]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use non-atomic kmap for slow copy paths
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
e47c68e9
EA
38static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 47static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
48static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
de151cf6 50static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
07f73f69 51static int i915_gem_evict_something(struct drm_device *dev, int min_size);
ab5ee576 52static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
71acb5eb
DA
53static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
673a394b 56
31169714
CW
57static LIST_HEAD(shrink_list);
58static DEFINE_SPINLOCK(shrink_list_lock);
59
79e53945
JB
60int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61 unsigned long end)
673a394b
EA
62{
63 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 64
79e53945
JB
65 if (start >= end ||
66 (start & (PAGE_SIZE - 1)) != 0 ||
67 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
68 return -EINVAL;
69 }
70
79e53945
JB
71 drm_mm_init(&dev_priv->mm.gtt_space, start,
72 end - start);
673a394b 73
79e53945
JB
74 dev->gtt_total = (uint32_t) (end - start);
75
76 return 0;
77}
673a394b 78
79e53945
JB
79int
80i915_gem_init_ioctl(struct drm_device *dev, void *data,
81 struct drm_file *file_priv)
82{
83 struct drm_i915_gem_init *args = data;
84 int ret;
85
86 mutex_lock(&dev->struct_mutex);
87 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
88 mutex_unlock(&dev->struct_mutex);
89
79e53945 90 return ret;
673a394b
EA
91}
92
5a125c3c
EA
93int
94i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95 struct drm_file *file_priv)
96{
5a125c3c 97 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
98
99 if (!(dev->driver->driver_features & DRIVER_GEM))
100 return -ENODEV;
101
102 args->aper_size = dev->gtt_total;
2678d9d6
KP
103 args->aper_available_size = (args->aper_size -
104 atomic_read(&dev->pin_memory));
5a125c3c
EA
105
106 return 0;
107}
108
673a394b
EA
109
110/**
111 * Creates a new mm object and returns a handle to it.
112 */
113int
114i915_gem_create_ioctl(struct drm_device *dev, void *data,
115 struct drm_file *file_priv)
116{
117 struct drm_i915_gem_create *args = data;
118 struct drm_gem_object *obj;
a1a2d1d3
PP
119 int ret;
120 u32 handle;
673a394b
EA
121
122 args->size = roundup(args->size, PAGE_SIZE);
123
124 /* Allocate the new object */
ac52bc56 125 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
126 if (obj == NULL)
127 return -ENOMEM;
128
129 ret = drm_gem_handle_create(file_priv, obj, &handle);
bc9025bd 130 drm_gem_object_handle_unreference_unlocked(obj);
673a394b
EA
131
132 if (ret)
133 return ret;
134
135 args->handle = handle;
136
137 return 0;
138}
139
eb01459f
EA
140static inline int
141fast_shmem_read(struct page **pages,
142 loff_t page_base, int page_offset,
143 char __user *data,
144 int length)
145{
146 char __iomem *vaddr;
2bc43b5c 147 int unwritten;
eb01459f
EA
148
149 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150 if (vaddr == NULL)
151 return -ENOMEM;
2bc43b5c 152 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
153 kunmap_atomic(vaddr, KM_USER0);
154
2bc43b5c
FM
155 if (unwritten)
156 return -EFAULT;
157
158 return 0;
eb01459f
EA
159}
160
280b713b
EA
161static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
162{
163 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
165
166 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167 obj_priv->tiling_mode != I915_TILING_NONE;
168}
169
99a03df5 170static inline void
40123c1f
EA
171slow_shmem_copy(struct page *dst_page,
172 int dst_offset,
173 struct page *src_page,
174 int src_offset,
175 int length)
176{
177 char *dst_vaddr, *src_vaddr;
178
99a03df5
CW
179 dst_vaddr = kmap(dst_page);
180 src_vaddr = kmap(src_page);
40123c1f
EA
181
182 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
183
99a03df5
CW
184 kunmap(src_page);
185 kunmap(dst_page);
40123c1f
EA
186}
187
99a03df5 188static inline void
280b713b
EA
189slow_shmem_bit17_copy(struct page *gpu_page,
190 int gpu_offset,
191 struct page *cpu_page,
192 int cpu_offset,
193 int length,
194 int is_read)
195{
196 char *gpu_vaddr, *cpu_vaddr;
197
198 /* Use the unswizzled path if this page isn't affected. */
199 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
200 if (is_read)
201 return slow_shmem_copy(cpu_page, cpu_offset,
202 gpu_page, gpu_offset, length);
203 else
204 return slow_shmem_copy(gpu_page, gpu_offset,
205 cpu_page, cpu_offset, length);
206 }
207
99a03df5
CW
208 gpu_vaddr = kmap(gpu_page);
209 cpu_vaddr = kmap(cpu_page);
280b713b
EA
210
211 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
212 * XORing with the other bits (A9 for Y, A9 and A10 for X)
213 */
214 while (length > 0) {
215 int cacheline_end = ALIGN(gpu_offset + 1, 64);
216 int this_length = min(cacheline_end - gpu_offset, length);
217 int swizzled_gpu_offset = gpu_offset ^ 64;
218
219 if (is_read) {
220 memcpy(cpu_vaddr + cpu_offset,
221 gpu_vaddr + swizzled_gpu_offset,
222 this_length);
223 } else {
224 memcpy(gpu_vaddr + swizzled_gpu_offset,
225 cpu_vaddr + cpu_offset,
226 this_length);
227 }
228 cpu_offset += this_length;
229 gpu_offset += this_length;
230 length -= this_length;
231 }
232
99a03df5
CW
233 kunmap(cpu_page);
234 kunmap(gpu_page);
280b713b
EA
235}
236
eb01459f
EA
237/**
238 * This is the fast shmem pread path, which attempts to copy_from_user directly
239 * from the backing pages of the object to the user's address space. On a
240 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
241 */
242static int
243i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
244 struct drm_i915_gem_pread *args,
245 struct drm_file *file_priv)
246{
23010e43 247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
248 ssize_t remain;
249 loff_t offset, page_base;
250 char __user *user_data;
251 int page_offset, page_length;
252 int ret;
253
254 user_data = (char __user *) (uintptr_t) args->data_ptr;
255 remain = args->size;
256
257 mutex_lock(&dev->struct_mutex);
258
4bdadb97 259 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
260 if (ret != 0)
261 goto fail_unlock;
262
263 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
264 args->size);
265 if (ret != 0)
266 goto fail_put_pages;
267
23010e43 268 obj_priv = to_intel_bo(obj);
eb01459f
EA
269 offset = args->offset;
270
271 while (remain > 0) {
272 /* Operation in this page
273 *
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
277 */
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
283
284 ret = fast_shmem_read(obj_priv->pages,
285 page_base, page_offset,
286 user_data, page_length);
287 if (ret)
288 goto fail_put_pages;
289
290 remain -= page_length;
291 user_data += page_length;
292 offset += page_length;
293 }
294
295fail_put_pages:
296 i915_gem_object_put_pages(obj);
297fail_unlock:
298 mutex_unlock(&dev->struct_mutex);
299
300 return ret;
301}
302
07f73f69
CW
303static int
304i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
305{
306 int ret;
307
4bdadb97 308 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
309
310 /* If we've insufficient memory to map in the pages, attempt
311 * to make some space by throwing out some old buffers.
312 */
313 if (ret == -ENOMEM) {
314 struct drm_device *dev = obj->dev;
07f73f69
CW
315
316 ret = i915_gem_evict_something(dev, obj->size);
317 if (ret)
318 return ret;
319
4bdadb97 320 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
321 }
322
323 return ret;
324}
325
eb01459f
EA
326/**
327 * This is the fallback shmem pread path, which allocates temporary storage
328 * in kernel space to copy_to_user into outside of the struct_mutex, so we
329 * can copy out of the object's backing pages while holding the struct mutex
330 * and not take page faults.
331 */
332static int
333i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file_priv)
336{
23010e43 337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
338 struct mm_struct *mm = current->mm;
339 struct page **user_pages;
340 ssize_t remain;
341 loff_t offset, pinned_pages, i;
342 loff_t first_data_page, last_data_page, num_pages;
343 int shmem_page_index, shmem_page_offset;
344 int data_page_index, data_page_offset;
345 int page_length;
346 int ret;
347 uint64_t data_ptr = args->data_ptr;
280b713b 348 int do_bit17_swizzling;
eb01459f
EA
349
350 remain = args->size;
351
352 /* Pin the user pages containing the data. We can't fault while
353 * holding the struct mutex, yet we want to hold it while
354 * dereferencing the user data.
355 */
356 first_data_page = data_ptr / PAGE_SIZE;
357 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
358 num_pages = last_data_page - first_data_page + 1;
359
8e7d2b2c 360 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
361 if (user_pages == NULL)
362 return -ENOMEM;
363
364 down_read(&mm->mmap_sem);
365 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 366 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
367 up_read(&mm->mmap_sem);
368 if (pinned_pages < num_pages) {
369 ret = -EFAULT;
370 goto fail_put_user_pages;
371 }
372
280b713b
EA
373 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
374
eb01459f
EA
375 mutex_lock(&dev->struct_mutex);
376
07f73f69
CW
377 ret = i915_gem_object_get_pages_or_evict(obj);
378 if (ret)
eb01459f
EA
379 goto fail_unlock;
380
381 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
382 args->size);
383 if (ret != 0)
384 goto fail_put_pages;
385
23010e43 386 obj_priv = to_intel_bo(obj);
eb01459f
EA
387 offset = args->offset;
388
389 while (remain > 0) {
390 /* Operation in this page
391 *
392 * shmem_page_index = page number within shmem file
393 * shmem_page_offset = offset within page in shmem file
394 * data_page_index = page number in get_user_pages return
395 * data_page_offset = offset with data_page_index page.
396 * page_length = bytes to copy for this page
397 */
398 shmem_page_index = offset / PAGE_SIZE;
399 shmem_page_offset = offset & ~PAGE_MASK;
400 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
401 data_page_offset = data_ptr & ~PAGE_MASK;
402
403 page_length = remain;
404 if ((shmem_page_offset + page_length) > PAGE_SIZE)
405 page_length = PAGE_SIZE - shmem_page_offset;
406 if ((data_page_offset + page_length) > PAGE_SIZE)
407 page_length = PAGE_SIZE - data_page_offset;
408
280b713b 409 if (do_bit17_swizzling) {
99a03df5 410 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 411 shmem_page_offset,
99a03df5
CW
412 user_pages[data_page_index],
413 data_page_offset,
414 page_length,
415 1);
416 } else {
417 slow_shmem_copy(user_pages[data_page_index],
418 data_page_offset,
419 obj_priv->pages[shmem_page_index],
420 shmem_page_offset,
421 page_length);
280b713b 422 }
eb01459f
EA
423
424 remain -= page_length;
425 data_ptr += page_length;
426 offset += page_length;
427 }
428
429fail_put_pages:
430 i915_gem_object_put_pages(obj);
431fail_unlock:
432 mutex_unlock(&dev->struct_mutex);
433fail_put_user_pages:
434 for (i = 0; i < pinned_pages; i++) {
435 SetPageDirty(user_pages[i]);
436 page_cache_release(user_pages[i]);
437 }
8e7d2b2c 438 drm_free_large(user_pages);
eb01459f
EA
439
440 return ret;
441}
442
673a394b
EA
443/**
444 * Reads data from the object referenced by handle.
445 *
446 * On error, the contents of *data are undefined.
447 */
448int
449i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450 struct drm_file *file_priv)
451{
452 struct drm_i915_gem_pread *args = data;
453 struct drm_gem_object *obj;
454 struct drm_i915_gem_object *obj_priv;
673a394b
EA
455 int ret;
456
457 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
458 if (obj == NULL)
459 return -EBADF;
23010e43 460 obj_priv = to_intel_bo(obj);
673a394b
EA
461
462 /* Bounds check source.
463 *
464 * XXX: This could use review for overflow issues...
465 */
466 if (args->offset > obj->size || args->size > obj->size ||
467 args->offset + args->size > obj->size) {
bc9025bd 468 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
469 return -EINVAL;
470 }
471
280b713b 472 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 473 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
474 } else {
475 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
476 if (ret != 0)
477 ret = i915_gem_shmem_pread_slow(dev, obj, args,
478 file_priv);
479 }
673a394b 480
bc9025bd 481 drm_gem_object_unreference_unlocked(obj);
673a394b 482
eb01459f 483 return ret;
673a394b
EA
484}
485
0839ccb8
KP
486/* This is the fast write path which cannot handle
487 * page faults in the source data
9b7530cc 488 */
0839ccb8
KP
489
490static inline int
491fast_user_write(struct io_mapping *mapping,
492 loff_t page_base, int page_offset,
493 char __user *user_data,
494 int length)
9b7530cc 495{
9b7530cc 496 char *vaddr_atomic;
0839ccb8 497 unsigned long unwritten;
9b7530cc 498
0839ccb8
KP
499 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
500 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr_atomic);
503 if (unwritten)
504 return -EFAULT;
505 return 0;
506}
507
508/* Here's the write path which can sleep for
509 * page faults
510 */
511
512static inline int
3de09aa3
EA
513slow_kernel_write(struct io_mapping *mapping,
514 loff_t gtt_base, int gtt_offset,
515 struct page *user_page, int user_offset,
516 int length)
0839ccb8 517{
3de09aa3 518 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
519 unsigned long unwritten;
520
3de09aa3
EA
521 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
522 src_vaddr = kmap_atomic(user_page, KM_USER1);
523 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
524 src_vaddr + user_offset,
525 length);
526 kunmap_atomic(src_vaddr, KM_USER1);
527 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
528 if (unwritten)
529 return -EFAULT;
9b7530cc 530 return 0;
9b7530cc
LT
531}
532
40123c1f
EA
533static inline int
534fast_shmem_write(struct page **pages,
535 loff_t page_base, int page_offset,
536 char __user *data,
537 int length)
538{
539 char __iomem *vaddr;
d0088775 540 unsigned long unwritten;
40123c1f
EA
541
542 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
543 if (vaddr == NULL)
544 return -ENOMEM;
d0088775 545 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
546 kunmap_atomic(vaddr, KM_USER0);
547
d0088775
DA
548 if (unwritten)
549 return -EFAULT;
40123c1f
EA
550 return 0;
551}
552
3de09aa3
EA
553/**
554 * This is the fast pwrite path, where we copy the data directly from the
555 * user into the GTT, uncached.
556 */
673a394b 557static int
3de09aa3
EA
558i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
559 struct drm_i915_gem_pwrite *args,
560 struct drm_file *file_priv)
673a394b 561{
23010e43 562 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 563 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 564 ssize_t remain;
0839ccb8 565 loff_t offset, page_base;
673a394b 566 char __user *user_data;
0839ccb8
KP
567 int page_offset, page_length;
568 int ret;
673a394b
EA
569
570 user_data = (char __user *) (uintptr_t) args->data_ptr;
571 remain = args->size;
572 if (!access_ok(VERIFY_READ, user_data, remain))
573 return -EFAULT;
574
575
576 mutex_lock(&dev->struct_mutex);
577 ret = i915_gem_object_pin(obj, 0);
578 if (ret) {
579 mutex_unlock(&dev->struct_mutex);
580 return ret;
581 }
2ef7eeaa 582 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
583 if (ret)
584 goto fail;
585
23010e43 586 obj_priv = to_intel_bo(obj);
673a394b 587 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
588
589 while (remain > 0) {
590 /* Operation in this page
591 *
0839ccb8
KP
592 * page_base = page offset within aperture
593 * page_offset = offset within page
594 * page_length = bytes to copy for this page
673a394b 595 */
0839ccb8
KP
596 page_base = (offset & ~(PAGE_SIZE-1));
597 page_offset = offset & (PAGE_SIZE-1);
598 page_length = remain;
599 if ((page_offset + remain) > PAGE_SIZE)
600 page_length = PAGE_SIZE - page_offset;
601
602 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
603 page_offset, user_data, page_length);
604
605 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
606 * source page isn't available. Return the error and we'll
607 * retry in the slow path.
0839ccb8 608 */
3de09aa3
EA
609 if (ret)
610 goto fail;
673a394b 611
0839ccb8
KP
612 remain -= page_length;
613 user_data += page_length;
614 offset += page_length;
673a394b 615 }
673a394b
EA
616
617fail:
618 i915_gem_object_unpin(obj);
619 mutex_unlock(&dev->struct_mutex);
620
621 return ret;
622}
623
3de09aa3
EA
624/**
625 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
626 * the memory and maps it using kmap_atomic for copying.
627 *
628 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
629 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
630 */
3043c60c 631static int
3de09aa3
EA
632i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
633 struct drm_i915_gem_pwrite *args,
634 struct drm_file *file_priv)
673a394b 635{
23010e43 636 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
637 drm_i915_private_t *dev_priv = dev->dev_private;
638 ssize_t remain;
639 loff_t gtt_page_base, offset;
640 loff_t first_data_page, last_data_page, num_pages;
641 loff_t pinned_pages, i;
642 struct page **user_pages;
643 struct mm_struct *mm = current->mm;
644 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 645 int ret;
3de09aa3
EA
646 uint64_t data_ptr = args->data_ptr;
647
648 remain = args->size;
649
650 /* Pin the user pages containing the data. We can't fault while
651 * holding the struct mutex, and all of the pwrite implementations
652 * want to hold it while dereferencing the user data.
653 */
654 first_data_page = data_ptr / PAGE_SIZE;
655 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
656 num_pages = last_data_page - first_data_page + 1;
657
8e7d2b2c 658 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
659 if (user_pages == NULL)
660 return -ENOMEM;
661
662 down_read(&mm->mmap_sem);
663 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
664 num_pages, 0, 0, user_pages, NULL);
665 up_read(&mm->mmap_sem);
666 if (pinned_pages < num_pages) {
667 ret = -EFAULT;
668 goto out_unpin_pages;
669 }
673a394b
EA
670
671 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
672 ret = i915_gem_object_pin(obj, 0);
673 if (ret)
674 goto out_unlock;
675
676 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
677 if (ret)
678 goto out_unpin_object;
679
23010e43 680 obj_priv = to_intel_bo(obj);
3de09aa3
EA
681 offset = obj_priv->gtt_offset + args->offset;
682
683 while (remain > 0) {
684 /* Operation in this page
685 *
686 * gtt_page_base = page offset within aperture
687 * gtt_page_offset = offset within page in aperture
688 * data_page_index = page number in get_user_pages return
689 * data_page_offset = offset with data_page_index page.
690 * page_length = bytes to copy for this page
691 */
692 gtt_page_base = offset & PAGE_MASK;
693 gtt_page_offset = offset & ~PAGE_MASK;
694 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
695 data_page_offset = data_ptr & ~PAGE_MASK;
696
697 page_length = remain;
698 if ((gtt_page_offset + page_length) > PAGE_SIZE)
699 page_length = PAGE_SIZE - gtt_page_offset;
700 if ((data_page_offset + page_length) > PAGE_SIZE)
701 page_length = PAGE_SIZE - data_page_offset;
702
703 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
704 gtt_page_base, gtt_page_offset,
705 user_pages[data_page_index],
706 data_page_offset,
707 page_length);
708
709 /* If we get a fault while copying data, then (presumably) our
710 * source page isn't available. Return the error and we'll
711 * retry in the slow path.
712 */
713 if (ret)
714 goto out_unpin_object;
715
716 remain -= page_length;
717 offset += page_length;
718 data_ptr += page_length;
719 }
720
721out_unpin_object:
722 i915_gem_object_unpin(obj);
723out_unlock:
724 mutex_unlock(&dev->struct_mutex);
725out_unpin_pages:
726 for (i = 0; i < pinned_pages; i++)
727 page_cache_release(user_pages[i]);
8e7d2b2c 728 drm_free_large(user_pages);
3de09aa3
EA
729
730 return ret;
731}
732
40123c1f
EA
733/**
734 * This is the fast shmem pwrite path, which attempts to directly
735 * copy_from_user into the kmapped pages backing the object.
736 */
3043c60c 737static int
40123c1f
EA
738i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file_priv)
673a394b 741{
23010e43 742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length;
673a394b 747 int ret;
40123c1f
EA
748
749 user_data = (char __user *) (uintptr_t) args->data_ptr;
750 remain = args->size;
673a394b
EA
751
752 mutex_lock(&dev->struct_mutex);
753
4bdadb97 754 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
755 if (ret != 0)
756 goto fail_unlock;
673a394b 757
e47c68e9 758 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
759 if (ret != 0)
760 goto fail_put_pages;
761
23010e43 762 obj_priv = to_intel_bo(obj);
40123c1f
EA
763 offset = args->offset;
764 obj_priv->dirty = 1;
765
766 while (remain > 0) {
767 /* Operation in this page
768 *
769 * page_base = page offset within aperture
770 * page_offset = offset within page
771 * page_length = bytes to copy for this page
772 */
773 page_base = (offset & ~(PAGE_SIZE-1));
774 page_offset = offset & (PAGE_SIZE-1);
775 page_length = remain;
776 if ((page_offset + remain) > PAGE_SIZE)
777 page_length = PAGE_SIZE - page_offset;
778
779 ret = fast_shmem_write(obj_priv->pages,
780 page_base, page_offset,
781 user_data, page_length);
782 if (ret)
783 goto fail_put_pages;
784
785 remain -= page_length;
786 user_data += page_length;
787 offset += page_length;
788 }
789
790fail_put_pages:
791 i915_gem_object_put_pages(obj);
792fail_unlock:
793 mutex_unlock(&dev->struct_mutex);
794
795 return ret;
796}
797
798/**
799 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
800 * the memory and maps it using kmap_atomic for copying.
801 *
802 * This avoids taking mmap_sem for faulting on the user's address while the
803 * struct_mutex is held.
804 */
805static int
806i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
807 struct drm_i915_gem_pwrite *args,
808 struct drm_file *file_priv)
809{
23010e43 810 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
811 struct mm_struct *mm = current->mm;
812 struct page **user_pages;
813 ssize_t remain;
814 loff_t offset, pinned_pages, i;
815 loff_t first_data_page, last_data_page, num_pages;
816 int shmem_page_index, shmem_page_offset;
817 int data_page_index, data_page_offset;
818 int page_length;
819 int ret;
820 uint64_t data_ptr = args->data_ptr;
280b713b 821 int do_bit17_swizzling;
40123c1f
EA
822
823 remain = args->size;
824
825 /* Pin the user pages containing the data. We can't fault while
826 * holding the struct mutex, and all of the pwrite implementations
827 * want to hold it while dereferencing the user data.
828 */
829 first_data_page = data_ptr / PAGE_SIZE;
830 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
831 num_pages = last_data_page - first_data_page + 1;
832
8e7d2b2c 833 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
834 if (user_pages == NULL)
835 return -ENOMEM;
836
837 down_read(&mm->mmap_sem);
838 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
839 num_pages, 0, 0, user_pages, NULL);
840 up_read(&mm->mmap_sem);
841 if (pinned_pages < num_pages) {
842 ret = -EFAULT;
843 goto fail_put_user_pages;
673a394b
EA
844 }
845
280b713b
EA
846 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
847
40123c1f
EA
848 mutex_lock(&dev->struct_mutex);
849
07f73f69
CW
850 ret = i915_gem_object_get_pages_or_evict(obj);
851 if (ret)
40123c1f
EA
852 goto fail_unlock;
853
854 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
855 if (ret != 0)
856 goto fail_put_pages;
857
23010e43 858 obj_priv = to_intel_bo(obj);
673a394b 859 offset = args->offset;
40123c1f 860 obj_priv->dirty = 1;
673a394b 861
40123c1f
EA
862 while (remain > 0) {
863 /* Operation in this page
864 *
865 * shmem_page_index = page number within shmem file
866 * shmem_page_offset = offset within page in shmem file
867 * data_page_index = page number in get_user_pages return
868 * data_page_offset = offset with data_page_index page.
869 * page_length = bytes to copy for this page
870 */
871 shmem_page_index = offset / PAGE_SIZE;
872 shmem_page_offset = offset & ~PAGE_MASK;
873 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874 data_page_offset = data_ptr & ~PAGE_MASK;
875
876 page_length = remain;
877 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878 page_length = PAGE_SIZE - shmem_page_offset;
879 if ((data_page_offset + page_length) > PAGE_SIZE)
880 page_length = PAGE_SIZE - data_page_offset;
881
280b713b 882 if (do_bit17_swizzling) {
99a03df5 883 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
99a03df5
CW
887 page_length,
888 0);
889 } else {
890 slow_shmem_copy(obj_priv->pages[shmem_page_index],
891 shmem_page_offset,
892 user_pages[data_page_index],
893 data_page_offset,
894 page_length);
280b713b 895 }
40123c1f
EA
896
897 remain -= page_length;
898 data_ptr += page_length;
899 offset += page_length;
673a394b
EA
900 }
901
40123c1f
EA
902fail_put_pages:
903 i915_gem_object_put_pages(obj);
904fail_unlock:
673a394b 905 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
906fail_put_user_pages:
907 for (i = 0; i < pinned_pages; i++)
908 page_cache_release(user_pages[i]);
8e7d2b2c 909 drm_free_large(user_pages);
673a394b 910
40123c1f 911 return ret;
673a394b
EA
912}
913
914/**
915 * Writes data to the object referenced by handle.
916 *
917 * On error, the contents of the buffer that were to be modified are undefined.
918 */
919int
920i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921 struct drm_file *file_priv)
922{
923 struct drm_i915_gem_pwrite *args = data;
924 struct drm_gem_object *obj;
925 struct drm_i915_gem_object *obj_priv;
926 int ret = 0;
927
928 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929 if (obj == NULL)
930 return -EBADF;
23010e43 931 obj_priv = to_intel_bo(obj);
673a394b
EA
932
933 /* Bounds check destination.
934 *
935 * XXX: This could use review for overflow issues...
936 */
937 if (args->offset > obj->size || args->size > obj->size ||
938 args->offset + args->size > obj->size) {
bc9025bd 939 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
940 return -EINVAL;
941 }
942
943 /* We can only do the GTT pwrite on untiled buffers, as otherwise
944 * it would end up going through the fenced access, and we'll get
945 * different detiling behavior between reading and writing.
946 * pread/pwrite currently are reading and writing from the CPU
947 * perspective, requiring manual detiling by the client.
948 */
71acb5eb
DA
949 if (obj_priv->phys_obj)
950 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
952 dev->gtt_total != 0 &&
953 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
954 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
957 file_priv);
958 }
280b713b
EA
959 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
960 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
961 } else {
962 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
963 if (ret == -EFAULT) {
964 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
965 file_priv);
966 }
967 }
673a394b
EA
968
969#if WATCH_PWRITE
970 if (ret)
971 DRM_INFO("pwrite failed %d\n", ret);
972#endif
973
bc9025bd 974 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
975
976 return ret;
977}
978
979/**
2ef7eeaa
EA
980 * Called when user space prepares to use an object with the CPU, either
981 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
982 */
983int
984i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
985 struct drm_file *file_priv)
986{
a09ba7fa 987 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
988 struct drm_i915_gem_set_domain *args = data;
989 struct drm_gem_object *obj;
652c393a 990 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
991 uint32_t read_domains = args->read_domains;
992 uint32_t write_domain = args->write_domain;
673a394b
EA
993 int ret;
994
995 if (!(dev->driver->driver_features & DRIVER_GEM))
996 return -ENODEV;
997
2ef7eeaa 998 /* Only handle setting domains to types used by the CPU. */
21d509e3 999 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1000 return -EINVAL;
1001
21d509e3 1002 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1003 return -EINVAL;
1004
1005 /* Having something in the write domain implies it's in the read
1006 * domain, and only that read domain. Enforce that in the request.
1007 */
1008 if (write_domain != 0 && read_domains != write_domain)
1009 return -EINVAL;
1010
673a394b
EA
1011 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1012 if (obj == NULL)
1013 return -EBADF;
23010e43 1014 obj_priv = to_intel_bo(obj);
673a394b
EA
1015
1016 mutex_lock(&dev->struct_mutex);
652c393a
JB
1017
1018 intel_mark_busy(dev, obj);
1019
673a394b 1020#if WATCH_BUF
cfd43c02 1021 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1022 obj, obj->size, read_domains, write_domain);
673a394b 1023#endif
2ef7eeaa
EA
1024 if (read_domains & I915_GEM_DOMAIN_GTT) {
1025 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1026
a09ba7fa
EA
1027 /* Update the LRU on the fence for the CPU access that's
1028 * about to occur.
1029 */
1030 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1031 struct drm_i915_fence_reg *reg =
1032 &dev_priv->fence_regs[obj_priv->fence_reg];
1033 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1034 &dev_priv->mm.fence_list);
1035 }
1036
02354392
EA
1037 /* Silently promote "you're not bound, there was nothing to do"
1038 * to success, since the client was just asking us to
1039 * make sure everything was done.
1040 */
1041 if (ret == -EINVAL)
1042 ret = 0;
2ef7eeaa 1043 } else {
e47c68e9 1044 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1045 }
1046
673a394b
EA
1047 drm_gem_object_unreference(obj);
1048 mutex_unlock(&dev->struct_mutex);
1049 return ret;
1050}
1051
1052/**
1053 * Called when user space has done writes to this buffer
1054 */
1055int
1056i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1057 struct drm_file *file_priv)
1058{
1059 struct drm_i915_gem_sw_finish *args = data;
1060 struct drm_gem_object *obj;
1061 struct drm_i915_gem_object *obj_priv;
1062 int ret = 0;
1063
1064 if (!(dev->driver->driver_features & DRIVER_GEM))
1065 return -ENODEV;
1066
1067 mutex_lock(&dev->struct_mutex);
1068 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1069 if (obj == NULL) {
1070 mutex_unlock(&dev->struct_mutex);
1071 return -EBADF;
1072 }
1073
1074#if WATCH_BUF
cfd43c02 1075 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1076 __func__, args->handle, obj, obj->size);
1077#endif
23010e43 1078 obj_priv = to_intel_bo(obj);
673a394b
EA
1079
1080 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1081 if (obj_priv->pin_count)
1082 i915_gem_object_flush_cpu_write_domain(obj);
1083
673a394b
EA
1084 drm_gem_object_unreference(obj);
1085 mutex_unlock(&dev->struct_mutex);
1086 return ret;
1087}
1088
1089/**
1090 * Maps the contents of an object, returning the address it is mapped
1091 * into.
1092 *
1093 * While the mapping holds a reference on the contents of the object, it doesn't
1094 * imply a ref on the object itself.
1095 */
1096int
1097i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1098 struct drm_file *file_priv)
1099{
1100 struct drm_i915_gem_mmap *args = data;
1101 struct drm_gem_object *obj;
1102 loff_t offset;
1103 unsigned long addr;
1104
1105 if (!(dev->driver->driver_features & DRIVER_GEM))
1106 return -ENODEV;
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL)
1110 return -EBADF;
1111
1112 offset = args->offset;
1113
1114 down_write(&current->mm->mmap_sem);
1115 addr = do_mmap(obj->filp, 0, args->size,
1116 PROT_READ | PROT_WRITE, MAP_SHARED,
1117 args->offset);
1118 up_write(&current->mm->mmap_sem);
bc9025bd 1119 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1120 if (IS_ERR((void *)addr))
1121 return addr;
1122
1123 args->addr_ptr = (uint64_t) addr;
1124
1125 return 0;
1126}
1127
de151cf6
JB
1128/**
1129 * i915_gem_fault - fault a page into the GTT
1130 * vma: VMA in question
1131 * vmf: fault info
1132 *
1133 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1134 * from userspace. The fault handler takes care of binding the object to
1135 * the GTT (if needed), allocating and programming a fence register (again,
1136 * only if needed based on whether the old reg is still valid or the object
1137 * is tiled) and inserting a new PTE into the faulting process.
1138 *
1139 * Note that the faulting process may involve evicting existing objects
1140 * from the GTT and/or fence registers to make room. So performance may
1141 * suffer if the GTT working set is large or there are few fence registers
1142 * left.
1143 */
1144int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1145{
1146 struct drm_gem_object *obj = vma->vm_private_data;
1147 struct drm_device *dev = obj->dev;
1148 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1149 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1150 pgoff_t page_offset;
1151 unsigned long pfn;
1152 int ret = 0;
0f973f27 1153 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1154
1155 /* We don't use vmf->pgoff since that has the fake offset */
1156 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1157 PAGE_SHIFT;
1158
1159 /* Now bind it into the GTT if needed */
1160 mutex_lock(&dev->struct_mutex);
1161 if (!obj_priv->gtt_space) {
e67b8ce1 1162 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1163 if (ret)
1164 goto unlock;
07f4f3e8 1165
14b60391 1166 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
07f4f3e8
KH
1167
1168 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1169 if (ret)
1170 goto unlock;
de151cf6
JB
1171 }
1172
1173 /* Need a new fence register? */
a09ba7fa 1174 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1175 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1176 if (ret)
1177 goto unlock;
d9ddcb96 1178 }
de151cf6
JB
1179
1180 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1181 page_offset;
1182
1183 /* Finally, remap it using the new GTT offset */
1184 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1185unlock:
de151cf6
JB
1186 mutex_unlock(&dev->struct_mutex);
1187
1188 switch (ret) {
c715089f
CW
1189 case 0:
1190 case -ERESTARTSYS:
1191 return VM_FAULT_NOPAGE;
de151cf6
JB
1192 case -ENOMEM:
1193 case -EAGAIN:
1194 return VM_FAULT_OOM;
de151cf6 1195 default:
c715089f 1196 return VM_FAULT_SIGBUS;
de151cf6
JB
1197 }
1198}
1199
1200/**
1201 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1202 * @obj: obj in question
1203 *
1204 * GEM memory mapping works by handing back to userspace a fake mmap offset
1205 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1206 * up the object based on the offset and sets up the various memory mapping
1207 * structures.
1208 *
1209 * This routine allocates and attaches a fake offset for @obj.
1210 */
1211static int
1212i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1213{
1214 struct drm_device *dev = obj->dev;
1215 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1216 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1217 struct drm_map_list *list;
f77d390c 1218 struct drm_local_map *map;
de151cf6
JB
1219 int ret = 0;
1220
1221 /* Set the object up for mmap'ing */
1222 list = &obj->map_list;
9a298b2a 1223 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1224 if (!list->map)
1225 return -ENOMEM;
1226
1227 map = list->map;
1228 map->type = _DRM_GEM;
1229 map->size = obj->size;
1230 map->handle = obj;
1231
1232 /* Get a DRM GEM mmap offset allocated... */
1233 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1234 obj->size / PAGE_SIZE, 0, 0);
1235 if (!list->file_offset_node) {
1236 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1237 ret = -ENOMEM;
1238 goto out_free_list;
1239 }
1240
1241 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1242 obj->size / PAGE_SIZE, 0);
1243 if (!list->file_offset_node) {
1244 ret = -ENOMEM;
1245 goto out_free_list;
1246 }
1247
1248 list->hash.key = list->file_offset_node->start;
1249 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1250 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1251 ret = -ENOMEM;
de151cf6
JB
1252 goto out_free_mm;
1253 }
1254
1255 /* By now we should be all set, any drm_mmap request on the offset
1256 * below will get to our mmap & fault handler */
1257 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1258
1259 return 0;
1260
1261out_free_mm:
1262 drm_mm_put_block(list->file_offset_node);
1263out_free_list:
9a298b2a 1264 kfree(list->map);
de151cf6
JB
1265
1266 return ret;
1267}
1268
901782b2
CW
1269/**
1270 * i915_gem_release_mmap - remove physical page mappings
1271 * @obj: obj in question
1272 *
af901ca1 1273 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1274 * relinquish ownership of the pages back to the system.
1275 *
1276 * It is vital that we remove the page mapping if we have mapped a tiled
1277 * object through the GTT and then lose the fence register due to
1278 * resource pressure. Similarly if the object has been moved out of the
1279 * aperture, than pages mapped into userspace must be revoked. Removing the
1280 * mapping will then trigger a page fault on the next user access, allowing
1281 * fixup by i915_gem_fault().
1282 */
d05ca301 1283void
901782b2
CW
1284i915_gem_release_mmap(struct drm_gem_object *obj)
1285{
1286 struct drm_device *dev = obj->dev;
23010e43 1287 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1288
1289 if (dev->dev_mapping)
1290 unmap_mapping_range(dev->dev_mapping,
1291 obj_priv->mmap_offset, obj->size, 1);
1292}
1293
ab00b3e5
JB
1294static void
1295i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1296{
1297 struct drm_device *dev = obj->dev;
23010e43 1298 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1299 struct drm_gem_mm *mm = dev->mm_private;
1300 struct drm_map_list *list;
1301
1302 list = &obj->map_list;
1303 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1304
1305 if (list->file_offset_node) {
1306 drm_mm_put_block(list->file_offset_node);
1307 list->file_offset_node = NULL;
1308 }
1309
1310 if (list->map) {
9a298b2a 1311 kfree(list->map);
ab00b3e5
JB
1312 list->map = NULL;
1313 }
1314
1315 obj_priv->mmap_offset = 0;
1316}
1317
de151cf6
JB
1318/**
1319 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320 * @obj: object to check
1321 *
1322 * Return the required GTT alignment for an object, taking into account
1323 * potential fence register mapping if needed.
1324 */
1325static uint32_t
1326i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1327{
1328 struct drm_device *dev = obj->dev;
23010e43 1329 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1330 int start, i;
1331
1332 /*
1333 * Minimum alignment is 4k (GTT page size), but might be greater
1334 * if a fence register is needed for the object.
1335 */
1336 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1337 return 4096;
1338
1339 /*
1340 * Previous chips need to be aligned to the size of the smallest
1341 * fence register that can contain the object.
1342 */
1343 if (IS_I9XX(dev))
1344 start = 1024*1024;
1345 else
1346 start = 512*1024;
1347
1348 for (i = start; i < obj->size; i <<= 1)
1349 ;
1350
1351 return i;
1352}
1353
1354/**
1355 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1356 * @dev: DRM device
1357 * @data: GTT mapping ioctl data
1358 * @file_priv: GEM object info
1359 *
1360 * Simply returns the fake offset to userspace so it can mmap it.
1361 * The mmap call will end up in drm_gem_mmap(), which will set things
1362 * up so we can get faults in the handler above.
1363 *
1364 * The fault handler will take care of binding the object into the GTT
1365 * (since it may have been evicted to make room for something), allocating
1366 * a fence register, and mapping the appropriate aperture address into
1367 * userspace.
1368 */
1369int
1370i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1371 struct drm_file *file_priv)
1372{
1373 struct drm_i915_gem_mmap_gtt *args = data;
1374 struct drm_i915_private *dev_priv = dev->dev_private;
1375 struct drm_gem_object *obj;
1376 struct drm_i915_gem_object *obj_priv;
1377 int ret;
1378
1379 if (!(dev->driver->driver_features & DRIVER_GEM))
1380 return -ENODEV;
1381
1382 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1383 if (obj == NULL)
1384 return -EBADF;
1385
1386 mutex_lock(&dev->struct_mutex);
1387
23010e43 1388 obj_priv = to_intel_bo(obj);
de151cf6 1389
ab18282d
CW
1390 if (obj_priv->madv != I915_MADV_WILLNEED) {
1391 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1392 drm_gem_object_unreference(obj);
1393 mutex_unlock(&dev->struct_mutex);
1394 return -EINVAL;
1395 }
1396
1397
de151cf6
JB
1398 if (!obj_priv->mmap_offset) {
1399 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1400 if (ret) {
1401 drm_gem_object_unreference(obj);
1402 mutex_unlock(&dev->struct_mutex);
de151cf6 1403 return ret;
13af1062 1404 }
de151cf6
JB
1405 }
1406
1407 args->offset = obj_priv->mmap_offset;
1408
de151cf6
JB
1409 /*
1410 * Pull it into the GTT so that we have a page list (makes the
1411 * initial fault faster and any subsequent flushing possible).
1412 */
1413 if (!obj_priv->agp_mem) {
e67b8ce1 1414 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1415 if (ret) {
1416 drm_gem_object_unreference(obj);
1417 mutex_unlock(&dev->struct_mutex);
1418 return ret;
1419 }
14b60391 1420 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1421 }
1422
1423 drm_gem_object_unreference(obj);
1424 mutex_unlock(&dev->struct_mutex);
1425
1426 return 0;
1427}
1428
6911a9b8 1429void
856fa198 1430i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1431{
23010e43 1432 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1433 int page_count = obj->size / PAGE_SIZE;
1434 int i;
1435
856fa198 1436 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1437 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1438
856fa198
EA
1439 if (--obj_priv->pages_refcount != 0)
1440 return;
673a394b 1441
280b713b
EA
1442 if (obj_priv->tiling_mode != I915_TILING_NONE)
1443 i915_gem_object_save_bit_17_swizzle(obj);
1444
3ef94daa 1445 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1446 obj_priv->dirty = 0;
3ef94daa
CW
1447
1448 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1449 if (obj_priv->dirty)
1450 set_page_dirty(obj_priv->pages[i]);
1451
1452 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1453 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1454
1455 page_cache_release(obj_priv->pages[i]);
1456 }
673a394b
EA
1457 obj_priv->dirty = 0;
1458
8e7d2b2c 1459 drm_free_large(obj_priv->pages);
856fa198 1460 obj_priv->pages = NULL;
673a394b
EA
1461}
1462
1463static void
852835f3
ZN
1464i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1465 struct intel_ring_buffer *ring)
673a394b
EA
1466{
1467 struct drm_device *dev = obj->dev;
1468 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1469 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1470 BUG_ON(ring == NULL);
1471 obj_priv->ring = ring;
673a394b
EA
1472
1473 /* Add a reference if we're newly entering the active list. */
1474 if (!obj_priv->active) {
1475 drm_gem_object_reference(obj);
1476 obj_priv->active = 1;
1477 }
1478 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1479 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1480 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1481 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1482 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1483}
1484
ce44b0ea
EA
1485static void
1486i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1487{
1488 struct drm_device *dev = obj->dev;
1489 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1491
1492 BUG_ON(!obj_priv->active);
1493 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1494 obj_priv->last_rendering_seqno = 0;
1495}
673a394b 1496
963b4836
CW
1497/* Immediately discard the backing storage */
1498static void
1499i915_gem_object_truncate(struct drm_gem_object *obj)
1500{
23010e43 1501 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1502 struct inode *inode;
963b4836 1503
bb6baf76
CW
1504 inode = obj->filp->f_path.dentry->d_inode;
1505 if (inode->i_op->truncate)
1506 inode->i_op->truncate (inode);
1507
1508 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1509}
1510
1511static inline int
1512i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1513{
1514 return obj_priv->madv == I915_MADV_DONTNEED;
1515}
1516
673a394b
EA
1517static void
1518i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1519{
1520 struct drm_device *dev = obj->dev;
1521 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1523
1524 i915_verify_inactive(dev, __FILE__, __LINE__);
1525 if (obj_priv->pin_count != 0)
1526 list_del_init(&obj_priv->list);
1527 else
1528 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1529
99fcb766
DV
1530 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1531
ce44b0ea 1532 obj_priv->last_rendering_seqno = 0;
852835f3 1533 obj_priv->ring = NULL;
673a394b
EA
1534 if (obj_priv->active) {
1535 obj_priv->active = 0;
1536 drm_gem_object_unreference(obj);
1537 }
1538 i915_verify_inactive(dev, __FILE__, __LINE__);
1539}
1540
63560396
DV
1541static void
1542i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1543 uint32_t flush_domains, uint32_t seqno,
1544 struct intel_ring_buffer *ring)
63560396
DV
1545{
1546 drm_i915_private_t *dev_priv = dev->dev_private;
1547 struct drm_i915_gem_object *obj_priv, *next;
1548
1549 list_for_each_entry_safe(obj_priv, next,
1550 &dev_priv->mm.gpu_write_list,
1551 gpu_write_list) {
a8089e84 1552 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1553
1554 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1555 obj->write_domain &&
1556 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1557 uint32_t old_write_domain = obj->write_domain;
1558
1559 obj->write_domain = 0;
1560 list_del_init(&obj_priv->gpu_write_list);
852835f3 1561 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1562
1563 /* update the fence lru list */
007cc8ac
DV
1564 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1565 struct drm_i915_fence_reg *reg =
1566 &dev_priv->fence_regs[obj_priv->fence_reg];
1567 list_move_tail(&reg->lru_list,
63560396 1568 &dev_priv->mm.fence_list);
007cc8ac 1569 }
63560396
DV
1570
1571 trace_i915_gem_object_change_domain(obj,
1572 obj->read_domains,
1573 old_write_domain);
1574 }
1575 }
1576}
8187a2b7 1577
5a5a0c64 1578uint32_t
b962442e 1579i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1580 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1581{
1582 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1583 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1584 struct drm_i915_gem_request *request;
1585 uint32_t seqno;
1586 int was_empty;
673a394b 1587
b962442e
EA
1588 if (file_priv != NULL)
1589 i915_file_priv = file_priv->driver_priv;
1590
9a298b2a 1591 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1592 if (request == NULL)
1593 return 0;
1594
852835f3 1595 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1596
1597 request->seqno = seqno;
852835f3 1598 request->ring = ring;
673a394b 1599 request->emitted_jiffies = jiffies;
852835f3
ZN
1600 was_empty = list_empty(&ring->request_list);
1601 list_add_tail(&request->list, &ring->request_list);
1602
b962442e
EA
1603 if (i915_file_priv) {
1604 list_add_tail(&request->client_list,
1605 &i915_file_priv->mm.request_list);
1606 } else {
1607 INIT_LIST_HEAD(&request->client_list);
1608 }
673a394b 1609
ce44b0ea
EA
1610 /* Associate any objects on the flushing list matching the write
1611 * domain we're flushing with our flush.
1612 */
63560396 1613 if (flush_domains != 0)
852835f3 1614 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1615
f65d9421
BG
1616 if (!dev_priv->mm.suspended) {
1617 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1618 if (was_empty)
1619 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1620 }
673a394b
EA
1621 return seqno;
1622}
1623
1624/**
1625 * Command execution barrier
1626 *
1627 * Ensures that all commands in the ring are finished
1628 * before signalling the CPU
1629 */
3043c60c 1630static uint32_t
852835f3 1631i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1632{
673a394b 1633 uint32_t flush_domains = 0;
673a394b
EA
1634
1635 /* The sampler always gets flushed on i965 (sigh) */
1636 if (IS_I965G(dev))
1637 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1638
1639 ring->flush(dev, ring,
1640 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1641 return flush_domains;
1642}
1643
1644/**
1645 * Moves buffers associated only with the given active seqno from the active
1646 * to inactive list, potentially freeing them.
1647 */
1648static void
1649i915_gem_retire_request(struct drm_device *dev,
1650 struct drm_i915_gem_request *request)
1651{
1652 drm_i915_private_t *dev_priv = dev->dev_private;
1653
1c5d22f7
CW
1654 trace_i915_gem_request_retire(dev, request->seqno);
1655
673a394b
EA
1656 /* Move any buffers on the active list that are no longer referenced
1657 * by the ringbuffer to the flushing/inactive lists as appropriate.
1658 */
5e118f41 1659 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1660 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1661 struct drm_gem_object *obj;
1662 struct drm_i915_gem_object *obj_priv;
1663
852835f3 1664 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1665 struct drm_i915_gem_object,
1666 list);
a8089e84 1667 obj = &obj_priv->base;
673a394b
EA
1668
1669 /* If the seqno being retired doesn't match the oldest in the
1670 * list, then the oldest in the list must still be newer than
1671 * this seqno.
1672 */
1673 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1674 goto out;
de151cf6 1675
673a394b
EA
1676#if WATCH_LRU
1677 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1678 __func__, request->seqno, obj);
1679#endif
1680
ce44b0ea
EA
1681 if (obj->write_domain != 0)
1682 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1683 else {
1684 /* Take a reference on the object so it won't be
1685 * freed while the spinlock is held. The list
1686 * protection for this spinlock is safe when breaking
1687 * the lock like this since the next thing we do
1688 * is just get the head of the list again.
1689 */
1690 drm_gem_object_reference(obj);
673a394b 1691 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1692 spin_unlock(&dev_priv->mm.active_list_lock);
1693 drm_gem_object_unreference(obj);
1694 spin_lock(&dev_priv->mm.active_list_lock);
1695 }
673a394b 1696 }
5e118f41
CW
1697out:
1698 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1699}
1700
1701/**
1702 * Returns true if seq1 is later than seq2.
1703 */
22be1724 1704bool
673a394b
EA
1705i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1706{
1707 return (int32_t)(seq1 - seq2) >= 0;
1708}
1709
1710uint32_t
852835f3 1711i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1712 struct intel_ring_buffer *ring)
673a394b 1713{
852835f3 1714 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1715}
1716
1717/**
1718 * This function clears the request list as sequence numbers are passed.
1719 */
1720void
852835f3
ZN
1721i915_gem_retire_requests(struct drm_device *dev,
1722 struct intel_ring_buffer *ring)
673a394b
EA
1723{
1724 drm_i915_private_t *dev_priv = dev->dev_private;
1725 uint32_t seqno;
1726
8187a2b7 1727 if (!ring->status_page.page_addr
852835f3 1728 || list_empty(&ring->request_list))
6c0594a3
KW
1729 return;
1730
852835f3 1731 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1732
852835f3 1733 while (!list_empty(&ring->request_list)) {
673a394b
EA
1734 struct drm_i915_gem_request *request;
1735 uint32_t retiring_seqno;
1736
852835f3 1737 request = list_first_entry(&ring->request_list,
673a394b
EA
1738 struct drm_i915_gem_request,
1739 list);
1740 retiring_seqno = request->seqno;
1741
1742 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1743 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1744 i915_gem_retire_request(dev, request);
1745
1746 list_del(&request->list);
b962442e 1747 list_del(&request->client_list);
9a298b2a 1748 kfree(request);
673a394b
EA
1749 } else
1750 break;
1751 }
9d34e5db
CW
1752
1753 if (unlikely (dev_priv->trace_irq_seqno &&
1754 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1755
1756 ring->user_irq_put(dev, ring);
9d34e5db
CW
1757 dev_priv->trace_irq_seqno = 0;
1758 }
673a394b
EA
1759}
1760
1761void
1762i915_gem_retire_work_handler(struct work_struct *work)
1763{
1764 drm_i915_private_t *dev_priv;
1765 struct drm_device *dev;
1766
1767 dev_priv = container_of(work, drm_i915_private_t,
1768 mm.retire_work.work);
1769 dev = dev_priv->dev;
1770
1771 mutex_lock(&dev->struct_mutex);
852835f3
ZN
1772 i915_gem_retire_requests(dev, &dev_priv->render_ring);
1773
d1b851fc
ZN
1774 if (HAS_BSD(dev))
1775 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
1776
6dbe2772 1777 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1778 (!list_empty(&dev_priv->render_ring.request_list) ||
1779 (HAS_BSD(dev) &&
1780 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1781 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1782 mutex_unlock(&dev->struct_mutex);
1783}
1784
5a5a0c64 1785int
852835f3
ZN
1786i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1787 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1788{
1789 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1790 u32 ier;
673a394b
EA
1791 int ret = 0;
1792
1793 BUG_ON(seqno == 0);
1794
ba1234d1 1795 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1796 return -EIO;
1797
852835f3 1798 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1799 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1800 ier = I915_READ(DEIER) | I915_READ(GTIER);
1801 else
1802 ier = I915_READ(IER);
802c7eb6
JB
1803 if (!ier) {
1804 DRM_ERROR("something (likely vbetool) disabled "
1805 "interrupts, re-enabling\n");
1806 i915_driver_irq_preinstall(dev);
1807 i915_driver_irq_postinstall(dev);
1808 }
1809
1c5d22f7
CW
1810 trace_i915_gem_request_wait_begin(dev, seqno);
1811
852835f3 1812 ring->waiting_gem_seqno = seqno;
8187a2b7 1813 ring->user_irq_get(dev, ring);
48764bf4 1814 if (interruptible)
852835f3
ZN
1815 ret = wait_event_interruptible(ring->irq_queue,
1816 i915_seqno_passed(
1817 ring->get_gem_seqno(dev, ring), seqno)
1818 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1819 else
852835f3
ZN
1820 wait_event(ring->irq_queue,
1821 i915_seqno_passed(
1822 ring->get_gem_seqno(dev, ring), seqno)
1823 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1824
8187a2b7 1825 ring->user_irq_put(dev, ring);
852835f3 1826 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1827
1828 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1829 }
ba1234d1 1830 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1831 ret = -EIO;
1832
1833 if (ret && ret != -ERESTARTSYS)
1834 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1835 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1836
1837 /* Directly dispatch request retiring. While we have the work queue
1838 * to handle this, the waiter on a request often wants an associated
1839 * buffer to have made it to the inactive list, and we would need
1840 * a separate wait queue to handle that.
1841 */
1842 if (ret == 0)
852835f3 1843 i915_gem_retire_requests(dev, ring);
673a394b
EA
1844
1845 return ret;
1846}
1847
48764bf4
DV
1848/**
1849 * Waits for a sequence number to be signaled, and cleans up the
1850 * request and object lists appropriately for that event.
1851 */
1852static int
852835f3
ZN
1853i915_wait_request(struct drm_device *dev, uint32_t seqno,
1854 struct intel_ring_buffer *ring)
48764bf4 1855{
852835f3 1856 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1857}
1858
8187a2b7
ZN
1859static void
1860i915_gem_flush(struct drm_device *dev,
1861 uint32_t invalidate_domains,
1862 uint32_t flush_domains)
1863{
1864 drm_i915_private_t *dev_priv = dev->dev_private;
1865 if (flush_domains & I915_GEM_DOMAIN_CPU)
1866 drm_agp_chipset_flush(dev);
1867 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1868 invalidate_domains,
1869 flush_domains);
d1b851fc
ZN
1870
1871 if (HAS_BSD(dev))
1872 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1873 invalidate_domains,
1874 flush_domains);
8187a2b7
ZN
1875}
1876
852835f3
ZN
1877static void
1878i915_gem_flush_ring(struct drm_device *dev,
1879 uint32_t invalidate_domains,
1880 uint32_t flush_domains,
1881 struct intel_ring_buffer *ring)
1882{
1883 if (flush_domains & I915_GEM_DOMAIN_CPU)
1884 drm_agp_chipset_flush(dev);
1885 ring->flush(dev, ring,
1886 invalidate_domains,
1887 flush_domains);
1888}
1889
673a394b
EA
1890/**
1891 * Ensures that all rendering to the object has completed and the object is
1892 * safe to unbind from the GTT or access from the CPU.
1893 */
1894static int
1895i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1896{
1897 struct drm_device *dev = obj->dev;
23010e43 1898 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1899 int ret;
1900
e47c68e9
EA
1901 /* This function only exists to support waiting for existing rendering,
1902 * not for emitting required flushes.
673a394b 1903 */
e47c68e9 1904 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1905
1906 /* If there is rendering queued on the buffer being evicted, wait for
1907 * it.
1908 */
1909 if (obj_priv->active) {
1910#if WATCH_BUF
1911 DRM_INFO("%s: object %p wait for seqno %08x\n",
1912 __func__, obj, obj_priv->last_rendering_seqno);
1913#endif
852835f3
ZN
1914 ret = i915_wait_request(dev,
1915 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1916 if (ret != 0)
1917 return ret;
1918 }
1919
1920 return 0;
1921}
1922
1923/**
1924 * Unbinds an object from the GTT aperture.
1925 */
0f973f27 1926int
673a394b
EA
1927i915_gem_object_unbind(struct drm_gem_object *obj)
1928{
1929 struct drm_device *dev = obj->dev;
4a87b8ca 1930 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1931 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1932 int ret = 0;
1933
1934#if WATCH_BUF
1935 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1936 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1937#endif
1938 if (obj_priv->gtt_space == NULL)
1939 return 0;
1940
1941 if (obj_priv->pin_count != 0) {
1942 DRM_ERROR("Attempting to unbind pinned buffer\n");
1943 return -EINVAL;
1944 }
1945
5323fd04
EA
1946 /* blow away mappings if mapped through GTT */
1947 i915_gem_release_mmap(obj);
1948
673a394b
EA
1949 /* Move the object to the CPU domain to ensure that
1950 * any possible CPU writes while it's not in the GTT
1951 * are flushed when we go to remap it. This will
1952 * also ensure that all pending GPU writes are finished
1953 * before we unbind.
1954 */
e47c68e9 1955 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1956 if (ret) {
e47c68e9
EA
1957 if (ret != -ERESTARTSYS)
1958 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1959 return ret;
1960 }
1961
5323fd04
EA
1962 BUG_ON(obj_priv->active);
1963
96b47b65
DV
1964 /* release the fence reg _after_ flushing */
1965 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1966 i915_gem_clear_fence_reg(obj);
1967
673a394b
EA
1968 if (obj_priv->agp_mem != NULL) {
1969 drm_unbind_agp(obj_priv->agp_mem);
1970 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1971 obj_priv->agp_mem = NULL;
1972 }
1973
856fa198 1974 i915_gem_object_put_pages(obj);
a32808c0 1975 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1976
1977 if (obj_priv->gtt_space) {
1978 atomic_dec(&dev->gtt_count);
1979 atomic_sub(obj->size, &dev->gtt_memory);
1980
1981 drm_mm_put_block(obj_priv->gtt_space);
1982 obj_priv->gtt_space = NULL;
1983 }
1984
1985 /* Remove ourselves from the LRU list if present. */
4a87b8ca 1986 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1987 if (!list_empty(&obj_priv->list))
1988 list_del_init(&obj_priv->list);
4a87b8ca 1989 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 1990
963b4836
CW
1991 if (i915_gem_object_is_purgeable(obj_priv))
1992 i915_gem_object_truncate(obj);
1993
1c5d22f7
CW
1994 trace_i915_gem_object_unbind(obj);
1995
673a394b
EA
1996 return 0;
1997}
1998
07f73f69
CW
1999static struct drm_gem_object *
2000i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2001{
2002 drm_i915_private_t *dev_priv = dev->dev_private;
2003 struct drm_i915_gem_object *obj_priv;
2004 struct drm_gem_object *best = NULL;
2005 struct drm_gem_object *first = NULL;
2006
2007 /* Try to find the smallest clean object */
2008 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
a8089e84 2009 struct drm_gem_object *obj = &obj_priv->base;
07f73f69 2010 if (obj->size >= min_size) {
963b4836
CW
2011 if ((!obj_priv->dirty ||
2012 i915_gem_object_is_purgeable(obj_priv)) &&
07f73f69
CW
2013 (!best || obj->size < best->size)) {
2014 best = obj;
2015 if (best->size == min_size)
2016 return best;
2017 }
2018 if (!first)
2019 first = obj;
2020 }
2021 }
2022
2023 return best ? best : first;
2024}
2025
4df2faf4
DV
2026static int
2027i915_gpu_idle(struct drm_device *dev)
2028{
2029 drm_i915_private_t *dev_priv = dev->dev_private;
2030 bool lists_empty;
d1b851fc 2031 uint32_t seqno1, seqno2;
852835f3 2032 int ret;
4df2faf4
DV
2033
2034 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2035 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2036 list_empty(&dev_priv->render_ring.active_list) &&
2037 (!HAS_BSD(dev) ||
2038 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2039 spin_unlock(&dev_priv->mm.active_list_lock);
2040
2041 if (lists_empty)
2042 return 0;
2043
2044 /* Flush everything onto the inactive list. */
2045 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2046 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2047 &dev_priv->render_ring);
d1b851fc 2048 if (seqno1 == 0)
4df2faf4 2049 return -ENOMEM;
d1b851fc
ZN
2050 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2051
2052 if (HAS_BSD(dev)) {
2053 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2054 &dev_priv->bsd_ring);
2055 if (seqno2 == 0)
2056 return -ENOMEM;
2057
2058 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2059 if (ret)
2060 return ret;
2061 }
2062
4df2faf4 2063
852835f3 2064 return ret;
4df2faf4
DV
2065}
2066
673a394b 2067static int
07f73f69
CW
2068i915_gem_evict_everything(struct drm_device *dev)
2069{
2070 drm_i915_private_t *dev_priv = dev->dev_private;
07f73f69
CW
2071 int ret;
2072 bool lists_empty;
2073
07f73f69
CW
2074 spin_lock(&dev_priv->mm.active_list_lock);
2075 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2076 list_empty(&dev_priv->mm.flushing_list) &&
d1b851fc
ZN
2077 list_empty(&dev_priv->render_ring.active_list) &&
2078 (!HAS_BSD(dev)
2079 || list_empty(&dev_priv->bsd_ring.active_list)));
07f73f69
CW
2080 spin_unlock(&dev_priv->mm.active_list_lock);
2081
9731129c 2082 if (lists_empty)
07f73f69 2083 return -ENOSPC;
07f73f69
CW
2084
2085 /* Flush everything (on to the inactive lists) and evict */
4df2faf4 2086 ret = i915_gpu_idle(dev);
07f73f69
CW
2087 if (ret)
2088 return ret;
2089
99fcb766
DV
2090 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2091
ab5ee576 2092 ret = i915_gem_evict_from_inactive_list(dev);
07f73f69
CW
2093 if (ret)
2094 return ret;
2095
2096 spin_lock(&dev_priv->mm.active_list_lock);
2097 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2098 list_empty(&dev_priv->mm.flushing_list) &&
d1b851fc
ZN
2099 list_empty(&dev_priv->render_ring.active_list) &&
2100 (!HAS_BSD(dev)
2101 || list_empty(&dev_priv->bsd_ring.active_list)));
07f73f69
CW
2102 spin_unlock(&dev_priv->mm.active_list_lock);
2103 BUG_ON(!lists_empty);
2104
2105 return 0;
2106}
2107
673a394b 2108static int
07f73f69 2109i915_gem_evict_something(struct drm_device *dev, int min_size)
673a394b
EA
2110{
2111 drm_i915_private_t *dev_priv = dev->dev_private;
2112 struct drm_gem_object *obj;
07f73f69 2113 int ret;
673a394b 2114
852835f3 2115 struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
d1b851fc 2116 struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
673a394b 2117 for (;;) {
852835f3 2118 i915_gem_retire_requests(dev, render_ring);
07f73f69 2119
d1b851fc
ZN
2120 if (HAS_BSD(dev))
2121 i915_gem_retire_requests(dev, bsd_ring);
2122
673a394b
EA
2123 /* If there's an inactive buffer available now, grab it
2124 * and be done.
2125 */
07f73f69
CW
2126 obj = i915_gem_find_inactive_object(dev, min_size);
2127 if (obj) {
2128 struct drm_i915_gem_object *obj_priv;
2129
673a394b
EA
2130#if WATCH_LRU
2131 DRM_INFO("%s: evicting %p\n", __func__, obj);
2132#endif
23010e43 2133 obj_priv = to_intel_bo(obj);
07f73f69 2134 BUG_ON(obj_priv->pin_count != 0);
673a394b
EA
2135 BUG_ON(obj_priv->active);
2136
2137 /* Wait on the rendering and unbind the buffer. */
07f73f69 2138 return i915_gem_object_unbind(obj);
673a394b
EA
2139 }
2140
2141 /* If we didn't get anything, but the ring is still processing
07f73f69
CW
2142 * things, wait for the next to finish and hopefully leave us
2143 * a buffer to evict.
673a394b 2144 */
852835f3 2145 if (!list_empty(&render_ring->request_list)) {
673a394b
EA
2146 struct drm_i915_gem_request *request;
2147
852835f3 2148 request = list_first_entry(&render_ring->request_list,
673a394b
EA
2149 struct drm_i915_gem_request,
2150 list);
2151
852835f3
ZN
2152 ret = i915_wait_request(dev,
2153 request->seqno, request->ring);
673a394b 2154 if (ret)
07f73f69 2155 return ret;
673a394b 2156
07f73f69 2157 continue;
673a394b
EA
2158 }
2159
d1b851fc
ZN
2160 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2161 struct drm_i915_gem_request *request;
2162
2163 request = list_first_entry(&bsd_ring->request_list,
2164 struct drm_i915_gem_request,
2165 list);
2166
2167 ret = i915_wait_request(dev,
2168 request->seqno, request->ring);
2169 if (ret)
2170 return ret;
2171
2172 continue;
2173 }
2174
673a394b
EA
2175 /* If we didn't have anything on the request list but there
2176 * are buffers awaiting a flush, emit one and try again.
2177 * When we wait on it, those buffers waiting for that flush
2178 * will get moved to inactive.
2179 */
2180 if (!list_empty(&dev_priv->mm.flushing_list)) {
07f73f69 2181 struct drm_i915_gem_object *obj_priv;
673a394b 2182
9a1e2582
CW
2183 /* Find an object that we can immediately reuse */
2184 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
a8089e84 2185 obj = &obj_priv->base;
9a1e2582
CW
2186 if (obj->size >= min_size)
2187 break;
673a394b 2188
9a1e2582
CW
2189 obj = NULL;
2190 }
673a394b 2191
9a1e2582
CW
2192 if (obj != NULL) {
2193 uint32_t seqno;
673a394b 2194
852835f3
ZN
2195 i915_gem_flush_ring(dev,
2196 obj->write_domain,
9a1e2582 2197 obj->write_domain,
852835f3
ZN
2198 obj_priv->ring);
2199 seqno = i915_add_request(dev, NULL,
2200 obj->write_domain,
2201 obj_priv->ring);
9a1e2582
CW
2202 if (seqno == 0)
2203 return -ENOMEM;
9a1e2582
CW
2204 continue;
2205 }
673a394b
EA
2206 }
2207
07f73f69
CW
2208 /* If we didn't do any of the above, there's no single buffer
2209 * large enough to swap out for the new one, so just evict
2210 * everything and start again. (This should be rare.)
673a394b 2211 */
9731129c 2212 if (!list_empty (&dev_priv->mm.inactive_list))
ab5ee576 2213 return i915_gem_evict_from_inactive_list(dev);
9731129c 2214 else
07f73f69 2215 return i915_gem_evict_everything(dev);
ac94a962 2216 }
ac94a962
KP
2217}
2218
6911a9b8 2219int
4bdadb97
CW
2220i915_gem_object_get_pages(struct drm_gem_object *obj,
2221 gfp_t gfpmask)
673a394b 2222{
23010e43 2223 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2224 int page_count, i;
2225 struct address_space *mapping;
2226 struct inode *inode;
2227 struct page *page;
673a394b 2228
778c3544
DV
2229 BUG_ON(obj_priv->pages_refcount
2230 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2231
856fa198 2232 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2233 return 0;
2234
2235 /* Get the list of pages out of our struct file. They'll be pinned
2236 * at this point until we release them.
2237 */
2238 page_count = obj->size / PAGE_SIZE;
856fa198 2239 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2240 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2241 if (obj_priv->pages == NULL) {
856fa198 2242 obj_priv->pages_refcount--;
673a394b
EA
2243 return -ENOMEM;
2244 }
2245
2246 inode = obj->filp->f_path.dentry->d_inode;
2247 mapping = inode->i_mapping;
2248 for (i = 0; i < page_count; i++) {
4bdadb97
CW
2249 page = read_cache_page_gfp(mapping, i,
2250 mapping_gfp_mask (mapping) |
2251 __GFP_COLD |
2252 gfpmask);
1f2b1013
CW
2253 if (IS_ERR(page))
2254 goto err_pages;
2255
856fa198 2256 obj_priv->pages[i] = page;
673a394b 2257 }
280b713b
EA
2258
2259 if (obj_priv->tiling_mode != I915_TILING_NONE)
2260 i915_gem_object_do_bit_17_swizzle(obj);
2261
673a394b 2262 return 0;
1f2b1013
CW
2263
2264err_pages:
2265 while (i--)
2266 page_cache_release(obj_priv->pages[i]);
2267
2268 drm_free_large(obj_priv->pages);
2269 obj_priv->pages = NULL;
2270 obj_priv->pages_refcount--;
2271 return PTR_ERR(page);
673a394b
EA
2272}
2273
4e901fdc
EA
2274static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2275{
2276 struct drm_gem_object *obj = reg->obj;
2277 struct drm_device *dev = obj->dev;
2278 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2280 int regnum = obj_priv->fence_reg;
2281 uint64_t val;
2282
2283 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2284 0xfffff000) << 32;
2285 val |= obj_priv->gtt_offset & 0xfffff000;
2286 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2287 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2288
2289 if (obj_priv->tiling_mode == I915_TILING_Y)
2290 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2291 val |= I965_FENCE_REG_VALID;
2292
2293 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2294}
2295
de151cf6
JB
2296static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2297{
2298 struct drm_gem_object *obj = reg->obj;
2299 struct drm_device *dev = obj->dev;
2300 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2301 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2302 int regnum = obj_priv->fence_reg;
2303 uint64_t val;
2304
2305 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2306 0xfffff000) << 32;
2307 val |= obj_priv->gtt_offset & 0xfffff000;
2308 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2309 if (obj_priv->tiling_mode == I915_TILING_Y)
2310 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2311 val |= I965_FENCE_REG_VALID;
2312
2313 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2314}
2315
2316static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2317{
2318 struct drm_gem_object *obj = reg->obj;
2319 struct drm_device *dev = obj->dev;
2320 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2322 int regnum = obj_priv->fence_reg;
0f973f27 2323 int tile_width;
dc529a4f 2324 uint32_t fence_reg, val;
de151cf6
JB
2325 uint32_t pitch_val;
2326
2327 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2328 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2329 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2330 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2331 return;
2332 }
2333
0f973f27
JB
2334 if (obj_priv->tiling_mode == I915_TILING_Y &&
2335 HAS_128_BYTE_Y_TILING(dev))
2336 tile_width = 128;
de151cf6 2337 else
0f973f27
JB
2338 tile_width = 512;
2339
2340 /* Note: pitch better be a power of two tile widths */
2341 pitch_val = obj_priv->stride / tile_width;
2342 pitch_val = ffs(pitch_val) - 1;
de151cf6 2343
c36a2a6d
DV
2344 if (obj_priv->tiling_mode == I915_TILING_Y &&
2345 HAS_128_BYTE_Y_TILING(dev))
2346 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2347 else
2348 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2349
de151cf6
JB
2350 val = obj_priv->gtt_offset;
2351 if (obj_priv->tiling_mode == I915_TILING_Y)
2352 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2353 val |= I915_FENCE_SIZE_BITS(obj->size);
2354 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2355 val |= I830_FENCE_REG_VALID;
2356
dc529a4f
EA
2357 if (regnum < 8)
2358 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2359 else
2360 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2361 I915_WRITE(fence_reg, val);
de151cf6
JB
2362}
2363
2364static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2365{
2366 struct drm_gem_object *obj = reg->obj;
2367 struct drm_device *dev = obj->dev;
2368 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2369 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2370 int regnum = obj_priv->fence_reg;
2371 uint32_t val;
2372 uint32_t pitch_val;
8d7773a3 2373 uint32_t fence_size_bits;
de151cf6 2374
8d7773a3 2375 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2376 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2377 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2378 __func__, obj_priv->gtt_offset);
de151cf6
JB
2379 return;
2380 }
2381
e76a16de
EA
2382 pitch_val = obj_priv->stride / 128;
2383 pitch_val = ffs(pitch_val) - 1;
2384 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2385
de151cf6
JB
2386 val = obj_priv->gtt_offset;
2387 if (obj_priv->tiling_mode == I915_TILING_Y)
2388 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2389 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2390 WARN_ON(fence_size_bits & ~0x00000f00);
2391 val |= fence_size_bits;
de151cf6
JB
2392 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2393 val |= I830_FENCE_REG_VALID;
2394
2395 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2396}
2397
ae3db24a
DV
2398static int i915_find_fence_reg(struct drm_device *dev)
2399{
2400 struct drm_i915_fence_reg *reg = NULL;
2401 struct drm_i915_gem_object *obj_priv = NULL;
2402 struct drm_i915_private *dev_priv = dev->dev_private;
2403 struct drm_gem_object *obj = NULL;
2404 int i, avail, ret;
2405
2406 /* First try to find a free reg */
2407 avail = 0;
2408 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2409 reg = &dev_priv->fence_regs[i];
2410 if (!reg->obj)
2411 return i;
2412
23010e43 2413 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2414 if (!obj_priv->pin_count)
2415 avail++;
2416 }
2417
2418 if (avail == 0)
2419 return -ENOSPC;
2420
2421 /* None available, try to steal one or wait for a user to finish */
2422 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2423 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2424 lru_list) {
2425 obj = reg->obj;
2426 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2427
2428 if (obj_priv->pin_count)
2429 continue;
2430
2431 /* found one! */
2432 i = obj_priv->fence_reg;
2433 break;
2434 }
2435
2436 BUG_ON(i == I915_FENCE_REG_NONE);
2437
2438 /* We only have a reference on obj from the active list. put_fence_reg
2439 * might drop that one, causing a use-after-free in it. So hold a
2440 * private reference to obj like the other callers of put_fence_reg
2441 * (set_tiling ioctl) do. */
2442 drm_gem_object_reference(obj);
2443 ret = i915_gem_object_put_fence_reg(obj);
2444 drm_gem_object_unreference(obj);
2445 if (ret != 0)
2446 return ret;
2447
2448 return i;
2449}
2450
de151cf6
JB
2451/**
2452 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2453 * @obj: object to map through a fence reg
2454 *
2455 * When mapping objects through the GTT, userspace wants to be able to write
2456 * to them without having to worry about swizzling if the object is tiled.
2457 *
2458 * This function walks the fence regs looking for a free one for @obj,
2459 * stealing one if it can't find any.
2460 *
2461 * It then sets up the reg based on the object's properties: address, pitch
2462 * and tiling format.
2463 */
8c4b8c3f
CW
2464int
2465i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2466{
2467 struct drm_device *dev = obj->dev;
79e53945 2468 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2469 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2470 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2471 int ret;
de151cf6 2472
a09ba7fa
EA
2473 /* Just update our place in the LRU if our fence is getting used. */
2474 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2475 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2476 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2477 return 0;
2478 }
2479
de151cf6
JB
2480 switch (obj_priv->tiling_mode) {
2481 case I915_TILING_NONE:
2482 WARN(1, "allocating a fence for non-tiled object?\n");
2483 break;
2484 case I915_TILING_X:
0f973f27
JB
2485 if (!obj_priv->stride)
2486 return -EINVAL;
2487 WARN((obj_priv->stride & (512 - 1)),
2488 "object 0x%08x is X tiled but has non-512B pitch\n",
2489 obj_priv->gtt_offset);
de151cf6
JB
2490 break;
2491 case I915_TILING_Y:
0f973f27
JB
2492 if (!obj_priv->stride)
2493 return -EINVAL;
2494 WARN((obj_priv->stride & (128 - 1)),
2495 "object 0x%08x is Y tiled but has non-128B pitch\n",
2496 obj_priv->gtt_offset);
de151cf6
JB
2497 break;
2498 }
2499
ae3db24a
DV
2500 ret = i915_find_fence_reg(dev);
2501 if (ret < 0)
2502 return ret;
de151cf6 2503
ae3db24a
DV
2504 obj_priv->fence_reg = ret;
2505 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2506 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2507
de151cf6
JB
2508 reg->obj = obj;
2509
4e901fdc
EA
2510 if (IS_GEN6(dev))
2511 sandybridge_write_fence_reg(reg);
2512 else if (IS_I965G(dev))
de151cf6
JB
2513 i965_write_fence_reg(reg);
2514 else if (IS_I9XX(dev))
2515 i915_write_fence_reg(reg);
2516 else
2517 i830_write_fence_reg(reg);
d9ddcb96 2518
ae3db24a
DV
2519 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2520 obj_priv->tiling_mode);
1c5d22f7 2521
d9ddcb96 2522 return 0;
de151cf6
JB
2523}
2524
2525/**
2526 * i915_gem_clear_fence_reg - clear out fence register info
2527 * @obj: object to clear
2528 *
2529 * Zeroes out the fence register itself and clears out the associated
2530 * data structures in dev_priv and obj_priv.
2531 */
2532static void
2533i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2534{
2535 struct drm_device *dev = obj->dev;
79e53945 2536 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2537 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2538 struct drm_i915_fence_reg *reg =
2539 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2540
4e901fdc
EA
2541 if (IS_GEN6(dev)) {
2542 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2543 (obj_priv->fence_reg * 8), 0);
2544 } else if (IS_I965G(dev)) {
de151cf6 2545 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2546 } else {
dc529a4f
EA
2547 uint32_t fence_reg;
2548
2549 if (obj_priv->fence_reg < 8)
2550 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2551 else
2552 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2553 8) * 4;
2554
2555 I915_WRITE(fence_reg, 0);
2556 }
de151cf6 2557
007cc8ac 2558 reg->obj = NULL;
de151cf6 2559 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2560 list_del_init(&reg->lru_list);
de151cf6
JB
2561}
2562
52dc7d32
CW
2563/**
2564 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2565 * to the buffer to finish, and then resets the fence register.
2566 * @obj: tiled object holding a fence register.
2567 *
2568 * Zeroes out the fence register itself and clears out the associated
2569 * data structures in dev_priv and obj_priv.
2570 */
2571int
2572i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2573{
2574 struct drm_device *dev = obj->dev;
23010e43 2575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2576
2577 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2578 return 0;
2579
10ae9bd2
DV
2580 /* If we've changed tiling, GTT-mappings of the object
2581 * need to re-fault to ensure that the correct fence register
2582 * setup is in place.
2583 */
2584 i915_gem_release_mmap(obj);
2585
52dc7d32
CW
2586 /* On the i915, GPU access to tiled buffers is via a fence,
2587 * therefore we must wait for any outstanding access to complete
2588 * before clearing the fence.
2589 */
2590 if (!IS_I965G(dev)) {
2591 int ret;
2592
2593 i915_gem_object_flush_gpu_write_domain(obj);
52dc7d32
CW
2594 ret = i915_gem_object_wait_rendering(obj);
2595 if (ret != 0)
2596 return ret;
2597 }
2598
4a726612 2599 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2600 i915_gem_clear_fence_reg (obj);
2601
2602 return 0;
2603}
2604
673a394b
EA
2605/**
2606 * Finds free space in the GTT aperture and binds the object there.
2607 */
2608static int
2609i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2610{
2611 struct drm_device *dev = obj->dev;
2612 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2613 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2614 struct drm_mm_node *free_space;
4bdadb97 2615 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2616 int ret;
673a394b 2617
bb6baf76 2618 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2619 DRM_ERROR("Attempting to bind a purgeable object\n");
2620 return -EINVAL;
2621 }
2622
673a394b 2623 if (alignment == 0)
0f973f27 2624 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2625 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2626 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2627 return -EINVAL;
2628 }
2629
654fc607
CW
2630 /* If the object is bigger than the entire aperture, reject it early
2631 * before evicting everything in a vain attempt to find space.
2632 */
2633 if (obj->size > dev->gtt_total) {
2634 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2635 return -E2BIG;
2636 }
2637
673a394b
EA
2638 search_free:
2639 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2640 obj->size, alignment, 0);
2641 if (free_space != NULL) {
2642 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2643 alignment);
2644 if (obj_priv->gtt_space != NULL) {
2645 obj_priv->gtt_space->private = obj;
2646 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2647 }
2648 }
2649 if (obj_priv->gtt_space == NULL) {
2650 /* If the gtt is empty and we're still having trouble
2651 * fitting our object in, we're out of memory.
2652 */
2653#if WATCH_LRU
2654 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2655#endif
07f73f69 2656 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2657 if (ret)
673a394b 2658 return ret;
9731129c 2659
673a394b
EA
2660 goto search_free;
2661 }
2662
2663#if WATCH_BUF
cfd43c02 2664 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2665 obj->size, obj_priv->gtt_offset);
2666#endif
4bdadb97 2667 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2668 if (ret) {
2669 drm_mm_put_block(obj_priv->gtt_space);
2670 obj_priv->gtt_space = NULL;
07f73f69
CW
2671
2672 if (ret == -ENOMEM) {
2673 /* first try to clear up some space from the GTT */
2674 ret = i915_gem_evict_something(dev, obj->size);
2675 if (ret) {
07f73f69 2676 /* now try to shrink everyone else */
4bdadb97
CW
2677 if (gfpmask) {
2678 gfpmask = 0;
2679 goto search_free;
07f73f69
CW
2680 }
2681
2682 return ret;
2683 }
2684
2685 goto search_free;
2686 }
2687
673a394b
EA
2688 return ret;
2689 }
2690
673a394b
EA
2691 /* Create an AGP memory structure pointing at our pages, and bind it
2692 * into the GTT.
2693 */
2694 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2695 obj_priv->pages,
07f73f69 2696 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2697 obj_priv->gtt_offset,
2698 obj_priv->agp_type);
673a394b 2699 if (obj_priv->agp_mem == NULL) {
856fa198 2700 i915_gem_object_put_pages(obj);
673a394b
EA
2701 drm_mm_put_block(obj_priv->gtt_space);
2702 obj_priv->gtt_space = NULL;
07f73f69
CW
2703
2704 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2705 if (ret)
07f73f69 2706 return ret;
07f73f69
CW
2707
2708 goto search_free;
673a394b
EA
2709 }
2710 atomic_inc(&dev->gtt_count);
2711 atomic_add(obj->size, &dev->gtt_memory);
2712
2713 /* Assert that the object is not currently in any GPU domain. As it
2714 * wasn't in the GTT, there shouldn't be any way it could have been in
2715 * a GPU cache
2716 */
21d509e3
CW
2717 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2718 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2719
1c5d22f7
CW
2720 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2721
673a394b
EA
2722 return 0;
2723}
2724
2725void
2726i915_gem_clflush_object(struct drm_gem_object *obj)
2727{
23010e43 2728 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2729
2730 /* If we don't have a page list set up, then we're not pinned
2731 * to GPU, and we can ignore the cache flush because it'll happen
2732 * again at bind time.
2733 */
856fa198 2734 if (obj_priv->pages == NULL)
673a394b
EA
2735 return;
2736
1c5d22f7 2737 trace_i915_gem_object_clflush(obj);
cfa16a0d 2738
856fa198 2739 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2740}
2741
e47c68e9
EA
2742/** Flushes any GPU write domain for the object if it's dirty. */
2743static void
2744i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2745{
2746 struct drm_device *dev = obj->dev;
1c5d22f7 2747 uint32_t old_write_domain;
852835f3 2748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2749
2750 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2751 return;
2752
2753 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2754 old_write_domain = obj->write_domain;
e47c68e9 2755 i915_gem_flush(dev, 0, obj->write_domain);
852835f3 2756 (void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
99fcb766 2757 BUG_ON(obj->write_domain);
1c5d22f7
CW
2758
2759 trace_i915_gem_object_change_domain(obj,
2760 obj->read_domains,
2761 old_write_domain);
e47c68e9
EA
2762}
2763
2764/** Flushes the GTT write domain for the object if it's dirty. */
2765static void
2766i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2767{
1c5d22f7
CW
2768 uint32_t old_write_domain;
2769
e47c68e9
EA
2770 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2771 return;
2772
2773 /* No actual flushing is required for the GTT write domain. Writes
2774 * to it immediately go to main memory as far as we know, so there's
2775 * no chipset flush. It also doesn't land in render cache.
2776 */
1c5d22f7 2777 old_write_domain = obj->write_domain;
e47c68e9 2778 obj->write_domain = 0;
1c5d22f7
CW
2779
2780 trace_i915_gem_object_change_domain(obj,
2781 obj->read_domains,
2782 old_write_domain);
e47c68e9
EA
2783}
2784
2785/** Flushes the CPU write domain for the object if it's dirty. */
2786static void
2787i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2788{
2789 struct drm_device *dev = obj->dev;
1c5d22f7 2790 uint32_t old_write_domain;
e47c68e9
EA
2791
2792 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2793 return;
2794
2795 i915_gem_clflush_object(obj);
2796 drm_agp_chipset_flush(dev);
1c5d22f7 2797 old_write_domain = obj->write_domain;
e47c68e9 2798 obj->write_domain = 0;
1c5d22f7
CW
2799
2800 trace_i915_gem_object_change_domain(obj,
2801 obj->read_domains,
2802 old_write_domain);
e47c68e9
EA
2803}
2804
6b95a207
KH
2805void
2806i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2807{
2808 switch (obj->write_domain) {
2809 case I915_GEM_DOMAIN_GTT:
2810 i915_gem_object_flush_gtt_write_domain(obj);
2811 break;
2812 case I915_GEM_DOMAIN_CPU:
2813 i915_gem_object_flush_cpu_write_domain(obj);
2814 break;
2815 default:
2816 i915_gem_object_flush_gpu_write_domain(obj);
2817 break;
2818 }
2819}
2820
2ef7eeaa
EA
2821/**
2822 * Moves a single object to the GTT read, and possibly write domain.
2823 *
2824 * This function returns when the move is complete, including waiting on
2825 * flushes to occur.
2826 */
79e53945 2827int
2ef7eeaa
EA
2828i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2829{
23010e43 2830 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2831 uint32_t old_write_domain, old_read_domains;
e47c68e9 2832 int ret;
2ef7eeaa 2833
02354392
EA
2834 /* Not valid to be called on unbound objects. */
2835 if (obj_priv->gtt_space == NULL)
2836 return -EINVAL;
2837
e47c68e9
EA
2838 i915_gem_object_flush_gpu_write_domain(obj);
2839 /* Wait on any GPU rendering and flushing to occur. */
2840 ret = i915_gem_object_wait_rendering(obj);
2841 if (ret != 0)
2842 return ret;
2843
1c5d22f7
CW
2844 old_write_domain = obj->write_domain;
2845 old_read_domains = obj->read_domains;
2846
e47c68e9
EA
2847 /* If we're writing through the GTT domain, then CPU and GPU caches
2848 * will need to be invalidated at next use.
2ef7eeaa 2849 */
e47c68e9
EA
2850 if (write)
2851 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2852
e47c68e9 2853 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2854
e47c68e9
EA
2855 /* It should now be out of any other write domains, and we can update
2856 * the domain values for our changes.
2857 */
2858 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2859 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2860 if (write) {
2861 obj->write_domain = I915_GEM_DOMAIN_GTT;
2862 obj_priv->dirty = 1;
2ef7eeaa
EA
2863 }
2864
1c5d22f7
CW
2865 trace_i915_gem_object_change_domain(obj,
2866 old_read_domains,
2867 old_write_domain);
2868
e47c68e9
EA
2869 return 0;
2870}
2871
b9241ea3
ZW
2872/*
2873 * Prepare buffer for display plane. Use uninterruptible for possible flush
2874 * wait, as in modesetting process we're not supposed to be interrupted.
2875 */
2876int
2877i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2878{
2879 struct drm_device *dev = obj->dev;
23010e43 2880 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2881 uint32_t old_write_domain, old_read_domains;
2882 int ret;
2883
2884 /* Not valid to be called on unbound objects. */
2885 if (obj_priv->gtt_space == NULL)
2886 return -EINVAL;
2887
2888 i915_gem_object_flush_gpu_write_domain(obj);
2889
2890 /* Wait on any GPU rendering and flushing to occur. */
2891 if (obj_priv->active) {
2892#if WATCH_BUF
2893 DRM_INFO("%s: object %p wait for seqno %08x\n",
2894 __func__, obj, obj_priv->last_rendering_seqno);
2895#endif
852835f3
ZN
2896 ret = i915_do_wait_request(dev,
2897 obj_priv->last_rendering_seqno,
2898 0,
2899 obj_priv->ring);
b9241ea3
ZW
2900 if (ret != 0)
2901 return ret;
2902 }
2903
b118c1e3
CW
2904 i915_gem_object_flush_cpu_write_domain(obj);
2905
b9241ea3
ZW
2906 old_write_domain = obj->write_domain;
2907 old_read_domains = obj->read_domains;
2908
b9241ea3
ZW
2909 /* It should now be out of any other write domains, and we can update
2910 * the domain values for our changes.
2911 */
2912 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2913 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2914 obj->write_domain = I915_GEM_DOMAIN_GTT;
2915 obj_priv->dirty = 1;
2916
2917 trace_i915_gem_object_change_domain(obj,
2918 old_read_domains,
2919 old_write_domain);
2920
2921 return 0;
2922}
2923
e47c68e9
EA
2924/**
2925 * Moves a single object to the CPU read, and possibly write domain.
2926 *
2927 * This function returns when the move is complete, including waiting on
2928 * flushes to occur.
2929 */
2930static int
2931i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2932{
1c5d22f7 2933 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2934 int ret;
2935
2936 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2937 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2938 ret = i915_gem_object_wait_rendering(obj);
2939 if (ret != 0)
2940 return ret;
2ef7eeaa 2941
e47c68e9 2942 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2943
e47c68e9
EA
2944 /* If we have a partially-valid cache of the object in the CPU,
2945 * finish invalidating it and free the per-page flags.
2ef7eeaa 2946 */
e47c68e9 2947 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2948
1c5d22f7
CW
2949 old_write_domain = obj->write_domain;
2950 old_read_domains = obj->read_domains;
2951
e47c68e9
EA
2952 /* Flush the CPU cache if it's still invalid. */
2953 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2954 i915_gem_clflush_object(obj);
2ef7eeaa 2955
e47c68e9 2956 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2957 }
2958
2959 /* It should now be out of any other write domains, and we can update
2960 * the domain values for our changes.
2961 */
e47c68e9
EA
2962 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2963
2964 /* If we're writing through the CPU, then the GPU read domains will
2965 * need to be invalidated at next use.
2966 */
2967 if (write) {
2968 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2969 obj->write_domain = I915_GEM_DOMAIN_CPU;
2970 }
2ef7eeaa 2971
1c5d22f7
CW
2972 trace_i915_gem_object_change_domain(obj,
2973 old_read_domains,
2974 old_write_domain);
2975
2ef7eeaa
EA
2976 return 0;
2977}
2978
673a394b
EA
2979/*
2980 * Set the next domain for the specified object. This
2981 * may not actually perform the necessary flushing/invaliding though,
2982 * as that may want to be batched with other set_domain operations
2983 *
2984 * This is (we hope) the only really tricky part of gem. The goal
2985 * is fairly simple -- track which caches hold bits of the object
2986 * and make sure they remain coherent. A few concrete examples may
2987 * help to explain how it works. For shorthand, we use the notation
2988 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2989 * a pair of read and write domain masks.
2990 *
2991 * Case 1: the batch buffer
2992 *
2993 * 1. Allocated
2994 * 2. Written by CPU
2995 * 3. Mapped to GTT
2996 * 4. Read by GPU
2997 * 5. Unmapped from GTT
2998 * 6. Freed
2999 *
3000 * Let's take these a step at a time
3001 *
3002 * 1. Allocated
3003 * Pages allocated from the kernel may still have
3004 * cache contents, so we set them to (CPU, CPU) always.
3005 * 2. Written by CPU (using pwrite)
3006 * The pwrite function calls set_domain (CPU, CPU) and
3007 * this function does nothing (as nothing changes)
3008 * 3. Mapped by GTT
3009 * This function asserts that the object is not
3010 * currently in any GPU-based read or write domains
3011 * 4. Read by GPU
3012 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3013 * As write_domain is zero, this function adds in the
3014 * current read domains (CPU+COMMAND, 0).
3015 * flush_domains is set to CPU.
3016 * invalidate_domains is set to COMMAND
3017 * clflush is run to get data out of the CPU caches
3018 * then i915_dev_set_domain calls i915_gem_flush to
3019 * emit an MI_FLUSH and drm_agp_chipset_flush
3020 * 5. Unmapped from GTT
3021 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3022 * flush_domains and invalidate_domains end up both zero
3023 * so no flushing/invalidating happens
3024 * 6. Freed
3025 * yay, done
3026 *
3027 * Case 2: The shared render buffer
3028 *
3029 * 1. Allocated
3030 * 2. Mapped to GTT
3031 * 3. Read/written by GPU
3032 * 4. set_domain to (CPU,CPU)
3033 * 5. Read/written by CPU
3034 * 6. Read/written by GPU
3035 *
3036 * 1. Allocated
3037 * Same as last example, (CPU, CPU)
3038 * 2. Mapped to GTT
3039 * Nothing changes (assertions find that it is not in the GPU)
3040 * 3. Read/written by GPU
3041 * execbuffer calls set_domain (RENDER, RENDER)
3042 * flush_domains gets CPU
3043 * invalidate_domains gets GPU
3044 * clflush (obj)
3045 * MI_FLUSH and drm_agp_chipset_flush
3046 * 4. set_domain (CPU, CPU)
3047 * flush_domains gets GPU
3048 * invalidate_domains gets CPU
3049 * wait_rendering (obj) to make sure all drawing is complete.
3050 * This will include an MI_FLUSH to get the data from GPU
3051 * to memory
3052 * clflush (obj) to invalidate the CPU cache
3053 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3054 * 5. Read/written by CPU
3055 * cache lines are loaded and dirtied
3056 * 6. Read written by GPU
3057 * Same as last GPU access
3058 *
3059 * Case 3: The constant buffer
3060 *
3061 * 1. Allocated
3062 * 2. Written by CPU
3063 * 3. Read by GPU
3064 * 4. Updated (written) by CPU again
3065 * 5. Read by GPU
3066 *
3067 * 1. Allocated
3068 * (CPU, CPU)
3069 * 2. Written by CPU
3070 * (CPU, CPU)
3071 * 3. Read by GPU
3072 * (CPU+RENDER, 0)
3073 * flush_domains = CPU
3074 * invalidate_domains = RENDER
3075 * clflush (obj)
3076 * MI_FLUSH
3077 * drm_agp_chipset_flush
3078 * 4. Updated (written) by CPU again
3079 * (CPU, CPU)
3080 * flush_domains = 0 (no previous write domain)
3081 * invalidate_domains = 0 (no new read domains)
3082 * 5. Read by GPU
3083 * (CPU+RENDER, 0)
3084 * flush_domains = CPU
3085 * invalidate_domains = RENDER
3086 * clflush (obj)
3087 * MI_FLUSH
3088 * drm_agp_chipset_flush
3089 */
c0d90829 3090static void
8b0e378a 3091i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3092{
3093 struct drm_device *dev = obj->dev;
23010e43 3094 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3095 uint32_t invalidate_domains = 0;
3096 uint32_t flush_domains = 0;
1c5d22f7 3097 uint32_t old_read_domains;
e47c68e9 3098
8b0e378a
EA
3099 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3100 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3101
652c393a
JB
3102 intel_mark_busy(dev, obj);
3103
673a394b
EA
3104#if WATCH_BUF
3105 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3106 __func__, obj,
8b0e378a
EA
3107 obj->read_domains, obj->pending_read_domains,
3108 obj->write_domain, obj->pending_write_domain);
673a394b
EA
3109#endif
3110 /*
3111 * If the object isn't moving to a new write domain,
3112 * let the object stay in multiple read domains
3113 */
8b0e378a
EA
3114 if (obj->pending_write_domain == 0)
3115 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3116 else
3117 obj_priv->dirty = 1;
3118
3119 /*
3120 * Flush the current write domain if
3121 * the new read domains don't match. Invalidate
3122 * any read domains which differ from the old
3123 * write domain
3124 */
8b0e378a
EA
3125 if (obj->write_domain &&
3126 obj->write_domain != obj->pending_read_domains) {
673a394b 3127 flush_domains |= obj->write_domain;
8b0e378a
EA
3128 invalidate_domains |=
3129 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3130 }
3131 /*
3132 * Invalidate any read caches which may have
3133 * stale data. That is, any new read domains.
3134 */
8b0e378a 3135 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3136 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3137#if WATCH_BUF
3138 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3139 __func__, flush_domains, invalidate_domains);
3140#endif
673a394b
EA
3141 i915_gem_clflush_object(obj);
3142 }
3143
1c5d22f7
CW
3144 old_read_domains = obj->read_domains;
3145
efbeed96
EA
3146 /* The actual obj->write_domain will be updated with
3147 * pending_write_domain after we emit the accumulated flush for all
3148 * of our domain changes in execbuffers (which clears objects'
3149 * write_domains). So if we have a current write domain that we
3150 * aren't changing, set pending_write_domain to that.
3151 */
3152 if (flush_domains == 0 && obj->pending_write_domain == 0)
3153 obj->pending_write_domain = obj->write_domain;
8b0e378a 3154 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3155
3156 dev->invalidate_domains |= invalidate_domains;
3157 dev->flush_domains |= flush_domains;
3158#if WATCH_BUF
3159 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3160 __func__,
3161 obj->read_domains, obj->write_domain,
3162 dev->invalidate_domains, dev->flush_domains);
3163#endif
1c5d22f7
CW
3164
3165 trace_i915_gem_object_change_domain(obj,
3166 old_read_domains,
3167 obj->write_domain);
673a394b
EA
3168}
3169
3170/**
e47c68e9 3171 * Moves the object from a partially CPU read to a full one.
673a394b 3172 *
e47c68e9
EA
3173 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3174 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3175 */
e47c68e9
EA
3176static void
3177i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3178{
23010e43 3179 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3180
e47c68e9
EA
3181 if (!obj_priv->page_cpu_valid)
3182 return;
3183
3184 /* If we're partially in the CPU read domain, finish moving it in.
3185 */
3186 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3187 int i;
3188
3189 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3190 if (obj_priv->page_cpu_valid[i])
3191 continue;
856fa198 3192 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3193 }
e47c68e9
EA
3194 }
3195
3196 /* Free the page_cpu_valid mappings which are now stale, whether
3197 * or not we've got I915_GEM_DOMAIN_CPU.
3198 */
9a298b2a 3199 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3200 obj_priv->page_cpu_valid = NULL;
3201}
3202
3203/**
3204 * Set the CPU read domain on a range of the object.
3205 *
3206 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3207 * not entirely valid. The page_cpu_valid member of the object flags which
3208 * pages have been flushed, and will be respected by
3209 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3210 * of the whole object.
3211 *
3212 * This function returns when the move is complete, including waiting on
3213 * flushes to occur.
3214 */
3215static int
3216i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3217 uint64_t offset, uint64_t size)
3218{
23010e43 3219 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3220 uint32_t old_read_domains;
e47c68e9 3221 int i, ret;
673a394b 3222
e47c68e9
EA
3223 if (offset == 0 && size == obj->size)
3224 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3225
e47c68e9
EA
3226 i915_gem_object_flush_gpu_write_domain(obj);
3227 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3228 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3229 if (ret != 0)
6a47baa6 3230 return ret;
e47c68e9
EA
3231 i915_gem_object_flush_gtt_write_domain(obj);
3232
3233 /* If we're already fully in the CPU read domain, we're done. */
3234 if (obj_priv->page_cpu_valid == NULL &&
3235 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3236 return 0;
673a394b 3237
e47c68e9
EA
3238 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3239 * newly adding I915_GEM_DOMAIN_CPU
3240 */
673a394b 3241 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3242 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3243 GFP_KERNEL);
e47c68e9
EA
3244 if (obj_priv->page_cpu_valid == NULL)
3245 return -ENOMEM;
3246 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3247 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3248
3249 /* Flush the cache on any pages that are still invalid from the CPU's
3250 * perspective.
3251 */
e47c68e9
EA
3252 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3253 i++) {
673a394b
EA
3254 if (obj_priv->page_cpu_valid[i])
3255 continue;
3256
856fa198 3257 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3258
3259 obj_priv->page_cpu_valid[i] = 1;
3260 }
3261
e47c68e9
EA
3262 /* It should now be out of any other write domains, and we can update
3263 * the domain values for our changes.
3264 */
3265 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3266
1c5d22f7 3267 old_read_domains = obj->read_domains;
e47c68e9
EA
3268 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3269
1c5d22f7
CW
3270 trace_i915_gem_object_change_domain(obj,
3271 old_read_domains,
3272 obj->write_domain);
3273
673a394b
EA
3274 return 0;
3275}
3276
673a394b
EA
3277/**
3278 * Pin an object to the GTT and evaluate the relocations landing in it.
3279 */
3280static int
3281i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3282 struct drm_file *file_priv,
76446cac 3283 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3284 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3285{
3286 struct drm_device *dev = obj->dev;
0839ccb8 3287 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3288 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3289 int i, ret;
0839ccb8 3290 void __iomem *reloc_page;
76446cac
JB
3291 bool need_fence;
3292
3293 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3294 obj_priv->tiling_mode != I915_TILING_NONE;
3295
3296 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3297 if (need_fence &&
3298 !i915_gem_object_fence_offset_ok(obj,
3299 obj_priv->tiling_mode)) {
3300 ret = i915_gem_object_unbind(obj);
3301 if (ret)
3302 return ret;
3303 }
673a394b
EA
3304
3305 /* Choose the GTT offset for our buffer and put it there. */
3306 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3307 if (ret)
3308 return ret;
3309
76446cac
JB
3310 /*
3311 * Pre-965 chips need a fence register set up in order to
3312 * properly handle blits to/from tiled surfaces.
3313 */
3314 if (need_fence) {
3315 ret = i915_gem_object_get_fence_reg(obj);
3316 if (ret != 0) {
76446cac
JB
3317 i915_gem_object_unpin(obj);
3318 return ret;
3319 }
3320 }
3321
673a394b
EA
3322 entry->offset = obj_priv->gtt_offset;
3323
673a394b
EA
3324 /* Apply the relocations, using the GTT aperture to avoid cache
3325 * flushing requirements.
3326 */
3327 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3328 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3329 struct drm_gem_object *target_obj;
3330 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3331 uint32_t reloc_val, reloc_offset;
3332 uint32_t __iomem *reloc_entry;
673a394b 3333
673a394b 3334 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3335 reloc->target_handle);
673a394b
EA
3336 if (target_obj == NULL) {
3337 i915_gem_object_unpin(obj);
3338 return -EBADF;
3339 }
23010e43 3340 target_obj_priv = to_intel_bo(target_obj);
673a394b 3341
8542a0bb
CW
3342#if WATCH_RELOC
3343 DRM_INFO("%s: obj %p offset %08x target %d "
3344 "read %08x write %08x gtt %08x "
3345 "presumed %08x delta %08x\n",
3346 __func__,
3347 obj,
3348 (int) reloc->offset,
3349 (int) reloc->target_handle,
3350 (int) reloc->read_domains,
3351 (int) reloc->write_domain,
3352 (int) target_obj_priv->gtt_offset,
3353 (int) reloc->presumed_offset,
3354 reloc->delta);
3355#endif
3356
673a394b
EA
3357 /* The target buffer should have appeared before us in the
3358 * exec_object list, so it should have a GTT space bound by now.
3359 */
3360 if (target_obj_priv->gtt_space == NULL) {
3361 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3362 reloc->target_handle);
673a394b
EA
3363 drm_gem_object_unreference(target_obj);
3364 i915_gem_object_unpin(obj);
3365 return -EINVAL;
3366 }
3367
8542a0bb 3368 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3369 if (reloc->write_domain & (reloc->write_domain - 1)) {
3370 DRM_ERROR("reloc with multiple write domains: "
3371 "obj %p target %d offset %d "
3372 "read %08x write %08x",
3373 obj, reloc->target_handle,
3374 (int) reloc->offset,
3375 reloc->read_domains,
3376 reloc->write_domain);
3377 return -EINVAL;
3378 }
40a5f0de
EA
3379 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3380 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3381 DRM_ERROR("reloc with read/write CPU domains: "
3382 "obj %p target %d offset %d "
3383 "read %08x write %08x",
40a5f0de
EA
3384 obj, reloc->target_handle,
3385 (int) reloc->offset,
3386 reloc->read_domains,
3387 reloc->write_domain);
491152b8
CW
3388 drm_gem_object_unreference(target_obj);
3389 i915_gem_object_unpin(obj);
e47c68e9
EA
3390 return -EINVAL;
3391 }
40a5f0de
EA
3392 if (reloc->write_domain && target_obj->pending_write_domain &&
3393 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3394 DRM_ERROR("Write domain conflict: "
3395 "obj %p target %d offset %d "
3396 "new %08x old %08x\n",
40a5f0de
EA
3397 obj, reloc->target_handle,
3398 (int) reloc->offset,
3399 reloc->write_domain,
673a394b
EA
3400 target_obj->pending_write_domain);
3401 drm_gem_object_unreference(target_obj);
3402 i915_gem_object_unpin(obj);
3403 return -EINVAL;
3404 }
3405
40a5f0de
EA
3406 target_obj->pending_read_domains |= reloc->read_domains;
3407 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3408
3409 /* If the relocation already has the right value in it, no
3410 * more work needs to be done.
3411 */
40a5f0de 3412 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3413 drm_gem_object_unreference(target_obj);
3414 continue;
3415 }
3416
8542a0bb
CW
3417 /* Check that the relocation address is valid... */
3418 if (reloc->offset > obj->size - 4) {
3419 DRM_ERROR("Relocation beyond object bounds: "
3420 "obj %p target %d offset %d size %d.\n",
3421 obj, reloc->target_handle,
3422 (int) reloc->offset, (int) obj->size);
3423 drm_gem_object_unreference(target_obj);
3424 i915_gem_object_unpin(obj);
3425 return -EINVAL;
3426 }
3427 if (reloc->offset & 3) {
3428 DRM_ERROR("Relocation not 4-byte aligned: "
3429 "obj %p target %d offset %d.\n",
3430 obj, reloc->target_handle,
3431 (int) reloc->offset);
3432 drm_gem_object_unreference(target_obj);
3433 i915_gem_object_unpin(obj);
3434 return -EINVAL;
3435 }
3436
3437 /* and points to somewhere within the target object. */
3438 if (reloc->delta >= target_obj->size) {
3439 DRM_ERROR("Relocation beyond target object bounds: "
3440 "obj %p target %d delta %d size %d.\n",
3441 obj, reloc->target_handle,
3442 (int) reloc->delta, (int) target_obj->size);
3443 drm_gem_object_unreference(target_obj);
3444 i915_gem_object_unpin(obj);
3445 return -EINVAL;
3446 }
3447
2ef7eeaa
EA
3448 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3449 if (ret != 0) {
3450 drm_gem_object_unreference(target_obj);
3451 i915_gem_object_unpin(obj);
3452 return -EINVAL;
673a394b
EA
3453 }
3454
3455 /* Map the page containing the relocation we're going to
3456 * perform.
3457 */
40a5f0de 3458 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3459 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3460 (reloc_offset &
3461 ~(PAGE_SIZE - 1)));
3043c60c 3462 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3463 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3464 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3465
3466#if WATCH_BUF
3467 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3468 obj, (unsigned int) reloc->offset,
673a394b
EA
3469 readl(reloc_entry), reloc_val);
3470#endif
3471 writel(reloc_val, reloc_entry);
0839ccb8 3472 io_mapping_unmap_atomic(reloc_page);
673a394b 3473
40a5f0de
EA
3474 /* The updated presumed offset for this entry will be
3475 * copied back out to the user.
673a394b 3476 */
40a5f0de 3477 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3478
3479 drm_gem_object_unreference(target_obj);
3480 }
3481
673a394b
EA
3482#if WATCH_BUF
3483 if (0)
3484 i915_gem_dump_object(obj, 128, __func__, ~0);
3485#endif
3486 return 0;
3487}
3488
673a394b
EA
3489/* Throttle our rendering by waiting until the ring has completed our requests
3490 * emitted over 20 msec ago.
3491 *
b962442e
EA
3492 * Note that if we were to use the current jiffies each time around the loop,
3493 * we wouldn't escape the function with any frames outstanding if the time to
3494 * render a frame was over 20ms.
3495 *
673a394b
EA
3496 * This should get us reasonable parallelism between CPU and GPU but also
3497 * relatively low latency when blocking on a particular request to finish.
3498 */
3499static int
3500i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3501{
3502 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3503 int ret = 0;
b962442e 3504 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3505
3506 mutex_lock(&dev->struct_mutex);
b962442e
EA
3507 while (!list_empty(&i915_file_priv->mm.request_list)) {
3508 struct drm_i915_gem_request *request;
3509
3510 request = list_first_entry(&i915_file_priv->mm.request_list,
3511 struct drm_i915_gem_request,
3512 client_list);
3513
3514 if (time_after_eq(request->emitted_jiffies, recent_enough))
3515 break;
3516
852835f3 3517 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3518 if (ret != 0)
3519 break;
3520 }
673a394b 3521 mutex_unlock(&dev->struct_mutex);
b962442e 3522
673a394b
EA
3523 return ret;
3524}
3525
40a5f0de 3526static int
76446cac 3527i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3528 uint32_t buffer_count,
3529 struct drm_i915_gem_relocation_entry **relocs)
3530{
3531 uint32_t reloc_count = 0, reloc_index = 0, i;
3532 int ret;
3533
3534 *relocs = NULL;
3535 for (i = 0; i < buffer_count; i++) {
3536 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3537 return -EINVAL;
3538 reloc_count += exec_list[i].relocation_count;
3539 }
3540
8e7d2b2c 3541 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3542 if (*relocs == NULL) {
3543 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3544 return -ENOMEM;
76446cac 3545 }
40a5f0de
EA
3546
3547 for (i = 0; i < buffer_count; i++) {
3548 struct drm_i915_gem_relocation_entry __user *user_relocs;
3549
3550 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3551
3552 ret = copy_from_user(&(*relocs)[reloc_index],
3553 user_relocs,
3554 exec_list[i].relocation_count *
3555 sizeof(**relocs));
3556 if (ret != 0) {
8e7d2b2c 3557 drm_free_large(*relocs);
40a5f0de 3558 *relocs = NULL;
2bc43b5c 3559 return -EFAULT;
40a5f0de
EA
3560 }
3561
3562 reloc_index += exec_list[i].relocation_count;
3563 }
3564
2bc43b5c 3565 return 0;
40a5f0de
EA
3566}
3567
3568static int
76446cac 3569i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3570 uint32_t buffer_count,
3571 struct drm_i915_gem_relocation_entry *relocs)
3572{
3573 uint32_t reloc_count = 0, i;
2bc43b5c 3574 int ret = 0;
40a5f0de 3575
93533c29
CW
3576 if (relocs == NULL)
3577 return 0;
3578
40a5f0de
EA
3579 for (i = 0; i < buffer_count; i++) {
3580 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3581 int unwritten;
40a5f0de
EA
3582
3583 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3584
2bc43b5c
FM
3585 unwritten = copy_to_user(user_relocs,
3586 &relocs[reloc_count],
3587 exec_list[i].relocation_count *
3588 sizeof(*relocs));
3589
3590 if (unwritten) {
3591 ret = -EFAULT;
3592 goto err;
40a5f0de
EA
3593 }
3594
3595 reloc_count += exec_list[i].relocation_count;
3596 }
3597
2bc43b5c 3598err:
8e7d2b2c 3599 drm_free_large(relocs);
40a5f0de
EA
3600
3601 return ret;
3602}
3603
83d60795 3604static int
76446cac 3605i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3606 uint64_t exec_offset)
3607{
3608 uint32_t exec_start, exec_len;
3609
3610 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3611 exec_len = (uint32_t) exec->batch_len;
3612
3613 if ((exec_start | exec_len) & 0x7)
3614 return -EINVAL;
3615
3616 if (!exec_start)
3617 return -EINVAL;
3618
3619 return 0;
3620}
3621
6b95a207
KH
3622static int
3623i915_gem_wait_for_pending_flip(struct drm_device *dev,
3624 struct drm_gem_object **object_list,
3625 int count)
3626{
3627 drm_i915_private_t *dev_priv = dev->dev_private;
3628 struct drm_i915_gem_object *obj_priv;
3629 DEFINE_WAIT(wait);
3630 int i, ret = 0;
3631
3632 for (;;) {
3633 prepare_to_wait(&dev_priv->pending_flip_queue,
3634 &wait, TASK_INTERRUPTIBLE);
3635 for (i = 0; i < count; i++) {
23010e43 3636 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3637 if (atomic_read(&obj_priv->pending_flip) > 0)
3638 break;
3639 }
3640 if (i == count)
3641 break;
3642
3643 if (!signal_pending(current)) {
3644 mutex_unlock(&dev->struct_mutex);
3645 schedule();
3646 mutex_lock(&dev->struct_mutex);
3647 continue;
3648 }
3649 ret = -ERESTARTSYS;
3650 break;
3651 }
3652 finish_wait(&dev_priv->pending_flip_queue, &wait);
3653
3654 return ret;
3655}
3656
673a394b 3657int
76446cac
JB
3658i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3659 struct drm_file *file_priv,
3660 struct drm_i915_gem_execbuffer2 *args,
3661 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3662{
3663 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3664 struct drm_gem_object **object_list = NULL;
3665 struct drm_gem_object *batch_obj;
b70d11da 3666 struct drm_i915_gem_object *obj_priv;
201361a5 3667 struct drm_clip_rect *cliprects = NULL;
93533c29 3668 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3669 int ret = 0, ret2, i, pinned = 0;
673a394b 3670 uint64_t exec_offset;
40a5f0de 3671 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3672 int pin_tries, flips;
673a394b 3673
852835f3
ZN
3674 struct intel_ring_buffer *ring = NULL;
3675
673a394b
EA
3676#if WATCH_EXEC
3677 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3678 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3679#endif
d1b851fc
ZN
3680 if (args->flags & I915_EXEC_BSD) {
3681 if (!HAS_BSD(dev)) {
3682 DRM_ERROR("execbuf with wrong flag\n");
3683 return -EINVAL;
3684 }
3685 ring = &dev_priv->bsd_ring;
3686 } else {
3687 ring = &dev_priv->render_ring;
3688 }
3689
673a394b 3690
4f481ed2
EA
3691 if (args->buffer_count < 1) {
3692 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3693 return -EINVAL;
3694 }
c8e0f93a 3695 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3696 if (object_list == NULL) {
3697 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3698 args->buffer_count);
3699 ret = -ENOMEM;
3700 goto pre_mutex_err;
3701 }
673a394b 3702
201361a5 3703 if (args->num_cliprects != 0) {
9a298b2a
EA
3704 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3705 GFP_KERNEL);
a40e8d31
OA
3706 if (cliprects == NULL) {
3707 ret = -ENOMEM;
201361a5 3708 goto pre_mutex_err;
a40e8d31 3709 }
201361a5
EA
3710
3711 ret = copy_from_user(cliprects,
3712 (struct drm_clip_rect __user *)
3713 (uintptr_t) args->cliprects_ptr,
3714 sizeof(*cliprects) * args->num_cliprects);
3715 if (ret != 0) {
3716 DRM_ERROR("copy %d cliprects failed: %d\n",
3717 args->num_cliprects, ret);
3718 goto pre_mutex_err;
3719 }
3720 }
3721
40a5f0de
EA
3722 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3723 &relocs);
3724 if (ret != 0)
3725 goto pre_mutex_err;
3726
673a394b
EA
3727 mutex_lock(&dev->struct_mutex);
3728
3729 i915_verify_inactive(dev, __FILE__, __LINE__);
3730
ba1234d1 3731 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3732 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3733 ret = -EIO;
3734 goto pre_mutex_err;
673a394b
EA
3735 }
3736
3737 if (dev_priv->mm.suspended) {
673a394b 3738 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3739 ret = -EBUSY;
3740 goto pre_mutex_err;
673a394b
EA
3741 }
3742
ac94a962 3743 /* Look up object handles */
6b95a207 3744 flips = 0;
673a394b
EA
3745 for (i = 0; i < args->buffer_count; i++) {
3746 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3747 exec_list[i].handle);
3748 if (object_list[i] == NULL) {
3749 DRM_ERROR("Invalid object handle %d at index %d\n",
3750 exec_list[i].handle, i);
0ce907f8
CW
3751 /* prevent error path from reading uninitialized data */
3752 args->buffer_count = i + 1;
673a394b
EA
3753 ret = -EBADF;
3754 goto err;
3755 }
b70d11da 3756
23010e43 3757 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3758 if (obj_priv->in_execbuffer) {
3759 DRM_ERROR("Object %p appears more than once in object list\n",
3760 object_list[i]);
0ce907f8
CW
3761 /* prevent error path from reading uninitialized data */
3762 args->buffer_count = i + 1;
b70d11da
KH
3763 ret = -EBADF;
3764 goto err;
3765 }
3766 obj_priv->in_execbuffer = true;
6b95a207
KH
3767 flips += atomic_read(&obj_priv->pending_flip);
3768 }
3769
3770 if (flips > 0) {
3771 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3772 args->buffer_count);
3773 if (ret)
3774 goto err;
ac94a962 3775 }
673a394b 3776
ac94a962
KP
3777 /* Pin and relocate */
3778 for (pin_tries = 0; ; pin_tries++) {
3779 ret = 0;
40a5f0de
EA
3780 reloc_index = 0;
3781
ac94a962
KP
3782 for (i = 0; i < args->buffer_count; i++) {
3783 object_list[i]->pending_read_domains = 0;
3784 object_list[i]->pending_write_domain = 0;
3785 ret = i915_gem_object_pin_and_relocate(object_list[i],
3786 file_priv,
40a5f0de
EA
3787 &exec_list[i],
3788 &relocs[reloc_index]);
ac94a962
KP
3789 if (ret)
3790 break;
3791 pinned = i + 1;
40a5f0de 3792 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3793 }
3794 /* success */
3795 if (ret == 0)
3796 break;
3797
3798 /* error other than GTT full, or we've already tried again */
2939e1f5 3799 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3800 if (ret != -ERESTARTSYS) {
3801 unsigned long long total_size = 0;
3d1cc470
CW
3802 int num_fences = 0;
3803 for (i = 0; i < args->buffer_count; i++) {
3804 obj_priv = object_list[i]->driver_private;
3805
07f73f69 3806 total_size += object_list[i]->size;
3d1cc470
CW
3807 num_fences +=
3808 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3809 obj_priv->tiling_mode != I915_TILING_NONE;
3810 }
3811 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3812 pinned+1, args->buffer_count,
3d1cc470
CW
3813 total_size, num_fences,
3814 ret);
07f73f69
CW
3815 DRM_ERROR("%d objects [%d pinned], "
3816 "%d object bytes [%d pinned], "
3817 "%d/%d gtt bytes\n",
3818 atomic_read(&dev->object_count),
3819 atomic_read(&dev->pin_count),
3820 atomic_read(&dev->object_memory),
3821 atomic_read(&dev->pin_memory),
3822 atomic_read(&dev->gtt_memory),
3823 dev->gtt_total);
3824 }
673a394b
EA
3825 goto err;
3826 }
ac94a962
KP
3827
3828 /* unpin all of our buffers */
3829 for (i = 0; i < pinned; i++)
3830 i915_gem_object_unpin(object_list[i]);
b1177636 3831 pinned = 0;
ac94a962
KP
3832
3833 /* evict everyone we can from the aperture */
3834 ret = i915_gem_evict_everything(dev);
07f73f69 3835 if (ret && ret != -ENOSPC)
ac94a962 3836 goto err;
673a394b
EA
3837 }
3838
3839 /* Set the pending read domains for the batch buffer to COMMAND */
3840 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3841 if (batch_obj->pending_write_domain) {
3842 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3843 ret = -EINVAL;
3844 goto err;
3845 }
3846 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3847
83d60795
CW
3848 /* Sanity check the batch buffer, prior to moving objects */
3849 exec_offset = exec_list[args->buffer_count - 1].offset;
3850 ret = i915_gem_check_execbuffer (args, exec_offset);
3851 if (ret != 0) {
3852 DRM_ERROR("execbuf with invalid offset/length\n");
3853 goto err;
3854 }
3855
673a394b
EA
3856 i915_verify_inactive(dev, __FILE__, __LINE__);
3857
646f0f6e
KP
3858 /* Zero the global flush/invalidate flags. These
3859 * will be modified as new domains are computed
3860 * for each object
3861 */
3862 dev->invalidate_domains = 0;
3863 dev->flush_domains = 0;
3864
673a394b
EA
3865 for (i = 0; i < args->buffer_count; i++) {
3866 struct drm_gem_object *obj = object_list[i];
673a394b 3867
646f0f6e 3868 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3869 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3870 }
3871
3872 i915_verify_inactive(dev, __FILE__, __LINE__);
3873
646f0f6e
KP
3874 if (dev->invalidate_domains | dev->flush_domains) {
3875#if WATCH_EXEC
3876 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3877 __func__,
3878 dev->invalidate_domains,
3879 dev->flush_domains);
3880#endif
3881 i915_gem_flush(dev,
3882 dev->invalidate_domains,
3883 dev->flush_domains);
852835f3 3884 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
b962442e 3885 (void)i915_add_request(dev, file_priv,
852835f3
ZN
3886 dev->flush_domains,
3887 &dev_priv->render_ring);
3888
d1b851fc
ZN
3889 if (HAS_BSD(dev))
3890 (void)i915_add_request(dev, file_priv,
3891 dev->flush_domains,
3892 &dev_priv->bsd_ring);
852835f3 3893 }
646f0f6e 3894 }
673a394b 3895
efbeed96
EA
3896 for (i = 0; i < args->buffer_count; i++) {
3897 struct drm_gem_object *obj = object_list[i];
23010e43 3898 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3899 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3900
3901 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3902 if (obj->write_domain)
3903 list_move_tail(&obj_priv->gpu_write_list,
3904 &dev_priv->mm.gpu_write_list);
3905 else
3906 list_del_init(&obj_priv->gpu_write_list);
3907
1c5d22f7
CW
3908 trace_i915_gem_object_change_domain(obj,
3909 obj->read_domains,
3910 old_write_domain);
efbeed96
EA
3911 }
3912
673a394b
EA
3913 i915_verify_inactive(dev, __FILE__, __LINE__);
3914
3915#if WATCH_COHERENCY
3916 for (i = 0; i < args->buffer_count; i++) {
3917 i915_gem_object_check_coherency(object_list[i],
3918 exec_list[i].handle);
3919 }
3920#endif
3921
673a394b 3922#if WATCH_EXEC
6911a9b8 3923 i915_gem_dump_object(batch_obj,
673a394b
EA
3924 args->batch_len,
3925 __func__,
3926 ~0);
3927#endif
3928
673a394b 3929 /* Exec the batchbuffer */
852835f3
ZN
3930 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3931 cliprects, exec_offset);
673a394b
EA
3932 if (ret) {
3933 DRM_ERROR("dispatch failed %d\n", ret);
3934 goto err;
3935 }
3936
3937 /*
3938 * Ensure that the commands in the batch buffer are
3939 * finished before the interrupt fires
3940 */
852835f3 3941 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3942
3943 i915_verify_inactive(dev, __FILE__, __LINE__);
3944
3945 /*
3946 * Get a seqno representing the execution of the current buffer,
3947 * which we can wait on. We would like to mitigate these interrupts,
3948 * likely by only creating seqnos occasionally (so that we have
3949 * *some* interrupts representing completion of buffers that we can
3950 * wait on when trying to clear up gtt space).
3951 */
852835f3 3952 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3953 BUG_ON(seqno == 0);
673a394b
EA
3954 for (i = 0; i < args->buffer_count; i++) {
3955 struct drm_gem_object *obj = object_list[i];
852835f3 3956 obj_priv = to_intel_bo(obj);
673a394b 3957
852835f3 3958 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3959#if WATCH_LRU
3960 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3961#endif
3962 }
3963#if WATCH_LRU
3964 i915_dump_lru(dev, __func__);
3965#endif
3966
3967 i915_verify_inactive(dev, __FILE__, __LINE__);
3968
673a394b 3969err:
aad87dff
JL
3970 for (i = 0; i < pinned; i++)
3971 i915_gem_object_unpin(object_list[i]);
3972
b70d11da
KH
3973 for (i = 0; i < args->buffer_count; i++) {
3974 if (object_list[i]) {
23010e43 3975 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3976 obj_priv->in_execbuffer = false;
3977 }
aad87dff 3978 drm_gem_object_unreference(object_list[i]);
b70d11da 3979 }
673a394b 3980
673a394b
EA
3981 mutex_unlock(&dev->struct_mutex);
3982
93533c29 3983pre_mutex_err:
40a5f0de
EA
3984 /* Copy the updated relocations out regardless of current error
3985 * state. Failure to update the relocs would mean that the next
3986 * time userland calls execbuf, it would do so with presumed offset
3987 * state that didn't match the actual object state.
3988 */
3989 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3990 relocs);
3991 if (ret2 != 0) {
3992 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3993
3994 if (ret == 0)
3995 ret = ret2;
3996 }
3997
8e7d2b2c 3998 drm_free_large(object_list);
9a298b2a 3999 kfree(cliprects);
673a394b
EA
4000
4001 return ret;
4002}
4003
76446cac
JB
4004/*
4005 * Legacy execbuffer just creates an exec2 list from the original exec object
4006 * list array and passes it to the real function.
4007 */
4008int
4009i915_gem_execbuffer(struct drm_device *dev, void *data,
4010 struct drm_file *file_priv)
4011{
4012 struct drm_i915_gem_execbuffer *args = data;
4013 struct drm_i915_gem_execbuffer2 exec2;
4014 struct drm_i915_gem_exec_object *exec_list = NULL;
4015 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4016 int ret, i;
4017
4018#if WATCH_EXEC
4019 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4020 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4021#endif
4022
4023 if (args->buffer_count < 1) {
4024 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4025 return -EINVAL;
4026 }
4027
4028 /* Copy in the exec list from userland */
4029 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4030 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4031 if (exec_list == NULL || exec2_list == NULL) {
4032 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4033 args->buffer_count);
4034 drm_free_large(exec_list);
4035 drm_free_large(exec2_list);
4036 return -ENOMEM;
4037 }
4038 ret = copy_from_user(exec_list,
4039 (struct drm_i915_relocation_entry __user *)
4040 (uintptr_t) args->buffers_ptr,
4041 sizeof(*exec_list) * args->buffer_count);
4042 if (ret != 0) {
4043 DRM_ERROR("copy %d exec entries failed %d\n",
4044 args->buffer_count, ret);
4045 drm_free_large(exec_list);
4046 drm_free_large(exec2_list);
4047 return -EFAULT;
4048 }
4049
4050 for (i = 0; i < args->buffer_count; i++) {
4051 exec2_list[i].handle = exec_list[i].handle;
4052 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4053 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4054 exec2_list[i].alignment = exec_list[i].alignment;
4055 exec2_list[i].offset = exec_list[i].offset;
4056 if (!IS_I965G(dev))
4057 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4058 else
4059 exec2_list[i].flags = 0;
4060 }
4061
4062 exec2.buffers_ptr = args->buffers_ptr;
4063 exec2.buffer_count = args->buffer_count;
4064 exec2.batch_start_offset = args->batch_start_offset;
4065 exec2.batch_len = args->batch_len;
4066 exec2.DR1 = args->DR1;
4067 exec2.DR4 = args->DR4;
4068 exec2.num_cliprects = args->num_cliprects;
4069 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4070 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4071
4072 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4073 if (!ret) {
4074 /* Copy the new buffer offsets back to the user's exec list. */
4075 for (i = 0; i < args->buffer_count; i++)
4076 exec_list[i].offset = exec2_list[i].offset;
4077 /* ... and back out to userspace */
4078 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4079 (uintptr_t) args->buffers_ptr,
4080 exec_list,
4081 sizeof(*exec_list) * args->buffer_count);
4082 if (ret) {
4083 ret = -EFAULT;
4084 DRM_ERROR("failed to copy %d exec entries "
4085 "back to user (%d)\n",
4086 args->buffer_count, ret);
4087 }
76446cac
JB
4088 }
4089
4090 drm_free_large(exec_list);
4091 drm_free_large(exec2_list);
4092 return ret;
4093}
4094
4095int
4096i915_gem_execbuffer2(struct drm_device *dev, void *data,
4097 struct drm_file *file_priv)
4098{
4099 struct drm_i915_gem_execbuffer2 *args = data;
4100 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4101 int ret;
4102
4103#if WATCH_EXEC
4104 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4105 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4106#endif
4107
4108 if (args->buffer_count < 1) {
4109 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4110 return -EINVAL;
4111 }
4112
4113 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4114 if (exec2_list == NULL) {
4115 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4116 args->buffer_count);
4117 return -ENOMEM;
4118 }
4119 ret = copy_from_user(exec2_list,
4120 (struct drm_i915_relocation_entry __user *)
4121 (uintptr_t) args->buffers_ptr,
4122 sizeof(*exec2_list) * args->buffer_count);
4123 if (ret != 0) {
4124 DRM_ERROR("copy %d exec entries failed %d\n",
4125 args->buffer_count, ret);
4126 drm_free_large(exec2_list);
4127 return -EFAULT;
4128 }
4129
4130 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4131 if (!ret) {
4132 /* Copy the new buffer offsets back to the user's exec list. */
4133 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4134 (uintptr_t) args->buffers_ptr,
4135 exec2_list,
4136 sizeof(*exec2_list) * args->buffer_count);
4137 if (ret) {
4138 ret = -EFAULT;
4139 DRM_ERROR("failed to copy %d exec entries "
4140 "back to user (%d)\n",
4141 args->buffer_count, ret);
4142 }
4143 }
4144
4145 drm_free_large(exec2_list);
4146 return ret;
4147}
4148
673a394b
EA
4149int
4150i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4151{
4152 struct drm_device *dev = obj->dev;
23010e43 4153 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4154 int ret;
4155
778c3544
DV
4156 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4157
673a394b 4158 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4159
4160 if (obj_priv->gtt_space != NULL) {
4161 if (alignment == 0)
4162 alignment = i915_gem_get_gtt_alignment(obj);
4163 if (obj_priv->gtt_offset & (alignment - 1)) {
4164 ret = i915_gem_object_unbind(obj);
4165 if (ret)
4166 return ret;
4167 }
4168 }
4169
673a394b
EA
4170 if (obj_priv->gtt_space == NULL) {
4171 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4172 if (ret)
673a394b 4173 return ret;
22c344e9 4174 }
76446cac 4175
673a394b
EA
4176 obj_priv->pin_count++;
4177
4178 /* If the object is not active and not pending a flush,
4179 * remove it from the inactive list
4180 */
4181 if (obj_priv->pin_count == 1) {
4182 atomic_inc(&dev->pin_count);
4183 atomic_add(obj->size, &dev->pin_memory);
4184 if (!obj_priv->active &&
21d509e3 4185 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
4186 !list_empty(&obj_priv->list))
4187 list_del_init(&obj_priv->list);
4188 }
4189 i915_verify_inactive(dev, __FILE__, __LINE__);
4190
4191 return 0;
4192}
4193
4194void
4195i915_gem_object_unpin(struct drm_gem_object *obj)
4196{
4197 struct drm_device *dev = obj->dev;
4198 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4199 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4200
4201 i915_verify_inactive(dev, __FILE__, __LINE__);
4202 obj_priv->pin_count--;
4203 BUG_ON(obj_priv->pin_count < 0);
4204 BUG_ON(obj_priv->gtt_space == NULL);
4205
4206 /* If the object is no longer pinned, and is
4207 * neither active nor being flushed, then stick it on
4208 * the inactive list
4209 */
4210 if (obj_priv->pin_count == 0) {
4211 if (!obj_priv->active &&
21d509e3 4212 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4213 list_move_tail(&obj_priv->list,
4214 &dev_priv->mm.inactive_list);
4215 atomic_dec(&dev->pin_count);
4216 atomic_sub(obj->size, &dev->pin_memory);
4217 }
4218 i915_verify_inactive(dev, __FILE__, __LINE__);
4219}
4220
4221int
4222i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4223 struct drm_file *file_priv)
4224{
4225 struct drm_i915_gem_pin *args = data;
4226 struct drm_gem_object *obj;
4227 struct drm_i915_gem_object *obj_priv;
4228 int ret;
4229
4230 mutex_lock(&dev->struct_mutex);
4231
4232 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4233 if (obj == NULL) {
4234 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4235 args->handle);
4236 mutex_unlock(&dev->struct_mutex);
4237 return -EBADF;
4238 }
23010e43 4239 obj_priv = to_intel_bo(obj);
673a394b 4240
bb6baf76
CW
4241 if (obj_priv->madv != I915_MADV_WILLNEED) {
4242 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4243 drm_gem_object_unreference(obj);
4244 mutex_unlock(&dev->struct_mutex);
4245 return -EINVAL;
4246 }
4247
79e53945
JB
4248 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4249 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4250 args->handle);
96dec61d 4251 drm_gem_object_unreference(obj);
673a394b 4252 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4253 return -EINVAL;
4254 }
4255
4256 obj_priv->user_pin_count++;
4257 obj_priv->pin_filp = file_priv;
4258 if (obj_priv->user_pin_count == 1) {
4259 ret = i915_gem_object_pin(obj, args->alignment);
4260 if (ret != 0) {
4261 drm_gem_object_unreference(obj);
4262 mutex_unlock(&dev->struct_mutex);
4263 return ret;
4264 }
673a394b
EA
4265 }
4266
4267 /* XXX - flush the CPU caches for pinned objects
4268 * as the X server doesn't manage domains yet
4269 */
e47c68e9 4270 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4271 args->offset = obj_priv->gtt_offset;
4272 drm_gem_object_unreference(obj);
4273 mutex_unlock(&dev->struct_mutex);
4274
4275 return 0;
4276}
4277
4278int
4279i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4280 struct drm_file *file_priv)
4281{
4282 struct drm_i915_gem_pin *args = data;
4283 struct drm_gem_object *obj;
79e53945 4284 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4285
4286 mutex_lock(&dev->struct_mutex);
4287
4288 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4289 if (obj == NULL) {
4290 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4291 args->handle);
4292 mutex_unlock(&dev->struct_mutex);
4293 return -EBADF;
4294 }
4295
23010e43 4296 obj_priv = to_intel_bo(obj);
79e53945
JB
4297 if (obj_priv->pin_filp != file_priv) {
4298 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4299 args->handle);
4300 drm_gem_object_unreference(obj);
4301 mutex_unlock(&dev->struct_mutex);
4302 return -EINVAL;
4303 }
4304 obj_priv->user_pin_count--;
4305 if (obj_priv->user_pin_count == 0) {
4306 obj_priv->pin_filp = NULL;
4307 i915_gem_object_unpin(obj);
4308 }
673a394b
EA
4309
4310 drm_gem_object_unreference(obj);
4311 mutex_unlock(&dev->struct_mutex);
4312 return 0;
4313}
4314
4315int
4316i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file_priv)
4318{
4319 struct drm_i915_gem_busy *args = data;
4320 struct drm_gem_object *obj;
4321 struct drm_i915_gem_object *obj_priv;
852835f3 4322 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4323
673a394b
EA
4324 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4325 if (obj == NULL) {
4326 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4327 args->handle);
673a394b
EA
4328 return -EBADF;
4329 }
4330
b1ce786c 4331 mutex_lock(&dev->struct_mutex);
f21289b3
EA
4332 /* Update the active list for the hardware's current position.
4333 * Otherwise this only updates on a delayed timer or when irqs are
4334 * actually unmasked, and our working set ends up being larger than
4335 * required.
4336 */
852835f3 4337 i915_gem_retire_requests(dev, &dev_priv->render_ring);
f21289b3 4338
d1b851fc
ZN
4339 if (HAS_BSD(dev))
4340 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
4341
23010e43 4342 obj_priv = to_intel_bo(obj);
c4de0a5d
EA
4343 /* Don't count being on the flushing list against the object being
4344 * done. Otherwise, a buffer left on the flushing list but not getting
4345 * flushed (because nobody's flushing that domain) won't ever return
4346 * unbusy and get reused by libdrm's bo cache. The other expected
4347 * consumer of this interface, OpenGL's occlusion queries, also specs
4348 * that the objects get unbusy "eventually" without any interference.
4349 */
4350 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
4351
4352 drm_gem_object_unreference(obj);
4353 mutex_unlock(&dev->struct_mutex);
4354 return 0;
4355}
4356
4357int
4358i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4359 struct drm_file *file_priv)
4360{
4361 return i915_gem_ring_throttle(dev, file_priv);
4362}
4363
3ef94daa
CW
4364int
4365i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4366 struct drm_file *file_priv)
4367{
4368 struct drm_i915_gem_madvise *args = data;
4369 struct drm_gem_object *obj;
4370 struct drm_i915_gem_object *obj_priv;
4371
4372 switch (args->madv) {
4373 case I915_MADV_DONTNEED:
4374 case I915_MADV_WILLNEED:
4375 break;
4376 default:
4377 return -EINVAL;
4378 }
4379
4380 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4381 if (obj == NULL) {
4382 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4383 args->handle);
4384 return -EBADF;
4385 }
4386
4387 mutex_lock(&dev->struct_mutex);
23010e43 4388 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4389
4390 if (obj_priv->pin_count) {
4391 drm_gem_object_unreference(obj);
4392 mutex_unlock(&dev->struct_mutex);
4393
4394 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4395 return -EINVAL;
4396 }
4397
bb6baf76
CW
4398 if (obj_priv->madv != __I915_MADV_PURGED)
4399 obj_priv->madv = args->madv;
3ef94daa 4400
2d7ef395
CW
4401 /* if the object is no longer bound, discard its backing storage */
4402 if (i915_gem_object_is_purgeable(obj_priv) &&
4403 obj_priv->gtt_space == NULL)
4404 i915_gem_object_truncate(obj);
4405
bb6baf76
CW
4406 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4407
3ef94daa
CW
4408 drm_gem_object_unreference(obj);
4409 mutex_unlock(&dev->struct_mutex);
4410
4411 return 0;
4412}
4413
ac52bc56
DV
4414struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4415 size_t size)
4416{
c397b908 4417 struct drm_i915_gem_object *obj;
ac52bc56 4418
c397b908
DV
4419 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4420 if (obj == NULL)
4421 return NULL;
673a394b 4422
c397b908
DV
4423 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4424 kfree(obj);
4425 return NULL;
4426 }
673a394b 4427
c397b908
DV
4428 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4429 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4430
c397b908 4431 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4432 obj->base.driver_private = NULL;
c397b908
DV
4433 obj->fence_reg = I915_FENCE_REG_NONE;
4434 INIT_LIST_HEAD(&obj->list);
4435 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4436 obj->madv = I915_MADV_WILLNEED;
de151cf6 4437
c397b908
DV
4438 trace_i915_gem_object_create(&obj->base);
4439
4440 return &obj->base;
4441}
4442
4443int i915_gem_init_object(struct drm_gem_object *obj)
4444{
4445 BUG();
de151cf6 4446
673a394b
EA
4447 return 0;
4448}
4449
4450void i915_gem_free_object(struct drm_gem_object *obj)
4451{
de151cf6 4452 struct drm_device *dev = obj->dev;
23010e43 4453 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4454
1c5d22f7
CW
4455 trace_i915_gem_object_destroy(obj);
4456
673a394b
EA
4457 while (obj_priv->pin_count > 0)
4458 i915_gem_object_unpin(obj);
4459
71acb5eb
DA
4460 if (obj_priv->phys_obj)
4461 i915_gem_detach_phys_object(dev, obj);
4462
673a394b
EA
4463 i915_gem_object_unbind(obj);
4464
7e616158
CW
4465 if (obj_priv->mmap_offset)
4466 i915_gem_free_mmap_offset(obj);
de151cf6 4467
c397b908
DV
4468 drm_gem_object_release(obj);
4469
9a298b2a 4470 kfree(obj_priv->page_cpu_valid);
280b713b 4471 kfree(obj_priv->bit_17);
c397b908 4472 kfree(obj_priv);
673a394b
EA
4473}
4474
ab5ee576 4475/** Unbinds all inactive objects. */
673a394b 4476static int
ab5ee576 4477i915_gem_evict_from_inactive_list(struct drm_device *dev)
673a394b 4478{
ab5ee576 4479 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4480
ab5ee576
CW
4481 while (!list_empty(&dev_priv->mm.inactive_list)) {
4482 struct drm_gem_object *obj;
4483 int ret;
673a394b 4484
a8089e84
DV
4485 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4486 struct drm_i915_gem_object,
4487 list)->base;
673a394b
EA
4488
4489 ret = i915_gem_object_unbind(obj);
4490 if (ret != 0) {
ab5ee576 4491 DRM_ERROR("Error unbinding object: %d\n", ret);
673a394b
EA
4492 return ret;
4493 }
4494 }
4495
673a394b
EA
4496 return 0;
4497}
4498
29105ccc
CW
4499int
4500i915_gem_idle(struct drm_device *dev)
4501{
4502 drm_i915_private_t *dev_priv = dev->dev_private;
4503 int ret;
28dfe52a 4504
29105ccc 4505 mutex_lock(&dev->struct_mutex);
1c5d22f7 4506
8187a2b7 4507 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4508 (dev_priv->render_ring.gem_object == NULL) ||
4509 (HAS_BSD(dev) &&
4510 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4511 mutex_unlock(&dev->struct_mutex);
4512 return 0;
28dfe52a
EA
4513 }
4514
29105ccc 4515 ret = i915_gpu_idle(dev);
6dbe2772
KP
4516 if (ret) {
4517 mutex_unlock(&dev->struct_mutex);
673a394b 4518 return ret;
6dbe2772 4519 }
673a394b 4520
29105ccc
CW
4521 /* Under UMS, be paranoid and evict. */
4522 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4523 ret = i915_gem_evict_from_inactive_list(dev);
4524 if (ret) {
4525 mutex_unlock(&dev->struct_mutex);
4526 return ret;
4527 }
4528 }
4529
4530 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4531 * We need to replace this with a semaphore, or something.
4532 * And not confound mm.suspended!
4533 */
4534 dev_priv->mm.suspended = 1;
4535 del_timer(&dev_priv->hangcheck_timer);
4536
4537 i915_kernel_lost_context(dev);
6dbe2772 4538 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4539
6dbe2772
KP
4540 mutex_unlock(&dev->struct_mutex);
4541
29105ccc
CW
4542 /* Cancel the retire work handler, which should be idle now. */
4543 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4544
673a394b
EA
4545 return 0;
4546}
4547
e552eb70
JB
4548/*
4549 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4550 * over cache flushing.
4551 */
8187a2b7 4552static int
e552eb70
JB
4553i915_gem_init_pipe_control(struct drm_device *dev)
4554{
4555 drm_i915_private_t *dev_priv = dev->dev_private;
4556 struct drm_gem_object *obj;
4557 struct drm_i915_gem_object *obj_priv;
4558 int ret;
4559
34dc4d44 4560 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4561 if (obj == NULL) {
4562 DRM_ERROR("Failed to allocate seqno page\n");
4563 ret = -ENOMEM;
4564 goto err;
4565 }
4566 obj_priv = to_intel_bo(obj);
4567 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4568
4569 ret = i915_gem_object_pin(obj, 4096);
4570 if (ret)
4571 goto err_unref;
4572
4573 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4574 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4575 if (dev_priv->seqno_page == NULL)
4576 goto err_unpin;
4577
4578 dev_priv->seqno_obj = obj;
4579 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4580
4581 return 0;
4582
4583err_unpin:
4584 i915_gem_object_unpin(obj);
4585err_unref:
4586 drm_gem_object_unreference(obj);
4587err:
4588 return ret;
4589}
4590
8187a2b7
ZN
4591
4592static void
e552eb70
JB
4593i915_gem_cleanup_pipe_control(struct drm_device *dev)
4594{
4595 drm_i915_private_t *dev_priv = dev->dev_private;
4596 struct drm_gem_object *obj;
4597 struct drm_i915_gem_object *obj_priv;
4598
4599 obj = dev_priv->seqno_obj;
4600 obj_priv = to_intel_bo(obj);
4601 kunmap(obj_priv->pages[0]);
4602 i915_gem_object_unpin(obj);
4603 drm_gem_object_unreference(obj);
4604 dev_priv->seqno_obj = NULL;
4605
4606 dev_priv->seqno_page = NULL;
673a394b
EA
4607}
4608
8187a2b7
ZN
4609int
4610i915_gem_init_ringbuffer(struct drm_device *dev)
4611{
4612 drm_i915_private_t *dev_priv = dev->dev_private;
4613 int ret;
68f95ba9 4614
8187a2b7 4615 dev_priv->render_ring = render_ring;
68f95ba9 4616
8187a2b7
ZN
4617 if (!I915_NEED_GFX_HWS(dev)) {
4618 dev_priv->render_ring.status_page.page_addr
4619 = dev_priv->status_page_dmah->vaddr;
4620 memset(dev_priv->render_ring.status_page.page_addr,
4621 0, PAGE_SIZE);
4622 }
68f95ba9 4623
8187a2b7
ZN
4624 if (HAS_PIPE_CONTROL(dev)) {
4625 ret = i915_gem_init_pipe_control(dev);
4626 if (ret)
4627 return ret;
4628 }
68f95ba9 4629
8187a2b7 4630 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4631 if (ret)
4632 goto cleanup_pipe_control;
4633
4634 if (HAS_BSD(dev)) {
d1b851fc
ZN
4635 dev_priv->bsd_ring = bsd_ring;
4636 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4637 if (ret)
4638 goto cleanup_render_ring;
d1b851fc 4639 }
68f95ba9
CW
4640
4641 return 0;
4642
4643cleanup_render_ring:
4644 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4645cleanup_pipe_control:
4646 if (HAS_PIPE_CONTROL(dev))
4647 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4648 return ret;
4649}
4650
4651void
4652i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4653{
4654 drm_i915_private_t *dev_priv = dev->dev_private;
4655
4656 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4657 if (HAS_BSD(dev))
4658 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4659 if (HAS_PIPE_CONTROL(dev))
4660 i915_gem_cleanup_pipe_control(dev);
4661}
4662
673a394b
EA
4663int
4664i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4665 struct drm_file *file_priv)
4666{
4667 drm_i915_private_t *dev_priv = dev->dev_private;
4668 int ret;
4669
79e53945
JB
4670 if (drm_core_check_feature(dev, DRIVER_MODESET))
4671 return 0;
4672
ba1234d1 4673 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4674 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4675 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4676 }
4677
673a394b 4678 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4679 dev_priv->mm.suspended = 0;
4680
4681 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4682 if (ret != 0) {
4683 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4684 return ret;
d816f6ac 4685 }
9bb2d6f9 4686
5e118f41 4687 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4688 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4689 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4690 spin_unlock(&dev_priv->mm.active_list_lock);
4691
673a394b
EA
4692 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4693 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4694 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4695 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4696 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4697
4698 drm_irq_install(dev);
4699
673a394b
EA
4700 return 0;
4701}
4702
4703int
4704i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4705 struct drm_file *file_priv)
4706{
79e53945
JB
4707 if (drm_core_check_feature(dev, DRIVER_MODESET))
4708 return 0;
4709
dbb19d30 4710 drm_irq_uninstall(dev);
e6890f6f 4711 return i915_gem_idle(dev);
673a394b
EA
4712}
4713
4714void
4715i915_gem_lastclose(struct drm_device *dev)
4716{
4717 int ret;
673a394b 4718
e806b495
EA
4719 if (drm_core_check_feature(dev, DRIVER_MODESET))
4720 return;
4721
6dbe2772
KP
4722 ret = i915_gem_idle(dev);
4723 if (ret)
4724 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4725}
4726
4727void
4728i915_gem_load(struct drm_device *dev)
4729{
b5aa8a0f 4730 int i;
673a394b
EA
4731 drm_i915_private_t *dev_priv = dev->dev_private;
4732
5e118f41 4733 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4734 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4735 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4736 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4737 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
852835f3
ZN
4738 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4739 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4740 if (HAS_BSD(dev)) {
4741 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4742 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4743 }
007cc8ac
DV
4744 for (i = 0; i < 16; i++)
4745 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4746 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4747 i915_gem_retire_work_handler);
31169714
CW
4748 spin_lock(&shrink_list_lock);
4749 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4750 spin_unlock(&shrink_list_lock);
4751
de151cf6 4752 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4753 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4754 dev_priv->fence_reg_start = 3;
de151cf6 4755
0f973f27 4756 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4757 dev_priv->num_fence_regs = 16;
4758 else
4759 dev_priv->num_fence_regs = 8;
4760
b5aa8a0f
GH
4761 /* Initialize fence registers to zero */
4762 if (IS_I965G(dev)) {
4763 for (i = 0; i < 16; i++)
4764 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4765 } else {
4766 for (i = 0; i < 8; i++)
4767 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4768 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4769 for (i = 0; i < 8; i++)
4770 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4771 }
673a394b 4772 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4773 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4774}
71acb5eb
DA
4775
4776/*
4777 * Create a physically contiguous memory object for this object
4778 * e.g. for cursor + overlay regs
4779 */
4780int i915_gem_init_phys_object(struct drm_device *dev,
4781 int id, int size)
4782{
4783 drm_i915_private_t *dev_priv = dev->dev_private;
4784 struct drm_i915_gem_phys_object *phys_obj;
4785 int ret;
4786
4787 if (dev_priv->mm.phys_objs[id - 1] || !size)
4788 return 0;
4789
9a298b2a 4790 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4791 if (!phys_obj)
4792 return -ENOMEM;
4793
4794 phys_obj->id = id;
4795
e6be8d9d 4796 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4797 if (!phys_obj->handle) {
4798 ret = -ENOMEM;
4799 goto kfree_obj;
4800 }
4801#ifdef CONFIG_X86
4802 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4803#endif
4804
4805 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4806
4807 return 0;
4808kfree_obj:
9a298b2a 4809 kfree(phys_obj);
71acb5eb
DA
4810 return ret;
4811}
4812
4813void i915_gem_free_phys_object(struct drm_device *dev, int id)
4814{
4815 drm_i915_private_t *dev_priv = dev->dev_private;
4816 struct drm_i915_gem_phys_object *phys_obj;
4817
4818 if (!dev_priv->mm.phys_objs[id - 1])
4819 return;
4820
4821 phys_obj = dev_priv->mm.phys_objs[id - 1];
4822 if (phys_obj->cur_obj) {
4823 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4824 }
4825
4826#ifdef CONFIG_X86
4827 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4828#endif
4829 drm_pci_free(dev, phys_obj->handle);
4830 kfree(phys_obj);
4831 dev_priv->mm.phys_objs[id - 1] = NULL;
4832}
4833
4834void i915_gem_free_all_phys_object(struct drm_device *dev)
4835{
4836 int i;
4837
260883c8 4838 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4839 i915_gem_free_phys_object(dev, i);
4840}
4841
4842void i915_gem_detach_phys_object(struct drm_device *dev,
4843 struct drm_gem_object *obj)
4844{
4845 struct drm_i915_gem_object *obj_priv;
4846 int i;
4847 int ret;
4848 int page_count;
4849
23010e43 4850 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4851 if (!obj_priv->phys_obj)
4852 return;
4853
4bdadb97 4854 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4855 if (ret)
4856 goto out;
4857
4858 page_count = obj->size / PAGE_SIZE;
4859
4860 for (i = 0; i < page_count; i++) {
856fa198 4861 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4862 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4863
4864 memcpy(dst, src, PAGE_SIZE);
4865 kunmap_atomic(dst, KM_USER0);
4866 }
856fa198 4867 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4868 drm_agp_chipset_flush(dev);
d78b47b9
CW
4869
4870 i915_gem_object_put_pages(obj);
71acb5eb
DA
4871out:
4872 obj_priv->phys_obj->cur_obj = NULL;
4873 obj_priv->phys_obj = NULL;
4874}
4875
4876int
4877i915_gem_attach_phys_object(struct drm_device *dev,
4878 struct drm_gem_object *obj, int id)
4879{
4880 drm_i915_private_t *dev_priv = dev->dev_private;
4881 struct drm_i915_gem_object *obj_priv;
4882 int ret = 0;
4883 int page_count;
4884 int i;
4885
4886 if (id > I915_MAX_PHYS_OBJECT)
4887 return -EINVAL;
4888
23010e43 4889 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4890
4891 if (obj_priv->phys_obj) {
4892 if (obj_priv->phys_obj->id == id)
4893 return 0;
4894 i915_gem_detach_phys_object(dev, obj);
4895 }
4896
4897
4898 /* create a new object */
4899 if (!dev_priv->mm.phys_objs[id - 1]) {
4900 ret = i915_gem_init_phys_object(dev, id,
4901 obj->size);
4902 if (ret) {
aeb565df 4903 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4904 goto out;
4905 }
4906 }
4907
4908 /* bind to the object */
4909 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4910 obj_priv->phys_obj->cur_obj = obj;
4911
4bdadb97 4912 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4913 if (ret) {
4914 DRM_ERROR("failed to get page list\n");
4915 goto out;
4916 }
4917
4918 page_count = obj->size / PAGE_SIZE;
4919
4920 for (i = 0; i < page_count; i++) {
856fa198 4921 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4922 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4923
4924 memcpy(dst, src, PAGE_SIZE);
4925 kunmap_atomic(src, KM_USER0);
4926 }
4927
d78b47b9
CW
4928 i915_gem_object_put_pages(obj);
4929
71acb5eb
DA
4930 return 0;
4931out:
4932 return ret;
4933}
4934
4935static int
4936i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4937 struct drm_i915_gem_pwrite *args,
4938 struct drm_file *file_priv)
4939{
23010e43 4940 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4941 void *obj_addr;
4942 int ret;
4943 char __user *user_data;
4944
4945 user_data = (char __user *) (uintptr_t) args->data_ptr;
4946 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4947
44d98a61 4948 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4949 ret = copy_from_user(obj_addr, user_data, args->size);
4950 if (ret)
4951 return -EFAULT;
4952
4953 drm_agp_chipset_flush(dev);
4954 return 0;
4955}
b962442e
EA
4956
4957void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4958{
4959 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4960
4961 /* Clean up our request list when the client is going away, so that
4962 * later retire_requests won't dereference our soon-to-be-gone
4963 * file_priv.
4964 */
4965 mutex_lock(&dev->struct_mutex);
4966 while (!list_empty(&i915_file_priv->mm.request_list))
4967 list_del_init(i915_file_priv->mm.request_list.next);
4968 mutex_unlock(&dev->struct_mutex);
4969}
31169714 4970
1637ef41
CW
4971static int
4972i915_gpu_is_active(struct drm_device *dev)
4973{
4974 drm_i915_private_t *dev_priv = dev->dev_private;
4975 int lists_empty;
4976
4977 spin_lock(&dev_priv->mm.active_list_lock);
4978 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4979 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4980 if (HAS_BSD(dev))
4981 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4982 spin_unlock(&dev_priv->mm.active_list_lock);
4983
4984 return !lists_empty;
4985}
4986
31169714
CW
4987static int
4988i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4989{
4990 drm_i915_private_t *dev_priv, *next_dev;
4991 struct drm_i915_gem_object *obj_priv, *next_obj;
4992 int cnt = 0;
4993 int would_deadlock = 1;
4994
4995 /* "fast-path" to count number of available objects */
4996 if (nr_to_scan == 0) {
4997 spin_lock(&shrink_list_lock);
4998 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4999 struct drm_device *dev = dev_priv->dev;
5000
5001 if (mutex_trylock(&dev->struct_mutex)) {
5002 list_for_each_entry(obj_priv,
5003 &dev_priv->mm.inactive_list,
5004 list)
5005 cnt++;
5006 mutex_unlock(&dev->struct_mutex);
5007 }
5008 }
5009 spin_unlock(&shrink_list_lock);
5010
5011 return (cnt / 100) * sysctl_vfs_cache_pressure;
5012 }
5013
5014 spin_lock(&shrink_list_lock);
5015
1637ef41 5016rescan:
31169714
CW
5017 /* first scan for clean buffers */
5018 list_for_each_entry_safe(dev_priv, next_dev,
5019 &shrink_list, mm.shrink_list) {
5020 struct drm_device *dev = dev_priv->dev;
5021
5022 if (! mutex_trylock(&dev->struct_mutex))
5023 continue;
5024
5025 spin_unlock(&shrink_list_lock);
852835f3 5026 i915_gem_retire_requests(dev, &dev_priv->render_ring);
d1b851fc
ZN
5027
5028 if (HAS_BSD(dev))
5029 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
31169714
CW
5030
5031 list_for_each_entry_safe(obj_priv, next_obj,
5032 &dev_priv->mm.inactive_list,
5033 list) {
5034 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5035 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5036 if (--nr_to_scan <= 0)
5037 break;
5038 }
5039 }
5040
5041 spin_lock(&shrink_list_lock);
5042 mutex_unlock(&dev->struct_mutex);
5043
963b4836
CW
5044 would_deadlock = 0;
5045
31169714
CW
5046 if (nr_to_scan <= 0)
5047 break;
5048 }
5049
5050 /* second pass, evict/count anything still on the inactive list */
5051 list_for_each_entry_safe(dev_priv, next_dev,
5052 &shrink_list, mm.shrink_list) {
5053 struct drm_device *dev = dev_priv->dev;
5054
5055 if (! mutex_trylock(&dev->struct_mutex))
5056 continue;
5057
5058 spin_unlock(&shrink_list_lock);
5059
5060 list_for_each_entry_safe(obj_priv, next_obj,
5061 &dev_priv->mm.inactive_list,
5062 list) {
5063 if (nr_to_scan > 0) {
a8089e84 5064 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5065 nr_to_scan--;
5066 } else
5067 cnt++;
5068 }
5069
5070 spin_lock(&shrink_list_lock);
5071 mutex_unlock(&dev->struct_mutex);
5072
5073 would_deadlock = 0;
5074 }
5075
1637ef41
CW
5076 if (nr_to_scan) {
5077 int active = 0;
5078
5079 /*
5080 * We are desperate for pages, so as a last resort, wait
5081 * for the GPU to finish and discard whatever we can.
5082 * This has a dramatic impact to reduce the number of
5083 * OOM-killer events whilst running the GPU aggressively.
5084 */
5085 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5086 struct drm_device *dev = dev_priv->dev;
5087
5088 if (!mutex_trylock(&dev->struct_mutex))
5089 continue;
5090
5091 spin_unlock(&shrink_list_lock);
5092
5093 if (i915_gpu_is_active(dev)) {
5094 i915_gpu_idle(dev);
5095 active++;
5096 }
5097
5098 spin_lock(&shrink_list_lock);
5099 mutex_unlock(&dev->struct_mutex);
5100 }
5101
5102 if (active)
5103 goto rescan;
5104 }
5105
31169714
CW
5106 spin_unlock(&shrink_list_lock);
5107
5108 if (would_deadlock)
5109 return -1;
5110 else if (cnt > 0)
5111 return (cnt / 100) * sysctl_vfs_cache_pressure;
5112 else
5113 return 0;
5114}
5115
5116static struct shrinker shrinker = {
5117 .shrink = i915_gem_shrink,
5118 .seeks = DEFAULT_SEEKS,
5119};
5120
5121__init void
5122i915_gem_shrinker_init(void)
5123{
5124 register_shrinker(&shrinker);
5125}
5126
5127__exit void
5128i915_gem_shrinker_exit(void)
5129{
5130 unregister_shrinker(&shrinker);
5131}