]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Sanity check execbuffer arguments before touching state.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 46static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
47static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
0f973f27 49static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
de151cf6
JB
50static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
52static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
673a394b 55
79e53945
JB
56int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
673a394b
EA
58{
59 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 60
79e53945
JB
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
64 return -EINVAL;
65 }
66
79e53945
JB
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
673a394b 69
79e53945
JB
70 dev->gtt_total = (uint32_t) (end - start);
71
72 return 0;
73}
673a394b 74
79e53945
JB
75int
76i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
78{
79 struct drm_i915_gem_init *args = data;
80 int ret;
81
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
84 mutex_unlock(&dev->struct_mutex);
85
79e53945 86 return ret;
673a394b
EA
87}
88
5a125c3c
EA
89int
90i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92{
5a125c3c 93 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
94
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
97
98 args->aper_size = dev->gtt_total;
2678d9d6
KP
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
5a125c3c
EA
101
102 return 0;
103}
104
673a394b
EA
105
106/**
107 * Creates a new mm object and returns a handle to it.
108 */
109int
110i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
112{
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
115 int handle, ret;
116
117 args->size = roundup(args->size, PAGE_SIZE);
118
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
121 if (obj == NULL)
122 return -ENOMEM;
123
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
128
129 if (ret)
130 return ret;
131
132 args->handle = handle;
133
134 return 0;
135}
136
eb01459f
EA
137static inline int
138fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
140 char __user *data,
141 int length)
142{
143 char __iomem *vaddr;
2bc43b5c 144 int unwritten;
eb01459f
EA
145
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147 if (vaddr == NULL)
148 return -ENOMEM;
2bc43b5c 149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
150 kunmap_atomic(vaddr, KM_USER0);
151
2bc43b5c
FM
152 if (unwritten)
153 return -EFAULT;
154
155 return 0;
eb01459f
EA
156}
157
280b713b
EA
158static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159{
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
165}
166
40123c1f
EA
167static inline int
168slow_shmem_copy(struct page *dst_page,
169 int dst_offset,
170 struct page *src_page,
171 int src_offset,
172 int length)
173{
174 char *dst_vaddr, *src_vaddr;
175
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
178 return -ENOMEM;
179
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
183 return -ENOMEM;
184 }
185
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
190
191 return 0;
192}
193
280b713b
EA
194static inline int
195slow_shmem_bit17_copy(struct page *gpu_page,
196 int gpu_offset,
197 struct page *cpu_page,
198 int cpu_offset,
199 int length,
200 int is_read)
201{
202 char *gpu_vaddr, *cpu_vaddr;
203
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206 if (is_read)
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
209 else
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
212 }
213
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
216 return -ENOMEM;
217
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
221 return -ENOMEM;
222 }
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
248
249 return 0;
250}
251
eb01459f
EA
252/**
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256 */
257static int
258i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
261{
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
263 ssize_t remain;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
267 int ret;
268
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
270 remain = args->size;
271
272 mutex_lock(&dev->struct_mutex);
273
274 ret = i915_gem_object_get_pages(obj);
275 if (ret != 0)
276 goto fail_unlock;
277
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279 args->size);
280 if (ret != 0)
281 goto fail_put_pages;
282
283 obj_priv = obj->driver_private;
284 offset = args->offset;
285
286 while (remain > 0) {
287 /* Operation in this page
288 *
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
292 */
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail_put_pages;
304
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
308 }
309
310fail_put_pages:
311 i915_gem_object_put_pages(obj);
312fail_unlock:
313 mutex_unlock(&dev->struct_mutex);
314
315 return ret;
316}
317
318/**
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
323 */
324static int
325i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
328{
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
332 ssize_t remain;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
337 int page_length;
338 int ret;
339 uint64_t data_ptr = args->data_ptr;
280b713b 340 int do_bit17_swizzling;
eb01459f
EA
341
342 remain = args->size;
343
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
347 */
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
351
8e7d2b2c 352 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
353 if (user_pages == NULL)
354 return -ENOMEM;
355
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 358 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
361 ret = -EFAULT;
362 goto fail_put_user_pages;
363 }
364
280b713b
EA
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
eb01459f
EA
367 mutex_lock(&dev->struct_mutex);
368
369 ret = i915_gem_object_get_pages(obj);
370 if (ret != 0)
371 goto fail_unlock;
372
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374 args->size);
375 if (ret != 0)
376 goto fail_put_pages;
377
378 obj_priv = obj->driver_private;
379 offset = args->offset;
380
381 while (remain > 0) {
382 /* Operation in this page
383 *
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
389 */
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
394
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
400
280b713b
EA
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403 shmem_page_offset,
404 user_pages[data_page_index],
405 data_page_offset,
406 page_length,
407 1);
408 } else {
409 ret = slow_shmem_copy(user_pages[data_page_index],
410 data_page_offset,
411 obj_priv->pages[shmem_page_index],
412 shmem_page_offset,
413 page_length);
414 }
eb01459f
EA
415 if (ret)
416 goto fail_put_pages;
417
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
421 }
422
423fail_put_pages:
424 i915_gem_object_put_pages(obj);
425fail_unlock:
426 mutex_unlock(&dev->struct_mutex);
427fail_put_user_pages:
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
431 }
8e7d2b2c 432 drm_free_large(user_pages);
eb01459f
EA
433
434 return ret;
435}
436
673a394b
EA
437/**
438 * Reads data from the object referenced by handle.
439 *
440 * On error, the contents of *data are undefined.
441 */
442int
443i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
445{
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
673a394b
EA
449 int ret;
450
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452 if (obj == NULL)
453 return -EBADF;
454 obj_priv = obj->driver_private;
455
456 /* Bounds check source.
457 *
458 * XXX: This could use review for overflow issues...
459 */
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
463 return -EINVAL;
464 }
465
280b713b 466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
468 } else {
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470 if (ret != 0)
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
472 file_priv);
473 }
673a394b
EA
474
475 drm_gem_object_unreference(obj);
673a394b 476
eb01459f 477 return ret;
673a394b
EA
478}
479
0839ccb8
KP
480/* This is the fast write path which cannot handle
481 * page faults in the source data
9b7530cc 482 */
0839ccb8
KP
483
484static inline int
485fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
488 int length)
9b7530cc 489{
9b7530cc 490 char *vaddr_atomic;
0839ccb8 491 unsigned long unwritten;
9b7530cc 492
0839ccb8
KP
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495 user_data, length);
496 io_mapping_unmap_atomic(vaddr_atomic);
497 if (unwritten)
498 return -EFAULT;
499 return 0;
500}
501
502/* Here's the write path which can sleep for
503 * page faults
504 */
505
506static inline int
3de09aa3
EA
507slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
510 int length)
0839ccb8 511{
3de09aa3 512 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
513 unsigned long unwritten;
514
3de09aa3
EA
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
519 length);
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
522 if (unwritten)
523 return -EFAULT;
9b7530cc 524 return 0;
9b7530cc
LT
525}
526
40123c1f
EA
527static inline int
528fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
530 char __user *data,
531 int length)
532{
533 char __iomem *vaddr;
d0088775 534 unsigned long unwritten;
40123c1f
EA
535
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537 if (vaddr == NULL)
538 return -ENOMEM;
d0088775 539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
540 kunmap_atomic(vaddr, KM_USER0);
541
d0088775
DA
542 if (unwritten)
543 return -EFAULT;
40123c1f
EA
544 return 0;
545}
546
3de09aa3
EA
547/**
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
550 */
673a394b 551static int
3de09aa3
EA
552i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
673a394b
EA
555{
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 557 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 558 ssize_t remain;
0839ccb8 559 loff_t offset, page_base;
673a394b 560 char __user *user_data;
0839ccb8
KP
561 int page_offset, page_length;
562 int ret;
673a394b
EA
563
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 remain = args->size;
566 if (!access_ok(VERIFY_READ, user_data, remain))
567 return -EFAULT;
568
569
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
572 if (ret) {
573 mutex_unlock(&dev->struct_mutex);
574 return ret;
575 }
2ef7eeaa 576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
577 if (ret)
578 goto fail;
579
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
582
583 while (remain > 0) {
584 /* Operation in this page
585 *
0839ccb8
KP
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
673a394b 589 */
0839ccb8
KP
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
595
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
598
599 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
0839ccb8 602 */
3de09aa3
EA
603 if (ret)
604 goto fail;
673a394b 605
0839ccb8
KP
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
673a394b 609 }
673a394b
EA
610
611fail:
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
614
615 return ret;
616}
617
3de09aa3
EA
618/**
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
621 *
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624 */
3043c60c 625static int
3de09aa3
EA
626i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
673a394b 629{
3de09aa3
EA
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
632 ssize_t remain;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 639 int ret;
3de09aa3
EA
640 uint64_t data_ptr = args->data_ptr;
641
642 remain = args->size;
643
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
647 */
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
651
8e7d2b2c 652 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
653 if (user_pages == NULL)
654 return -ENOMEM;
655
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
673a394b
EA
664
665 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
666 ret = i915_gem_object_pin(obj, 0);
667 if (ret)
668 goto out_unlock;
669
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671 if (ret)
672 goto out_unpin_object;
673
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
676
677 while (remain > 0) {
678 /* Operation in this page
679 *
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
685 */
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
690
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
696
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
700 data_page_offset,
701 page_length);
702
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
706 */
707 if (ret)
708 goto out_unpin_object;
709
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
713 }
714
715out_unpin_object:
716 i915_gem_object_unpin(obj);
717out_unlock:
718 mutex_unlock(&dev->struct_mutex);
719out_unpin_pages:
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
8e7d2b2c 722 drm_free_large(user_pages);
3de09aa3
EA
723
724 return ret;
725}
726
40123c1f
EA
727/**
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
730 */
3043c60c 731static int
40123c1f
EA
732i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
673a394b 735{
40123c1f
EA
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
673a394b 741 int ret;
40123c1f
EA
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
673a394b
EA
745
746 mutex_lock(&dev->struct_mutex);
747
40123c1f
EA
748 ret = i915_gem_object_get_pages(obj);
749 if (ret != 0)
750 goto fail_unlock;
673a394b 751
e47c68e9 752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
753 if (ret != 0)
754 goto fail_put_pages;
755
756 obj_priv = obj->driver_private;
757 offset = args->offset;
758 obj_priv->dirty = 1;
759
760 while (remain > 0) {
761 /* Operation in this page
762 *
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
772
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
776 if (ret)
777 goto fail_put_pages;
778
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
782 }
783
784fail_put_pages:
785 i915_gem_object_put_pages(obj);
786fail_unlock:
787 mutex_unlock(&dev->struct_mutex);
788
789 return ret;
790}
791
792/**
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
795 *
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
798 */
799static int
800i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
803{
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
807 ssize_t remain;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
812 int page_length;
813 int ret;
814 uint64_t data_ptr = args->data_ptr;
280b713b 815 int do_bit17_swizzling;
40123c1f
EA
816
817 remain = args->size;
818
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
822 */
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
826
8e7d2b2c 827 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
828 if (user_pages == NULL)
829 return -ENOMEM;
830
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
836 ret = -EFAULT;
837 goto fail_put_user_pages;
673a394b
EA
838 }
839
280b713b
EA
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
40123c1f
EA
842 mutex_lock(&dev->struct_mutex);
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret != 0)
846 goto fail_unlock;
847
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849 if (ret != 0)
850 goto fail_put_pages;
851
852 obj_priv = obj->driver_private;
673a394b 853 offset = args->offset;
40123c1f 854 obj_priv->dirty = 1;
673a394b 855
40123c1f
EA
856 while (remain > 0) {
857 /* Operation in this page
858 *
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
864 */
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
869
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
875
280b713b
EA
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878 shmem_page_offset,
879 user_pages[data_page_index],
880 data_page_offset,
881 page_length,
882 0);
883 } else {
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885 shmem_page_offset,
886 user_pages[data_page_index],
887 data_page_offset,
888 page_length);
889 }
40123c1f
EA
890 if (ret)
891 goto fail_put_pages;
892
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
673a394b
EA
896 }
897
40123c1f
EA
898fail_put_pages:
899 i915_gem_object_put_pages(obj);
900fail_unlock:
673a394b 901 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
902fail_put_user_pages:
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
8e7d2b2c 905 drm_free_large(user_pages);
673a394b 906
40123c1f 907 return ret;
673a394b
EA
908}
909
910/**
911 * Writes data to the object referenced by handle.
912 *
913 * On error, the contents of the buffer that were to be modified are undefined.
914 */
915int
916i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
918{
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
922 int ret = 0;
923
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925 if (obj == NULL)
926 return -EBADF;
927 obj_priv = obj->driver_private;
928
929 /* Bounds check destination.
930 *
931 * XXX: This could use review for overflow issues...
932 */
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
936 return -EINVAL;
937 }
938
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
944 */
71acb5eb
DA
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952 file_priv);
953 }
280b713b
EA
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
956 } else {
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960 file_priv);
961 }
962 }
673a394b
EA
963
964#if WATCH_PWRITE
965 if (ret)
966 DRM_INFO("pwrite failed %d\n", ret);
967#endif
968
969 drm_gem_object_unreference(obj);
970
971 return ret;
972}
973
974/**
2ef7eeaa
EA
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
977 */
978int
979i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
981{
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
2ef7eeaa
EA
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
673a394b
EA
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
2ef7eeaa
EA
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
993 return -EINVAL;
994
995 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
673a394b
EA
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009#if WATCH_BUF
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
2ef7eeaa 1011 obj, obj->size, read_domains, write_domain);
673a394b 1012#endif
2ef7eeaa
EA
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1015
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1019 */
1020 if (ret == -EINVAL)
1021 ret = 0;
2ef7eeaa 1022 } else {
e47c68e9 1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1024 }
1025
673a394b
EA
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029}
1030
1031/**
1032 * Called when user space has done writes to this buffer
1033 */
1034int
1035i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1037{
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1041 int ret = 0;
1042
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1044 return -ENODEV;
1045
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 if (obj == NULL) {
1049 mutex_unlock(&dev->struct_mutex);
1050 return -EBADF;
1051 }
1052
1053#if WATCH_BUF
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1056#endif
1057 obj_priv = obj->driver_private;
1058
1059 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1062
673a394b
EA
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066}
1067
1068/**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075int
1076i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078{
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1081 loff_t offset;
1082 unsigned long addr;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088 if (obj == NULL)
1089 return -EBADF;
1090
1091 offset = args->offset;
1092
1093 down_write(&current->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1096 args->offset);
1097 up_write(&current->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1102 return addr;
1103
1104 args->addr_ptr = (uint64_t) addr;
1105
1106 return 0;
1107}
1108
de151cf6
JB
1109/**
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1112 * vmf: fault info
1113 *
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1119 *
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1123 * left.
1124 */
1125int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126{
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1132 unsigned long pfn;
1133 int ret = 0;
0f973f27 1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1135
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138 PAGE_SHIFT;
1139
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144 if (ret) {
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1147 }
07f4f3e8
KH
1148
1149 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150 if (ret) {
1151 mutex_unlock(&dev->struct_mutex);
1152 return VM_FAULT_SIGBUS;
1153 }
1154
14b60391 1155 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1156 }
1157
1158 /* Need a new fence register? */
1159 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
d9ddcb96 1160 obj_priv->tiling_mode != I915_TILING_NONE) {
0f973f27 1161 ret = i915_gem_object_get_fence_reg(obj, write);
7d8d58b2
CW
1162 if (ret) {
1163 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1164 return VM_FAULT_SIGBUS;
7d8d58b2 1165 }
d9ddcb96 1166 }
de151cf6
JB
1167
1168 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1169 page_offset;
1170
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
1174 mutex_unlock(&dev->struct_mutex);
1175
1176 switch (ret) {
1177 case -ENOMEM:
1178 case -EAGAIN:
1179 return VM_FAULT_OOM;
1180 case -EFAULT:
959b887c 1181 case -EINVAL:
de151cf6
JB
1182 return VM_FAULT_SIGBUS;
1183 default:
1184 return VM_FAULT_NOPAGE;
1185 }
1186}
1187
1188/**
1189 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190 * @obj: obj in question
1191 *
1192 * GEM memory mapping works by handing back to userspace a fake mmap offset
1193 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1194 * up the object based on the offset and sets up the various memory mapping
1195 * structures.
1196 *
1197 * This routine allocates and attaches a fake offset for @obj.
1198 */
1199static int
1200i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201{
1202 struct drm_device *dev = obj->dev;
1203 struct drm_gem_mm *mm = dev->mm_private;
1204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205 struct drm_map_list *list;
f77d390c 1206 struct drm_local_map *map;
de151cf6
JB
1207 int ret = 0;
1208
1209 /* Set the object up for mmap'ing */
1210 list = &obj->map_list;
1211 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1212 DRM_MEM_DRIVER);
1213 if (!list->map)
1214 return -ENOMEM;
1215
1216 map = list->map;
1217 map->type = _DRM_GEM;
1218 map->size = obj->size;
1219 map->handle = obj;
1220
1221 /* Get a DRM GEM mmap offset allocated... */
1222 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1223 obj->size / PAGE_SIZE, 0, 0);
1224 if (!list->file_offset_node) {
1225 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1226 ret = -ENOMEM;
1227 goto out_free_list;
1228 }
1229
1230 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1231 obj->size / PAGE_SIZE, 0);
1232 if (!list->file_offset_node) {
1233 ret = -ENOMEM;
1234 goto out_free_list;
1235 }
1236
1237 list->hash.key = list->file_offset_node->start;
1238 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1239 DRM_ERROR("failed to add to map hash\n");
1240 goto out_free_mm;
1241 }
1242
1243 /* By now we should be all set, any drm_mmap request on the offset
1244 * below will get to our mmap & fault handler */
1245 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1246
1247 return 0;
1248
1249out_free_mm:
1250 drm_mm_put_block(list->file_offset_node);
1251out_free_list:
1252 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1253
1254 return ret;
1255}
1256
ab00b3e5
JB
1257static void
1258i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1259{
1260 struct drm_device *dev = obj->dev;
1261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262 struct drm_gem_mm *mm = dev->mm_private;
1263 struct drm_map_list *list;
1264
1265 list = &obj->map_list;
1266 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1267
1268 if (list->file_offset_node) {
1269 drm_mm_put_block(list->file_offset_node);
1270 list->file_offset_node = NULL;
1271 }
1272
1273 if (list->map) {
1274 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1275 list->map = NULL;
1276 }
1277
1278 obj_priv->mmap_offset = 0;
1279}
1280
de151cf6
JB
1281/**
1282 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1283 * @obj: object to check
1284 *
1285 * Return the required GTT alignment for an object, taking into account
1286 * potential fence register mapping if needed.
1287 */
1288static uint32_t
1289i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1290{
1291 struct drm_device *dev = obj->dev;
1292 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1293 int start, i;
1294
1295 /*
1296 * Minimum alignment is 4k (GTT page size), but might be greater
1297 * if a fence register is needed for the object.
1298 */
1299 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1300 return 4096;
1301
1302 /*
1303 * Previous chips need to be aligned to the size of the smallest
1304 * fence register that can contain the object.
1305 */
1306 if (IS_I9XX(dev))
1307 start = 1024*1024;
1308 else
1309 start = 512*1024;
1310
1311 for (i = start; i < obj->size; i <<= 1)
1312 ;
1313
1314 return i;
1315}
1316
1317/**
1318 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1319 * @dev: DRM device
1320 * @data: GTT mapping ioctl data
1321 * @file_priv: GEM object info
1322 *
1323 * Simply returns the fake offset to userspace so it can mmap it.
1324 * The mmap call will end up in drm_gem_mmap(), which will set things
1325 * up so we can get faults in the handler above.
1326 *
1327 * The fault handler will take care of binding the object into the GTT
1328 * (since it may have been evicted to make room for something), allocating
1329 * a fence register, and mapping the appropriate aperture address into
1330 * userspace.
1331 */
1332int
1333i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1334 struct drm_file *file_priv)
1335{
1336 struct drm_i915_gem_mmap_gtt *args = data;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 struct drm_gem_object *obj;
1339 struct drm_i915_gem_object *obj_priv;
1340 int ret;
1341
1342 if (!(dev->driver->driver_features & DRIVER_GEM))
1343 return -ENODEV;
1344
1345 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1346 if (obj == NULL)
1347 return -EBADF;
1348
1349 mutex_lock(&dev->struct_mutex);
1350
1351 obj_priv = obj->driver_private;
1352
1353 if (!obj_priv->mmap_offset) {
1354 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1355 if (ret) {
1356 drm_gem_object_unreference(obj);
1357 mutex_unlock(&dev->struct_mutex);
de151cf6 1358 return ret;
13af1062 1359 }
de151cf6
JB
1360 }
1361
1362 args->offset = obj_priv->mmap_offset;
1363
1364 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1365
1366 /* Make sure the alignment is correct for fence regs etc */
1367 if (obj_priv->agp_mem &&
1368 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1369 drm_gem_object_unreference(obj);
1370 mutex_unlock(&dev->struct_mutex);
1371 return -EINVAL;
1372 }
1373
1374 /*
1375 * Pull it into the GTT so that we have a page list (makes the
1376 * initial fault faster and any subsequent flushing possible).
1377 */
1378 if (!obj_priv->agp_mem) {
1379 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1380 if (ret) {
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1383 return ret;
1384 }
14b60391 1385 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1386 }
1387
1388 drm_gem_object_unreference(obj);
1389 mutex_unlock(&dev->struct_mutex);
1390
1391 return 0;
1392}
1393
6911a9b8 1394void
856fa198 1395i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1396{
1397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1398 int page_count = obj->size / PAGE_SIZE;
1399 int i;
1400
856fa198 1401 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1402
856fa198
EA
1403 if (--obj_priv->pages_refcount != 0)
1404 return;
673a394b 1405
280b713b
EA
1406 if (obj_priv->tiling_mode != I915_TILING_NONE)
1407 i915_gem_object_save_bit_17_swizzle(obj);
1408
673a394b 1409 for (i = 0; i < page_count; i++)
856fa198 1410 if (obj_priv->pages[i] != NULL) {
673a394b 1411 if (obj_priv->dirty)
856fa198
EA
1412 set_page_dirty(obj_priv->pages[i]);
1413 mark_page_accessed(obj_priv->pages[i]);
1414 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1415 }
1416 obj_priv->dirty = 0;
1417
8e7d2b2c 1418 drm_free_large(obj_priv->pages);
856fa198 1419 obj_priv->pages = NULL;
673a394b
EA
1420}
1421
1422static void
ce44b0ea 1423i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1424{
1425 struct drm_device *dev = obj->dev;
1426 drm_i915_private_t *dev_priv = dev->dev_private;
1427 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428
1429 /* Add a reference if we're newly entering the active list. */
1430 if (!obj_priv->active) {
1431 drm_gem_object_reference(obj);
1432 obj_priv->active = 1;
1433 }
1434 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1435 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1436 list_move_tail(&obj_priv->list,
1437 &dev_priv->mm.active_list);
5e118f41 1438 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1439 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1440}
1441
ce44b0ea
EA
1442static void
1443i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1444{
1445 struct drm_device *dev = obj->dev;
1446 drm_i915_private_t *dev_priv = dev->dev_private;
1447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1448
1449 BUG_ON(!obj_priv->active);
1450 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1451 obj_priv->last_rendering_seqno = 0;
1452}
673a394b
EA
1453
1454static void
1455i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1456{
1457 struct drm_device *dev = obj->dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1460
1461 i915_verify_inactive(dev, __FILE__, __LINE__);
1462 if (obj_priv->pin_count != 0)
1463 list_del_init(&obj_priv->list);
1464 else
1465 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1466
ce44b0ea 1467 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1468 if (obj_priv->active) {
1469 obj_priv->active = 0;
1470 drm_gem_object_unreference(obj);
1471 }
1472 i915_verify_inactive(dev, __FILE__, __LINE__);
1473}
1474
1475/**
1476 * Creates a new sequence number, emitting a write of it to the status page
1477 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1478 *
1479 * Must be called with struct_lock held.
1480 *
1481 * Returned sequence numbers are nonzero on success.
1482 */
1483static uint32_t
b962442e
EA
1484i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1485 uint32_t flush_domains)
673a394b
EA
1486{
1487 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1488 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1489 struct drm_i915_gem_request *request;
1490 uint32_t seqno;
1491 int was_empty;
1492 RING_LOCALS;
1493
b962442e
EA
1494 if (file_priv != NULL)
1495 i915_file_priv = file_priv->driver_priv;
1496
673a394b
EA
1497 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1498 if (request == NULL)
1499 return 0;
1500
1501 /* Grab the seqno we're going to make this request be, and bump the
1502 * next (skipping 0 so it can be the reserved no-seqno value).
1503 */
1504 seqno = dev_priv->mm.next_gem_seqno;
1505 dev_priv->mm.next_gem_seqno++;
1506 if (dev_priv->mm.next_gem_seqno == 0)
1507 dev_priv->mm.next_gem_seqno++;
1508
1509 BEGIN_LP_RING(4);
1510 OUT_RING(MI_STORE_DWORD_INDEX);
1511 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1512 OUT_RING(seqno);
1513
1514 OUT_RING(MI_USER_INTERRUPT);
1515 ADVANCE_LP_RING();
1516
1517 DRM_DEBUG("%d\n", seqno);
1518
1519 request->seqno = seqno;
1520 request->emitted_jiffies = jiffies;
673a394b
EA
1521 was_empty = list_empty(&dev_priv->mm.request_list);
1522 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1523 if (i915_file_priv) {
1524 list_add_tail(&request->client_list,
1525 &i915_file_priv->mm.request_list);
1526 } else {
1527 INIT_LIST_HEAD(&request->client_list);
1528 }
673a394b 1529
ce44b0ea
EA
1530 /* Associate any objects on the flushing list matching the write
1531 * domain we're flushing with our flush.
1532 */
1533 if (flush_domains != 0) {
1534 struct drm_i915_gem_object *obj_priv, *next;
1535
1536 list_for_each_entry_safe(obj_priv, next,
1537 &dev_priv->mm.flushing_list, list) {
1538 struct drm_gem_object *obj = obj_priv->obj;
1539
1540 if ((obj->write_domain & flush_domains) ==
1541 obj->write_domain) {
1542 obj->write_domain = 0;
1543 i915_gem_object_move_to_active(obj, seqno);
1544 }
1545 }
1546
1547 }
1548
6dbe2772 1549 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
1550 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1551 return seqno;
1552}
1553
1554/**
1555 * Command execution barrier
1556 *
1557 * Ensures that all commands in the ring are finished
1558 * before signalling the CPU
1559 */
3043c60c 1560static uint32_t
673a394b
EA
1561i915_retire_commands(struct drm_device *dev)
1562{
1563 drm_i915_private_t *dev_priv = dev->dev_private;
1564 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1565 uint32_t flush_domains = 0;
1566 RING_LOCALS;
1567
1568 /* The sampler always gets flushed on i965 (sigh) */
1569 if (IS_I965G(dev))
1570 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1571 BEGIN_LP_RING(2);
1572 OUT_RING(cmd);
1573 OUT_RING(0); /* noop */
1574 ADVANCE_LP_RING();
1575 return flush_domains;
1576}
1577
1578/**
1579 * Moves buffers associated only with the given active seqno from the active
1580 * to inactive list, potentially freeing them.
1581 */
1582static void
1583i915_gem_retire_request(struct drm_device *dev,
1584 struct drm_i915_gem_request *request)
1585{
1586 drm_i915_private_t *dev_priv = dev->dev_private;
1587
1588 /* Move any buffers on the active list that are no longer referenced
1589 * by the ringbuffer to the flushing/inactive lists as appropriate.
1590 */
5e118f41 1591 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1592 while (!list_empty(&dev_priv->mm.active_list)) {
1593 struct drm_gem_object *obj;
1594 struct drm_i915_gem_object *obj_priv;
1595
1596 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1597 struct drm_i915_gem_object,
1598 list);
1599 obj = obj_priv->obj;
1600
1601 /* If the seqno being retired doesn't match the oldest in the
1602 * list, then the oldest in the list must still be newer than
1603 * this seqno.
1604 */
1605 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1606 goto out;
de151cf6 1607
673a394b
EA
1608#if WATCH_LRU
1609 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1610 __func__, request->seqno, obj);
1611#endif
1612
ce44b0ea
EA
1613 if (obj->write_domain != 0)
1614 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1615 else {
1616 /* Take a reference on the object so it won't be
1617 * freed while the spinlock is held. The list
1618 * protection for this spinlock is safe when breaking
1619 * the lock like this since the next thing we do
1620 * is just get the head of the list again.
1621 */
1622 drm_gem_object_reference(obj);
673a394b 1623 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1624 spin_unlock(&dev_priv->mm.active_list_lock);
1625 drm_gem_object_unreference(obj);
1626 spin_lock(&dev_priv->mm.active_list_lock);
1627 }
673a394b 1628 }
5e118f41
CW
1629out:
1630 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1631}
1632
1633/**
1634 * Returns true if seq1 is later than seq2.
1635 */
1636static int
1637i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1638{
1639 return (int32_t)(seq1 - seq2) >= 0;
1640}
1641
1642uint32_t
1643i915_get_gem_seqno(struct drm_device *dev)
1644{
1645 drm_i915_private_t *dev_priv = dev->dev_private;
1646
1647 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1648}
1649
1650/**
1651 * This function clears the request list as sequence numbers are passed.
1652 */
1653void
1654i915_gem_retire_requests(struct drm_device *dev)
1655{
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 uint32_t seqno;
1658
6c0594a3
KW
1659 if (!dev_priv->hw_status_page)
1660 return;
1661
673a394b
EA
1662 seqno = i915_get_gem_seqno(dev);
1663
1664 while (!list_empty(&dev_priv->mm.request_list)) {
1665 struct drm_i915_gem_request *request;
1666 uint32_t retiring_seqno;
1667
1668 request = list_first_entry(&dev_priv->mm.request_list,
1669 struct drm_i915_gem_request,
1670 list);
1671 retiring_seqno = request->seqno;
1672
1673 if (i915_seqno_passed(seqno, retiring_seqno) ||
1674 dev_priv->mm.wedged) {
1675 i915_gem_retire_request(dev, request);
1676
1677 list_del(&request->list);
b962442e 1678 list_del(&request->client_list);
673a394b
EA
1679 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1680 } else
1681 break;
1682 }
1683}
1684
1685void
1686i915_gem_retire_work_handler(struct work_struct *work)
1687{
1688 drm_i915_private_t *dev_priv;
1689 struct drm_device *dev;
1690
1691 dev_priv = container_of(work, drm_i915_private_t,
1692 mm.retire_work.work);
1693 dev = dev_priv->dev;
1694
1695 mutex_lock(&dev->struct_mutex);
1696 i915_gem_retire_requests(dev);
6dbe2772
KP
1697 if (!dev_priv->mm.suspended &&
1698 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
1699 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1700 mutex_unlock(&dev->struct_mutex);
1701}
1702
1703/**
1704 * Waits for a sequence number to be signaled, and cleans up the
1705 * request and object lists appropriately for that event.
1706 */
3043c60c 1707static int
673a394b
EA
1708i915_wait_request(struct drm_device *dev, uint32_t seqno)
1709{
1710 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1711 u32 ier;
673a394b
EA
1712 int ret = 0;
1713
1714 BUG_ON(seqno == 0);
1715
1716 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
036a4a7d
ZW
1717 if (IS_IGDNG(dev))
1718 ier = I915_READ(DEIER) | I915_READ(GTIER);
1719 else
1720 ier = I915_READ(IER);
802c7eb6
JB
1721 if (!ier) {
1722 DRM_ERROR("something (likely vbetool) disabled "
1723 "interrupts, re-enabling\n");
1724 i915_driver_irq_preinstall(dev);
1725 i915_driver_irq_postinstall(dev);
1726 }
1727
673a394b
EA
1728 dev_priv->mm.waiting_gem_seqno = seqno;
1729 i915_user_irq_get(dev);
1730 ret = wait_event_interruptible(dev_priv->irq_queue,
1731 i915_seqno_passed(i915_get_gem_seqno(dev),
1732 seqno) ||
1733 dev_priv->mm.wedged);
1734 i915_user_irq_put(dev);
1735 dev_priv->mm.waiting_gem_seqno = 0;
1736 }
1737 if (dev_priv->mm.wedged)
1738 ret = -EIO;
1739
1740 if (ret && ret != -ERESTARTSYS)
1741 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1742 __func__, ret, seqno, i915_get_gem_seqno(dev));
1743
1744 /* Directly dispatch request retiring. While we have the work queue
1745 * to handle this, the waiter on a request often wants an associated
1746 * buffer to have made it to the inactive list, and we would need
1747 * a separate wait queue to handle that.
1748 */
1749 if (ret == 0)
1750 i915_gem_retire_requests(dev);
1751
1752 return ret;
1753}
1754
1755static void
1756i915_gem_flush(struct drm_device *dev,
1757 uint32_t invalidate_domains,
1758 uint32_t flush_domains)
1759{
1760 drm_i915_private_t *dev_priv = dev->dev_private;
1761 uint32_t cmd;
1762 RING_LOCALS;
1763
1764#if WATCH_EXEC
1765 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1766 invalidate_domains, flush_domains);
1767#endif
1768
1769 if (flush_domains & I915_GEM_DOMAIN_CPU)
1770 drm_agp_chipset_flush(dev);
1771
1772 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1773 I915_GEM_DOMAIN_GTT)) {
1774 /*
1775 * read/write caches:
1776 *
1777 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1778 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1779 * also flushed at 2d versus 3d pipeline switches.
1780 *
1781 * read-only caches:
1782 *
1783 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1784 * MI_READ_FLUSH is set, and is always flushed on 965.
1785 *
1786 * I915_GEM_DOMAIN_COMMAND may not exist?
1787 *
1788 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1789 * invalidated when MI_EXE_FLUSH is set.
1790 *
1791 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1792 * invalidated with every MI_FLUSH.
1793 *
1794 * TLBs:
1795 *
1796 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1797 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1798 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1799 * are flushed at any MI_FLUSH.
1800 */
1801
1802 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1803 if ((invalidate_domains|flush_domains) &
1804 I915_GEM_DOMAIN_RENDER)
1805 cmd &= ~MI_NO_WRITE_FLUSH;
1806 if (!IS_I965G(dev)) {
1807 /*
1808 * On the 965, the sampler cache always gets flushed
1809 * and this bit is reserved.
1810 */
1811 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1812 cmd |= MI_READ_FLUSH;
1813 }
1814 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1815 cmd |= MI_EXE_FLUSH;
1816
1817#if WATCH_EXEC
1818 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1819#endif
1820 BEGIN_LP_RING(2);
1821 OUT_RING(cmd);
1822 OUT_RING(0); /* noop */
1823 ADVANCE_LP_RING();
1824 }
1825}
1826
1827/**
1828 * Ensures that all rendering to the object has completed and the object is
1829 * safe to unbind from the GTT or access from the CPU.
1830 */
1831static int
1832i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1833{
1834 struct drm_device *dev = obj->dev;
1835 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1836 int ret;
1837
e47c68e9
EA
1838 /* This function only exists to support waiting for existing rendering,
1839 * not for emitting required flushes.
673a394b 1840 */
e47c68e9 1841 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1842
1843 /* If there is rendering queued on the buffer being evicted, wait for
1844 * it.
1845 */
1846 if (obj_priv->active) {
1847#if WATCH_BUF
1848 DRM_INFO("%s: object %p wait for seqno %08x\n",
1849 __func__, obj, obj_priv->last_rendering_seqno);
1850#endif
1851 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1852 if (ret != 0)
1853 return ret;
1854 }
1855
1856 return 0;
1857}
1858
1859/**
1860 * Unbinds an object from the GTT aperture.
1861 */
0f973f27 1862int
673a394b
EA
1863i915_gem_object_unbind(struct drm_gem_object *obj)
1864{
1865 struct drm_device *dev = obj->dev;
1866 struct drm_i915_gem_object *obj_priv = obj->driver_private;
de151cf6 1867 loff_t offset;
673a394b
EA
1868 int ret = 0;
1869
1870#if WATCH_BUF
1871 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1872 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1873#endif
1874 if (obj_priv->gtt_space == NULL)
1875 return 0;
1876
1877 if (obj_priv->pin_count != 0) {
1878 DRM_ERROR("Attempting to unbind pinned buffer\n");
1879 return -EINVAL;
1880 }
1881
673a394b
EA
1882 /* Move the object to the CPU domain to ensure that
1883 * any possible CPU writes while it's not in the GTT
1884 * are flushed when we go to remap it. This will
1885 * also ensure that all pending GPU writes are finished
1886 * before we unbind.
1887 */
e47c68e9 1888 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1889 if (ret) {
e47c68e9
EA
1890 if (ret != -ERESTARTSYS)
1891 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1892 return ret;
1893 }
1894
1895 if (obj_priv->agp_mem != NULL) {
1896 drm_unbind_agp(obj_priv->agp_mem);
1897 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1898 obj_priv->agp_mem = NULL;
1899 }
1900
1901 BUG_ON(obj_priv->active);
1902
de151cf6
JB
1903 /* blow away mappings if mapped through GTT */
1904 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
1905 if (dev->dev_mapping)
1906 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
de151cf6
JB
1907
1908 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1909 i915_gem_clear_fence_reg(obj);
1910
856fa198 1911 i915_gem_object_put_pages(obj);
673a394b
EA
1912
1913 if (obj_priv->gtt_space) {
1914 atomic_dec(&dev->gtt_count);
1915 atomic_sub(obj->size, &dev->gtt_memory);
1916
1917 drm_mm_put_block(obj_priv->gtt_space);
1918 obj_priv->gtt_space = NULL;
1919 }
1920
1921 /* Remove ourselves from the LRU list if present. */
1922 if (!list_empty(&obj_priv->list))
1923 list_del_init(&obj_priv->list);
1924
1925 return 0;
1926}
1927
1928static int
1929i915_gem_evict_something(struct drm_device *dev)
1930{
1931 drm_i915_private_t *dev_priv = dev->dev_private;
1932 struct drm_gem_object *obj;
1933 struct drm_i915_gem_object *obj_priv;
1934 int ret = 0;
1935
1936 for (;;) {
1937 /* If there's an inactive buffer available now, grab it
1938 * and be done.
1939 */
1940 if (!list_empty(&dev_priv->mm.inactive_list)) {
1941 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1942 struct drm_i915_gem_object,
1943 list);
1944 obj = obj_priv->obj;
1945 BUG_ON(obj_priv->pin_count != 0);
1946#if WATCH_LRU
1947 DRM_INFO("%s: evicting %p\n", __func__, obj);
1948#endif
1949 BUG_ON(obj_priv->active);
1950
1951 /* Wait on the rendering and unbind the buffer. */
1952 ret = i915_gem_object_unbind(obj);
1953 break;
1954 }
1955
1956 /* If we didn't get anything, but the ring is still processing
1957 * things, wait for one of those things to finish and hopefully
1958 * leave us a buffer to evict.
1959 */
1960 if (!list_empty(&dev_priv->mm.request_list)) {
1961 struct drm_i915_gem_request *request;
1962
1963 request = list_first_entry(&dev_priv->mm.request_list,
1964 struct drm_i915_gem_request,
1965 list);
1966
1967 ret = i915_wait_request(dev, request->seqno);
1968 if (ret)
1969 break;
1970
1971 /* if waiting caused an object to become inactive,
1972 * then loop around and wait for it. Otherwise, we
1973 * assume that waiting freed and unbound something,
1974 * so there should now be some space in the GTT
1975 */
1976 if (!list_empty(&dev_priv->mm.inactive_list))
1977 continue;
1978 break;
1979 }
1980
1981 /* If we didn't have anything on the request list but there
1982 * are buffers awaiting a flush, emit one and try again.
1983 * When we wait on it, those buffers waiting for that flush
1984 * will get moved to inactive.
1985 */
1986 if (!list_empty(&dev_priv->mm.flushing_list)) {
1987 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1988 struct drm_i915_gem_object,
1989 list);
1990 obj = obj_priv->obj;
1991
1992 i915_gem_flush(dev,
1993 obj->write_domain,
1994 obj->write_domain);
b962442e 1995 i915_add_request(dev, NULL, obj->write_domain);
673a394b
EA
1996
1997 obj = NULL;
1998 continue;
1999 }
2000
2001 DRM_ERROR("inactive empty %d request empty %d "
2002 "flushing empty %d\n",
2003 list_empty(&dev_priv->mm.inactive_list),
2004 list_empty(&dev_priv->mm.request_list),
2005 list_empty(&dev_priv->mm.flushing_list));
2006 /* If we didn't do any of the above, there's nothing to be done
2007 * and we just can't fit it in.
2008 */
2009 return -ENOMEM;
2010 }
2011 return ret;
2012}
2013
ac94a962
KP
2014static int
2015i915_gem_evict_everything(struct drm_device *dev)
2016{
2017 int ret;
2018
2019 for (;;) {
2020 ret = i915_gem_evict_something(dev);
2021 if (ret != 0)
2022 break;
2023 }
15c35334
OA
2024 if (ret == -ENOMEM)
2025 return 0;
ac94a962
KP
2026 return ret;
2027}
2028
6911a9b8 2029int
856fa198 2030i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
2031{
2032 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2033 int page_count, i;
2034 struct address_space *mapping;
2035 struct inode *inode;
2036 struct page *page;
2037 int ret;
2038
856fa198 2039 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2040 return 0;
2041
2042 /* Get the list of pages out of our struct file. They'll be pinned
2043 * at this point until we release them.
2044 */
2045 page_count = obj->size / PAGE_SIZE;
856fa198 2046 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2047 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2048 if (obj_priv->pages == NULL) {
673a394b 2049 DRM_ERROR("Faled to allocate page list\n");
856fa198 2050 obj_priv->pages_refcount--;
673a394b
EA
2051 return -ENOMEM;
2052 }
2053
2054 inode = obj->filp->f_path.dentry->d_inode;
2055 mapping = inode->i_mapping;
2056 for (i = 0; i < page_count; i++) {
2057 page = read_mapping_page(mapping, i, NULL);
2058 if (IS_ERR(page)) {
2059 ret = PTR_ERR(page);
2060 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 2061 i915_gem_object_put_pages(obj);
673a394b
EA
2062 return ret;
2063 }
856fa198 2064 obj_priv->pages[i] = page;
673a394b 2065 }
280b713b
EA
2066
2067 if (obj_priv->tiling_mode != I915_TILING_NONE)
2068 i915_gem_object_do_bit_17_swizzle(obj);
2069
673a394b
EA
2070 return 0;
2071}
2072
de151cf6
JB
2073static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2074{
2075 struct drm_gem_object *obj = reg->obj;
2076 struct drm_device *dev = obj->dev;
2077 drm_i915_private_t *dev_priv = dev->dev_private;
2078 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2079 int regnum = obj_priv->fence_reg;
2080 uint64_t val;
2081
2082 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2083 0xfffff000) << 32;
2084 val |= obj_priv->gtt_offset & 0xfffff000;
2085 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2086 if (obj_priv->tiling_mode == I915_TILING_Y)
2087 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2088 val |= I965_FENCE_REG_VALID;
2089
2090 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2091}
2092
2093static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2094{
2095 struct drm_gem_object *obj = reg->obj;
2096 struct drm_device *dev = obj->dev;
2097 drm_i915_private_t *dev_priv = dev->dev_private;
2098 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2099 int regnum = obj_priv->fence_reg;
0f973f27 2100 int tile_width;
dc529a4f 2101 uint32_t fence_reg, val;
de151cf6
JB
2102 uint32_t pitch_val;
2103
2104 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2105 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2106 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2107 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2108 return;
2109 }
2110
0f973f27
JB
2111 if (obj_priv->tiling_mode == I915_TILING_Y &&
2112 HAS_128_BYTE_Y_TILING(dev))
2113 tile_width = 128;
de151cf6 2114 else
0f973f27
JB
2115 tile_width = 512;
2116
2117 /* Note: pitch better be a power of two tile widths */
2118 pitch_val = obj_priv->stride / tile_width;
2119 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2120
2121 val = obj_priv->gtt_offset;
2122 if (obj_priv->tiling_mode == I915_TILING_Y)
2123 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2124 val |= I915_FENCE_SIZE_BITS(obj->size);
2125 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2126 val |= I830_FENCE_REG_VALID;
2127
dc529a4f
EA
2128 if (regnum < 8)
2129 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2130 else
2131 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2132 I915_WRITE(fence_reg, val);
de151cf6
JB
2133}
2134
2135static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2136{
2137 struct drm_gem_object *obj = reg->obj;
2138 struct drm_device *dev = obj->dev;
2139 drm_i915_private_t *dev_priv = dev->dev_private;
2140 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2141 int regnum = obj_priv->fence_reg;
2142 uint32_t val;
2143 uint32_t pitch_val;
8d7773a3 2144 uint32_t fence_size_bits;
de151cf6 2145
8d7773a3 2146 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2147 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2148 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2149 __func__, obj_priv->gtt_offset);
de151cf6
JB
2150 return;
2151 }
2152
e76a16de
EA
2153 pitch_val = obj_priv->stride / 128;
2154 pitch_val = ffs(pitch_val) - 1;
2155 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2156
de151cf6
JB
2157 val = obj_priv->gtt_offset;
2158 if (obj_priv->tiling_mode == I915_TILING_Y)
2159 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2160 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2161 WARN_ON(fence_size_bits & ~0x00000f00);
2162 val |= fence_size_bits;
de151cf6
JB
2163 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2164 val |= I830_FENCE_REG_VALID;
2165
2166 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2167
2168}
2169
2170/**
2171 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2172 * @obj: object to map through a fence reg
0f973f27 2173 * @write: object is about to be written
de151cf6
JB
2174 *
2175 * When mapping objects through the GTT, userspace wants to be able to write
2176 * to them without having to worry about swizzling if the object is tiled.
2177 *
2178 * This function walks the fence regs looking for a free one for @obj,
2179 * stealing one if it can't find any.
2180 *
2181 * It then sets up the reg based on the object's properties: address, pitch
2182 * and tiling format.
2183 */
d9ddcb96 2184static int
0f973f27 2185i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
de151cf6
JB
2186{
2187 struct drm_device *dev = obj->dev;
79e53945 2188 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2189 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2190 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2191 struct drm_i915_gem_object *old_obj_priv = NULL;
2192 int i, ret, avail;
de151cf6
JB
2193
2194 switch (obj_priv->tiling_mode) {
2195 case I915_TILING_NONE:
2196 WARN(1, "allocating a fence for non-tiled object?\n");
2197 break;
2198 case I915_TILING_X:
0f973f27
JB
2199 if (!obj_priv->stride)
2200 return -EINVAL;
2201 WARN((obj_priv->stride & (512 - 1)),
2202 "object 0x%08x is X tiled but has non-512B pitch\n",
2203 obj_priv->gtt_offset);
de151cf6
JB
2204 break;
2205 case I915_TILING_Y:
0f973f27
JB
2206 if (!obj_priv->stride)
2207 return -EINVAL;
2208 WARN((obj_priv->stride & (128 - 1)),
2209 "object 0x%08x is Y tiled but has non-128B pitch\n",
2210 obj_priv->gtt_offset);
de151cf6
JB
2211 break;
2212 }
2213
2214 /* First try to find a free reg */
9b2412f9 2215try_again:
fc7170ba 2216 avail = 0;
de151cf6
JB
2217 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2218 reg = &dev_priv->fence_regs[i];
2219 if (!reg->obj)
2220 break;
fc7170ba
CW
2221
2222 old_obj_priv = reg->obj->driver_private;
2223 if (!old_obj_priv->pin_count)
2224 avail++;
de151cf6
JB
2225 }
2226
2227 /* None available, try to steal one or wait for a user to finish */
2228 if (i == dev_priv->num_fence_regs) {
d7619c4b 2229 uint32_t seqno = dev_priv->mm.next_gem_seqno;
de151cf6
JB
2230 loff_t offset;
2231
fc7170ba
CW
2232 if (avail == 0)
2233 return -ENOMEM;
2234
de151cf6
JB
2235 for (i = dev_priv->fence_reg_start;
2236 i < dev_priv->num_fence_regs; i++) {
d7619c4b
CW
2237 uint32_t this_seqno;
2238
de151cf6
JB
2239 reg = &dev_priv->fence_regs[i];
2240 old_obj_priv = reg->obj->driver_private;
d7619c4b
CW
2241
2242 if (old_obj_priv->pin_count)
2243 continue;
2244
2245 /* i915 uses fences for GPU access to tiled buffers */
2246 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2247 break;
d7619c4b
CW
2248
2249 /* find the seqno of the first available fence */
2250 this_seqno = old_obj_priv->last_rendering_seqno;
2251 if (this_seqno != 0 &&
2252 reg->obj->write_domain == 0 &&
2253 i915_seqno_passed(seqno, this_seqno))
2254 seqno = this_seqno;
de151cf6
JB
2255 }
2256
2257 /*
2258 * Now things get ugly... we have to wait for one of the
2259 * objects to finish before trying again.
2260 */
2261 if (i == dev_priv->num_fence_regs) {
d7619c4b
CW
2262 if (seqno == dev_priv->mm.next_gem_seqno) {
2263 i915_gem_flush(dev,
2264 I915_GEM_GPU_DOMAINS,
2265 I915_GEM_GPU_DOMAINS);
b962442e 2266 seqno = i915_add_request(dev, NULL,
d7619c4b
CW
2267 I915_GEM_GPU_DOMAINS);
2268 if (seqno == 0)
2269 return -ENOMEM;
de151cf6 2270 }
d7619c4b
CW
2271
2272 ret = i915_wait_request(dev, seqno);
2273 if (ret)
2274 return ret;
de151cf6
JB
2275 goto try_again;
2276 }
2277
2278 /*
2279 * Zap this virtual mapping so we can set up a fence again
2280 * for this object next time we need it.
2281 */
2282 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
79e53945
JB
2283 if (dev->dev_mapping)
2284 unmap_mapping_range(dev->dev_mapping, offset,
2285 reg->obj->size, 1);
de151cf6
JB
2286 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2287 }
2288
2289 obj_priv->fence_reg = i;
2290 reg->obj = obj;
2291
2292 if (IS_I965G(dev))
2293 i965_write_fence_reg(reg);
2294 else if (IS_I9XX(dev))
2295 i915_write_fence_reg(reg);
2296 else
2297 i830_write_fence_reg(reg);
d9ddcb96
EA
2298
2299 return 0;
de151cf6
JB
2300}
2301
2302/**
2303 * i915_gem_clear_fence_reg - clear out fence register info
2304 * @obj: object to clear
2305 *
2306 * Zeroes out the fence register itself and clears out the associated
2307 * data structures in dev_priv and obj_priv.
2308 */
2309static void
2310i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2311{
2312 struct drm_device *dev = obj->dev;
79e53945 2313 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2314 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2315
2316 if (IS_I965G(dev))
2317 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2318 else {
2319 uint32_t fence_reg;
2320
2321 if (obj_priv->fence_reg < 8)
2322 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2323 else
2324 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2325 8) * 4;
2326
2327 I915_WRITE(fence_reg, 0);
2328 }
de151cf6
JB
2329
2330 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2331 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2332}
2333
673a394b
EA
2334/**
2335 * Finds free space in the GTT aperture and binds the object there.
2336 */
2337static int
2338i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2339{
2340 struct drm_device *dev = obj->dev;
2341 drm_i915_private_t *dev_priv = dev->dev_private;
2342 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2343 struct drm_mm_node *free_space;
2344 int page_count, ret;
2345
9bb2d6f9
EA
2346 if (dev_priv->mm.suspended)
2347 return -EBUSY;
673a394b 2348 if (alignment == 0)
0f973f27 2349 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2350 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2351 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2352 return -EINVAL;
2353 }
2354
2355 search_free:
2356 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2357 obj->size, alignment, 0);
2358 if (free_space != NULL) {
2359 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2360 alignment);
2361 if (obj_priv->gtt_space != NULL) {
2362 obj_priv->gtt_space->private = obj;
2363 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2364 }
2365 }
2366 if (obj_priv->gtt_space == NULL) {
5e118f41
CW
2367 bool lists_empty;
2368
673a394b
EA
2369 /* If the gtt is empty and we're still having trouble
2370 * fitting our object in, we're out of memory.
2371 */
2372#if WATCH_LRU
2373 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2374#endif
5e118f41
CW
2375 spin_lock(&dev_priv->mm.active_list_lock);
2376 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2377 list_empty(&dev_priv->mm.flushing_list) &&
2378 list_empty(&dev_priv->mm.active_list));
2379 spin_unlock(&dev_priv->mm.active_list_lock);
2380 if (lists_empty) {
673a394b
EA
2381 DRM_ERROR("GTT full, but LRU list empty\n");
2382 return -ENOMEM;
2383 }
2384
2385 ret = i915_gem_evict_something(dev);
2386 if (ret != 0) {
ac94a962
KP
2387 if (ret != -ERESTARTSYS)
2388 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2389 return ret;
2390 }
2391 goto search_free;
2392 }
2393
2394#if WATCH_BUF
2395 DRM_INFO("Binding object of size %d at 0x%08x\n",
2396 obj->size, obj_priv->gtt_offset);
2397#endif
856fa198 2398 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2399 if (ret) {
2400 drm_mm_put_block(obj_priv->gtt_space);
2401 obj_priv->gtt_space = NULL;
2402 return ret;
2403 }
2404
2405 page_count = obj->size / PAGE_SIZE;
2406 /* Create an AGP memory structure pointing at our pages, and bind it
2407 * into the GTT.
2408 */
2409 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2410 obj_priv->pages,
673a394b 2411 page_count,
ba1eb1d8
KP
2412 obj_priv->gtt_offset,
2413 obj_priv->agp_type);
673a394b 2414 if (obj_priv->agp_mem == NULL) {
856fa198 2415 i915_gem_object_put_pages(obj);
673a394b
EA
2416 drm_mm_put_block(obj_priv->gtt_space);
2417 obj_priv->gtt_space = NULL;
2418 return -ENOMEM;
2419 }
2420 atomic_inc(&dev->gtt_count);
2421 atomic_add(obj->size, &dev->gtt_memory);
2422
2423 /* Assert that the object is not currently in any GPU domain. As it
2424 * wasn't in the GTT, there shouldn't be any way it could have been in
2425 * a GPU cache
2426 */
2427 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2428 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2429
2430 return 0;
2431}
2432
2433void
2434i915_gem_clflush_object(struct drm_gem_object *obj)
2435{
2436 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2437
2438 /* If we don't have a page list set up, then we're not pinned
2439 * to GPU, and we can ignore the cache flush because it'll happen
2440 * again at bind time.
2441 */
856fa198 2442 if (obj_priv->pages == NULL)
673a394b
EA
2443 return;
2444
cfa16a0d
EA
2445 /* XXX: The 865 in particular appears to be weird in how it handles
2446 * cache flushing. We haven't figured it out, but the
2447 * clflush+agp_chipset_flush doesn't appear to successfully get the
2448 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2449 */
2450 if (IS_I865G(obj->dev)) {
2451 wbinvd();
2452 return;
2453 }
2454
856fa198 2455 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2456}
2457
e47c68e9
EA
2458/** Flushes any GPU write domain for the object if it's dirty. */
2459static void
2460i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2461{
2462 struct drm_device *dev = obj->dev;
2463 uint32_t seqno;
2464
2465 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2466 return;
2467
2468 /* Queue the GPU write cache flushing we need. */
2469 i915_gem_flush(dev, 0, obj->write_domain);
b962442e 2470 seqno = i915_add_request(dev, NULL, obj->write_domain);
e47c68e9
EA
2471 obj->write_domain = 0;
2472 i915_gem_object_move_to_active(obj, seqno);
2473}
2474
2475/** Flushes the GTT write domain for the object if it's dirty. */
2476static void
2477i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2478{
2479 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2480 return;
2481
2482 /* No actual flushing is required for the GTT write domain. Writes
2483 * to it immediately go to main memory as far as we know, so there's
2484 * no chipset flush. It also doesn't land in render cache.
2485 */
2486 obj->write_domain = 0;
2487}
2488
2489/** Flushes the CPU write domain for the object if it's dirty. */
2490static void
2491i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2492{
2493 struct drm_device *dev = obj->dev;
2494
2495 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2496 return;
2497
2498 i915_gem_clflush_object(obj);
2499 drm_agp_chipset_flush(dev);
2500 obj->write_domain = 0;
2501}
2502
2ef7eeaa
EA
2503/**
2504 * Moves a single object to the GTT read, and possibly write domain.
2505 *
2506 * This function returns when the move is complete, including waiting on
2507 * flushes to occur.
2508 */
79e53945 2509int
2ef7eeaa
EA
2510i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2511{
2ef7eeaa 2512 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2513 int ret;
2ef7eeaa 2514
02354392
EA
2515 /* Not valid to be called on unbound objects. */
2516 if (obj_priv->gtt_space == NULL)
2517 return -EINVAL;
2518
e47c68e9
EA
2519 i915_gem_object_flush_gpu_write_domain(obj);
2520 /* Wait on any GPU rendering and flushing to occur. */
2521 ret = i915_gem_object_wait_rendering(obj);
2522 if (ret != 0)
2523 return ret;
2524
2525 /* If we're writing through the GTT domain, then CPU and GPU caches
2526 * will need to be invalidated at next use.
2ef7eeaa 2527 */
e47c68e9
EA
2528 if (write)
2529 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2530
e47c68e9 2531 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2532
e47c68e9
EA
2533 /* It should now be out of any other write domains, and we can update
2534 * the domain values for our changes.
2535 */
2536 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2537 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2538 if (write) {
2539 obj->write_domain = I915_GEM_DOMAIN_GTT;
2540 obj_priv->dirty = 1;
2ef7eeaa
EA
2541 }
2542
e47c68e9
EA
2543 return 0;
2544}
2545
2546/**
2547 * Moves a single object to the CPU read, and possibly write domain.
2548 *
2549 * This function returns when the move is complete, including waiting on
2550 * flushes to occur.
2551 */
2552static int
2553i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2554{
e47c68e9
EA
2555 int ret;
2556
2557 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2558 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2559 ret = i915_gem_object_wait_rendering(obj);
2560 if (ret != 0)
2561 return ret;
2ef7eeaa 2562
e47c68e9 2563 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2564
e47c68e9
EA
2565 /* If we have a partially-valid cache of the object in the CPU,
2566 * finish invalidating it and free the per-page flags.
2ef7eeaa 2567 */
e47c68e9 2568 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2569
e47c68e9
EA
2570 /* Flush the CPU cache if it's still invalid. */
2571 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2572 i915_gem_clflush_object(obj);
2ef7eeaa 2573
e47c68e9 2574 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2575 }
2576
2577 /* It should now be out of any other write domains, and we can update
2578 * the domain values for our changes.
2579 */
e47c68e9
EA
2580 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2581
2582 /* If we're writing through the CPU, then the GPU read domains will
2583 * need to be invalidated at next use.
2584 */
2585 if (write) {
2586 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2587 obj->write_domain = I915_GEM_DOMAIN_CPU;
2588 }
2ef7eeaa
EA
2589
2590 return 0;
2591}
2592
673a394b
EA
2593/*
2594 * Set the next domain for the specified object. This
2595 * may not actually perform the necessary flushing/invaliding though,
2596 * as that may want to be batched with other set_domain operations
2597 *
2598 * This is (we hope) the only really tricky part of gem. The goal
2599 * is fairly simple -- track which caches hold bits of the object
2600 * and make sure they remain coherent. A few concrete examples may
2601 * help to explain how it works. For shorthand, we use the notation
2602 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2603 * a pair of read and write domain masks.
2604 *
2605 * Case 1: the batch buffer
2606 *
2607 * 1. Allocated
2608 * 2. Written by CPU
2609 * 3. Mapped to GTT
2610 * 4. Read by GPU
2611 * 5. Unmapped from GTT
2612 * 6. Freed
2613 *
2614 * Let's take these a step at a time
2615 *
2616 * 1. Allocated
2617 * Pages allocated from the kernel may still have
2618 * cache contents, so we set them to (CPU, CPU) always.
2619 * 2. Written by CPU (using pwrite)
2620 * The pwrite function calls set_domain (CPU, CPU) and
2621 * this function does nothing (as nothing changes)
2622 * 3. Mapped by GTT
2623 * This function asserts that the object is not
2624 * currently in any GPU-based read or write domains
2625 * 4. Read by GPU
2626 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2627 * As write_domain is zero, this function adds in the
2628 * current read domains (CPU+COMMAND, 0).
2629 * flush_domains is set to CPU.
2630 * invalidate_domains is set to COMMAND
2631 * clflush is run to get data out of the CPU caches
2632 * then i915_dev_set_domain calls i915_gem_flush to
2633 * emit an MI_FLUSH and drm_agp_chipset_flush
2634 * 5. Unmapped from GTT
2635 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2636 * flush_domains and invalidate_domains end up both zero
2637 * so no flushing/invalidating happens
2638 * 6. Freed
2639 * yay, done
2640 *
2641 * Case 2: The shared render buffer
2642 *
2643 * 1. Allocated
2644 * 2. Mapped to GTT
2645 * 3. Read/written by GPU
2646 * 4. set_domain to (CPU,CPU)
2647 * 5. Read/written by CPU
2648 * 6. Read/written by GPU
2649 *
2650 * 1. Allocated
2651 * Same as last example, (CPU, CPU)
2652 * 2. Mapped to GTT
2653 * Nothing changes (assertions find that it is not in the GPU)
2654 * 3. Read/written by GPU
2655 * execbuffer calls set_domain (RENDER, RENDER)
2656 * flush_domains gets CPU
2657 * invalidate_domains gets GPU
2658 * clflush (obj)
2659 * MI_FLUSH and drm_agp_chipset_flush
2660 * 4. set_domain (CPU, CPU)
2661 * flush_domains gets GPU
2662 * invalidate_domains gets CPU
2663 * wait_rendering (obj) to make sure all drawing is complete.
2664 * This will include an MI_FLUSH to get the data from GPU
2665 * to memory
2666 * clflush (obj) to invalidate the CPU cache
2667 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2668 * 5. Read/written by CPU
2669 * cache lines are loaded and dirtied
2670 * 6. Read written by GPU
2671 * Same as last GPU access
2672 *
2673 * Case 3: The constant buffer
2674 *
2675 * 1. Allocated
2676 * 2. Written by CPU
2677 * 3. Read by GPU
2678 * 4. Updated (written) by CPU again
2679 * 5. Read by GPU
2680 *
2681 * 1. Allocated
2682 * (CPU, CPU)
2683 * 2. Written by CPU
2684 * (CPU, CPU)
2685 * 3. Read by GPU
2686 * (CPU+RENDER, 0)
2687 * flush_domains = CPU
2688 * invalidate_domains = RENDER
2689 * clflush (obj)
2690 * MI_FLUSH
2691 * drm_agp_chipset_flush
2692 * 4. Updated (written) by CPU again
2693 * (CPU, CPU)
2694 * flush_domains = 0 (no previous write domain)
2695 * invalidate_domains = 0 (no new read domains)
2696 * 5. Read by GPU
2697 * (CPU+RENDER, 0)
2698 * flush_domains = CPU
2699 * invalidate_domains = RENDER
2700 * clflush (obj)
2701 * MI_FLUSH
2702 * drm_agp_chipset_flush
2703 */
c0d90829 2704static void
8b0e378a 2705i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2706{
2707 struct drm_device *dev = obj->dev;
2708 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2709 uint32_t invalidate_domains = 0;
2710 uint32_t flush_domains = 0;
e47c68e9 2711
8b0e378a
EA
2712 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2713 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2714
2715#if WATCH_BUF
2716 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2717 __func__, obj,
8b0e378a
EA
2718 obj->read_domains, obj->pending_read_domains,
2719 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2720#endif
2721 /*
2722 * If the object isn't moving to a new write domain,
2723 * let the object stay in multiple read domains
2724 */
8b0e378a
EA
2725 if (obj->pending_write_domain == 0)
2726 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2727 else
2728 obj_priv->dirty = 1;
2729
2730 /*
2731 * Flush the current write domain if
2732 * the new read domains don't match. Invalidate
2733 * any read domains which differ from the old
2734 * write domain
2735 */
8b0e378a
EA
2736 if (obj->write_domain &&
2737 obj->write_domain != obj->pending_read_domains) {
673a394b 2738 flush_domains |= obj->write_domain;
8b0e378a
EA
2739 invalidate_domains |=
2740 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2741 }
2742 /*
2743 * Invalidate any read caches which may have
2744 * stale data. That is, any new read domains.
2745 */
8b0e378a 2746 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2747 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2748#if WATCH_BUF
2749 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2750 __func__, flush_domains, invalidate_domains);
2751#endif
673a394b
EA
2752 i915_gem_clflush_object(obj);
2753 }
2754
efbeed96
EA
2755 /* The actual obj->write_domain will be updated with
2756 * pending_write_domain after we emit the accumulated flush for all
2757 * of our domain changes in execbuffers (which clears objects'
2758 * write_domains). So if we have a current write domain that we
2759 * aren't changing, set pending_write_domain to that.
2760 */
2761 if (flush_domains == 0 && obj->pending_write_domain == 0)
2762 obj->pending_write_domain = obj->write_domain;
8b0e378a 2763 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2764
2765 dev->invalidate_domains |= invalidate_domains;
2766 dev->flush_domains |= flush_domains;
2767#if WATCH_BUF
2768 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2769 __func__,
2770 obj->read_domains, obj->write_domain,
2771 dev->invalidate_domains, dev->flush_domains);
2772#endif
673a394b
EA
2773}
2774
2775/**
e47c68e9 2776 * Moves the object from a partially CPU read to a full one.
673a394b 2777 *
e47c68e9
EA
2778 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2779 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2780 */
e47c68e9
EA
2781static void
2782i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
2783{
2784 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2785
e47c68e9
EA
2786 if (!obj_priv->page_cpu_valid)
2787 return;
2788
2789 /* If we're partially in the CPU read domain, finish moving it in.
2790 */
2791 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2792 int i;
2793
2794 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2795 if (obj_priv->page_cpu_valid[i])
2796 continue;
856fa198 2797 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 2798 }
e47c68e9
EA
2799 }
2800
2801 /* Free the page_cpu_valid mappings which are now stale, whether
2802 * or not we've got I915_GEM_DOMAIN_CPU.
2803 */
2804 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2805 DRM_MEM_DRIVER);
2806 obj_priv->page_cpu_valid = NULL;
2807}
2808
2809/**
2810 * Set the CPU read domain on a range of the object.
2811 *
2812 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2813 * not entirely valid. The page_cpu_valid member of the object flags which
2814 * pages have been flushed, and will be respected by
2815 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2816 * of the whole object.
2817 *
2818 * This function returns when the move is complete, including waiting on
2819 * flushes to occur.
2820 */
2821static int
2822i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2823 uint64_t offset, uint64_t size)
2824{
2825 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2826 int i, ret;
673a394b 2827
e47c68e9
EA
2828 if (offset == 0 && size == obj->size)
2829 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2830
e47c68e9
EA
2831 i915_gem_object_flush_gpu_write_domain(obj);
2832 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2833 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2834 if (ret != 0)
6a47baa6 2835 return ret;
e47c68e9
EA
2836 i915_gem_object_flush_gtt_write_domain(obj);
2837
2838 /* If we're already fully in the CPU read domain, we're done. */
2839 if (obj_priv->page_cpu_valid == NULL &&
2840 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2841 return 0;
673a394b 2842
e47c68e9
EA
2843 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2844 * newly adding I915_GEM_DOMAIN_CPU
2845 */
673a394b
EA
2846 if (obj_priv->page_cpu_valid == NULL) {
2847 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2848 DRM_MEM_DRIVER);
e47c68e9
EA
2849 if (obj_priv->page_cpu_valid == NULL)
2850 return -ENOMEM;
2851 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2852 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2853
2854 /* Flush the cache on any pages that are still invalid from the CPU's
2855 * perspective.
2856 */
e47c68e9
EA
2857 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2858 i++) {
673a394b
EA
2859 if (obj_priv->page_cpu_valid[i])
2860 continue;
2861
856fa198 2862 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2863
2864 obj_priv->page_cpu_valid[i] = 1;
2865 }
2866
e47c68e9
EA
2867 /* It should now be out of any other write domains, and we can update
2868 * the domain values for our changes.
2869 */
2870 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2871
2872 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2873
673a394b
EA
2874 return 0;
2875}
2876
673a394b
EA
2877/**
2878 * Pin an object to the GTT and evaluate the relocations landing in it.
2879 */
2880static int
2881i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2882 struct drm_file *file_priv,
40a5f0de
EA
2883 struct drm_i915_gem_exec_object *entry,
2884 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
2885{
2886 struct drm_device *dev = obj->dev;
0839ccb8 2887 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2888 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2889 int i, ret;
0839ccb8 2890 void __iomem *reloc_page;
673a394b
EA
2891
2892 /* Choose the GTT offset for our buffer and put it there. */
2893 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2894 if (ret)
2895 return ret;
2896
2897 entry->offset = obj_priv->gtt_offset;
2898
673a394b
EA
2899 /* Apply the relocations, using the GTT aperture to avoid cache
2900 * flushing requirements.
2901 */
2902 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 2903 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
2904 struct drm_gem_object *target_obj;
2905 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2906 uint32_t reloc_val, reloc_offset;
2907 uint32_t __iomem *reloc_entry;
673a394b 2908
673a394b 2909 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 2910 reloc->target_handle);
673a394b
EA
2911 if (target_obj == NULL) {
2912 i915_gem_object_unpin(obj);
2913 return -EBADF;
2914 }
2915 target_obj_priv = target_obj->driver_private;
2916
2917 /* The target buffer should have appeared before us in the
2918 * exec_object list, so it should have a GTT space bound by now.
2919 */
2920 if (target_obj_priv->gtt_space == NULL) {
2921 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 2922 reloc->target_handle);
673a394b
EA
2923 drm_gem_object_unreference(target_obj);
2924 i915_gem_object_unpin(obj);
2925 return -EINVAL;
2926 }
2927
40a5f0de 2928 if (reloc->offset > obj->size - 4) {
673a394b
EA
2929 DRM_ERROR("Relocation beyond object bounds: "
2930 "obj %p target %d offset %d size %d.\n",
40a5f0de
EA
2931 obj, reloc->target_handle,
2932 (int) reloc->offset, (int) obj->size);
673a394b
EA
2933 drm_gem_object_unreference(target_obj);
2934 i915_gem_object_unpin(obj);
2935 return -EINVAL;
2936 }
40a5f0de 2937 if (reloc->offset & 3) {
673a394b
EA
2938 DRM_ERROR("Relocation not 4-byte aligned: "
2939 "obj %p target %d offset %d.\n",
40a5f0de
EA
2940 obj, reloc->target_handle,
2941 (int) reloc->offset);
673a394b
EA
2942 drm_gem_object_unreference(target_obj);
2943 i915_gem_object_unpin(obj);
2944 return -EINVAL;
2945 }
2946
40a5f0de
EA
2947 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2948 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
2949 DRM_ERROR("reloc with read/write CPU domains: "
2950 "obj %p target %d offset %d "
2951 "read %08x write %08x",
40a5f0de
EA
2952 obj, reloc->target_handle,
2953 (int) reloc->offset,
2954 reloc->read_domains,
2955 reloc->write_domain);
491152b8
CW
2956 drm_gem_object_unreference(target_obj);
2957 i915_gem_object_unpin(obj);
e47c68e9
EA
2958 return -EINVAL;
2959 }
2960
40a5f0de
EA
2961 if (reloc->write_domain && target_obj->pending_write_domain &&
2962 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
2963 DRM_ERROR("Write domain conflict: "
2964 "obj %p target %d offset %d "
2965 "new %08x old %08x\n",
40a5f0de
EA
2966 obj, reloc->target_handle,
2967 (int) reloc->offset,
2968 reloc->write_domain,
673a394b
EA
2969 target_obj->pending_write_domain);
2970 drm_gem_object_unreference(target_obj);
2971 i915_gem_object_unpin(obj);
2972 return -EINVAL;
2973 }
2974
2975#if WATCH_RELOC
2976 DRM_INFO("%s: obj %p offset %08x target %d "
2977 "read %08x write %08x gtt %08x "
2978 "presumed %08x delta %08x\n",
2979 __func__,
2980 obj,
40a5f0de
EA
2981 (int) reloc->offset,
2982 (int) reloc->target_handle,
2983 (int) reloc->read_domains,
2984 (int) reloc->write_domain,
673a394b 2985 (int) target_obj_priv->gtt_offset,
40a5f0de
EA
2986 (int) reloc->presumed_offset,
2987 reloc->delta);
673a394b
EA
2988#endif
2989
40a5f0de
EA
2990 target_obj->pending_read_domains |= reloc->read_domains;
2991 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
2992
2993 /* If the relocation already has the right value in it, no
2994 * more work needs to be done.
2995 */
40a5f0de 2996 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
2997 drm_gem_object_unreference(target_obj);
2998 continue;
2999 }
3000
2ef7eeaa
EA
3001 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3002 if (ret != 0) {
3003 drm_gem_object_unreference(target_obj);
3004 i915_gem_object_unpin(obj);
3005 return -EINVAL;
673a394b
EA
3006 }
3007
3008 /* Map the page containing the relocation we're going to
3009 * perform.
3010 */
40a5f0de 3011 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3012 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3013 (reloc_offset &
3014 ~(PAGE_SIZE - 1)));
3043c60c 3015 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3016 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3017 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3018
3019#if WATCH_BUF
3020 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3021 obj, (unsigned int) reloc->offset,
673a394b
EA
3022 readl(reloc_entry), reloc_val);
3023#endif
3024 writel(reloc_val, reloc_entry);
0839ccb8 3025 io_mapping_unmap_atomic(reloc_page);
673a394b 3026
40a5f0de
EA
3027 /* The updated presumed offset for this entry will be
3028 * copied back out to the user.
673a394b 3029 */
40a5f0de 3030 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3031
3032 drm_gem_object_unreference(target_obj);
3033 }
3034
673a394b
EA
3035#if WATCH_BUF
3036 if (0)
3037 i915_gem_dump_object(obj, 128, __func__, ~0);
3038#endif
3039 return 0;
3040}
3041
3042/** Dispatch a batchbuffer to the ring
3043 */
3044static int
3045i915_dispatch_gem_execbuffer(struct drm_device *dev,
3046 struct drm_i915_gem_execbuffer *exec,
201361a5 3047 struct drm_clip_rect *cliprects,
673a394b
EA
3048 uint64_t exec_offset)
3049{
3050 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3051 int nbox = exec->num_cliprects;
3052 int i = 0, count;
83d60795 3053 uint32_t exec_start, exec_len;
673a394b
EA
3054 RING_LOCALS;
3055
3056 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3057 exec_len = (uint32_t) exec->batch_len;
3058
673a394b
EA
3059 count = nbox ? nbox : 1;
3060
3061 for (i = 0; i < count; i++) {
3062 if (i < nbox) {
201361a5 3063 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3064 exec->DR1, exec->DR4);
3065 if (ret)
3066 return ret;
3067 }
3068
3069 if (IS_I830(dev) || IS_845G(dev)) {
3070 BEGIN_LP_RING(4);
3071 OUT_RING(MI_BATCH_BUFFER);
3072 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3073 OUT_RING(exec_start + exec_len - 4);
3074 OUT_RING(0);
3075 ADVANCE_LP_RING();
3076 } else {
3077 BEGIN_LP_RING(2);
3078 if (IS_I965G(dev)) {
3079 OUT_RING(MI_BATCH_BUFFER_START |
3080 (2 << 6) |
3081 MI_BATCH_NON_SECURE_I965);
3082 OUT_RING(exec_start);
3083 } else {
3084 OUT_RING(MI_BATCH_BUFFER_START |
3085 (2 << 6));
3086 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3087 }
3088 ADVANCE_LP_RING();
3089 }
3090 }
3091
3092 /* XXX breadcrumb */
3093 return 0;
3094}
3095
3096/* Throttle our rendering by waiting until the ring has completed our requests
3097 * emitted over 20 msec ago.
3098 *
b962442e
EA
3099 * Note that if we were to use the current jiffies each time around the loop,
3100 * we wouldn't escape the function with any frames outstanding if the time to
3101 * render a frame was over 20ms.
3102 *
673a394b
EA
3103 * This should get us reasonable parallelism between CPU and GPU but also
3104 * relatively low latency when blocking on a particular request to finish.
3105 */
3106static int
3107i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3108{
3109 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3110 int ret = 0;
b962442e 3111 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3112
3113 mutex_lock(&dev->struct_mutex);
b962442e
EA
3114 while (!list_empty(&i915_file_priv->mm.request_list)) {
3115 struct drm_i915_gem_request *request;
3116
3117 request = list_first_entry(&i915_file_priv->mm.request_list,
3118 struct drm_i915_gem_request,
3119 client_list);
3120
3121 if (time_after_eq(request->emitted_jiffies, recent_enough))
3122 break;
3123
3124 ret = i915_wait_request(dev, request->seqno);
3125 if (ret != 0)
3126 break;
3127 }
673a394b 3128 mutex_unlock(&dev->struct_mutex);
b962442e 3129
673a394b
EA
3130 return ret;
3131}
3132
40a5f0de
EA
3133static int
3134i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3135 uint32_t buffer_count,
3136 struct drm_i915_gem_relocation_entry **relocs)
3137{
3138 uint32_t reloc_count = 0, reloc_index = 0, i;
3139 int ret;
3140
3141 *relocs = NULL;
3142 for (i = 0; i < buffer_count; i++) {
3143 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3144 return -EINVAL;
3145 reloc_count += exec_list[i].relocation_count;
3146 }
3147
8e7d2b2c 3148 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
40a5f0de
EA
3149 if (*relocs == NULL)
3150 return -ENOMEM;
3151
3152 for (i = 0; i < buffer_count; i++) {
3153 struct drm_i915_gem_relocation_entry __user *user_relocs;
3154
3155 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3156
3157 ret = copy_from_user(&(*relocs)[reloc_index],
3158 user_relocs,
3159 exec_list[i].relocation_count *
3160 sizeof(**relocs));
3161 if (ret != 0) {
8e7d2b2c 3162 drm_free_large(*relocs);
40a5f0de 3163 *relocs = NULL;
2bc43b5c 3164 return -EFAULT;
40a5f0de
EA
3165 }
3166
3167 reloc_index += exec_list[i].relocation_count;
3168 }
3169
2bc43b5c 3170 return 0;
40a5f0de
EA
3171}
3172
3173static int
3174i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3175 uint32_t buffer_count,
3176 struct drm_i915_gem_relocation_entry *relocs)
3177{
3178 uint32_t reloc_count = 0, i;
2bc43b5c 3179 int ret = 0;
40a5f0de
EA
3180
3181 for (i = 0; i < buffer_count; i++) {
3182 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3183 int unwritten;
40a5f0de
EA
3184
3185 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3186
2bc43b5c
FM
3187 unwritten = copy_to_user(user_relocs,
3188 &relocs[reloc_count],
3189 exec_list[i].relocation_count *
3190 sizeof(*relocs));
3191
3192 if (unwritten) {
3193 ret = -EFAULT;
3194 goto err;
40a5f0de
EA
3195 }
3196
3197 reloc_count += exec_list[i].relocation_count;
3198 }
3199
2bc43b5c 3200err:
8e7d2b2c 3201 drm_free_large(relocs);
40a5f0de
EA
3202
3203 return ret;
3204}
3205
83d60795
CW
3206static int
3207i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3208 uint64_t exec_offset)
3209{
3210 uint32_t exec_start, exec_len;
3211
3212 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3213 exec_len = (uint32_t) exec->batch_len;
3214
3215 if ((exec_start | exec_len) & 0x7)
3216 return -EINVAL;
3217
3218 if (!exec_start)
3219 return -EINVAL;
3220
3221 return 0;
3222}
3223
673a394b
EA
3224int
3225i915_gem_execbuffer(struct drm_device *dev, void *data,
3226 struct drm_file *file_priv)
3227{
3228 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3229 struct drm_i915_gem_execbuffer *args = data;
3230 struct drm_i915_gem_exec_object *exec_list = NULL;
3231 struct drm_gem_object **object_list = NULL;
3232 struct drm_gem_object *batch_obj;
b70d11da 3233 struct drm_i915_gem_object *obj_priv;
201361a5 3234 struct drm_clip_rect *cliprects = NULL;
40a5f0de
EA
3235 struct drm_i915_gem_relocation_entry *relocs;
3236 int ret, ret2, i, pinned = 0;
673a394b 3237 uint64_t exec_offset;
40a5f0de 3238 uint32_t seqno, flush_domains, reloc_index;
ac94a962 3239 int pin_tries;
673a394b
EA
3240
3241#if WATCH_EXEC
3242 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3243 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3244#endif
3245
4f481ed2
EA
3246 if (args->buffer_count < 1) {
3247 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3248 return -EINVAL;
3249 }
673a394b 3250 /* Copy in the exec list from userland */
8e7d2b2c
JB
3251 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3252 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
673a394b
EA
3253 if (exec_list == NULL || object_list == NULL) {
3254 DRM_ERROR("Failed to allocate exec or object list "
3255 "for %d buffers\n",
3256 args->buffer_count);
3257 ret = -ENOMEM;
3258 goto pre_mutex_err;
3259 }
3260 ret = copy_from_user(exec_list,
3261 (struct drm_i915_relocation_entry __user *)
3262 (uintptr_t) args->buffers_ptr,
3263 sizeof(*exec_list) * args->buffer_count);
3264 if (ret != 0) {
3265 DRM_ERROR("copy %d exec entries failed %d\n",
3266 args->buffer_count, ret);
3267 goto pre_mutex_err;
3268 }
3269
201361a5
EA
3270 if (args->num_cliprects != 0) {
3271 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3272 DRM_MEM_DRIVER);
3273 if (cliprects == NULL)
3274 goto pre_mutex_err;
3275
3276 ret = copy_from_user(cliprects,
3277 (struct drm_clip_rect __user *)
3278 (uintptr_t) args->cliprects_ptr,
3279 sizeof(*cliprects) * args->num_cliprects);
3280 if (ret != 0) {
3281 DRM_ERROR("copy %d cliprects failed: %d\n",
3282 args->num_cliprects, ret);
3283 goto pre_mutex_err;
3284 }
3285 }
3286
40a5f0de
EA
3287 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3288 &relocs);
3289 if (ret != 0)
3290 goto pre_mutex_err;
3291
673a394b
EA
3292 mutex_lock(&dev->struct_mutex);
3293
3294 i915_verify_inactive(dev, __FILE__, __LINE__);
3295
3296 if (dev_priv->mm.wedged) {
3297 DRM_ERROR("Execbuf while wedged\n");
3298 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3299 ret = -EIO;
3300 goto pre_mutex_err;
673a394b
EA
3301 }
3302
3303 if (dev_priv->mm.suspended) {
3304 DRM_ERROR("Execbuf while VT-switched.\n");
3305 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3306 ret = -EBUSY;
3307 goto pre_mutex_err;
673a394b
EA
3308 }
3309
ac94a962 3310 /* Look up object handles */
673a394b
EA
3311 for (i = 0; i < args->buffer_count; i++) {
3312 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3313 exec_list[i].handle);
3314 if (object_list[i] == NULL) {
3315 DRM_ERROR("Invalid object handle %d at index %d\n",
3316 exec_list[i].handle, i);
3317 ret = -EBADF;
3318 goto err;
3319 }
b70d11da
KH
3320
3321 obj_priv = object_list[i]->driver_private;
3322 if (obj_priv->in_execbuffer) {
3323 DRM_ERROR("Object %p appears more than once in object list\n",
3324 object_list[i]);
3325 ret = -EBADF;
3326 goto err;
3327 }
3328 obj_priv->in_execbuffer = true;
ac94a962 3329 }
673a394b 3330
ac94a962
KP
3331 /* Pin and relocate */
3332 for (pin_tries = 0; ; pin_tries++) {
3333 ret = 0;
40a5f0de
EA
3334 reloc_index = 0;
3335
ac94a962
KP
3336 for (i = 0; i < args->buffer_count; i++) {
3337 object_list[i]->pending_read_domains = 0;
3338 object_list[i]->pending_write_domain = 0;
3339 ret = i915_gem_object_pin_and_relocate(object_list[i],
3340 file_priv,
40a5f0de
EA
3341 &exec_list[i],
3342 &relocs[reloc_index]);
ac94a962
KP
3343 if (ret)
3344 break;
3345 pinned = i + 1;
40a5f0de 3346 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3347 }
3348 /* success */
3349 if (ret == 0)
3350 break;
3351
3352 /* error other than GTT full, or we've already tried again */
3353 if (ret != -ENOMEM || pin_tries >= 1) {
f1acec93
EA
3354 if (ret != -ERESTARTSYS)
3355 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3356 goto err;
3357 }
ac94a962
KP
3358
3359 /* unpin all of our buffers */
3360 for (i = 0; i < pinned; i++)
3361 i915_gem_object_unpin(object_list[i]);
b1177636 3362 pinned = 0;
ac94a962
KP
3363
3364 /* evict everyone we can from the aperture */
3365 ret = i915_gem_evict_everything(dev);
3366 if (ret)
3367 goto err;
673a394b
EA
3368 }
3369
3370 /* Set the pending read domains for the batch buffer to COMMAND */
3371 batch_obj = object_list[args->buffer_count-1];
3372 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3373 batch_obj->pending_write_domain = 0;
3374
83d60795
CW
3375 /* Sanity check the batch buffer, prior to moving objects */
3376 exec_offset = exec_list[args->buffer_count - 1].offset;
3377 ret = i915_gem_check_execbuffer (args, exec_offset);
3378 if (ret != 0) {
3379 DRM_ERROR("execbuf with invalid offset/length\n");
3380 goto err;
3381 }
3382
673a394b
EA
3383 i915_verify_inactive(dev, __FILE__, __LINE__);
3384
646f0f6e
KP
3385 /* Zero the global flush/invalidate flags. These
3386 * will be modified as new domains are computed
3387 * for each object
3388 */
3389 dev->invalidate_domains = 0;
3390 dev->flush_domains = 0;
3391
673a394b
EA
3392 for (i = 0; i < args->buffer_count; i++) {
3393 struct drm_gem_object *obj = object_list[i];
673a394b 3394
646f0f6e 3395 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3396 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3397 }
3398
3399 i915_verify_inactive(dev, __FILE__, __LINE__);
3400
646f0f6e
KP
3401 if (dev->invalidate_domains | dev->flush_domains) {
3402#if WATCH_EXEC
3403 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3404 __func__,
3405 dev->invalidate_domains,
3406 dev->flush_domains);
3407#endif
3408 i915_gem_flush(dev,
3409 dev->invalidate_domains,
3410 dev->flush_domains);
3411 if (dev->flush_domains)
b962442e
EA
3412 (void)i915_add_request(dev, file_priv,
3413 dev->flush_domains);
646f0f6e 3414 }
673a394b 3415
efbeed96
EA
3416 for (i = 0; i < args->buffer_count; i++) {
3417 struct drm_gem_object *obj = object_list[i];
3418
3419 obj->write_domain = obj->pending_write_domain;
3420 }
3421
673a394b
EA
3422 i915_verify_inactive(dev, __FILE__, __LINE__);
3423
3424#if WATCH_COHERENCY
3425 for (i = 0; i < args->buffer_count; i++) {
3426 i915_gem_object_check_coherency(object_list[i],
3427 exec_list[i].handle);
3428 }
3429#endif
3430
673a394b 3431#if WATCH_EXEC
6911a9b8 3432 i915_gem_dump_object(batch_obj,
673a394b
EA
3433 args->batch_len,
3434 __func__,
3435 ~0);
3436#endif
3437
673a394b 3438 /* Exec the batchbuffer */
201361a5 3439 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3440 if (ret) {
3441 DRM_ERROR("dispatch failed %d\n", ret);
3442 goto err;
3443 }
3444
3445 /*
3446 * Ensure that the commands in the batch buffer are
3447 * finished before the interrupt fires
3448 */
3449 flush_domains = i915_retire_commands(dev);
3450
3451 i915_verify_inactive(dev, __FILE__, __LINE__);
3452
3453 /*
3454 * Get a seqno representing the execution of the current buffer,
3455 * which we can wait on. We would like to mitigate these interrupts,
3456 * likely by only creating seqnos occasionally (so that we have
3457 * *some* interrupts representing completion of buffers that we can
3458 * wait on when trying to clear up gtt space).
3459 */
b962442e 3460 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3461 BUG_ON(seqno == 0);
673a394b
EA
3462 for (i = 0; i < args->buffer_count; i++) {
3463 struct drm_gem_object *obj = object_list[i];
673a394b 3464
ce44b0ea 3465 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3466#if WATCH_LRU
3467 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3468#endif
3469 }
3470#if WATCH_LRU
3471 i915_dump_lru(dev, __func__);
3472#endif
3473
3474 i915_verify_inactive(dev, __FILE__, __LINE__);
3475
673a394b 3476err:
aad87dff
JL
3477 for (i = 0; i < pinned; i++)
3478 i915_gem_object_unpin(object_list[i]);
3479
b70d11da
KH
3480 for (i = 0; i < args->buffer_count; i++) {
3481 if (object_list[i]) {
3482 obj_priv = object_list[i]->driver_private;
3483 obj_priv->in_execbuffer = false;
3484 }
aad87dff 3485 drm_gem_object_unreference(object_list[i]);
b70d11da 3486 }
673a394b 3487
673a394b
EA
3488 mutex_unlock(&dev->struct_mutex);
3489
a35f2e2b
RD
3490 if (!ret) {
3491 /* Copy the new buffer offsets back to the user's exec list. */
3492 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3493 (uintptr_t) args->buffers_ptr,
3494 exec_list,
3495 sizeof(*exec_list) * args->buffer_count);
2bc43b5c
FM
3496 if (ret) {
3497 ret = -EFAULT;
a35f2e2b
RD
3498 DRM_ERROR("failed to copy %d exec entries "
3499 "back to user (%d)\n",
3500 args->buffer_count, ret);
2bc43b5c 3501 }
a35f2e2b
RD
3502 }
3503
40a5f0de
EA
3504 /* Copy the updated relocations out regardless of current error
3505 * state. Failure to update the relocs would mean that the next
3506 * time userland calls execbuf, it would do so with presumed offset
3507 * state that didn't match the actual object state.
3508 */
3509 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3510 relocs);
3511 if (ret2 != 0) {
3512 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3513
3514 if (ret == 0)
3515 ret = ret2;
3516 }
3517
673a394b 3518pre_mutex_err:
8e7d2b2c
JB
3519 drm_free_large(object_list);
3520 drm_free_large(exec_list);
201361a5
EA
3521 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3522 DRM_MEM_DRIVER);
673a394b
EA
3523
3524 return ret;
3525}
3526
3527int
3528i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3529{
3530 struct drm_device *dev = obj->dev;
3531 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3532 int ret;
3533
3534 i915_verify_inactive(dev, __FILE__, __LINE__);
3535 if (obj_priv->gtt_space == NULL) {
3536 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3537 if (ret != 0) {
9bb2d6f9 3538 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3539 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3540 return ret;
3541 }
22c344e9
CW
3542 }
3543 /*
3544 * Pre-965 chips need a fence register set up in order to
3545 * properly handle tiled surfaces.
3546 */
3547 if (!IS_I965G(dev) &&
3548 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3549 obj_priv->tiling_mode != I915_TILING_NONE) {
3550 ret = i915_gem_object_get_fence_reg(obj, true);
3551 if (ret != 0) {
3552 if (ret != -EBUSY && ret != -ERESTARTSYS)
3553 DRM_ERROR("Failure to install fence: %d\n",
3554 ret);
3555 return ret;
3556 }
673a394b
EA
3557 }
3558 obj_priv->pin_count++;
3559
3560 /* If the object is not active and not pending a flush,
3561 * remove it from the inactive list
3562 */
3563 if (obj_priv->pin_count == 1) {
3564 atomic_inc(&dev->pin_count);
3565 atomic_add(obj->size, &dev->pin_memory);
3566 if (!obj_priv->active &&
3567 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3568 I915_GEM_DOMAIN_GTT)) == 0 &&
3569 !list_empty(&obj_priv->list))
3570 list_del_init(&obj_priv->list);
3571 }
3572 i915_verify_inactive(dev, __FILE__, __LINE__);
3573
3574 return 0;
3575}
3576
3577void
3578i915_gem_object_unpin(struct drm_gem_object *obj)
3579{
3580 struct drm_device *dev = obj->dev;
3581 drm_i915_private_t *dev_priv = dev->dev_private;
3582 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3583
3584 i915_verify_inactive(dev, __FILE__, __LINE__);
3585 obj_priv->pin_count--;
3586 BUG_ON(obj_priv->pin_count < 0);
3587 BUG_ON(obj_priv->gtt_space == NULL);
3588
3589 /* If the object is no longer pinned, and is
3590 * neither active nor being flushed, then stick it on
3591 * the inactive list
3592 */
3593 if (obj_priv->pin_count == 0) {
3594 if (!obj_priv->active &&
3595 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3596 I915_GEM_DOMAIN_GTT)) == 0)
3597 list_move_tail(&obj_priv->list,
3598 &dev_priv->mm.inactive_list);
3599 atomic_dec(&dev->pin_count);
3600 atomic_sub(obj->size, &dev->pin_memory);
3601 }
3602 i915_verify_inactive(dev, __FILE__, __LINE__);
3603}
3604
3605int
3606i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3607 struct drm_file *file_priv)
3608{
3609 struct drm_i915_gem_pin *args = data;
3610 struct drm_gem_object *obj;
3611 struct drm_i915_gem_object *obj_priv;
3612 int ret;
3613
3614 mutex_lock(&dev->struct_mutex);
3615
3616 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3617 if (obj == NULL) {
3618 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3619 args->handle);
3620 mutex_unlock(&dev->struct_mutex);
3621 return -EBADF;
3622 }
3623 obj_priv = obj->driver_private;
3624
79e53945
JB
3625 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3626 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3627 args->handle);
96dec61d 3628 drm_gem_object_unreference(obj);
673a394b 3629 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3630 return -EINVAL;
3631 }
3632
3633 obj_priv->user_pin_count++;
3634 obj_priv->pin_filp = file_priv;
3635 if (obj_priv->user_pin_count == 1) {
3636 ret = i915_gem_object_pin(obj, args->alignment);
3637 if (ret != 0) {
3638 drm_gem_object_unreference(obj);
3639 mutex_unlock(&dev->struct_mutex);
3640 return ret;
3641 }
673a394b
EA
3642 }
3643
3644 /* XXX - flush the CPU caches for pinned objects
3645 * as the X server doesn't manage domains yet
3646 */
e47c68e9 3647 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3648 args->offset = obj_priv->gtt_offset;
3649 drm_gem_object_unreference(obj);
3650 mutex_unlock(&dev->struct_mutex);
3651
3652 return 0;
3653}
3654
3655int
3656i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3657 struct drm_file *file_priv)
3658{
3659 struct drm_i915_gem_pin *args = data;
3660 struct drm_gem_object *obj;
79e53945 3661 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3662
3663 mutex_lock(&dev->struct_mutex);
3664
3665 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3666 if (obj == NULL) {
3667 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3668 args->handle);
3669 mutex_unlock(&dev->struct_mutex);
3670 return -EBADF;
3671 }
3672
79e53945
JB
3673 obj_priv = obj->driver_private;
3674 if (obj_priv->pin_filp != file_priv) {
3675 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3676 args->handle);
3677 drm_gem_object_unreference(obj);
3678 mutex_unlock(&dev->struct_mutex);
3679 return -EINVAL;
3680 }
3681 obj_priv->user_pin_count--;
3682 if (obj_priv->user_pin_count == 0) {
3683 obj_priv->pin_filp = NULL;
3684 i915_gem_object_unpin(obj);
3685 }
673a394b
EA
3686
3687 drm_gem_object_unreference(obj);
3688 mutex_unlock(&dev->struct_mutex);
3689 return 0;
3690}
3691
3692int
3693i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3694 struct drm_file *file_priv)
3695{
3696 struct drm_i915_gem_busy *args = data;
3697 struct drm_gem_object *obj;
3698 struct drm_i915_gem_object *obj_priv;
3699
3700 mutex_lock(&dev->struct_mutex);
3701 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3702 if (obj == NULL) {
3703 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3704 args->handle);
3705 mutex_unlock(&dev->struct_mutex);
3706 return -EBADF;
3707 }
3708
f21289b3
EA
3709 /* Update the active list for the hardware's current position.
3710 * Otherwise this only updates on a delayed timer or when irqs are
3711 * actually unmasked, and our working set ends up being larger than
3712 * required.
3713 */
3714 i915_gem_retire_requests(dev);
3715
673a394b 3716 obj_priv = obj->driver_private;
c4de0a5d
EA
3717 /* Don't count being on the flushing list against the object being
3718 * done. Otherwise, a buffer left on the flushing list but not getting
3719 * flushed (because nobody's flushing that domain) won't ever return
3720 * unbusy and get reused by libdrm's bo cache. The other expected
3721 * consumer of this interface, OpenGL's occlusion queries, also specs
3722 * that the objects get unbusy "eventually" without any interference.
3723 */
3724 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3725
3726 drm_gem_object_unreference(obj);
3727 mutex_unlock(&dev->struct_mutex);
3728 return 0;
3729}
3730
3731int
3732i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3733 struct drm_file *file_priv)
3734{
3735 return i915_gem_ring_throttle(dev, file_priv);
3736}
3737
3738int i915_gem_init_object(struct drm_gem_object *obj)
3739{
3740 struct drm_i915_gem_object *obj_priv;
3741
3742 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3743 if (obj_priv == NULL)
3744 return -ENOMEM;
3745
3746 /*
3747 * We've just allocated pages from the kernel,
3748 * so they've just been written by the CPU with
3749 * zeros. They'll need to be clflushed before we
3750 * use them with the GPU.
3751 */
3752 obj->write_domain = I915_GEM_DOMAIN_CPU;
3753 obj->read_domains = I915_GEM_DOMAIN_CPU;
3754
ba1eb1d8
KP
3755 obj_priv->agp_type = AGP_USER_MEMORY;
3756
673a394b
EA
3757 obj->driver_private = obj_priv;
3758 obj_priv->obj = obj;
de151cf6 3759 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3760 INIT_LIST_HEAD(&obj_priv->list);
de151cf6 3761
673a394b
EA
3762 return 0;
3763}
3764
3765void i915_gem_free_object(struct drm_gem_object *obj)
3766{
de151cf6 3767 struct drm_device *dev = obj->dev;
673a394b
EA
3768 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3769
3770 while (obj_priv->pin_count > 0)
3771 i915_gem_object_unpin(obj);
3772
71acb5eb
DA
3773 if (obj_priv->phys_obj)
3774 i915_gem_detach_phys_object(dev, obj);
3775
673a394b
EA
3776 i915_gem_object_unbind(obj);
3777
ab00b3e5 3778 i915_gem_free_mmap_offset(obj);
de151cf6 3779
673a394b 3780 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
280b713b 3781 kfree(obj_priv->bit_17);
673a394b
EA
3782 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3783}
3784
673a394b
EA
3785/** Unbinds all objects that are on the given buffer list. */
3786static int
3787i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3788{
3789 struct drm_gem_object *obj;
3790 struct drm_i915_gem_object *obj_priv;
3791 int ret;
3792
3793 while (!list_empty(head)) {
3794 obj_priv = list_first_entry(head,
3795 struct drm_i915_gem_object,
3796 list);
3797 obj = obj_priv->obj;
3798
3799 if (obj_priv->pin_count != 0) {
3800 DRM_ERROR("Pinned object in unbind list\n");
3801 mutex_unlock(&dev->struct_mutex);
3802 return -EINVAL;
3803 }
3804
3805 ret = i915_gem_object_unbind(obj);
3806 if (ret != 0) {
3807 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3808 ret);
3809 mutex_unlock(&dev->struct_mutex);
3810 return ret;
3811 }
3812 }
3813
3814
3815 return 0;
3816}
3817
5669fcac 3818int
673a394b
EA
3819i915_gem_idle(struct drm_device *dev)
3820{
3821 drm_i915_private_t *dev_priv = dev->dev_private;
3822 uint32_t seqno, cur_seqno, last_seqno;
3823 int stuck, ret;
3824
6dbe2772
KP
3825 mutex_lock(&dev->struct_mutex);
3826
3827 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3828 mutex_unlock(&dev->struct_mutex);
673a394b 3829 return 0;
6dbe2772 3830 }
673a394b
EA
3831
3832 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3833 * We need to replace this with a semaphore, or something.
3834 */
3835 dev_priv->mm.suspended = 1;
3836
6dbe2772
KP
3837 /* Cancel the retire work handler, wait for it to finish if running
3838 */
3839 mutex_unlock(&dev->struct_mutex);
3840 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3841 mutex_lock(&dev->struct_mutex);
3842
673a394b
EA
3843 i915_kernel_lost_context(dev);
3844
3845 /* Flush the GPU along with all non-CPU write domains
3846 */
3847 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3848 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
b962442e 3849 seqno = i915_add_request(dev, NULL, ~I915_GEM_DOMAIN_CPU);
673a394b
EA
3850
3851 if (seqno == 0) {
3852 mutex_unlock(&dev->struct_mutex);
3853 return -ENOMEM;
3854 }
3855
3856 dev_priv->mm.waiting_gem_seqno = seqno;
3857 last_seqno = 0;
3858 stuck = 0;
3859 for (;;) {
3860 cur_seqno = i915_get_gem_seqno(dev);
3861 if (i915_seqno_passed(cur_seqno, seqno))
3862 break;
3863 if (last_seqno == cur_seqno) {
3864 if (stuck++ > 100) {
3865 DRM_ERROR("hardware wedged\n");
3866 dev_priv->mm.wedged = 1;
3867 DRM_WAKEUP(&dev_priv->irq_queue);
3868 break;
3869 }
3870 }
3871 msleep(10);
3872 last_seqno = cur_seqno;
3873 }
3874 dev_priv->mm.waiting_gem_seqno = 0;
3875
3876 i915_gem_retire_requests(dev);
3877
5e118f41 3878 spin_lock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3879 if (!dev_priv->mm.wedged) {
3880 /* Active and flushing should now be empty as we've
3881 * waited for a sequence higher than any pending execbuffer
3882 */
3883 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3884 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3885 /* Request should now be empty as we've also waited
3886 * for the last request in the list
3887 */
3888 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3889 }
673a394b 3890
28dfe52a
EA
3891 /* Empty the active and flushing lists to inactive. If there's
3892 * anything left at this point, it means that we're wedged and
3893 * nothing good's going to happen by leaving them there. So strip
3894 * the GPU domains and just stuff them onto inactive.
673a394b 3895 */
28dfe52a
EA
3896 while (!list_empty(&dev_priv->mm.active_list)) {
3897 struct drm_i915_gem_object *obj_priv;
673a394b 3898
28dfe52a
EA
3899 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3900 struct drm_i915_gem_object,
3901 list);
3902 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3903 i915_gem_object_move_to_inactive(obj_priv->obj);
3904 }
5e118f41 3905 spin_unlock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3906
3907 while (!list_empty(&dev_priv->mm.flushing_list)) {
3908 struct drm_i915_gem_object *obj_priv;
3909
151903d5 3910 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3911 struct drm_i915_gem_object,
3912 list);
3913 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3914 i915_gem_object_move_to_inactive(obj_priv->obj);
3915 }
3916
3917
3918 /* Move all inactive buffers out of the GTT. */
673a394b 3919 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3920 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3921 if (ret) {
3922 mutex_unlock(&dev->struct_mutex);
673a394b 3923 return ret;
6dbe2772 3924 }
673a394b 3925
6dbe2772
KP
3926 i915_gem_cleanup_ringbuffer(dev);
3927 mutex_unlock(&dev->struct_mutex);
3928
673a394b
EA
3929 return 0;
3930}
3931
3932static int
3933i915_gem_init_hws(struct drm_device *dev)
3934{
3935 drm_i915_private_t *dev_priv = dev->dev_private;
3936 struct drm_gem_object *obj;
3937 struct drm_i915_gem_object *obj_priv;
3938 int ret;
3939
3940 /* If we need a physical address for the status page, it's already
3941 * initialized at driver load time.
3942 */
3943 if (!I915_NEED_GFX_HWS(dev))
3944 return 0;
3945
3946 obj = drm_gem_object_alloc(dev, 4096);
3947 if (obj == NULL) {
3948 DRM_ERROR("Failed to allocate status page\n");
3949 return -ENOMEM;
3950 }
3951 obj_priv = obj->driver_private;
ba1eb1d8 3952 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
3953
3954 ret = i915_gem_object_pin(obj, 4096);
3955 if (ret != 0) {
3956 drm_gem_object_unreference(obj);
3957 return ret;
3958 }
3959
3960 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 3961
856fa198 3962 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 3963 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
3964 DRM_ERROR("Failed to map status page.\n");
3965 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 3966 i915_gem_object_unpin(obj);
673a394b
EA
3967 drm_gem_object_unreference(obj);
3968 return -EINVAL;
3969 }
3970 dev_priv->hws_obj = obj;
673a394b
EA
3971 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3972 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 3973 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
3974 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3975
3976 return 0;
3977}
3978
85a7bb98
CW
3979static void
3980i915_gem_cleanup_hws(struct drm_device *dev)
3981{
3982 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
3983 struct drm_gem_object *obj;
3984 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
3985
3986 if (dev_priv->hws_obj == NULL)
3987 return;
3988
bab2d1f6
CW
3989 obj = dev_priv->hws_obj;
3990 obj_priv = obj->driver_private;
3991
856fa198 3992 kunmap(obj_priv->pages[0]);
85a7bb98
CW
3993 i915_gem_object_unpin(obj);
3994 drm_gem_object_unreference(obj);
3995 dev_priv->hws_obj = NULL;
bab2d1f6 3996
85a7bb98
CW
3997 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3998 dev_priv->hw_status_page = NULL;
3999
4000 /* Write high address into HWS_PGA when disabling. */
4001 I915_WRITE(HWS_PGA, 0x1ffff000);
4002}
4003
79e53945 4004int
673a394b
EA
4005i915_gem_init_ringbuffer(struct drm_device *dev)
4006{
4007 drm_i915_private_t *dev_priv = dev->dev_private;
4008 struct drm_gem_object *obj;
4009 struct drm_i915_gem_object *obj_priv;
79e53945 4010 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4011 int ret;
50aa253d 4012 u32 head;
673a394b
EA
4013
4014 ret = i915_gem_init_hws(dev);
4015 if (ret != 0)
4016 return ret;
4017
4018 obj = drm_gem_object_alloc(dev, 128 * 1024);
4019 if (obj == NULL) {
4020 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4021 i915_gem_cleanup_hws(dev);
673a394b
EA
4022 return -ENOMEM;
4023 }
4024 obj_priv = obj->driver_private;
4025
4026 ret = i915_gem_object_pin(obj, 4096);
4027 if (ret != 0) {
4028 drm_gem_object_unreference(obj);
85a7bb98 4029 i915_gem_cleanup_hws(dev);
673a394b
EA
4030 return ret;
4031 }
4032
4033 /* Set up the kernel mapping for the ring. */
79e53945
JB
4034 ring->Size = obj->size;
4035 ring->tail_mask = obj->size - 1;
673a394b 4036
79e53945
JB
4037 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4038 ring->map.size = obj->size;
4039 ring->map.type = 0;
4040 ring->map.flags = 0;
4041 ring->map.mtrr = 0;
673a394b 4042
79e53945
JB
4043 drm_core_ioremap_wc(&ring->map, dev);
4044 if (ring->map.handle == NULL) {
673a394b
EA
4045 DRM_ERROR("Failed to map ringbuffer.\n");
4046 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4047 i915_gem_object_unpin(obj);
673a394b 4048 drm_gem_object_unreference(obj);
85a7bb98 4049 i915_gem_cleanup_hws(dev);
673a394b
EA
4050 return -EINVAL;
4051 }
79e53945
JB
4052 ring->ring_obj = obj;
4053 ring->virtual_start = ring->map.handle;
673a394b
EA
4054
4055 /* Stop the ring if it's running. */
4056 I915_WRITE(PRB0_CTL, 0);
673a394b 4057 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4058 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4059
4060 /* Initialize the ring. */
4061 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4062 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4063
4064 /* G45 ring initialization fails to reset head to zero */
4065 if (head != 0) {
4066 DRM_ERROR("Ring head not reset to zero "
4067 "ctl %08x head %08x tail %08x start %08x\n",
4068 I915_READ(PRB0_CTL),
4069 I915_READ(PRB0_HEAD),
4070 I915_READ(PRB0_TAIL),
4071 I915_READ(PRB0_START));
4072 I915_WRITE(PRB0_HEAD, 0);
4073
4074 DRM_ERROR("Ring head forced to zero "
4075 "ctl %08x head %08x tail %08x start %08x\n",
4076 I915_READ(PRB0_CTL),
4077 I915_READ(PRB0_HEAD),
4078 I915_READ(PRB0_TAIL),
4079 I915_READ(PRB0_START));
4080 }
4081
673a394b
EA
4082 I915_WRITE(PRB0_CTL,
4083 ((obj->size - 4096) & RING_NR_PAGES) |
4084 RING_NO_REPORT |
4085 RING_VALID);
4086
50aa253d
KP
4087 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4088
4089 /* If the head is still not zero, the ring is dead */
4090 if (head != 0) {
4091 DRM_ERROR("Ring initialization failed "
4092 "ctl %08x head %08x tail %08x start %08x\n",
4093 I915_READ(PRB0_CTL),
4094 I915_READ(PRB0_HEAD),
4095 I915_READ(PRB0_TAIL),
4096 I915_READ(PRB0_START));
4097 return -EIO;
4098 }
4099
673a394b 4100 /* Update our cache of the ring state */
79e53945
JB
4101 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4102 i915_kernel_lost_context(dev);
4103 else {
4104 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4105 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4106 ring->space = ring->head - (ring->tail + 8);
4107 if (ring->space < 0)
4108 ring->space += ring->Size;
4109 }
673a394b
EA
4110
4111 return 0;
4112}
4113
79e53945 4114void
673a394b
EA
4115i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4116{
4117 drm_i915_private_t *dev_priv = dev->dev_private;
4118
4119 if (dev_priv->ring.ring_obj == NULL)
4120 return;
4121
4122 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4123
4124 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4125 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4126 dev_priv->ring.ring_obj = NULL;
4127 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4128
85a7bb98 4129 i915_gem_cleanup_hws(dev);
673a394b
EA
4130}
4131
4132int
4133i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4134 struct drm_file *file_priv)
4135{
4136 drm_i915_private_t *dev_priv = dev->dev_private;
4137 int ret;
4138
79e53945
JB
4139 if (drm_core_check_feature(dev, DRIVER_MODESET))
4140 return 0;
4141
673a394b
EA
4142 if (dev_priv->mm.wedged) {
4143 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4144 dev_priv->mm.wedged = 0;
4145 }
4146
673a394b 4147 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4148 dev_priv->mm.suspended = 0;
4149
4150 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4151 if (ret != 0) {
4152 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4153 return ret;
d816f6ac 4154 }
9bb2d6f9 4155
5e118f41 4156 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4157 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4158 spin_unlock(&dev_priv->mm.active_list_lock);
4159
673a394b
EA
4160 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4161 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4162 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4163 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4164
4165 drm_irq_install(dev);
4166
673a394b
EA
4167 return 0;
4168}
4169
4170int
4171i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4172 struct drm_file *file_priv)
4173{
4174 int ret;
4175
79e53945
JB
4176 if (drm_core_check_feature(dev, DRIVER_MODESET))
4177 return 0;
4178
673a394b 4179 ret = i915_gem_idle(dev);
dbb19d30
KH
4180 drm_irq_uninstall(dev);
4181
6dbe2772 4182 return ret;
673a394b
EA
4183}
4184
4185void
4186i915_gem_lastclose(struct drm_device *dev)
4187{
4188 int ret;
673a394b 4189
e806b495
EA
4190 if (drm_core_check_feature(dev, DRIVER_MODESET))
4191 return;
4192
6dbe2772
KP
4193 ret = i915_gem_idle(dev);
4194 if (ret)
4195 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4196}
4197
4198void
4199i915_gem_load(struct drm_device *dev)
4200{
4201 drm_i915_private_t *dev_priv = dev->dev_private;
4202
5e118f41 4203 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4204 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4205 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4206 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4207 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4208 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4209 i915_gem_retire_work_handler);
4210 dev_priv->mm.next_gem_seqno = 1;
4211
de151cf6
JB
4212 /* Old X drivers will take 0-2 for front, back, depth buffers */
4213 dev_priv->fence_reg_start = 3;
4214
0f973f27 4215 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4216 dev_priv->num_fence_regs = 16;
4217 else
4218 dev_priv->num_fence_regs = 8;
4219
673a394b
EA
4220 i915_gem_detect_bit_6_swizzle(dev);
4221}
71acb5eb
DA
4222
4223/*
4224 * Create a physically contiguous memory object for this object
4225 * e.g. for cursor + overlay regs
4226 */
4227int i915_gem_init_phys_object(struct drm_device *dev,
4228 int id, int size)
4229{
4230 drm_i915_private_t *dev_priv = dev->dev_private;
4231 struct drm_i915_gem_phys_object *phys_obj;
4232 int ret;
4233
4234 if (dev_priv->mm.phys_objs[id - 1] || !size)
4235 return 0;
4236
4237 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4238 if (!phys_obj)
4239 return -ENOMEM;
4240
4241 phys_obj->id = id;
4242
4243 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4244 if (!phys_obj->handle) {
4245 ret = -ENOMEM;
4246 goto kfree_obj;
4247 }
4248#ifdef CONFIG_X86
4249 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4250#endif
4251
4252 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4253
4254 return 0;
4255kfree_obj:
4256 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4257 return ret;
4258}
4259
4260void i915_gem_free_phys_object(struct drm_device *dev, int id)
4261{
4262 drm_i915_private_t *dev_priv = dev->dev_private;
4263 struct drm_i915_gem_phys_object *phys_obj;
4264
4265 if (!dev_priv->mm.phys_objs[id - 1])
4266 return;
4267
4268 phys_obj = dev_priv->mm.phys_objs[id - 1];
4269 if (phys_obj->cur_obj) {
4270 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4271 }
4272
4273#ifdef CONFIG_X86
4274 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4275#endif
4276 drm_pci_free(dev, phys_obj->handle);
4277 kfree(phys_obj);
4278 dev_priv->mm.phys_objs[id - 1] = NULL;
4279}
4280
4281void i915_gem_free_all_phys_object(struct drm_device *dev)
4282{
4283 int i;
4284
260883c8 4285 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4286 i915_gem_free_phys_object(dev, i);
4287}
4288
4289void i915_gem_detach_phys_object(struct drm_device *dev,
4290 struct drm_gem_object *obj)
4291{
4292 struct drm_i915_gem_object *obj_priv;
4293 int i;
4294 int ret;
4295 int page_count;
4296
4297 obj_priv = obj->driver_private;
4298 if (!obj_priv->phys_obj)
4299 return;
4300
856fa198 4301 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4302 if (ret)
4303 goto out;
4304
4305 page_count = obj->size / PAGE_SIZE;
4306
4307 for (i = 0; i < page_count; i++) {
856fa198 4308 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4309 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4310
4311 memcpy(dst, src, PAGE_SIZE);
4312 kunmap_atomic(dst, KM_USER0);
4313 }
856fa198 4314 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb
DA
4315 drm_agp_chipset_flush(dev);
4316out:
4317 obj_priv->phys_obj->cur_obj = NULL;
4318 obj_priv->phys_obj = NULL;
4319}
4320
4321int
4322i915_gem_attach_phys_object(struct drm_device *dev,
4323 struct drm_gem_object *obj, int id)
4324{
4325 drm_i915_private_t *dev_priv = dev->dev_private;
4326 struct drm_i915_gem_object *obj_priv;
4327 int ret = 0;
4328 int page_count;
4329 int i;
4330
4331 if (id > I915_MAX_PHYS_OBJECT)
4332 return -EINVAL;
4333
4334 obj_priv = obj->driver_private;
4335
4336 if (obj_priv->phys_obj) {
4337 if (obj_priv->phys_obj->id == id)
4338 return 0;
4339 i915_gem_detach_phys_object(dev, obj);
4340 }
4341
4342
4343 /* create a new object */
4344 if (!dev_priv->mm.phys_objs[id - 1]) {
4345 ret = i915_gem_init_phys_object(dev, id,
4346 obj->size);
4347 if (ret) {
aeb565df 4348 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4349 goto out;
4350 }
4351 }
4352
4353 /* bind to the object */
4354 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4355 obj_priv->phys_obj->cur_obj = obj;
4356
856fa198 4357 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4358 if (ret) {
4359 DRM_ERROR("failed to get page list\n");
4360 goto out;
4361 }
4362
4363 page_count = obj->size / PAGE_SIZE;
4364
4365 for (i = 0; i < page_count; i++) {
856fa198 4366 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4367 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4368
4369 memcpy(dst, src, PAGE_SIZE);
4370 kunmap_atomic(src, KM_USER0);
4371 }
4372
4373 return 0;
4374out:
4375 return ret;
4376}
4377
4378static int
4379i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4380 struct drm_i915_gem_pwrite *args,
4381 struct drm_file *file_priv)
4382{
4383 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4384 void *obj_addr;
4385 int ret;
4386 char __user *user_data;
4387
4388 user_data = (char __user *) (uintptr_t) args->data_ptr;
4389 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4390
e08fb4f6 4391 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4392 ret = copy_from_user(obj_addr, user_data, args->size);
4393 if (ret)
4394 return -EFAULT;
4395
4396 drm_agp_chipset_flush(dev);
4397 return 0;
4398}
b962442e
EA
4399
4400void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4401{
4402 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4403
4404 /* Clean up our request list when the client is going away, so that
4405 * later retire_requests won't dereference our soon-to-be-gone
4406 * file_priv.
4407 */
4408 mutex_lock(&dev->struct_mutex);
4409 while (!list_empty(&i915_file_priv->mm.request_list))
4410 list_del_init(i915_file_priv->mm.request_list.next);
4411 mutex_unlock(&dev->struct_mutex);
4412}