]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Don't overwrite the returned error-code
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
31169714
CW
61static LIST_HEAD(shrink_list);
62static DEFINE_SPINLOCK(shrink_list_lock);
63
7d1c4804
CW
64static inline bool
65i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
66{
67 return obj_priv->gtt_space &&
68 !obj_priv->active &&
69 obj_priv->pin_count == 0;
70}
71
79e53945
JB
72int i915_gem_do_init(struct drm_device *dev, unsigned long start,
73 unsigned long end)
673a394b
EA
74{
75 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 76
79e53945
JB
77 if (start >= end ||
78 (start & (PAGE_SIZE - 1)) != 0 ||
79 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
80 return -EINVAL;
81 }
82
79e53945
JB
83 drm_mm_init(&dev_priv->mm.gtt_space, start,
84 end - start);
673a394b 85
79e53945
JB
86 dev->gtt_total = (uint32_t) (end - start);
87
88 return 0;
89}
673a394b 90
79e53945
JB
91int
92i915_gem_init_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file_priv)
94{
95 struct drm_i915_gem_init *args = data;
96 int ret;
97
98 mutex_lock(&dev->struct_mutex);
99 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
100 mutex_unlock(&dev->struct_mutex);
101
79e53945 102 return ret;
673a394b
EA
103}
104
5a125c3c
EA
105int
106i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
107 struct drm_file *file_priv)
108{
5a125c3c 109 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
110
111 if (!(dev->driver->driver_features & DRIVER_GEM))
112 return -ENODEV;
113
114 args->aper_size = dev->gtt_total;
2678d9d6
KP
115 args->aper_available_size = (args->aper_size -
116 atomic_read(&dev->pin_memory));
5a125c3c
EA
117
118 return 0;
119}
120
673a394b
EA
121
122/**
123 * Creates a new mm object and returns a handle to it.
124 */
125int
126i915_gem_create_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file_priv)
128{
129 struct drm_i915_gem_create *args = data;
130 struct drm_gem_object *obj;
a1a2d1d3
PP
131 int ret;
132 u32 handle;
673a394b
EA
133
134 args->size = roundup(args->size, PAGE_SIZE);
135
136 /* Allocate the new object */
ac52bc56 137 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
138 if (obj == NULL)
139 return -ENOMEM;
140
141 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
142 if (ret) {
143 drm_gem_object_unreference_unlocked(obj);
673a394b 144 return ret;
1dfd9754 145 }
673a394b 146
1dfd9754
CW
147 /* Sink the floating reference from kref_init(handlecount) */
148 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 149
1dfd9754 150 args->handle = handle;
673a394b
EA
151 return 0;
152}
153
eb01459f
EA
154static inline int
155fast_shmem_read(struct page **pages,
156 loff_t page_base, int page_offset,
157 char __user *data,
158 int length)
159{
160 char __iomem *vaddr;
2bc43b5c 161 int unwritten;
eb01459f
EA
162
163 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
164 if (vaddr == NULL)
165 return -ENOMEM;
2bc43b5c 166 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
167 kunmap_atomic(vaddr, KM_USER0);
168
2bc43b5c
FM
169 if (unwritten)
170 return -EFAULT;
171
172 return 0;
eb01459f
EA
173}
174
280b713b
EA
175static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
176{
177 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 178 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
179
180 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
181 obj_priv->tiling_mode != I915_TILING_NONE;
182}
183
99a03df5 184static inline void
40123c1f
EA
185slow_shmem_copy(struct page *dst_page,
186 int dst_offset,
187 struct page *src_page,
188 int src_offset,
189 int length)
190{
191 char *dst_vaddr, *src_vaddr;
192
99a03df5
CW
193 dst_vaddr = kmap(dst_page);
194 src_vaddr = kmap(src_page);
40123c1f
EA
195
196 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
197
99a03df5
CW
198 kunmap(src_page);
199 kunmap(dst_page);
40123c1f
EA
200}
201
99a03df5 202static inline void
280b713b
EA
203slow_shmem_bit17_copy(struct page *gpu_page,
204 int gpu_offset,
205 struct page *cpu_page,
206 int cpu_offset,
207 int length,
208 int is_read)
209{
210 char *gpu_vaddr, *cpu_vaddr;
211
212 /* Use the unswizzled path if this page isn't affected. */
213 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
214 if (is_read)
215 return slow_shmem_copy(cpu_page, cpu_offset,
216 gpu_page, gpu_offset, length);
217 else
218 return slow_shmem_copy(gpu_page, gpu_offset,
219 cpu_page, cpu_offset, length);
220 }
221
99a03df5
CW
222 gpu_vaddr = kmap(gpu_page);
223 cpu_vaddr = kmap(cpu_page);
280b713b
EA
224
225 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226 * XORing with the other bits (A9 for Y, A9 and A10 for X)
227 */
228 while (length > 0) {
229 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230 int this_length = min(cacheline_end - gpu_offset, length);
231 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233 if (is_read) {
234 memcpy(cpu_vaddr + cpu_offset,
235 gpu_vaddr + swizzled_gpu_offset,
236 this_length);
237 } else {
238 memcpy(gpu_vaddr + swizzled_gpu_offset,
239 cpu_vaddr + cpu_offset,
240 this_length);
241 }
242 cpu_offset += this_length;
243 gpu_offset += this_length;
244 length -= this_length;
245 }
246
99a03df5
CW
247 kunmap(cpu_page);
248 kunmap(gpu_page);
280b713b
EA
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
23010e43 261 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
4bdadb97 273 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
23010e43 282 obj_priv = to_intel_bo(obj);
eb01459f
EA
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
07f73f69
CW
317static int
318i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
319{
320 int ret;
321
4bdadb97 322 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
323
324 /* If we've insufficient memory to map in the pages, attempt
325 * to make some space by throwing out some old buffers.
326 */
327 if (ret == -ENOMEM) {
328 struct drm_device *dev = obj->dev;
07f73f69 329
0108a3ed
DV
330 ret = i915_gem_evict_something(dev, obj->size,
331 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
332 if (ret)
333 return ret;
334
4bdadb97 335 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
336 }
337
338 return ret;
339}
340
eb01459f
EA
341/**
342 * This is the fallback shmem pread path, which allocates temporary storage
343 * in kernel space to copy_to_user into outside of the struct_mutex, so we
344 * can copy out of the object's backing pages while holding the struct mutex
345 * and not take page faults.
346 */
347static int
348i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
349 struct drm_i915_gem_pread *args,
350 struct drm_file *file_priv)
351{
23010e43 352 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
353 struct mm_struct *mm = current->mm;
354 struct page **user_pages;
355 ssize_t remain;
356 loff_t offset, pinned_pages, i;
357 loff_t first_data_page, last_data_page, num_pages;
358 int shmem_page_index, shmem_page_offset;
359 int data_page_index, data_page_offset;
360 int page_length;
361 int ret;
362 uint64_t data_ptr = args->data_ptr;
280b713b 363 int do_bit17_swizzling;
eb01459f
EA
364
365 remain = args->size;
366
367 /* Pin the user pages containing the data. We can't fault while
368 * holding the struct mutex, yet we want to hold it while
369 * dereferencing the user data.
370 */
371 first_data_page = data_ptr / PAGE_SIZE;
372 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
373 num_pages = last_data_page - first_data_page + 1;
374
8e7d2b2c 375 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
376 if (user_pages == NULL)
377 return -ENOMEM;
378
379 down_read(&mm->mmap_sem);
380 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 381 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
382 up_read(&mm->mmap_sem);
383 if (pinned_pages < num_pages) {
384 ret = -EFAULT;
385 goto fail_put_user_pages;
386 }
387
280b713b
EA
388 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
389
eb01459f
EA
390 mutex_lock(&dev->struct_mutex);
391
07f73f69
CW
392 ret = i915_gem_object_get_pages_or_evict(obj);
393 if (ret)
eb01459f
EA
394 goto fail_unlock;
395
396 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
397 args->size);
398 if (ret != 0)
399 goto fail_put_pages;
400
23010e43 401 obj_priv = to_intel_bo(obj);
eb01459f
EA
402 offset = args->offset;
403
404 while (remain > 0) {
405 /* Operation in this page
406 *
407 * shmem_page_index = page number within shmem file
408 * shmem_page_offset = offset within page in shmem file
409 * data_page_index = page number in get_user_pages return
410 * data_page_offset = offset with data_page_index page.
411 * page_length = bytes to copy for this page
412 */
413 shmem_page_index = offset / PAGE_SIZE;
414 shmem_page_offset = offset & ~PAGE_MASK;
415 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
416 data_page_offset = data_ptr & ~PAGE_MASK;
417
418 page_length = remain;
419 if ((shmem_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - shmem_page_offset;
421 if ((data_page_offset + page_length) > PAGE_SIZE)
422 page_length = PAGE_SIZE - data_page_offset;
423
280b713b 424 if (do_bit17_swizzling) {
99a03df5 425 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 426 shmem_page_offset,
99a03df5
CW
427 user_pages[data_page_index],
428 data_page_offset,
429 page_length,
430 1);
431 } else {
432 slow_shmem_copy(user_pages[data_page_index],
433 data_page_offset,
434 obj_priv->pages[shmem_page_index],
435 shmem_page_offset,
436 page_length);
280b713b 437 }
eb01459f
EA
438
439 remain -= page_length;
440 data_ptr += page_length;
441 offset += page_length;
442 }
443
444fail_put_pages:
445 i915_gem_object_put_pages(obj);
446fail_unlock:
447 mutex_unlock(&dev->struct_mutex);
448fail_put_user_pages:
449 for (i = 0; i < pinned_pages; i++) {
450 SetPageDirty(user_pages[i]);
451 page_cache_release(user_pages[i]);
452 }
8e7d2b2c 453 drm_free_large(user_pages);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
465 struct drm_file *file_priv)
466{
467 struct drm_i915_gem_pread *args = data;
468 struct drm_gem_object *obj;
469 struct drm_i915_gem_object *obj_priv;
673a394b
EA
470 int ret;
471
472 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
473 if (obj == NULL)
bf79cb91 474 return -ENOENT;
23010e43 475 obj_priv = to_intel_bo(obj);
673a394b
EA
476
477 /* Bounds check source.
478 *
479 * XXX: This could use review for overflow issues...
480 */
481 if (args->offset > obj->size || args->size > obj->size ||
482 args->offset + args->size > obj->size) {
bc9025bd 483 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
484 return -EINVAL;
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
bc9025bd 496 drm_gem_object_unreference_unlocked(obj);
673a394b 497
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
586 if (!access_ok(VERIFY_READ, user_data, remain))
587 return -EFAULT;
588
589
590 mutex_lock(&dev->struct_mutex);
591 ret = i915_gem_object_pin(obj, 0);
592 if (ret) {
593 mutex_unlock(&dev->struct_mutex);
594 return ret;
595 }
2ef7eeaa 596 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
597 if (ret)
598 goto fail;
599
23010e43 600 obj_priv = to_intel_bo(obj);
673a394b 601 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
602
603 while (remain > 0) {
604 /* Operation in this page
605 *
0839ccb8
KP
606 * page_base = page offset within aperture
607 * page_offset = offset within page
608 * page_length = bytes to copy for this page
673a394b 609 */
0839ccb8
KP
610 page_base = (offset & ~(PAGE_SIZE-1));
611 page_offset = offset & (PAGE_SIZE-1);
612 page_length = remain;
613 if ((page_offset + remain) > PAGE_SIZE)
614 page_length = PAGE_SIZE - page_offset;
615
616 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
617 page_offset, user_data, page_length);
618
619 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
0839ccb8 622 */
3de09aa3
EA
623 if (ret)
624 goto fail;
673a394b 625
0839ccb8
KP
626 remain -= page_length;
627 user_data += page_length;
628 offset += page_length;
673a394b 629 }
673a394b
EA
630
631fail:
632 i915_gem_object_unpin(obj);
633 mutex_unlock(&dev->struct_mutex);
634
635 return ret;
636}
637
3de09aa3
EA
638/**
639 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
640 * the memory and maps it using kmap_atomic for copying.
641 *
642 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
643 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
644 */
3043c60c 645static int
3de09aa3
EA
646i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
647 struct drm_i915_gem_pwrite *args,
648 struct drm_file *file_priv)
673a394b 649{
23010e43 650 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
651 drm_i915_private_t *dev_priv = dev->dev_private;
652 ssize_t remain;
653 loff_t gtt_page_base, offset;
654 loff_t first_data_page, last_data_page, num_pages;
655 loff_t pinned_pages, i;
656 struct page **user_pages;
657 struct mm_struct *mm = current->mm;
658 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 659 int ret;
3de09aa3
EA
660 uint64_t data_ptr = args->data_ptr;
661
662 remain = args->size;
663
664 /* Pin the user pages containing the data. We can't fault while
665 * holding the struct mutex, and all of the pwrite implementations
666 * want to hold it while dereferencing the user data.
667 */
668 first_data_page = data_ptr / PAGE_SIZE;
669 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
670 num_pages = last_data_page - first_data_page + 1;
671
8e7d2b2c 672 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
673 if (user_pages == NULL)
674 return -ENOMEM;
675
676 down_read(&mm->mmap_sem);
677 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
678 num_pages, 0, 0, user_pages, NULL);
679 up_read(&mm->mmap_sem);
680 if (pinned_pages < num_pages) {
681 ret = -EFAULT;
682 goto out_unpin_pages;
683 }
673a394b
EA
684
685 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
686 ret = i915_gem_object_pin(obj, 0);
687 if (ret)
688 goto out_unlock;
689
690 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
691 if (ret)
692 goto out_unpin_object;
693
23010e43 694 obj_priv = to_intel_bo(obj);
3de09aa3
EA
695 offset = obj_priv->gtt_offset + args->offset;
696
697 while (remain > 0) {
698 /* Operation in this page
699 *
700 * gtt_page_base = page offset within aperture
701 * gtt_page_offset = offset within page in aperture
702 * data_page_index = page number in get_user_pages return
703 * data_page_offset = offset with data_page_index page.
704 * page_length = bytes to copy for this page
705 */
706 gtt_page_base = offset & PAGE_MASK;
707 gtt_page_offset = offset & ~PAGE_MASK;
708 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
709 data_page_offset = data_ptr & ~PAGE_MASK;
710
711 page_length = remain;
712 if ((gtt_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - gtt_page_offset;
714 if ((data_page_offset + page_length) > PAGE_SIZE)
715 page_length = PAGE_SIZE - data_page_offset;
716
ab34c226
CW
717 slow_kernel_write(dev_priv->mm.gtt_mapping,
718 gtt_page_base, gtt_page_offset,
719 user_pages[data_page_index],
720 data_page_offset,
721 page_length);
3de09aa3
EA
722
723 remain -= page_length;
724 offset += page_length;
725 data_ptr += page_length;
726 }
727
728out_unpin_object:
729 i915_gem_object_unpin(obj);
730out_unlock:
731 mutex_unlock(&dev->struct_mutex);
732out_unpin_pages:
733 for (i = 0; i < pinned_pages; i++)
734 page_cache_release(user_pages[i]);
8e7d2b2c 735 drm_free_large(user_pages);
3de09aa3
EA
736
737 return ret;
738}
739
40123c1f
EA
740/**
741 * This is the fast shmem pwrite path, which attempts to directly
742 * copy_from_user into the kmapped pages backing the object.
743 */
3043c60c 744static int
40123c1f
EA
745i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
746 struct drm_i915_gem_pwrite *args,
747 struct drm_file *file_priv)
673a394b 748{
23010e43 749 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
750 ssize_t remain;
751 loff_t offset, page_base;
752 char __user *user_data;
753 int page_offset, page_length;
673a394b 754 int ret;
40123c1f
EA
755
756 user_data = (char __user *) (uintptr_t) args->data_ptr;
757 remain = args->size;
673a394b
EA
758
759 mutex_lock(&dev->struct_mutex);
760
4bdadb97 761 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
762 if (ret != 0)
763 goto fail_unlock;
673a394b 764
e47c68e9 765 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
766 if (ret != 0)
767 goto fail_put_pages;
768
23010e43 769 obj_priv = to_intel_bo(obj);
40123c1f
EA
770 offset = args->offset;
771 obj_priv->dirty = 1;
772
773 while (remain > 0) {
774 /* Operation in this page
775 *
776 * page_base = page offset within aperture
777 * page_offset = offset within page
778 * page_length = bytes to copy for this page
779 */
780 page_base = (offset & ~(PAGE_SIZE-1));
781 page_offset = offset & (PAGE_SIZE-1);
782 page_length = remain;
783 if ((page_offset + remain) > PAGE_SIZE)
784 page_length = PAGE_SIZE - page_offset;
785
786 ret = fast_shmem_write(obj_priv->pages,
787 page_base, page_offset,
788 user_data, page_length);
789 if (ret)
790 goto fail_put_pages;
791
792 remain -= page_length;
793 user_data += page_length;
794 offset += page_length;
795 }
796
797fail_put_pages:
798 i915_gem_object_put_pages(obj);
799fail_unlock:
800 mutex_unlock(&dev->struct_mutex);
801
802 return ret;
803}
804
805/**
806 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
807 * the memory and maps it using kmap_atomic for copying.
808 *
809 * This avoids taking mmap_sem for faulting on the user's address while the
810 * struct_mutex is held.
811 */
812static int
813i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
814 struct drm_i915_gem_pwrite *args,
815 struct drm_file *file_priv)
816{
23010e43 817 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
818 struct mm_struct *mm = current->mm;
819 struct page **user_pages;
820 ssize_t remain;
821 loff_t offset, pinned_pages, i;
822 loff_t first_data_page, last_data_page, num_pages;
823 int shmem_page_index, shmem_page_offset;
824 int data_page_index, data_page_offset;
825 int page_length;
826 int ret;
827 uint64_t data_ptr = args->data_ptr;
280b713b 828 int do_bit17_swizzling;
40123c1f
EA
829
830 remain = args->size;
831
832 /* Pin the user pages containing the data. We can't fault while
833 * holding the struct mutex, and all of the pwrite implementations
834 * want to hold it while dereferencing the user data.
835 */
836 first_data_page = data_ptr / PAGE_SIZE;
837 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
838 num_pages = last_data_page - first_data_page + 1;
839
8e7d2b2c 840 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
841 if (user_pages == NULL)
842 return -ENOMEM;
843
844 down_read(&mm->mmap_sem);
845 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
846 num_pages, 0, 0, user_pages, NULL);
847 up_read(&mm->mmap_sem);
848 if (pinned_pages < num_pages) {
849 ret = -EFAULT;
850 goto fail_put_user_pages;
673a394b
EA
851 }
852
280b713b
EA
853 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
854
40123c1f
EA
855 mutex_lock(&dev->struct_mutex);
856
07f73f69
CW
857 ret = i915_gem_object_get_pages_or_evict(obj);
858 if (ret)
40123c1f
EA
859 goto fail_unlock;
860
861 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
862 if (ret != 0)
863 goto fail_put_pages;
864
23010e43 865 obj_priv = to_intel_bo(obj);
673a394b 866 offset = args->offset;
40123c1f 867 obj_priv->dirty = 1;
673a394b 868
40123c1f
EA
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * shmem_page_index = page number within shmem file
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_index = offset / PAGE_SIZE;
879 shmem_page_offset = offset & ~PAGE_MASK;
880 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
881 data_page_offset = data_ptr & ~PAGE_MASK;
882
883 page_length = remain;
884 if ((shmem_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - shmem_page_offset;
886 if ((data_page_offset + page_length) > PAGE_SIZE)
887 page_length = PAGE_SIZE - data_page_offset;
888
280b713b 889 if (do_bit17_swizzling) {
99a03df5 890 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
99a03df5
CW
894 page_length,
895 0);
896 } else {
897 slow_shmem_copy(obj_priv->pages[shmem_page_index],
898 shmem_page_offset,
899 user_pages[data_page_index],
900 data_page_offset,
901 page_length);
280b713b 902 }
40123c1f
EA
903
904 remain -= page_length;
905 data_ptr += page_length;
906 offset += page_length;
673a394b
EA
907 }
908
40123c1f
EA
909fail_put_pages:
910 i915_gem_object_put_pages(obj);
911fail_unlock:
673a394b 912 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
913fail_put_user_pages:
914 for (i = 0; i < pinned_pages; i++)
915 page_cache_release(user_pages[i]);
8e7d2b2c 916 drm_free_large(user_pages);
673a394b 917
40123c1f 918 return ret;
673a394b
EA
919}
920
921/**
922 * Writes data to the object referenced by handle.
923 *
924 * On error, the contents of the buffer that were to be modified are undefined.
925 */
926int
927i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
928 struct drm_file *file_priv)
929{
930 struct drm_i915_gem_pwrite *args = data;
931 struct drm_gem_object *obj;
932 struct drm_i915_gem_object *obj_priv;
933 int ret = 0;
934
935 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
936 if (obj == NULL)
bf79cb91 937 return -ENOENT;
23010e43 938 obj_priv = to_intel_bo(obj);
673a394b
EA
939
940 /* Bounds check destination.
941 *
942 * XXX: This could use review for overflow issues...
943 */
944 if (args->offset > obj->size || args->size > obj->size ||
945 args->offset + args->size > obj->size) {
bc9025bd 946 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
947 return -EINVAL;
948 }
949
950 /* We can only do the GTT pwrite on untiled buffers, as otherwise
951 * it would end up going through the fenced access, and we'll get
952 * different detiling behavior between reading and writing.
953 * pread/pwrite currently are reading and writing from the CPU
954 * perspective, requiring manual detiling by the client.
955 */
71acb5eb
DA
956 if (obj_priv->phys_obj)
957 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
958 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
959 dev->gtt_total != 0 &&
960 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
961 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
962 if (ret == -EFAULT) {
963 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
964 file_priv);
965 }
280b713b
EA
966 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
967 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
968 } else {
969 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
970 if (ret == -EFAULT) {
971 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
972 file_priv);
973 }
974 }
673a394b
EA
975
976#if WATCH_PWRITE
977 if (ret)
978 DRM_INFO("pwrite failed %d\n", ret);
979#endif
980
bc9025bd 981 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
982
983 return ret;
984}
985
986/**
2ef7eeaa
EA
987 * Called when user space prepares to use an object with the CPU, either
988 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
989 */
990int
991i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
992 struct drm_file *file_priv)
993{
a09ba7fa 994 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
995 struct drm_i915_gem_set_domain *args = data;
996 struct drm_gem_object *obj;
652c393a 997 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
998 uint32_t read_domains = args->read_domains;
999 uint32_t write_domain = args->write_domain;
673a394b
EA
1000 int ret;
1001
1002 if (!(dev->driver->driver_features & DRIVER_GEM))
1003 return -ENODEV;
1004
2ef7eeaa 1005 /* Only handle setting domains to types used by the CPU. */
21d509e3 1006 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1007 return -EINVAL;
1008
21d509e3 1009 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1010 return -EINVAL;
1011
1012 /* Having something in the write domain implies it's in the read
1013 * domain, and only that read domain. Enforce that in the request.
1014 */
1015 if (write_domain != 0 && read_domains != write_domain)
1016 return -EINVAL;
1017
673a394b
EA
1018 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1019 if (obj == NULL)
bf79cb91 1020 return -ENOENT;
23010e43 1021 obj_priv = to_intel_bo(obj);
673a394b
EA
1022
1023 mutex_lock(&dev->struct_mutex);
652c393a
JB
1024
1025 intel_mark_busy(dev, obj);
1026
673a394b 1027#if WATCH_BUF
cfd43c02 1028 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1029 obj, obj->size, read_domains, write_domain);
673a394b 1030#endif
2ef7eeaa
EA
1031 if (read_domains & I915_GEM_DOMAIN_GTT) {
1032 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1033
a09ba7fa
EA
1034 /* Update the LRU on the fence for the CPU access that's
1035 * about to occur.
1036 */
1037 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1038 struct drm_i915_fence_reg *reg =
1039 &dev_priv->fence_regs[obj_priv->fence_reg];
1040 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1041 &dev_priv->mm.fence_list);
1042 }
1043
02354392
EA
1044 /* Silently promote "you're not bound, there was nothing to do"
1045 * to success, since the client was just asking us to
1046 * make sure everything was done.
1047 */
1048 if (ret == -EINVAL)
1049 ret = 0;
2ef7eeaa 1050 } else {
e47c68e9 1051 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1052 }
1053
7d1c4804
CW
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1057
673a394b
EA
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061}
1062
1063/**
1064 * Called when user space has done writes to this buffer
1065 */
1066int
1067i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069{
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1074
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1077
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
bf79cb91 1082 return -ENOENT;
673a394b
EA
1083 }
1084
1085#if WATCH_BUF
cfd43c02 1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1087 __func__, args->handle, obj, obj->size);
1088#endif
23010e43 1089 obj_priv = to_intel_bo(obj);
673a394b
EA
1090
1091 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1094
673a394b
EA
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1103 *
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1106 */
1107int
1108i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1110{
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
bf79cb91 1121 return -ENOENT;
673a394b
EA
1122
1123 offset = args->offset;
1124
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
bc9025bd 1130 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1131 if (IS_ERR((void *)addr))
1132 return addr;
1133
1134 args->addr_ptr = (uint64_t) addr;
1135
1136 return 0;
1137}
1138
de151cf6
JB
1139/**
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1143 *
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1149 *
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1154 */
1155int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1156{
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
7d1c4804 1159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
0f973f27 1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1165
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1169
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
e67b8ce1 1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1174 if (ret)
1175 goto unlock;
07f4f3e8 1176
07f4f3e8 1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1178 if (ret)
1179 goto unlock;
de151cf6
JB
1180 }
1181
1182 /* Need a new fence register? */
a09ba7fa 1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1184 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1185 if (ret)
1186 goto unlock;
d9ddcb96 1187 }
de151cf6 1188
7d1c4804
CW
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
de151cf6
JB
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1194
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1197unlock:
de151cf6
JB
1198 mutex_unlock(&dev->struct_mutex);
1199
1200 switch (ret) {
c715089f
CW
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
de151cf6
JB
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
de151cf6 1207 default:
c715089f 1208 return VM_FAULT_SIGBUS;
de151cf6
JB
1209 }
1210}
1211
1212/**
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1215 *
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1220 *
1221 * This routine allocates and attaches a fake offset for @obj.
1222 */
1223static int
1224i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1229 struct drm_map_list *list;
f77d390c 1230 struct drm_local_map *map;
de151cf6
JB
1231 int ret = 0;
1232
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
9a298b2a 1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1236 if (!list->map)
1237 return -ENOMEM;
1238
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1243
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1249 ret = -ENOSPC;
de151cf6
JB
1250 goto out_free_list;
1251 }
1252
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1258 }
1259
1260 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1261 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1262 if (ret) {
de151cf6
JB
1263 DRM_ERROR("failed to add to map hash\n");
1264 goto out_free_mm;
1265 }
1266
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1270
1271 return 0;
1272
1273out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275out_free_list:
9a298b2a 1276 kfree(list->map);
de151cf6
JB
1277
1278 return ret;
1279}
1280
901782b2
CW
1281/**
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1284 *
af901ca1 1285 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1286 * relinquish ownership of the pages back to the system.
1287 *
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1294 */
d05ca301 1295void
901782b2
CW
1296i915_gem_release_mmap(struct drm_gem_object *obj)
1297{
1298 struct drm_device *dev = obj->dev;
23010e43 1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1300
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1304}
1305
ab00b3e5
JB
1306static void
1307i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1308{
1309 struct drm_device *dev = obj->dev;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1313
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1316
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1320 }
1321
1322 if (list->map) {
9a298b2a 1323 kfree(list->map);
ab00b3e5
JB
1324 list->map = NULL;
1325 }
1326
1327 obj_priv->mmap_offset = 0;
1328}
1329
de151cf6
JB
1330/**
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1333 *
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1336 */
1337static uint32_t
1338i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1339{
1340 struct drm_device *dev = obj->dev;
23010e43 1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1342 int start, i;
1343
1344 /*
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1347 */
a6c45cf0 1348 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1349 return 4096;
1350
1351 /*
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1354 */
a6c45cf0 1355 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1359
1360 for (i = start; i < obj->size; i <<= 1)
1361 ;
1362
1363 return i;
1364}
1365
1366/**
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1371 *
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1375 *
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1380 */
1381int
1382i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1384{
1385 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1389
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1392
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
bf79cb91 1395 return -ENOENT;
de151cf6
JB
1396
1397 mutex_lock(&dev->struct_mutex);
1398
23010e43 1399 obj_priv = to_intel_bo(obj);
de151cf6 1400
ab18282d
CW
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1406 }
1407
1408
de151cf6
JB
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
de151cf6 1414 return ret;
13af1062 1415 }
de151cf6
JB
1416 }
1417
1418 args->offset = obj_priv->mmap_offset;
1419
de151cf6
JB
1420 /*
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1423 */
1424 if (!obj_priv->agp_mem) {
e67b8ce1 1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
de151cf6
JB
1431 }
1432
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1435
1436 return 0;
1437}
1438
6911a9b8 1439void
856fa198 1440i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1441{
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1445
856fa198 1446 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1448
856fa198
EA
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
673a394b 1451
280b713b
EA
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1454
3ef94daa 1455 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1456 obj_priv->dirty = 0;
3ef94daa
CW
1457
1458 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1461
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1463 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1464
1465 page_cache_release(obj_priv->pages[i]);
1466 }
673a394b
EA
1467 obj_priv->dirty = 0;
1468
8e7d2b2c 1469 drm_free_large(obj_priv->pages);
856fa198 1470 obj_priv->pages = NULL;
673a394b
EA
1471}
1472
e35a41de 1473static uint32_t
a6910434
DV
1474i915_gem_next_request_seqno(struct drm_device *dev,
1475 struct intel_ring_buffer *ring)
e35a41de
DV
1476{
1477 drm_i915_private_t *dev_priv = dev->dev_private;
1478
a6910434
DV
1479 ring->outstanding_lazy_request = true;
1480
e35a41de
DV
1481 return dev_priv->next_seqno;
1482}
1483
673a394b 1484static void
617dbe27 1485i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1486 struct intel_ring_buffer *ring)
673a394b
EA
1487{
1488 struct drm_device *dev = obj->dev;
23010e43 1489 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1490 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1491
852835f3
ZN
1492 BUG_ON(ring == NULL);
1493 obj_priv->ring = ring;
673a394b
EA
1494
1495 /* Add a reference if we're newly entering the active list. */
1496 if (!obj_priv->active) {
1497 drm_gem_object_reference(obj);
1498 obj_priv->active = 1;
1499 }
e35a41de 1500
673a394b 1501 /* Move from whatever list we were on to the tail of execution. */
852835f3 1502 list_move_tail(&obj_priv->list, &ring->active_list);
ce44b0ea 1503 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1504}
1505
ce44b0ea
EA
1506static void
1507i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508{
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1511 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516}
673a394b 1517
963b4836
CW
1518/* Immediately discard the backing storage */
1519static void
1520i915_gem_object_truncate(struct drm_gem_object *obj)
1521{
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1523 struct inode *inode;
963b4836 1524
ae9fed6b
CW
1525 /* Our goal here is to return as much of the memory as
1526 * is possible back to the system as we are called from OOM.
1527 * To do this we must instruct the shmfs to drop all of its
1528 * backing pages, *now*. Here we mirror the actions taken
1529 * when by shmem_delete_inode() to release the backing store.
1530 */
bb6baf76 1531 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1532 truncate_inode_pages(inode->i_mapping, 0);
1533 if (inode->i_op->truncate_range)
1534 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1535
1536 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1537}
1538
1539static inline int
1540i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1541{
1542 return obj_priv->madv == I915_MADV_DONTNEED;
1543}
1544
673a394b
EA
1545static void
1546i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1547{
1548 struct drm_device *dev = obj->dev;
1549 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1550 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1551
1552 i915_verify_inactive(dev, __FILE__, __LINE__);
1553 if (obj_priv->pin_count != 0)
f13d3f73 1554 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1555 else
1556 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1557
99fcb766
DV
1558 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1559
ce44b0ea 1560 obj_priv->last_rendering_seqno = 0;
852835f3 1561 obj_priv->ring = NULL;
673a394b
EA
1562 if (obj_priv->active) {
1563 obj_priv->active = 0;
1564 drm_gem_object_unreference(obj);
1565 }
1566 i915_verify_inactive(dev, __FILE__, __LINE__);
1567}
1568
9220434a 1569static void
63560396 1570i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1571 uint32_t flush_domains,
852835f3 1572 struct intel_ring_buffer *ring)
63560396
DV
1573{
1574 drm_i915_private_t *dev_priv = dev->dev_private;
1575 struct drm_i915_gem_object *obj_priv, *next;
1576
1577 list_for_each_entry_safe(obj_priv, next,
1578 &dev_priv->mm.gpu_write_list,
1579 gpu_write_list) {
a8089e84 1580 struct drm_gem_object *obj = &obj_priv->base;
63560396 1581
2b6efaa4
CW
1582 if (obj->write_domain & flush_domains &&
1583 obj_priv->ring == ring) {
63560396
DV
1584 uint32_t old_write_domain = obj->write_domain;
1585
1586 obj->write_domain = 0;
1587 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1588 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1589
1590 /* update the fence lru list */
007cc8ac
DV
1591 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1592 struct drm_i915_fence_reg *reg =
1593 &dev_priv->fence_regs[obj_priv->fence_reg];
1594 list_move_tail(&reg->lru_list,
63560396 1595 &dev_priv->mm.fence_list);
007cc8ac 1596 }
63560396
DV
1597
1598 trace_i915_gem_object_change_domain(obj,
1599 obj->read_domains,
1600 old_write_domain);
1601 }
1602 }
1603}
8187a2b7 1604
5a5a0c64 1605uint32_t
8a1a49f9
DV
1606i915_add_request(struct drm_device *dev,
1607 struct drm_file *file_priv,
8dc5d147 1608 struct drm_i915_gem_request *request,
8a1a49f9 1609 struct intel_ring_buffer *ring)
673a394b
EA
1610{
1611 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1612 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1613 uint32_t seqno;
1614 int was_empty;
673a394b 1615
b962442e
EA
1616 if (file_priv != NULL)
1617 i915_file_priv = file_priv->driver_priv;
1618
8dc5d147
CW
1619 if (request == NULL) {
1620 request = kzalloc(sizeof(*request), GFP_KERNEL);
1621 if (request == NULL)
1622 return 0;
1623 }
673a394b 1624
8a1a49f9 1625 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1626
1627 request->seqno = seqno;
852835f3 1628 request->ring = ring;
673a394b 1629 request->emitted_jiffies = jiffies;
852835f3
ZN
1630 was_empty = list_empty(&ring->request_list);
1631 list_add_tail(&request->list, &ring->request_list);
1632
b962442e
EA
1633 if (i915_file_priv) {
1634 list_add_tail(&request->client_list,
1635 &i915_file_priv->mm.request_list);
1636 } else {
1637 INIT_LIST_HEAD(&request->client_list);
1638 }
673a394b 1639
f65d9421 1640 if (!dev_priv->mm.suspended) {
b3b079db
CW
1641 mod_timer(&dev_priv->hangcheck_timer,
1642 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1643 if (was_empty)
b3b079db
CW
1644 queue_delayed_work(dev_priv->wq,
1645 &dev_priv->mm.retire_work, HZ);
f65d9421 1646 }
673a394b
EA
1647 return seqno;
1648}
1649
1650/**
1651 * Command execution barrier
1652 *
1653 * Ensures that all commands in the ring are finished
1654 * before signalling the CPU
1655 */
8a1a49f9 1656static void
852835f3 1657i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1658{
673a394b 1659 uint32_t flush_domains = 0;
673a394b
EA
1660
1661 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1662 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1663 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1664
1665 ring->flush(dev, ring,
1666 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1667}
1668
673a394b
EA
1669/**
1670 * Returns true if seq1 is later than seq2.
1671 */
22be1724 1672bool
673a394b
EA
1673i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1674{
1675 return (int32_t)(seq1 - seq2) >= 0;
1676}
1677
1678uint32_t
852835f3 1679i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1680 struct intel_ring_buffer *ring)
673a394b 1681{
852835f3 1682 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1683}
1684
9375e446
CW
1685void i915_gem_reset_flushing_list(struct drm_device *dev)
1686{
1687 struct drm_i915_private *dev_priv = dev->dev_private;
1688
1689 while (!list_empty(&dev_priv->mm.flushing_list)) {
1690 struct drm_i915_gem_object *obj_priv;
1691
1692 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1693 struct drm_i915_gem_object,
1694 list);
1695
1696 obj_priv->base.write_domain = 0;
1697 i915_gem_object_move_to_inactive(&obj_priv->base);
1698 }
1699}
1700
77f01230
CW
1701void i915_gem_reset_inactive_gpu_domains(struct drm_device *dev)
1702{
1703 struct drm_i915_private *dev_priv = dev->dev_private;
1704 struct drm_i915_gem_object *obj_priv;
1705
1706 list_for_each_entry(obj_priv,
1707 &dev_priv->mm.inactive_list,
1708 list)
1709 {
1710 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1711 }
1712}
1713
673a394b
EA
1714/**
1715 * This function clears the request list as sequence numbers are passed.
1716 */
b09a1fec
CW
1717static void
1718i915_gem_retire_requests_ring(struct drm_device *dev,
1719 struct intel_ring_buffer *ring)
673a394b
EA
1720{
1721 drm_i915_private_t *dev_priv = dev->dev_private;
1722 uint32_t seqno;
b84d5f0c 1723 bool wedged;
673a394b 1724
b84d5f0c
CW
1725 if (!ring->status_page.page_addr ||
1726 list_empty(&ring->request_list))
6c0594a3
KW
1727 return;
1728
852835f3 1729 seqno = i915_get_gem_seqno(dev, ring);
b84d5f0c 1730 wedged = atomic_read(&dev_priv->mm.wedged);
673a394b 1731
852835f3 1732 while (!list_empty(&ring->request_list)) {
673a394b 1733 struct drm_i915_gem_request *request;
673a394b 1734
852835f3 1735 request = list_first_entry(&ring->request_list,
673a394b
EA
1736 struct drm_i915_gem_request,
1737 list);
673a394b 1738
b84d5f0c
CW
1739 if (!wedged && !i915_seqno_passed(seqno, request->seqno))
1740 break;
1741
1742 trace_i915_gem_request_retire(dev, request->seqno);
1743
1744 list_del(&request->list);
1745 list_del(&request->client_list);
1746 kfree(request);
1747 }
1748
1749 /* Move any buffers on the active list that are no longer referenced
1750 * by the ringbuffer to the flushing/inactive lists as appropriate.
1751 */
1752 while (!list_empty(&ring->active_list)) {
1753 struct drm_gem_object *obj;
1754 struct drm_i915_gem_object *obj_priv;
1755
1756 obj_priv = list_first_entry(&ring->active_list,
1757 struct drm_i915_gem_object,
1758 list);
673a394b 1759
b84d5f0c
CW
1760 if (!wedged &&
1761 !i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1762 break;
b84d5f0c
CW
1763
1764 obj = &obj_priv->base;
1765
1766#if WATCH_LRU
1767 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1768 __func__, request->seqno, obj);
1769#endif
1770
1771 if (obj->write_domain != 0)
1772 i915_gem_object_move_to_flushing(obj);
1773 else
1774 i915_gem_object_move_to_inactive(obj);
673a394b 1775 }
9d34e5db
CW
1776
1777 if (unlikely (dev_priv->trace_irq_seqno &&
1778 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1779 ring->user_irq_put(dev, ring);
9d34e5db
CW
1780 dev_priv->trace_irq_seqno = 0;
1781 }
673a394b
EA
1782}
1783
b09a1fec
CW
1784void
1785i915_gem_retire_requests(struct drm_device *dev)
1786{
1787 drm_i915_private_t *dev_priv = dev->dev_private;
1788
be72615b
CW
1789 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1790 struct drm_i915_gem_object *obj_priv, *tmp;
1791
1792 /* We must be careful that during unbind() we do not
1793 * accidentally infinitely recurse into retire requests.
1794 * Currently:
1795 * retire -> free -> unbind -> wait -> retire_ring
1796 */
1797 list_for_each_entry_safe(obj_priv, tmp,
1798 &dev_priv->mm.deferred_free_list,
1799 list)
1800 i915_gem_free_object_tail(&obj_priv->base);
1801 }
1802
b09a1fec
CW
1803 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1804 if (HAS_BSD(dev))
1805 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1806}
1807
75ef9da2 1808static void
673a394b
EA
1809i915_gem_retire_work_handler(struct work_struct *work)
1810{
1811 drm_i915_private_t *dev_priv;
1812 struct drm_device *dev;
1813
1814 dev_priv = container_of(work, drm_i915_private_t,
1815 mm.retire_work.work);
1816 dev = dev_priv->dev;
1817
1818 mutex_lock(&dev->struct_mutex);
b09a1fec 1819 i915_gem_retire_requests(dev);
d1b851fc 1820
6dbe2772 1821 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1822 (!list_empty(&dev_priv->render_ring.request_list) ||
1823 (HAS_BSD(dev) &&
1824 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1825 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1826 mutex_unlock(&dev->struct_mutex);
1827}
1828
5a5a0c64 1829int
852835f3 1830i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1831 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1832{
1833 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1834 u32 ier;
673a394b
EA
1835 int ret = 0;
1836
1837 BUG_ON(seqno == 0);
1838
e35a41de 1839 if (seqno == dev_priv->next_seqno) {
8dc5d147 1840 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1841 if (seqno == 0)
1842 return -ENOMEM;
1843 }
1844
ba1234d1 1845 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1846 return -EIO;
1847
852835f3 1848 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1849 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1850 ier = I915_READ(DEIER) | I915_READ(GTIER);
1851 else
1852 ier = I915_READ(IER);
802c7eb6
JB
1853 if (!ier) {
1854 DRM_ERROR("something (likely vbetool) disabled "
1855 "interrupts, re-enabling\n");
1856 i915_driver_irq_preinstall(dev);
1857 i915_driver_irq_postinstall(dev);
1858 }
1859
1c5d22f7
CW
1860 trace_i915_gem_request_wait_begin(dev, seqno);
1861
852835f3 1862 ring->waiting_gem_seqno = seqno;
8187a2b7 1863 ring->user_irq_get(dev, ring);
48764bf4 1864 if (interruptible)
852835f3
ZN
1865 ret = wait_event_interruptible(ring->irq_queue,
1866 i915_seqno_passed(
1867 ring->get_gem_seqno(dev, ring), seqno)
1868 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1869 else
852835f3
ZN
1870 wait_event(ring->irq_queue,
1871 i915_seqno_passed(
1872 ring->get_gem_seqno(dev, ring), seqno)
1873 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1874
8187a2b7 1875 ring->user_irq_put(dev, ring);
852835f3 1876 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1877
1878 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1879 }
ba1234d1 1880 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1881 ret = -EIO;
1882
1883 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1884 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1885 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1886 dev_priv->next_seqno);
673a394b
EA
1887
1888 /* Directly dispatch request retiring. While we have the work queue
1889 * to handle this, the waiter on a request often wants an associated
1890 * buffer to have made it to the inactive list, and we would need
1891 * a separate wait queue to handle that.
1892 */
1893 if (ret == 0)
b09a1fec 1894 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1895
1896 return ret;
1897}
1898
48764bf4
DV
1899/**
1900 * Waits for a sequence number to be signaled, and cleans up the
1901 * request and object lists appropriately for that event.
1902 */
1903static int
852835f3
ZN
1904i915_wait_request(struct drm_device *dev, uint32_t seqno,
1905 struct intel_ring_buffer *ring)
48764bf4 1906{
852835f3 1907 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1908}
1909
c7f9f9a8 1910void
9220434a 1911i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 1912 struct drm_file *file_priv,
9220434a
CW
1913 struct intel_ring_buffer *ring,
1914 uint32_t invalidate_domains,
1915 uint32_t flush_domains)
1916{
1917 ring->flush(dev, ring, invalidate_domains, flush_domains);
1918 i915_gem_process_flushing_list(dev, flush_domains, ring);
c78ec30b
CW
1919
1920 if (ring->outstanding_lazy_request) {
1921 (void)i915_add_request(dev, file_priv, NULL, ring);
1922 ring->outstanding_lazy_request = false;
1923 }
9220434a
CW
1924}
1925
8187a2b7
ZN
1926static void
1927i915_gem_flush(struct drm_device *dev,
c78ec30b 1928 struct drm_file *file_priv,
8187a2b7 1929 uint32_t invalidate_domains,
9220434a
CW
1930 uint32_t flush_domains,
1931 uint32_t flush_rings)
8187a2b7
ZN
1932{
1933 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1934
8187a2b7
ZN
1935 if (flush_domains & I915_GEM_DOMAIN_CPU)
1936 drm_agp_chipset_flush(dev);
8bff917c 1937
9220434a
CW
1938 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1939 if (flush_rings & RING_RENDER)
c78ec30b 1940 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
1941 &dev_priv->render_ring,
1942 invalidate_domains, flush_domains);
1943 if (flush_rings & RING_BSD)
c78ec30b 1944 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
1945 &dev_priv->bsd_ring,
1946 invalidate_domains, flush_domains);
1947 }
8187a2b7
ZN
1948}
1949
673a394b
EA
1950/**
1951 * Ensures that all rendering to the object has completed and the object is
1952 * safe to unbind from the GTT or access from the CPU.
1953 */
1954static int
2cf34d7b
CW
1955i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1956 bool interruptible)
673a394b
EA
1957{
1958 struct drm_device *dev = obj->dev;
23010e43 1959 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1960 int ret;
1961
e47c68e9
EA
1962 /* This function only exists to support waiting for existing rendering,
1963 * not for emitting required flushes.
673a394b 1964 */
e47c68e9 1965 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1966
1967 /* If there is rendering queued on the buffer being evicted, wait for
1968 * it.
1969 */
1970 if (obj_priv->active) {
1971#if WATCH_BUF
1972 DRM_INFO("%s: object %p wait for seqno %08x\n",
1973 __func__, obj, obj_priv->last_rendering_seqno);
1974#endif
2cf34d7b
CW
1975 ret = i915_do_wait_request(dev,
1976 obj_priv->last_rendering_seqno,
1977 interruptible,
1978 obj_priv->ring);
1979 if (ret)
673a394b
EA
1980 return ret;
1981 }
1982
1983 return 0;
1984}
1985
1986/**
1987 * Unbinds an object from the GTT aperture.
1988 */
0f973f27 1989int
673a394b
EA
1990i915_gem_object_unbind(struct drm_gem_object *obj)
1991{
1992 struct drm_device *dev = obj->dev;
23010e43 1993 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1994 int ret = 0;
1995
1996#if WATCH_BUF
1997 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1998 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1999#endif
2000 if (obj_priv->gtt_space == NULL)
2001 return 0;
2002
2003 if (obj_priv->pin_count != 0) {
2004 DRM_ERROR("Attempting to unbind pinned buffer\n");
2005 return -EINVAL;
2006 }
2007
5323fd04
EA
2008 /* blow away mappings if mapped through GTT */
2009 i915_gem_release_mmap(obj);
2010
673a394b
EA
2011 /* Move the object to the CPU domain to ensure that
2012 * any possible CPU writes while it's not in the GTT
2013 * are flushed when we go to remap it. This will
2014 * also ensure that all pending GPU writes are finished
2015 * before we unbind.
2016 */
e47c68e9 2017 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2018 if (ret == -ERESTARTSYS)
673a394b 2019 return ret;
8dc1775d
CW
2020 /* Continue on if we fail due to EIO, the GPU is hung so we
2021 * should be safe and we need to cleanup or else we might
2022 * cause memory corruption through use-after-free.
2023 */
673a394b 2024
96b47b65
DV
2025 /* release the fence reg _after_ flushing */
2026 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2027 i915_gem_clear_fence_reg(obj);
2028
673a394b
EA
2029 if (obj_priv->agp_mem != NULL) {
2030 drm_unbind_agp(obj_priv->agp_mem);
2031 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2032 obj_priv->agp_mem = NULL;
2033 }
2034
856fa198 2035 i915_gem_object_put_pages(obj);
a32808c0 2036 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2037
2038 if (obj_priv->gtt_space) {
2039 atomic_dec(&dev->gtt_count);
2040 atomic_sub(obj->size, &dev->gtt_memory);
2041
2042 drm_mm_put_block(obj_priv->gtt_space);
2043 obj_priv->gtt_space = NULL;
2044 }
2045
f13d3f73 2046 list_del_init(&obj_priv->list);
673a394b 2047
963b4836
CW
2048 if (i915_gem_object_is_purgeable(obj_priv))
2049 i915_gem_object_truncate(obj);
2050
1c5d22f7
CW
2051 trace_i915_gem_object_unbind(obj);
2052
8dc1775d 2053 return ret;
673a394b
EA
2054}
2055
b47eb4a2 2056int
4df2faf4
DV
2057i915_gpu_idle(struct drm_device *dev)
2058{
2059 drm_i915_private_t *dev_priv = dev->dev_private;
2060 bool lists_empty;
c78ec30b 2061 u32 seqno;
852835f3 2062 int ret;
4df2faf4 2063
d1b851fc
ZN
2064 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2065 list_empty(&dev_priv->render_ring.active_list) &&
2066 (!HAS_BSD(dev) ||
2067 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2068 if (lists_empty)
2069 return 0;
2070
2071 /* Flush everything onto the inactive list. */
c78ec30b
CW
2072 seqno = i915_gem_next_request_seqno(dev, &dev_priv->render_ring);
2073 i915_gem_flush_ring(dev, NULL, &dev_priv->render_ring,
9220434a 2074 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
c78ec30b 2075 ret = i915_wait_request(dev, seqno, &dev_priv->render_ring);
8a1a49f9
DV
2076 if (ret)
2077 return ret;
d1b851fc
ZN
2078
2079 if (HAS_BSD(dev)) {
c78ec30b
CW
2080 seqno = i915_gem_next_request_seqno(dev, &dev_priv->render_ring);
2081 i915_gem_flush_ring(dev, NULL, &dev_priv->bsd_ring,
9220434a 2082 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
c78ec30b 2083 ret = i915_wait_request(dev, seqno, &dev_priv->bsd_ring);
d1b851fc
ZN
2084 if (ret)
2085 return ret;
2086 }
2087
8a1a49f9 2088 return 0;
4df2faf4
DV
2089}
2090
6911a9b8 2091int
4bdadb97
CW
2092i915_gem_object_get_pages(struct drm_gem_object *obj,
2093 gfp_t gfpmask)
673a394b 2094{
23010e43 2095 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2096 int page_count, i;
2097 struct address_space *mapping;
2098 struct inode *inode;
2099 struct page *page;
673a394b 2100
778c3544
DV
2101 BUG_ON(obj_priv->pages_refcount
2102 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2103
856fa198 2104 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2105 return 0;
2106
2107 /* Get the list of pages out of our struct file. They'll be pinned
2108 * at this point until we release them.
2109 */
2110 page_count = obj->size / PAGE_SIZE;
856fa198 2111 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2112 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2113 if (obj_priv->pages == NULL) {
856fa198 2114 obj_priv->pages_refcount--;
673a394b
EA
2115 return -ENOMEM;
2116 }
2117
2118 inode = obj->filp->f_path.dentry->d_inode;
2119 mapping = inode->i_mapping;
2120 for (i = 0; i < page_count; i++) {
4bdadb97 2121 page = read_cache_page_gfp(mapping, i,
985b823b 2122 GFP_HIGHUSER |
4bdadb97 2123 __GFP_COLD |
cd9f040d 2124 __GFP_RECLAIMABLE |
4bdadb97 2125 gfpmask);
1f2b1013
CW
2126 if (IS_ERR(page))
2127 goto err_pages;
2128
856fa198 2129 obj_priv->pages[i] = page;
673a394b 2130 }
280b713b
EA
2131
2132 if (obj_priv->tiling_mode != I915_TILING_NONE)
2133 i915_gem_object_do_bit_17_swizzle(obj);
2134
673a394b 2135 return 0;
1f2b1013
CW
2136
2137err_pages:
2138 while (i--)
2139 page_cache_release(obj_priv->pages[i]);
2140
2141 drm_free_large(obj_priv->pages);
2142 obj_priv->pages = NULL;
2143 obj_priv->pages_refcount--;
2144 return PTR_ERR(page);
673a394b
EA
2145}
2146
4e901fdc
EA
2147static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2148{
2149 struct drm_gem_object *obj = reg->obj;
2150 struct drm_device *dev = obj->dev;
2151 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2152 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2153 int regnum = obj_priv->fence_reg;
2154 uint64_t val;
2155
2156 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2157 0xfffff000) << 32;
2158 val |= obj_priv->gtt_offset & 0xfffff000;
2159 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2160 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2161
2162 if (obj_priv->tiling_mode == I915_TILING_Y)
2163 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2164 val |= I965_FENCE_REG_VALID;
2165
2166 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2167}
2168
de151cf6
JB
2169static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2170{
2171 struct drm_gem_object *obj = reg->obj;
2172 struct drm_device *dev = obj->dev;
2173 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2174 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2175 int regnum = obj_priv->fence_reg;
2176 uint64_t val;
2177
2178 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2179 0xfffff000) << 32;
2180 val |= obj_priv->gtt_offset & 0xfffff000;
2181 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2182 if (obj_priv->tiling_mode == I915_TILING_Y)
2183 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2184 val |= I965_FENCE_REG_VALID;
2185
2186 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2187}
2188
2189static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2190{
2191 struct drm_gem_object *obj = reg->obj;
2192 struct drm_device *dev = obj->dev;
2193 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2194 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2195 int regnum = obj_priv->fence_reg;
0f973f27 2196 int tile_width;
dc529a4f 2197 uint32_t fence_reg, val;
de151cf6
JB
2198 uint32_t pitch_val;
2199
2200 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2201 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2202 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2203 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2204 return;
2205 }
2206
0f973f27
JB
2207 if (obj_priv->tiling_mode == I915_TILING_Y &&
2208 HAS_128_BYTE_Y_TILING(dev))
2209 tile_width = 128;
de151cf6 2210 else
0f973f27
JB
2211 tile_width = 512;
2212
2213 /* Note: pitch better be a power of two tile widths */
2214 pitch_val = obj_priv->stride / tile_width;
2215 pitch_val = ffs(pitch_val) - 1;
de151cf6 2216
c36a2a6d
DV
2217 if (obj_priv->tiling_mode == I915_TILING_Y &&
2218 HAS_128_BYTE_Y_TILING(dev))
2219 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2220 else
2221 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2222
de151cf6
JB
2223 val = obj_priv->gtt_offset;
2224 if (obj_priv->tiling_mode == I915_TILING_Y)
2225 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2226 val |= I915_FENCE_SIZE_BITS(obj->size);
2227 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2228 val |= I830_FENCE_REG_VALID;
2229
dc529a4f
EA
2230 if (regnum < 8)
2231 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2232 else
2233 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2234 I915_WRITE(fence_reg, val);
de151cf6
JB
2235}
2236
2237static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2238{
2239 struct drm_gem_object *obj = reg->obj;
2240 struct drm_device *dev = obj->dev;
2241 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2242 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2243 int regnum = obj_priv->fence_reg;
2244 uint32_t val;
2245 uint32_t pitch_val;
8d7773a3 2246 uint32_t fence_size_bits;
de151cf6 2247
8d7773a3 2248 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2249 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2250 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2251 __func__, obj_priv->gtt_offset);
de151cf6
JB
2252 return;
2253 }
2254
e76a16de
EA
2255 pitch_val = obj_priv->stride / 128;
2256 pitch_val = ffs(pitch_val) - 1;
2257 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2258
de151cf6
JB
2259 val = obj_priv->gtt_offset;
2260 if (obj_priv->tiling_mode == I915_TILING_Y)
2261 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2262 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2263 WARN_ON(fence_size_bits & ~0x00000f00);
2264 val |= fence_size_bits;
de151cf6
JB
2265 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2266 val |= I830_FENCE_REG_VALID;
2267
2268 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2269}
2270
2cf34d7b
CW
2271static int i915_find_fence_reg(struct drm_device *dev,
2272 bool interruptible)
ae3db24a
DV
2273{
2274 struct drm_i915_fence_reg *reg = NULL;
2275 struct drm_i915_gem_object *obj_priv = NULL;
2276 struct drm_i915_private *dev_priv = dev->dev_private;
2277 struct drm_gem_object *obj = NULL;
2278 int i, avail, ret;
2279
2280 /* First try to find a free reg */
2281 avail = 0;
2282 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2283 reg = &dev_priv->fence_regs[i];
2284 if (!reg->obj)
2285 return i;
2286
23010e43 2287 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2288 if (!obj_priv->pin_count)
2289 avail++;
2290 }
2291
2292 if (avail == 0)
2293 return -ENOSPC;
2294
2295 /* None available, try to steal one or wait for a user to finish */
2296 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2297 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2298 lru_list) {
2299 obj = reg->obj;
2300 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2301
2302 if (obj_priv->pin_count)
2303 continue;
2304
2305 /* found one! */
2306 i = obj_priv->fence_reg;
2307 break;
2308 }
2309
2310 BUG_ON(i == I915_FENCE_REG_NONE);
2311
2312 /* We only have a reference on obj from the active list. put_fence_reg
2313 * might drop that one, causing a use-after-free in it. So hold a
2314 * private reference to obj like the other callers of put_fence_reg
2315 * (set_tiling ioctl) do. */
2316 drm_gem_object_reference(obj);
2cf34d7b 2317 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2318 drm_gem_object_unreference(obj);
2319 if (ret != 0)
2320 return ret;
2321
2322 return i;
2323}
2324
de151cf6
JB
2325/**
2326 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2327 * @obj: object to map through a fence reg
2328 *
2329 * When mapping objects through the GTT, userspace wants to be able to write
2330 * to them without having to worry about swizzling if the object is tiled.
2331 *
2332 * This function walks the fence regs looking for a free one for @obj,
2333 * stealing one if it can't find any.
2334 *
2335 * It then sets up the reg based on the object's properties: address, pitch
2336 * and tiling format.
2337 */
8c4b8c3f 2338int
2cf34d7b
CW
2339i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2340 bool interruptible)
de151cf6
JB
2341{
2342 struct drm_device *dev = obj->dev;
79e53945 2343 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2344 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2345 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2346 int ret;
de151cf6 2347
a09ba7fa
EA
2348 /* Just update our place in the LRU if our fence is getting used. */
2349 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2350 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2351 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2352 return 0;
2353 }
2354
de151cf6
JB
2355 switch (obj_priv->tiling_mode) {
2356 case I915_TILING_NONE:
2357 WARN(1, "allocating a fence for non-tiled object?\n");
2358 break;
2359 case I915_TILING_X:
0f973f27
JB
2360 if (!obj_priv->stride)
2361 return -EINVAL;
2362 WARN((obj_priv->stride & (512 - 1)),
2363 "object 0x%08x is X tiled but has non-512B pitch\n",
2364 obj_priv->gtt_offset);
de151cf6
JB
2365 break;
2366 case I915_TILING_Y:
0f973f27
JB
2367 if (!obj_priv->stride)
2368 return -EINVAL;
2369 WARN((obj_priv->stride & (128 - 1)),
2370 "object 0x%08x is Y tiled but has non-128B pitch\n",
2371 obj_priv->gtt_offset);
de151cf6
JB
2372 break;
2373 }
2374
2cf34d7b 2375 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2376 if (ret < 0)
2377 return ret;
de151cf6 2378
ae3db24a
DV
2379 obj_priv->fence_reg = ret;
2380 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2381 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2382
de151cf6
JB
2383 reg->obj = obj;
2384
e259befd
CW
2385 switch (INTEL_INFO(dev)->gen) {
2386 case 6:
4e901fdc 2387 sandybridge_write_fence_reg(reg);
e259befd
CW
2388 break;
2389 case 5:
2390 case 4:
de151cf6 2391 i965_write_fence_reg(reg);
e259befd
CW
2392 break;
2393 case 3:
de151cf6 2394 i915_write_fence_reg(reg);
e259befd
CW
2395 break;
2396 case 2:
de151cf6 2397 i830_write_fence_reg(reg);
e259befd
CW
2398 break;
2399 }
d9ddcb96 2400
ae3db24a
DV
2401 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2402 obj_priv->tiling_mode);
1c5d22f7 2403
d9ddcb96 2404 return 0;
de151cf6
JB
2405}
2406
2407/**
2408 * i915_gem_clear_fence_reg - clear out fence register info
2409 * @obj: object to clear
2410 *
2411 * Zeroes out the fence register itself and clears out the associated
2412 * data structures in dev_priv and obj_priv.
2413 */
2414static void
2415i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2416{
2417 struct drm_device *dev = obj->dev;
79e53945 2418 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2419 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2420 struct drm_i915_fence_reg *reg =
2421 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2422 uint32_t fence_reg;
de151cf6 2423
e259befd
CW
2424 switch (INTEL_INFO(dev)->gen) {
2425 case 6:
4e901fdc
EA
2426 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2427 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2428 break;
2429 case 5:
2430 case 4:
de151cf6 2431 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2432 break;
2433 case 3:
2434 if (obj_priv->fence_reg > 8)
2435 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2436 else
e259befd
CW
2437 case 2:
2438 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2439
2440 I915_WRITE(fence_reg, 0);
e259befd 2441 break;
dc529a4f 2442 }
de151cf6 2443
007cc8ac 2444 reg->obj = NULL;
de151cf6 2445 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2446 list_del_init(&reg->lru_list);
de151cf6
JB
2447}
2448
52dc7d32
CW
2449/**
2450 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2451 * to the buffer to finish, and then resets the fence register.
2452 * @obj: tiled object holding a fence register.
2cf34d7b 2453 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2454 *
2455 * Zeroes out the fence register itself and clears out the associated
2456 * data structures in dev_priv and obj_priv.
2457 */
2458int
2cf34d7b
CW
2459i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2460 bool interruptible)
52dc7d32
CW
2461{
2462 struct drm_device *dev = obj->dev;
53640e1d 2463 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2464 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2465 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2466
2467 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2468 return 0;
2469
10ae9bd2
DV
2470 /* If we've changed tiling, GTT-mappings of the object
2471 * need to re-fault to ensure that the correct fence register
2472 * setup is in place.
2473 */
2474 i915_gem_release_mmap(obj);
2475
52dc7d32
CW
2476 /* On the i915, GPU access to tiled buffers is via a fence,
2477 * therefore we must wait for any outstanding access to complete
2478 * before clearing the fence.
2479 */
53640e1d
CW
2480 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2481 if (reg->gpu) {
52dc7d32
CW
2482 int ret;
2483
2cf34d7b 2484 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2485 if (ret)
2486 return ret;
2487
2cf34d7b 2488 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2489 if (ret)
52dc7d32 2490 return ret;
53640e1d
CW
2491
2492 reg->gpu = false;
52dc7d32
CW
2493 }
2494
4a726612 2495 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2496 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2497
2498 return 0;
2499}
2500
673a394b
EA
2501/**
2502 * Finds free space in the GTT aperture and binds the object there.
2503 */
2504static int
2505i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2506{
2507 struct drm_device *dev = obj->dev;
2508 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2509 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2510 struct drm_mm_node *free_space;
4bdadb97 2511 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2512 int ret;
673a394b 2513
bb6baf76 2514 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2515 DRM_ERROR("Attempting to bind a purgeable object\n");
2516 return -EINVAL;
2517 }
2518
673a394b 2519 if (alignment == 0)
0f973f27 2520 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2521 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2522 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2523 return -EINVAL;
2524 }
2525
654fc607
CW
2526 /* If the object is bigger than the entire aperture, reject it early
2527 * before evicting everything in a vain attempt to find space.
2528 */
2529 if (obj->size > dev->gtt_total) {
2530 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2531 return -E2BIG;
2532 }
2533
673a394b
EA
2534 search_free:
2535 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2536 obj->size, alignment, 0);
2537 if (free_space != NULL) {
2538 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2539 alignment);
db3307a9 2540 if (obj_priv->gtt_space != NULL)
673a394b 2541 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2542 }
2543 if (obj_priv->gtt_space == NULL) {
2544 /* If the gtt is empty and we're still having trouble
2545 * fitting our object in, we're out of memory.
2546 */
2547#if WATCH_LRU
2548 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2549#endif
0108a3ed 2550 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2551 if (ret)
673a394b 2552 return ret;
9731129c 2553
673a394b
EA
2554 goto search_free;
2555 }
2556
2557#if WATCH_BUF
cfd43c02 2558 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2559 obj->size, obj_priv->gtt_offset);
2560#endif
4bdadb97 2561 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2562 if (ret) {
2563 drm_mm_put_block(obj_priv->gtt_space);
2564 obj_priv->gtt_space = NULL;
07f73f69
CW
2565
2566 if (ret == -ENOMEM) {
2567 /* first try to clear up some space from the GTT */
0108a3ed
DV
2568 ret = i915_gem_evict_something(dev, obj->size,
2569 alignment);
07f73f69 2570 if (ret) {
07f73f69 2571 /* now try to shrink everyone else */
4bdadb97
CW
2572 if (gfpmask) {
2573 gfpmask = 0;
2574 goto search_free;
07f73f69
CW
2575 }
2576
2577 return ret;
2578 }
2579
2580 goto search_free;
2581 }
2582
673a394b
EA
2583 return ret;
2584 }
2585
673a394b
EA
2586 /* Create an AGP memory structure pointing at our pages, and bind it
2587 * into the GTT.
2588 */
2589 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2590 obj_priv->pages,
07f73f69 2591 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2592 obj_priv->gtt_offset,
2593 obj_priv->agp_type);
673a394b 2594 if (obj_priv->agp_mem == NULL) {
856fa198 2595 i915_gem_object_put_pages(obj);
673a394b
EA
2596 drm_mm_put_block(obj_priv->gtt_space);
2597 obj_priv->gtt_space = NULL;
07f73f69 2598
0108a3ed 2599 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2600 if (ret)
07f73f69 2601 return ret;
07f73f69
CW
2602
2603 goto search_free;
673a394b
EA
2604 }
2605 atomic_inc(&dev->gtt_count);
2606 atomic_add(obj->size, &dev->gtt_memory);
2607
bf1a1092
CW
2608 /* keep track of bounds object by adding it to the inactive list */
2609 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2610
673a394b
EA
2611 /* Assert that the object is not currently in any GPU domain. As it
2612 * wasn't in the GTT, there shouldn't be any way it could have been in
2613 * a GPU cache
2614 */
21d509e3
CW
2615 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2616 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2617
1c5d22f7
CW
2618 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2619
673a394b
EA
2620 return 0;
2621}
2622
2623void
2624i915_gem_clflush_object(struct drm_gem_object *obj)
2625{
23010e43 2626 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2627
2628 /* If we don't have a page list set up, then we're not pinned
2629 * to GPU, and we can ignore the cache flush because it'll happen
2630 * again at bind time.
2631 */
856fa198 2632 if (obj_priv->pages == NULL)
673a394b
EA
2633 return;
2634
1c5d22f7 2635 trace_i915_gem_object_clflush(obj);
cfa16a0d 2636
856fa198 2637 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2638}
2639
e47c68e9 2640/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2641static int
ba3d8d74
DV
2642i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2643 bool pipelined)
e47c68e9
EA
2644{
2645 struct drm_device *dev = obj->dev;
1c5d22f7 2646 uint32_t old_write_domain;
e47c68e9
EA
2647
2648 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2649 return 0;
e47c68e9
EA
2650
2651 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2652 old_write_domain = obj->write_domain;
c78ec30b 2653 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2654 to_intel_bo(obj)->ring,
2655 0, obj->write_domain);
48b956c5 2656 BUG_ON(obj->write_domain);
1c5d22f7
CW
2657
2658 trace_i915_gem_object_change_domain(obj,
2659 obj->read_domains,
2660 old_write_domain);
ba3d8d74
DV
2661
2662 if (pipelined)
2663 return 0;
2664
2cf34d7b 2665 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2666}
2667
2668/** Flushes the GTT write domain for the object if it's dirty. */
2669static void
2670i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2671{
1c5d22f7
CW
2672 uint32_t old_write_domain;
2673
e47c68e9
EA
2674 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2675 return;
2676
2677 /* No actual flushing is required for the GTT write domain. Writes
2678 * to it immediately go to main memory as far as we know, so there's
2679 * no chipset flush. It also doesn't land in render cache.
2680 */
1c5d22f7 2681 old_write_domain = obj->write_domain;
e47c68e9 2682 obj->write_domain = 0;
1c5d22f7
CW
2683
2684 trace_i915_gem_object_change_domain(obj,
2685 obj->read_domains,
2686 old_write_domain);
e47c68e9
EA
2687}
2688
2689/** Flushes the CPU write domain for the object if it's dirty. */
2690static void
2691i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2692{
2693 struct drm_device *dev = obj->dev;
1c5d22f7 2694 uint32_t old_write_domain;
e47c68e9
EA
2695
2696 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2697 return;
2698
2699 i915_gem_clflush_object(obj);
2700 drm_agp_chipset_flush(dev);
1c5d22f7 2701 old_write_domain = obj->write_domain;
e47c68e9 2702 obj->write_domain = 0;
1c5d22f7
CW
2703
2704 trace_i915_gem_object_change_domain(obj,
2705 obj->read_domains,
2706 old_write_domain);
e47c68e9
EA
2707}
2708
2ef7eeaa
EA
2709/**
2710 * Moves a single object to the GTT read, and possibly write domain.
2711 *
2712 * This function returns when the move is complete, including waiting on
2713 * flushes to occur.
2714 */
79e53945 2715int
2ef7eeaa
EA
2716i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2717{
23010e43 2718 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2719 uint32_t old_write_domain, old_read_domains;
e47c68e9 2720 int ret;
2ef7eeaa 2721
02354392
EA
2722 /* Not valid to be called on unbound objects. */
2723 if (obj_priv->gtt_space == NULL)
2724 return -EINVAL;
2725
ba3d8d74 2726 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2727 if (ret != 0)
2728 return ret;
2729
7213342d 2730 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2731
ba3d8d74 2732 if (write) {
2cf34d7b 2733 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2734 if (ret)
2735 return ret;
ba3d8d74 2736 }
2ef7eeaa 2737
7213342d
CW
2738 old_write_domain = obj->write_domain;
2739 old_read_domains = obj->read_domains;
2ef7eeaa 2740
e47c68e9
EA
2741 /* It should now be out of any other write domains, and we can update
2742 * the domain values for our changes.
2743 */
2744 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2745 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2746 if (write) {
7213342d 2747 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2748 obj->write_domain = I915_GEM_DOMAIN_GTT;
2749 obj_priv->dirty = 1;
2ef7eeaa
EA
2750 }
2751
1c5d22f7
CW
2752 trace_i915_gem_object_change_domain(obj,
2753 old_read_domains,
2754 old_write_domain);
2755
e47c68e9
EA
2756 return 0;
2757}
2758
b9241ea3
ZW
2759/*
2760 * Prepare buffer for display plane. Use uninterruptible for possible flush
2761 * wait, as in modesetting process we're not supposed to be interrupted.
2762 */
2763int
48b956c5
CW
2764i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2765 bool pipelined)
b9241ea3 2766{
23010e43 2767 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2768 uint32_t old_read_domains;
b9241ea3
ZW
2769 int ret;
2770
2771 /* Not valid to be called on unbound objects. */
2772 if (obj_priv->gtt_space == NULL)
2773 return -EINVAL;
2774
48b956c5
CW
2775 ret = i915_gem_object_flush_gpu_write_domain(obj, pipelined);
2776 if (ret)
e35a41de 2777 return ret;
b9241ea3 2778
b118c1e3
CW
2779 i915_gem_object_flush_cpu_write_domain(obj);
2780
b9241ea3 2781 old_read_domains = obj->read_domains;
c78ec30b 2782 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2783
2784 trace_i915_gem_object_change_domain(obj,
2785 old_read_domains,
ba3d8d74 2786 obj->write_domain);
b9241ea3
ZW
2787
2788 return 0;
2789}
2790
e47c68e9
EA
2791/**
2792 * Moves a single object to the CPU read, and possibly write domain.
2793 *
2794 * This function returns when the move is complete, including waiting on
2795 * flushes to occur.
2796 */
2797static int
2798i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2799{
1c5d22f7 2800 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2801 int ret;
2802
ba3d8d74 2803 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2804 if (ret != 0)
2805 return ret;
2ef7eeaa 2806
e47c68e9 2807 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2808
e47c68e9
EA
2809 /* If we have a partially-valid cache of the object in the CPU,
2810 * finish invalidating it and free the per-page flags.
2ef7eeaa 2811 */
e47c68e9 2812 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2813
7213342d 2814 if (write) {
2cf34d7b 2815 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2816 if (ret)
2817 return ret;
2818 }
2819
1c5d22f7
CW
2820 old_write_domain = obj->write_domain;
2821 old_read_domains = obj->read_domains;
2822
e47c68e9
EA
2823 /* Flush the CPU cache if it's still invalid. */
2824 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2825 i915_gem_clflush_object(obj);
2ef7eeaa 2826
e47c68e9 2827 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2828 }
2829
2830 /* It should now be out of any other write domains, and we can update
2831 * the domain values for our changes.
2832 */
e47c68e9
EA
2833 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2834
2835 /* If we're writing through the CPU, then the GPU read domains will
2836 * need to be invalidated at next use.
2837 */
2838 if (write) {
c78ec30b 2839 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2840 obj->write_domain = I915_GEM_DOMAIN_CPU;
2841 }
2ef7eeaa 2842
1c5d22f7
CW
2843 trace_i915_gem_object_change_domain(obj,
2844 old_read_domains,
2845 old_write_domain);
2846
2ef7eeaa
EA
2847 return 0;
2848}
2849
673a394b
EA
2850/*
2851 * Set the next domain for the specified object. This
2852 * may not actually perform the necessary flushing/invaliding though,
2853 * as that may want to be batched with other set_domain operations
2854 *
2855 * This is (we hope) the only really tricky part of gem. The goal
2856 * is fairly simple -- track which caches hold bits of the object
2857 * and make sure they remain coherent. A few concrete examples may
2858 * help to explain how it works. For shorthand, we use the notation
2859 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2860 * a pair of read and write domain masks.
2861 *
2862 * Case 1: the batch buffer
2863 *
2864 * 1. Allocated
2865 * 2. Written by CPU
2866 * 3. Mapped to GTT
2867 * 4. Read by GPU
2868 * 5. Unmapped from GTT
2869 * 6. Freed
2870 *
2871 * Let's take these a step at a time
2872 *
2873 * 1. Allocated
2874 * Pages allocated from the kernel may still have
2875 * cache contents, so we set them to (CPU, CPU) always.
2876 * 2. Written by CPU (using pwrite)
2877 * The pwrite function calls set_domain (CPU, CPU) and
2878 * this function does nothing (as nothing changes)
2879 * 3. Mapped by GTT
2880 * This function asserts that the object is not
2881 * currently in any GPU-based read or write domains
2882 * 4. Read by GPU
2883 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2884 * As write_domain is zero, this function adds in the
2885 * current read domains (CPU+COMMAND, 0).
2886 * flush_domains is set to CPU.
2887 * invalidate_domains is set to COMMAND
2888 * clflush is run to get data out of the CPU caches
2889 * then i915_dev_set_domain calls i915_gem_flush to
2890 * emit an MI_FLUSH and drm_agp_chipset_flush
2891 * 5. Unmapped from GTT
2892 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2893 * flush_domains and invalidate_domains end up both zero
2894 * so no flushing/invalidating happens
2895 * 6. Freed
2896 * yay, done
2897 *
2898 * Case 2: The shared render buffer
2899 *
2900 * 1. Allocated
2901 * 2. Mapped to GTT
2902 * 3. Read/written by GPU
2903 * 4. set_domain to (CPU,CPU)
2904 * 5. Read/written by CPU
2905 * 6. Read/written by GPU
2906 *
2907 * 1. Allocated
2908 * Same as last example, (CPU, CPU)
2909 * 2. Mapped to GTT
2910 * Nothing changes (assertions find that it is not in the GPU)
2911 * 3. Read/written by GPU
2912 * execbuffer calls set_domain (RENDER, RENDER)
2913 * flush_domains gets CPU
2914 * invalidate_domains gets GPU
2915 * clflush (obj)
2916 * MI_FLUSH and drm_agp_chipset_flush
2917 * 4. set_domain (CPU, CPU)
2918 * flush_domains gets GPU
2919 * invalidate_domains gets CPU
2920 * wait_rendering (obj) to make sure all drawing is complete.
2921 * This will include an MI_FLUSH to get the data from GPU
2922 * to memory
2923 * clflush (obj) to invalidate the CPU cache
2924 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2925 * 5. Read/written by CPU
2926 * cache lines are loaded and dirtied
2927 * 6. Read written by GPU
2928 * Same as last GPU access
2929 *
2930 * Case 3: The constant buffer
2931 *
2932 * 1. Allocated
2933 * 2. Written by CPU
2934 * 3. Read by GPU
2935 * 4. Updated (written) by CPU again
2936 * 5. Read by GPU
2937 *
2938 * 1. Allocated
2939 * (CPU, CPU)
2940 * 2. Written by CPU
2941 * (CPU, CPU)
2942 * 3. Read by GPU
2943 * (CPU+RENDER, 0)
2944 * flush_domains = CPU
2945 * invalidate_domains = RENDER
2946 * clflush (obj)
2947 * MI_FLUSH
2948 * drm_agp_chipset_flush
2949 * 4. Updated (written) by CPU again
2950 * (CPU, CPU)
2951 * flush_domains = 0 (no previous write domain)
2952 * invalidate_domains = 0 (no new read domains)
2953 * 5. Read by GPU
2954 * (CPU+RENDER, 0)
2955 * flush_domains = CPU
2956 * invalidate_domains = RENDER
2957 * clflush (obj)
2958 * MI_FLUSH
2959 * drm_agp_chipset_flush
2960 */
c0d90829 2961static void
8b0e378a 2962i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2963{
2964 struct drm_device *dev = obj->dev;
9220434a 2965 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2966 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2967 uint32_t invalidate_domains = 0;
2968 uint32_t flush_domains = 0;
1c5d22f7 2969 uint32_t old_read_domains;
e47c68e9 2970
8b0e378a
EA
2971 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2972 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2973
652c393a
JB
2974 intel_mark_busy(dev, obj);
2975
673a394b
EA
2976#if WATCH_BUF
2977 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2978 __func__, obj,
8b0e378a
EA
2979 obj->read_domains, obj->pending_read_domains,
2980 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2981#endif
2982 /*
2983 * If the object isn't moving to a new write domain,
2984 * let the object stay in multiple read domains
2985 */
8b0e378a
EA
2986 if (obj->pending_write_domain == 0)
2987 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2988 else
2989 obj_priv->dirty = 1;
2990
2991 /*
2992 * Flush the current write domain if
2993 * the new read domains don't match. Invalidate
2994 * any read domains which differ from the old
2995 * write domain
2996 */
8b0e378a
EA
2997 if (obj->write_domain &&
2998 obj->write_domain != obj->pending_read_domains) {
673a394b 2999 flush_domains |= obj->write_domain;
8b0e378a
EA
3000 invalidate_domains |=
3001 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3002 }
3003 /*
3004 * Invalidate any read caches which may have
3005 * stale data. That is, any new read domains.
3006 */
8b0e378a 3007 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3008 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3009#if WATCH_BUF
3010 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3011 __func__, flush_domains, invalidate_domains);
3012#endif
673a394b
EA
3013 i915_gem_clflush_object(obj);
3014 }
3015
1c5d22f7
CW
3016 old_read_domains = obj->read_domains;
3017
efbeed96
EA
3018 /* The actual obj->write_domain will be updated with
3019 * pending_write_domain after we emit the accumulated flush for all
3020 * of our domain changes in execbuffers (which clears objects'
3021 * write_domains). So if we have a current write domain that we
3022 * aren't changing, set pending_write_domain to that.
3023 */
3024 if (flush_domains == 0 && obj->pending_write_domain == 0)
3025 obj->pending_write_domain = obj->write_domain;
8b0e378a 3026 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3027
3028 dev->invalidate_domains |= invalidate_domains;
3029 dev->flush_domains |= flush_domains;
9220434a
CW
3030 if (obj_priv->ring)
3031 dev_priv->mm.flush_rings |= obj_priv->ring->id;
673a394b
EA
3032#if WATCH_BUF
3033 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3034 __func__,
3035 obj->read_domains, obj->write_domain,
3036 dev->invalidate_domains, dev->flush_domains);
3037#endif
1c5d22f7
CW
3038
3039 trace_i915_gem_object_change_domain(obj,
3040 old_read_domains,
3041 obj->write_domain);
673a394b
EA
3042}
3043
3044/**
e47c68e9 3045 * Moves the object from a partially CPU read to a full one.
673a394b 3046 *
e47c68e9
EA
3047 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3048 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3049 */
e47c68e9
EA
3050static void
3051i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3052{
23010e43 3053 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3054
e47c68e9
EA
3055 if (!obj_priv->page_cpu_valid)
3056 return;
3057
3058 /* If we're partially in the CPU read domain, finish moving it in.
3059 */
3060 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3061 int i;
3062
3063 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3064 if (obj_priv->page_cpu_valid[i])
3065 continue;
856fa198 3066 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3067 }
e47c68e9
EA
3068 }
3069
3070 /* Free the page_cpu_valid mappings which are now stale, whether
3071 * or not we've got I915_GEM_DOMAIN_CPU.
3072 */
9a298b2a 3073 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3074 obj_priv->page_cpu_valid = NULL;
3075}
3076
3077/**
3078 * Set the CPU read domain on a range of the object.
3079 *
3080 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3081 * not entirely valid. The page_cpu_valid member of the object flags which
3082 * pages have been flushed, and will be respected by
3083 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3084 * of the whole object.
3085 *
3086 * This function returns when the move is complete, including waiting on
3087 * flushes to occur.
3088 */
3089static int
3090i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3091 uint64_t offset, uint64_t size)
3092{
23010e43 3093 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3094 uint32_t old_read_domains;
e47c68e9 3095 int i, ret;
673a394b 3096
e47c68e9
EA
3097 if (offset == 0 && size == obj->size)
3098 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3099
ba3d8d74 3100 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3101 if (ret != 0)
6a47baa6 3102 return ret;
e47c68e9
EA
3103 i915_gem_object_flush_gtt_write_domain(obj);
3104
3105 /* If we're already fully in the CPU read domain, we're done. */
3106 if (obj_priv->page_cpu_valid == NULL &&
3107 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3108 return 0;
673a394b 3109
e47c68e9
EA
3110 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3111 * newly adding I915_GEM_DOMAIN_CPU
3112 */
673a394b 3113 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3114 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3115 GFP_KERNEL);
e47c68e9
EA
3116 if (obj_priv->page_cpu_valid == NULL)
3117 return -ENOMEM;
3118 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3119 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3120
3121 /* Flush the cache on any pages that are still invalid from the CPU's
3122 * perspective.
3123 */
e47c68e9
EA
3124 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3125 i++) {
673a394b
EA
3126 if (obj_priv->page_cpu_valid[i])
3127 continue;
3128
856fa198 3129 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3130
3131 obj_priv->page_cpu_valid[i] = 1;
3132 }
3133
e47c68e9
EA
3134 /* It should now be out of any other write domains, and we can update
3135 * the domain values for our changes.
3136 */
3137 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3138
1c5d22f7 3139 old_read_domains = obj->read_domains;
e47c68e9
EA
3140 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3141
1c5d22f7
CW
3142 trace_i915_gem_object_change_domain(obj,
3143 old_read_domains,
3144 obj->write_domain);
3145
673a394b
EA
3146 return 0;
3147}
3148
673a394b
EA
3149/**
3150 * Pin an object to the GTT and evaluate the relocations landing in it.
3151 */
3152static int
3153i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3154 struct drm_file *file_priv,
76446cac 3155 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3156 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3157{
3158 struct drm_device *dev = obj->dev;
0839ccb8 3159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3161 int i, ret;
0839ccb8 3162 void __iomem *reloc_page;
76446cac
JB
3163 bool need_fence;
3164
3165 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3166 obj_priv->tiling_mode != I915_TILING_NONE;
3167
3168 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3169 if (need_fence &&
3170 !i915_gem_object_fence_offset_ok(obj,
3171 obj_priv->tiling_mode)) {
3172 ret = i915_gem_object_unbind(obj);
3173 if (ret)
3174 return ret;
3175 }
673a394b
EA
3176
3177 /* Choose the GTT offset for our buffer and put it there. */
3178 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3179 if (ret)
3180 return ret;
3181
76446cac
JB
3182 /*
3183 * Pre-965 chips need a fence register set up in order to
3184 * properly handle blits to/from tiled surfaces.
3185 */
3186 if (need_fence) {
53640e1d 3187 ret = i915_gem_object_get_fence_reg(obj, true);
76446cac 3188 if (ret != 0) {
76446cac
JB
3189 i915_gem_object_unpin(obj);
3190 return ret;
3191 }
53640e1d
CW
3192
3193 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
76446cac
JB
3194 }
3195
673a394b
EA
3196 entry->offset = obj_priv->gtt_offset;
3197
673a394b
EA
3198 /* Apply the relocations, using the GTT aperture to avoid cache
3199 * flushing requirements.
3200 */
3201 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3202 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3203 struct drm_gem_object *target_obj;
3204 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3205 uint32_t reloc_val, reloc_offset;
3206 uint32_t __iomem *reloc_entry;
673a394b 3207
673a394b 3208 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3209 reloc->target_handle);
673a394b
EA
3210 if (target_obj == NULL) {
3211 i915_gem_object_unpin(obj);
bf79cb91 3212 return -ENOENT;
673a394b 3213 }
23010e43 3214 target_obj_priv = to_intel_bo(target_obj);
673a394b 3215
8542a0bb
CW
3216#if WATCH_RELOC
3217 DRM_INFO("%s: obj %p offset %08x target %d "
3218 "read %08x write %08x gtt %08x "
3219 "presumed %08x delta %08x\n",
3220 __func__,
3221 obj,
3222 (int) reloc->offset,
3223 (int) reloc->target_handle,
3224 (int) reloc->read_domains,
3225 (int) reloc->write_domain,
3226 (int) target_obj_priv->gtt_offset,
3227 (int) reloc->presumed_offset,
3228 reloc->delta);
3229#endif
3230
673a394b
EA
3231 /* The target buffer should have appeared before us in the
3232 * exec_object list, so it should have a GTT space bound by now.
3233 */
3234 if (target_obj_priv->gtt_space == NULL) {
3235 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3236 reloc->target_handle);
673a394b
EA
3237 drm_gem_object_unreference(target_obj);
3238 i915_gem_object_unpin(obj);
3239 return -EINVAL;
3240 }
3241
8542a0bb 3242 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3243 if (reloc->write_domain & (reloc->write_domain - 1)) {
3244 DRM_ERROR("reloc with multiple write domains: "
3245 "obj %p target %d offset %d "
3246 "read %08x write %08x",
3247 obj, reloc->target_handle,
3248 (int) reloc->offset,
3249 reloc->read_domains,
3250 reloc->write_domain);
3251 return -EINVAL;
3252 }
40a5f0de
EA
3253 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3254 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3255 DRM_ERROR("reloc with read/write CPU domains: "
3256 "obj %p target %d offset %d "
3257 "read %08x write %08x",
40a5f0de
EA
3258 obj, reloc->target_handle,
3259 (int) reloc->offset,
3260 reloc->read_domains,
3261 reloc->write_domain);
491152b8
CW
3262 drm_gem_object_unreference(target_obj);
3263 i915_gem_object_unpin(obj);
e47c68e9
EA
3264 return -EINVAL;
3265 }
40a5f0de
EA
3266 if (reloc->write_domain && target_obj->pending_write_domain &&
3267 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3268 DRM_ERROR("Write domain conflict: "
3269 "obj %p target %d offset %d "
3270 "new %08x old %08x\n",
40a5f0de
EA
3271 obj, reloc->target_handle,
3272 (int) reloc->offset,
3273 reloc->write_domain,
673a394b
EA
3274 target_obj->pending_write_domain);
3275 drm_gem_object_unreference(target_obj);
3276 i915_gem_object_unpin(obj);
3277 return -EINVAL;
3278 }
3279
40a5f0de
EA
3280 target_obj->pending_read_domains |= reloc->read_domains;
3281 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3282
3283 /* If the relocation already has the right value in it, no
3284 * more work needs to be done.
3285 */
40a5f0de 3286 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3287 drm_gem_object_unreference(target_obj);
3288 continue;
3289 }
3290
8542a0bb
CW
3291 /* Check that the relocation address is valid... */
3292 if (reloc->offset > obj->size - 4) {
3293 DRM_ERROR("Relocation beyond object bounds: "
3294 "obj %p target %d offset %d size %d.\n",
3295 obj, reloc->target_handle,
3296 (int) reloc->offset, (int) obj->size);
3297 drm_gem_object_unreference(target_obj);
3298 i915_gem_object_unpin(obj);
3299 return -EINVAL;
3300 }
3301 if (reloc->offset & 3) {
3302 DRM_ERROR("Relocation not 4-byte aligned: "
3303 "obj %p target %d offset %d.\n",
3304 obj, reloc->target_handle,
3305 (int) reloc->offset);
3306 drm_gem_object_unreference(target_obj);
3307 i915_gem_object_unpin(obj);
3308 return -EINVAL;
3309 }
3310
3311 /* and points to somewhere within the target object. */
3312 if (reloc->delta >= target_obj->size) {
3313 DRM_ERROR("Relocation beyond target object bounds: "
3314 "obj %p target %d delta %d size %d.\n",
3315 obj, reloc->target_handle,
3316 (int) reloc->delta, (int) target_obj->size);
3317 drm_gem_object_unreference(target_obj);
3318 i915_gem_object_unpin(obj);
3319 return -EINVAL;
3320 }
3321
2ef7eeaa
EA
3322 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3323 if (ret != 0) {
3324 drm_gem_object_unreference(target_obj);
3325 i915_gem_object_unpin(obj);
3326 return -EINVAL;
673a394b
EA
3327 }
3328
3329 /* Map the page containing the relocation we're going to
3330 * perform.
3331 */
40a5f0de 3332 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3333 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3334 (reloc_offset &
fca3ec01
CW
3335 ~(PAGE_SIZE - 1)),
3336 KM_USER0);
3043c60c 3337 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3338 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3339 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3340
3341#if WATCH_BUF
3342 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3343 obj, (unsigned int) reloc->offset,
673a394b
EA
3344 readl(reloc_entry), reloc_val);
3345#endif
3346 writel(reloc_val, reloc_entry);
fca3ec01 3347 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3348
40a5f0de
EA
3349 /* The updated presumed offset for this entry will be
3350 * copied back out to the user.
673a394b 3351 */
40a5f0de 3352 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3353
3354 drm_gem_object_unreference(target_obj);
3355 }
3356
673a394b
EA
3357#if WATCH_BUF
3358 if (0)
3359 i915_gem_dump_object(obj, 128, __func__, ~0);
3360#endif
3361 return 0;
3362}
3363
673a394b
EA
3364/* Throttle our rendering by waiting until the ring has completed our requests
3365 * emitted over 20 msec ago.
3366 *
b962442e
EA
3367 * Note that if we were to use the current jiffies each time around the loop,
3368 * we wouldn't escape the function with any frames outstanding if the time to
3369 * render a frame was over 20ms.
3370 *
673a394b
EA
3371 * This should get us reasonable parallelism between CPU and GPU but also
3372 * relatively low latency when blocking on a particular request to finish.
3373 */
3374static int
3375i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3376{
3377 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3378 int ret = 0;
b962442e 3379 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3380
3381 mutex_lock(&dev->struct_mutex);
b962442e
EA
3382 while (!list_empty(&i915_file_priv->mm.request_list)) {
3383 struct drm_i915_gem_request *request;
3384
3385 request = list_first_entry(&i915_file_priv->mm.request_list,
3386 struct drm_i915_gem_request,
3387 client_list);
3388
3389 if (time_after_eq(request->emitted_jiffies, recent_enough))
3390 break;
3391
852835f3 3392 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3393 if (ret != 0)
3394 break;
3395 }
673a394b 3396 mutex_unlock(&dev->struct_mutex);
b962442e 3397
673a394b
EA
3398 return ret;
3399}
3400
40a5f0de 3401static int
76446cac 3402i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3403 uint32_t buffer_count,
3404 struct drm_i915_gem_relocation_entry **relocs)
3405{
3406 uint32_t reloc_count = 0, reloc_index = 0, i;
3407 int ret;
3408
3409 *relocs = NULL;
3410 for (i = 0; i < buffer_count; i++) {
3411 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3412 return -EINVAL;
3413 reloc_count += exec_list[i].relocation_count;
3414 }
3415
8e7d2b2c 3416 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3417 if (*relocs == NULL) {
3418 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3419 return -ENOMEM;
76446cac 3420 }
40a5f0de
EA
3421
3422 for (i = 0; i < buffer_count; i++) {
3423 struct drm_i915_gem_relocation_entry __user *user_relocs;
3424
3425 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3426
3427 ret = copy_from_user(&(*relocs)[reloc_index],
3428 user_relocs,
3429 exec_list[i].relocation_count *
3430 sizeof(**relocs));
3431 if (ret != 0) {
8e7d2b2c 3432 drm_free_large(*relocs);
40a5f0de 3433 *relocs = NULL;
2bc43b5c 3434 return -EFAULT;
40a5f0de
EA
3435 }
3436
3437 reloc_index += exec_list[i].relocation_count;
3438 }
3439
2bc43b5c 3440 return 0;
40a5f0de
EA
3441}
3442
3443static int
76446cac 3444i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3445 uint32_t buffer_count,
3446 struct drm_i915_gem_relocation_entry *relocs)
3447{
3448 uint32_t reloc_count = 0, i;
2bc43b5c 3449 int ret = 0;
40a5f0de 3450
93533c29
CW
3451 if (relocs == NULL)
3452 return 0;
3453
40a5f0de
EA
3454 for (i = 0; i < buffer_count; i++) {
3455 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3456 int unwritten;
40a5f0de
EA
3457
3458 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3459
2bc43b5c
FM
3460 unwritten = copy_to_user(user_relocs,
3461 &relocs[reloc_count],
3462 exec_list[i].relocation_count *
3463 sizeof(*relocs));
3464
3465 if (unwritten) {
3466 ret = -EFAULT;
3467 goto err;
40a5f0de
EA
3468 }
3469
3470 reloc_count += exec_list[i].relocation_count;
3471 }
3472
2bc43b5c 3473err:
8e7d2b2c 3474 drm_free_large(relocs);
40a5f0de
EA
3475
3476 return ret;
3477}
3478
83d60795 3479static int
76446cac 3480i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3481 uint64_t exec_offset)
3482{
3483 uint32_t exec_start, exec_len;
3484
3485 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3486 exec_len = (uint32_t) exec->batch_len;
3487
3488 if ((exec_start | exec_len) & 0x7)
3489 return -EINVAL;
3490
3491 if (!exec_start)
3492 return -EINVAL;
3493
3494 return 0;
3495}
3496
265db958 3497int
6b95a207
KH
3498i915_gem_wait_for_pending_flip(struct drm_device *dev,
3499 struct drm_gem_object **object_list,
3500 int count)
3501{
3502 drm_i915_private_t *dev_priv = dev->dev_private;
3503 struct drm_i915_gem_object *obj_priv;
3504 DEFINE_WAIT(wait);
3505 int i, ret = 0;
3506
3507 for (;;) {
3508 prepare_to_wait(&dev_priv->pending_flip_queue,
3509 &wait, TASK_INTERRUPTIBLE);
3510 for (i = 0; i < count; i++) {
23010e43 3511 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3512 if (atomic_read(&obj_priv->pending_flip) > 0)
3513 break;
3514 }
3515 if (i == count)
3516 break;
3517
3518 if (!signal_pending(current)) {
3519 mutex_unlock(&dev->struct_mutex);
3520 schedule();
3521 mutex_lock(&dev->struct_mutex);
3522 continue;
3523 }
3524 ret = -ERESTARTSYS;
3525 break;
3526 }
3527 finish_wait(&dev_priv->pending_flip_queue, &wait);
3528
3529 return ret;
3530}
3531
8dc5d147 3532static int
76446cac
JB
3533i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3534 struct drm_file *file_priv,
3535 struct drm_i915_gem_execbuffer2 *args,
3536 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3537{
3538 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3539 struct drm_gem_object **object_list = NULL;
3540 struct drm_gem_object *batch_obj;
b70d11da 3541 struct drm_i915_gem_object *obj_priv;
201361a5 3542 struct drm_clip_rect *cliprects = NULL;
93533c29 3543 struct drm_i915_gem_relocation_entry *relocs = NULL;
8dc5d147 3544 struct drm_i915_gem_request *request = NULL;
76446cac 3545 int ret = 0, ret2, i, pinned = 0;
673a394b 3546 uint64_t exec_offset;
8a1a49f9 3547 uint32_t seqno, reloc_index;
6b95a207 3548 int pin_tries, flips;
673a394b 3549
852835f3
ZN
3550 struct intel_ring_buffer *ring = NULL;
3551
673a394b
EA
3552#if WATCH_EXEC
3553 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3554 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3555#endif
d1b851fc
ZN
3556 if (args->flags & I915_EXEC_BSD) {
3557 if (!HAS_BSD(dev)) {
3558 DRM_ERROR("execbuf with wrong flag\n");
3559 return -EINVAL;
3560 }
3561 ring = &dev_priv->bsd_ring;
3562 } else {
3563 ring = &dev_priv->render_ring;
3564 }
3565
4f481ed2
EA
3566 if (args->buffer_count < 1) {
3567 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3568 return -EINVAL;
3569 }
c8e0f93a 3570 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3571 if (object_list == NULL) {
3572 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3573 args->buffer_count);
3574 ret = -ENOMEM;
3575 goto pre_mutex_err;
3576 }
673a394b 3577
201361a5 3578 if (args->num_cliprects != 0) {
9a298b2a
EA
3579 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3580 GFP_KERNEL);
a40e8d31
OA
3581 if (cliprects == NULL) {
3582 ret = -ENOMEM;
201361a5 3583 goto pre_mutex_err;
a40e8d31 3584 }
201361a5
EA
3585
3586 ret = copy_from_user(cliprects,
3587 (struct drm_clip_rect __user *)
3588 (uintptr_t) args->cliprects_ptr,
3589 sizeof(*cliprects) * args->num_cliprects);
3590 if (ret != 0) {
3591 DRM_ERROR("copy %d cliprects failed: %d\n",
3592 args->num_cliprects, ret);
c877cdce 3593 ret = -EFAULT;
201361a5
EA
3594 goto pre_mutex_err;
3595 }
3596 }
3597
8dc5d147
CW
3598 request = kzalloc(sizeof(*request), GFP_KERNEL);
3599 if (request == NULL) {
3600 ret = -ENOMEM;
3601 goto pre_mutex_err;
3602 }
3603
40a5f0de
EA
3604 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3605 &relocs);
3606 if (ret != 0)
3607 goto pre_mutex_err;
3608
673a394b
EA
3609 mutex_lock(&dev->struct_mutex);
3610
3611 i915_verify_inactive(dev, __FILE__, __LINE__);
3612
ba1234d1 3613 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3614 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3615 ret = -EIO;
3616 goto pre_mutex_err;
673a394b
EA
3617 }
3618
3619 if (dev_priv->mm.suspended) {
673a394b 3620 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3621 ret = -EBUSY;
3622 goto pre_mutex_err;
673a394b
EA
3623 }
3624
ac94a962 3625 /* Look up object handles */
6b95a207 3626 flips = 0;
673a394b
EA
3627 for (i = 0; i < args->buffer_count; i++) {
3628 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3629 exec_list[i].handle);
3630 if (object_list[i] == NULL) {
3631 DRM_ERROR("Invalid object handle %d at index %d\n",
3632 exec_list[i].handle, i);
0ce907f8
CW
3633 /* prevent error path from reading uninitialized data */
3634 args->buffer_count = i + 1;
bf79cb91 3635 ret = -ENOENT;
673a394b
EA
3636 goto err;
3637 }
b70d11da 3638
23010e43 3639 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3640 if (obj_priv->in_execbuffer) {
3641 DRM_ERROR("Object %p appears more than once in object list\n",
3642 object_list[i]);
0ce907f8
CW
3643 /* prevent error path from reading uninitialized data */
3644 args->buffer_count = i + 1;
bf79cb91 3645 ret = -EINVAL;
b70d11da
KH
3646 goto err;
3647 }
3648 obj_priv->in_execbuffer = true;
6b95a207
KH
3649 flips += atomic_read(&obj_priv->pending_flip);
3650 }
3651
3652 if (flips > 0) {
3653 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3654 args->buffer_count);
3655 if (ret)
3656 goto err;
ac94a962 3657 }
673a394b 3658
ac94a962
KP
3659 /* Pin and relocate */
3660 for (pin_tries = 0; ; pin_tries++) {
3661 ret = 0;
40a5f0de
EA
3662 reloc_index = 0;
3663
ac94a962
KP
3664 for (i = 0; i < args->buffer_count; i++) {
3665 object_list[i]->pending_read_domains = 0;
3666 object_list[i]->pending_write_domain = 0;
3667 ret = i915_gem_object_pin_and_relocate(object_list[i],
3668 file_priv,
40a5f0de
EA
3669 &exec_list[i],
3670 &relocs[reloc_index]);
ac94a962
KP
3671 if (ret)
3672 break;
3673 pinned = i + 1;
40a5f0de 3674 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3675 }
3676 /* success */
3677 if (ret == 0)
3678 break;
3679
3680 /* error other than GTT full, or we've already tried again */
2939e1f5 3681 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3682 if (ret != -ERESTARTSYS) {
3683 unsigned long long total_size = 0;
3d1cc470
CW
3684 int num_fences = 0;
3685 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3686 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3687
07f73f69 3688 total_size += object_list[i]->size;
3d1cc470
CW
3689 num_fences +=
3690 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3691 obj_priv->tiling_mode != I915_TILING_NONE;
3692 }
3693 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3694 pinned+1, args->buffer_count,
3d1cc470
CW
3695 total_size, num_fences,
3696 ret);
07f73f69
CW
3697 DRM_ERROR("%d objects [%d pinned], "
3698 "%d object bytes [%d pinned], "
3699 "%d/%d gtt bytes\n",
3700 atomic_read(&dev->object_count),
3701 atomic_read(&dev->pin_count),
3702 atomic_read(&dev->object_memory),
3703 atomic_read(&dev->pin_memory),
3704 atomic_read(&dev->gtt_memory),
3705 dev->gtt_total);
3706 }
673a394b
EA
3707 goto err;
3708 }
ac94a962
KP
3709
3710 /* unpin all of our buffers */
3711 for (i = 0; i < pinned; i++)
3712 i915_gem_object_unpin(object_list[i]);
b1177636 3713 pinned = 0;
ac94a962
KP
3714
3715 /* evict everyone we can from the aperture */
3716 ret = i915_gem_evict_everything(dev);
07f73f69 3717 if (ret && ret != -ENOSPC)
ac94a962 3718 goto err;
673a394b
EA
3719 }
3720
3721 /* Set the pending read domains for the batch buffer to COMMAND */
3722 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3723 if (batch_obj->pending_write_domain) {
3724 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3725 ret = -EINVAL;
3726 goto err;
3727 }
3728 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3729
83d60795
CW
3730 /* Sanity check the batch buffer, prior to moving objects */
3731 exec_offset = exec_list[args->buffer_count - 1].offset;
3732 ret = i915_gem_check_execbuffer (args, exec_offset);
3733 if (ret != 0) {
3734 DRM_ERROR("execbuf with invalid offset/length\n");
3735 goto err;
3736 }
3737
673a394b
EA
3738 i915_verify_inactive(dev, __FILE__, __LINE__);
3739
646f0f6e
KP
3740 /* Zero the global flush/invalidate flags. These
3741 * will be modified as new domains are computed
3742 * for each object
3743 */
3744 dev->invalidate_domains = 0;
3745 dev->flush_domains = 0;
9220434a 3746 dev_priv->mm.flush_rings = 0;
646f0f6e 3747
673a394b
EA
3748 for (i = 0; i < args->buffer_count; i++) {
3749 struct drm_gem_object *obj = object_list[i];
673a394b 3750
646f0f6e 3751 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3752 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3753 }
3754
3755 i915_verify_inactive(dev, __FILE__, __LINE__);
3756
646f0f6e
KP
3757 if (dev->invalidate_domains | dev->flush_domains) {
3758#if WATCH_EXEC
3759 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3760 __func__,
3761 dev->invalidate_domains,
3762 dev->flush_domains);
3763#endif
c78ec30b 3764 i915_gem_flush(dev, file_priv,
646f0f6e 3765 dev->invalidate_domains,
9220434a
CW
3766 dev->flush_domains,
3767 dev_priv->mm.flush_rings);
a6910434
DV
3768 }
3769
efbeed96
EA
3770 for (i = 0; i < args->buffer_count; i++) {
3771 struct drm_gem_object *obj = object_list[i];
23010e43 3772 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3773 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3774
3775 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3776 if (obj->write_domain)
3777 list_move_tail(&obj_priv->gpu_write_list,
3778 &dev_priv->mm.gpu_write_list);
3779 else
3780 list_del_init(&obj_priv->gpu_write_list);
3781
1c5d22f7
CW
3782 trace_i915_gem_object_change_domain(obj,
3783 obj->read_domains,
3784 old_write_domain);
efbeed96
EA
3785 }
3786
673a394b
EA
3787 i915_verify_inactive(dev, __FILE__, __LINE__);
3788
3789#if WATCH_COHERENCY
3790 for (i = 0; i < args->buffer_count; i++) {
3791 i915_gem_object_check_coherency(object_list[i],
3792 exec_list[i].handle);
3793 }
3794#endif
3795
673a394b 3796#if WATCH_EXEC
6911a9b8 3797 i915_gem_dump_object(batch_obj,
673a394b
EA
3798 args->batch_len,
3799 __func__,
3800 ~0);
3801#endif
3802
673a394b 3803 /* Exec the batchbuffer */
852835f3
ZN
3804 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3805 cliprects, exec_offset);
673a394b
EA
3806 if (ret) {
3807 DRM_ERROR("dispatch failed %d\n", ret);
3808 goto err;
3809 }
3810
3811 /*
3812 * Ensure that the commands in the batch buffer are
3813 * finished before the interrupt fires
3814 */
8a1a49f9 3815 i915_retire_commands(dev, ring);
673a394b
EA
3816
3817 i915_verify_inactive(dev, __FILE__, __LINE__);
3818
617dbe27
DV
3819 for (i = 0; i < args->buffer_count; i++) {
3820 struct drm_gem_object *obj = object_list[i];
3821 obj_priv = to_intel_bo(obj);
3822
3823 i915_gem_object_move_to_active(obj, ring);
3824#if WATCH_LRU
3825 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3826#endif
3827 }
3828
673a394b
EA
3829 /*
3830 * Get a seqno representing the execution of the current buffer,
3831 * which we can wait on. We would like to mitigate these interrupts,
3832 * likely by only creating seqnos occasionally (so that we have
3833 * *some* interrupts representing completion of buffers that we can
3834 * wait on when trying to clear up gtt space).
3835 */
8dc5d147
CW
3836 seqno = i915_add_request(dev, file_priv, request, ring);
3837 request = NULL;
673a394b 3838
673a394b
EA
3839#if WATCH_LRU
3840 i915_dump_lru(dev, __func__);
3841#endif
3842
3843 i915_verify_inactive(dev, __FILE__, __LINE__);
3844
673a394b 3845err:
aad87dff
JL
3846 for (i = 0; i < pinned; i++)
3847 i915_gem_object_unpin(object_list[i]);
3848
b70d11da
KH
3849 for (i = 0; i < args->buffer_count; i++) {
3850 if (object_list[i]) {
23010e43 3851 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3852 obj_priv->in_execbuffer = false;
3853 }
aad87dff 3854 drm_gem_object_unreference(object_list[i]);
b70d11da 3855 }
673a394b 3856
673a394b
EA
3857 mutex_unlock(&dev->struct_mutex);
3858
93533c29 3859pre_mutex_err:
40a5f0de
EA
3860 /* Copy the updated relocations out regardless of current error
3861 * state. Failure to update the relocs would mean that the next
3862 * time userland calls execbuf, it would do so with presumed offset
3863 * state that didn't match the actual object state.
3864 */
3865 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3866 relocs);
3867 if (ret2 != 0) {
3868 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3869
3870 if (ret == 0)
3871 ret = ret2;
3872 }
3873
8e7d2b2c 3874 drm_free_large(object_list);
9a298b2a 3875 kfree(cliprects);
8dc5d147 3876 kfree(request);
673a394b
EA
3877
3878 return ret;
3879}
3880
76446cac
JB
3881/*
3882 * Legacy execbuffer just creates an exec2 list from the original exec object
3883 * list array and passes it to the real function.
3884 */
3885int
3886i915_gem_execbuffer(struct drm_device *dev, void *data,
3887 struct drm_file *file_priv)
3888{
3889 struct drm_i915_gem_execbuffer *args = data;
3890 struct drm_i915_gem_execbuffer2 exec2;
3891 struct drm_i915_gem_exec_object *exec_list = NULL;
3892 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3893 int ret, i;
3894
3895#if WATCH_EXEC
3896 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3897 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3898#endif
3899
3900 if (args->buffer_count < 1) {
3901 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3902 return -EINVAL;
3903 }
3904
3905 /* Copy in the exec list from userland */
3906 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3907 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3908 if (exec_list == NULL || exec2_list == NULL) {
3909 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3910 args->buffer_count);
3911 drm_free_large(exec_list);
3912 drm_free_large(exec2_list);
3913 return -ENOMEM;
3914 }
3915 ret = copy_from_user(exec_list,
3916 (struct drm_i915_relocation_entry __user *)
3917 (uintptr_t) args->buffers_ptr,
3918 sizeof(*exec_list) * args->buffer_count);
3919 if (ret != 0) {
3920 DRM_ERROR("copy %d exec entries failed %d\n",
3921 args->buffer_count, ret);
3922 drm_free_large(exec_list);
3923 drm_free_large(exec2_list);
3924 return -EFAULT;
3925 }
3926
3927 for (i = 0; i < args->buffer_count; i++) {
3928 exec2_list[i].handle = exec_list[i].handle;
3929 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3930 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3931 exec2_list[i].alignment = exec_list[i].alignment;
3932 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3933 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3934 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3935 else
3936 exec2_list[i].flags = 0;
3937 }
3938
3939 exec2.buffers_ptr = args->buffers_ptr;
3940 exec2.buffer_count = args->buffer_count;
3941 exec2.batch_start_offset = args->batch_start_offset;
3942 exec2.batch_len = args->batch_len;
3943 exec2.DR1 = args->DR1;
3944 exec2.DR4 = args->DR4;
3945 exec2.num_cliprects = args->num_cliprects;
3946 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3947 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3948
3949 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3950 if (!ret) {
3951 /* Copy the new buffer offsets back to the user's exec list. */
3952 for (i = 0; i < args->buffer_count; i++)
3953 exec_list[i].offset = exec2_list[i].offset;
3954 /* ... and back out to userspace */
3955 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3956 (uintptr_t) args->buffers_ptr,
3957 exec_list,
3958 sizeof(*exec_list) * args->buffer_count);
3959 if (ret) {
3960 ret = -EFAULT;
3961 DRM_ERROR("failed to copy %d exec entries "
3962 "back to user (%d)\n",
3963 args->buffer_count, ret);
3964 }
76446cac
JB
3965 }
3966
3967 drm_free_large(exec_list);
3968 drm_free_large(exec2_list);
3969 return ret;
3970}
3971
3972int
3973i915_gem_execbuffer2(struct drm_device *dev, void *data,
3974 struct drm_file *file_priv)
3975{
3976 struct drm_i915_gem_execbuffer2 *args = data;
3977 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3978 int ret;
3979
3980#if WATCH_EXEC
3981 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3982 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3983#endif
3984
3985 if (args->buffer_count < 1) {
3986 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3987 return -EINVAL;
3988 }
3989
3990 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3991 if (exec2_list == NULL) {
3992 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3993 args->buffer_count);
3994 return -ENOMEM;
3995 }
3996 ret = copy_from_user(exec2_list,
3997 (struct drm_i915_relocation_entry __user *)
3998 (uintptr_t) args->buffers_ptr,
3999 sizeof(*exec2_list) * args->buffer_count);
4000 if (ret != 0) {
4001 DRM_ERROR("copy %d exec entries failed %d\n",
4002 args->buffer_count, ret);
4003 drm_free_large(exec2_list);
4004 return -EFAULT;
4005 }
4006
4007 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4008 if (!ret) {
4009 /* Copy the new buffer offsets back to the user's exec list. */
4010 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4011 (uintptr_t) args->buffers_ptr,
4012 exec2_list,
4013 sizeof(*exec2_list) * args->buffer_count);
4014 if (ret) {
4015 ret = -EFAULT;
4016 DRM_ERROR("failed to copy %d exec entries "
4017 "back to user (%d)\n",
4018 args->buffer_count, ret);
4019 }
4020 }
4021
4022 drm_free_large(exec2_list);
4023 return ret;
4024}
4025
673a394b
EA
4026int
4027i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4028{
4029 struct drm_device *dev = obj->dev;
f13d3f73 4030 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4031 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4032 int ret;
4033
778c3544
DV
4034 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4035
673a394b 4036 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4037
4038 if (obj_priv->gtt_space != NULL) {
4039 if (alignment == 0)
4040 alignment = i915_gem_get_gtt_alignment(obj);
4041 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4042 WARN(obj_priv->pin_count,
4043 "bo is already pinned with incorrect alignment:"
4044 " offset=%x, req.alignment=%x\n",
4045 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4046 ret = i915_gem_object_unbind(obj);
4047 if (ret)
4048 return ret;
4049 }
4050 }
4051
673a394b
EA
4052 if (obj_priv->gtt_space == NULL) {
4053 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4054 if (ret)
673a394b 4055 return ret;
22c344e9 4056 }
76446cac 4057
673a394b
EA
4058 obj_priv->pin_count++;
4059
4060 /* If the object is not active and not pending a flush,
4061 * remove it from the inactive list
4062 */
4063 if (obj_priv->pin_count == 1) {
4064 atomic_inc(&dev->pin_count);
4065 atomic_add(obj->size, &dev->pin_memory);
f13d3f73
CW
4066 if (!obj_priv->active)
4067 list_move_tail(&obj_priv->list,
4068 &dev_priv->mm.pinned_list);
673a394b
EA
4069 }
4070 i915_verify_inactive(dev, __FILE__, __LINE__);
4071
4072 return 0;
4073}
4074
4075void
4076i915_gem_object_unpin(struct drm_gem_object *obj)
4077{
4078 struct drm_device *dev = obj->dev;
4079 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4080 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4081
4082 i915_verify_inactive(dev, __FILE__, __LINE__);
4083 obj_priv->pin_count--;
4084 BUG_ON(obj_priv->pin_count < 0);
4085 BUG_ON(obj_priv->gtt_space == NULL);
4086
4087 /* If the object is no longer pinned, and is
4088 * neither active nor being flushed, then stick it on
4089 * the inactive list
4090 */
4091 if (obj_priv->pin_count == 0) {
f13d3f73 4092 if (!obj_priv->active)
673a394b
EA
4093 list_move_tail(&obj_priv->list,
4094 &dev_priv->mm.inactive_list);
4095 atomic_dec(&dev->pin_count);
4096 atomic_sub(obj->size, &dev->pin_memory);
4097 }
4098 i915_verify_inactive(dev, __FILE__, __LINE__);
4099}
4100
4101int
4102i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4103 struct drm_file *file_priv)
4104{
4105 struct drm_i915_gem_pin *args = data;
4106 struct drm_gem_object *obj;
4107 struct drm_i915_gem_object *obj_priv;
4108 int ret;
4109
4110 mutex_lock(&dev->struct_mutex);
4111
4112 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4113 if (obj == NULL) {
4114 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4115 args->handle);
4116 mutex_unlock(&dev->struct_mutex);
bf79cb91 4117 return -ENOENT;
673a394b 4118 }
23010e43 4119 obj_priv = to_intel_bo(obj);
673a394b 4120
bb6baf76
CW
4121 if (obj_priv->madv != I915_MADV_WILLNEED) {
4122 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4123 drm_gem_object_unreference(obj);
4124 mutex_unlock(&dev->struct_mutex);
4125 return -EINVAL;
4126 }
4127
79e53945
JB
4128 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4129 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4130 args->handle);
96dec61d 4131 drm_gem_object_unreference(obj);
673a394b 4132 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4133 return -EINVAL;
4134 }
4135
4136 obj_priv->user_pin_count++;
4137 obj_priv->pin_filp = file_priv;
4138 if (obj_priv->user_pin_count == 1) {
4139 ret = i915_gem_object_pin(obj, args->alignment);
4140 if (ret != 0) {
4141 drm_gem_object_unreference(obj);
4142 mutex_unlock(&dev->struct_mutex);
4143 return ret;
4144 }
673a394b
EA
4145 }
4146
4147 /* XXX - flush the CPU caches for pinned objects
4148 * as the X server doesn't manage domains yet
4149 */
e47c68e9 4150 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4151 args->offset = obj_priv->gtt_offset;
4152 drm_gem_object_unreference(obj);
4153 mutex_unlock(&dev->struct_mutex);
4154
4155 return 0;
4156}
4157
4158int
4159i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4160 struct drm_file *file_priv)
4161{
4162 struct drm_i915_gem_pin *args = data;
4163 struct drm_gem_object *obj;
79e53945 4164 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4165
4166 mutex_lock(&dev->struct_mutex);
4167
4168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4169 if (obj == NULL) {
4170 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4171 args->handle);
4172 mutex_unlock(&dev->struct_mutex);
bf79cb91 4173 return -ENOENT;
673a394b
EA
4174 }
4175
23010e43 4176 obj_priv = to_intel_bo(obj);
79e53945
JB
4177 if (obj_priv->pin_filp != file_priv) {
4178 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4179 args->handle);
4180 drm_gem_object_unreference(obj);
4181 mutex_unlock(&dev->struct_mutex);
4182 return -EINVAL;
4183 }
4184 obj_priv->user_pin_count--;
4185 if (obj_priv->user_pin_count == 0) {
4186 obj_priv->pin_filp = NULL;
4187 i915_gem_object_unpin(obj);
4188 }
673a394b
EA
4189
4190 drm_gem_object_unreference(obj);
4191 mutex_unlock(&dev->struct_mutex);
4192 return 0;
4193}
4194
4195int
4196i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4197 struct drm_file *file_priv)
4198{
4199 struct drm_i915_gem_busy *args = data;
4200 struct drm_gem_object *obj;
4201 struct drm_i915_gem_object *obj_priv;
4202
673a394b
EA
4203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4204 if (obj == NULL) {
4205 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4206 args->handle);
bf79cb91 4207 return -ENOENT;
673a394b
EA
4208 }
4209
b1ce786c 4210 mutex_lock(&dev->struct_mutex);
d1b851fc 4211
0be555b6
CW
4212 /* Count all active objects as busy, even if they are currently not used
4213 * by the gpu. Users of this interface expect objects to eventually
4214 * become non-busy without any further actions, therefore emit any
4215 * necessary flushes here.
c4de0a5d 4216 */
0be555b6
CW
4217 obj_priv = to_intel_bo(obj);
4218 args->busy = obj_priv->active;
4219 if (args->busy) {
4220 /* Unconditionally flush objects, even when the gpu still uses this
4221 * object. Userspace calling this function indicates that it wants to
4222 * use this buffer rather sooner than later, so issuing the required
4223 * flush earlier is beneficial.
4224 */
c78ec30b
CW
4225 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4226 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4227 obj_priv->ring,
4228 0, obj->write_domain);
0be555b6
CW
4229
4230 /* Update the active list for the hardware's current position.
4231 * Otherwise this only updates on a delayed timer or when irqs
4232 * are actually unmasked, and our working set ends up being
4233 * larger than required.
4234 */
4235 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4236
4237 args->busy = obj_priv->active;
4238 }
673a394b
EA
4239
4240 drm_gem_object_unreference(obj);
4241 mutex_unlock(&dev->struct_mutex);
4242 return 0;
4243}
4244
4245int
4246i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4247 struct drm_file *file_priv)
4248{
4249 return i915_gem_ring_throttle(dev, file_priv);
4250}
4251
3ef94daa
CW
4252int
4253i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4254 struct drm_file *file_priv)
4255{
4256 struct drm_i915_gem_madvise *args = data;
4257 struct drm_gem_object *obj;
4258 struct drm_i915_gem_object *obj_priv;
4259
4260 switch (args->madv) {
4261 case I915_MADV_DONTNEED:
4262 case I915_MADV_WILLNEED:
4263 break;
4264 default:
4265 return -EINVAL;
4266 }
4267
4268 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4269 if (obj == NULL) {
4270 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4271 args->handle);
bf79cb91 4272 return -ENOENT;
3ef94daa
CW
4273 }
4274
4275 mutex_lock(&dev->struct_mutex);
23010e43 4276 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4277
4278 if (obj_priv->pin_count) {
4279 drm_gem_object_unreference(obj);
4280 mutex_unlock(&dev->struct_mutex);
4281
4282 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4283 return -EINVAL;
4284 }
4285
bb6baf76
CW
4286 if (obj_priv->madv != __I915_MADV_PURGED)
4287 obj_priv->madv = args->madv;
3ef94daa 4288
2d7ef395
CW
4289 /* if the object is no longer bound, discard its backing storage */
4290 if (i915_gem_object_is_purgeable(obj_priv) &&
4291 obj_priv->gtt_space == NULL)
4292 i915_gem_object_truncate(obj);
4293
bb6baf76
CW
4294 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4295
3ef94daa
CW
4296 drm_gem_object_unreference(obj);
4297 mutex_unlock(&dev->struct_mutex);
4298
4299 return 0;
4300}
4301
ac52bc56
DV
4302struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4303 size_t size)
4304{
c397b908 4305 struct drm_i915_gem_object *obj;
ac52bc56 4306
c397b908
DV
4307 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4308 if (obj == NULL)
4309 return NULL;
673a394b 4310
c397b908
DV
4311 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4312 kfree(obj);
4313 return NULL;
4314 }
673a394b 4315
c397b908
DV
4316 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4317 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4318
c397b908 4319 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4320 obj->base.driver_private = NULL;
c397b908
DV
4321 obj->fence_reg = I915_FENCE_REG_NONE;
4322 INIT_LIST_HEAD(&obj->list);
4323 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4324 obj->madv = I915_MADV_WILLNEED;
de151cf6 4325
c397b908
DV
4326 trace_i915_gem_object_create(&obj->base);
4327
4328 return &obj->base;
4329}
4330
4331int i915_gem_init_object(struct drm_gem_object *obj)
4332{
4333 BUG();
de151cf6 4334
673a394b
EA
4335 return 0;
4336}
4337
be72615b 4338static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4339{
de151cf6 4340 struct drm_device *dev = obj->dev;
be72615b 4341 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4343 int ret;
673a394b 4344
be72615b
CW
4345 ret = i915_gem_object_unbind(obj);
4346 if (ret == -ERESTARTSYS) {
4347 list_move(&obj_priv->list,
4348 &dev_priv->mm.deferred_free_list);
4349 return;
4350 }
673a394b 4351
7e616158
CW
4352 if (obj_priv->mmap_offset)
4353 i915_gem_free_mmap_offset(obj);
de151cf6 4354
c397b908
DV
4355 drm_gem_object_release(obj);
4356
9a298b2a 4357 kfree(obj_priv->page_cpu_valid);
280b713b 4358 kfree(obj_priv->bit_17);
c397b908 4359 kfree(obj_priv);
673a394b
EA
4360}
4361
be72615b
CW
4362void i915_gem_free_object(struct drm_gem_object *obj)
4363{
4364 struct drm_device *dev = obj->dev;
4365 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4366
4367 trace_i915_gem_object_destroy(obj);
4368
4369 while (obj_priv->pin_count > 0)
4370 i915_gem_object_unpin(obj);
4371
4372 if (obj_priv->phys_obj)
4373 i915_gem_detach_phys_object(dev, obj);
4374
4375 i915_gem_free_object_tail(obj);
4376}
4377
29105ccc
CW
4378int
4379i915_gem_idle(struct drm_device *dev)
4380{
4381 drm_i915_private_t *dev_priv = dev->dev_private;
4382 int ret;
28dfe52a 4383
29105ccc 4384 mutex_lock(&dev->struct_mutex);
1c5d22f7 4385
8187a2b7 4386 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4387 (dev_priv->render_ring.gem_object == NULL) ||
4388 (HAS_BSD(dev) &&
4389 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4390 mutex_unlock(&dev->struct_mutex);
4391 return 0;
28dfe52a
EA
4392 }
4393
29105ccc 4394 ret = i915_gpu_idle(dev);
6dbe2772
KP
4395 if (ret) {
4396 mutex_unlock(&dev->struct_mutex);
673a394b 4397 return ret;
6dbe2772 4398 }
673a394b 4399
29105ccc
CW
4400 /* Under UMS, be paranoid and evict. */
4401 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4402 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4403 if (ret) {
4404 mutex_unlock(&dev->struct_mutex);
4405 return ret;
4406 }
4407 }
4408
4409 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4410 * We need to replace this with a semaphore, or something.
4411 * And not confound mm.suspended!
4412 */
4413 dev_priv->mm.suspended = 1;
bc0c7f14 4414 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4415
4416 i915_kernel_lost_context(dev);
6dbe2772 4417 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4418
6dbe2772
KP
4419 mutex_unlock(&dev->struct_mutex);
4420
29105ccc
CW
4421 /* Cancel the retire work handler, which should be idle now. */
4422 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4423
673a394b
EA
4424 return 0;
4425}
4426
e552eb70
JB
4427/*
4428 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4429 * over cache flushing.
4430 */
8187a2b7 4431static int
e552eb70
JB
4432i915_gem_init_pipe_control(struct drm_device *dev)
4433{
4434 drm_i915_private_t *dev_priv = dev->dev_private;
4435 struct drm_gem_object *obj;
4436 struct drm_i915_gem_object *obj_priv;
4437 int ret;
4438
34dc4d44 4439 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4440 if (obj == NULL) {
4441 DRM_ERROR("Failed to allocate seqno page\n");
4442 ret = -ENOMEM;
4443 goto err;
4444 }
4445 obj_priv = to_intel_bo(obj);
4446 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4447
4448 ret = i915_gem_object_pin(obj, 4096);
4449 if (ret)
4450 goto err_unref;
4451
4452 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4453 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4454 if (dev_priv->seqno_page == NULL)
4455 goto err_unpin;
4456
4457 dev_priv->seqno_obj = obj;
4458 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4459
4460 return 0;
4461
4462err_unpin:
4463 i915_gem_object_unpin(obj);
4464err_unref:
4465 drm_gem_object_unreference(obj);
4466err:
4467 return ret;
4468}
4469
8187a2b7
ZN
4470
4471static void
e552eb70
JB
4472i915_gem_cleanup_pipe_control(struct drm_device *dev)
4473{
4474 drm_i915_private_t *dev_priv = dev->dev_private;
4475 struct drm_gem_object *obj;
4476 struct drm_i915_gem_object *obj_priv;
4477
4478 obj = dev_priv->seqno_obj;
4479 obj_priv = to_intel_bo(obj);
4480 kunmap(obj_priv->pages[0]);
4481 i915_gem_object_unpin(obj);
4482 drm_gem_object_unreference(obj);
4483 dev_priv->seqno_obj = NULL;
4484
4485 dev_priv->seqno_page = NULL;
673a394b
EA
4486}
4487
8187a2b7
ZN
4488int
4489i915_gem_init_ringbuffer(struct drm_device *dev)
4490{
4491 drm_i915_private_t *dev_priv = dev->dev_private;
4492 int ret;
68f95ba9 4493
8187a2b7
ZN
4494 if (HAS_PIPE_CONTROL(dev)) {
4495 ret = i915_gem_init_pipe_control(dev);
4496 if (ret)
4497 return ret;
4498 }
68f95ba9 4499
5c1143bb 4500 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4501 if (ret)
4502 goto cleanup_pipe_control;
4503
4504 if (HAS_BSD(dev)) {
5c1143bb 4505 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4506 if (ret)
4507 goto cleanup_render_ring;
d1b851fc 4508 }
68f95ba9 4509
6f392d54
CW
4510 dev_priv->next_seqno = 1;
4511
68f95ba9
CW
4512 return 0;
4513
4514cleanup_render_ring:
4515 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4516cleanup_pipe_control:
4517 if (HAS_PIPE_CONTROL(dev))
4518 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4519 return ret;
4520}
4521
4522void
4523i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4524{
4525 drm_i915_private_t *dev_priv = dev->dev_private;
4526
4527 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4528 if (HAS_BSD(dev))
4529 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4530 if (HAS_PIPE_CONTROL(dev))
4531 i915_gem_cleanup_pipe_control(dev);
4532}
4533
673a394b
EA
4534int
4535i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4536 struct drm_file *file_priv)
4537{
4538 drm_i915_private_t *dev_priv = dev->dev_private;
4539 int ret;
4540
79e53945
JB
4541 if (drm_core_check_feature(dev, DRIVER_MODESET))
4542 return 0;
4543
ba1234d1 4544 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4545 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4546 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4547 }
4548
673a394b 4549 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4550 dev_priv->mm.suspended = 0;
4551
4552 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4553 if (ret != 0) {
4554 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4555 return ret;
d816f6ac 4556 }
9bb2d6f9 4557
852835f3 4558 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4559 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4560 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4561 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4562 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4563 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4564 mutex_unlock(&dev->struct_mutex);
dbb19d30 4565
5f35308b
CW
4566 ret = drm_irq_install(dev);
4567 if (ret)
4568 goto cleanup_ringbuffer;
dbb19d30 4569
673a394b 4570 return 0;
5f35308b
CW
4571
4572cleanup_ringbuffer:
4573 mutex_lock(&dev->struct_mutex);
4574 i915_gem_cleanup_ringbuffer(dev);
4575 dev_priv->mm.suspended = 1;
4576 mutex_unlock(&dev->struct_mutex);
4577
4578 return ret;
673a394b
EA
4579}
4580
4581int
4582i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4583 struct drm_file *file_priv)
4584{
79e53945
JB
4585 if (drm_core_check_feature(dev, DRIVER_MODESET))
4586 return 0;
4587
dbb19d30 4588 drm_irq_uninstall(dev);
e6890f6f 4589 return i915_gem_idle(dev);
673a394b
EA
4590}
4591
4592void
4593i915_gem_lastclose(struct drm_device *dev)
4594{
4595 int ret;
673a394b 4596
e806b495
EA
4597 if (drm_core_check_feature(dev, DRIVER_MODESET))
4598 return;
4599
6dbe2772
KP
4600 ret = i915_gem_idle(dev);
4601 if (ret)
4602 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4603}
4604
4605void
4606i915_gem_load(struct drm_device *dev)
4607{
b5aa8a0f 4608 int i;
673a394b
EA
4609 drm_i915_private_t *dev_priv = dev->dev_private;
4610
673a394b 4611 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4612 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4613 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4614 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4615 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4616 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4617 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4618 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4619 if (HAS_BSD(dev)) {
4620 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4621 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4622 }
007cc8ac
DV
4623 for (i = 0; i < 16; i++)
4624 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4625 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4626 i915_gem_retire_work_handler);
31169714
CW
4627 spin_lock(&shrink_list_lock);
4628 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4629 spin_unlock(&shrink_list_lock);
4630
94400120
DA
4631 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4632 if (IS_GEN3(dev)) {
4633 u32 tmp = I915_READ(MI_ARB_STATE);
4634 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4635 /* arb state is a masked write, so set bit + bit in mask */
4636 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4637 I915_WRITE(MI_ARB_STATE, tmp);
4638 }
4639 }
4640
de151cf6 4641 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4642 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4643 dev_priv->fence_reg_start = 3;
de151cf6 4644
a6c45cf0 4645 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4646 dev_priv->num_fence_regs = 16;
4647 else
4648 dev_priv->num_fence_regs = 8;
4649
b5aa8a0f 4650 /* Initialize fence registers to zero */
a6c45cf0
CW
4651 switch (INTEL_INFO(dev)->gen) {
4652 case 6:
4653 for (i = 0; i < 16; i++)
4654 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4655 break;
4656 case 5:
4657 case 4:
b5aa8a0f
GH
4658 for (i = 0; i < 16; i++)
4659 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4660 break;
4661 case 3:
b5aa8a0f
GH
4662 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4663 for (i = 0; i < 8; i++)
4664 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4665 case 2:
4666 for (i = 0; i < 8; i++)
4667 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4668 break;
b5aa8a0f 4669 }
673a394b 4670 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4671 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4672}
71acb5eb
DA
4673
4674/*
4675 * Create a physically contiguous memory object for this object
4676 * e.g. for cursor + overlay regs
4677 */
995b6762
CW
4678static int i915_gem_init_phys_object(struct drm_device *dev,
4679 int id, int size, int align)
71acb5eb
DA
4680{
4681 drm_i915_private_t *dev_priv = dev->dev_private;
4682 struct drm_i915_gem_phys_object *phys_obj;
4683 int ret;
4684
4685 if (dev_priv->mm.phys_objs[id - 1] || !size)
4686 return 0;
4687
9a298b2a 4688 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4689 if (!phys_obj)
4690 return -ENOMEM;
4691
4692 phys_obj->id = id;
4693
6eeefaf3 4694 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4695 if (!phys_obj->handle) {
4696 ret = -ENOMEM;
4697 goto kfree_obj;
4698 }
4699#ifdef CONFIG_X86
4700 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4701#endif
4702
4703 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4704
4705 return 0;
4706kfree_obj:
9a298b2a 4707 kfree(phys_obj);
71acb5eb
DA
4708 return ret;
4709}
4710
995b6762 4711static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4712{
4713 drm_i915_private_t *dev_priv = dev->dev_private;
4714 struct drm_i915_gem_phys_object *phys_obj;
4715
4716 if (!dev_priv->mm.phys_objs[id - 1])
4717 return;
4718
4719 phys_obj = dev_priv->mm.phys_objs[id - 1];
4720 if (phys_obj->cur_obj) {
4721 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4722 }
4723
4724#ifdef CONFIG_X86
4725 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4726#endif
4727 drm_pci_free(dev, phys_obj->handle);
4728 kfree(phys_obj);
4729 dev_priv->mm.phys_objs[id - 1] = NULL;
4730}
4731
4732void i915_gem_free_all_phys_object(struct drm_device *dev)
4733{
4734 int i;
4735
260883c8 4736 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4737 i915_gem_free_phys_object(dev, i);
4738}
4739
4740void i915_gem_detach_phys_object(struct drm_device *dev,
4741 struct drm_gem_object *obj)
4742{
4743 struct drm_i915_gem_object *obj_priv;
4744 int i;
4745 int ret;
4746 int page_count;
4747
23010e43 4748 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4749 if (!obj_priv->phys_obj)
4750 return;
4751
4bdadb97 4752 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4753 if (ret)
4754 goto out;
4755
4756 page_count = obj->size / PAGE_SIZE;
4757
4758 for (i = 0; i < page_count; i++) {
856fa198 4759 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4760 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4761
4762 memcpy(dst, src, PAGE_SIZE);
4763 kunmap_atomic(dst, KM_USER0);
4764 }
856fa198 4765 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4766 drm_agp_chipset_flush(dev);
d78b47b9
CW
4767
4768 i915_gem_object_put_pages(obj);
71acb5eb
DA
4769out:
4770 obj_priv->phys_obj->cur_obj = NULL;
4771 obj_priv->phys_obj = NULL;
4772}
4773
4774int
4775i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4776 struct drm_gem_object *obj,
4777 int id,
4778 int align)
71acb5eb
DA
4779{
4780 drm_i915_private_t *dev_priv = dev->dev_private;
4781 struct drm_i915_gem_object *obj_priv;
4782 int ret = 0;
4783 int page_count;
4784 int i;
4785
4786 if (id > I915_MAX_PHYS_OBJECT)
4787 return -EINVAL;
4788
23010e43 4789 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4790
4791 if (obj_priv->phys_obj) {
4792 if (obj_priv->phys_obj->id == id)
4793 return 0;
4794 i915_gem_detach_phys_object(dev, obj);
4795 }
4796
71acb5eb
DA
4797 /* create a new object */
4798 if (!dev_priv->mm.phys_objs[id - 1]) {
4799 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4800 obj->size, align);
71acb5eb 4801 if (ret) {
aeb565df 4802 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4803 goto out;
4804 }
4805 }
4806
4807 /* bind to the object */
4808 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4809 obj_priv->phys_obj->cur_obj = obj;
4810
4bdadb97 4811 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4812 if (ret) {
4813 DRM_ERROR("failed to get page list\n");
4814 goto out;
4815 }
4816
4817 page_count = obj->size / PAGE_SIZE;
4818
4819 for (i = 0; i < page_count; i++) {
856fa198 4820 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4821 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4822
4823 memcpy(dst, src, PAGE_SIZE);
4824 kunmap_atomic(src, KM_USER0);
4825 }
4826
d78b47b9
CW
4827 i915_gem_object_put_pages(obj);
4828
71acb5eb
DA
4829 return 0;
4830out:
4831 return ret;
4832}
4833
4834static int
4835i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4836 struct drm_i915_gem_pwrite *args,
4837 struct drm_file *file_priv)
4838{
23010e43 4839 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4840 void *obj_addr;
4841 int ret;
4842 char __user *user_data;
4843
4844 user_data = (char __user *) (uintptr_t) args->data_ptr;
4845 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4846
44d98a61 4847 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4848 ret = copy_from_user(obj_addr, user_data, args->size);
4849 if (ret)
4850 return -EFAULT;
4851
4852 drm_agp_chipset_flush(dev);
4853 return 0;
4854}
b962442e
EA
4855
4856void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4857{
4858 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4859
4860 /* Clean up our request list when the client is going away, so that
4861 * later retire_requests won't dereference our soon-to-be-gone
4862 * file_priv.
4863 */
4864 mutex_lock(&dev->struct_mutex);
4865 while (!list_empty(&i915_file_priv->mm.request_list))
4866 list_del_init(i915_file_priv->mm.request_list.next);
4867 mutex_unlock(&dev->struct_mutex);
4868}
31169714 4869
1637ef41
CW
4870static int
4871i915_gpu_is_active(struct drm_device *dev)
4872{
4873 drm_i915_private_t *dev_priv = dev->dev_private;
4874 int lists_empty;
4875
1637ef41 4876 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4877 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4878 if (HAS_BSD(dev))
4879 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4880
4881 return !lists_empty;
4882}
4883
31169714 4884static int
7f8275d0 4885i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4886{
4887 drm_i915_private_t *dev_priv, *next_dev;
4888 struct drm_i915_gem_object *obj_priv, *next_obj;
4889 int cnt = 0;
4890 int would_deadlock = 1;
4891
4892 /* "fast-path" to count number of available objects */
4893 if (nr_to_scan == 0) {
4894 spin_lock(&shrink_list_lock);
4895 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4896 struct drm_device *dev = dev_priv->dev;
4897
4898 if (mutex_trylock(&dev->struct_mutex)) {
4899 list_for_each_entry(obj_priv,
4900 &dev_priv->mm.inactive_list,
4901 list)
4902 cnt++;
4903 mutex_unlock(&dev->struct_mutex);
4904 }
4905 }
4906 spin_unlock(&shrink_list_lock);
4907
4908 return (cnt / 100) * sysctl_vfs_cache_pressure;
4909 }
4910
4911 spin_lock(&shrink_list_lock);
4912
1637ef41 4913rescan:
31169714
CW
4914 /* first scan for clean buffers */
4915 list_for_each_entry_safe(dev_priv, next_dev,
4916 &shrink_list, mm.shrink_list) {
4917 struct drm_device *dev = dev_priv->dev;
4918
4919 if (! mutex_trylock(&dev->struct_mutex))
4920 continue;
4921
4922 spin_unlock(&shrink_list_lock);
b09a1fec 4923 i915_gem_retire_requests(dev);
31169714
CW
4924
4925 list_for_each_entry_safe(obj_priv, next_obj,
4926 &dev_priv->mm.inactive_list,
4927 list) {
4928 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4929 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4930 if (--nr_to_scan <= 0)
4931 break;
4932 }
4933 }
4934
4935 spin_lock(&shrink_list_lock);
4936 mutex_unlock(&dev->struct_mutex);
4937
963b4836
CW
4938 would_deadlock = 0;
4939
31169714
CW
4940 if (nr_to_scan <= 0)
4941 break;
4942 }
4943
4944 /* second pass, evict/count anything still on the inactive list */
4945 list_for_each_entry_safe(dev_priv, next_dev,
4946 &shrink_list, mm.shrink_list) {
4947 struct drm_device *dev = dev_priv->dev;
4948
4949 if (! mutex_trylock(&dev->struct_mutex))
4950 continue;
4951
4952 spin_unlock(&shrink_list_lock);
4953
4954 list_for_each_entry_safe(obj_priv, next_obj,
4955 &dev_priv->mm.inactive_list,
4956 list) {
4957 if (nr_to_scan > 0) {
a8089e84 4958 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4959 nr_to_scan--;
4960 } else
4961 cnt++;
4962 }
4963
4964 spin_lock(&shrink_list_lock);
4965 mutex_unlock(&dev->struct_mutex);
4966
4967 would_deadlock = 0;
4968 }
4969
1637ef41
CW
4970 if (nr_to_scan) {
4971 int active = 0;
4972
4973 /*
4974 * We are desperate for pages, so as a last resort, wait
4975 * for the GPU to finish and discard whatever we can.
4976 * This has a dramatic impact to reduce the number of
4977 * OOM-killer events whilst running the GPU aggressively.
4978 */
4979 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4980 struct drm_device *dev = dev_priv->dev;
4981
4982 if (!mutex_trylock(&dev->struct_mutex))
4983 continue;
4984
4985 spin_unlock(&shrink_list_lock);
4986
4987 if (i915_gpu_is_active(dev)) {
4988 i915_gpu_idle(dev);
4989 active++;
4990 }
4991
4992 spin_lock(&shrink_list_lock);
4993 mutex_unlock(&dev->struct_mutex);
4994 }
4995
4996 if (active)
4997 goto rescan;
4998 }
4999
31169714
CW
5000 spin_unlock(&shrink_list_lock);
5001
5002 if (would_deadlock)
5003 return -1;
5004 else if (cnt > 0)
5005 return (cnt / 100) * sysctl_vfs_cache_pressure;
5006 else
5007 return 0;
5008}
5009
5010static struct shrinker shrinker = {
5011 .shrink = i915_gem_shrink,
5012 .seeks = DEFAULT_SEEKS,
5013};
5014
5015__init void
5016i915_gem_shrinker_init(void)
5017{
5018 register_shrinker(&shrinker);
5019}
5020
5021__exit void
5022i915_gem_shrinker_exit(void)
5023{
5024 unregister_shrinker(&shrinker);
5025}