]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Cleanup the hws on ringbuffer constrution failure.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
c0d90829
KP
37static void
38i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
39 uint32_t read_domains,
40 uint32_t write_domain);
e47c68e9
EA
41static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
43static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
44static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
45 int write);
46static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
47 uint64_t offset,
48 uint64_t size);
49static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b
EA
50static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
51static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
52static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
0f973f27 55static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
de151cf6
JB
56static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
57static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
58static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
59 struct drm_i915_gem_pwrite *args,
60 struct drm_file *file_priv);
673a394b 61
79e53945
JB
62int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63 unsigned long end)
673a394b
EA
64{
65 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 66
79e53945
JB
67 if (start >= end ||
68 (start & (PAGE_SIZE - 1)) != 0 ||
69 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
70 return -EINVAL;
71 }
72
79e53945
JB
73 drm_mm_init(&dev_priv->mm.gtt_space, start,
74 end - start);
673a394b 75
79e53945
JB
76 dev->gtt_total = (uint32_t) (end - start);
77
78 return 0;
79}
673a394b 80
79e53945
JB
81int
82i915_gem_init_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file_priv)
84{
85 struct drm_i915_gem_init *args = data;
86 int ret;
87
88 mutex_lock(&dev->struct_mutex);
89 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
90 mutex_unlock(&dev->struct_mutex);
91
79e53945 92 return ret;
673a394b
EA
93}
94
5a125c3c
EA
95int
96i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97 struct drm_file *file_priv)
98{
5a125c3c 99 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
100
101 if (!(dev->driver->driver_features & DRIVER_GEM))
102 return -ENODEV;
103
104 args->aper_size = dev->gtt_total;
2678d9d6
KP
105 args->aper_available_size = (args->aper_size -
106 atomic_read(&dev->pin_memory));
5a125c3c
EA
107
108 return 0;
109}
110
673a394b
EA
111
112/**
113 * Creates a new mm object and returns a handle to it.
114 */
115int
116i915_gem_create_ioctl(struct drm_device *dev, void *data,
117 struct drm_file *file_priv)
118{
119 struct drm_i915_gem_create *args = data;
120 struct drm_gem_object *obj;
121 int handle, ret;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 mutex_lock(&dev->struct_mutex);
132 drm_gem_object_handle_unreference(obj);
133 mutex_unlock(&dev->struct_mutex);
134
135 if (ret)
136 return ret;
137
138 args->handle = handle;
139
140 return 0;
141}
142
143/**
144 * Reads data from the object referenced by handle.
145 *
146 * On error, the contents of *data are undefined.
147 */
148int
149i915_gem_pread_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file_priv)
151{
152 struct drm_i915_gem_pread *args = data;
153 struct drm_gem_object *obj;
154 struct drm_i915_gem_object *obj_priv;
155 ssize_t read;
156 loff_t offset;
157 int ret;
158
159 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
160 if (obj == NULL)
161 return -EBADF;
162 obj_priv = obj->driver_private;
163
164 /* Bounds check source.
165 *
166 * XXX: This could use review for overflow issues...
167 */
168 if (args->offset > obj->size || args->size > obj->size ||
169 args->offset + args->size > obj->size) {
170 drm_gem_object_unreference(obj);
171 return -EINVAL;
172 }
173
174 mutex_lock(&dev->struct_mutex);
175
e47c68e9
EA
176 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
177 args->size);
673a394b
EA
178 if (ret != 0) {
179 drm_gem_object_unreference(obj);
180 mutex_unlock(&dev->struct_mutex);
e7d22bc3 181 return ret;
673a394b
EA
182 }
183
184 offset = args->offset;
185
186 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
187 args->size, &offset);
188 if (read != args->size) {
189 drm_gem_object_unreference(obj);
190 mutex_unlock(&dev->struct_mutex);
191 if (read < 0)
192 return read;
193 else
194 return -EINVAL;
195 }
196
197 drm_gem_object_unreference(obj);
198 mutex_unlock(&dev->struct_mutex);
199
200 return 0;
201}
202
0839ccb8
KP
203/* This is the fast write path which cannot handle
204 * page faults in the source data
9b7530cc 205 */
0839ccb8
KP
206
207static inline int
208fast_user_write(struct io_mapping *mapping,
209 loff_t page_base, int page_offset,
210 char __user *user_data,
211 int length)
9b7530cc 212{
9b7530cc 213 char *vaddr_atomic;
0839ccb8 214 unsigned long unwritten;
9b7530cc 215
0839ccb8
KP
216 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
217 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
218 user_data, length);
219 io_mapping_unmap_atomic(vaddr_atomic);
220 if (unwritten)
221 return -EFAULT;
222 return 0;
223}
224
225/* Here's the write path which can sleep for
226 * page faults
227 */
228
229static inline int
230slow_user_write(struct io_mapping *mapping,
231 loff_t page_base, int page_offset,
232 char __user *user_data,
233 int length)
234{
235 char __iomem *vaddr;
236 unsigned long unwritten;
237
238 vaddr = io_mapping_map_wc(mapping, page_base);
239 if (vaddr == NULL)
240 return -EFAULT;
241 unwritten = __copy_from_user(vaddr + page_offset,
242 user_data, length);
243 io_mapping_unmap(vaddr);
244 if (unwritten)
245 return -EFAULT;
9b7530cc 246 return 0;
9b7530cc
LT
247}
248
673a394b
EA
249static int
250i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
251 struct drm_i915_gem_pwrite *args,
252 struct drm_file *file_priv)
253{
254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 255 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 256 ssize_t remain;
0839ccb8 257 loff_t offset, page_base;
673a394b 258 char __user *user_data;
0839ccb8
KP
259 int page_offset, page_length;
260 int ret;
673a394b
EA
261
262 user_data = (char __user *) (uintptr_t) args->data_ptr;
263 remain = args->size;
264 if (!access_ok(VERIFY_READ, user_data, remain))
265 return -EFAULT;
266
267
268 mutex_lock(&dev->struct_mutex);
269 ret = i915_gem_object_pin(obj, 0);
270 if (ret) {
271 mutex_unlock(&dev->struct_mutex);
272 return ret;
273 }
2ef7eeaa 274 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
275 if (ret)
276 goto fail;
277
278 obj_priv = obj->driver_private;
279 offset = obj_priv->gtt_offset + args->offset;
280 obj_priv->dirty = 1;
281
282 while (remain > 0) {
283 /* Operation in this page
284 *
0839ccb8
KP
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
673a394b 288 */
0839ccb8
KP
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
294
295 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
296 page_offset, user_data, page_length);
297
298 /* If we get a fault while copying data, then (presumably) our
299 * source page isn't available. In this case, use the
300 * non-atomic function
301 */
302 if (ret) {
303 ret = slow_user_write (dev_priv->mm.gtt_mapping,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
673a394b 307 goto fail;
673a394b
EA
308 }
309
0839ccb8
KP
310 remain -= page_length;
311 user_data += page_length;
312 offset += page_length;
673a394b 313 }
673a394b
EA
314
315fail:
316 i915_gem_object_unpin(obj);
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320}
321
3043c60c 322static int
673a394b
EA
323i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
324 struct drm_i915_gem_pwrite *args,
325 struct drm_file *file_priv)
326{
327 int ret;
328 loff_t offset;
329 ssize_t written;
330
331 mutex_lock(&dev->struct_mutex);
332
e47c68e9 333 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b
EA
334 if (ret) {
335 mutex_unlock(&dev->struct_mutex);
336 return ret;
337 }
338
339 offset = args->offset;
340
341 written = vfs_write(obj->filp,
342 (char __user *)(uintptr_t) args->data_ptr,
343 args->size, &offset);
344 if (written != args->size) {
345 mutex_unlock(&dev->struct_mutex);
346 if (written < 0)
347 return written;
348 else
349 return -EINVAL;
350 }
351
352 mutex_unlock(&dev->struct_mutex);
353
354 return 0;
355}
356
357/**
358 * Writes data to the object referenced by handle.
359 *
360 * On error, the contents of the buffer that were to be modified are undefined.
361 */
362int
363i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
364 struct drm_file *file_priv)
365{
366 struct drm_i915_gem_pwrite *args = data;
367 struct drm_gem_object *obj;
368 struct drm_i915_gem_object *obj_priv;
369 int ret = 0;
370
371 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
372 if (obj == NULL)
373 return -EBADF;
374 obj_priv = obj->driver_private;
375
376 /* Bounds check destination.
377 *
378 * XXX: This could use review for overflow issues...
379 */
380 if (args->offset > obj->size || args->size > obj->size ||
381 args->offset + args->size > obj->size) {
382 drm_gem_object_unreference(obj);
383 return -EINVAL;
384 }
385
386 /* We can only do the GTT pwrite on untiled buffers, as otherwise
387 * it would end up going through the fenced access, and we'll get
388 * different detiling behavior between reading and writing.
389 * pread/pwrite currently are reading and writing from the CPU
390 * perspective, requiring manual detiling by the client.
391 */
71acb5eb
DA
392 if (obj_priv->phys_obj)
393 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
394 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
395 dev->gtt_total != 0)
673a394b
EA
396 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
397 else
398 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
399
400#if WATCH_PWRITE
401 if (ret)
402 DRM_INFO("pwrite failed %d\n", ret);
403#endif
404
405 drm_gem_object_unreference(obj);
406
407 return ret;
408}
409
410/**
2ef7eeaa
EA
411 * Called when user space prepares to use an object with the CPU, either
412 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
413 */
414int
415i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
416 struct drm_file *file_priv)
417{
418 struct drm_i915_gem_set_domain *args = data;
419 struct drm_gem_object *obj;
2ef7eeaa
EA
420 uint32_t read_domains = args->read_domains;
421 uint32_t write_domain = args->write_domain;
673a394b
EA
422 int ret;
423
424 if (!(dev->driver->driver_features & DRIVER_GEM))
425 return -ENODEV;
426
2ef7eeaa
EA
427 /* Only handle setting domains to types used by the CPU. */
428 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
429 return -EINVAL;
430
431 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
432 return -EINVAL;
433
434 /* Having something in the write domain implies it's in the read
435 * domain, and only that read domain. Enforce that in the request.
436 */
437 if (write_domain != 0 && read_domains != write_domain)
438 return -EINVAL;
439
673a394b
EA
440 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
441 if (obj == NULL)
442 return -EBADF;
443
444 mutex_lock(&dev->struct_mutex);
445#if WATCH_BUF
446 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 447 obj, obj->size, read_domains, write_domain);
673a394b 448#endif
2ef7eeaa
EA
449 if (read_domains & I915_GEM_DOMAIN_GTT) {
450 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
451
452 /* Silently promote "you're not bound, there was nothing to do"
453 * to success, since the client was just asking us to
454 * make sure everything was done.
455 */
456 if (ret == -EINVAL)
457 ret = 0;
2ef7eeaa 458 } else {
e47c68e9 459 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
460 }
461
673a394b
EA
462 drm_gem_object_unreference(obj);
463 mutex_unlock(&dev->struct_mutex);
464 return ret;
465}
466
467/**
468 * Called when user space has done writes to this buffer
469 */
470int
471i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
472 struct drm_file *file_priv)
473{
474 struct drm_i915_gem_sw_finish *args = data;
475 struct drm_gem_object *obj;
476 struct drm_i915_gem_object *obj_priv;
477 int ret = 0;
478
479 if (!(dev->driver->driver_features & DRIVER_GEM))
480 return -ENODEV;
481
482 mutex_lock(&dev->struct_mutex);
483 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
484 if (obj == NULL) {
485 mutex_unlock(&dev->struct_mutex);
486 return -EBADF;
487 }
488
489#if WATCH_BUF
490 DRM_INFO("%s: sw_finish %d (%p %d)\n",
491 __func__, args->handle, obj, obj->size);
492#endif
493 obj_priv = obj->driver_private;
494
495 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
496 if (obj_priv->pin_count)
497 i915_gem_object_flush_cpu_write_domain(obj);
498
673a394b
EA
499 drm_gem_object_unreference(obj);
500 mutex_unlock(&dev->struct_mutex);
501 return ret;
502}
503
504/**
505 * Maps the contents of an object, returning the address it is mapped
506 * into.
507 *
508 * While the mapping holds a reference on the contents of the object, it doesn't
509 * imply a ref on the object itself.
510 */
511int
512i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file_priv)
514{
515 struct drm_i915_gem_mmap *args = data;
516 struct drm_gem_object *obj;
517 loff_t offset;
518 unsigned long addr;
519
520 if (!(dev->driver->driver_features & DRIVER_GEM))
521 return -ENODEV;
522
523 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
524 if (obj == NULL)
525 return -EBADF;
526
527 offset = args->offset;
528
529 down_write(&current->mm->mmap_sem);
530 addr = do_mmap(obj->filp, 0, args->size,
531 PROT_READ | PROT_WRITE, MAP_SHARED,
532 args->offset);
533 up_write(&current->mm->mmap_sem);
534 mutex_lock(&dev->struct_mutex);
535 drm_gem_object_unreference(obj);
536 mutex_unlock(&dev->struct_mutex);
537 if (IS_ERR((void *)addr))
538 return addr;
539
540 args->addr_ptr = (uint64_t) addr;
541
542 return 0;
543}
544
de151cf6
JB
545/**
546 * i915_gem_fault - fault a page into the GTT
547 * vma: VMA in question
548 * vmf: fault info
549 *
550 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
551 * from userspace. The fault handler takes care of binding the object to
552 * the GTT (if needed), allocating and programming a fence register (again,
553 * only if needed based on whether the old reg is still valid or the object
554 * is tiled) and inserting a new PTE into the faulting process.
555 *
556 * Note that the faulting process may involve evicting existing objects
557 * from the GTT and/or fence registers to make room. So performance may
558 * suffer if the GTT working set is large or there are few fence registers
559 * left.
560 */
561int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
562{
563 struct drm_gem_object *obj = vma->vm_private_data;
564 struct drm_device *dev = obj->dev;
565 struct drm_i915_private *dev_priv = dev->dev_private;
566 struct drm_i915_gem_object *obj_priv = obj->driver_private;
567 pgoff_t page_offset;
568 unsigned long pfn;
569 int ret = 0;
0f973f27 570 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
571
572 /* We don't use vmf->pgoff since that has the fake offset */
573 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
574 PAGE_SHIFT;
575
576 /* Now bind it into the GTT if needed */
577 mutex_lock(&dev->struct_mutex);
578 if (!obj_priv->gtt_space) {
579 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
580 if (ret) {
581 mutex_unlock(&dev->struct_mutex);
582 return VM_FAULT_SIGBUS;
583 }
584 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
585 }
586
587 /* Need a new fence register? */
588 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 589 obj_priv->tiling_mode != I915_TILING_NONE) {
0f973f27 590 ret = i915_gem_object_get_fence_reg(obj, write);
7d8d58b2
CW
591 if (ret) {
592 mutex_unlock(&dev->struct_mutex);
d9ddcb96 593 return VM_FAULT_SIGBUS;
7d8d58b2 594 }
d9ddcb96 595 }
de151cf6
JB
596
597 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
598 page_offset;
599
600 /* Finally, remap it using the new GTT offset */
601 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
602
603 mutex_unlock(&dev->struct_mutex);
604
605 switch (ret) {
606 case -ENOMEM:
607 case -EAGAIN:
608 return VM_FAULT_OOM;
609 case -EFAULT:
610 case -EBUSY:
611 DRM_ERROR("can't insert pfn?? fault or busy...\n");
612 return VM_FAULT_SIGBUS;
613 default:
614 return VM_FAULT_NOPAGE;
615 }
616}
617
618/**
619 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
620 * @obj: obj in question
621 *
622 * GEM memory mapping works by handing back to userspace a fake mmap offset
623 * it can use in a subsequent mmap(2) call. The DRM core code then looks
624 * up the object based on the offset and sets up the various memory mapping
625 * structures.
626 *
627 * This routine allocates and attaches a fake offset for @obj.
628 */
629static int
630i915_gem_create_mmap_offset(struct drm_gem_object *obj)
631{
632 struct drm_device *dev = obj->dev;
633 struct drm_gem_mm *mm = dev->mm_private;
634 struct drm_i915_gem_object *obj_priv = obj->driver_private;
635 struct drm_map_list *list;
636 struct drm_map *map;
637 int ret = 0;
638
639 /* Set the object up for mmap'ing */
640 list = &obj->map_list;
641 list->map = drm_calloc(1, sizeof(struct drm_map_list),
642 DRM_MEM_DRIVER);
643 if (!list->map)
644 return -ENOMEM;
645
646 map = list->map;
647 map->type = _DRM_GEM;
648 map->size = obj->size;
649 map->handle = obj;
650
651 /* Get a DRM GEM mmap offset allocated... */
652 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
653 obj->size / PAGE_SIZE, 0, 0);
654 if (!list->file_offset_node) {
655 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
656 ret = -ENOMEM;
657 goto out_free_list;
658 }
659
660 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
661 obj->size / PAGE_SIZE, 0);
662 if (!list->file_offset_node) {
663 ret = -ENOMEM;
664 goto out_free_list;
665 }
666
667 list->hash.key = list->file_offset_node->start;
668 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
669 DRM_ERROR("failed to add to map hash\n");
670 goto out_free_mm;
671 }
672
673 /* By now we should be all set, any drm_mmap request on the offset
674 * below will get to our mmap & fault handler */
675 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
676
677 return 0;
678
679out_free_mm:
680 drm_mm_put_block(list->file_offset_node);
681out_free_list:
682 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
683
684 return ret;
685}
686
687/**
688 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
689 * @obj: object to check
690 *
691 * Return the required GTT alignment for an object, taking into account
692 * potential fence register mapping if needed.
693 */
694static uint32_t
695i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
696{
697 struct drm_device *dev = obj->dev;
698 struct drm_i915_gem_object *obj_priv = obj->driver_private;
699 int start, i;
700
701 /*
702 * Minimum alignment is 4k (GTT page size), but might be greater
703 * if a fence register is needed for the object.
704 */
705 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
706 return 4096;
707
708 /*
709 * Previous chips need to be aligned to the size of the smallest
710 * fence register that can contain the object.
711 */
712 if (IS_I9XX(dev))
713 start = 1024*1024;
714 else
715 start = 512*1024;
716
717 for (i = start; i < obj->size; i <<= 1)
718 ;
719
720 return i;
721}
722
723/**
724 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
725 * @dev: DRM device
726 * @data: GTT mapping ioctl data
727 * @file_priv: GEM object info
728 *
729 * Simply returns the fake offset to userspace so it can mmap it.
730 * The mmap call will end up in drm_gem_mmap(), which will set things
731 * up so we can get faults in the handler above.
732 *
733 * The fault handler will take care of binding the object into the GTT
734 * (since it may have been evicted to make room for something), allocating
735 * a fence register, and mapping the appropriate aperture address into
736 * userspace.
737 */
738int
739i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file_priv)
741{
742 struct drm_i915_gem_mmap_gtt *args = data;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 struct drm_gem_object *obj;
745 struct drm_i915_gem_object *obj_priv;
746 int ret;
747
748 if (!(dev->driver->driver_features & DRIVER_GEM))
749 return -ENODEV;
750
751 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
752 if (obj == NULL)
753 return -EBADF;
754
755 mutex_lock(&dev->struct_mutex);
756
757 obj_priv = obj->driver_private;
758
759 if (!obj_priv->mmap_offset) {
760 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
761 if (ret) {
762 drm_gem_object_unreference(obj);
763 mutex_unlock(&dev->struct_mutex);
de151cf6 764 return ret;
13af1062 765 }
de151cf6
JB
766 }
767
768 args->offset = obj_priv->mmap_offset;
769
770 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
771
772 /* Make sure the alignment is correct for fence regs etc */
773 if (obj_priv->agp_mem &&
774 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
775 drm_gem_object_unreference(obj);
776 mutex_unlock(&dev->struct_mutex);
777 return -EINVAL;
778 }
779
780 /*
781 * Pull it into the GTT so that we have a page list (makes the
782 * initial fault faster and any subsequent flushing possible).
783 */
784 if (!obj_priv->agp_mem) {
785 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
786 if (ret) {
787 drm_gem_object_unreference(obj);
788 mutex_unlock(&dev->struct_mutex);
789 return ret;
790 }
791 list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
792 }
793
794 drm_gem_object_unreference(obj);
795 mutex_unlock(&dev->struct_mutex);
796
797 return 0;
798}
799
673a394b
EA
800static void
801i915_gem_object_free_page_list(struct drm_gem_object *obj)
802{
803 struct drm_i915_gem_object *obj_priv = obj->driver_private;
804 int page_count = obj->size / PAGE_SIZE;
805 int i;
806
807 if (obj_priv->page_list == NULL)
808 return;
809
810
811 for (i = 0; i < page_count; i++)
812 if (obj_priv->page_list[i] != NULL) {
813 if (obj_priv->dirty)
814 set_page_dirty(obj_priv->page_list[i]);
815 mark_page_accessed(obj_priv->page_list[i]);
816 page_cache_release(obj_priv->page_list[i]);
817 }
818 obj_priv->dirty = 0;
819
820 drm_free(obj_priv->page_list,
821 page_count * sizeof(struct page *),
822 DRM_MEM_DRIVER);
823 obj_priv->page_list = NULL;
824}
825
826static void
ce44b0ea 827i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
828{
829 struct drm_device *dev = obj->dev;
830 drm_i915_private_t *dev_priv = dev->dev_private;
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832
833 /* Add a reference if we're newly entering the active list. */
834 if (!obj_priv->active) {
835 drm_gem_object_reference(obj);
836 obj_priv->active = 1;
837 }
838 /* Move from whatever list we were on to the tail of execution. */
839 list_move_tail(&obj_priv->list,
840 &dev_priv->mm.active_list);
ce44b0ea 841 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
842}
843
ce44b0ea
EA
844static void
845i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
846{
847 struct drm_device *dev = obj->dev;
848 drm_i915_private_t *dev_priv = dev->dev_private;
849 struct drm_i915_gem_object *obj_priv = obj->driver_private;
850
851 BUG_ON(!obj_priv->active);
852 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
853 obj_priv->last_rendering_seqno = 0;
854}
673a394b
EA
855
856static void
857i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
858{
859 struct drm_device *dev = obj->dev;
860 drm_i915_private_t *dev_priv = dev->dev_private;
861 struct drm_i915_gem_object *obj_priv = obj->driver_private;
862
863 i915_verify_inactive(dev, __FILE__, __LINE__);
864 if (obj_priv->pin_count != 0)
865 list_del_init(&obj_priv->list);
866 else
867 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
868
ce44b0ea 869 obj_priv->last_rendering_seqno = 0;
673a394b
EA
870 if (obj_priv->active) {
871 obj_priv->active = 0;
872 drm_gem_object_unreference(obj);
873 }
874 i915_verify_inactive(dev, __FILE__, __LINE__);
875}
876
877/**
878 * Creates a new sequence number, emitting a write of it to the status page
879 * plus an interrupt, which will trigger i915_user_interrupt_handler.
880 *
881 * Must be called with struct_lock held.
882 *
883 * Returned sequence numbers are nonzero on success.
884 */
885static uint32_t
886i915_add_request(struct drm_device *dev, uint32_t flush_domains)
887{
888 drm_i915_private_t *dev_priv = dev->dev_private;
889 struct drm_i915_gem_request *request;
890 uint32_t seqno;
891 int was_empty;
892 RING_LOCALS;
893
894 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
895 if (request == NULL)
896 return 0;
897
898 /* Grab the seqno we're going to make this request be, and bump the
899 * next (skipping 0 so it can be the reserved no-seqno value).
900 */
901 seqno = dev_priv->mm.next_gem_seqno;
902 dev_priv->mm.next_gem_seqno++;
903 if (dev_priv->mm.next_gem_seqno == 0)
904 dev_priv->mm.next_gem_seqno++;
905
906 BEGIN_LP_RING(4);
907 OUT_RING(MI_STORE_DWORD_INDEX);
908 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
909 OUT_RING(seqno);
910
911 OUT_RING(MI_USER_INTERRUPT);
912 ADVANCE_LP_RING();
913
914 DRM_DEBUG("%d\n", seqno);
915
916 request->seqno = seqno;
917 request->emitted_jiffies = jiffies;
673a394b
EA
918 was_empty = list_empty(&dev_priv->mm.request_list);
919 list_add_tail(&request->list, &dev_priv->mm.request_list);
920
ce44b0ea
EA
921 /* Associate any objects on the flushing list matching the write
922 * domain we're flushing with our flush.
923 */
924 if (flush_domains != 0) {
925 struct drm_i915_gem_object *obj_priv, *next;
926
927 list_for_each_entry_safe(obj_priv, next,
928 &dev_priv->mm.flushing_list, list) {
929 struct drm_gem_object *obj = obj_priv->obj;
930
931 if ((obj->write_domain & flush_domains) ==
932 obj->write_domain) {
933 obj->write_domain = 0;
934 i915_gem_object_move_to_active(obj, seqno);
935 }
936 }
937
938 }
939
6dbe2772 940 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
941 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
942 return seqno;
943}
944
945/**
946 * Command execution barrier
947 *
948 * Ensures that all commands in the ring are finished
949 * before signalling the CPU
950 */
3043c60c 951static uint32_t
673a394b
EA
952i915_retire_commands(struct drm_device *dev)
953{
954 drm_i915_private_t *dev_priv = dev->dev_private;
955 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
956 uint32_t flush_domains = 0;
957 RING_LOCALS;
958
959 /* The sampler always gets flushed on i965 (sigh) */
960 if (IS_I965G(dev))
961 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
962 BEGIN_LP_RING(2);
963 OUT_RING(cmd);
964 OUT_RING(0); /* noop */
965 ADVANCE_LP_RING();
966 return flush_domains;
967}
968
969/**
970 * Moves buffers associated only with the given active seqno from the active
971 * to inactive list, potentially freeing them.
972 */
973static void
974i915_gem_retire_request(struct drm_device *dev,
975 struct drm_i915_gem_request *request)
976{
977 drm_i915_private_t *dev_priv = dev->dev_private;
978
979 /* Move any buffers on the active list that are no longer referenced
980 * by the ringbuffer to the flushing/inactive lists as appropriate.
981 */
982 while (!list_empty(&dev_priv->mm.active_list)) {
983 struct drm_gem_object *obj;
984 struct drm_i915_gem_object *obj_priv;
985
986 obj_priv = list_first_entry(&dev_priv->mm.active_list,
987 struct drm_i915_gem_object,
988 list);
989 obj = obj_priv->obj;
990
991 /* If the seqno being retired doesn't match the oldest in the
992 * list, then the oldest in the list must still be newer than
993 * this seqno.
994 */
995 if (obj_priv->last_rendering_seqno != request->seqno)
996 return;
de151cf6 997
673a394b
EA
998#if WATCH_LRU
999 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1000 __func__, request->seqno, obj);
1001#endif
1002
ce44b0ea
EA
1003 if (obj->write_domain != 0)
1004 i915_gem_object_move_to_flushing(obj);
1005 else
673a394b 1006 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1007 }
1008}
1009
1010/**
1011 * Returns true if seq1 is later than seq2.
1012 */
1013static int
1014i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1015{
1016 return (int32_t)(seq1 - seq2) >= 0;
1017}
1018
1019uint32_t
1020i915_get_gem_seqno(struct drm_device *dev)
1021{
1022 drm_i915_private_t *dev_priv = dev->dev_private;
1023
1024 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1025}
1026
1027/**
1028 * This function clears the request list as sequence numbers are passed.
1029 */
1030void
1031i915_gem_retire_requests(struct drm_device *dev)
1032{
1033 drm_i915_private_t *dev_priv = dev->dev_private;
1034 uint32_t seqno;
1035
1036 seqno = i915_get_gem_seqno(dev);
1037
1038 while (!list_empty(&dev_priv->mm.request_list)) {
1039 struct drm_i915_gem_request *request;
1040 uint32_t retiring_seqno;
1041
1042 request = list_first_entry(&dev_priv->mm.request_list,
1043 struct drm_i915_gem_request,
1044 list);
1045 retiring_seqno = request->seqno;
1046
1047 if (i915_seqno_passed(seqno, retiring_seqno) ||
1048 dev_priv->mm.wedged) {
1049 i915_gem_retire_request(dev, request);
1050
1051 list_del(&request->list);
1052 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1053 } else
1054 break;
1055 }
1056}
1057
1058void
1059i915_gem_retire_work_handler(struct work_struct *work)
1060{
1061 drm_i915_private_t *dev_priv;
1062 struct drm_device *dev;
1063
1064 dev_priv = container_of(work, drm_i915_private_t,
1065 mm.retire_work.work);
1066 dev = dev_priv->dev;
1067
1068 mutex_lock(&dev->struct_mutex);
1069 i915_gem_retire_requests(dev);
6dbe2772
KP
1070 if (!dev_priv->mm.suspended &&
1071 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1072 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1073 mutex_unlock(&dev->struct_mutex);
1074}
1075
1076/**
1077 * Waits for a sequence number to be signaled, and cleans up the
1078 * request and object lists appropriately for that event.
1079 */
3043c60c 1080static int
673a394b
EA
1081i915_wait_request(struct drm_device *dev, uint32_t seqno)
1082{
1083 drm_i915_private_t *dev_priv = dev->dev_private;
1084 int ret = 0;
1085
1086 BUG_ON(seqno == 0);
1087
1088 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1089 dev_priv->mm.waiting_gem_seqno = seqno;
1090 i915_user_irq_get(dev);
1091 ret = wait_event_interruptible(dev_priv->irq_queue,
1092 i915_seqno_passed(i915_get_gem_seqno(dev),
1093 seqno) ||
1094 dev_priv->mm.wedged);
1095 i915_user_irq_put(dev);
1096 dev_priv->mm.waiting_gem_seqno = 0;
1097 }
1098 if (dev_priv->mm.wedged)
1099 ret = -EIO;
1100
1101 if (ret && ret != -ERESTARTSYS)
1102 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1103 __func__, ret, seqno, i915_get_gem_seqno(dev));
1104
1105 /* Directly dispatch request retiring. While we have the work queue
1106 * to handle this, the waiter on a request often wants an associated
1107 * buffer to have made it to the inactive list, and we would need
1108 * a separate wait queue to handle that.
1109 */
1110 if (ret == 0)
1111 i915_gem_retire_requests(dev);
1112
1113 return ret;
1114}
1115
1116static void
1117i915_gem_flush(struct drm_device *dev,
1118 uint32_t invalidate_domains,
1119 uint32_t flush_domains)
1120{
1121 drm_i915_private_t *dev_priv = dev->dev_private;
1122 uint32_t cmd;
1123 RING_LOCALS;
1124
1125#if WATCH_EXEC
1126 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1127 invalidate_domains, flush_domains);
1128#endif
1129
1130 if (flush_domains & I915_GEM_DOMAIN_CPU)
1131 drm_agp_chipset_flush(dev);
1132
1133 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1134 I915_GEM_DOMAIN_GTT)) {
1135 /*
1136 * read/write caches:
1137 *
1138 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1139 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1140 * also flushed at 2d versus 3d pipeline switches.
1141 *
1142 * read-only caches:
1143 *
1144 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1145 * MI_READ_FLUSH is set, and is always flushed on 965.
1146 *
1147 * I915_GEM_DOMAIN_COMMAND may not exist?
1148 *
1149 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1150 * invalidated when MI_EXE_FLUSH is set.
1151 *
1152 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1153 * invalidated with every MI_FLUSH.
1154 *
1155 * TLBs:
1156 *
1157 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1158 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1159 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1160 * are flushed at any MI_FLUSH.
1161 */
1162
1163 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1164 if ((invalidate_domains|flush_domains) &
1165 I915_GEM_DOMAIN_RENDER)
1166 cmd &= ~MI_NO_WRITE_FLUSH;
1167 if (!IS_I965G(dev)) {
1168 /*
1169 * On the 965, the sampler cache always gets flushed
1170 * and this bit is reserved.
1171 */
1172 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1173 cmd |= MI_READ_FLUSH;
1174 }
1175 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1176 cmd |= MI_EXE_FLUSH;
1177
1178#if WATCH_EXEC
1179 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1180#endif
1181 BEGIN_LP_RING(2);
1182 OUT_RING(cmd);
1183 OUT_RING(0); /* noop */
1184 ADVANCE_LP_RING();
1185 }
1186}
1187
1188/**
1189 * Ensures that all rendering to the object has completed and the object is
1190 * safe to unbind from the GTT or access from the CPU.
1191 */
1192static int
1193i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1194{
1195 struct drm_device *dev = obj->dev;
1196 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1197 int ret;
1198
e47c68e9
EA
1199 /* This function only exists to support waiting for existing rendering,
1200 * not for emitting required flushes.
673a394b 1201 */
e47c68e9 1202 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1203
1204 /* If there is rendering queued on the buffer being evicted, wait for
1205 * it.
1206 */
1207 if (obj_priv->active) {
1208#if WATCH_BUF
1209 DRM_INFO("%s: object %p wait for seqno %08x\n",
1210 __func__, obj, obj_priv->last_rendering_seqno);
1211#endif
1212 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1213 if (ret != 0)
1214 return ret;
1215 }
1216
1217 return 0;
1218}
1219
1220/**
1221 * Unbinds an object from the GTT aperture.
1222 */
0f973f27 1223int
673a394b
EA
1224i915_gem_object_unbind(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1228 loff_t offset;
673a394b
EA
1229 int ret = 0;
1230
1231#if WATCH_BUF
1232 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1233 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1234#endif
1235 if (obj_priv->gtt_space == NULL)
1236 return 0;
1237
1238 if (obj_priv->pin_count != 0) {
1239 DRM_ERROR("Attempting to unbind pinned buffer\n");
1240 return -EINVAL;
1241 }
1242
673a394b
EA
1243 /* Move the object to the CPU domain to ensure that
1244 * any possible CPU writes while it's not in the GTT
1245 * are flushed when we go to remap it. This will
1246 * also ensure that all pending GPU writes are finished
1247 * before we unbind.
1248 */
e47c68e9 1249 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1250 if (ret) {
e47c68e9
EA
1251 if (ret != -ERESTARTSYS)
1252 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1253 return ret;
1254 }
1255
1256 if (obj_priv->agp_mem != NULL) {
1257 drm_unbind_agp(obj_priv->agp_mem);
1258 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1259 obj_priv->agp_mem = NULL;
1260 }
1261
1262 BUG_ON(obj_priv->active);
1263
de151cf6
JB
1264 /* blow away mappings if mapped through GTT */
1265 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1266 if (dev->dev_mapping)
1267 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1268
1269 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1270 i915_gem_clear_fence_reg(obj);
1271
673a394b
EA
1272 i915_gem_object_free_page_list(obj);
1273
1274 if (obj_priv->gtt_space) {
1275 atomic_dec(&dev->gtt_count);
1276 atomic_sub(obj->size, &dev->gtt_memory);
1277
1278 drm_mm_put_block(obj_priv->gtt_space);
1279 obj_priv->gtt_space = NULL;
1280 }
1281
1282 /* Remove ourselves from the LRU list if present. */
1283 if (!list_empty(&obj_priv->list))
1284 list_del_init(&obj_priv->list);
1285
1286 return 0;
1287}
1288
1289static int
1290i915_gem_evict_something(struct drm_device *dev)
1291{
1292 drm_i915_private_t *dev_priv = dev->dev_private;
1293 struct drm_gem_object *obj;
1294 struct drm_i915_gem_object *obj_priv;
1295 int ret = 0;
1296
1297 for (;;) {
1298 /* If there's an inactive buffer available now, grab it
1299 * and be done.
1300 */
1301 if (!list_empty(&dev_priv->mm.inactive_list)) {
1302 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1303 struct drm_i915_gem_object,
1304 list);
1305 obj = obj_priv->obj;
1306 BUG_ON(obj_priv->pin_count != 0);
1307#if WATCH_LRU
1308 DRM_INFO("%s: evicting %p\n", __func__, obj);
1309#endif
1310 BUG_ON(obj_priv->active);
1311
1312 /* Wait on the rendering and unbind the buffer. */
1313 ret = i915_gem_object_unbind(obj);
1314 break;
1315 }
1316
1317 /* If we didn't get anything, but the ring is still processing
1318 * things, wait for one of those things to finish and hopefully
1319 * leave us a buffer to evict.
1320 */
1321 if (!list_empty(&dev_priv->mm.request_list)) {
1322 struct drm_i915_gem_request *request;
1323
1324 request = list_first_entry(&dev_priv->mm.request_list,
1325 struct drm_i915_gem_request,
1326 list);
1327
1328 ret = i915_wait_request(dev, request->seqno);
1329 if (ret)
1330 break;
1331
1332 /* if waiting caused an object to become inactive,
1333 * then loop around and wait for it. Otherwise, we
1334 * assume that waiting freed and unbound something,
1335 * so there should now be some space in the GTT
1336 */
1337 if (!list_empty(&dev_priv->mm.inactive_list))
1338 continue;
1339 break;
1340 }
1341
1342 /* If we didn't have anything on the request list but there
1343 * are buffers awaiting a flush, emit one and try again.
1344 * When we wait on it, those buffers waiting for that flush
1345 * will get moved to inactive.
1346 */
1347 if (!list_empty(&dev_priv->mm.flushing_list)) {
1348 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1349 struct drm_i915_gem_object,
1350 list);
1351 obj = obj_priv->obj;
1352
1353 i915_gem_flush(dev,
1354 obj->write_domain,
1355 obj->write_domain);
1356 i915_add_request(dev, obj->write_domain);
1357
1358 obj = NULL;
1359 continue;
1360 }
1361
1362 DRM_ERROR("inactive empty %d request empty %d "
1363 "flushing empty %d\n",
1364 list_empty(&dev_priv->mm.inactive_list),
1365 list_empty(&dev_priv->mm.request_list),
1366 list_empty(&dev_priv->mm.flushing_list));
1367 /* If we didn't do any of the above, there's nothing to be done
1368 * and we just can't fit it in.
1369 */
1370 return -ENOMEM;
1371 }
1372 return ret;
1373}
1374
ac94a962
KP
1375static int
1376i915_gem_evict_everything(struct drm_device *dev)
1377{
1378 int ret;
1379
1380 for (;;) {
1381 ret = i915_gem_evict_something(dev);
1382 if (ret != 0)
1383 break;
1384 }
15c35334
OA
1385 if (ret == -ENOMEM)
1386 return 0;
ac94a962
KP
1387 return ret;
1388}
1389
673a394b
EA
1390static int
1391i915_gem_object_get_page_list(struct drm_gem_object *obj)
1392{
1393 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1394 int page_count, i;
1395 struct address_space *mapping;
1396 struct inode *inode;
1397 struct page *page;
1398 int ret;
1399
1400 if (obj_priv->page_list)
1401 return 0;
1402
1403 /* Get the list of pages out of our struct file. They'll be pinned
1404 * at this point until we release them.
1405 */
1406 page_count = obj->size / PAGE_SIZE;
1407 BUG_ON(obj_priv->page_list != NULL);
1408 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1409 DRM_MEM_DRIVER);
1410 if (obj_priv->page_list == NULL) {
1411 DRM_ERROR("Faled to allocate page list\n");
1412 return -ENOMEM;
1413 }
1414
1415 inode = obj->filp->f_path.dentry->d_inode;
1416 mapping = inode->i_mapping;
1417 for (i = 0; i < page_count; i++) {
1418 page = read_mapping_page(mapping, i, NULL);
1419 if (IS_ERR(page)) {
1420 ret = PTR_ERR(page);
1421 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1422 i915_gem_object_free_page_list(obj);
1423 return ret;
1424 }
1425 obj_priv->page_list[i] = page;
1426 }
1427 return 0;
1428}
1429
de151cf6
JB
1430static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
1431{
1432 struct drm_gem_object *obj = reg->obj;
1433 struct drm_device *dev = obj->dev;
1434 drm_i915_private_t *dev_priv = dev->dev_private;
1435 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1436 int regnum = obj_priv->fence_reg;
1437 uint64_t val;
1438
1439 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
1440 0xfffff000) << 32;
1441 val |= obj_priv->gtt_offset & 0xfffff000;
1442 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
1443 if (obj_priv->tiling_mode == I915_TILING_Y)
1444 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1445 val |= I965_FENCE_REG_VALID;
1446
1447 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
1448}
1449
1450static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
1451{
1452 struct drm_gem_object *obj = reg->obj;
1453 struct drm_device *dev = obj->dev;
1454 drm_i915_private_t *dev_priv = dev->dev_private;
1455 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1456 int regnum = obj_priv->fence_reg;
0f973f27 1457 int tile_width;
de151cf6
JB
1458 uint32_t val;
1459 uint32_t pitch_val;
1460
1461 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1462 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 1463 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 1464 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
1465 return;
1466 }
1467
0f973f27
JB
1468 if (obj_priv->tiling_mode == I915_TILING_Y &&
1469 HAS_128_BYTE_Y_TILING(dev))
1470 tile_width = 128;
de151cf6 1471 else
0f973f27
JB
1472 tile_width = 512;
1473
1474 /* Note: pitch better be a power of two tile widths */
1475 pitch_val = obj_priv->stride / tile_width;
1476 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
1477
1478 val = obj_priv->gtt_offset;
1479 if (obj_priv->tiling_mode == I915_TILING_Y)
1480 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1481 val |= I915_FENCE_SIZE_BITS(obj->size);
1482 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1483 val |= I830_FENCE_REG_VALID;
1484
1485 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1486}
1487
1488static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
1489{
1490 struct drm_gem_object *obj = reg->obj;
1491 struct drm_device *dev = obj->dev;
1492 drm_i915_private_t *dev_priv = dev->dev_private;
1493 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1494 int regnum = obj_priv->fence_reg;
1495 uint32_t val;
1496 uint32_t pitch_val;
1497
1498 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
1499 (obj_priv->gtt_offset & (obj->size - 1))) {
0f973f27
JB
1500 WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
1501 __func__, obj_priv->gtt_offset);
de151cf6
JB
1502 return;
1503 }
1504
1505 pitch_val = (obj_priv->stride / 128) - 1;
1506
1507 val = obj_priv->gtt_offset;
1508 if (obj_priv->tiling_mode == I915_TILING_Y)
1509 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1510 val |= I830_FENCE_SIZE_BITS(obj->size);
1511 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1512 val |= I830_FENCE_REG_VALID;
1513
1514 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
1515
1516}
1517
1518/**
1519 * i915_gem_object_get_fence_reg - set up a fence reg for an object
1520 * @obj: object to map through a fence reg
0f973f27 1521 * @write: object is about to be written
de151cf6
JB
1522 *
1523 * When mapping objects through the GTT, userspace wants to be able to write
1524 * to them without having to worry about swizzling if the object is tiled.
1525 *
1526 * This function walks the fence regs looking for a free one for @obj,
1527 * stealing one if it can't find any.
1528 *
1529 * It then sets up the reg based on the object's properties: address, pitch
1530 * and tiling format.
1531 */
d9ddcb96 1532static int
0f973f27 1533i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
de151cf6
JB
1534{
1535 struct drm_device *dev = obj->dev;
79e53945 1536 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1537 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1538 struct drm_i915_fence_reg *reg = NULL;
1539 int i, ret;
1540
1541 switch (obj_priv->tiling_mode) {
1542 case I915_TILING_NONE:
1543 WARN(1, "allocating a fence for non-tiled object?\n");
1544 break;
1545 case I915_TILING_X:
0f973f27
JB
1546 if (!obj_priv->stride)
1547 return -EINVAL;
1548 WARN((obj_priv->stride & (512 - 1)),
1549 "object 0x%08x is X tiled but has non-512B pitch\n",
1550 obj_priv->gtt_offset);
de151cf6
JB
1551 break;
1552 case I915_TILING_Y:
0f973f27
JB
1553 if (!obj_priv->stride)
1554 return -EINVAL;
1555 WARN((obj_priv->stride & (128 - 1)),
1556 "object 0x%08x is Y tiled but has non-128B pitch\n",
1557 obj_priv->gtt_offset);
de151cf6
JB
1558 break;
1559 }
1560
1561 /* First try to find a free reg */
1562 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1563 reg = &dev_priv->fence_regs[i];
1564 if (!reg->obj)
1565 break;
1566 }
1567
1568 /* None available, try to steal one or wait for a user to finish */
1569 if (i == dev_priv->num_fence_regs) {
1570 struct drm_i915_gem_object *old_obj_priv = NULL;
1571 loff_t offset;
1572
1573try_again:
1574 /* Could try to use LRU here instead... */
1575 for (i = dev_priv->fence_reg_start;
1576 i < dev_priv->num_fence_regs; i++) {
1577 reg = &dev_priv->fence_regs[i];
1578 old_obj_priv = reg->obj->driver_private;
1579 if (!old_obj_priv->pin_count)
1580 break;
1581 }
1582
1583 /*
1584 * Now things get ugly... we have to wait for one of the
1585 * objects to finish before trying again.
1586 */
1587 if (i == dev_priv->num_fence_regs) {
d9ddcb96 1588 ret = i915_gem_object_set_to_gtt_domain(reg->obj, 0);
de151cf6 1589 if (ret) {
d9ddcb96
EA
1590 WARN(ret != -ERESTARTSYS,
1591 "switch to GTT domain failed: %d\n", ret);
1592 return ret;
de151cf6
JB
1593 }
1594 goto try_again;
1595 }
1596
1597 /*
1598 * Zap this virtual mapping so we can set up a fence again
1599 * for this object next time we need it.
1600 */
1601 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1602 if (dev->dev_mapping)
1603 unmap_mapping_range(dev->dev_mapping, offset,
1604 reg->obj->size, 1);
de151cf6
JB
1605 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
1606 }
1607
1608 obj_priv->fence_reg = i;
1609 reg->obj = obj;
1610
1611 if (IS_I965G(dev))
1612 i965_write_fence_reg(reg);
1613 else if (IS_I9XX(dev))
1614 i915_write_fence_reg(reg);
1615 else
1616 i830_write_fence_reg(reg);
d9ddcb96
EA
1617
1618 return 0;
de151cf6
JB
1619}
1620
1621/**
1622 * i915_gem_clear_fence_reg - clear out fence register info
1623 * @obj: object to clear
1624 *
1625 * Zeroes out the fence register itself and clears out the associated
1626 * data structures in dev_priv and obj_priv.
1627 */
1628static void
1629i915_gem_clear_fence_reg(struct drm_gem_object *obj)
1630{
1631 struct drm_device *dev = obj->dev;
79e53945 1632 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1633 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1634
1635 if (IS_I965G(dev))
1636 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
1637 else
1638 I915_WRITE(FENCE_REG_830_0 + (obj_priv->fence_reg * 4), 0);
1639
1640 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
1641 obj_priv->fence_reg = I915_FENCE_REG_NONE;
1642}
1643
673a394b
EA
1644/**
1645 * Finds free space in the GTT aperture and binds the object there.
1646 */
1647static int
1648i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1649{
1650 struct drm_device *dev = obj->dev;
1651 drm_i915_private_t *dev_priv = dev->dev_private;
1652 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1653 struct drm_mm_node *free_space;
1654 int page_count, ret;
1655
9bb2d6f9
EA
1656 if (dev_priv->mm.suspended)
1657 return -EBUSY;
673a394b 1658 if (alignment == 0)
0f973f27 1659 alignment = i915_gem_get_gtt_alignment(obj);
673a394b
EA
1660 if (alignment & (PAGE_SIZE - 1)) {
1661 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1662 return -EINVAL;
1663 }
1664
1665 search_free:
1666 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1667 obj->size, alignment, 0);
1668 if (free_space != NULL) {
1669 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1670 alignment);
1671 if (obj_priv->gtt_space != NULL) {
1672 obj_priv->gtt_space->private = obj;
1673 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1674 }
1675 }
1676 if (obj_priv->gtt_space == NULL) {
1677 /* If the gtt is empty and we're still having trouble
1678 * fitting our object in, we're out of memory.
1679 */
1680#if WATCH_LRU
1681 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1682#endif
1683 if (list_empty(&dev_priv->mm.inactive_list) &&
1684 list_empty(&dev_priv->mm.flushing_list) &&
1685 list_empty(&dev_priv->mm.active_list)) {
1686 DRM_ERROR("GTT full, but LRU list empty\n");
1687 return -ENOMEM;
1688 }
1689
1690 ret = i915_gem_evict_something(dev);
1691 if (ret != 0) {
ac94a962
KP
1692 if (ret != -ERESTARTSYS)
1693 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
1694 return ret;
1695 }
1696 goto search_free;
1697 }
1698
1699#if WATCH_BUF
1700 DRM_INFO("Binding object of size %d at 0x%08x\n",
1701 obj->size, obj_priv->gtt_offset);
1702#endif
1703 ret = i915_gem_object_get_page_list(obj);
1704 if (ret) {
1705 drm_mm_put_block(obj_priv->gtt_space);
1706 obj_priv->gtt_space = NULL;
1707 return ret;
1708 }
1709
1710 page_count = obj->size / PAGE_SIZE;
1711 /* Create an AGP memory structure pointing at our pages, and bind it
1712 * into the GTT.
1713 */
1714 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1715 obj_priv->page_list,
1716 page_count,
ba1eb1d8
KP
1717 obj_priv->gtt_offset,
1718 obj_priv->agp_type);
673a394b
EA
1719 if (obj_priv->agp_mem == NULL) {
1720 i915_gem_object_free_page_list(obj);
1721 drm_mm_put_block(obj_priv->gtt_space);
1722 obj_priv->gtt_space = NULL;
1723 return -ENOMEM;
1724 }
1725 atomic_inc(&dev->gtt_count);
1726 atomic_add(obj->size, &dev->gtt_memory);
1727
1728 /* Assert that the object is not currently in any GPU domain. As it
1729 * wasn't in the GTT, there shouldn't be any way it could have been in
1730 * a GPU cache
1731 */
1732 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1733 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1734
1735 return 0;
1736}
1737
1738void
1739i915_gem_clflush_object(struct drm_gem_object *obj)
1740{
1741 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1742
1743 /* If we don't have a page list set up, then we're not pinned
1744 * to GPU, and we can ignore the cache flush because it'll happen
1745 * again at bind time.
1746 */
1747 if (obj_priv->page_list == NULL)
1748 return;
1749
1750 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1751}
1752
e47c68e9
EA
1753/** Flushes any GPU write domain for the object if it's dirty. */
1754static void
1755i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
1756{
1757 struct drm_device *dev = obj->dev;
1758 uint32_t seqno;
1759
1760 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
1761 return;
1762
1763 /* Queue the GPU write cache flushing we need. */
1764 i915_gem_flush(dev, 0, obj->write_domain);
1765 seqno = i915_add_request(dev, obj->write_domain);
1766 obj->write_domain = 0;
1767 i915_gem_object_move_to_active(obj, seqno);
1768}
1769
1770/** Flushes the GTT write domain for the object if it's dirty. */
1771static void
1772i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
1773{
1774 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
1775 return;
1776
1777 /* No actual flushing is required for the GTT write domain. Writes
1778 * to it immediately go to main memory as far as we know, so there's
1779 * no chipset flush. It also doesn't land in render cache.
1780 */
1781 obj->write_domain = 0;
1782}
1783
1784/** Flushes the CPU write domain for the object if it's dirty. */
1785static void
1786i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
1787{
1788 struct drm_device *dev = obj->dev;
1789
1790 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
1791 return;
1792
1793 i915_gem_clflush_object(obj);
1794 drm_agp_chipset_flush(dev);
1795 obj->write_domain = 0;
1796}
1797
2ef7eeaa
EA
1798/**
1799 * Moves a single object to the GTT read, and possibly write domain.
1800 *
1801 * This function returns when the move is complete, including waiting on
1802 * flushes to occur.
1803 */
79e53945 1804int
2ef7eeaa
EA
1805i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
1806{
2ef7eeaa 1807 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 1808 int ret;
2ef7eeaa 1809
02354392
EA
1810 /* Not valid to be called on unbound objects. */
1811 if (obj_priv->gtt_space == NULL)
1812 return -EINVAL;
1813
e47c68e9
EA
1814 i915_gem_object_flush_gpu_write_domain(obj);
1815 /* Wait on any GPU rendering and flushing to occur. */
1816 ret = i915_gem_object_wait_rendering(obj);
1817 if (ret != 0)
1818 return ret;
1819
1820 /* If we're writing through the GTT domain, then CPU and GPU caches
1821 * will need to be invalidated at next use.
2ef7eeaa 1822 */
e47c68e9
EA
1823 if (write)
1824 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 1825
e47c68e9 1826 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 1827
e47c68e9
EA
1828 /* It should now be out of any other write domains, and we can update
1829 * the domain values for our changes.
1830 */
1831 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1832 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1833 if (write) {
1834 obj->write_domain = I915_GEM_DOMAIN_GTT;
1835 obj_priv->dirty = 1;
2ef7eeaa
EA
1836 }
1837
e47c68e9
EA
1838 return 0;
1839}
1840
1841/**
1842 * Moves a single object to the CPU read, and possibly write domain.
1843 *
1844 * This function returns when the move is complete, including waiting on
1845 * flushes to occur.
1846 */
1847static int
1848i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
1849{
1850 struct drm_device *dev = obj->dev;
1851 int ret;
1852
1853 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 1854 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
1855 ret = i915_gem_object_wait_rendering(obj);
1856 if (ret != 0)
1857 return ret;
2ef7eeaa 1858
e47c68e9 1859 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 1860
e47c68e9
EA
1861 /* If we have a partially-valid cache of the object in the CPU,
1862 * finish invalidating it and free the per-page flags.
2ef7eeaa 1863 */
e47c68e9 1864 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 1865
e47c68e9
EA
1866 /* Flush the CPU cache if it's still invalid. */
1867 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa
EA
1868 i915_gem_clflush_object(obj);
1869 drm_agp_chipset_flush(dev);
1870
e47c68e9 1871 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
1872 }
1873
1874 /* It should now be out of any other write domains, and we can update
1875 * the domain values for our changes.
1876 */
e47c68e9
EA
1877 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1878
1879 /* If we're writing through the CPU, then the GPU read domains will
1880 * need to be invalidated at next use.
1881 */
1882 if (write) {
1883 obj->read_domains &= I915_GEM_DOMAIN_CPU;
1884 obj->write_domain = I915_GEM_DOMAIN_CPU;
1885 }
2ef7eeaa
EA
1886
1887 return 0;
1888}
1889
673a394b
EA
1890/*
1891 * Set the next domain for the specified object. This
1892 * may not actually perform the necessary flushing/invaliding though,
1893 * as that may want to be batched with other set_domain operations
1894 *
1895 * This is (we hope) the only really tricky part of gem. The goal
1896 * is fairly simple -- track which caches hold bits of the object
1897 * and make sure they remain coherent. A few concrete examples may
1898 * help to explain how it works. For shorthand, we use the notation
1899 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1900 * a pair of read and write domain masks.
1901 *
1902 * Case 1: the batch buffer
1903 *
1904 * 1. Allocated
1905 * 2. Written by CPU
1906 * 3. Mapped to GTT
1907 * 4. Read by GPU
1908 * 5. Unmapped from GTT
1909 * 6. Freed
1910 *
1911 * Let's take these a step at a time
1912 *
1913 * 1. Allocated
1914 * Pages allocated from the kernel may still have
1915 * cache contents, so we set them to (CPU, CPU) always.
1916 * 2. Written by CPU (using pwrite)
1917 * The pwrite function calls set_domain (CPU, CPU) and
1918 * this function does nothing (as nothing changes)
1919 * 3. Mapped by GTT
1920 * This function asserts that the object is not
1921 * currently in any GPU-based read or write domains
1922 * 4. Read by GPU
1923 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1924 * As write_domain is zero, this function adds in the
1925 * current read domains (CPU+COMMAND, 0).
1926 * flush_domains is set to CPU.
1927 * invalidate_domains is set to COMMAND
1928 * clflush is run to get data out of the CPU caches
1929 * then i915_dev_set_domain calls i915_gem_flush to
1930 * emit an MI_FLUSH and drm_agp_chipset_flush
1931 * 5. Unmapped from GTT
1932 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1933 * flush_domains and invalidate_domains end up both zero
1934 * so no flushing/invalidating happens
1935 * 6. Freed
1936 * yay, done
1937 *
1938 * Case 2: The shared render buffer
1939 *
1940 * 1. Allocated
1941 * 2. Mapped to GTT
1942 * 3. Read/written by GPU
1943 * 4. set_domain to (CPU,CPU)
1944 * 5. Read/written by CPU
1945 * 6. Read/written by GPU
1946 *
1947 * 1. Allocated
1948 * Same as last example, (CPU, CPU)
1949 * 2. Mapped to GTT
1950 * Nothing changes (assertions find that it is not in the GPU)
1951 * 3. Read/written by GPU
1952 * execbuffer calls set_domain (RENDER, RENDER)
1953 * flush_domains gets CPU
1954 * invalidate_domains gets GPU
1955 * clflush (obj)
1956 * MI_FLUSH and drm_agp_chipset_flush
1957 * 4. set_domain (CPU, CPU)
1958 * flush_domains gets GPU
1959 * invalidate_domains gets CPU
1960 * wait_rendering (obj) to make sure all drawing is complete.
1961 * This will include an MI_FLUSH to get the data from GPU
1962 * to memory
1963 * clflush (obj) to invalidate the CPU cache
1964 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1965 * 5. Read/written by CPU
1966 * cache lines are loaded and dirtied
1967 * 6. Read written by GPU
1968 * Same as last GPU access
1969 *
1970 * Case 3: The constant buffer
1971 *
1972 * 1. Allocated
1973 * 2. Written by CPU
1974 * 3. Read by GPU
1975 * 4. Updated (written) by CPU again
1976 * 5. Read by GPU
1977 *
1978 * 1. Allocated
1979 * (CPU, CPU)
1980 * 2. Written by CPU
1981 * (CPU, CPU)
1982 * 3. Read by GPU
1983 * (CPU+RENDER, 0)
1984 * flush_domains = CPU
1985 * invalidate_domains = RENDER
1986 * clflush (obj)
1987 * MI_FLUSH
1988 * drm_agp_chipset_flush
1989 * 4. Updated (written) by CPU again
1990 * (CPU, CPU)
1991 * flush_domains = 0 (no previous write domain)
1992 * invalidate_domains = 0 (no new read domains)
1993 * 5. Read by GPU
1994 * (CPU+RENDER, 0)
1995 * flush_domains = CPU
1996 * invalidate_domains = RENDER
1997 * clflush (obj)
1998 * MI_FLUSH
1999 * drm_agp_chipset_flush
2000 */
c0d90829
KP
2001static void
2002i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
2003 uint32_t read_domains,
2004 uint32_t write_domain)
673a394b
EA
2005{
2006 struct drm_device *dev = obj->dev;
2007 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2008 uint32_t invalidate_domains = 0;
2009 uint32_t flush_domains = 0;
e47c68e9
EA
2010
2011 BUG_ON(read_domains & I915_GEM_DOMAIN_CPU);
2012 BUG_ON(write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2013
2014#if WATCH_BUF
2015 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2016 __func__, obj,
2017 obj->read_domains, read_domains,
2018 obj->write_domain, write_domain);
2019#endif
2020 /*
2021 * If the object isn't moving to a new write domain,
2022 * let the object stay in multiple read domains
2023 */
2024 if (write_domain == 0)
2025 read_domains |= obj->read_domains;
2026 else
2027 obj_priv->dirty = 1;
2028
2029 /*
2030 * Flush the current write domain if
2031 * the new read domains don't match. Invalidate
2032 * any read domains which differ from the old
2033 * write domain
2034 */
2035 if (obj->write_domain && obj->write_domain != read_domains) {
2036 flush_domains |= obj->write_domain;
2037 invalidate_domains |= read_domains & ~obj->write_domain;
2038 }
2039 /*
2040 * Invalidate any read caches which may have
2041 * stale data. That is, any new read domains.
2042 */
2043 invalidate_domains |= read_domains & ~obj->read_domains;
2044 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2045#if WATCH_BUF
2046 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2047 __func__, flush_domains, invalidate_domains);
2048#endif
673a394b
EA
2049 i915_gem_clflush_object(obj);
2050 }
2051
2052 if ((write_domain | flush_domains) != 0)
2053 obj->write_domain = write_domain;
673a394b
EA
2054 obj->read_domains = read_domains;
2055
2056 dev->invalidate_domains |= invalidate_domains;
2057 dev->flush_domains |= flush_domains;
2058#if WATCH_BUF
2059 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2060 __func__,
2061 obj->read_domains, obj->write_domain,
2062 dev->invalidate_domains, dev->flush_domains);
2063#endif
673a394b
EA
2064}
2065
2066/**
e47c68e9 2067 * Moves the object from a partially CPU read to a full one.
673a394b 2068 *
e47c68e9
EA
2069 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2070 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2071 */
e47c68e9
EA
2072static void
2073i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 2074{
e47c68e9 2075 struct drm_device *dev = obj->dev;
673a394b 2076 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2077
e47c68e9
EA
2078 if (!obj_priv->page_cpu_valid)
2079 return;
2080
2081 /* If we're partially in the CPU read domain, finish moving it in.
2082 */
2083 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2084 int i;
2085
2086 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2087 if (obj_priv->page_cpu_valid[i])
2088 continue;
2089 drm_clflush_pages(obj_priv->page_list + i, 1);
2090 }
2091 drm_agp_chipset_flush(dev);
2092 }
2093
2094 /* Free the page_cpu_valid mappings which are now stale, whether
2095 * or not we've got I915_GEM_DOMAIN_CPU.
2096 */
2097 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2098 DRM_MEM_DRIVER);
2099 obj_priv->page_cpu_valid = NULL;
2100}
2101
2102/**
2103 * Set the CPU read domain on a range of the object.
2104 *
2105 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2106 * not entirely valid. The page_cpu_valid member of the object flags which
2107 * pages have been flushed, and will be respected by
2108 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2109 * of the whole object.
2110 *
2111 * This function returns when the move is complete, including waiting on
2112 * flushes to occur.
2113 */
2114static int
2115i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2116 uint64_t offset, uint64_t size)
2117{
2118 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2119 int i, ret;
673a394b 2120
e47c68e9
EA
2121 if (offset == 0 && size == obj->size)
2122 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2123
e47c68e9
EA
2124 i915_gem_object_flush_gpu_write_domain(obj);
2125 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2126 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2127 if (ret != 0)
6a47baa6 2128 return ret;
e47c68e9
EA
2129 i915_gem_object_flush_gtt_write_domain(obj);
2130
2131 /* If we're already fully in the CPU read domain, we're done. */
2132 if (obj_priv->page_cpu_valid == NULL &&
2133 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2134 return 0;
673a394b 2135
e47c68e9
EA
2136 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2137 * newly adding I915_GEM_DOMAIN_CPU
2138 */
673a394b
EA
2139 if (obj_priv->page_cpu_valid == NULL) {
2140 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2141 DRM_MEM_DRIVER);
e47c68e9
EA
2142 if (obj_priv->page_cpu_valid == NULL)
2143 return -ENOMEM;
2144 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2145 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2146
2147 /* Flush the cache on any pages that are still invalid from the CPU's
2148 * perspective.
2149 */
e47c68e9
EA
2150 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2151 i++) {
673a394b
EA
2152 if (obj_priv->page_cpu_valid[i])
2153 continue;
2154
2155 drm_clflush_pages(obj_priv->page_list + i, 1);
2156
2157 obj_priv->page_cpu_valid[i] = 1;
2158 }
2159
e47c68e9
EA
2160 /* It should now be out of any other write domains, and we can update
2161 * the domain values for our changes.
2162 */
2163 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2164
2165 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2166
673a394b
EA
2167 return 0;
2168}
2169
673a394b
EA
2170/**
2171 * Pin an object to the GTT and evaluate the relocations landing in it.
2172 */
2173static int
2174i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2175 struct drm_file *file_priv,
2176 struct drm_i915_gem_exec_object *entry)
2177{
2178 struct drm_device *dev = obj->dev;
0839ccb8 2179 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2180 struct drm_i915_gem_relocation_entry reloc;
2181 struct drm_i915_gem_relocation_entry __user *relocs;
2182 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2183 int i, ret;
0839ccb8 2184 void __iomem *reloc_page;
673a394b
EA
2185
2186 /* Choose the GTT offset for our buffer and put it there. */
2187 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2188 if (ret)
2189 return ret;
2190
2191 entry->offset = obj_priv->gtt_offset;
2192
2193 relocs = (struct drm_i915_gem_relocation_entry __user *)
2194 (uintptr_t) entry->relocs_ptr;
2195 /* Apply the relocations, using the GTT aperture to avoid cache
2196 * flushing requirements.
2197 */
2198 for (i = 0; i < entry->relocation_count; i++) {
2199 struct drm_gem_object *target_obj;
2200 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2201 uint32_t reloc_val, reloc_offset;
2202 uint32_t __iomem *reloc_entry;
673a394b
EA
2203
2204 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
2205 if (ret != 0) {
2206 i915_gem_object_unpin(obj);
2207 return ret;
2208 }
2209
2210 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2211 reloc.target_handle);
2212 if (target_obj == NULL) {
2213 i915_gem_object_unpin(obj);
2214 return -EBADF;
2215 }
2216 target_obj_priv = target_obj->driver_private;
2217
2218 /* The target buffer should have appeared before us in the
2219 * exec_object list, so it should have a GTT space bound by now.
2220 */
2221 if (target_obj_priv->gtt_space == NULL) {
2222 DRM_ERROR("No GTT space found for object %d\n",
2223 reloc.target_handle);
2224 drm_gem_object_unreference(target_obj);
2225 i915_gem_object_unpin(obj);
2226 return -EINVAL;
2227 }
2228
2229 if (reloc.offset > obj->size - 4) {
2230 DRM_ERROR("Relocation beyond object bounds: "
2231 "obj %p target %d offset %d size %d.\n",
2232 obj, reloc.target_handle,
2233 (int) reloc.offset, (int) obj->size);
2234 drm_gem_object_unreference(target_obj);
2235 i915_gem_object_unpin(obj);
2236 return -EINVAL;
2237 }
2238 if (reloc.offset & 3) {
2239 DRM_ERROR("Relocation not 4-byte aligned: "
2240 "obj %p target %d offset %d.\n",
2241 obj, reloc.target_handle,
2242 (int) reloc.offset);
2243 drm_gem_object_unreference(target_obj);
2244 i915_gem_object_unpin(obj);
2245 return -EINVAL;
2246 }
2247
e47c68e9
EA
2248 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
2249 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
2250 DRM_ERROR("reloc with read/write CPU domains: "
2251 "obj %p target %d offset %d "
2252 "read %08x write %08x",
2253 obj, reloc.target_handle,
2254 (int) reloc.offset,
2255 reloc.read_domains,
2256 reloc.write_domain);
491152b8
CW
2257 drm_gem_object_unreference(target_obj);
2258 i915_gem_object_unpin(obj);
e47c68e9
EA
2259 return -EINVAL;
2260 }
2261
673a394b
EA
2262 if (reloc.write_domain && target_obj->pending_write_domain &&
2263 reloc.write_domain != target_obj->pending_write_domain) {
2264 DRM_ERROR("Write domain conflict: "
2265 "obj %p target %d offset %d "
2266 "new %08x old %08x\n",
2267 obj, reloc.target_handle,
2268 (int) reloc.offset,
2269 reloc.write_domain,
2270 target_obj->pending_write_domain);
2271 drm_gem_object_unreference(target_obj);
2272 i915_gem_object_unpin(obj);
2273 return -EINVAL;
2274 }
2275
2276#if WATCH_RELOC
2277 DRM_INFO("%s: obj %p offset %08x target %d "
2278 "read %08x write %08x gtt %08x "
2279 "presumed %08x delta %08x\n",
2280 __func__,
2281 obj,
2282 (int) reloc.offset,
2283 (int) reloc.target_handle,
2284 (int) reloc.read_domains,
2285 (int) reloc.write_domain,
2286 (int) target_obj_priv->gtt_offset,
2287 (int) reloc.presumed_offset,
2288 reloc.delta);
2289#endif
2290
2291 target_obj->pending_read_domains |= reloc.read_domains;
2292 target_obj->pending_write_domain |= reloc.write_domain;
2293
2294 /* If the relocation already has the right value in it, no
2295 * more work needs to be done.
2296 */
2297 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
2298 drm_gem_object_unreference(target_obj);
2299 continue;
2300 }
2301
2ef7eeaa
EA
2302 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2303 if (ret != 0) {
2304 drm_gem_object_unreference(target_obj);
2305 i915_gem_object_unpin(obj);
2306 return -EINVAL;
673a394b
EA
2307 }
2308
2309 /* Map the page containing the relocation we're going to
2310 * perform.
2311 */
2312 reloc_offset = obj_priv->gtt_offset + reloc.offset;
0839ccb8
KP
2313 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
2314 (reloc_offset &
2315 ~(PAGE_SIZE - 1)));
3043c60c 2316 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 2317 (reloc_offset & (PAGE_SIZE - 1)));
673a394b
EA
2318 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
2319
2320#if WATCH_BUF
2321 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
2322 obj, (unsigned int) reloc.offset,
2323 readl(reloc_entry), reloc_val);
2324#endif
2325 writel(reloc_val, reloc_entry);
0839ccb8 2326 io_mapping_unmap_atomic(reloc_page);
673a394b
EA
2327
2328 /* Write the updated presumed offset for this entry back out
2329 * to the user.
2330 */
2331 reloc.presumed_offset = target_obj_priv->gtt_offset;
2332 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
2333 if (ret != 0) {
2334 drm_gem_object_unreference(target_obj);
2335 i915_gem_object_unpin(obj);
2336 return ret;
2337 }
2338
2339 drm_gem_object_unreference(target_obj);
2340 }
2341
673a394b
EA
2342#if WATCH_BUF
2343 if (0)
2344 i915_gem_dump_object(obj, 128, __func__, ~0);
2345#endif
2346 return 0;
2347}
2348
2349/** Dispatch a batchbuffer to the ring
2350 */
2351static int
2352i915_dispatch_gem_execbuffer(struct drm_device *dev,
2353 struct drm_i915_gem_execbuffer *exec,
2354 uint64_t exec_offset)
2355{
2356 drm_i915_private_t *dev_priv = dev->dev_private;
2357 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
2358 (uintptr_t) exec->cliprects_ptr;
2359 int nbox = exec->num_cliprects;
2360 int i = 0, count;
2361 uint32_t exec_start, exec_len;
2362 RING_LOCALS;
2363
2364 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
2365 exec_len = (uint32_t) exec->batch_len;
2366
2367 if ((exec_start | exec_len) & 0x7) {
2368 DRM_ERROR("alignment\n");
2369 return -EINVAL;
2370 }
2371
2372 if (!exec_start)
2373 return -EINVAL;
2374
2375 count = nbox ? nbox : 1;
2376
2377 for (i = 0; i < count; i++) {
2378 if (i < nbox) {
2379 int ret = i915_emit_box(dev, boxes, i,
2380 exec->DR1, exec->DR4);
2381 if (ret)
2382 return ret;
2383 }
2384
2385 if (IS_I830(dev) || IS_845G(dev)) {
2386 BEGIN_LP_RING(4);
2387 OUT_RING(MI_BATCH_BUFFER);
2388 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2389 OUT_RING(exec_start + exec_len - 4);
2390 OUT_RING(0);
2391 ADVANCE_LP_RING();
2392 } else {
2393 BEGIN_LP_RING(2);
2394 if (IS_I965G(dev)) {
2395 OUT_RING(MI_BATCH_BUFFER_START |
2396 (2 << 6) |
2397 MI_BATCH_NON_SECURE_I965);
2398 OUT_RING(exec_start);
2399 } else {
2400 OUT_RING(MI_BATCH_BUFFER_START |
2401 (2 << 6));
2402 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
2403 }
2404 ADVANCE_LP_RING();
2405 }
2406 }
2407
2408 /* XXX breadcrumb */
2409 return 0;
2410}
2411
2412/* Throttle our rendering by waiting until the ring has completed our requests
2413 * emitted over 20 msec ago.
2414 *
2415 * This should get us reasonable parallelism between CPU and GPU but also
2416 * relatively low latency when blocking on a particular request to finish.
2417 */
2418static int
2419i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
2420{
2421 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2422 int ret = 0;
2423 uint32_t seqno;
2424
2425 mutex_lock(&dev->struct_mutex);
2426 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
2427 i915_file_priv->mm.last_gem_throttle_seqno =
2428 i915_file_priv->mm.last_gem_seqno;
2429 if (seqno)
2430 ret = i915_wait_request(dev, seqno);
2431 mutex_unlock(&dev->struct_mutex);
2432 return ret;
2433}
2434
2435int
2436i915_gem_execbuffer(struct drm_device *dev, void *data,
2437 struct drm_file *file_priv)
2438{
2439 drm_i915_private_t *dev_priv = dev->dev_private;
2440 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
2441 struct drm_i915_gem_execbuffer *args = data;
2442 struct drm_i915_gem_exec_object *exec_list = NULL;
2443 struct drm_gem_object **object_list = NULL;
2444 struct drm_gem_object *batch_obj;
2445 int ret, i, pinned = 0;
2446 uint64_t exec_offset;
2447 uint32_t seqno, flush_domains;
ac94a962 2448 int pin_tries;
673a394b
EA
2449
2450#if WATCH_EXEC
2451 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
2452 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
2453#endif
2454
4f481ed2
EA
2455 if (args->buffer_count < 1) {
2456 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
2457 return -EINVAL;
2458 }
673a394b
EA
2459 /* Copy in the exec list from userland */
2460 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
2461 DRM_MEM_DRIVER);
2462 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
2463 DRM_MEM_DRIVER);
2464 if (exec_list == NULL || object_list == NULL) {
2465 DRM_ERROR("Failed to allocate exec or object list "
2466 "for %d buffers\n",
2467 args->buffer_count);
2468 ret = -ENOMEM;
2469 goto pre_mutex_err;
2470 }
2471 ret = copy_from_user(exec_list,
2472 (struct drm_i915_relocation_entry __user *)
2473 (uintptr_t) args->buffers_ptr,
2474 sizeof(*exec_list) * args->buffer_count);
2475 if (ret != 0) {
2476 DRM_ERROR("copy %d exec entries failed %d\n",
2477 args->buffer_count, ret);
2478 goto pre_mutex_err;
2479 }
2480
2481 mutex_lock(&dev->struct_mutex);
2482
2483 i915_verify_inactive(dev, __FILE__, __LINE__);
2484
2485 if (dev_priv->mm.wedged) {
2486 DRM_ERROR("Execbuf while wedged\n");
2487 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
2488 ret = -EIO;
2489 goto pre_mutex_err;
673a394b
EA
2490 }
2491
2492 if (dev_priv->mm.suspended) {
2493 DRM_ERROR("Execbuf while VT-switched.\n");
2494 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
2495 ret = -EBUSY;
2496 goto pre_mutex_err;
673a394b
EA
2497 }
2498
ac94a962 2499 /* Look up object handles */
673a394b
EA
2500 for (i = 0; i < args->buffer_count; i++) {
2501 object_list[i] = drm_gem_object_lookup(dev, file_priv,
2502 exec_list[i].handle);
2503 if (object_list[i] == NULL) {
2504 DRM_ERROR("Invalid object handle %d at index %d\n",
2505 exec_list[i].handle, i);
2506 ret = -EBADF;
2507 goto err;
2508 }
ac94a962 2509 }
673a394b 2510
ac94a962
KP
2511 /* Pin and relocate */
2512 for (pin_tries = 0; ; pin_tries++) {
2513 ret = 0;
2514 for (i = 0; i < args->buffer_count; i++) {
2515 object_list[i]->pending_read_domains = 0;
2516 object_list[i]->pending_write_domain = 0;
2517 ret = i915_gem_object_pin_and_relocate(object_list[i],
2518 file_priv,
2519 &exec_list[i]);
2520 if (ret)
2521 break;
2522 pinned = i + 1;
2523 }
2524 /* success */
2525 if (ret == 0)
2526 break;
2527
2528 /* error other than GTT full, or we've already tried again */
2529 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
2530 if (ret != -ERESTARTSYS)
2531 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
2532 goto err;
2533 }
ac94a962
KP
2534
2535 /* unpin all of our buffers */
2536 for (i = 0; i < pinned; i++)
2537 i915_gem_object_unpin(object_list[i]);
b1177636 2538 pinned = 0;
ac94a962
KP
2539
2540 /* evict everyone we can from the aperture */
2541 ret = i915_gem_evict_everything(dev);
2542 if (ret)
2543 goto err;
673a394b
EA
2544 }
2545
2546 /* Set the pending read domains for the batch buffer to COMMAND */
2547 batch_obj = object_list[args->buffer_count-1];
2548 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
2549 batch_obj->pending_write_domain = 0;
2550
2551 i915_verify_inactive(dev, __FILE__, __LINE__);
2552
646f0f6e
KP
2553 /* Zero the global flush/invalidate flags. These
2554 * will be modified as new domains are computed
2555 * for each object
2556 */
2557 dev->invalidate_domains = 0;
2558 dev->flush_domains = 0;
2559
673a394b
EA
2560 for (i = 0; i < args->buffer_count; i++) {
2561 struct drm_gem_object *obj = object_list[i];
673a394b 2562
646f0f6e 2563 /* Compute new gpu domains and update invalidate/flush */
c0d90829
KP
2564 i915_gem_object_set_to_gpu_domain(obj,
2565 obj->pending_read_domains,
2566 obj->pending_write_domain);
673a394b
EA
2567 }
2568
2569 i915_verify_inactive(dev, __FILE__, __LINE__);
2570
646f0f6e
KP
2571 if (dev->invalidate_domains | dev->flush_domains) {
2572#if WATCH_EXEC
2573 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
2574 __func__,
2575 dev->invalidate_domains,
2576 dev->flush_domains);
2577#endif
2578 i915_gem_flush(dev,
2579 dev->invalidate_domains,
2580 dev->flush_domains);
2581 if (dev->flush_domains)
2582 (void)i915_add_request(dev, dev->flush_domains);
2583 }
673a394b
EA
2584
2585 i915_verify_inactive(dev, __FILE__, __LINE__);
2586
2587#if WATCH_COHERENCY
2588 for (i = 0; i < args->buffer_count; i++) {
2589 i915_gem_object_check_coherency(object_list[i],
2590 exec_list[i].handle);
2591 }
2592#endif
2593
2594 exec_offset = exec_list[args->buffer_count - 1].offset;
2595
2596#if WATCH_EXEC
2597 i915_gem_dump_object(object_list[args->buffer_count - 1],
2598 args->batch_len,
2599 __func__,
2600 ~0);
2601#endif
2602
673a394b
EA
2603 /* Exec the batchbuffer */
2604 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
2605 if (ret) {
2606 DRM_ERROR("dispatch failed %d\n", ret);
2607 goto err;
2608 }
2609
2610 /*
2611 * Ensure that the commands in the batch buffer are
2612 * finished before the interrupt fires
2613 */
2614 flush_domains = i915_retire_commands(dev);
2615
2616 i915_verify_inactive(dev, __FILE__, __LINE__);
2617
2618 /*
2619 * Get a seqno representing the execution of the current buffer,
2620 * which we can wait on. We would like to mitigate these interrupts,
2621 * likely by only creating seqnos occasionally (so that we have
2622 * *some* interrupts representing completion of buffers that we can
2623 * wait on when trying to clear up gtt space).
2624 */
2625 seqno = i915_add_request(dev, flush_domains);
2626 BUG_ON(seqno == 0);
2627 i915_file_priv->mm.last_gem_seqno = seqno;
2628 for (i = 0; i < args->buffer_count; i++) {
2629 struct drm_gem_object *obj = object_list[i];
673a394b 2630
ce44b0ea 2631 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
2632#if WATCH_LRU
2633 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
2634#endif
2635 }
2636#if WATCH_LRU
2637 i915_dump_lru(dev, __func__);
2638#endif
2639
2640 i915_verify_inactive(dev, __FILE__, __LINE__);
2641
673a394b 2642err:
aad87dff
JL
2643 for (i = 0; i < pinned; i++)
2644 i915_gem_object_unpin(object_list[i]);
2645
2646 for (i = 0; i < args->buffer_count; i++)
2647 drm_gem_object_unreference(object_list[i]);
673a394b 2648
673a394b
EA
2649 mutex_unlock(&dev->struct_mutex);
2650
a35f2e2b
RD
2651 if (!ret) {
2652 /* Copy the new buffer offsets back to the user's exec list. */
2653 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
2654 (uintptr_t) args->buffers_ptr,
2655 exec_list,
2656 sizeof(*exec_list) * args->buffer_count);
2657 if (ret)
2658 DRM_ERROR("failed to copy %d exec entries "
2659 "back to user (%d)\n",
2660 args->buffer_count, ret);
2661 }
2662
673a394b
EA
2663pre_mutex_err:
2664 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
2665 DRM_MEM_DRIVER);
2666 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
2667 DRM_MEM_DRIVER);
2668
2669 return ret;
2670}
2671
2672int
2673i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
2674{
2675 struct drm_device *dev = obj->dev;
2676 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2677 int ret;
2678
2679 i915_verify_inactive(dev, __FILE__, __LINE__);
2680 if (obj_priv->gtt_space == NULL) {
2681 ret = i915_gem_object_bind_to_gtt(obj, alignment);
2682 if (ret != 0) {
9bb2d6f9 2683 if (ret != -EBUSY && ret != -ERESTARTSYS)
f1acec93 2684 DRM_ERROR("Failure to bind: %d", ret);
673a394b
EA
2685 return ret;
2686 }
0f973f27
JB
2687 /*
2688 * Pre-965 chips need a fence register set up in order to
2689 * properly handle tiled surfaces.
2690 */
2691 if (!IS_I965G(dev) &&
2692 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
2693 obj_priv->tiling_mode != I915_TILING_NONE)
2694 i915_gem_object_get_fence_reg(obj, true);
673a394b
EA
2695 }
2696 obj_priv->pin_count++;
2697
2698 /* If the object is not active and not pending a flush,
2699 * remove it from the inactive list
2700 */
2701 if (obj_priv->pin_count == 1) {
2702 atomic_inc(&dev->pin_count);
2703 atomic_add(obj->size, &dev->pin_memory);
2704 if (!obj_priv->active &&
2705 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2706 I915_GEM_DOMAIN_GTT)) == 0 &&
2707 !list_empty(&obj_priv->list))
2708 list_del_init(&obj_priv->list);
2709 }
2710 i915_verify_inactive(dev, __FILE__, __LINE__);
2711
2712 return 0;
2713}
2714
2715void
2716i915_gem_object_unpin(struct drm_gem_object *obj)
2717{
2718 struct drm_device *dev = obj->dev;
2719 drm_i915_private_t *dev_priv = dev->dev_private;
2720 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2721
2722 i915_verify_inactive(dev, __FILE__, __LINE__);
2723 obj_priv->pin_count--;
2724 BUG_ON(obj_priv->pin_count < 0);
2725 BUG_ON(obj_priv->gtt_space == NULL);
2726
2727 /* If the object is no longer pinned, and is
2728 * neither active nor being flushed, then stick it on
2729 * the inactive list
2730 */
2731 if (obj_priv->pin_count == 0) {
2732 if (!obj_priv->active &&
2733 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2734 I915_GEM_DOMAIN_GTT)) == 0)
2735 list_move_tail(&obj_priv->list,
2736 &dev_priv->mm.inactive_list);
2737 atomic_dec(&dev->pin_count);
2738 atomic_sub(obj->size, &dev->pin_memory);
2739 }
2740 i915_verify_inactive(dev, __FILE__, __LINE__);
2741}
2742
2743int
2744i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2745 struct drm_file *file_priv)
2746{
2747 struct drm_i915_gem_pin *args = data;
2748 struct drm_gem_object *obj;
2749 struct drm_i915_gem_object *obj_priv;
2750 int ret;
2751
2752 mutex_lock(&dev->struct_mutex);
2753
2754 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2755 if (obj == NULL) {
2756 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2757 args->handle);
2758 mutex_unlock(&dev->struct_mutex);
2759 return -EBADF;
2760 }
2761 obj_priv = obj->driver_private;
2762
79e53945
JB
2763 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
2764 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
2765 args->handle);
96dec61d 2766 drm_gem_object_unreference(obj);
673a394b 2767 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2768 return -EINVAL;
2769 }
2770
2771 obj_priv->user_pin_count++;
2772 obj_priv->pin_filp = file_priv;
2773 if (obj_priv->user_pin_count == 1) {
2774 ret = i915_gem_object_pin(obj, args->alignment);
2775 if (ret != 0) {
2776 drm_gem_object_unreference(obj);
2777 mutex_unlock(&dev->struct_mutex);
2778 return ret;
2779 }
673a394b
EA
2780 }
2781
2782 /* XXX - flush the CPU caches for pinned objects
2783 * as the X server doesn't manage domains yet
2784 */
e47c68e9 2785 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
2786 args->offset = obj_priv->gtt_offset;
2787 drm_gem_object_unreference(obj);
2788 mutex_unlock(&dev->struct_mutex);
2789
2790 return 0;
2791}
2792
2793int
2794i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2795 struct drm_file *file_priv)
2796{
2797 struct drm_i915_gem_pin *args = data;
2798 struct drm_gem_object *obj;
79e53945 2799 struct drm_i915_gem_object *obj_priv;
673a394b
EA
2800
2801 mutex_lock(&dev->struct_mutex);
2802
2803 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2804 if (obj == NULL) {
2805 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2806 args->handle);
2807 mutex_unlock(&dev->struct_mutex);
2808 return -EBADF;
2809 }
2810
79e53945
JB
2811 obj_priv = obj->driver_private;
2812 if (obj_priv->pin_filp != file_priv) {
2813 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
2814 args->handle);
2815 drm_gem_object_unreference(obj);
2816 mutex_unlock(&dev->struct_mutex);
2817 return -EINVAL;
2818 }
2819 obj_priv->user_pin_count--;
2820 if (obj_priv->user_pin_count == 0) {
2821 obj_priv->pin_filp = NULL;
2822 i915_gem_object_unpin(obj);
2823 }
673a394b
EA
2824
2825 drm_gem_object_unreference(obj);
2826 mutex_unlock(&dev->struct_mutex);
2827 return 0;
2828}
2829
2830int
2831i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2832 struct drm_file *file_priv)
2833{
2834 struct drm_i915_gem_busy *args = data;
2835 struct drm_gem_object *obj;
2836 struct drm_i915_gem_object *obj_priv;
2837
2838 mutex_lock(&dev->struct_mutex);
2839 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2840 if (obj == NULL) {
2841 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2842 args->handle);
2843 mutex_unlock(&dev->struct_mutex);
2844 return -EBADF;
2845 }
2846
2847 obj_priv = obj->driver_private;
c4de0a5d
EA
2848 /* Don't count being on the flushing list against the object being
2849 * done. Otherwise, a buffer left on the flushing list but not getting
2850 * flushed (because nobody's flushing that domain) won't ever return
2851 * unbusy and get reused by libdrm's bo cache. The other expected
2852 * consumer of this interface, OpenGL's occlusion queries, also specs
2853 * that the objects get unbusy "eventually" without any interference.
2854 */
2855 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
2856
2857 drm_gem_object_unreference(obj);
2858 mutex_unlock(&dev->struct_mutex);
2859 return 0;
2860}
2861
2862int
2863i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2864 struct drm_file *file_priv)
2865{
2866 return i915_gem_ring_throttle(dev, file_priv);
2867}
2868
2869int i915_gem_init_object(struct drm_gem_object *obj)
2870{
2871 struct drm_i915_gem_object *obj_priv;
2872
2873 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2874 if (obj_priv == NULL)
2875 return -ENOMEM;
2876
2877 /*
2878 * We've just allocated pages from the kernel,
2879 * so they've just been written by the CPU with
2880 * zeros. They'll need to be clflushed before we
2881 * use them with the GPU.
2882 */
2883 obj->write_domain = I915_GEM_DOMAIN_CPU;
2884 obj->read_domains = I915_GEM_DOMAIN_CPU;
2885
ba1eb1d8
KP
2886 obj_priv->agp_type = AGP_USER_MEMORY;
2887
673a394b
EA
2888 obj->driver_private = obj_priv;
2889 obj_priv->obj = obj;
de151cf6 2890 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 2891 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 2892
673a394b
EA
2893 return 0;
2894}
2895
2896void i915_gem_free_object(struct drm_gem_object *obj)
2897{
de151cf6
JB
2898 struct drm_device *dev = obj->dev;
2899 struct drm_gem_mm *mm = dev->mm_private;
2900 struct drm_map_list *list;
2901 struct drm_map *map;
673a394b
EA
2902 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2903
2904 while (obj_priv->pin_count > 0)
2905 i915_gem_object_unpin(obj);
2906
71acb5eb
DA
2907 if (obj_priv->phys_obj)
2908 i915_gem_detach_phys_object(dev, obj);
2909
673a394b
EA
2910 i915_gem_object_unbind(obj);
2911
de151cf6
JB
2912 list = &obj->map_list;
2913 drm_ht_remove_item(&mm->offset_hash, &list->hash);
2914
2915 if (list->file_offset_node) {
2916 drm_mm_put_block(list->file_offset_node);
2917 list->file_offset_node = NULL;
2918 }
2919
2920 map = list->map;
2921 if (map) {
2922 drm_free(map, sizeof(*map), DRM_MEM_DRIVER);
2923 list->map = NULL;
2924 }
2925
673a394b
EA
2926 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2927 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2928}
2929
673a394b
EA
2930/** Unbinds all objects that are on the given buffer list. */
2931static int
2932i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2933{
2934 struct drm_gem_object *obj;
2935 struct drm_i915_gem_object *obj_priv;
2936 int ret;
2937
2938 while (!list_empty(head)) {
2939 obj_priv = list_first_entry(head,
2940 struct drm_i915_gem_object,
2941 list);
2942 obj = obj_priv->obj;
2943
2944 if (obj_priv->pin_count != 0) {
2945 DRM_ERROR("Pinned object in unbind list\n");
2946 mutex_unlock(&dev->struct_mutex);
2947 return -EINVAL;
2948 }
2949
2950 ret = i915_gem_object_unbind(obj);
2951 if (ret != 0) {
2952 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2953 ret);
2954 mutex_unlock(&dev->struct_mutex);
2955 return ret;
2956 }
2957 }
2958
2959
2960 return 0;
2961}
2962
2963static int
2964i915_gem_idle(struct drm_device *dev)
2965{
2966 drm_i915_private_t *dev_priv = dev->dev_private;
2967 uint32_t seqno, cur_seqno, last_seqno;
2968 int stuck, ret;
2969
6dbe2772
KP
2970 mutex_lock(&dev->struct_mutex);
2971
2972 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2973 mutex_unlock(&dev->struct_mutex);
673a394b 2974 return 0;
6dbe2772 2975 }
673a394b
EA
2976
2977 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2978 * We need to replace this with a semaphore, or something.
2979 */
2980 dev_priv->mm.suspended = 1;
2981
6dbe2772
KP
2982 /* Cancel the retire work handler, wait for it to finish if running
2983 */
2984 mutex_unlock(&dev->struct_mutex);
2985 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2986 mutex_lock(&dev->struct_mutex);
2987
673a394b
EA
2988 i915_kernel_lost_context(dev);
2989
2990 /* Flush the GPU along with all non-CPU write domains
2991 */
2992 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2993 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
de151cf6 2994 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
2995
2996 if (seqno == 0) {
2997 mutex_unlock(&dev->struct_mutex);
2998 return -ENOMEM;
2999 }
3000
3001 dev_priv->mm.waiting_gem_seqno = seqno;
3002 last_seqno = 0;
3003 stuck = 0;
3004 for (;;) {
3005 cur_seqno = i915_get_gem_seqno(dev);
3006 if (i915_seqno_passed(cur_seqno, seqno))
3007 break;
3008 if (last_seqno == cur_seqno) {
3009 if (stuck++ > 100) {
3010 DRM_ERROR("hardware wedged\n");
3011 dev_priv->mm.wedged = 1;
3012 DRM_WAKEUP(&dev_priv->irq_queue);
3013 break;
3014 }
3015 }
3016 msleep(10);
3017 last_seqno = cur_seqno;
3018 }
3019 dev_priv->mm.waiting_gem_seqno = 0;
3020
3021 i915_gem_retire_requests(dev);
3022
28dfe52a
EA
3023 if (!dev_priv->mm.wedged) {
3024 /* Active and flushing should now be empty as we've
3025 * waited for a sequence higher than any pending execbuffer
3026 */
3027 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3028 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3029 /* Request should now be empty as we've also waited
3030 * for the last request in the list
3031 */
3032 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3033 }
673a394b 3034
28dfe52a
EA
3035 /* Empty the active and flushing lists to inactive. If there's
3036 * anything left at this point, it means that we're wedged and
3037 * nothing good's going to happen by leaving them there. So strip
3038 * the GPU domains and just stuff them onto inactive.
673a394b 3039 */
28dfe52a
EA
3040 while (!list_empty(&dev_priv->mm.active_list)) {
3041 struct drm_i915_gem_object *obj_priv;
673a394b 3042
28dfe52a
EA
3043 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3044 struct drm_i915_gem_object,
3045 list);
3046 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3047 i915_gem_object_move_to_inactive(obj_priv->obj);
3048 }
3049
3050 while (!list_empty(&dev_priv->mm.flushing_list)) {
3051 struct drm_i915_gem_object *obj_priv;
3052
151903d5 3053 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3054 struct drm_i915_gem_object,
3055 list);
3056 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3057 i915_gem_object_move_to_inactive(obj_priv->obj);
3058 }
3059
3060
3061 /* Move all inactive buffers out of the GTT. */
673a394b 3062 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3063 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3064 if (ret) {
3065 mutex_unlock(&dev->struct_mutex);
673a394b 3066 return ret;
6dbe2772 3067 }
673a394b 3068
6dbe2772
KP
3069 i915_gem_cleanup_ringbuffer(dev);
3070 mutex_unlock(&dev->struct_mutex);
3071
673a394b
EA
3072 return 0;
3073}
3074
3075static int
3076i915_gem_init_hws(struct drm_device *dev)
3077{
3078 drm_i915_private_t *dev_priv = dev->dev_private;
3079 struct drm_gem_object *obj;
3080 struct drm_i915_gem_object *obj_priv;
3081 int ret;
3082
3083 /* If we need a physical address for the status page, it's already
3084 * initialized at driver load time.
3085 */
3086 if (!I915_NEED_GFX_HWS(dev))
3087 return 0;
3088
3089 obj = drm_gem_object_alloc(dev, 4096);
3090 if (obj == NULL) {
3091 DRM_ERROR("Failed to allocate status page\n");
3092 return -ENOMEM;
3093 }
3094 obj_priv = obj->driver_private;
ba1eb1d8 3095 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3096
3097 ret = i915_gem_object_pin(obj, 4096);
3098 if (ret != 0) {
3099 drm_gem_object_unreference(obj);
3100 return ret;
3101 }
3102
3103 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3104
ba1eb1d8
KP
3105 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
3106 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3107 DRM_ERROR("Failed to map status page.\n");
3108 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 3109 i915_gem_object_unpin(obj);
673a394b
EA
3110 drm_gem_object_unreference(obj);
3111 return -EINVAL;
3112 }
3113 dev_priv->hws_obj = obj;
673a394b
EA
3114 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3115 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3116 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3117 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3118
3119 return 0;
3120}
3121
85a7bb98
CW
3122static void
3123i915_gem_cleanup_hws(struct drm_device *dev)
3124{
3125 drm_i915_private_t *dev_priv = dev->dev_private;
3126 struct drm_gem_object *obj = dev_priv->hws_obj;
3127 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3128
3129 if (dev_priv->hws_obj == NULL)
3130 return;
3131
3132 kunmap(obj_priv->page_list[0]);
3133 i915_gem_object_unpin(obj);
3134 drm_gem_object_unreference(obj);
3135 dev_priv->hws_obj = NULL;
3136 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3137 dev_priv->hw_status_page = NULL;
3138
3139 /* Write high address into HWS_PGA when disabling. */
3140 I915_WRITE(HWS_PGA, 0x1ffff000);
3141}
3142
79e53945 3143int
673a394b
EA
3144i915_gem_init_ringbuffer(struct drm_device *dev)
3145{
3146 drm_i915_private_t *dev_priv = dev->dev_private;
3147 struct drm_gem_object *obj;
3148 struct drm_i915_gem_object *obj_priv;
79e53945 3149 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 3150 int ret;
50aa253d 3151 u32 head;
673a394b
EA
3152
3153 ret = i915_gem_init_hws(dev);
3154 if (ret != 0)
3155 return ret;
3156
3157 obj = drm_gem_object_alloc(dev, 128 * 1024);
3158 if (obj == NULL) {
3159 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 3160 i915_gem_cleanup_hws(dev);
673a394b
EA
3161 return -ENOMEM;
3162 }
3163 obj_priv = obj->driver_private;
3164
3165 ret = i915_gem_object_pin(obj, 4096);
3166 if (ret != 0) {
3167 drm_gem_object_unreference(obj);
85a7bb98 3168 i915_gem_cleanup_hws(dev);
673a394b
EA
3169 return ret;
3170 }
3171
3172 /* Set up the kernel mapping for the ring. */
79e53945
JB
3173 ring->Size = obj->size;
3174 ring->tail_mask = obj->size - 1;
673a394b 3175
79e53945
JB
3176 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3177 ring->map.size = obj->size;
3178 ring->map.type = 0;
3179 ring->map.flags = 0;
3180 ring->map.mtrr = 0;
673a394b 3181
79e53945
JB
3182 drm_core_ioremap_wc(&ring->map, dev);
3183 if (ring->map.handle == NULL) {
673a394b
EA
3184 DRM_ERROR("Failed to map ringbuffer.\n");
3185 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 3186 i915_gem_object_unpin(obj);
673a394b 3187 drm_gem_object_unreference(obj);
85a7bb98 3188 i915_gem_cleanup_hws(dev);
673a394b
EA
3189 return -EINVAL;
3190 }
79e53945
JB
3191 ring->ring_obj = obj;
3192 ring->virtual_start = ring->map.handle;
673a394b
EA
3193
3194 /* Stop the ring if it's running. */
3195 I915_WRITE(PRB0_CTL, 0);
673a394b 3196 I915_WRITE(PRB0_TAIL, 0);
50aa253d 3197 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
3198
3199 /* Initialize the ring. */
3200 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
3201 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3202
3203 /* G45 ring initialization fails to reset head to zero */
3204 if (head != 0) {
3205 DRM_ERROR("Ring head not reset to zero "
3206 "ctl %08x head %08x tail %08x start %08x\n",
3207 I915_READ(PRB0_CTL),
3208 I915_READ(PRB0_HEAD),
3209 I915_READ(PRB0_TAIL),
3210 I915_READ(PRB0_START));
3211 I915_WRITE(PRB0_HEAD, 0);
3212
3213 DRM_ERROR("Ring head forced to zero "
3214 "ctl %08x head %08x tail %08x start %08x\n",
3215 I915_READ(PRB0_CTL),
3216 I915_READ(PRB0_HEAD),
3217 I915_READ(PRB0_TAIL),
3218 I915_READ(PRB0_START));
3219 }
3220
673a394b
EA
3221 I915_WRITE(PRB0_CTL,
3222 ((obj->size - 4096) & RING_NR_PAGES) |
3223 RING_NO_REPORT |
3224 RING_VALID);
3225
50aa253d
KP
3226 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3227
3228 /* If the head is still not zero, the ring is dead */
3229 if (head != 0) {
3230 DRM_ERROR("Ring initialization failed "
3231 "ctl %08x head %08x tail %08x start %08x\n",
3232 I915_READ(PRB0_CTL),
3233 I915_READ(PRB0_HEAD),
3234 I915_READ(PRB0_TAIL),
3235 I915_READ(PRB0_START));
3236 return -EIO;
3237 }
3238
673a394b 3239 /* Update our cache of the ring state */
79e53945
JB
3240 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3241 i915_kernel_lost_context(dev);
3242 else {
3243 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
3244 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
3245 ring->space = ring->head - (ring->tail + 8);
3246 if (ring->space < 0)
3247 ring->space += ring->Size;
3248 }
673a394b
EA
3249
3250 return 0;
3251}
3252
79e53945 3253void
673a394b
EA
3254i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3255{
3256 drm_i915_private_t *dev_priv = dev->dev_private;
3257
3258 if (dev_priv->ring.ring_obj == NULL)
3259 return;
3260
3261 drm_core_ioremapfree(&dev_priv->ring.map, dev);
3262
3263 i915_gem_object_unpin(dev_priv->ring.ring_obj);
3264 drm_gem_object_unreference(dev_priv->ring.ring_obj);
3265 dev_priv->ring.ring_obj = NULL;
3266 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
3267
85a7bb98 3268 i915_gem_cleanup_hws(dev);
673a394b
EA
3269}
3270
3271int
3272i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3273 struct drm_file *file_priv)
3274{
3275 drm_i915_private_t *dev_priv = dev->dev_private;
3276 int ret;
3277
79e53945
JB
3278 if (drm_core_check_feature(dev, DRIVER_MODESET))
3279 return 0;
3280
673a394b
EA
3281 if (dev_priv->mm.wedged) {
3282 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3283 dev_priv->mm.wedged = 0;
3284 }
3285
673a394b 3286 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3287 dev_priv->mm.suspended = 0;
3288
3289 ret = i915_gem_init_ringbuffer(dev);
3290 if (ret != 0)
3291 return ret;
3292
673a394b
EA
3293 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3294 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3295 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3296 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 3297 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
3298
3299 drm_irq_install(dev);
3300
673a394b
EA
3301 return 0;
3302}
3303
3304int
3305i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3306 struct drm_file *file_priv)
3307{
3308 int ret;
3309
79e53945
JB
3310 if (drm_core_check_feature(dev, DRIVER_MODESET))
3311 return 0;
3312
673a394b 3313 ret = i915_gem_idle(dev);
dbb19d30
KH
3314 drm_irq_uninstall(dev);
3315
6dbe2772 3316 return ret;
673a394b
EA
3317}
3318
3319void
3320i915_gem_lastclose(struct drm_device *dev)
3321{
3322 int ret;
673a394b 3323
e806b495
EA
3324 if (drm_core_check_feature(dev, DRIVER_MODESET))
3325 return;
3326
6dbe2772
KP
3327 ret = i915_gem_idle(dev);
3328 if (ret)
3329 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3330}
3331
3332void
3333i915_gem_load(struct drm_device *dev)
3334{
3335 drm_i915_private_t *dev_priv = dev->dev_private;
3336
3337 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3338 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3339 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3340 INIT_LIST_HEAD(&dev_priv->mm.request_list);
3341 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3342 i915_gem_retire_work_handler);
3343 dev_priv->mm.next_gem_seqno = 1;
3344
de151cf6
JB
3345 /* Old X drivers will take 0-2 for front, back, depth buffers */
3346 dev_priv->fence_reg_start = 3;
3347
0f973f27 3348 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3349 dev_priv->num_fence_regs = 16;
3350 else
3351 dev_priv->num_fence_regs = 8;
3352
673a394b
EA
3353 i915_gem_detect_bit_6_swizzle(dev);
3354}
71acb5eb
DA
3355
3356/*
3357 * Create a physically contiguous memory object for this object
3358 * e.g. for cursor + overlay regs
3359 */
3360int i915_gem_init_phys_object(struct drm_device *dev,
3361 int id, int size)
3362{
3363 drm_i915_private_t *dev_priv = dev->dev_private;
3364 struct drm_i915_gem_phys_object *phys_obj;
3365 int ret;
3366
3367 if (dev_priv->mm.phys_objs[id - 1] || !size)
3368 return 0;
3369
3370 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3371 if (!phys_obj)
3372 return -ENOMEM;
3373
3374 phys_obj->id = id;
3375
3376 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
3377 if (!phys_obj->handle) {
3378 ret = -ENOMEM;
3379 goto kfree_obj;
3380 }
3381#ifdef CONFIG_X86
3382 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3383#endif
3384
3385 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3386
3387 return 0;
3388kfree_obj:
3389 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
3390 return ret;
3391}
3392
3393void i915_gem_free_phys_object(struct drm_device *dev, int id)
3394{
3395 drm_i915_private_t *dev_priv = dev->dev_private;
3396 struct drm_i915_gem_phys_object *phys_obj;
3397
3398 if (!dev_priv->mm.phys_objs[id - 1])
3399 return;
3400
3401 phys_obj = dev_priv->mm.phys_objs[id - 1];
3402 if (phys_obj->cur_obj) {
3403 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3404 }
3405
3406#ifdef CONFIG_X86
3407 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3408#endif
3409 drm_pci_free(dev, phys_obj->handle);
3410 kfree(phys_obj);
3411 dev_priv->mm.phys_objs[id - 1] = NULL;
3412}
3413
3414void i915_gem_free_all_phys_object(struct drm_device *dev)
3415{
3416 int i;
3417
260883c8 3418 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3419 i915_gem_free_phys_object(dev, i);
3420}
3421
3422void i915_gem_detach_phys_object(struct drm_device *dev,
3423 struct drm_gem_object *obj)
3424{
3425 struct drm_i915_gem_object *obj_priv;
3426 int i;
3427 int ret;
3428 int page_count;
3429
3430 obj_priv = obj->driver_private;
3431 if (!obj_priv->phys_obj)
3432 return;
3433
3434 ret = i915_gem_object_get_page_list(obj);
3435 if (ret)
3436 goto out;
3437
3438 page_count = obj->size / PAGE_SIZE;
3439
3440 for (i = 0; i < page_count; i++) {
3441 char *dst = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3442 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3443
3444 memcpy(dst, src, PAGE_SIZE);
3445 kunmap_atomic(dst, KM_USER0);
3446 }
3447 drm_clflush_pages(obj_priv->page_list, page_count);
3448 drm_agp_chipset_flush(dev);
3449out:
3450 obj_priv->phys_obj->cur_obj = NULL;
3451 obj_priv->phys_obj = NULL;
3452}
3453
3454int
3455i915_gem_attach_phys_object(struct drm_device *dev,
3456 struct drm_gem_object *obj, int id)
3457{
3458 drm_i915_private_t *dev_priv = dev->dev_private;
3459 struct drm_i915_gem_object *obj_priv;
3460 int ret = 0;
3461 int page_count;
3462 int i;
3463
3464 if (id > I915_MAX_PHYS_OBJECT)
3465 return -EINVAL;
3466
3467 obj_priv = obj->driver_private;
3468
3469 if (obj_priv->phys_obj) {
3470 if (obj_priv->phys_obj->id == id)
3471 return 0;
3472 i915_gem_detach_phys_object(dev, obj);
3473 }
3474
3475
3476 /* create a new object */
3477 if (!dev_priv->mm.phys_objs[id - 1]) {
3478 ret = i915_gem_init_phys_object(dev, id,
3479 obj->size);
3480 if (ret) {
aeb565df 3481 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
3482 goto out;
3483 }
3484 }
3485
3486 /* bind to the object */
3487 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
3488 obj_priv->phys_obj->cur_obj = obj;
3489
3490 ret = i915_gem_object_get_page_list(obj);
3491 if (ret) {
3492 DRM_ERROR("failed to get page list\n");
3493 goto out;
3494 }
3495
3496 page_count = obj->size / PAGE_SIZE;
3497
3498 for (i = 0; i < page_count; i++) {
3499 char *src = kmap_atomic(obj_priv->page_list[i], KM_USER0);
3500 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3501
3502 memcpy(dst, src, PAGE_SIZE);
3503 kunmap_atomic(src, KM_USER0);
3504 }
3505
3506 return 0;
3507out:
3508 return ret;
3509}
3510
3511static int
3512i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
3513 struct drm_i915_gem_pwrite *args,
3514 struct drm_file *file_priv)
3515{
3516 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3517 void *obj_addr;
3518 int ret;
3519 char __user *user_data;
3520
3521 user_data = (char __user *) (uintptr_t) args->data_ptr;
3522 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
3523
3524 DRM_ERROR("obj_addr %p, %lld\n", obj_addr, args->size);
3525 ret = copy_from_user(obj_addr, user_data, args->size);
3526 if (ret)
3527 return -EFAULT;
3528
3529 drm_agp_chipset_flush(dev);
3530 return 0;
3531}