: "
3281 "obj %p target %d offset %d "
3282 "new %08x old %08x\n",
40a5f0de
EA
3283 obj, reloc->target_handle,
3284 (int) reloc->offset,
3285 reloc->write_domain,
673a394b
EA
3286 target_obj->pending_write_domain);
3287 drm_gem_object_unreference(target_obj);
3288 i915_gem_object_unpin(obj);
3289 return -EINVAL;
3290 }
3291
40a5f0de
EA
3292 target_obj->pending_read_domains |= reloc->read_domains;
3293 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3294
3295 /* If the relocation already has the right value in it, no
3296 * more work needs to be done.
3297 */
40a5f0de 3298 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3299 drm_gem_object_unreference(target_obj);
3300 continue;
3301 }
3302
8542a0bb
CW
3303 /* Check that the relocation address is valid... */
3304 if (reloc->offset > obj->size - 4) {
3305 DRM_ERROR("Relocation beyond object bounds: "
3306 "obj %p target %d offset %d size %d.\n",
3307 obj, reloc->target_handle,
3308 (int) reloc->offset, (int) obj->size);
3309 drm_gem_object_unreference(target_obj);
3310 i915_gem_object_unpin(obj);
3311 return -EINVAL;
3312 }
3313 if (reloc->offset & 3) {
3314 DRM_ERROR("Relocation not 4-byte aligned: "
3315 "obj %p target %d offset %d.\n",
3316 obj, reloc->target_handle,
3317 (int) reloc->offset);
3318 drm_gem_object_unreference(target_obj);
3319 i915_gem_object_unpin(obj);
3320 return -EINVAL;
3321 }
3322
3323 /* and points to somewhere within the target object. */
3324 if (reloc->delta >= target_obj->size) {
3325 DRM_ERROR("Relocation beyond target object bounds: "
3326 "obj %p target %d delta %d size %d.\n",
3327 obj, reloc->target_handle,
3328 (int) reloc->delta, (int) target_obj->size);
3329 drm_gem_object_unreference(target_obj);
3330 i915_gem_object_unpin(obj);
3331 return -EINVAL;
3332 }
3333
2ef7eeaa
EA
3334 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3335 if (ret != 0) {
3336 drm_gem_object_unreference(target_obj);
3337 i915_gem_object_unpin(obj);
3338 return -EINVAL;
673a394b
EA
3339 }
3340
3341 /* Map the page containing the relocation we're going to
3342 * perform.
3343 */
40a5f0de 3344 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3345 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3346 (reloc_offset &
fca3ec01
CW
3347 ~(PAGE_SIZE - 1)),
3348 KM_USER0);
3043c60c 3349 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3350 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3351 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3352
3353#if WATCH_BUF
3354 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3355 obj, (unsigned int) reloc->offset,
673a394b
EA
3356 readl(reloc_entry), reloc_val);
3357#endif
3358 writel(reloc_val, reloc_entry);
fca3ec01 3359 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3360
40a5f0de
EA
3361 /* The updated presumed offset for this entry will be
3362 * copied back out to the user.
673a394b 3363 */
40a5f0de 3364 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3365
3366 drm_gem_object_unreference(target_obj);
3367 }
3368
673a394b
EA
3369#if WATCH_BUF
3370 if (0)
3371 i915_gem_dump_object(obj, 128, __func__, ~0);
3372#endif
3373 return 0;
3374}
3375
673a394b
EA
3376/* Throttle our rendering by waiting until the ring has completed our requests
3377 * emitted over 20 msec ago.
3378 *
b962442e
EA
3379 * Note that if we were to use the current jiffies each time around the loop,
3380 * we wouldn't escape the function with any frames outstanding if the time to
3381 * render a frame was over 20ms.
3382 *
673a394b
EA
3383 * This should get us reasonable parallelism between CPU and GPU but also
3384 * relatively low latency when blocking on a particular request to finish.
3385 */
3386static int
3387i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3388{
3389 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3390 int ret = 0;
b962442e 3391 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3392
3393 mutex_lock(&dev->struct_mutex);
b962442e
EA
3394 while (!list_empty(&i915_file_priv->mm.request_list)) {
3395 struct drm_i915_gem_request *request;
3396
3397 request = list_first_entry(&i915_file_priv->mm.request_list,
3398 struct drm_i915_gem_request,
3399 client_list);
3400
3401 if (time_after_eq(request->emitted_jiffies, recent_enough))
3402 break;
3403
852835f3 3404 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3405 if (ret != 0)
3406 break;
3407 }
673a394b 3408 mutex_unlock(&dev->struct_mutex);
b962442e 3409
673a394b
EA
3410 return ret;
3411}
3412
40a5f0de 3413static int
76446cac 3414i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3415 uint32_t buffer_count,
3416 struct drm_i915_gem_relocation_entry **relocs)
3417{
3418 uint32_t reloc_count = 0, reloc_index = 0, i;
3419 int ret;
3420
3421 *relocs = NULL;
3422 for (i = 0; i < buffer_count; i++) {
3423 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3424 return -EINVAL;
3425 reloc_count += exec_list[i].relocation_count;
3426 }
3427
8e7d2b2c 3428 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3429 if (*relocs == NULL) {
3430 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3431 return -ENOMEM;
76446cac 3432 }
40a5f0de
EA
3433
3434 for (i = 0; i < buffer_count; i++) {
3435 struct drm_i915_gem_relocation_entry __user *user_relocs;
3436
3437 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3438
3439 ret = copy_from_user(&(*relocs)[reloc_index],
3440 user_relocs,
3441 exec_list[i].relocation_count *
3442 sizeof(**relocs));
3443 if (ret != 0) {
8e7d2b2c 3444 drm_free_large(*relocs);
40a5f0de 3445 *relocs = NULL;
2bc43b5c 3446 return -EFAULT;
40a5f0de
EA
3447 }
3448
3449 reloc_index += exec_list[i].relocation_count;
3450 }
3451
2bc43b5c 3452 return 0;
40a5f0de
EA
3453}
3454
3455static int
76446cac 3456i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3457 uint32_t buffer_count,
3458 struct drm_i915_gem_relocation_entry *relocs)
3459{
3460 uint32_t reloc_count = 0, i;
2bc43b5c 3461 int ret = 0;
40a5f0de 3462
93533c29
CW
3463 if (relocs == NULL)
3464 return 0;
3465
40a5f0de
EA
3466 for (i = 0; i < buffer_count; i++) {
3467 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3468 int unwritten;
40a5f0de
EA
3469
3470 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3471
2bc43b5c
FM
3472 unwritten = copy_to_user(user_relocs,
3473 &relocs[reloc_count],
3474 exec_list[i].relocation_count *
3475 sizeof(*relocs));
3476
3477 if (unwritten) {
3478 ret = -EFAULT;
3479 goto err;
40a5f0de
EA
3480 }
3481
3482 reloc_count += exec_list[i].relocation_count;
3483 }
3484
2bc43b5c 3485err:
8e7d2b2c 3486 drm_free_large(relocs);
40a5f0de
EA
3487
3488 return ret;
3489}
3490
83d60795 3491static int
76446cac 3492i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3493 uint64_t exec_offset)
3494{
3495 uint32_t exec_start, exec_len;
3496
3497 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3498 exec_len = (uint32_t) exec->batch_len;
3499
3500 if ((exec_start | exec_len) & 0x7)
3501 return -EINVAL;
3502
3503 if (!exec_start)
3504 return -EINVAL;
3505
3506 return 0;
3507}
3508
6b95a207
KH
3509static int
3510i915_gem_wait_for_pending_flip(struct drm_device *dev,
3511 struct drm_gem_object **object_list,
3512 int count)
3513{
3514 drm_i915_private_t *dev_priv = dev->dev_private;
3515 struct drm_i915_gem_object *obj_priv;
3516 DEFINE_WAIT(wait);
3517 int i, ret = 0;
3518
3519 for (;;) {
3520 prepare_to_wait(&dev_priv->pending_flip_queue,
3521 &wait, TASK_INTERRUPTIBLE);
3522 for (i = 0; i < count; i++) {
23010e43 3523 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3524 if (atomic_read(&obj_priv->pending_flip) > 0)
3525 break;
3526 }
3527 if (i == count)
3528 break;
3529
3530 if (!signal_pending(current)) {
3531 mutex_unlock(&dev->struct_mutex);
3532 schedule();
3533 mutex_lock(&dev->struct_mutex);
3534 continue;
3535 }
3536 ret = -ERESTARTSYS;
3537 break;
3538 }
3539 finish_wait(&dev_priv->pending_flip_queue, &wait);
3540
3541 return ret;
3542}
3543
43b27f40 3544
673a394b 3545int
76446cac
JB
3546i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3547 struct drm_file *file_priv,
3548 struct drm_i915_gem_execbuffer2 *args,
3549 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3550{
3551 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3552 struct drm_gem_object **object_list = NULL;
3553 struct drm_gem_object *batch_obj;
b70d11da 3554 struct drm_i915_gem_object *obj_priv;
201361a5 3555 struct drm_clip_rect *cliprects = NULL;
93533c29 3556 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3557 int ret = 0, ret2, i, pinned = 0;
673a394b 3558 uint64_t exec_offset;
40a5f0de 3559 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3560 int pin_tries, flips;
673a394b 3561
852835f3
ZN
3562 struct intel_ring_buffer *ring = NULL;
3563
673a394b
EA
3564#if WATCH_EXEC
3565 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3566 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3567#endif
d1b851fc
ZN
3568 if (args->flags & I915_EXEC_BSD) {
3569 if (!HAS_BSD(dev)) {
3570 DRM_ERROR("execbuf with wrong flag\n");
3571 return -EINVAL;
3572 }
3573 ring = &dev_priv->bsd_ring;
3574 } else {
3575 ring = &dev_priv->render_ring;
3576 }
3577
4f481ed2
EA
3578 if (args->buffer_count < 1) {
3579 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3580 return -EINVAL;
3581 }
c8e0f93a 3582 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3583 if (object_list == NULL) {
3584 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3585 args->buffer_count);
3586 ret = -ENOMEM;
3587 goto pre_mutex_err;
3588 }
673a394b 3589
201361a5 3590 if (args->num_cliprects != 0) {
9a298b2a
EA
3591 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3592 GFP_KERNEL);
a40e8d31
OA
3593 if (cliprects == NULL) {
3594 ret = -ENOMEM;
201361a5 3595 goto pre_mutex_err;
a40e8d31 3596 }
201361a5
EA
3597
3598 ret = copy_from_user(cliprects,
3599 (struct drm_clip_rect __user *)
3600 (uintptr_t) args->cliprects_ptr,
3601 sizeof(*cliprects) * args->num_cliprects);
3602 if (ret != 0) {
3603 DRM_ERROR("copy %d cliprects failed: %d\n",
3604 args->num_cliprects, ret);
c877cdce 3605 ret = -EFAULT;
201361a5
EA
3606 goto pre_mutex_err;
3607 }
3608 }
3609
40a5f0de
EA
3610 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3611 &relocs);
3612 if (ret != 0)
3613 goto pre_mutex_err;
3614
673a394b
EA
3615 mutex_lock(&dev->struct_mutex);
3616
3617 i915_verify_inactive(dev, __FILE__, __LINE__);
3618
ba1234d1 3619 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3620 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3621 ret = -EIO;
3622 goto pre_mutex_err;
673a394b
EA
3623 }
3624
3625 if (dev_priv->mm.suspended) {
673a394b 3626 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3627 ret = -EBUSY;
3628 goto pre_mutex_err;
673a394b
EA
3629 }
3630
ac94a962 3631 /* Look up object handles */
6b95a207 3632 flips = 0;
673a394b
EA
3633 for (i = 0; i < args->buffer_count; i++) {
3634 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3635 exec_list[i].handle);
3636 if (object_list[i] == NULL) {
3637 DRM_ERROR("Invalid object handle %d at index %d\n",
3638 exec_list[i].handle, i);
0ce907f8
CW
3639 /* prevent error path from reading uninitialized data */
3640 args->buffer_count = i + 1;
bf79cb91 3641 ret = -ENOENT;
673a394b
EA
3642 goto err;
3643 }
b70d11da 3644
23010e43 3645 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3646 if (obj_priv->in_execbuffer) {
3647 DRM_ERROR("Object %p appears more than once in object list\n",
3648 object_list[i]);
0ce907f8
CW
3649 /* prevent error path from reading uninitialized data */
3650 args->buffer_count = i + 1;
bf79cb91 3651 ret = -EINVAL;
b70d11da
KH
3652 goto err;
3653 }
3654 obj_priv->in_execbuffer = true;
6b95a207
KH
3655 flips += atomic_read(&obj_priv->pending_flip);
3656 }
3657
3658 if (flips > 0) {
3659 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3660 args->buffer_count);
3661 if (ret)
3662 goto err;
ac94a962 3663 }
673a394b 3664
ac94a962
KP
3665 /* Pin and relocate */
3666 for (pin_tries = 0; ; pin_tries++) {
3667 ret = 0;
40a5f0de
EA
3668 reloc_index = 0;
3669
ac94a962
KP
3670 for (i = 0; i < args->buffer_count; i++) {
3671 object_list[i]->pending_read_domains = 0;
3672 object_list[i]->pending_write_domain = 0;
3673 ret = i915_gem_object_pin_and_relocate(object_list[i],
3674 file_priv,
40a5f0de
EA
3675 &exec_list[i],
3676 &relocs[reloc_index]);
ac94a962
KP
3677 if (ret)
3678 break;
3679 pinned = i + 1;
40a5f0de 3680 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3681 }
3682 /* success */
3683 if (ret == 0)
3684 break;
3685
3686 /* error other than GTT full, or we've already tried again */
2939e1f5 3687 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3688 if (ret != -ERESTARTSYS) {
3689 unsigned long long total_size = 0;
3d1cc470
CW
3690 int num_fences = 0;
3691 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3692 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3693
07f73f69 3694 total_size += object_list[i]->size;
3d1cc470
CW
3695 num_fences +=
3696 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3697 obj_priv->tiling_mode != I915_TILING_NONE;
3698 }
3699 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3700 pinned+1, args->buffer_count,
3d1cc470
CW
3701 total_size, num_fences,
3702 ret);
07f73f69
CW
3703 DRM_ERROR("%d objects [%d pinned], "
3704 "%d object bytes [%d pinned], "
3705 "%d/%d gtt bytes\n",
3706 atomic_read(&dev->object_count),
3707 atomic_read(&dev->pin_count),
3708 atomic_read(&dev->object_memory),
3709 atomic_read(&dev->pin_memory),
3710 atomic_read(&dev->gtt_memory),
3711 dev->gtt_total);
3712 }
673a394b
EA
3713 goto err;
3714 }
ac94a962
KP
3715
3716 /* unpin all of our buffers */
3717 for (i = 0; i < pinned; i++)
3718 i915_gem_object_unpin(object_list[i]);
b1177636 3719 pinned = 0;
ac94a962
KP
3720
3721 /* evict everyone we can from the aperture */
3722 ret = i915_gem_evict_everything(dev);
07f73f69 3723 if (ret && ret != -ENOSPC)
ac94a962 3724 goto err;
673a394b
EA
3725 }
3726
3727 /* Set the pending read domains for the batch buffer to COMMAND */
3728 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3729 if (batch_obj->pending_write_domain) {
3730 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3731 ret = -EINVAL;
3732 goto err;
3733 }
3734 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3735
83d60795
CW
3736 /* Sanity check the batch buffer, prior to moving objects */
3737 exec_offset = exec_list[args->buffer_count - 1].offset;
3738 ret = i915_gem_check_execbuffer (args, exec_offset);
3739 if (ret != 0) {
3740 DRM_ERROR("execbuf with invalid offset/length\n");
3741 goto err;
3742 }
3743
673a394b
EA
3744 i915_verify_inactive(dev, __FILE__, __LINE__);
3745
646f0f6e
KP
3746 /* Zero the global flush/invalidate flags. These
3747 * will be modified as new domains are computed
3748 * for each object
3749 */
3750 dev->invalidate_domains = 0;
3751 dev->flush_domains = 0;
88f356b7 3752 dev_priv->flush_rings = 0;
646f0f6e 3753
673a394b
EA
3754 for (i = 0; i < args->buffer_count; i++) {
3755 struct drm_gem_object *obj = object_list[i];
673a394b 3756
646f0f6e 3757 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3758 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3759 }
3760
3761 i915_verify_inactive(dev, __FILE__, __LINE__);
3762
646f0f6e
KP
3763 if (dev->invalidate_domains | dev->flush_domains) {
3764#if WATCH_EXEC
3765 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3766 __func__,
3767 dev->invalidate_domains,
3768 dev->flush_domains);
3769#endif
3770 i915_gem_flush(dev,
3771 dev->invalidate_domains,
3772 dev->flush_domains);
88f356b7 3773 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3774 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3775 dev->flush_domains,
3776 &dev_priv->render_ring);
3777 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3778 (void)i915_add_request(dev, file_priv,
3779 dev->flush_domains,
3780 &dev_priv->bsd_ring);
646f0f6e 3781 }
673a394b 3782
efbeed96
EA
3783 for (i = 0; i < args->buffer_count; i++) {
3784 struct drm_gem_object *obj = object_list[i];
23010e43 3785 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3786 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3787
3788 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3789 if (obj->write_domain)
3790 list_move_tail(&obj_priv->gpu_write_list,
3791 &dev_priv->mm.gpu_write_list);
3792 else
3793 list_del_init(&obj_priv->gpu_write_list);
3794
1c5d22f7
CW
3795 trace_i915_gem_object_change_domain(obj,
3796 obj->read_domains,
3797 old_write_domain);
efbeed96
EA
3798 }
3799
673a394b
EA
3800 i915_verify_inactive(dev, __FILE__, __LINE__);
3801
3802#if WATCH_COHERENCY
3803 for (i = 0; i < args->buffer_count; i++) {
3804 i915_gem_object_check_coherency(object_list[i],
3805 exec_list[i].handle);
3806 }
3807#endif
3808
673a394b 3809#if WATCH_EXEC
6911a9b8 3810 i915_gem_dump_object(batch_obj,
673a394b
EA
3811 args->batch_len,
3812 __func__,
3813 ~0);
3814#endif
3815
673a394b 3816 /* Exec the batchbuffer */
852835f3
ZN
3817 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3818 cliprects, exec_offset);
673a394b
EA
3819 if (ret) {
3820 DRM_ERROR("dispatch failed %d\n", ret);
3821 goto err;
3822 }
3823
3824 /*
3825 * Ensure that the commands in the batch buffer are
3826 * finished before the interrupt fires
3827 */
852835f3 3828 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3829
3830 i915_verify_inactive(dev, __FILE__, __LINE__);
3831
3832 /*
3833 * Get a seqno representing the execution of the current buffer,
3834 * which we can wait on. We would like to mitigate these interrupts,
3835 * likely by only creating seqnos occasionally (so that we have
3836 * *some* interrupts representing completion of buffers that we can
3837 * wait on when trying to clear up gtt space).
3838 */
852835f3 3839 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3840 BUG_ON(seqno == 0);
673a394b
EA
3841 for (i = 0; i < args->buffer_count; i++) {
3842 struct drm_gem_object *obj = object_list[i];
852835f3 3843 obj_priv = to_intel_bo(obj);
673a394b 3844
852835f3 3845 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3846#if WATCH_LRU
3847 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3848#endif
3849 }
3850#if WATCH_LRU
3851 i915_dump_lru(dev, __func__);
3852#endif
3853
3854 i915_verify_inactive(dev, __FILE__, __LINE__);
3855
673a394b 3856err:
aad87dff
JL
3857 for (i = 0; i < pinned; i++)
3858 i915_gem_object_unpin(object_list[i]);
3859
b70d11da
KH
3860 for (i = 0; i < args->buffer_count; i++) {
3861 if (object_list[i]) {
23010e43 3862 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3863 obj_priv->in_execbuffer = false;
3864 }
aad87dff 3865 drm_gem_object_unreference(object_list[i]);
b70d11da 3866 }
673a394b 3867
673a394b
EA
3868 mutex_unlock(&dev->struct_mutex);
3869
93533c29 3870pre_mutex_err:
40a5f0de
EA
3871 /* Copy the updated relocations out regardless of current error
3872 * state. Failure to update the relocs would mean that the next
3873 * time userland calls execbuf, it would do so with presumed offset
3874 * state that didn't match the actual object state.
3875 */
3876 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3877 relocs);
3878 if (ret2 != 0) {
3879 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3880
3881 if (ret == 0)
3882 ret = ret2;
3883 }
3884
8e7d2b2c 3885 drm_free_large(object_list);
9a298b2a 3886 kfree(cliprects);
673a394b
EA
3887
3888 return ret;
3889}
3890
76446cac
JB
3891/*
3892 * Legacy execbuffer just creates an exec2 list from the original exec object
3893 * list array and passes it to the real function.
3894 */
3895int
3896i915_gem_execbuffer(struct drm_device *dev, void *data,
3897 struct drm_file *file_priv)
3898{
3899 struct drm_i915_gem_execbuffer *args = data;
3900 struct drm_i915_gem_execbuffer2 exec2;
3901 struct drm_i915_gem_exec_object *exec_list = NULL;
3902 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3903 int ret, i;
3904
3905#if WATCH_EXEC
3906 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3907 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3908#endif
3909
3910 if (args->buffer_count < 1) {
3911 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3912 return -EINVAL;
3913 }
3914
3915 /* Copy in the exec list from userland */
3916 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3917 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3918 if (exec_list == NULL || exec2_list == NULL) {
3919 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3920 args->buffer_count);
3921 drm_free_large(exec_list);
3922 drm_free_large(exec2_list);
3923 return -ENOMEM;
3924 }
3925 ret = copy_from_user(exec_list,
3926 (struct drm_i915_relocation_entry __user *)
3927 (uintptr_t) args->buffers_ptr,
3928 sizeof(*exec_list) * args->buffer_count);
3929 if (ret != 0) {
3930 DRM_ERROR("copy %d exec entries failed %d\n",
3931 args->buffer_count, ret);
3932 drm_free_large(exec_list);
3933 drm_free_large(exec2_list);
3934 return -EFAULT;
3935 }
3936
3937 for (i = 0; i < args->buffer_count; i++) {
3938 exec2_list[i].handle = exec_list[i].handle;
3939 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3940 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3941 exec2_list[i].alignment = exec_list[i].alignment;
3942 exec2_list[i].offset = exec_list[i].offset;
3943 if (!IS_I965G(dev))
3944 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3945 else
3946 exec2_list[i].flags = 0;
3947 }
3948
3949 exec2.buffers_ptr = args->buffers_ptr;
3950 exec2.buffer_count = args->buffer_count;
3951 exec2.batch_start_offset = args->batch_start_offset;
3952 exec2.batch_len = args->batch_len;
3953 exec2.DR1 = args->DR1;
3954 exec2.DR4 = args->DR4;
3955 exec2.num_cliprects = args->num_cliprects;
3956 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3957 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3958
3959 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3960 if (!ret) {
3961 /* Copy the new buffer offsets back to the user's exec list. */
3962 for (i = 0; i < args->buffer_count; i++)
3963 exec_list[i].offset = exec2_list[i].offset;
3964 /* ... and back out to userspace */
3965 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3966 (uintptr_t) args->buffers_ptr,
3967 exec_list,
3968 sizeof(*exec_list) * args->buffer_count);
3969 if (ret) {
3970 ret = -EFAULT;
3971 DRM_ERROR("failed to copy %d exec entries "
3972 "back to user (%d)\n",
3973 args->buffer_count, ret);
3974 }
76446cac
JB
3975 }
3976
3977 drm_free_large(exec_list);
3978 drm_free_large(exec2_list);
3979 return ret;
3980}
3981
3982int
3983i915_gem_execbuffer2(struct drm_device *dev, void *data,
3984 struct drm_file *file_priv)
3985{
3986 struct drm_i915_gem_execbuffer2 *args = data;
3987 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3988 int ret;
3989
3990#if WATCH_EXEC
3991 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3992 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3993#endif
3994
3995 if (args->buffer_count < 1) {
3996 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3997 return -EINVAL;
3998 }
3999
4000 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4001 if (exec2_list == NULL) {
4002 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4003 args->buffer_count);
4004 return -ENOMEM;
4005 }
4006 ret = copy_from_user(exec2_list,
4007 (struct drm_i915_relocation_entry __user *)
4008 (uintptr_t) args->buffers_ptr,
4009 sizeof(*exec2_list) * args->buffer_count);
4010 if (ret != 0) {
4011 DRM_ERROR("copy %d exec entries failed %d\n",
4012 args->buffer_count, ret);
4013 drm_free_large(exec2_list);
4014 return -EFAULT;
4015 }
4016
4017 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4018 if (!ret) {
4019 /* Copy the new buffer offsets back to the user's exec list. */
4020 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4021 (uintptr_t) args->buffers_ptr,
4022 exec2_list,
4023 sizeof(*exec2_list) * args->buffer_count);
4024 if (ret) {
4025 ret = -EFAULT;
4026 DRM_ERROR("failed to copy %d exec entries "
4027 "back to user (%d)\n",
4028 args->buffer_count, ret);
4029 }
4030 }
4031
4032 drm_free_large(exec2_list);
4033 return ret;
4034}
4035
673a394b
EA
4036int
4037i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4038{
4039 struct drm_device *dev = obj->dev;
23010e43 4040 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4041 int ret;
4042
778c3544
DV
4043 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4044
673a394b 4045 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4046
4047 if (obj_priv->gtt_space != NULL) {
4048 if (alignment == 0)
4049 alignment = i915_gem_get_gtt_alignment(obj);
4050 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4051 WARN(obj_priv->pin_count,
4052 "bo is already pinned with incorrect alignment:"
4053 " offset=%x, req.alignment=%x\n",
4054 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4055 ret = i915_gem_object_unbind(obj);
4056 if (ret)
4057 return ret;
4058 }
4059 }
4060
673a394b
EA
4061 if (obj_priv->gtt_space == NULL) {
4062 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4063 if (ret)
673a394b 4064 return ret;
22c344e9 4065 }
76446cac 4066
673a394b
EA
4067 obj_priv->pin_count++;
4068
4069 /* If the object is not active and not pending a flush,
4070 * remove it from the inactive list
4071 */
4072 if (obj_priv->pin_count == 1) {
4073 atomic_inc(&dev->pin_count);
4074 atomic_add(obj->size, &dev->pin_memory);
4075 if (!obj_priv->active &&
bf1a1092 4076 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4077 list_del_init(&obj_priv->list);
4078 }
4079 i915_verify_inactive(dev, __FILE__, __LINE__);
4080
4081 return 0;
4082}
4083
4084void
4085i915_gem_object_unpin(struct drm_gem_object *obj)
4086{
4087 struct drm_device *dev = obj->dev;
4088 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4089 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4090
4091 i915_verify_inactive(dev, __FILE__, __LINE__);
4092 obj_priv->pin_count--;
4093 BUG_ON(obj_priv->pin_count < 0);
4094 BUG_ON(obj_priv->gtt_space == NULL);
4095
4096 /* If the object is no longer pinned, and is
4097 * neither active nor being flushed, then stick it on
4098 * the inactive list
4099 */
4100 if (obj_priv->pin_count == 0) {
4101 if (!obj_priv->active &&
21d509e3 4102 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4103 list_move_tail(&obj_priv->list,
4104 &dev_priv->mm.inactive_list);
4105 atomic_dec(&dev->pin_count);
4106 atomic_sub(obj->size, &dev->pin_memory);
4107 }
4108 i915_verify_inactive(dev, __FILE__, __LINE__);
4109}
4110
4111int
4112i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4113 struct drm_file *file_priv)
4114{
4115 struct drm_i915_gem_pin *args = data;
4116 struct drm_gem_object *obj;
4117 struct drm_i915_gem_object *obj_priv;
4118 int ret;
4119
4120 mutex_lock(&dev->struct_mutex);
4121
4122 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4123 if (obj == NULL) {
4124 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4125 args->handle);
4126 mutex_unlock(&dev->struct_mutex);
bf79cb91 4127 return -ENOENT;
673a394b 4128 }
23010e43 4129 obj_priv = to_intel_bo(obj);
673a394b 4130
bb6baf76
CW
4131 if (obj_priv->madv != I915_MADV_WILLNEED) {
4132 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4133 drm_gem_object_unreference(obj);
4134 mutex_unlock(&dev->struct_mutex);
4135 return -EINVAL;
4136 }
4137
79e53945
JB
4138 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4139 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4140 args->handle);
96dec61d 4141 drm_gem_object_unreference(obj);
673a394b 4142 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4143 return -EINVAL;
4144 }
4145
4146 obj_priv->user_pin_count++;
4147 obj_priv->pin_filp = file_priv;
4148 if (obj_priv->user_pin_count == 1) {
4149 ret = i915_gem_object_pin(obj, args->alignment);
4150 if (ret != 0) {
4151 drm_gem_object_unreference(obj);
4152 mutex_unlock(&dev->struct_mutex);
4153 return ret;
4154 }
673a394b
EA
4155 }
4156
4157 /* XXX - flush the CPU caches for pinned objects
4158 * as the X server doesn't manage domains yet
4159 */
e47c68e9 4160 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4161 args->offset = obj_priv->gtt_offset;
4162 drm_gem_object_unreference(obj);
4163 mutex_unlock(&dev->struct_mutex);
4164
4165 return 0;
4166}
4167
4168int
4169i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4170 struct drm_file *file_priv)
4171{
4172 struct drm_i915_gem_pin *args = data;
4173 struct drm_gem_object *obj;
79e53945 4174 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4175
4176 mutex_lock(&dev->struct_mutex);
4177
4178 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4179 if (obj == NULL) {
4180 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4181 args->handle);
4182 mutex_unlock(&dev->struct_mutex);
bf79cb91 4183 return -ENOENT;
673a394b
EA
4184 }
4185
23010e43 4186 obj_priv = to_intel_bo(obj);
79e53945
JB
4187 if (obj_priv->pin_filp != file_priv) {
4188 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4189 args->handle);
4190 drm_gem_object_unreference(obj);
4191 mutex_unlock(&dev->struct_mutex);
4192 return -EINVAL;
4193 }
4194 obj_priv->user_pin_count--;
4195 if (obj_priv->user_pin_count == 0) {
4196 obj_priv->pin_filp = NULL;
4197 i915_gem_object_unpin(obj);
4198 }
673a394b
EA
4199
4200 drm_gem_object_unreference(obj);
4201 mutex_unlock(&dev->struct_mutex);
4202 return 0;
4203}
4204
4205int
4206i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4207 struct drm_file *file_priv)
4208{
4209 struct drm_i915_gem_busy *args = data;
4210 struct drm_gem_object *obj;
4211 struct drm_i915_gem_object *obj_priv;
4212
673a394b
EA
4213 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4214 if (obj == NULL) {
4215 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4216 args->handle);
bf79cb91 4217 return -ENOENT;
673a394b
EA
4218 }
4219
b1ce786c 4220 mutex_lock(&dev->struct_mutex);
d1b851fc 4221
0be555b6
CW
4222 /* Count all active objects as busy, even if they are currently not used
4223 * by the gpu. Users of this interface expect objects to eventually
4224 * become non-busy without any further actions, therefore emit any
4225 * necessary flushes here.
c4de0a5d 4226 */
0be555b6
CW
4227 obj_priv = to_intel_bo(obj);
4228 args->busy = obj_priv->active;
4229 if (args->busy) {
4230 /* Unconditionally flush objects, even when the gpu still uses this
4231 * object. Userspace calling this function indicates that it wants to
4232 * use this buffer rather sooner than later, so issuing the required
4233 * flush earlier is beneficial.
4234 */
4235 if (obj->write_domain) {
4236 i915_gem_flush(dev, 0, obj->write_domain);
4237 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4238 }
4239
4240 /* Update the active list for the hardware's current position.
4241 * Otherwise this only updates on a delayed timer or when irqs
4242 * are actually unmasked, and our working set ends up being
4243 * larger than required.
4244 */
4245 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4246
4247 args->busy = obj_priv->active;
4248 }
673a394b
EA
4249
4250 drm_gem_object_unreference(obj);
4251 mutex_unlock(&dev->struct_mutex);
4252 return 0;
4253}
4254
4255int
4256i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4257 struct drm_file *file_priv)
4258{
4259 return i915_gem_ring_throttle(dev, file_priv);
4260}
4261
3ef94daa
CW
4262int
4263i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4264 struct drm_file *file_priv)
4265{
4266 struct drm_i915_gem_madvise *args = data;
4267 struct drm_gem_object *obj;
4268 struct drm_i915_gem_object *obj_priv;
4269
4270 switch (args->madv) {
4271 case I915_MADV_DONTNEED:
4272 case I915_MADV_WILLNEED:
4273 break;
4274 default:
4275 return -EINVAL;
4276 }
4277
4278 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4279 if (obj == NULL) {
4280 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4281 args->handle);
bf79cb91 4282 return -ENOENT;
3ef94daa
CW
4283 }
4284
4285 mutex_lock(&dev->struct_mutex);
23010e43 4286 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4287
4288 if (obj_priv->pin_count) {
4289 drm_gem_object_unreference(obj);
4290 mutex_unlock(&dev->struct_mutex);
4291
4292 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4293 return -EINVAL;
4294 }
4295
bb6baf76
CW
4296 if (obj_priv->madv != __I915_MADV_PURGED)
4297 obj_priv->madv = args->madv;
3ef94daa 4298
2d7ef395
CW
4299 /* if the object is no longer bound, discard its backing storage */
4300 if (i915_gem_object_is_purgeable(obj_priv) &&
4301 obj_priv->gtt_space == NULL)
4302 i915_gem_object_truncate(obj);
4303
bb6baf76
CW
4304 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4305
3ef94daa
CW
4306 drm_gem_object_unreference(obj);
4307 mutex_unlock(&dev->struct_mutex);
4308
4309 return 0;
4310}
4311
ac52bc56
DV
4312struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4313 size_t size)
4314{
c397b908 4315 struct drm_i915_gem_object *obj;
ac52bc56 4316
c397b908
DV
4317 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4318 if (obj == NULL)
4319 return NULL;
673a394b 4320
c397b908
DV
4321 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4322 kfree(obj);
4323 return NULL;
4324 }
673a394b 4325
c397b908
DV
4326 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4327 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4328
c397b908 4329 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4330 obj->base.driver_private = NULL;
c397b908
DV
4331 obj->fence_reg = I915_FENCE_REG_NONE;
4332 INIT_LIST_HEAD(&obj->list);
4333 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4334 obj->madv = I915_MADV_WILLNEED;
de151cf6 4335
c397b908
DV
4336 trace_i915_gem_object_create(&obj->base);
4337
4338 return &obj->base;
4339}
4340
4341int i915_gem_init_object(struct drm_gem_object *obj)
4342{
4343 BUG();
de151cf6 4344
673a394b
EA
4345 return 0;
4346}
4347
be72615b 4348static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4349{
de151cf6 4350 struct drm_device *dev = obj->dev;
be72615b 4351 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4353 int ret;
673a394b 4354
be72615b
CW
4355 ret = i915_gem_object_unbind(obj);
4356 if (ret == -ERESTARTSYS) {
4357 list_move(&obj_priv->list,
4358 &dev_priv->mm.deferred_free_list);
4359 return;
4360 }
673a394b 4361
7e616158
CW
4362 if (obj_priv->mmap_offset)
4363 i915_gem_free_mmap_offset(obj);
de151cf6 4364
c397b908
DV
4365 drm_gem_object_release(obj);
4366
9a298b2a 4367 kfree(obj_priv->page_cpu_valid);
280b713b 4368 kfree(obj_priv->bit_17);
c397b908 4369 kfree(obj_priv);
673a394b
EA
4370}
4371
be72615b
CW
4372void i915_gem_free_object(struct drm_gem_object *obj)
4373{
4374 struct drm_device *dev = obj->dev;
4375 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4376
4377 trace_i915_gem_object_destroy(obj);
4378
4379 while (obj_priv->pin_count > 0)
4380 i915_gem_object_unpin(obj);
4381
4382 if (obj_priv->phys_obj)
4383 i915_gem_detach_phys_object(dev, obj);
4384
4385 i915_gem_free_object_tail(obj);
4386}
4387
29105ccc
CW
4388int
4389i915_gem_idle(struct drm_device *dev)
4390{
4391 drm_i915_private_t *dev_priv = dev->dev_private;
4392 int ret;
28dfe52a 4393
29105ccc 4394 mutex_lock(&dev->struct_mutex);
1c5d22f7 4395
8187a2b7 4396 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4397 (dev_priv->render_ring.gem_object == NULL) ||
4398 (HAS_BSD(dev) &&
4399 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4400 mutex_unlock(&dev->struct_mutex);
4401 return 0;
28dfe52a
EA
4402 }
4403
29105ccc 4404 ret = i915_gpu_idle(dev);
6dbe2772
KP
4405 if (ret) {
4406 mutex_unlock(&dev->struct_mutex);
673a394b 4407 return ret;
6dbe2772 4408 }
673a394b 4409
29105ccc
CW
4410 /* Under UMS, be paranoid and evict. */
4411 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4412 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4413 if (ret) {
4414 mutex_unlock(&dev->struct_mutex);
4415 return ret;
4416 }
4417 }
4418
4419 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4420 * We need to replace this with a semaphore, or something.
4421 * And not confound mm.suspended!
4422 */
4423 dev_priv->mm.suspended = 1;
4424 del_timer(&dev_priv->hangcheck_timer);
4425
4426 i915_kernel_lost_context(dev);
6dbe2772 4427 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4428
6dbe2772
KP
4429 mutex_unlock(&dev->struct_mutex);
4430
29105ccc
CW
4431 /* Cancel the retire work handler, which should be idle now. */
4432 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4433
673a394b
EA
4434 return 0;
4435}
4436
e552eb70
JB
4437/*
4438 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4439 * over cache flushing.
4440 */
8187a2b7 4441static int
e552eb70
JB
4442i915_gem_init_pipe_control(struct drm_device *dev)
4443{
4444 drm_i915_private_t *dev_priv = dev->dev_private;
4445 struct drm_gem_object *obj;
4446 struct drm_i915_gem_object *obj_priv;
4447 int ret;
4448
34dc4d44 4449 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4450 if (obj == NULL) {
4451 DRM_ERROR("Failed to allocate seqno page\n");
4452 ret = -ENOMEM;
4453 goto err;
4454 }
4455 obj_priv = to_intel_bo(obj);
4456 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4457
4458 ret = i915_gem_object_pin(obj, 4096);
4459 if (ret)
4460 goto err_unref;
4461
4462 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4463 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4464 if (dev_priv->seqno_page == NULL)
4465 goto err_unpin;
4466
4467 dev_priv->seqno_obj = obj;
4468 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4469
4470 return 0;
4471
4472err_unpin:
4473 i915_gem_object_unpin(obj);
4474err_unref:
4475 drm_gem_object_unreference(obj);
4476err:
4477 return ret;
4478}
4479
8187a2b7
ZN
4480
4481static void
e552eb70
JB
4482i915_gem_cleanup_pipe_control(struct drm_device *dev)
4483{
4484 drm_i915_private_t *dev_priv = dev->dev_private;
4485 struct drm_gem_object *obj;
4486 struct drm_i915_gem_object *obj_priv;
4487
4488 obj = dev_priv->seqno_obj;
4489 obj_priv = to_intel_bo(obj);
4490 kunmap(obj_priv->pages[0]);
4491 i915_gem_object_unpin(obj);
4492 drm_gem_object_unreference(obj);
4493 dev_priv->seqno_obj = NULL;
4494
4495 dev_priv->seqno_page = NULL;
673a394b
EA
4496}
4497
8187a2b7
ZN
4498int
4499i915_gem_init_ringbuffer(struct drm_device *dev)
4500{
4501 drm_i915_private_t *dev_priv = dev->dev_private;
4502 int ret;
68f95ba9 4503
8187a2b7 4504 dev_priv->render_ring = render_ring;
68f95ba9 4505
8187a2b7
ZN
4506 if (!I915_NEED_GFX_HWS(dev)) {
4507 dev_priv->render_ring.status_page.page_addr
4508 = dev_priv->status_page_dmah->vaddr;
4509 memset(dev_priv->render_ring.status_page.page_addr,
4510 0, PAGE_SIZE);
4511 }
68f95ba9 4512
8187a2b7
ZN
4513 if (HAS_PIPE_CONTROL(dev)) {
4514 ret = i915_gem_init_pipe_control(dev);
4515 if (ret)
4516 return ret;
4517 }
68f95ba9 4518
8187a2b7 4519 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4520 if (ret)
4521 goto cleanup_pipe_control;
4522
4523 if (HAS_BSD(dev)) {
d1b851fc
ZN
4524 dev_priv->bsd_ring = bsd_ring;
4525 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4526 if (ret)
4527 goto cleanup_render_ring;
d1b851fc 4528 }
68f95ba9 4529
6f392d54
CW
4530 dev_priv->next_seqno = 1;
4531
68f95ba9
CW
4532 return 0;
4533
4534cleanup_render_ring:
4535 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4536cleanup_pipe_control:
4537 if (HAS_PIPE_CONTROL(dev))
4538 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4539 return ret;
4540}
4541
4542void
4543i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4544{
4545 drm_i915_private_t *dev_priv = dev->dev_private;
4546
4547 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4548 if (HAS_BSD(dev))
4549 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4550 if (HAS_PIPE_CONTROL(dev))
4551 i915_gem_cleanup_pipe_control(dev);
4552}
4553
673a394b
EA
4554int
4555i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4556 struct drm_file *file_priv)
4557{
4558 drm_i915_private_t *dev_priv = dev->dev_private;
4559 int ret;
4560
79e53945
JB
4561 if (drm_core_check_feature(dev, DRIVER_MODESET))
4562 return 0;
4563
ba1234d1 4564 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4565 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4566 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4567 }
4568
673a394b 4569 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4570 dev_priv->mm.suspended = 0;
4571
4572 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4573 if (ret != 0) {
4574 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4575 return ret;
d816f6ac 4576 }
9bb2d6f9 4577
5e118f41 4578 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4579 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4580 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4581 spin_unlock(&dev_priv->mm.active_list_lock);
4582
673a394b
EA
4583 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4584 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4585 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4586 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4587 mutex_unlock(&dev->struct_mutex);
dbb19d30 4588
5f35308b
CW
4589 ret = drm_irq_install(dev);
4590 if (ret)
4591 goto cleanup_ringbuffer;
dbb19d30 4592
673a394b 4593 return 0;
5f35308b
CW
4594
4595cleanup_ringbuffer:
4596 mutex_lock(&dev->struct_mutex);
4597 i915_gem_cleanup_ringbuffer(dev);
4598 dev_priv->mm.suspended = 1;
4599 mutex_unlock(&dev->struct_mutex);
4600
4601 return ret;
673a394b
EA
4602}
4603
4604int
4605i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4606 struct drm_file *file_priv)
4607{
79e53945
JB
4608 if (drm_core_check_feature(dev, DRIVER_MODESET))
4609 return 0;
4610
dbb19d30 4611 drm_irq_uninstall(dev);
e6890f6f 4612 return i915_gem_idle(dev);
673a394b
EA
4613}
4614
4615void
4616i915_gem_lastclose(struct drm_device *dev)
4617{
4618 int ret;
673a394b 4619
e806b495
EA
4620 if (drm_core_check_feature(dev, DRIVER_MODESET))
4621 return;
4622
6dbe2772
KP
4623 ret = i915_gem_idle(dev);
4624 if (ret)
4625 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4626}
4627
4628void
4629i915_gem_load(struct drm_device *dev)
4630{
b5aa8a0f 4631 int i;
673a394b
EA
4632 drm_i915_private_t *dev_priv = dev->dev_private;
4633
5e118f41 4634 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4635 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4636 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4637 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4638 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4639 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4640 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4641 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4642 if (HAS_BSD(dev)) {
4643 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4644 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4645 }
007cc8ac
DV
4646 for (i = 0; i < 16; i++)
4647 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4648 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4649 i915_gem_retire_work_handler);
31169714
CW
4650 spin_lock(&shrink_list_lock);
4651 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4652 spin_unlock(&shrink_list_lock);
4653
94400120
DA
4654 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4655 if (IS_GEN3(dev)) {
4656 u32 tmp = I915_READ(MI_ARB_STATE);
4657 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4658 /* arb state is a masked write, so set bit + bit in mask */
4659 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4660 I915_WRITE(MI_ARB_STATE, tmp);
4661 }
4662 }
4663
de151cf6 4664 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4665 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4666 dev_priv->fence_reg_start = 3;
de151cf6 4667
0f973f27 4668 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4669 dev_priv->num_fence_regs = 16;
4670 else
4671 dev_priv->num_fence_regs = 8;
4672
b5aa8a0f
GH
4673 /* Initialize fence registers to zero */
4674 if (IS_I965G(dev)) {
4675 for (i = 0; i < 16; i++)
4676 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4677 } else {
4678 for (i = 0; i < 8; i++)
4679 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4680 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4681 for (i = 0; i < 8; i++)
4682 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4683 }
673a394b 4684 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4685 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4686}
71acb5eb
DA
4687
4688/*
4689 * Create a physically contiguous memory object for this object
4690 * e.g. for cursor + overlay regs
4691 */
4692int i915_gem_init_phys_object(struct drm_device *dev,
6eeefaf3 4693 int id, int size, int align)
71acb5eb
DA
4694{
4695 drm_i915_private_t *dev_priv = dev->dev_private;
4696 struct drm_i915_gem_phys_object *phys_obj;
4697 int ret;
4698
4699 if (dev_priv->mm.phys_objs[id - 1] || !size)
4700 return 0;
4701
9a298b2a 4702 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4703 if (!phys_obj)
4704 return -ENOMEM;
4705
4706 phys_obj->id = id;
4707
6eeefaf3 4708 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4709 if (!phys_obj->handle) {
4710 ret = -ENOMEM;
4711 goto kfree_obj;
4712 }
4713#ifdef CONFIG_X86
4714 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4715#endif
4716
4717 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4718
4719 return 0;
4720kfree_obj:
9a298b2a 4721 kfree(phys_obj);
71acb5eb
DA
4722 return ret;
4723}
4724
4725void i915_gem_free_phys_object(struct drm_device *dev, int id)
4726{
4727 drm_i915_private_t *dev_priv = dev->dev_private;
4728 struct drm_i915_gem_phys_object *phys_obj;
4729
4730 if (!dev_priv->mm.phys_objs[id - 1])
4731 return;
4732
4733 phys_obj = dev_priv->mm.phys_objs[id - 1];
4734 if (phys_obj->cur_obj) {
4735 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4736 }
4737
4738#ifdef CONFIG_X86
4739 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4740#endif
4741 drm_pci_free(dev, phys_obj->handle);
4742 kfree(phys_obj);
4743 dev_priv->mm.phys_objs[id - 1] = NULL;
4744}
4745
4746void i915_gem_free_all_phys_object(struct drm_device *dev)
4747{
4748 int i;
4749
260883c8 4750 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4751 i915_gem_free_phys_object(dev, i);
4752}
4753
4754void i915_gem_detach_phys_object(struct drm_device *dev,
4755 struct drm_gem_object *obj)
4756{
4757 struct drm_i915_gem_object *obj_priv;
4758 int i;
4759 int ret;
4760 int page_count;
4761
23010e43 4762 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4763 if (!obj_priv->phys_obj)
4764 return;
4765
4bdadb97 4766 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4767 if (ret)
4768 goto out;
4769
4770 page_count = obj->size / PAGE_SIZE;
4771
4772 for (i = 0; i < page_count; i++) {
856fa198 4773 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4774 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4775
4776 memcpy(dst, src, PAGE_SIZE);
4777 kunmap_atomic(dst, KM_USER0);
4778 }
856fa198 4779 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4780 drm_agp_chipset_flush(dev);
d78b47b9
CW
4781
4782 i915_gem_object_put_pages(obj);
71acb5eb
DA
4783out:
4784 obj_priv->phys_obj->cur_obj = NULL;
4785 obj_priv->phys_obj = NULL;
4786}
4787
4788int
4789i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4790 struct drm_gem_object *obj,
4791 int id,
4792 int align)
71acb5eb
DA
4793{
4794 drm_i915_private_t *dev_priv = dev->dev_private;
4795 struct drm_i915_gem_object *obj_priv;
4796 int ret = 0;
4797 int page_count;
4798 int i;
4799
4800 if (id > I915_MAX_PHYS_OBJECT)
4801 return -EINVAL;
4802
23010e43 4803 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4804
4805 if (obj_priv->phys_obj) {
4806 if (obj_priv->phys_obj->id == id)
4807 return 0;
4808 i915_gem_detach_phys_object(dev, obj);
4809 }
4810
71acb5eb
DA
4811 /* create a new object */
4812 if (!dev_priv->mm.phys_objs[id - 1]) {
4813 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4814 obj->size, align);
71acb5eb 4815 if (ret) {
aeb565df 4816 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4817 goto out;
4818 }
4819 }
4820
4821 /* bind to the object */
4822 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4823 obj_priv->phys_obj->cur_obj = obj;
4824
4bdadb97 4825 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4826 if (ret) {
4827 DRM_ERROR("failed to get page list\n");
4828 goto out;
4829 }
4830
4831 page_count = obj->size / PAGE_SIZE;
4832
4833 for (i = 0; i < page_count; i++) {
856fa198 4834 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4835 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4836
4837 memcpy(dst, src, PAGE_SIZE);
4838 kunmap_atomic(src, KM_USER0);
4839 }
4840
d78b47b9
CW
4841 i915_gem_object_put_pages(obj);
4842
71acb5eb
DA
4843 return 0;
4844out:
4845 return ret;
4846}
4847
4848static int
4849i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4850 struct drm_i915_gem_pwrite *args,
4851 struct drm_file *file_priv)
4852{
23010e43 4853 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4854 void *obj_addr;
4855 int ret;
4856 char __user *user_data;
4857
4858 user_data = (char __user *) (uintptr_t) args->data_ptr;
4859 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4860
44d98a61 4861 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4862 ret = copy_from_user(obj_addr, user_data, args->size);
4863 if (ret)
4864 return -EFAULT;
4865
4866 drm_agp_chipset_flush(dev);
4867 return 0;
4868}
b962442e
EA
4869
4870void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4871{
4872 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4873
4874 /* Clean up our request list when the client is going away, so that
4875 * later retire_requests won't dereference our soon-to-be-gone
4876 * file_priv.
4877 */
4878 mutex_lock(&dev->struct_mutex);
4879 while (!list_empty(&i915_file_priv->mm.request_list))
4880 list_del_init(i915_file_priv->mm.request_list.next);
4881 mutex_unlock(&dev->struct_mutex);
4882}
31169714 4883
1637ef41
CW
4884static int
4885i915_gpu_is_active(struct drm_device *dev)
4886{
4887 drm_i915_private_t *dev_priv = dev->dev_private;
4888 int lists_empty;
4889
4890 spin_lock(&dev_priv->mm.active_list_lock);
4891 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4892 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4893 if (HAS_BSD(dev))
4894 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4895 spin_unlock(&dev_priv->mm.active_list_lock);
4896
4897 return !lists_empty;
4898}
4899
31169714 4900static int
7f8275d0 4901i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4902{
4903 drm_i915_private_t *dev_priv, *next_dev;
4904 struct drm_i915_gem_object *obj_priv, *next_obj;
4905 int cnt = 0;
4906 int would_deadlock = 1;
4907
4908 /* "fast-path" to count number of available objects */
4909 if (nr_to_scan == 0) {
4910 spin_lock(&shrink_list_lock);
4911 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4912 struct drm_device *dev = dev_priv->dev;
4913
4914 if (mutex_trylock(&dev->struct_mutex)) {
4915 list_for_each_entry(obj_priv,
4916 &dev_priv->mm.inactive_list,
4917 list)
4918 cnt++;
4919 mutex_unlock(&dev->struct_mutex);
4920 }
4921 }
4922 spin_unlock(&shrink_list_lock);
4923
4924 return (cnt / 100) * sysctl_vfs_cache_pressure;
4925 }
4926
4927 spin_lock(&shrink_list_lock);
4928
1637ef41 4929rescan:
31169714
CW
4930 /* first scan for clean buffers */
4931 list_for_each_entry_safe(dev_priv, next_dev,
4932 &shrink_list, mm.shrink_list) {
4933 struct drm_device *dev = dev_priv->dev;
4934
4935 if (! mutex_trylock(&dev->struct_mutex))
4936 continue;
4937
4938 spin_unlock(&shrink_list_lock);
b09a1fec 4939 i915_gem_retire_requests(dev);
31169714
CW
4940
4941 list_for_each_entry_safe(obj_priv, next_obj,
4942 &dev_priv->mm.inactive_list,
4943 list) {
4944 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4945 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4946 if (--nr_to_scan <= 0)
4947 break;
4948 }
4949 }
4950
4951 spin_lock(&shrink_list_lock);
4952 mutex_unlock(&dev->struct_mutex);
4953
963b4836
CW
4954 would_deadlock = 0;
4955
31169714
CW
4956 if (nr_to_scan <= 0)
4957 break;
4958 }
4959
4960 /* second pass, evict/count anything still on the inactive list */
4961 list_for_each_entry_safe(dev_priv, next_dev,
4962 &shrink_list, mm.shrink_list) {
4963 struct drm_device *dev = dev_priv->dev;
4964
4965 if (! mutex_trylock(&dev->struct_mutex))
4966 continue;
4967
4968 spin_unlock(&shrink_list_lock);
4969
4970 list_for_each_entry_safe(obj_priv, next_obj,
4971 &dev_priv->mm.inactive_list,
4972 list) {
4973 if (nr_to_scan > 0) {
a8089e84 4974 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4975 nr_to_scan--;
4976 } else
4977 cnt++;
4978 }
4979
4980 spin_lock(&shrink_list_lock);
4981 mutex_unlock(&dev->struct_mutex);
4982
4983 would_deadlock = 0;
4984 }
4985
1637ef41
CW
4986 if (nr_to_scan) {
4987 int active = 0;
4988
4989 /*
4990 * We are desperate for pages, so as a last resort, wait
4991 * for the GPU to finish and discard whatever we can.
4992 * This has a dramatic impact to reduce the number of
4993 * OOM-killer events whilst running the GPU aggressively.
4994 */
4995 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4996 struct drm_device *dev = dev_priv->dev;
4997
4998 if (!mutex_trylock(&dev->struct_mutex))
4999 continue;
5000
5001 spin_unlock(&shrink_list_lock);
5002
5003 if (i915_gpu_is_active(dev)) {
5004 i915_gpu_idle(dev);
5005 active++;
5006 }
5007
5008 spin_lock(&shrink_list_lock);
5009 mutex_unlock(&dev->struct_mutex);
5010 }
5011
5012 if (active)
5013 goto rescan;
5014 }
5015
31169714
CW
5016 spin_unlock(&shrink_list_lock);
5017
5018 if (would_deadlock)
5019 return -1;
5020 else if (cnt > 0)
5021 return (cnt / 100) * sysctl_vfs_cache_pressure;
5022 else
5023 return 0;
5024}
5025
5026static struct shrinker shrinker = {
5027 .shrink = i915_gem_shrink,
5028 .seeks = DEFAULT_SEEKS,
5029};
5030
5031__init void
5032i915_gem_shrinker_init(void)
5033{
5034 register_shrinker(&shrinker);
5035}
5036
5037__exit void
5038i915_gem_shrinker_exit(void)
5039{
5040 unregister_shrinker(&shrinker);
5041}