]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Rephrase pwrite bounds checking to avoid any potential overflow
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 40static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
43static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 49static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
50static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
51 unsigned alignment);
de151cf6 52static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
53static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
be72615b 56static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
7d1c4804
CW
61static inline bool
62i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
63{
64 return obj_priv->gtt_space &&
65 !obj_priv->active &&
66 obj_priv->pin_count == 0;
67}
68
79e53945
JB
69int i915_gem_do_init(struct drm_device *dev, unsigned long start,
70 unsigned long end)
673a394b
EA
71{
72 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 73
79e53945
JB
74 if (start >= end ||
75 (start & (PAGE_SIZE - 1)) != 0 ||
76 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
77 return -EINVAL;
78 }
79
79e53945
JB
80 drm_mm_init(&dev_priv->mm.gtt_space, start,
81 end - start);
673a394b 82
79e53945
JB
83 dev->gtt_total = (uint32_t) (end - start);
84
85 return 0;
86}
673a394b 87
79e53945
JB
88int
89i915_gem_init_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91{
92 struct drm_i915_gem_init *args = data;
93 int ret;
94
95 mutex_lock(&dev->struct_mutex);
96 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
97 mutex_unlock(&dev->struct_mutex);
98
79e53945 99 return ret;
673a394b
EA
100}
101
5a125c3c
EA
102int
103i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
104 struct drm_file *file_priv)
105{
5a125c3c 106 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
107
108 if (!(dev->driver->driver_features & DRIVER_GEM))
109 return -ENODEV;
110
111 args->aper_size = dev->gtt_total;
2678d9d6
KP
112 args->aper_available_size = (args->aper_size -
113 atomic_read(&dev->pin_memory));
5a125c3c
EA
114
115 return 0;
116}
117
673a394b
EA
118
119/**
120 * Creates a new mm object and returns a handle to it.
121 */
122int
123i915_gem_create_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file_priv)
125{
126 struct drm_i915_gem_create *args = data;
127 struct drm_gem_object *obj;
a1a2d1d3
PP
128 int ret;
129 u32 handle;
673a394b
EA
130
131 args->size = roundup(args->size, PAGE_SIZE);
132
133 /* Allocate the new object */
ac52bc56 134 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
135 if (obj == NULL)
136 return -ENOMEM;
137
138 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
139 if (ret) {
140 drm_gem_object_unreference_unlocked(obj);
673a394b 141 return ret;
1dfd9754 142 }
673a394b 143
1dfd9754
CW
144 /* Sink the floating reference from kref_init(handlecount) */
145 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 146
1dfd9754 147 args->handle = handle;
673a394b
EA
148 return 0;
149}
150
eb01459f
EA
151static inline int
152fast_shmem_read(struct page **pages,
153 loff_t page_base, int page_offset,
154 char __user *data,
155 int length)
156{
157 char __iomem *vaddr;
2bc43b5c 158 int unwritten;
eb01459f
EA
159
160 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
161 if (vaddr == NULL)
162 return -ENOMEM;
2bc43b5c 163 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
164 kunmap_atomic(vaddr, KM_USER0);
165
2bc43b5c
FM
166 if (unwritten)
167 return -EFAULT;
168
169 return 0;
eb01459f
EA
170}
171
280b713b
EA
172static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
173{
174 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 175 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
176
177 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
178 obj_priv->tiling_mode != I915_TILING_NONE;
179}
180
99a03df5 181static inline void
40123c1f
EA
182slow_shmem_copy(struct page *dst_page,
183 int dst_offset,
184 struct page *src_page,
185 int src_offset,
186 int length)
187{
188 char *dst_vaddr, *src_vaddr;
189
99a03df5
CW
190 dst_vaddr = kmap(dst_page);
191 src_vaddr = kmap(src_page);
40123c1f
EA
192
193 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194
99a03df5
CW
195 kunmap(src_page);
196 kunmap(dst_page);
40123c1f
EA
197}
198
99a03df5 199static inline void
280b713b
EA
200slow_shmem_bit17_copy(struct page *gpu_page,
201 int gpu_offset,
202 struct page *cpu_page,
203 int cpu_offset,
204 int length,
205 int is_read)
206{
207 char *gpu_vaddr, *cpu_vaddr;
208
209 /* Use the unswizzled path if this page isn't affected. */
210 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
211 if (is_read)
212 return slow_shmem_copy(cpu_page, cpu_offset,
213 gpu_page, gpu_offset, length);
214 else
215 return slow_shmem_copy(gpu_page, gpu_offset,
216 cpu_page, cpu_offset, length);
217 }
218
99a03df5
CW
219 gpu_vaddr = kmap(gpu_page);
220 cpu_vaddr = kmap(cpu_page);
280b713b
EA
221
222 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
223 * XORing with the other bits (A9 for Y, A9 and A10 for X)
224 */
225 while (length > 0) {
226 int cacheline_end = ALIGN(gpu_offset + 1, 64);
227 int this_length = min(cacheline_end - gpu_offset, length);
228 int swizzled_gpu_offset = gpu_offset ^ 64;
229
230 if (is_read) {
231 memcpy(cpu_vaddr + cpu_offset,
232 gpu_vaddr + swizzled_gpu_offset,
233 this_length);
234 } else {
235 memcpy(gpu_vaddr + swizzled_gpu_offset,
236 cpu_vaddr + cpu_offset,
237 this_length);
238 }
239 cpu_offset += this_length;
240 gpu_offset += this_length;
241 length -= this_length;
242 }
243
99a03df5
CW
244 kunmap(cpu_page);
245 kunmap(gpu_page);
280b713b
EA
246}
247
eb01459f
EA
248/**
249 * This is the fast shmem pread path, which attempts to copy_from_user directly
250 * from the backing pages of the object to the user's address space. On a
251 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
252 */
253static int
254i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
255 struct drm_i915_gem_pread *args,
256 struct drm_file *file_priv)
257{
23010e43 258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
259 ssize_t remain;
260 loff_t offset, page_base;
261 char __user *user_data;
262 int page_offset, page_length;
263 int ret;
264
265 user_data = (char __user *) (uintptr_t) args->data_ptr;
266 remain = args->size;
267
268 mutex_lock(&dev->struct_mutex);
269
4bdadb97 270 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
271 if (ret != 0)
272 goto fail_unlock;
273
274 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
275 args->size);
276 if (ret != 0)
277 goto fail_put_pages;
278
23010e43 279 obj_priv = to_intel_bo(obj);
eb01459f
EA
280 offset = args->offset;
281
282 while (remain > 0) {
283 /* Operation in this page
284 *
285 * page_base = page offset within aperture
286 * page_offset = offset within page
287 * page_length = bytes to copy for this page
288 */
289 page_base = (offset & ~(PAGE_SIZE-1));
290 page_offset = offset & (PAGE_SIZE-1);
291 page_length = remain;
292 if ((page_offset + remain) > PAGE_SIZE)
293 page_length = PAGE_SIZE - page_offset;
294
295 ret = fast_shmem_read(obj_priv->pages,
296 page_base, page_offset,
297 user_data, page_length);
298 if (ret)
299 goto fail_put_pages;
300
301 remain -= page_length;
302 user_data += page_length;
303 offset += page_length;
304 }
305
306fail_put_pages:
307 i915_gem_object_put_pages(obj);
308fail_unlock:
309 mutex_unlock(&dev->struct_mutex);
310
311 return ret;
312}
313
07f73f69
CW
314static int
315i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
316{
317 int ret;
318
4bdadb97 319 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
320
321 /* If we've insufficient memory to map in the pages, attempt
322 * to make some space by throwing out some old buffers.
323 */
324 if (ret == -ENOMEM) {
325 struct drm_device *dev = obj->dev;
07f73f69 326
0108a3ed
DV
327 ret = i915_gem_evict_something(dev, obj->size,
328 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
329 if (ret)
330 return ret;
331
4bdadb97 332 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
333 }
334
335 return ret;
336}
337
eb01459f
EA
338/**
339 * This is the fallback shmem pread path, which allocates temporary storage
340 * in kernel space to copy_to_user into outside of the struct_mutex, so we
341 * can copy out of the object's backing pages while holding the struct mutex
342 * and not take page faults.
343 */
344static int
345i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
346 struct drm_i915_gem_pread *args,
347 struct drm_file *file_priv)
348{
23010e43 349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
350 struct mm_struct *mm = current->mm;
351 struct page **user_pages;
352 ssize_t remain;
353 loff_t offset, pinned_pages, i;
354 loff_t first_data_page, last_data_page, num_pages;
355 int shmem_page_index, shmem_page_offset;
356 int data_page_index, data_page_offset;
357 int page_length;
358 int ret;
359 uint64_t data_ptr = args->data_ptr;
280b713b 360 int do_bit17_swizzling;
eb01459f
EA
361
362 remain = args->size;
363
364 /* Pin the user pages containing the data. We can't fault while
365 * holding the struct mutex, yet we want to hold it while
366 * dereferencing the user data.
367 */
368 first_data_page = data_ptr / PAGE_SIZE;
369 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
370 num_pages = last_data_page - first_data_page + 1;
371
8e7d2b2c 372 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
373 if (user_pages == NULL)
374 return -ENOMEM;
375
376 down_read(&mm->mmap_sem);
377 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 378 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
379 up_read(&mm->mmap_sem);
380 if (pinned_pages < num_pages) {
381 ret = -EFAULT;
382 goto fail_put_user_pages;
383 }
384
280b713b
EA
385 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
386
eb01459f
EA
387 mutex_lock(&dev->struct_mutex);
388
07f73f69
CW
389 ret = i915_gem_object_get_pages_or_evict(obj);
390 if (ret)
eb01459f
EA
391 goto fail_unlock;
392
393 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
394 args->size);
395 if (ret != 0)
396 goto fail_put_pages;
397
23010e43 398 obj_priv = to_intel_bo(obj);
eb01459f
EA
399 offset = args->offset;
400
401 while (remain > 0) {
402 /* Operation in this page
403 *
404 * shmem_page_index = page number within shmem file
405 * shmem_page_offset = offset within page in shmem file
406 * data_page_index = page number in get_user_pages return
407 * data_page_offset = offset with data_page_index page.
408 * page_length = bytes to copy for this page
409 */
410 shmem_page_index = offset / PAGE_SIZE;
411 shmem_page_offset = offset & ~PAGE_MASK;
412 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
413 data_page_offset = data_ptr & ~PAGE_MASK;
414
415 page_length = remain;
416 if ((shmem_page_offset + page_length) > PAGE_SIZE)
417 page_length = PAGE_SIZE - shmem_page_offset;
418 if ((data_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - data_page_offset;
420
280b713b 421 if (do_bit17_swizzling) {
99a03df5 422 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 423 shmem_page_offset,
99a03df5
CW
424 user_pages[data_page_index],
425 data_page_offset,
426 page_length,
427 1);
428 } else {
429 slow_shmem_copy(user_pages[data_page_index],
430 data_page_offset,
431 obj_priv->pages[shmem_page_index],
432 shmem_page_offset,
433 page_length);
280b713b 434 }
eb01459f
EA
435
436 remain -= page_length;
437 data_ptr += page_length;
438 offset += page_length;
439 }
440
441fail_put_pages:
442 i915_gem_object_put_pages(obj);
443fail_unlock:
444 mutex_unlock(&dev->struct_mutex);
445fail_put_user_pages:
446 for (i = 0; i < pinned_pages; i++) {
447 SetPageDirty(user_pages[i]);
448 page_cache_release(user_pages[i]);
449 }
8e7d2b2c 450 drm_free_large(user_pages);
eb01459f
EA
451
452 return ret;
453}
454
673a394b
EA
455/**
456 * Reads data from the object referenced by handle.
457 *
458 * On error, the contents of *data are undefined.
459 */
460int
461i915_gem_pread_ioctl(struct drm_device *dev, void *data,
462 struct drm_file *file_priv)
463{
464 struct drm_i915_gem_pread *args = data;
465 struct drm_gem_object *obj;
466 struct drm_i915_gem_object *obj_priv;
673a394b
EA
467 int ret;
468
469 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
470 if (obj == NULL)
bf79cb91 471 return -ENOENT;
23010e43 472 obj_priv = to_intel_bo(obj);
673a394b 473
7dcd2499
CW
474 /* Bounds check source. */
475 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d
CW
476 ret = -EINVAL;
477 goto err;
478 }
479
480 if (!access_ok(VERIFY_WRITE,
481 (char __user *)(uintptr_t)args->data_ptr,
482 args->size)) {
483 ret = -EFAULT;
484 goto err;
673a394b
EA
485 }
486
280b713b 487 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 488 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
489 } else {
490 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
491 if (ret != 0)
492 ret = i915_gem_shmem_pread_slow(dev, obj, args,
493 file_priv);
494 }
673a394b 495
ce9d419d 496err:
bc9025bd 497 drm_gem_object_unreference_unlocked(obj);
eb01459f 498 return ret;
673a394b
EA
499}
500
0839ccb8
KP
501/* This is the fast write path which cannot handle
502 * page faults in the source data
9b7530cc 503 */
0839ccb8
KP
504
505static inline int
506fast_user_write(struct io_mapping *mapping,
507 loff_t page_base, int page_offset,
508 char __user *user_data,
509 int length)
9b7530cc 510{
9b7530cc 511 char *vaddr_atomic;
0839ccb8 512 unsigned long unwritten;
9b7530cc 513
fca3ec01 514 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
515 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
516 user_data, length);
fca3ec01 517 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
518 if (unwritten)
519 return -EFAULT;
520 return 0;
521}
522
523/* Here's the write path which can sleep for
524 * page faults
525 */
526
ab34c226 527static inline void
3de09aa3
EA
528slow_kernel_write(struct io_mapping *mapping,
529 loff_t gtt_base, int gtt_offset,
530 struct page *user_page, int user_offset,
531 int length)
0839ccb8 532{
ab34c226
CW
533 char __iomem *dst_vaddr;
534 char *src_vaddr;
0839ccb8 535
ab34c226
CW
536 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
537 src_vaddr = kmap(user_page);
538
539 memcpy_toio(dst_vaddr + gtt_offset,
540 src_vaddr + user_offset,
541 length);
542
543 kunmap(user_page);
544 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
545}
546
40123c1f
EA
547static inline int
548fast_shmem_write(struct page **pages,
549 loff_t page_base, int page_offset,
550 char __user *data,
551 int length)
552{
553 char __iomem *vaddr;
d0088775 554 unsigned long unwritten;
40123c1f
EA
555
556 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
557 if (vaddr == NULL)
558 return -ENOMEM;
d0088775 559 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
560 kunmap_atomic(vaddr, KM_USER0);
561
d0088775
DA
562 if (unwritten)
563 return -EFAULT;
40123c1f
EA
564 return 0;
565}
566
3de09aa3
EA
567/**
568 * This is the fast pwrite path, where we copy the data directly from the
569 * user into the GTT, uncached.
570 */
673a394b 571static int
3de09aa3
EA
572i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file_priv)
673a394b 575{
23010e43 576 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 577 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 578 ssize_t remain;
0839ccb8 579 loff_t offset, page_base;
673a394b 580 char __user *user_data;
0839ccb8
KP
581 int page_offset, page_length;
582 int ret;
673a394b
EA
583
584 user_data = (char __user *) (uintptr_t) args->data_ptr;
585 remain = args->size;
673a394b
EA
586
587
588 mutex_lock(&dev->struct_mutex);
589 ret = i915_gem_object_pin(obj, 0);
590 if (ret) {
591 mutex_unlock(&dev->struct_mutex);
592 return ret;
593 }
2ef7eeaa 594 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
595 if (ret)
596 goto fail;
597
23010e43 598 obj_priv = to_intel_bo(obj);
673a394b 599 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
600
601 while (remain > 0) {
602 /* Operation in this page
603 *
0839ccb8
KP
604 * page_base = page offset within aperture
605 * page_offset = offset within page
606 * page_length = bytes to copy for this page
673a394b 607 */
0839ccb8
KP
608 page_base = (offset & ~(PAGE_SIZE-1));
609 page_offset = offset & (PAGE_SIZE-1);
610 page_length = remain;
611 if ((page_offset + remain) > PAGE_SIZE)
612 page_length = PAGE_SIZE - page_offset;
613
614 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
615 page_offset, user_data, page_length);
616
617 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
0839ccb8 620 */
3de09aa3
EA
621 if (ret)
622 goto fail;
673a394b 623
0839ccb8
KP
624 remain -= page_length;
625 user_data += page_length;
626 offset += page_length;
673a394b 627 }
673a394b
EA
628
629fail:
630 i915_gem_object_unpin(obj);
631 mutex_unlock(&dev->struct_mutex);
632
633 return ret;
634}
635
3de09aa3
EA
636/**
637 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
638 * the memory and maps it using kmap_atomic for copying.
639 *
640 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
641 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
642 */
3043c60c 643static int
3de09aa3
EA
644i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
673a394b 647{
23010e43 648 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
649 drm_i915_private_t *dev_priv = dev->dev_private;
650 ssize_t remain;
651 loff_t gtt_page_base, offset;
652 loff_t first_data_page, last_data_page, num_pages;
653 loff_t pinned_pages, i;
654 struct page **user_pages;
655 struct mm_struct *mm = current->mm;
656 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 657 int ret;
3de09aa3
EA
658 uint64_t data_ptr = args->data_ptr;
659
660 remain = args->size;
661
662 /* Pin the user pages containing the data. We can't fault while
663 * holding the struct mutex, and all of the pwrite implementations
664 * want to hold it while dereferencing the user data.
665 */
666 first_data_page = data_ptr / PAGE_SIZE;
667 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
668 num_pages = last_data_page - first_data_page + 1;
669
8e7d2b2c 670 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
671 if (user_pages == NULL)
672 return -ENOMEM;
673
674 down_read(&mm->mmap_sem);
675 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
676 num_pages, 0, 0, user_pages, NULL);
677 up_read(&mm->mmap_sem);
678 if (pinned_pages < num_pages) {
679 ret = -EFAULT;
680 goto out_unpin_pages;
681 }
673a394b
EA
682
683 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
684 ret = i915_gem_object_pin(obj, 0);
685 if (ret)
686 goto out_unlock;
687
688 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
689 if (ret)
690 goto out_unpin_object;
691
23010e43 692 obj_priv = to_intel_bo(obj);
3de09aa3
EA
693 offset = obj_priv->gtt_offset + args->offset;
694
695 while (remain > 0) {
696 /* Operation in this page
697 *
698 * gtt_page_base = page offset within aperture
699 * gtt_page_offset = offset within page in aperture
700 * data_page_index = page number in get_user_pages return
701 * data_page_offset = offset with data_page_index page.
702 * page_length = bytes to copy for this page
703 */
704 gtt_page_base = offset & PAGE_MASK;
705 gtt_page_offset = offset & ~PAGE_MASK;
706 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
707 data_page_offset = data_ptr & ~PAGE_MASK;
708
709 page_length = remain;
710 if ((gtt_page_offset + page_length) > PAGE_SIZE)
711 page_length = PAGE_SIZE - gtt_page_offset;
712 if ((data_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - data_page_offset;
714
ab34c226
CW
715 slow_kernel_write(dev_priv->mm.gtt_mapping,
716 gtt_page_base, gtt_page_offset,
717 user_pages[data_page_index],
718 data_page_offset,
719 page_length);
3de09aa3
EA
720
721 remain -= page_length;
722 offset += page_length;
723 data_ptr += page_length;
724 }
725
726out_unpin_object:
727 i915_gem_object_unpin(obj);
728out_unlock:
729 mutex_unlock(&dev->struct_mutex);
730out_unpin_pages:
731 for (i = 0; i < pinned_pages; i++)
732 page_cache_release(user_pages[i]);
8e7d2b2c 733 drm_free_large(user_pages);
3de09aa3
EA
734
735 return ret;
736}
737
40123c1f
EA
738/**
739 * This is the fast shmem pwrite path, which attempts to directly
740 * copy_from_user into the kmapped pages backing the object.
741 */
3043c60c 742static int
40123c1f
EA
743i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
744 struct drm_i915_gem_pwrite *args,
745 struct drm_file *file_priv)
673a394b 746{
23010e43 747 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
748 ssize_t remain;
749 loff_t offset, page_base;
750 char __user *user_data;
751 int page_offset, page_length;
673a394b 752 int ret;
40123c1f
EA
753
754 user_data = (char __user *) (uintptr_t) args->data_ptr;
755 remain = args->size;
673a394b
EA
756
757 mutex_lock(&dev->struct_mutex);
758
4bdadb97 759 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
760 if (ret != 0)
761 goto fail_unlock;
673a394b 762
e47c68e9 763 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
764 if (ret != 0)
765 goto fail_put_pages;
766
23010e43 767 obj_priv = to_intel_bo(obj);
40123c1f
EA
768 offset = args->offset;
769 obj_priv->dirty = 1;
770
771 while (remain > 0) {
772 /* Operation in this page
773 *
774 * page_base = page offset within aperture
775 * page_offset = offset within page
776 * page_length = bytes to copy for this page
777 */
778 page_base = (offset & ~(PAGE_SIZE-1));
779 page_offset = offset & (PAGE_SIZE-1);
780 page_length = remain;
781 if ((page_offset + remain) > PAGE_SIZE)
782 page_length = PAGE_SIZE - page_offset;
783
784 ret = fast_shmem_write(obj_priv->pages,
785 page_base, page_offset,
786 user_data, page_length);
787 if (ret)
788 goto fail_put_pages;
789
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
793 }
794
795fail_put_pages:
796 i915_gem_object_put_pages(obj);
797fail_unlock:
798 mutex_unlock(&dev->struct_mutex);
799
800 return ret;
801}
802
803/**
804 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
805 * the memory and maps it using kmap_atomic for copying.
806 *
807 * This avoids taking mmap_sem for faulting on the user's address while the
808 * struct_mutex is held.
809 */
810static int
811i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
812 struct drm_i915_gem_pwrite *args,
813 struct drm_file *file_priv)
814{
23010e43 815 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
821 int shmem_page_index, shmem_page_offset;
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
280b713b 826 int do_bit17_swizzling;
40123c1f
EA
827
828 remain = args->size;
829
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
833 */
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
837
8e7d2b2c 838 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
839 if (user_pages == NULL)
840 return -ENOMEM;
841
842 down_read(&mm->mmap_sem);
843 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
844 num_pages, 0, 0, user_pages, NULL);
845 up_read(&mm->mmap_sem);
846 if (pinned_pages < num_pages) {
847 ret = -EFAULT;
848 goto fail_put_user_pages;
673a394b
EA
849 }
850
280b713b
EA
851 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
40123c1f
EA
853 mutex_lock(&dev->struct_mutex);
854
07f73f69
CW
855 ret = i915_gem_object_get_pages_or_evict(obj);
856 if (ret)
40123c1f
EA
857 goto fail_unlock;
858
859 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
860 if (ret != 0)
861 goto fail_put_pages;
862
23010e43 863 obj_priv = to_intel_bo(obj);
673a394b 864 offset = args->offset;
40123c1f 865 obj_priv->dirty = 1;
673a394b 866
40123c1f
EA
867 while (remain > 0) {
868 /* Operation in this page
869 *
870 * shmem_page_index = page number within shmem file
871 * shmem_page_offset = offset within page in shmem file
872 * data_page_index = page number in get_user_pages return
873 * data_page_offset = offset with data_page_index page.
874 * page_length = bytes to copy for this page
875 */
876 shmem_page_index = offset / PAGE_SIZE;
877 shmem_page_offset = offset & ~PAGE_MASK;
878 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
879 data_page_offset = data_ptr & ~PAGE_MASK;
880
881 page_length = remain;
882 if ((shmem_page_offset + page_length) > PAGE_SIZE)
883 page_length = PAGE_SIZE - shmem_page_offset;
884 if ((data_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - data_page_offset;
886
280b713b 887 if (do_bit17_swizzling) {
99a03df5 888 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
889 shmem_page_offset,
890 user_pages[data_page_index],
891 data_page_offset,
99a03df5
CW
892 page_length,
893 0);
894 } else {
895 slow_shmem_copy(obj_priv->pages[shmem_page_index],
896 shmem_page_offset,
897 user_pages[data_page_index],
898 data_page_offset,
899 page_length);
280b713b 900 }
40123c1f
EA
901
902 remain -= page_length;
903 data_ptr += page_length;
904 offset += page_length;
673a394b
EA
905 }
906
40123c1f
EA
907fail_put_pages:
908 i915_gem_object_put_pages(obj);
909fail_unlock:
673a394b 910 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
911fail_put_user_pages:
912 for (i = 0; i < pinned_pages; i++)
913 page_cache_release(user_pages[i]);
8e7d2b2c 914 drm_free_large(user_pages);
673a394b 915
40123c1f 916 return ret;
673a394b
EA
917}
918
919/**
920 * Writes data to the object referenced by handle.
921 *
922 * On error, the contents of the buffer that were to be modified are undefined.
923 */
924int
925i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926 struct drm_file *file_priv)
927{
928 struct drm_i915_gem_pwrite *args = data;
929 struct drm_gem_object *obj;
930 struct drm_i915_gem_object *obj_priv;
931 int ret = 0;
932
933 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
934 if (obj == NULL)
bf79cb91 935 return -ENOENT;
23010e43 936 obj_priv = to_intel_bo(obj);
673a394b 937
7dcd2499
CW
938 /* Bounds check destination. */
939 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d
CW
940 ret = -EINVAL;
941 goto err;
942 }
943
944 if (!access_ok(VERIFY_READ,
945 (char __user *)(uintptr_t)args->data_ptr,
946 args->size)) {
947 ret = -EFAULT;
948 goto err;
673a394b
EA
949 }
950
951 /* We can only do the GTT pwrite on untiled buffers, as otherwise
952 * it would end up going through the fenced access, and we'll get
953 * different detiling behavior between reading and writing.
954 * pread/pwrite currently are reading and writing from the CPU
955 * perspective, requiring manual detiling by the client.
956 */
71acb5eb
DA
957 if (obj_priv->phys_obj)
958 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
959 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
960 dev->gtt_total != 0 &&
961 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
962 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
963 if (ret == -EFAULT) {
964 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
965 file_priv);
966 }
280b713b
EA
967 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
968 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
969 } else {
970 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
971 if (ret == -EFAULT) {
972 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
973 file_priv);
974 }
975 }
673a394b
EA
976
977#if WATCH_PWRITE
978 if (ret)
979 DRM_INFO("pwrite failed %d\n", ret);
980#endif
981
ce9d419d 982err:
bc9025bd 983 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
984 return ret;
985}
986
987/**
2ef7eeaa
EA
988 * Called when user space prepares to use an object with the CPU, either
989 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
990 */
991int
992i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
993 struct drm_file *file_priv)
994{
a09ba7fa 995 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
996 struct drm_i915_gem_set_domain *args = data;
997 struct drm_gem_object *obj;
652c393a 998 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
999 uint32_t read_domains = args->read_domains;
1000 uint32_t write_domain = args->write_domain;
673a394b
EA
1001 int ret;
1002
1003 if (!(dev->driver->driver_features & DRIVER_GEM))
1004 return -ENODEV;
1005
2ef7eeaa 1006 /* Only handle setting domains to types used by the CPU. */
21d509e3 1007 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1008 return -EINVAL;
1009
21d509e3 1010 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1011 return -EINVAL;
1012
1013 /* Having something in the write domain implies it's in the read
1014 * domain, and only that read domain. Enforce that in the request.
1015 */
1016 if (write_domain != 0 && read_domains != write_domain)
1017 return -EINVAL;
1018
673a394b
EA
1019 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1020 if (obj == NULL)
bf79cb91 1021 return -ENOENT;
23010e43 1022 obj_priv = to_intel_bo(obj);
673a394b
EA
1023
1024 mutex_lock(&dev->struct_mutex);
652c393a
JB
1025
1026 intel_mark_busy(dev, obj);
1027
673a394b 1028#if WATCH_BUF
cfd43c02 1029 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1030 obj, obj->size, read_domains, write_domain);
673a394b 1031#endif
2ef7eeaa
EA
1032 if (read_domains & I915_GEM_DOMAIN_GTT) {
1033 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1034
a09ba7fa
EA
1035 /* Update the LRU on the fence for the CPU access that's
1036 * about to occur.
1037 */
1038 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1039 struct drm_i915_fence_reg *reg =
1040 &dev_priv->fence_regs[obj_priv->fence_reg];
1041 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1042 &dev_priv->mm.fence_list);
1043 }
1044
02354392
EA
1045 /* Silently promote "you're not bound, there was nothing to do"
1046 * to success, since the client was just asking us to
1047 * make sure everything was done.
1048 */
1049 if (ret == -EINVAL)
1050 ret = 0;
2ef7eeaa 1051 } else {
e47c68e9 1052 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1053 }
1054
7d1c4804
CW
1055
1056 /* Maintain LRU order of "inactive" objects */
1057 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1058 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1059
673a394b
EA
1060 drm_gem_object_unreference(obj);
1061 mutex_unlock(&dev->struct_mutex);
1062 return ret;
1063}
1064
1065/**
1066 * Called when user space has done writes to this buffer
1067 */
1068int
1069i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1070 struct drm_file *file_priv)
1071{
1072 struct drm_i915_gem_sw_finish *args = data;
1073 struct drm_gem_object *obj;
1074 struct drm_i915_gem_object *obj_priv;
1075 int ret = 0;
1076
1077 if (!(dev->driver->driver_features & DRIVER_GEM))
1078 return -ENODEV;
1079
1080 mutex_lock(&dev->struct_mutex);
1081 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1082 if (obj == NULL) {
1083 mutex_unlock(&dev->struct_mutex);
bf79cb91 1084 return -ENOENT;
673a394b
EA
1085 }
1086
1087#if WATCH_BUF
cfd43c02 1088 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1089 __func__, args->handle, obj, obj->size);
1090#endif
23010e43 1091 obj_priv = to_intel_bo(obj);
673a394b
EA
1092
1093 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1094 if (obj_priv->pin_count)
1095 i915_gem_object_flush_cpu_write_domain(obj);
1096
673a394b
EA
1097 drm_gem_object_unreference(obj);
1098 mutex_unlock(&dev->struct_mutex);
1099 return ret;
1100}
1101
1102/**
1103 * Maps the contents of an object, returning the address it is mapped
1104 * into.
1105 *
1106 * While the mapping holds a reference on the contents of the object, it doesn't
1107 * imply a ref on the object itself.
1108 */
1109int
1110i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1111 struct drm_file *file_priv)
1112{
1113 struct drm_i915_gem_mmap *args = data;
1114 struct drm_gem_object *obj;
1115 loff_t offset;
1116 unsigned long addr;
1117
1118 if (!(dev->driver->driver_features & DRIVER_GEM))
1119 return -ENODEV;
1120
1121 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1122 if (obj == NULL)
bf79cb91 1123 return -ENOENT;
673a394b
EA
1124
1125 offset = args->offset;
1126
1127 down_write(&current->mm->mmap_sem);
1128 addr = do_mmap(obj->filp, 0, args->size,
1129 PROT_READ | PROT_WRITE, MAP_SHARED,
1130 args->offset);
1131 up_write(&current->mm->mmap_sem);
bc9025bd 1132 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1133 if (IS_ERR((void *)addr))
1134 return addr;
1135
1136 args->addr_ptr = (uint64_t) addr;
1137
1138 return 0;
1139}
1140
de151cf6
JB
1141/**
1142 * i915_gem_fault - fault a page into the GTT
1143 * vma: VMA in question
1144 * vmf: fault info
1145 *
1146 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1147 * from userspace. The fault handler takes care of binding the object to
1148 * the GTT (if needed), allocating and programming a fence register (again,
1149 * only if needed based on whether the old reg is still valid or the object
1150 * is tiled) and inserting a new PTE into the faulting process.
1151 *
1152 * Note that the faulting process may involve evicting existing objects
1153 * from the GTT and/or fence registers to make room. So performance may
1154 * suffer if the GTT working set is large or there are few fence registers
1155 * left.
1156 */
1157int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1158{
1159 struct drm_gem_object *obj = vma->vm_private_data;
1160 struct drm_device *dev = obj->dev;
7d1c4804 1161 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1162 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1163 pgoff_t page_offset;
1164 unsigned long pfn;
1165 int ret = 0;
0f973f27 1166 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1167
1168 /* We don't use vmf->pgoff since that has the fake offset */
1169 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1170 PAGE_SHIFT;
1171
1172 /* Now bind it into the GTT if needed */
1173 mutex_lock(&dev->struct_mutex);
1174 if (!obj_priv->gtt_space) {
e67b8ce1 1175 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1176 if (ret)
1177 goto unlock;
07f4f3e8 1178
07f4f3e8 1179 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1180 if (ret)
1181 goto unlock;
de151cf6
JB
1182 }
1183
1184 /* Need a new fence register? */
a09ba7fa 1185 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1186 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1187 if (ret)
1188 goto unlock;
d9ddcb96 1189 }
de151cf6 1190
7d1c4804
CW
1191 if (i915_gem_object_is_inactive(obj_priv))
1192 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1193
de151cf6
JB
1194 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1195 page_offset;
1196
1197 /* Finally, remap it using the new GTT offset */
1198 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1199unlock:
de151cf6
JB
1200 mutex_unlock(&dev->struct_mutex);
1201
1202 switch (ret) {
c715089f
CW
1203 case 0:
1204 case -ERESTARTSYS:
1205 return VM_FAULT_NOPAGE;
de151cf6
JB
1206 case -ENOMEM:
1207 case -EAGAIN:
1208 return VM_FAULT_OOM;
de151cf6 1209 default:
c715089f 1210 return VM_FAULT_SIGBUS;
de151cf6
JB
1211 }
1212}
1213
1214/**
1215 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1216 * @obj: obj in question
1217 *
1218 * GEM memory mapping works by handing back to userspace a fake mmap offset
1219 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1220 * up the object based on the offset and sets up the various memory mapping
1221 * structures.
1222 *
1223 * This routine allocates and attaches a fake offset for @obj.
1224 */
1225static int
1226i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1227{
1228 struct drm_device *dev = obj->dev;
1229 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1230 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1231 struct drm_map_list *list;
f77d390c 1232 struct drm_local_map *map;
de151cf6
JB
1233 int ret = 0;
1234
1235 /* Set the object up for mmap'ing */
1236 list = &obj->map_list;
9a298b2a 1237 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1238 if (!list->map)
1239 return -ENOMEM;
1240
1241 map = list->map;
1242 map->type = _DRM_GEM;
1243 map->size = obj->size;
1244 map->handle = obj;
1245
1246 /* Get a DRM GEM mmap offset allocated... */
1247 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1248 obj->size / PAGE_SIZE, 0, 0);
1249 if (!list->file_offset_node) {
1250 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1251 ret = -ENOMEM;
1252 goto out_free_list;
1253 }
1254
1255 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1256 obj->size / PAGE_SIZE, 0);
1257 if (!list->file_offset_node) {
1258 ret = -ENOMEM;
1259 goto out_free_list;
1260 }
1261
1262 list->hash.key = list->file_offset_node->start;
1263 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1264 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1265 ret = -ENOMEM;
de151cf6
JB
1266 goto out_free_mm;
1267 }
1268
1269 /* By now we should be all set, any drm_mmap request on the offset
1270 * below will get to our mmap & fault handler */
1271 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1272
1273 return 0;
1274
1275out_free_mm:
1276 drm_mm_put_block(list->file_offset_node);
1277out_free_list:
9a298b2a 1278 kfree(list->map);
de151cf6
JB
1279
1280 return ret;
1281}
1282
901782b2
CW
1283/**
1284 * i915_gem_release_mmap - remove physical page mappings
1285 * @obj: obj in question
1286 *
af901ca1 1287 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1288 * relinquish ownership of the pages back to the system.
1289 *
1290 * It is vital that we remove the page mapping if we have mapped a tiled
1291 * object through the GTT and then lose the fence register due to
1292 * resource pressure. Similarly if the object has been moved out of the
1293 * aperture, than pages mapped into userspace must be revoked. Removing the
1294 * mapping will then trigger a page fault on the next user access, allowing
1295 * fixup by i915_gem_fault().
1296 */
d05ca301 1297void
901782b2
CW
1298i915_gem_release_mmap(struct drm_gem_object *obj)
1299{
1300 struct drm_device *dev = obj->dev;
23010e43 1301 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1302
1303 if (dev->dev_mapping)
1304 unmap_mapping_range(dev->dev_mapping,
1305 obj_priv->mmap_offset, obj->size, 1);
1306}
1307
ab00b3e5
JB
1308static void
1309i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1310{
1311 struct drm_device *dev = obj->dev;
23010e43 1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1313 struct drm_gem_mm *mm = dev->mm_private;
1314 struct drm_map_list *list;
1315
1316 list = &obj->map_list;
1317 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1318
1319 if (list->file_offset_node) {
1320 drm_mm_put_block(list->file_offset_node);
1321 list->file_offset_node = NULL;
1322 }
1323
1324 if (list->map) {
9a298b2a 1325 kfree(list->map);
ab00b3e5
JB
1326 list->map = NULL;
1327 }
1328
1329 obj_priv->mmap_offset = 0;
1330}
1331
de151cf6
JB
1332/**
1333 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1334 * @obj: object to check
1335 *
1336 * Return the required GTT alignment for an object, taking into account
1337 * potential fence register mapping if needed.
1338 */
1339static uint32_t
1340i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1341{
1342 struct drm_device *dev = obj->dev;
23010e43 1343 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1344 int start, i;
1345
1346 /*
1347 * Minimum alignment is 4k (GTT page size), but might be greater
1348 * if a fence register is needed for the object.
1349 */
1350 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1351 return 4096;
1352
1353 /*
1354 * Previous chips need to be aligned to the size of the smallest
1355 * fence register that can contain the object.
1356 */
1357 if (IS_I9XX(dev))
1358 start = 1024*1024;
1359 else
1360 start = 512*1024;
1361
1362 for (i = start; i < obj->size; i <<= 1)
1363 ;
1364
1365 return i;
1366}
1367
1368/**
1369 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1370 * @dev: DRM device
1371 * @data: GTT mapping ioctl data
1372 * @file_priv: GEM object info
1373 *
1374 * Simply returns the fake offset to userspace so it can mmap it.
1375 * The mmap call will end up in drm_gem_mmap(), which will set things
1376 * up so we can get faults in the handler above.
1377 *
1378 * The fault handler will take care of binding the object into the GTT
1379 * (since it may have been evicted to make room for something), allocating
1380 * a fence register, and mapping the appropriate aperture address into
1381 * userspace.
1382 */
1383int
1384i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1385 struct drm_file *file_priv)
1386{
1387 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1388 struct drm_gem_object *obj;
1389 struct drm_i915_gem_object *obj_priv;
1390 int ret;
1391
1392 if (!(dev->driver->driver_features & DRIVER_GEM))
1393 return -ENODEV;
1394
1395 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1396 if (obj == NULL)
bf79cb91 1397 return -ENOENT;
de151cf6
JB
1398
1399 mutex_lock(&dev->struct_mutex);
1400
23010e43 1401 obj_priv = to_intel_bo(obj);
de151cf6 1402
ab18282d
CW
1403 if (obj_priv->madv != I915_MADV_WILLNEED) {
1404 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1405 drm_gem_object_unreference(obj);
1406 mutex_unlock(&dev->struct_mutex);
1407 return -EINVAL;
1408 }
1409
1410
de151cf6
JB
1411 if (!obj_priv->mmap_offset) {
1412 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1413 if (ret) {
1414 drm_gem_object_unreference(obj);
1415 mutex_unlock(&dev->struct_mutex);
de151cf6 1416 return ret;
13af1062 1417 }
de151cf6
JB
1418 }
1419
1420 args->offset = obj_priv->mmap_offset;
1421
de151cf6
JB
1422 /*
1423 * Pull it into the GTT so that we have a page list (makes the
1424 * initial fault faster and any subsequent flushing possible).
1425 */
1426 if (!obj_priv->agp_mem) {
e67b8ce1 1427 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1428 if (ret) {
1429 drm_gem_object_unreference(obj);
1430 mutex_unlock(&dev->struct_mutex);
1431 return ret;
1432 }
de151cf6
JB
1433 }
1434
1435 drm_gem_object_unreference(obj);
1436 mutex_unlock(&dev->struct_mutex);
1437
1438 return 0;
1439}
1440
6911a9b8 1441void
856fa198 1442i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1443{
23010e43 1444 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1445 int page_count = obj->size / PAGE_SIZE;
1446 int i;
1447
856fa198 1448 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1449 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1450
856fa198
EA
1451 if (--obj_priv->pages_refcount != 0)
1452 return;
673a394b 1453
280b713b
EA
1454 if (obj_priv->tiling_mode != I915_TILING_NONE)
1455 i915_gem_object_save_bit_17_swizzle(obj);
1456
3ef94daa 1457 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1458 obj_priv->dirty = 0;
3ef94daa
CW
1459
1460 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1461 if (obj_priv->dirty)
1462 set_page_dirty(obj_priv->pages[i]);
1463
1464 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1465 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1466
1467 page_cache_release(obj_priv->pages[i]);
1468 }
673a394b
EA
1469 obj_priv->dirty = 0;
1470
8e7d2b2c 1471 drm_free_large(obj_priv->pages);
856fa198 1472 obj_priv->pages = NULL;
673a394b
EA
1473}
1474
1475static void
852835f3
ZN
1476i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1477 struct intel_ring_buffer *ring)
673a394b
EA
1478{
1479 struct drm_device *dev = obj->dev;
1480 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1482 BUG_ON(ring == NULL);
1483 obj_priv->ring = ring;
673a394b
EA
1484
1485 /* Add a reference if we're newly entering the active list. */
1486 if (!obj_priv->active) {
1487 drm_gem_object_reference(obj);
1488 obj_priv->active = 1;
1489 }
1490 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1491 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1492 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1493 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1494 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1495}
1496
ce44b0ea
EA
1497static void
1498i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1499{
1500 struct drm_device *dev = obj->dev;
1501 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1502 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1503
1504 BUG_ON(!obj_priv->active);
1505 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1506 obj_priv->last_rendering_seqno = 0;
1507}
673a394b 1508
963b4836
CW
1509/* Immediately discard the backing storage */
1510static void
1511i915_gem_object_truncate(struct drm_gem_object *obj)
1512{
23010e43 1513 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1514 struct inode *inode;
963b4836 1515
ae9fed6b
CW
1516 /* Our goal here is to return as much of the memory as
1517 * is possible back to the system as we are called from OOM.
1518 * To do this we must instruct the shmfs to drop all of its
1519 * backing pages, *now*. Here we mirror the actions taken
1520 * when by shmem_delete_inode() to release the backing store.
1521 */
bb6baf76 1522 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1523 truncate_inode_pages(inode->i_mapping, 0);
1524 if (inode->i_op->truncate_range)
1525 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1526
1527 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1528}
1529
1530static inline int
1531i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1532{
1533 return obj_priv->madv == I915_MADV_DONTNEED;
1534}
1535
673a394b
EA
1536static void
1537i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1538{
1539 struct drm_device *dev = obj->dev;
1540 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1541 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1542
1543 i915_verify_inactive(dev, __FILE__, __LINE__);
1544 if (obj_priv->pin_count != 0)
1545 list_del_init(&obj_priv->list);
1546 else
1547 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1548
99fcb766
DV
1549 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1550
ce44b0ea 1551 obj_priv->last_rendering_seqno = 0;
852835f3 1552 obj_priv->ring = NULL;
673a394b
EA
1553 if (obj_priv->active) {
1554 obj_priv->active = 0;
1555 drm_gem_object_unreference(obj);
1556 }
1557 i915_verify_inactive(dev, __FILE__, __LINE__);
1558}
1559
63560396
DV
1560static void
1561i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1562 uint32_t flush_domains, uint32_t seqno,
1563 struct intel_ring_buffer *ring)
63560396
DV
1564{
1565 drm_i915_private_t *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_object *obj_priv, *next;
1567
1568 list_for_each_entry_safe(obj_priv, next,
1569 &dev_priv->mm.gpu_write_list,
1570 gpu_write_list) {
a8089e84 1571 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1572
1573 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1574 obj->write_domain &&
1575 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1576 uint32_t old_write_domain = obj->write_domain;
1577
1578 obj->write_domain = 0;
1579 list_del_init(&obj_priv->gpu_write_list);
852835f3 1580 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1581
1582 /* update the fence lru list */
007cc8ac
DV
1583 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1584 struct drm_i915_fence_reg *reg =
1585 &dev_priv->fence_regs[obj_priv->fence_reg];
1586 list_move_tail(&reg->lru_list,
63560396 1587 &dev_priv->mm.fence_list);
007cc8ac 1588 }
63560396
DV
1589
1590 trace_i915_gem_object_change_domain(obj,
1591 obj->read_domains,
1592 old_write_domain);
1593 }
1594 }
1595}
8187a2b7 1596
5a5a0c64 1597uint32_t
b962442e 1598i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1599 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1600{
1601 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1602 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1603 struct drm_i915_gem_request *request;
1604 uint32_t seqno;
1605 int was_empty;
673a394b 1606
b962442e
EA
1607 if (file_priv != NULL)
1608 i915_file_priv = file_priv->driver_priv;
1609
9a298b2a 1610 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1611 if (request == NULL)
1612 return 0;
1613
852835f3 1614 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1615
1616 request->seqno = seqno;
852835f3 1617 request->ring = ring;
673a394b 1618 request->emitted_jiffies = jiffies;
852835f3
ZN
1619 was_empty = list_empty(&ring->request_list);
1620 list_add_tail(&request->list, &ring->request_list);
1621
b962442e
EA
1622 if (i915_file_priv) {
1623 list_add_tail(&request->client_list,
1624 &i915_file_priv->mm.request_list);
1625 } else {
1626 INIT_LIST_HEAD(&request->client_list);
1627 }
673a394b 1628
ce44b0ea
EA
1629 /* Associate any objects on the flushing list matching the write
1630 * domain we're flushing with our flush.
1631 */
63560396 1632 if (flush_domains != 0)
852835f3 1633 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1634
f65d9421
BG
1635 if (!dev_priv->mm.suspended) {
1636 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1637 if (was_empty)
1638 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1639 }
673a394b
EA
1640 return seqno;
1641}
1642
1643/**
1644 * Command execution barrier
1645 *
1646 * Ensures that all commands in the ring are finished
1647 * before signalling the CPU
1648 */
3043c60c 1649static uint32_t
852835f3 1650i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1651{
673a394b 1652 uint32_t flush_domains = 0;
673a394b
EA
1653
1654 /* The sampler always gets flushed on i965 (sigh) */
1655 if (IS_I965G(dev))
1656 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1657
1658 ring->flush(dev, ring,
1659 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1660 return flush_domains;
1661}
1662
1663/**
1664 * Moves buffers associated only with the given active seqno from the active
1665 * to inactive list, potentially freeing them.
1666 */
1667static void
1668i915_gem_retire_request(struct drm_device *dev,
1669 struct drm_i915_gem_request *request)
1670{
1671 drm_i915_private_t *dev_priv = dev->dev_private;
1672
1c5d22f7
CW
1673 trace_i915_gem_request_retire(dev, request->seqno);
1674
673a394b
EA
1675 /* Move any buffers on the active list that are no longer referenced
1676 * by the ringbuffer to the flushing/inactive lists as appropriate.
1677 */
5e118f41 1678 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1679 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1680 struct drm_gem_object *obj;
1681 struct drm_i915_gem_object *obj_priv;
1682
852835f3 1683 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1684 struct drm_i915_gem_object,
1685 list);
a8089e84 1686 obj = &obj_priv->base;
673a394b
EA
1687
1688 /* If the seqno being retired doesn't match the oldest in the
1689 * list, then the oldest in the list must still be newer than
1690 * this seqno.
1691 */
1692 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1693 goto out;
de151cf6 1694
673a394b
EA
1695#if WATCH_LRU
1696 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1697 __func__, request->seqno, obj);
1698#endif
1699
ce44b0ea
EA
1700 if (obj->write_domain != 0)
1701 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1702 else {
1703 /* Take a reference on the object so it won't be
1704 * freed while the spinlock is held. The list
1705 * protection for this spinlock is safe when breaking
1706 * the lock like this since the next thing we do
1707 * is just get the head of the list again.
1708 */
1709 drm_gem_object_reference(obj);
673a394b 1710 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1711 spin_unlock(&dev_priv->mm.active_list_lock);
1712 drm_gem_object_unreference(obj);
1713 spin_lock(&dev_priv->mm.active_list_lock);
1714 }
673a394b 1715 }
5e118f41
CW
1716out:
1717 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1718}
1719
1720/**
1721 * Returns true if seq1 is later than seq2.
1722 */
22be1724 1723bool
673a394b
EA
1724i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1725{
1726 return (int32_t)(seq1 - seq2) >= 0;
1727}
1728
1729uint32_t
852835f3 1730i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1731 struct intel_ring_buffer *ring)
673a394b 1732{
852835f3 1733 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1734}
1735
1736/**
1737 * This function clears the request list as sequence numbers are passed.
1738 */
b09a1fec
CW
1739static void
1740i915_gem_retire_requests_ring(struct drm_device *dev,
1741 struct intel_ring_buffer *ring)
673a394b
EA
1742{
1743 drm_i915_private_t *dev_priv = dev->dev_private;
1744 uint32_t seqno;
1745
8187a2b7 1746 if (!ring->status_page.page_addr
852835f3 1747 || list_empty(&ring->request_list))
6c0594a3
KW
1748 return;
1749
852835f3 1750 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1751
852835f3 1752 while (!list_empty(&ring->request_list)) {
673a394b
EA
1753 struct drm_i915_gem_request *request;
1754 uint32_t retiring_seqno;
1755
852835f3 1756 request = list_first_entry(&ring->request_list,
673a394b
EA
1757 struct drm_i915_gem_request,
1758 list);
1759 retiring_seqno = request->seqno;
1760
1761 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1762 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1763 i915_gem_retire_request(dev, request);
1764
1765 list_del(&request->list);
b962442e 1766 list_del(&request->client_list);
9a298b2a 1767 kfree(request);
673a394b
EA
1768 } else
1769 break;
1770 }
9d34e5db
CW
1771
1772 if (unlikely (dev_priv->trace_irq_seqno &&
1773 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1774
1775 ring->user_irq_put(dev, ring);
9d34e5db
CW
1776 dev_priv->trace_irq_seqno = 0;
1777 }
673a394b
EA
1778}
1779
b09a1fec
CW
1780void
1781i915_gem_retire_requests(struct drm_device *dev)
1782{
1783 drm_i915_private_t *dev_priv = dev->dev_private;
1784
be72615b
CW
1785 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1786 struct drm_i915_gem_object *obj_priv, *tmp;
1787
1788 /* We must be careful that during unbind() we do not
1789 * accidentally infinitely recurse into retire requests.
1790 * Currently:
1791 * retire -> free -> unbind -> wait -> retire_ring
1792 */
1793 list_for_each_entry_safe(obj_priv, tmp,
1794 &dev_priv->mm.deferred_free_list,
1795 list)
1796 i915_gem_free_object_tail(&obj_priv->base);
1797 }
1798
b09a1fec
CW
1799 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1800 if (HAS_BSD(dev))
1801 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1802}
1803
673a394b
EA
1804void
1805i915_gem_retire_work_handler(struct work_struct *work)
1806{
1807 drm_i915_private_t *dev_priv;
1808 struct drm_device *dev;
1809
1810 dev_priv = container_of(work, drm_i915_private_t,
1811 mm.retire_work.work);
1812 dev = dev_priv->dev;
1813
1814 mutex_lock(&dev->struct_mutex);
b09a1fec 1815 i915_gem_retire_requests(dev);
d1b851fc 1816
6dbe2772 1817 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1818 (!list_empty(&dev_priv->render_ring.request_list) ||
1819 (HAS_BSD(dev) &&
1820 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1821 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1822 mutex_unlock(&dev->struct_mutex);
1823}
1824
5a5a0c64 1825int
852835f3
ZN
1826i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1827 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1828{
1829 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1830 u32 ier;
673a394b
EA
1831 int ret = 0;
1832
1833 BUG_ON(seqno == 0);
1834
ba1234d1 1835 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1836 return -EIO;
1837
852835f3 1838 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1839 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1840 ier = I915_READ(DEIER) | I915_READ(GTIER);
1841 else
1842 ier = I915_READ(IER);
802c7eb6
JB
1843 if (!ier) {
1844 DRM_ERROR("something (likely vbetool) disabled "
1845 "interrupts, re-enabling\n");
1846 i915_driver_irq_preinstall(dev);
1847 i915_driver_irq_postinstall(dev);
1848 }
1849
1c5d22f7
CW
1850 trace_i915_gem_request_wait_begin(dev, seqno);
1851
852835f3 1852 ring->waiting_gem_seqno = seqno;
8187a2b7 1853 ring->user_irq_get(dev, ring);
48764bf4 1854 if (interruptible)
852835f3
ZN
1855 ret = wait_event_interruptible(ring->irq_queue,
1856 i915_seqno_passed(
1857 ring->get_gem_seqno(dev, ring), seqno)
1858 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1859 else
852835f3
ZN
1860 wait_event(ring->irq_queue,
1861 i915_seqno_passed(
1862 ring->get_gem_seqno(dev, ring), seqno)
1863 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1864
8187a2b7 1865 ring->user_irq_put(dev, ring);
852835f3 1866 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1867
1868 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1869 }
ba1234d1 1870 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1871 ret = -EIO;
1872
1873 if (ret && ret != -ERESTARTSYS)
1874 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1875 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1876
1877 /* Directly dispatch request retiring. While we have the work queue
1878 * to handle this, the waiter on a request often wants an associated
1879 * buffer to have made it to the inactive list, and we would need
1880 * a separate wait queue to handle that.
1881 */
1882 if (ret == 0)
b09a1fec 1883 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1884
1885 return ret;
1886}
1887
48764bf4
DV
1888/**
1889 * Waits for a sequence number to be signaled, and cleans up the
1890 * request and object lists appropriately for that event.
1891 */
1892static int
852835f3
ZN
1893i915_wait_request(struct drm_device *dev, uint32_t seqno,
1894 struct intel_ring_buffer *ring)
48764bf4 1895{
852835f3 1896 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1897}
1898
8187a2b7
ZN
1899static void
1900i915_gem_flush(struct drm_device *dev,
1901 uint32_t invalidate_domains,
1902 uint32_t flush_domains)
1903{
1904 drm_i915_private_t *dev_priv = dev->dev_private;
1905 if (flush_domains & I915_GEM_DOMAIN_CPU)
1906 drm_agp_chipset_flush(dev);
1907 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1908 invalidate_domains,
1909 flush_domains);
d1b851fc
ZN
1910
1911 if (HAS_BSD(dev))
1912 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1913 invalidate_domains,
1914 flush_domains);
8187a2b7
ZN
1915}
1916
673a394b
EA
1917/**
1918 * Ensures that all rendering to the object has completed and the object is
1919 * safe to unbind from the GTT or access from the CPU.
1920 */
1921static int
1922i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1923{
1924 struct drm_device *dev = obj->dev;
23010e43 1925 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1926 int ret;
1927
e47c68e9
EA
1928 /* This function only exists to support waiting for existing rendering,
1929 * not for emitting required flushes.
673a394b 1930 */
e47c68e9 1931 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1932
1933 /* If there is rendering queued on the buffer being evicted, wait for
1934 * it.
1935 */
1936 if (obj_priv->active) {
1937#if WATCH_BUF
1938 DRM_INFO("%s: object %p wait for seqno %08x\n",
1939 __func__, obj, obj_priv->last_rendering_seqno);
1940#endif
852835f3
ZN
1941 ret = i915_wait_request(dev,
1942 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1943 if (ret != 0)
1944 return ret;
1945 }
1946
1947 return 0;
1948}
1949
1950/**
1951 * Unbinds an object from the GTT aperture.
1952 */
0f973f27 1953int
673a394b
EA
1954i915_gem_object_unbind(struct drm_gem_object *obj)
1955{
1956 struct drm_device *dev = obj->dev;
4a87b8ca 1957 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1958 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1959 int ret = 0;
1960
1961#if WATCH_BUF
1962 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1963 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1964#endif
1965 if (obj_priv->gtt_space == NULL)
1966 return 0;
1967
1968 if (obj_priv->pin_count != 0) {
1969 DRM_ERROR("Attempting to unbind pinned buffer\n");
1970 return -EINVAL;
1971 }
1972
5323fd04
EA
1973 /* blow away mappings if mapped through GTT */
1974 i915_gem_release_mmap(obj);
1975
673a394b
EA
1976 /* Move the object to the CPU domain to ensure that
1977 * any possible CPU writes while it's not in the GTT
1978 * are flushed when we go to remap it. This will
1979 * also ensure that all pending GPU writes are finished
1980 * before we unbind.
1981 */
e47c68e9 1982 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1983 if (ret == -ERESTARTSYS)
673a394b 1984 return ret;
8dc1775d
CW
1985 /* Continue on if we fail due to EIO, the GPU is hung so we
1986 * should be safe and we need to cleanup or else we might
1987 * cause memory corruption through use-after-free.
1988 */
673a394b 1989
96b47b65
DV
1990 /* release the fence reg _after_ flushing */
1991 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1992 i915_gem_clear_fence_reg(obj);
1993
673a394b
EA
1994 if (obj_priv->agp_mem != NULL) {
1995 drm_unbind_agp(obj_priv->agp_mem);
1996 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1997 obj_priv->agp_mem = NULL;
1998 }
1999
856fa198 2000 i915_gem_object_put_pages(obj);
a32808c0 2001 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2002
2003 if (obj_priv->gtt_space) {
2004 atomic_dec(&dev->gtt_count);
2005 atomic_sub(obj->size, &dev->gtt_memory);
2006
2007 drm_mm_put_block(obj_priv->gtt_space);
2008 obj_priv->gtt_space = NULL;
2009 }
2010
2011 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2012 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2013 if (!list_empty(&obj_priv->list))
2014 list_del_init(&obj_priv->list);
4a87b8ca 2015 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2016
963b4836
CW
2017 if (i915_gem_object_is_purgeable(obj_priv))
2018 i915_gem_object_truncate(obj);
2019
1c5d22f7
CW
2020 trace_i915_gem_object_unbind(obj);
2021
8dc1775d 2022 return ret;
673a394b
EA
2023}
2024
b47eb4a2 2025int
4df2faf4
DV
2026i915_gpu_idle(struct drm_device *dev)
2027{
2028 drm_i915_private_t *dev_priv = dev->dev_private;
2029 bool lists_empty;
d1b851fc 2030 uint32_t seqno1, seqno2;
852835f3 2031 int ret;
4df2faf4
DV
2032
2033 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2034 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2035 list_empty(&dev_priv->render_ring.active_list) &&
2036 (!HAS_BSD(dev) ||
2037 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2038 spin_unlock(&dev_priv->mm.active_list_lock);
2039
2040 if (lists_empty)
2041 return 0;
2042
2043 /* Flush everything onto the inactive list. */
2044 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2045 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2046 &dev_priv->render_ring);
d1b851fc 2047 if (seqno1 == 0)
4df2faf4 2048 return -ENOMEM;
d1b851fc
ZN
2049 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2050
2051 if (HAS_BSD(dev)) {
2052 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2053 &dev_priv->bsd_ring);
2054 if (seqno2 == 0)
2055 return -ENOMEM;
2056
2057 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2058 if (ret)
2059 return ret;
2060 }
2061
4df2faf4 2062
852835f3 2063 return ret;
4df2faf4
DV
2064}
2065
6911a9b8 2066int
4bdadb97
CW
2067i915_gem_object_get_pages(struct drm_gem_object *obj,
2068 gfp_t gfpmask)
673a394b 2069{
23010e43 2070 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2071 int page_count, i;
2072 struct address_space *mapping;
2073 struct inode *inode;
2074 struct page *page;
673a394b 2075
778c3544
DV
2076 BUG_ON(obj_priv->pages_refcount
2077 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2078
856fa198 2079 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2080 return 0;
2081
2082 /* Get the list of pages out of our struct file. They'll be pinned
2083 * at this point until we release them.
2084 */
2085 page_count = obj->size / PAGE_SIZE;
856fa198 2086 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2087 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2088 if (obj_priv->pages == NULL) {
856fa198 2089 obj_priv->pages_refcount--;
673a394b
EA
2090 return -ENOMEM;
2091 }
2092
2093 inode = obj->filp->f_path.dentry->d_inode;
2094 mapping = inode->i_mapping;
2095 for (i = 0; i < page_count; i++) {
4bdadb97 2096 page = read_cache_page_gfp(mapping, i,
985b823b 2097 GFP_HIGHUSER |
4bdadb97 2098 __GFP_COLD |
cd9f040d 2099 __GFP_RECLAIMABLE |
4bdadb97 2100 gfpmask);
1f2b1013
CW
2101 if (IS_ERR(page))
2102 goto err_pages;
2103
856fa198 2104 obj_priv->pages[i] = page;
673a394b 2105 }
280b713b
EA
2106
2107 if (obj_priv->tiling_mode != I915_TILING_NONE)
2108 i915_gem_object_do_bit_17_swizzle(obj);
2109
673a394b 2110 return 0;
1f2b1013
CW
2111
2112err_pages:
2113 while (i--)
2114 page_cache_release(obj_priv->pages[i]);
2115
2116 drm_free_large(obj_priv->pages);
2117 obj_priv->pages = NULL;
2118 obj_priv->pages_refcount--;
2119 return PTR_ERR(page);
673a394b
EA
2120}
2121
4e901fdc
EA
2122static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2123{
2124 struct drm_gem_object *obj = reg->obj;
2125 struct drm_device *dev = obj->dev;
2126 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2127 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2128 int regnum = obj_priv->fence_reg;
2129 uint64_t val;
2130
2131 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2132 0xfffff000) << 32;
2133 val |= obj_priv->gtt_offset & 0xfffff000;
2134 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2135 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2136
2137 if (obj_priv->tiling_mode == I915_TILING_Y)
2138 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2139 val |= I965_FENCE_REG_VALID;
2140
2141 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2142}
2143
de151cf6
JB
2144static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2145{
2146 struct drm_gem_object *obj = reg->obj;
2147 struct drm_device *dev = obj->dev;
2148 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2149 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2150 int regnum = obj_priv->fence_reg;
2151 uint64_t val;
2152
2153 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2154 0xfffff000) << 32;
2155 val |= obj_priv->gtt_offset & 0xfffff000;
2156 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2157 if (obj_priv->tiling_mode == I915_TILING_Y)
2158 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2159 val |= I965_FENCE_REG_VALID;
2160
2161 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2162}
2163
2164static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2165{
2166 struct drm_gem_object *obj = reg->obj;
2167 struct drm_device *dev = obj->dev;
2168 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2169 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2170 int regnum = obj_priv->fence_reg;
0f973f27 2171 int tile_width;
dc529a4f 2172 uint32_t fence_reg, val;
de151cf6
JB
2173 uint32_t pitch_val;
2174
2175 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2176 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2177 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2178 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2179 return;
2180 }
2181
0f973f27
JB
2182 if (obj_priv->tiling_mode == I915_TILING_Y &&
2183 HAS_128_BYTE_Y_TILING(dev))
2184 tile_width = 128;
de151cf6 2185 else
0f973f27
JB
2186 tile_width = 512;
2187
2188 /* Note: pitch better be a power of two tile widths */
2189 pitch_val = obj_priv->stride / tile_width;
2190 pitch_val = ffs(pitch_val) - 1;
de151cf6 2191
c36a2a6d
DV
2192 if (obj_priv->tiling_mode == I915_TILING_Y &&
2193 HAS_128_BYTE_Y_TILING(dev))
2194 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2195 else
2196 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2197
de151cf6
JB
2198 val = obj_priv->gtt_offset;
2199 if (obj_priv->tiling_mode == I915_TILING_Y)
2200 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2201 val |= I915_FENCE_SIZE_BITS(obj->size);
2202 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2203 val |= I830_FENCE_REG_VALID;
2204
dc529a4f
EA
2205 if (regnum < 8)
2206 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2207 else
2208 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2209 I915_WRITE(fence_reg, val);
de151cf6
JB
2210}
2211
2212static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2213{
2214 struct drm_gem_object *obj = reg->obj;
2215 struct drm_device *dev = obj->dev;
2216 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2217 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2218 int regnum = obj_priv->fence_reg;
2219 uint32_t val;
2220 uint32_t pitch_val;
8d7773a3 2221 uint32_t fence_size_bits;
de151cf6 2222
8d7773a3 2223 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2224 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2225 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2226 __func__, obj_priv->gtt_offset);
de151cf6
JB
2227 return;
2228 }
2229
e76a16de
EA
2230 pitch_val = obj_priv->stride / 128;
2231 pitch_val = ffs(pitch_val) - 1;
2232 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2233
de151cf6
JB
2234 val = obj_priv->gtt_offset;
2235 if (obj_priv->tiling_mode == I915_TILING_Y)
2236 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2237 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2238 WARN_ON(fence_size_bits & ~0x00000f00);
2239 val |= fence_size_bits;
de151cf6
JB
2240 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2241 val |= I830_FENCE_REG_VALID;
2242
2243 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2244}
2245
ae3db24a
DV
2246static int i915_find_fence_reg(struct drm_device *dev)
2247{
2248 struct drm_i915_fence_reg *reg = NULL;
2249 struct drm_i915_gem_object *obj_priv = NULL;
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct drm_gem_object *obj = NULL;
2252 int i, avail, ret;
2253
2254 /* First try to find a free reg */
2255 avail = 0;
2256 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2257 reg = &dev_priv->fence_regs[i];
2258 if (!reg->obj)
2259 return i;
2260
23010e43 2261 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2262 if (!obj_priv->pin_count)
2263 avail++;
2264 }
2265
2266 if (avail == 0)
2267 return -ENOSPC;
2268
2269 /* None available, try to steal one or wait for a user to finish */
2270 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2271 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2272 lru_list) {
2273 obj = reg->obj;
2274 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2275
2276 if (obj_priv->pin_count)
2277 continue;
2278
2279 /* found one! */
2280 i = obj_priv->fence_reg;
2281 break;
2282 }
2283
2284 BUG_ON(i == I915_FENCE_REG_NONE);
2285
2286 /* We only have a reference on obj from the active list. put_fence_reg
2287 * might drop that one, causing a use-after-free in it. So hold a
2288 * private reference to obj like the other callers of put_fence_reg
2289 * (set_tiling ioctl) do. */
2290 drm_gem_object_reference(obj);
2291 ret = i915_gem_object_put_fence_reg(obj);
2292 drm_gem_object_unreference(obj);
2293 if (ret != 0)
2294 return ret;
2295
2296 return i;
2297}
2298
de151cf6
JB
2299/**
2300 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2301 * @obj: object to map through a fence reg
2302 *
2303 * When mapping objects through the GTT, userspace wants to be able to write
2304 * to them without having to worry about swizzling if the object is tiled.
2305 *
2306 * This function walks the fence regs looking for a free one for @obj,
2307 * stealing one if it can't find any.
2308 *
2309 * It then sets up the reg based on the object's properties: address, pitch
2310 * and tiling format.
2311 */
8c4b8c3f
CW
2312int
2313i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2314{
2315 struct drm_device *dev = obj->dev;
79e53945 2316 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2317 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2318 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2319 int ret;
de151cf6 2320
a09ba7fa
EA
2321 /* Just update our place in the LRU if our fence is getting used. */
2322 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2323 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2324 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2325 return 0;
2326 }
2327
de151cf6
JB
2328 switch (obj_priv->tiling_mode) {
2329 case I915_TILING_NONE:
2330 WARN(1, "allocating a fence for non-tiled object?\n");
2331 break;
2332 case I915_TILING_X:
0f973f27
JB
2333 if (!obj_priv->stride)
2334 return -EINVAL;
2335 WARN((obj_priv->stride & (512 - 1)),
2336 "object 0x%08x is X tiled but has non-512B pitch\n",
2337 obj_priv->gtt_offset);
de151cf6
JB
2338 break;
2339 case I915_TILING_Y:
0f973f27
JB
2340 if (!obj_priv->stride)
2341 return -EINVAL;
2342 WARN((obj_priv->stride & (128 - 1)),
2343 "object 0x%08x is Y tiled but has non-128B pitch\n",
2344 obj_priv->gtt_offset);
de151cf6
JB
2345 break;
2346 }
2347
ae3db24a
DV
2348 ret = i915_find_fence_reg(dev);
2349 if (ret < 0)
2350 return ret;
de151cf6 2351
ae3db24a
DV
2352 obj_priv->fence_reg = ret;
2353 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2354 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2355
de151cf6
JB
2356 reg->obj = obj;
2357
e259befd
CW
2358 switch (INTEL_INFO(dev)->gen) {
2359 case 6:
4e901fdc 2360 sandybridge_write_fence_reg(reg);
e259befd
CW
2361 break;
2362 case 5:
2363 case 4:
de151cf6 2364 i965_write_fence_reg(reg);
e259befd
CW
2365 break;
2366 case 3:
de151cf6 2367 i915_write_fence_reg(reg);
e259befd
CW
2368 break;
2369 case 2:
de151cf6 2370 i830_write_fence_reg(reg);
e259befd
CW
2371 break;
2372 }
d9ddcb96 2373
ae3db24a
DV
2374 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2375 obj_priv->tiling_mode);
1c5d22f7 2376
d9ddcb96 2377 return 0;
de151cf6
JB
2378}
2379
2380/**
2381 * i915_gem_clear_fence_reg - clear out fence register info
2382 * @obj: object to clear
2383 *
2384 * Zeroes out the fence register itself and clears out the associated
2385 * data structures in dev_priv and obj_priv.
2386 */
2387static void
2388i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2389{
2390 struct drm_device *dev = obj->dev;
79e53945 2391 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2392 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2393 struct drm_i915_fence_reg *reg =
2394 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2395 uint32_t fence_reg;
de151cf6 2396
e259befd
CW
2397 switch (INTEL_INFO(dev)->gen) {
2398 case 6:
4e901fdc
EA
2399 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2400 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2401 break;
2402 case 5:
2403 case 4:
de151cf6 2404 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2405 break;
2406 case 3:
9b74f734 2407 if (obj_priv->fence_reg >= 8)
e259befd 2408 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2409 else
e259befd
CW
2410 case 2:
2411 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2412
2413 I915_WRITE(fence_reg, 0);
e259befd 2414 break;
dc529a4f 2415 }
de151cf6 2416
007cc8ac 2417 reg->obj = NULL;
de151cf6 2418 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2419 list_del_init(&reg->lru_list);
de151cf6
JB
2420}
2421
52dc7d32
CW
2422/**
2423 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2424 * to the buffer to finish, and then resets the fence register.
2425 * @obj: tiled object holding a fence register.
2426 *
2427 * Zeroes out the fence register itself and clears out the associated
2428 * data structures in dev_priv and obj_priv.
2429 */
2430int
2431i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2432{
2433 struct drm_device *dev = obj->dev;
23010e43 2434 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2435
2436 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2437 return 0;
2438
10ae9bd2
DV
2439 /* If we've changed tiling, GTT-mappings of the object
2440 * need to re-fault to ensure that the correct fence register
2441 * setup is in place.
2442 */
2443 i915_gem_release_mmap(obj);
2444
52dc7d32
CW
2445 /* On the i915, GPU access to tiled buffers is via a fence,
2446 * therefore we must wait for any outstanding access to complete
2447 * before clearing the fence.
2448 */
2449 if (!IS_I965G(dev)) {
2450 int ret;
2451
2dafb1e0
CW
2452 ret = i915_gem_object_flush_gpu_write_domain(obj);
2453 if (ret != 0)
2454 return ret;
2455
52dc7d32
CW
2456 ret = i915_gem_object_wait_rendering(obj);
2457 if (ret != 0)
2458 return ret;
2459 }
2460
4a726612 2461 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2462 i915_gem_clear_fence_reg (obj);
2463
2464 return 0;
2465}
2466
673a394b
EA
2467/**
2468 * Finds free space in the GTT aperture and binds the object there.
2469 */
2470static int
2471i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2472{
2473 struct drm_device *dev = obj->dev;
2474 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2475 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2476 struct drm_mm_node *free_space;
4bdadb97 2477 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2478 int ret;
673a394b 2479
bb6baf76 2480 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2481 DRM_ERROR("Attempting to bind a purgeable object\n");
2482 return -EINVAL;
2483 }
2484
673a394b 2485 if (alignment == 0)
0f973f27 2486 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2487 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2488 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2489 return -EINVAL;
2490 }
2491
654fc607
CW
2492 /* If the object is bigger than the entire aperture, reject it early
2493 * before evicting everything in a vain attempt to find space.
2494 */
2495 if (obj->size > dev->gtt_total) {
2496 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2497 return -E2BIG;
2498 }
2499
673a394b
EA
2500 search_free:
2501 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2502 obj->size, alignment, 0);
2503 if (free_space != NULL) {
2504 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2505 alignment);
db3307a9 2506 if (obj_priv->gtt_space != NULL)
673a394b 2507 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2508 }
2509 if (obj_priv->gtt_space == NULL) {
2510 /* If the gtt is empty and we're still having trouble
2511 * fitting our object in, we're out of memory.
2512 */
2513#if WATCH_LRU
2514 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2515#endif
0108a3ed 2516 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2517 if (ret)
673a394b 2518 return ret;
9731129c 2519
673a394b
EA
2520 goto search_free;
2521 }
2522
2523#if WATCH_BUF
cfd43c02 2524 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2525 obj->size, obj_priv->gtt_offset);
2526#endif
4bdadb97 2527 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2528 if (ret) {
2529 drm_mm_put_block(obj_priv->gtt_space);
2530 obj_priv->gtt_space = NULL;
07f73f69
CW
2531
2532 if (ret == -ENOMEM) {
2533 /* first try to clear up some space from the GTT */
0108a3ed
DV
2534 ret = i915_gem_evict_something(dev, obj->size,
2535 alignment);
07f73f69 2536 if (ret) {
07f73f69 2537 /* now try to shrink everyone else */
4bdadb97
CW
2538 if (gfpmask) {
2539 gfpmask = 0;
2540 goto search_free;
07f73f69
CW
2541 }
2542
2543 return ret;
2544 }
2545
2546 goto search_free;
2547 }
2548
673a394b
EA
2549 return ret;
2550 }
2551
673a394b
EA
2552 /* Create an AGP memory structure pointing at our pages, and bind it
2553 * into the GTT.
2554 */
2555 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2556 obj_priv->pages,
07f73f69 2557 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2558 obj_priv->gtt_offset,
2559 obj_priv->agp_type);
673a394b 2560 if (obj_priv->agp_mem == NULL) {
856fa198 2561 i915_gem_object_put_pages(obj);
673a394b
EA
2562 drm_mm_put_block(obj_priv->gtt_space);
2563 obj_priv->gtt_space = NULL;
07f73f69 2564
0108a3ed 2565 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2566 if (ret)
07f73f69 2567 return ret;
07f73f69
CW
2568
2569 goto search_free;
673a394b
EA
2570 }
2571 atomic_inc(&dev->gtt_count);
2572 atomic_add(obj->size, &dev->gtt_memory);
2573
bf1a1092
CW
2574 /* keep track of bounds object by adding it to the inactive list */
2575 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2576
673a394b
EA
2577 /* Assert that the object is not currently in any GPU domain. As it
2578 * wasn't in the GTT, there shouldn't be any way it could have been in
2579 * a GPU cache
2580 */
21d509e3
CW
2581 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2582 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2583
1c5d22f7
CW
2584 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2585
673a394b
EA
2586 return 0;
2587}
2588
2589void
2590i915_gem_clflush_object(struct drm_gem_object *obj)
2591{
23010e43 2592 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2593
2594 /* If we don't have a page list set up, then we're not pinned
2595 * to GPU, and we can ignore the cache flush because it'll happen
2596 * again at bind time.
2597 */
856fa198 2598 if (obj_priv->pages == NULL)
673a394b
EA
2599 return;
2600
1c5d22f7 2601 trace_i915_gem_object_clflush(obj);
cfa16a0d 2602
856fa198 2603 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2604}
2605
e47c68e9 2606/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2607static int
e47c68e9
EA
2608i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2609{
2610 struct drm_device *dev = obj->dev;
1c5d22f7 2611 uint32_t old_write_domain;
852835f3 2612 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2613
2614 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2615 return 0;
e47c68e9
EA
2616
2617 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2618 old_write_domain = obj->write_domain;
e47c68e9 2619 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2620 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2621 return -ENOMEM;
1c5d22f7
CW
2622
2623 trace_i915_gem_object_change_domain(obj,
2624 obj->read_domains,
2625 old_write_domain);
2dafb1e0 2626 return 0;
e47c68e9
EA
2627}
2628
2629/** Flushes the GTT write domain for the object if it's dirty. */
2630static void
2631i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2632{
1c5d22f7
CW
2633 uint32_t old_write_domain;
2634
e47c68e9
EA
2635 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2636 return;
2637
2638 /* No actual flushing is required for the GTT write domain. Writes
2639 * to it immediately go to main memory as far as we know, so there's
2640 * no chipset flush. It also doesn't land in render cache.
2641 */
1c5d22f7 2642 old_write_domain = obj->write_domain;
e47c68e9 2643 obj->write_domain = 0;
1c5d22f7
CW
2644
2645 trace_i915_gem_object_change_domain(obj,
2646 obj->read_domains,
2647 old_write_domain);
e47c68e9
EA
2648}
2649
2650/** Flushes the CPU write domain for the object if it's dirty. */
2651static void
2652i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2653{
2654 struct drm_device *dev = obj->dev;
1c5d22f7 2655 uint32_t old_write_domain;
e47c68e9
EA
2656
2657 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2658 return;
2659
2660 i915_gem_clflush_object(obj);
2661 drm_agp_chipset_flush(dev);
1c5d22f7 2662 old_write_domain = obj->write_domain;
e47c68e9 2663 obj->write_domain = 0;
1c5d22f7
CW
2664
2665 trace_i915_gem_object_change_domain(obj,
2666 obj->read_domains,
2667 old_write_domain);
e47c68e9
EA
2668}
2669
2dafb1e0 2670int
6b95a207
KH
2671i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2672{
2dafb1e0
CW
2673 int ret = 0;
2674
6b95a207
KH
2675 switch (obj->write_domain) {
2676 case I915_GEM_DOMAIN_GTT:
2677 i915_gem_object_flush_gtt_write_domain(obj);
2678 break;
2679 case I915_GEM_DOMAIN_CPU:
2680 i915_gem_object_flush_cpu_write_domain(obj);
2681 break;
2682 default:
2dafb1e0 2683 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2684 break;
2685 }
2dafb1e0
CW
2686
2687 return ret;
6b95a207
KH
2688}
2689
2ef7eeaa
EA
2690/**
2691 * Moves a single object to the GTT read, and possibly write domain.
2692 *
2693 * This function returns when the move is complete, including waiting on
2694 * flushes to occur.
2695 */
79e53945 2696int
2ef7eeaa
EA
2697i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2698{
23010e43 2699 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2700 uint32_t old_write_domain, old_read_domains;
e47c68e9 2701 int ret;
2ef7eeaa 2702
02354392
EA
2703 /* Not valid to be called on unbound objects. */
2704 if (obj_priv->gtt_space == NULL)
2705 return -EINVAL;
2706
2dafb1e0
CW
2707 ret = i915_gem_object_flush_gpu_write_domain(obj);
2708 if (ret != 0)
2709 return ret;
2710
e47c68e9
EA
2711 /* Wait on any GPU rendering and flushing to occur. */
2712 ret = i915_gem_object_wait_rendering(obj);
2713 if (ret != 0)
2714 return ret;
2715
1c5d22f7
CW
2716 old_write_domain = obj->write_domain;
2717 old_read_domains = obj->read_domains;
2718
e47c68e9
EA
2719 /* If we're writing through the GTT domain, then CPU and GPU caches
2720 * will need to be invalidated at next use.
2ef7eeaa 2721 */
e47c68e9
EA
2722 if (write)
2723 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2724
e47c68e9 2725 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2726
e47c68e9
EA
2727 /* It should now be out of any other write domains, and we can update
2728 * the domain values for our changes.
2729 */
2730 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2731 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2732 if (write) {
2733 obj->write_domain = I915_GEM_DOMAIN_GTT;
2734 obj_priv->dirty = 1;
2ef7eeaa
EA
2735 }
2736
1c5d22f7
CW
2737 trace_i915_gem_object_change_domain(obj,
2738 old_read_domains,
2739 old_write_domain);
2740
e47c68e9
EA
2741 return 0;
2742}
2743
b9241ea3
ZW
2744/*
2745 * Prepare buffer for display plane. Use uninterruptible for possible flush
2746 * wait, as in modesetting process we're not supposed to be interrupted.
2747 */
2748int
2749i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2750{
2751 struct drm_device *dev = obj->dev;
23010e43 2752 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2753 uint32_t old_write_domain, old_read_domains;
2754 int ret;
2755
2756 /* Not valid to be called on unbound objects. */
2757 if (obj_priv->gtt_space == NULL)
2758 return -EINVAL;
2759
2dafb1e0
CW
2760 ret = i915_gem_object_flush_gpu_write_domain(obj);
2761 if (ret)
2762 return ret;
b9241ea3
ZW
2763
2764 /* Wait on any GPU rendering and flushing to occur. */
2765 if (obj_priv->active) {
2766#if WATCH_BUF
2767 DRM_INFO("%s: object %p wait for seqno %08x\n",
2768 __func__, obj, obj_priv->last_rendering_seqno);
2769#endif
852835f3
ZN
2770 ret = i915_do_wait_request(dev,
2771 obj_priv->last_rendering_seqno,
2772 0,
2773 obj_priv->ring);
b9241ea3
ZW
2774 if (ret != 0)
2775 return ret;
2776 }
2777
b118c1e3
CW
2778 i915_gem_object_flush_cpu_write_domain(obj);
2779
b9241ea3
ZW
2780 old_write_domain = obj->write_domain;
2781 old_read_domains = obj->read_domains;
2782
b9241ea3
ZW
2783 /* It should now be out of any other write domains, and we can update
2784 * the domain values for our changes.
2785 */
2786 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2787 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2788 obj->write_domain = I915_GEM_DOMAIN_GTT;
2789 obj_priv->dirty = 1;
2790
2791 trace_i915_gem_object_change_domain(obj,
2792 old_read_domains,
2793 old_write_domain);
2794
2795 return 0;
2796}
2797
e47c68e9
EA
2798/**
2799 * Moves a single object to the CPU read, and possibly write domain.
2800 *
2801 * This function returns when the move is complete, including waiting on
2802 * flushes to occur.
2803 */
2804static int
2805i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2806{
1c5d22f7 2807 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2808 int ret;
2809
2dafb1e0
CW
2810 ret = i915_gem_object_flush_gpu_write_domain(obj);
2811 if (ret)
2812 return ret;
2813
2ef7eeaa 2814 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2815 ret = i915_gem_object_wait_rendering(obj);
2816 if (ret != 0)
2817 return ret;
2ef7eeaa 2818
e47c68e9 2819 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2820
e47c68e9
EA
2821 /* If we have a partially-valid cache of the object in the CPU,
2822 * finish invalidating it and free the per-page flags.
2ef7eeaa 2823 */
e47c68e9 2824 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2825
1c5d22f7
CW
2826 old_write_domain = obj->write_domain;
2827 old_read_domains = obj->read_domains;
2828
e47c68e9
EA
2829 /* Flush the CPU cache if it's still invalid. */
2830 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2831 i915_gem_clflush_object(obj);
2ef7eeaa 2832
e47c68e9 2833 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2834 }
2835
2836 /* It should now be out of any other write domains, and we can update
2837 * the domain values for our changes.
2838 */
e47c68e9
EA
2839 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2840
2841 /* If we're writing through the CPU, then the GPU read domains will
2842 * need to be invalidated at next use.
2843 */
2844 if (write) {
2845 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2846 obj->write_domain = I915_GEM_DOMAIN_CPU;
2847 }
2ef7eeaa 2848
1c5d22f7
CW
2849 trace_i915_gem_object_change_domain(obj,
2850 old_read_domains,
2851 old_write_domain);
2852
2ef7eeaa
EA
2853 return 0;
2854}
2855
673a394b
EA
2856/*
2857 * Set the next domain for the specified object. This
2858 * may not actually perform the necessary flushing/invaliding though,
2859 * as that may want to be batched with other set_domain operations
2860 *
2861 * This is (we hope) the only really tricky part of gem. The goal
2862 * is fairly simple -- track which caches hold bits of the object
2863 * and make sure they remain coherent. A few concrete examples may
2864 * help to explain how it works. For shorthand, we use the notation
2865 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2866 * a pair of read and write domain masks.
2867 *
2868 * Case 1: the batch buffer
2869 *
2870 * 1. Allocated
2871 * 2. Written by CPU
2872 * 3. Mapped to GTT
2873 * 4. Read by GPU
2874 * 5. Unmapped from GTT
2875 * 6. Freed
2876 *
2877 * Let's take these a step at a time
2878 *
2879 * 1. Allocated
2880 * Pages allocated from the kernel may still have
2881 * cache contents, so we set them to (CPU, CPU) always.
2882 * 2. Written by CPU (using pwrite)
2883 * The pwrite function calls set_domain (CPU, CPU) and
2884 * this function does nothing (as nothing changes)
2885 * 3. Mapped by GTT
2886 * This function asserts that the object is not
2887 * currently in any GPU-based read or write domains
2888 * 4. Read by GPU
2889 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2890 * As write_domain is zero, this function adds in the
2891 * current read domains (CPU+COMMAND, 0).
2892 * flush_domains is set to CPU.
2893 * invalidate_domains is set to COMMAND
2894 * clflush is run to get data out of the CPU caches
2895 * then i915_dev_set_domain calls i915_gem_flush to
2896 * emit an MI_FLUSH and drm_agp_chipset_flush
2897 * 5. Unmapped from GTT
2898 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2899 * flush_domains and invalidate_domains end up both zero
2900 * so no flushing/invalidating happens
2901 * 6. Freed
2902 * yay, done
2903 *
2904 * Case 2: The shared render buffer
2905 *
2906 * 1. Allocated
2907 * 2. Mapped to GTT
2908 * 3. Read/written by GPU
2909 * 4. set_domain to (CPU,CPU)
2910 * 5. Read/written by CPU
2911 * 6. Read/written by GPU
2912 *
2913 * 1. Allocated
2914 * Same as last example, (CPU, CPU)
2915 * 2. Mapped to GTT
2916 * Nothing changes (assertions find that it is not in the GPU)
2917 * 3. Read/written by GPU
2918 * execbuffer calls set_domain (RENDER, RENDER)
2919 * flush_domains gets CPU
2920 * invalidate_domains gets GPU
2921 * clflush (obj)
2922 * MI_FLUSH and drm_agp_chipset_flush
2923 * 4. set_domain (CPU, CPU)
2924 * flush_domains gets GPU
2925 * invalidate_domains gets CPU
2926 * wait_rendering (obj) to make sure all drawing is complete.
2927 * This will include an MI_FLUSH to get the data from GPU
2928 * to memory
2929 * clflush (obj) to invalidate the CPU cache
2930 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2931 * 5. Read/written by CPU
2932 * cache lines are loaded and dirtied
2933 * 6. Read written by GPU
2934 * Same as last GPU access
2935 *
2936 * Case 3: The constant buffer
2937 *
2938 * 1. Allocated
2939 * 2. Written by CPU
2940 * 3. Read by GPU
2941 * 4. Updated (written) by CPU again
2942 * 5. Read by GPU
2943 *
2944 * 1. Allocated
2945 * (CPU, CPU)
2946 * 2. Written by CPU
2947 * (CPU, CPU)
2948 * 3. Read by GPU
2949 * (CPU+RENDER, 0)
2950 * flush_domains = CPU
2951 * invalidate_domains = RENDER
2952 * clflush (obj)
2953 * MI_FLUSH
2954 * drm_agp_chipset_flush
2955 * 4. Updated (written) by CPU again
2956 * (CPU, CPU)
2957 * flush_domains = 0 (no previous write domain)
2958 * invalidate_domains = 0 (no new read domains)
2959 * 5. Read by GPU
2960 * (CPU+RENDER, 0)
2961 * flush_domains = CPU
2962 * invalidate_domains = RENDER
2963 * clflush (obj)
2964 * MI_FLUSH
2965 * drm_agp_chipset_flush
2966 */
c0d90829 2967static void
8b0e378a 2968i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2969{
2970 struct drm_device *dev = obj->dev;
88f356b7 2971 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2972 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2973 uint32_t invalidate_domains = 0;
2974 uint32_t flush_domains = 0;
1c5d22f7 2975 uint32_t old_read_domains;
e47c68e9 2976
8b0e378a
EA
2977 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2978 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2979
652c393a
JB
2980 intel_mark_busy(dev, obj);
2981
673a394b
EA
2982#if WATCH_BUF
2983 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2984 __func__, obj,
8b0e378a
EA
2985 obj->read_domains, obj->pending_read_domains,
2986 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2987#endif
2988 /*
2989 * If the object isn't moving to a new write domain,
2990 * let the object stay in multiple read domains
2991 */
8b0e378a
EA
2992 if (obj->pending_write_domain == 0)
2993 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2994 else
2995 obj_priv->dirty = 1;
2996
2997 /*
2998 * Flush the current write domain if
2999 * the new read domains don't match. Invalidate
3000 * any read domains which differ from the old
3001 * write domain
3002 */
8b0e378a
EA
3003 if (obj->write_domain &&
3004 obj->write_domain != obj->pending_read_domains) {
673a394b 3005 flush_domains |= obj->write_domain;
8b0e378a
EA
3006 invalidate_domains |=
3007 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3008 }
3009 /*
3010 * Invalidate any read caches which may have
3011 * stale data. That is, any new read domains.
3012 */
8b0e378a 3013 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3014 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3015#if WATCH_BUF
3016 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3017 __func__, flush_domains, invalidate_domains);
3018#endif
673a394b
EA
3019 i915_gem_clflush_object(obj);
3020 }
3021
1c5d22f7
CW
3022 old_read_domains = obj->read_domains;
3023
efbeed96
EA
3024 /* The actual obj->write_domain will be updated with
3025 * pending_write_domain after we emit the accumulated flush for all
3026 * of our domain changes in execbuffers (which clears objects'
3027 * write_domains). So if we have a current write domain that we
3028 * aren't changing, set pending_write_domain to that.
3029 */
3030 if (flush_domains == 0 && obj->pending_write_domain == 0)
3031 obj->pending_write_domain = obj->write_domain;
8b0e378a 3032 obj->read_domains = obj->pending_read_domains;
673a394b 3033
88f356b7
CW
3034 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3035 if (obj_priv->ring == &dev_priv->render_ring)
3036 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3037 else if (obj_priv->ring == &dev_priv->bsd_ring)
3038 dev_priv->flush_rings |= FLUSH_BSD_RING;
3039 }
3040
673a394b
EA
3041 dev->invalidate_domains |= invalidate_domains;
3042 dev->flush_domains |= flush_domains;
3043#if WATCH_BUF
3044 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3045 __func__,
3046 obj->read_domains, obj->write_domain,
3047 dev->invalidate_domains, dev->flush_domains);
3048#endif
1c5d22f7
CW
3049
3050 trace_i915_gem_object_change_domain(obj,
3051 old_read_domains,
3052 obj->write_domain);
673a394b
EA
3053}
3054
3055/**
e47c68e9 3056 * Moves the object from a partially CPU read to a full one.
673a394b 3057 *
e47c68e9
EA
3058 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3059 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3060 */
e47c68e9
EA
3061static void
3062i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3063{
23010e43 3064 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3065
e47c68e9
EA
3066 if (!obj_priv->page_cpu_valid)
3067 return;
3068
3069 /* If we're partially in the CPU read domain, finish moving it in.
3070 */
3071 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3072 int i;
3073
3074 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3075 if (obj_priv->page_cpu_valid[i])
3076 continue;
856fa198 3077 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3078 }
e47c68e9
EA
3079 }
3080
3081 /* Free the page_cpu_valid mappings which are now stale, whether
3082 * or not we've got I915_GEM_DOMAIN_CPU.
3083 */
9a298b2a 3084 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3085 obj_priv->page_cpu_valid = NULL;
3086}
3087
3088/**
3089 * Set the CPU read domain on a range of the object.
3090 *
3091 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3092 * not entirely valid. The page_cpu_valid member of the object flags which
3093 * pages have been flushed, and will be respected by
3094 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3095 * of the whole object.
3096 *
3097 * This function returns when the move is complete, including waiting on
3098 * flushes to occur.
3099 */
3100static int
3101i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3102 uint64_t offset, uint64_t size)
3103{
23010e43 3104 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3105 uint32_t old_read_domains;
e47c68e9 3106 int i, ret;
673a394b 3107
e47c68e9
EA
3108 if (offset == 0 && size == obj->size)
3109 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3110
2dafb1e0
CW
3111 ret = i915_gem_object_flush_gpu_write_domain(obj);
3112 if (ret)
3113 return ret;
3114
e47c68e9 3115 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3116 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3117 if (ret != 0)
6a47baa6 3118 return ret;
e47c68e9
EA
3119 i915_gem_object_flush_gtt_write_domain(obj);
3120
3121 /* If we're already fully in the CPU read domain, we're done. */
3122 if (obj_priv->page_cpu_valid == NULL &&
3123 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3124 return 0;
673a394b 3125
e47c68e9
EA
3126 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3127 * newly adding I915_GEM_DOMAIN_CPU
3128 */
673a394b 3129 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3130 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3131 GFP_KERNEL);
e47c68e9
EA
3132 if (obj_priv->page_cpu_valid == NULL)
3133 return -ENOMEM;
3134 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3135 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3136
3137 /* Flush the cache on any pages that are still invalid from the CPU's
3138 * perspective.
3139 */
e47c68e9
EA
3140 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3141 i++) {
673a394b
EA
3142 if (obj_priv->page_cpu_valid[i])
3143 continue;
3144
856fa198 3145 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3146
3147 obj_priv->page_cpu_valid[i] = 1;
3148 }
3149
e47c68e9
EA
3150 /* It should now be out of any other write domains, and we can update
3151 * the domain values for our changes.
3152 */
3153 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3154
1c5d22f7 3155 old_read_domains = obj->read_domains;
e47c68e9
EA
3156 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3157
1c5d22f7
CW
3158 trace_i915_gem_object_change_domain(obj,
3159 old_read_domains,
3160 obj->write_domain);
3161
673a394b
EA
3162 return 0;
3163}
3164
673a394b
EA
3165/**
3166 * Pin an object to the GTT and evaluate the relocations landing in it.
3167 */
3168static int
3169i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3170 struct drm_file *file_priv,
76446cac 3171 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3172 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3173{
3174 struct drm_device *dev = obj->dev;
0839ccb8 3175 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3177 int i, ret;
0839ccb8 3178 void __iomem *reloc_page;
76446cac
JB
3179 bool need_fence;
3180
3181 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3182 obj_priv->tiling_mode != I915_TILING_NONE;
3183
3184 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3185 if (need_fence &&
3186 !i915_gem_object_fence_offset_ok(obj,
3187 obj_priv->tiling_mode)) {
3188 ret = i915_gem_object_unbind(obj);
3189 if (ret)
3190 return ret;
3191 }
673a394b
EA
3192
3193 /* Choose the GTT offset for our buffer and put it there. */
3194 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3195 if (ret)
3196 return ret;
3197
76446cac
JB
3198 /*
3199 * Pre-965 chips need a fence register set up in order to
3200 * properly handle blits to/from tiled surfaces.
3201 */
3202 if (need_fence) {
3203 ret = i915_gem_object_get_fence_reg(obj);
3204 if (ret != 0) {
76446cac
JB
3205 i915_gem_object_unpin(obj);
3206 return ret;
3207 }
3208 }
3209
673a394b
EA
3210 entry->offset = obj_priv->gtt_offset;
3211
673a394b
EA
3212 /* Apply the relocations, using the GTT aperture to avoid cache
3213 * flushing requirements.
3214 */
3215 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3216 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3217 struct drm_gem_object *target_obj;
3218 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3219 uint32_t reloc_val, reloc_offset;
3220 uint32_t __iomem *reloc_entry;
673a394b 3221
673a394b 3222 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3223 reloc->target_handle);
673a394b
EA
3224 if (target_obj == NULL) {
3225 i915_gem_object_unpin(obj);
bf79cb91 3226 return -ENOENT;
673a394b 3227 }
23010e43 3228 target_obj_priv = to_intel_bo(target_obj);
673a394b 3229
8542a0bb
CW
3230#if WATCH_RELOC
3231 DRM_INFO("%s: obj %p offset %08x target %d "
3232 "read %08x write %08x gtt %08x "
3233 "presumed %08x delta %08x\n",
3234 __func__,
3235 obj,
3236 (int) reloc->offset,
3237 (int) reloc->target_handle,
3238 (int) reloc->read_domains,
3239 (int) reloc->write_domain,
3240 (int) target_obj_priv->gtt_offset,
3241 (int) reloc->presumed_offset,
3242 reloc->delta);
3243#endif
3244
673a394b
EA
3245 /* The target buffer should have appeared before us in the
3246 * exec_object list, so it should have a GTT space bound by now.
3247 */
3248 if (target_obj_priv->gtt_space == NULL) {
3249 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3250 reloc->target_handle);
673a394b
EA
3251 drm_gem_object_unreference(target_obj);
3252 i915_gem_object_unpin(obj);
3253 return -EINVAL;
3254 }
3255
8542a0bb 3256 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3257 if (reloc->write_domain & (reloc->write_domain - 1)) {
3258 DRM_ERROR("reloc with multiple write domains: "
3259 "obj %p target %d offset %d "
3260 "read %08x write %08x",
3261 obj, reloc->target_handle,
3262 (int) reloc->offset,
3263 reloc->read_domains,
3264 reloc->write_domain);
929f49bf
JL
3265 drm_gem_object_unreference(target_obj);
3266 i915_gem_object_unpin(obj);
16edd550
DV
3267 return -EINVAL;
3268 }
40a5f0de
EA
3269 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3270 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3271 DRM_ERROR("reloc with read/write CPU domains: "
3272 "obj %p target %d offset %d "
3273 "read %08x write %08x",
40a5f0de
EA
3274 obj, reloc->target_handle,
3275 (int) reloc->offset,
3276 reloc->read_domains,
3277 reloc->write_domain);
491152b8
CW
3278 drm_gem_object_unreference(target_obj);
3279 i915_gem_object_unpin(obj);
e47c68e9
EA
3280 return -EINVAL;
3281 }
40a5f0de
EA
3282 if (reloc->write_domain && target_obj->pending_write_domain &&
3283 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3284 DRM_ERROR("Write domain conflict: "
3285 "obj %p target %d offset %d "
3286 "new %08x old %08x\n",
40a5f0de
EA
3287 obj, reloc->target_handle,
3288 (int) reloc->offset,
3289 reloc->write_domain,
673a394b
EA
3290 target_obj->pending_write_domain);
3291 drm_gem_object_unreference(target_obj);
3292 i915_gem_object_unpin(obj);
3293 return -EINVAL;
3294 }
3295
40a5f0de
EA
3296 target_obj->pending_read_domains |= reloc->read_domains;
3297 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3298
3299 /* If the relocation already has the right value in it, no
3300 * more work needs to be done.
3301 */
40a5f0de 3302 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3303 drm_gem_object_unreference(target_obj);
3304 continue;
3305 }
3306
8542a0bb
CW
3307 /* Check that the relocation address is valid... */
3308 if (reloc->offset > obj->size - 4) {
3309 DRM_ERROR("Relocation beyond object bounds: "
3310 "obj %p target %d offset %d size %d.\n",
3311 obj, reloc->target_handle,
3312 (int) reloc->offset, (int) obj->size);
3313 drm_gem_object_unreference(target_obj);
3314 i915_gem_object_unpin(obj);
3315 return -EINVAL;
3316 }
3317 if (reloc->offset & 3) {
3318 DRM_ERROR("Relocation not 4-byte aligned: "
3319 "obj %p target %d offset %d.\n",
3320 obj, reloc->target_handle,
3321 (int) reloc->offset);
3322 drm_gem_object_unreference(target_obj);
3323 i915_gem_object_unpin(obj);
3324 return -EINVAL;
3325 }
3326
3327 /* and points to somewhere within the target object. */
3328 if (reloc->delta >= target_obj->size) {
3329 DRM_ERROR("Relocation beyond target object bounds: "
3330 "obj %p target %d delta %d size %d.\n",
3331 obj, reloc->target_handle,
3332 (int) reloc->delta, (int) target_obj->size);
3333 drm_gem_object_unreference(target_obj);
3334 i915_gem_object_unpin(obj);
3335 return -EINVAL;
3336 }
3337
2ef7eeaa
EA
3338 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3339 if (ret != 0) {
3340 drm_gem_object_unreference(target_obj);
3341 i915_gem_object_unpin(obj);
3342 return -EINVAL;
673a394b
EA
3343 }
3344
3345 /* Map the page containing the relocation we're going to
3346 * perform.
3347 */
40a5f0de 3348 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3349 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3350 (reloc_offset &
fca3ec01
CW
3351 ~(PAGE_SIZE - 1)),
3352 KM_USER0);
3043c60c 3353 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3354 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3355 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3356
3357#if WATCH_BUF
3358 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3359 obj, (unsigned int) reloc->offset,
673a394b
EA
3360 readl(reloc_entry), reloc_val);
3361#endif
3362 writel(reloc_val, reloc_entry);
fca3ec01 3363 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3364
40a5f0de
EA
3365 /* The updated presumed offset for this entry will be
3366 * copied back out to the user.
673a394b 3367 */
40a5f0de 3368 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3369
3370 drm_gem_object_unreference(target_obj);
3371 }
3372
673a394b
EA
3373#if WATCH_BUF
3374 if (0)
3375 i915_gem_dump_object(obj, 128, __func__, ~0);
3376#endif
3377 return 0;
3378}
3379
673a394b
EA
3380/* Throttle our rendering by waiting until the ring has completed our requests
3381 * emitted over 20 msec ago.
3382 *
b962442e
EA
3383 * Note that if we were to use the current jiffies each time around the loop,
3384 * we wouldn't escape the function with any frames outstanding if the time to
3385 * render a frame was over 20ms.
3386 *
673a394b
EA
3387 * This should get us reasonable parallelism between CPU and GPU but also
3388 * relatively low latency when blocking on a particular request to finish.
3389 */
3390static int
3391i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3392{
3393 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3394 int ret = 0;
b962442e 3395 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3396
3397 mutex_lock(&dev->struct_mutex);
b962442e
EA
3398 while (!list_empty(&i915_file_priv->mm.request_list)) {
3399 struct drm_i915_gem_request *request;
3400
3401 request = list_first_entry(&i915_file_priv->mm.request_list,
3402 struct drm_i915_gem_request,
3403 client_list);
3404
3405 if (time_after_eq(request->emitted_jiffies, recent_enough))
3406 break;
3407
852835f3 3408 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3409 if (ret != 0)
3410 break;
3411 }
673a394b 3412 mutex_unlock(&dev->struct_mutex);
b962442e 3413
673a394b
EA
3414 return ret;
3415}
3416
40a5f0de 3417static int
76446cac 3418i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3419 uint32_t buffer_count,
3420 struct drm_i915_gem_relocation_entry **relocs)
3421{
3422 uint32_t reloc_count = 0, reloc_index = 0, i;
3423 int ret;
3424
3425 *relocs = NULL;
3426 for (i = 0; i < buffer_count; i++) {
3427 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3428 return -EINVAL;
3429 reloc_count += exec_list[i].relocation_count;
3430 }
3431
8e7d2b2c 3432 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3433 if (*relocs == NULL) {
3434 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3435 return -ENOMEM;
76446cac 3436 }
40a5f0de
EA
3437
3438 for (i = 0; i < buffer_count; i++) {
3439 struct drm_i915_gem_relocation_entry __user *user_relocs;
3440
3441 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3442
3443 ret = copy_from_user(&(*relocs)[reloc_index],
3444 user_relocs,
3445 exec_list[i].relocation_count *
3446 sizeof(**relocs));
3447 if (ret != 0) {
8e7d2b2c 3448 drm_free_large(*relocs);
40a5f0de 3449 *relocs = NULL;
2bc43b5c 3450 return -EFAULT;
40a5f0de
EA
3451 }
3452
3453 reloc_index += exec_list[i].relocation_count;
3454 }
3455
2bc43b5c 3456 return 0;
40a5f0de
EA
3457}
3458
3459static int
76446cac 3460i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3461 uint32_t buffer_count,
3462 struct drm_i915_gem_relocation_entry *relocs)
3463{
3464 uint32_t reloc_count = 0, i;
2bc43b5c 3465 int ret = 0;
40a5f0de 3466
93533c29
CW
3467 if (relocs == NULL)
3468 return 0;
3469
40a5f0de
EA
3470 for (i = 0; i < buffer_count; i++) {
3471 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3472 int unwritten;
40a5f0de
EA
3473
3474 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3475
2bc43b5c
FM
3476 unwritten = copy_to_user(user_relocs,
3477 &relocs[reloc_count],
3478 exec_list[i].relocation_count *
3479 sizeof(*relocs));
3480
3481 if (unwritten) {
3482 ret = -EFAULT;
3483 goto err;
40a5f0de
EA
3484 }
3485
3486 reloc_count += exec_list[i].relocation_count;
3487 }
3488
2bc43b5c 3489err:
8e7d2b2c 3490 drm_free_large(relocs);
40a5f0de
EA
3491
3492 return ret;
3493}
3494
83d60795 3495static int
76446cac 3496i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3497 uint64_t exec_offset)
3498{
3499 uint32_t exec_start, exec_len;
3500
3501 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3502 exec_len = (uint32_t) exec->batch_len;
3503
3504 if ((exec_start | exec_len) & 0x7)
3505 return -EINVAL;
3506
3507 if (!exec_start)
3508 return -EINVAL;
3509
3510 return 0;
3511}
3512
6b95a207
KH
3513static int
3514i915_gem_wait_for_pending_flip(struct drm_device *dev,
3515 struct drm_gem_object **object_list,
3516 int count)
3517{
3518 drm_i915_private_t *dev_priv = dev->dev_private;
3519 struct drm_i915_gem_object *obj_priv;
3520 DEFINE_WAIT(wait);
3521 int i, ret = 0;
3522
3523 for (;;) {
3524 prepare_to_wait(&dev_priv->pending_flip_queue,
3525 &wait, TASK_INTERRUPTIBLE);
3526 for (i = 0; i < count; i++) {
23010e43 3527 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3528 if (atomic_read(&obj_priv->pending_flip) > 0)
3529 break;
3530 }
3531 if (i == count)
3532 break;
3533
3534 if (!signal_pending(current)) {
3535 mutex_unlock(&dev->struct_mutex);
3536 schedule();
3537 mutex_lock(&dev->struct_mutex);
3538 continue;
3539 }
3540 ret = -ERESTARTSYS;
3541 break;
3542 }
3543 finish_wait(&dev_priv->pending_flip_queue, &wait);
3544
3545 return ret;
3546}
3547
43b27f40 3548
673a394b 3549int
76446cac
JB
3550i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3551 struct drm_file *file_priv,
3552 struct drm_i915_gem_execbuffer2 *args,
3553 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3554{
3555 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3556 struct drm_gem_object **object_list = NULL;
3557 struct drm_gem_object *batch_obj;
b70d11da 3558 struct drm_i915_gem_object *obj_priv;
201361a5 3559 struct drm_clip_rect *cliprects = NULL;
93533c29 3560 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3561 int ret = 0, ret2, i, pinned = 0;
673a394b 3562 uint64_t exec_offset;
40a5f0de 3563 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3564 int pin_tries, flips;
673a394b 3565
852835f3
ZN
3566 struct intel_ring_buffer *ring = NULL;
3567
673a394b
EA
3568#if WATCH_EXEC
3569 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3570 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3571#endif
d1b851fc
ZN
3572 if (args->flags & I915_EXEC_BSD) {
3573 if (!HAS_BSD(dev)) {
3574 DRM_ERROR("execbuf with wrong flag\n");
3575 return -EINVAL;
3576 }
3577 ring = &dev_priv->bsd_ring;
3578 } else {
3579 ring = &dev_priv->render_ring;
3580 }
3581
4f481ed2
EA
3582 if (args->buffer_count < 1) {
3583 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3584 return -EINVAL;
3585 }
c8e0f93a 3586 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3587 if (object_list == NULL) {
3588 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3589 args->buffer_count);
3590 ret = -ENOMEM;
3591 goto pre_mutex_err;
3592 }
673a394b 3593
201361a5 3594 if (args->num_cliprects != 0) {
9a298b2a
EA
3595 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3596 GFP_KERNEL);
a40e8d31
OA
3597 if (cliprects == NULL) {
3598 ret = -ENOMEM;
201361a5 3599 goto pre_mutex_err;
a40e8d31 3600 }
201361a5
EA
3601
3602 ret = copy_from_user(cliprects,
3603 (struct drm_clip_rect __user *)
3604 (uintptr_t) args->cliprects_ptr,
3605 sizeof(*cliprects) * args->num_cliprects);
3606 if (ret != 0) {
3607 DRM_ERROR("copy %d cliprects failed: %d\n",
3608 args->num_cliprects, ret);
c877cdce 3609 ret = -EFAULT;
201361a5
EA
3610 goto pre_mutex_err;
3611 }
3612 }
3613
40a5f0de
EA
3614 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3615 &relocs);
3616 if (ret != 0)
3617 goto pre_mutex_err;
3618
673a394b
EA
3619 mutex_lock(&dev->struct_mutex);
3620
3621 i915_verify_inactive(dev, __FILE__, __LINE__);
3622
ba1234d1 3623 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3624 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3625 ret = -EIO;
3626 goto pre_mutex_err;
673a394b
EA
3627 }
3628
3629 if (dev_priv->mm.suspended) {
673a394b 3630 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3631 ret = -EBUSY;
3632 goto pre_mutex_err;
673a394b
EA
3633 }
3634
ac94a962 3635 /* Look up object handles */
6b95a207 3636 flips = 0;
673a394b
EA
3637 for (i = 0; i < args->buffer_count; i++) {
3638 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3639 exec_list[i].handle);
3640 if (object_list[i] == NULL) {
3641 DRM_ERROR("Invalid object handle %d at index %d\n",
3642 exec_list[i].handle, i);
0ce907f8
CW
3643 /* prevent error path from reading uninitialized data */
3644 args->buffer_count = i + 1;
bf79cb91 3645 ret = -ENOENT;
673a394b
EA
3646 goto err;
3647 }
b70d11da 3648
23010e43 3649 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3650 if (obj_priv->in_execbuffer) {
3651 DRM_ERROR("Object %p appears more than once in object list\n",
3652 object_list[i]);
0ce907f8
CW
3653 /* prevent error path from reading uninitialized data */
3654 args->buffer_count = i + 1;
bf79cb91 3655 ret = -EINVAL;
b70d11da
KH
3656 goto err;
3657 }
3658 obj_priv->in_execbuffer = true;
6b95a207
KH
3659 flips += atomic_read(&obj_priv->pending_flip);
3660 }
3661
3662 if (flips > 0) {
3663 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3664 args->buffer_count);
3665 if (ret)
3666 goto err;
ac94a962 3667 }
673a394b 3668
ac94a962
KP
3669 /* Pin and relocate */
3670 for (pin_tries = 0; ; pin_tries++) {
3671 ret = 0;
40a5f0de
EA
3672 reloc_index = 0;
3673
ac94a962
KP
3674 for (i = 0; i < args->buffer_count; i++) {
3675 object_list[i]->pending_read_domains = 0;
3676 object_list[i]->pending_write_domain = 0;
3677 ret = i915_gem_object_pin_and_relocate(object_list[i],
3678 file_priv,
40a5f0de
EA
3679 &exec_list[i],
3680 &relocs[reloc_index]);
ac94a962
KP
3681 if (ret)
3682 break;
3683 pinned = i + 1;
40a5f0de 3684 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3685 }
3686 /* success */
3687 if (ret == 0)
3688 break;
3689
3690 /* error other than GTT full, or we've already tried again */
2939e1f5 3691 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3692 if (ret != -ERESTARTSYS) {
3693 unsigned long long total_size = 0;
3d1cc470
CW
3694 int num_fences = 0;
3695 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3696 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3697
07f73f69 3698 total_size += object_list[i]->size;
3d1cc470
CW
3699 num_fences +=
3700 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3701 obj_priv->tiling_mode != I915_TILING_NONE;
3702 }
3703 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3704 pinned+1, args->buffer_count,
3d1cc470
CW
3705 total_size, num_fences,
3706 ret);
07f73f69
CW
3707 DRM_ERROR("%d objects [%d pinned], "
3708 "%d object bytes [%d pinned], "
3709 "%d/%d gtt bytes\n",
3710 atomic_read(&dev->object_count),
3711 atomic_read(&dev->pin_count),
3712 atomic_read(&dev->object_memory),
3713 atomic_read(&dev->pin_memory),
3714 atomic_read(&dev->gtt_memory),
3715 dev->gtt_total);
3716 }
673a394b
EA
3717 goto err;
3718 }
ac94a962
KP
3719
3720 /* unpin all of our buffers */
3721 for (i = 0; i < pinned; i++)
3722 i915_gem_object_unpin(object_list[i]);
b1177636 3723 pinned = 0;
ac94a962
KP
3724
3725 /* evict everyone we can from the aperture */
3726 ret = i915_gem_evict_everything(dev);
07f73f69 3727 if (ret && ret != -ENOSPC)
ac94a962 3728 goto err;
673a394b
EA
3729 }
3730
3731 /* Set the pending read domains for the batch buffer to COMMAND */
3732 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3733 if (batch_obj->pending_write_domain) {
3734 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3735 ret = -EINVAL;
3736 goto err;
3737 }
3738 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3739
83d60795
CW
3740 /* Sanity check the batch buffer, prior to moving objects */
3741 exec_offset = exec_list[args->buffer_count - 1].offset;
3742 ret = i915_gem_check_execbuffer (args, exec_offset);
3743 if (ret != 0) {
3744 DRM_ERROR("execbuf with invalid offset/length\n");
3745 goto err;
3746 }
3747
673a394b
EA
3748 i915_verify_inactive(dev, __FILE__, __LINE__);
3749
646f0f6e
KP
3750 /* Zero the global flush/invalidate flags. These
3751 * will be modified as new domains are computed
3752 * for each object
3753 */
3754 dev->invalidate_domains = 0;
3755 dev->flush_domains = 0;
88f356b7 3756 dev_priv->flush_rings = 0;
646f0f6e 3757
673a394b
EA
3758 for (i = 0; i < args->buffer_count; i++) {
3759 struct drm_gem_object *obj = object_list[i];
673a394b 3760
646f0f6e 3761 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3762 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3763 }
3764
3765 i915_verify_inactive(dev, __FILE__, __LINE__);
3766
646f0f6e
KP
3767 if (dev->invalidate_domains | dev->flush_domains) {
3768#if WATCH_EXEC
3769 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3770 __func__,
3771 dev->invalidate_domains,
3772 dev->flush_domains);
3773#endif
3774 i915_gem_flush(dev,
3775 dev->invalidate_domains,
3776 dev->flush_domains);
88f356b7 3777 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3778 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3779 dev->flush_domains,
3780 &dev_priv->render_ring);
3781 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3782 (void)i915_add_request(dev, file_priv,
3783 dev->flush_domains,
3784 &dev_priv->bsd_ring);
646f0f6e 3785 }
673a394b 3786
efbeed96
EA
3787 for (i = 0; i < args->buffer_count; i++) {
3788 struct drm_gem_object *obj = object_list[i];
23010e43 3789 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3790 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3791
3792 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3793 if (obj->write_domain)
3794 list_move_tail(&obj_priv->gpu_write_list,
3795 &dev_priv->mm.gpu_write_list);
3796 else
3797 list_del_init(&obj_priv->gpu_write_list);
3798
1c5d22f7
CW
3799 trace_i915_gem_object_change_domain(obj,
3800 obj->read_domains,
3801 old_write_domain);
efbeed96
EA
3802 }
3803
673a394b
EA
3804 i915_verify_inactive(dev, __FILE__, __LINE__);
3805
3806#if WATCH_COHERENCY
3807 for (i = 0; i < args->buffer_count; i++) {
3808 i915_gem_object_check_coherency(object_list[i],
3809 exec_list[i].handle);
3810 }
3811#endif
3812
673a394b 3813#if WATCH_EXEC
6911a9b8 3814 i915_gem_dump_object(batch_obj,
673a394b
EA
3815 args->batch_len,
3816 __func__,
3817 ~0);
3818#endif
3819
673a394b 3820 /* Exec the batchbuffer */
852835f3
ZN
3821 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3822 cliprects, exec_offset);
673a394b
EA
3823 if (ret) {
3824 DRM_ERROR("dispatch failed %d\n", ret);
3825 goto err;
3826 }
3827
3828 /*
3829 * Ensure that the commands in the batch buffer are
3830 * finished before the interrupt fires
3831 */
852835f3 3832 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3833
3834 i915_verify_inactive(dev, __FILE__, __LINE__);
3835
3836 /*
3837 * Get a seqno representing the execution of the current buffer,
3838 * which we can wait on. We would like to mitigate these interrupts,
3839 * likely by only creating seqnos occasionally (so that we have
3840 * *some* interrupts representing completion of buffers that we can
3841 * wait on when trying to clear up gtt space).
3842 */
852835f3 3843 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3844 BUG_ON(seqno == 0);
673a394b
EA
3845 for (i = 0; i < args->buffer_count; i++) {
3846 struct drm_gem_object *obj = object_list[i];
852835f3 3847 obj_priv = to_intel_bo(obj);
673a394b 3848
852835f3 3849 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3850#if WATCH_LRU
3851 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3852#endif
3853 }
3854#if WATCH_LRU
3855 i915_dump_lru(dev, __func__);
3856#endif
3857
3858 i915_verify_inactive(dev, __FILE__, __LINE__);
3859
673a394b 3860err:
aad87dff
JL
3861 for (i = 0; i < pinned; i++)
3862 i915_gem_object_unpin(object_list[i]);
3863
b70d11da
KH
3864 for (i = 0; i < args->buffer_count; i++) {
3865 if (object_list[i]) {
23010e43 3866 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3867 obj_priv->in_execbuffer = false;
3868 }
aad87dff 3869 drm_gem_object_unreference(object_list[i]);
b70d11da 3870 }
673a394b 3871
673a394b
EA
3872 mutex_unlock(&dev->struct_mutex);
3873
93533c29 3874pre_mutex_err:
40a5f0de
EA
3875 /* Copy the updated relocations out regardless of current error
3876 * state. Failure to update the relocs would mean that the next
3877 * time userland calls execbuf, it would do so with presumed offset
3878 * state that didn't match the actual object state.
3879 */
3880 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3881 relocs);
3882 if (ret2 != 0) {
3883 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3884
3885 if (ret == 0)
3886 ret = ret2;
3887 }
3888
8e7d2b2c 3889 drm_free_large(object_list);
9a298b2a 3890 kfree(cliprects);
673a394b
EA
3891
3892 return ret;
3893}
3894
76446cac
JB
3895/*
3896 * Legacy execbuffer just creates an exec2 list from the original exec object
3897 * list array and passes it to the real function.
3898 */
3899int
3900i915_gem_execbuffer(struct drm_device *dev, void *data,
3901 struct drm_file *file_priv)
3902{
3903 struct drm_i915_gem_execbuffer *args = data;
3904 struct drm_i915_gem_execbuffer2 exec2;
3905 struct drm_i915_gem_exec_object *exec_list = NULL;
3906 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3907 int ret, i;
3908
3909#if WATCH_EXEC
3910 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3911 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3912#endif
3913
3914 if (args->buffer_count < 1) {
3915 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3916 return -EINVAL;
3917 }
3918
3919 /* Copy in the exec list from userland */
3920 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3921 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3922 if (exec_list == NULL || exec2_list == NULL) {
3923 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3924 args->buffer_count);
3925 drm_free_large(exec_list);
3926 drm_free_large(exec2_list);
3927 return -ENOMEM;
3928 }
3929 ret = copy_from_user(exec_list,
3930 (struct drm_i915_relocation_entry __user *)
3931 (uintptr_t) args->buffers_ptr,
3932 sizeof(*exec_list) * args->buffer_count);
3933 if (ret != 0) {
3934 DRM_ERROR("copy %d exec entries failed %d\n",
3935 args->buffer_count, ret);
3936 drm_free_large(exec_list);
3937 drm_free_large(exec2_list);
3938 return -EFAULT;
3939 }
3940
3941 for (i = 0; i < args->buffer_count; i++) {
3942 exec2_list[i].handle = exec_list[i].handle;
3943 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3944 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3945 exec2_list[i].alignment = exec_list[i].alignment;
3946 exec2_list[i].offset = exec_list[i].offset;
3947 if (!IS_I965G(dev))
3948 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3949 else
3950 exec2_list[i].flags = 0;
3951 }
3952
3953 exec2.buffers_ptr = args->buffers_ptr;
3954 exec2.buffer_count = args->buffer_count;
3955 exec2.batch_start_offset = args->batch_start_offset;
3956 exec2.batch_len = args->batch_len;
3957 exec2.DR1 = args->DR1;
3958 exec2.DR4 = args->DR4;
3959 exec2.num_cliprects = args->num_cliprects;
3960 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3961 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3962
3963 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3964 if (!ret) {
3965 /* Copy the new buffer offsets back to the user's exec list. */
3966 for (i = 0; i < args->buffer_count; i++)
3967 exec_list[i].offset = exec2_list[i].offset;
3968 /* ... and back out to userspace */
3969 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3970 (uintptr_t) args->buffers_ptr,
3971 exec_list,
3972 sizeof(*exec_list) * args->buffer_count);
3973 if (ret) {
3974 ret = -EFAULT;
3975 DRM_ERROR("failed to copy %d exec entries "
3976 "back to user (%d)\n",
3977 args->buffer_count, ret);
3978 }
76446cac
JB
3979 }
3980
3981 drm_free_large(exec_list);
3982 drm_free_large(exec2_list);
3983 return ret;
3984}
3985
3986int
3987i915_gem_execbuffer2(struct drm_device *dev, void *data,
3988 struct drm_file *file_priv)
3989{
3990 struct drm_i915_gem_execbuffer2 *args = data;
3991 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3992 int ret;
3993
3994#if WATCH_EXEC
3995 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3996 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3997#endif
3998
3999 if (args->buffer_count < 1) {
4000 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4001 return -EINVAL;
4002 }
4003
4004 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4005 if (exec2_list == NULL) {
4006 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4007 args->buffer_count);
4008 return -ENOMEM;
4009 }
4010 ret = copy_from_user(exec2_list,
4011 (struct drm_i915_relocation_entry __user *)
4012 (uintptr_t) args->buffers_ptr,
4013 sizeof(*exec2_list) * args->buffer_count);
4014 if (ret != 0) {
4015 DRM_ERROR("copy %d exec entries failed %d\n",
4016 args->buffer_count, ret);
4017 drm_free_large(exec2_list);
4018 return -EFAULT;
4019 }
4020
4021 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4022 if (!ret) {
4023 /* Copy the new buffer offsets back to the user's exec list. */
4024 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4025 (uintptr_t) args->buffers_ptr,
4026 exec2_list,
4027 sizeof(*exec2_list) * args->buffer_count);
4028 if (ret) {
4029 ret = -EFAULT;
4030 DRM_ERROR("failed to copy %d exec entries "
4031 "back to user (%d)\n",
4032 args->buffer_count, ret);
4033 }
4034 }
4035
4036 drm_free_large(exec2_list);
4037 return ret;
4038}
4039
673a394b
EA
4040int
4041i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4042{
4043 struct drm_device *dev = obj->dev;
23010e43 4044 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4045 int ret;
4046
778c3544
DV
4047 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4048
673a394b 4049 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4050
4051 if (obj_priv->gtt_space != NULL) {
4052 if (alignment == 0)
4053 alignment = i915_gem_get_gtt_alignment(obj);
4054 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4055 WARN(obj_priv->pin_count,
4056 "bo is already pinned with incorrect alignment:"
4057 " offset=%x, req.alignment=%x\n",
4058 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4059 ret = i915_gem_object_unbind(obj);
4060 if (ret)
4061 return ret;
4062 }
4063 }
4064
673a394b
EA
4065 if (obj_priv->gtt_space == NULL) {
4066 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4067 if (ret)
673a394b 4068 return ret;
22c344e9 4069 }
76446cac 4070
673a394b
EA
4071 obj_priv->pin_count++;
4072
4073 /* If the object is not active and not pending a flush,
4074 * remove it from the inactive list
4075 */
4076 if (obj_priv->pin_count == 1) {
4077 atomic_inc(&dev->pin_count);
4078 atomic_add(obj->size, &dev->pin_memory);
4079 if (!obj_priv->active &&
bf1a1092 4080 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4081 list_del_init(&obj_priv->list);
4082 }
4083 i915_verify_inactive(dev, __FILE__, __LINE__);
4084
4085 return 0;
4086}
4087
4088void
4089i915_gem_object_unpin(struct drm_gem_object *obj)
4090{
4091 struct drm_device *dev = obj->dev;
4092 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4093 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4094
4095 i915_verify_inactive(dev, __FILE__, __LINE__);
4096 obj_priv->pin_count--;
4097 BUG_ON(obj_priv->pin_count < 0);
4098 BUG_ON(obj_priv->gtt_space == NULL);
4099
4100 /* If the object is no longer pinned, and is
4101 * neither active nor being flushed, then stick it on
4102 * the inactive list
4103 */
4104 if (obj_priv->pin_count == 0) {
4105 if (!obj_priv->active &&
21d509e3 4106 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4107 list_move_tail(&obj_priv->list,
4108 &dev_priv->mm.inactive_list);
4109 atomic_dec(&dev->pin_count);
4110 atomic_sub(obj->size, &dev->pin_memory);
4111 }
4112 i915_verify_inactive(dev, __FILE__, __LINE__);
4113}
4114
4115int
4116i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4117 struct drm_file *file_priv)
4118{
4119 struct drm_i915_gem_pin *args = data;
4120 struct drm_gem_object *obj;
4121 struct drm_i915_gem_object *obj_priv;
4122 int ret;
4123
4124 mutex_lock(&dev->struct_mutex);
4125
4126 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4127 if (obj == NULL) {
4128 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4129 args->handle);
4130 mutex_unlock(&dev->struct_mutex);
bf79cb91 4131 return -ENOENT;
673a394b 4132 }
23010e43 4133 obj_priv = to_intel_bo(obj);
673a394b 4134
bb6baf76
CW
4135 if (obj_priv->madv != I915_MADV_WILLNEED) {
4136 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4137 drm_gem_object_unreference(obj);
4138 mutex_unlock(&dev->struct_mutex);
4139 return -EINVAL;
4140 }
4141
79e53945
JB
4142 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4143 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4144 args->handle);
96dec61d 4145 drm_gem_object_unreference(obj);
673a394b 4146 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4147 return -EINVAL;
4148 }
4149
4150 obj_priv->user_pin_count++;
4151 obj_priv->pin_filp = file_priv;
4152 if (obj_priv->user_pin_count == 1) {
4153 ret = i915_gem_object_pin(obj, args->alignment);
4154 if (ret != 0) {
4155 drm_gem_object_unreference(obj);
4156 mutex_unlock(&dev->struct_mutex);
4157 return ret;
4158 }
673a394b
EA
4159 }
4160
4161 /* XXX - flush the CPU caches for pinned objects
4162 * as the X server doesn't manage domains yet
4163 */
e47c68e9 4164 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4165 args->offset = obj_priv->gtt_offset;
4166 drm_gem_object_unreference(obj);
4167 mutex_unlock(&dev->struct_mutex);
4168
4169 return 0;
4170}
4171
4172int
4173i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4174 struct drm_file *file_priv)
4175{
4176 struct drm_i915_gem_pin *args = data;
4177 struct drm_gem_object *obj;
79e53945 4178 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4179
4180 mutex_lock(&dev->struct_mutex);
4181
4182 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4183 if (obj == NULL) {
4184 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4185 args->handle);
4186 mutex_unlock(&dev->struct_mutex);
bf79cb91 4187 return -ENOENT;
673a394b
EA
4188 }
4189
23010e43 4190 obj_priv = to_intel_bo(obj);
79e53945
JB
4191 if (obj_priv->pin_filp != file_priv) {
4192 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4193 args->handle);
4194 drm_gem_object_unreference(obj);
4195 mutex_unlock(&dev->struct_mutex);
4196 return -EINVAL;
4197 }
4198 obj_priv->user_pin_count--;
4199 if (obj_priv->user_pin_count == 0) {
4200 obj_priv->pin_filp = NULL;
4201 i915_gem_object_unpin(obj);
4202 }
673a394b
EA
4203
4204 drm_gem_object_unreference(obj);
4205 mutex_unlock(&dev->struct_mutex);
4206 return 0;
4207}
4208
4209int
4210i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4211 struct drm_file *file_priv)
4212{
4213 struct drm_i915_gem_busy *args = data;
4214 struct drm_gem_object *obj;
4215 struct drm_i915_gem_object *obj_priv;
4216
673a394b
EA
4217 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4218 if (obj == NULL) {
4219 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4220 args->handle);
bf79cb91 4221 return -ENOENT;
673a394b
EA
4222 }
4223
b1ce786c 4224 mutex_lock(&dev->struct_mutex);
d1b851fc 4225
0be555b6
CW
4226 /* Count all active objects as busy, even if they are currently not used
4227 * by the gpu. Users of this interface expect objects to eventually
4228 * become non-busy without any further actions, therefore emit any
4229 * necessary flushes here.
c4de0a5d 4230 */
0be555b6
CW
4231 obj_priv = to_intel_bo(obj);
4232 args->busy = obj_priv->active;
4233 if (args->busy) {
4234 /* Unconditionally flush objects, even when the gpu still uses this
4235 * object. Userspace calling this function indicates that it wants to
4236 * use this buffer rather sooner than later, so issuing the required
4237 * flush earlier is beneficial.
4238 */
4239 if (obj->write_domain) {
4240 i915_gem_flush(dev, 0, obj->write_domain);
4241 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4242 }
4243
4244 /* Update the active list for the hardware's current position.
4245 * Otherwise this only updates on a delayed timer or when irqs
4246 * are actually unmasked, and our working set ends up being
4247 * larger than required.
4248 */
4249 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4250
4251 args->busy = obj_priv->active;
4252 }
673a394b
EA
4253
4254 drm_gem_object_unreference(obj);
4255 mutex_unlock(&dev->struct_mutex);
4256 return 0;
4257}
4258
4259int
4260i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file_priv)
4262{
4263 return i915_gem_ring_throttle(dev, file_priv);
4264}
4265
3ef94daa
CW
4266int
4267i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269{
4270 struct drm_i915_gem_madvise *args = data;
4271 struct drm_gem_object *obj;
4272 struct drm_i915_gem_object *obj_priv;
4273
4274 switch (args->madv) {
4275 case I915_MADV_DONTNEED:
4276 case I915_MADV_WILLNEED:
4277 break;
4278 default:
4279 return -EINVAL;
4280 }
4281
4282 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4283 if (obj == NULL) {
4284 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4285 args->handle);
bf79cb91 4286 return -ENOENT;
3ef94daa
CW
4287 }
4288
4289 mutex_lock(&dev->struct_mutex);
23010e43 4290 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4291
4292 if (obj_priv->pin_count) {
4293 drm_gem_object_unreference(obj);
4294 mutex_unlock(&dev->struct_mutex);
4295
4296 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4297 return -EINVAL;
4298 }
4299
bb6baf76
CW
4300 if (obj_priv->madv != __I915_MADV_PURGED)
4301 obj_priv->madv = args->madv;
3ef94daa 4302
2d7ef395
CW
4303 /* if the object is no longer bound, discard its backing storage */
4304 if (i915_gem_object_is_purgeable(obj_priv) &&
4305 obj_priv->gtt_space == NULL)
4306 i915_gem_object_truncate(obj);
4307
bb6baf76
CW
4308 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4309
3ef94daa
CW
4310 drm_gem_object_unreference(obj);
4311 mutex_unlock(&dev->struct_mutex);
4312
4313 return 0;
4314}
4315
ac52bc56
DV
4316struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4317 size_t size)
4318{
c397b908 4319 struct drm_i915_gem_object *obj;
ac52bc56 4320
c397b908
DV
4321 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4322 if (obj == NULL)
4323 return NULL;
673a394b 4324
c397b908
DV
4325 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4326 kfree(obj);
4327 return NULL;
4328 }
673a394b 4329
c397b908
DV
4330 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4331 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4332
c397b908 4333 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4334 obj->base.driver_private = NULL;
c397b908
DV
4335 obj->fence_reg = I915_FENCE_REG_NONE;
4336 INIT_LIST_HEAD(&obj->list);
4337 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4338 obj->madv = I915_MADV_WILLNEED;
de151cf6 4339
c397b908
DV
4340 trace_i915_gem_object_create(&obj->base);
4341
4342 return &obj->base;
4343}
4344
4345int i915_gem_init_object(struct drm_gem_object *obj)
4346{
4347 BUG();
de151cf6 4348
673a394b
EA
4349 return 0;
4350}
4351
be72615b 4352static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4353{
de151cf6 4354 struct drm_device *dev = obj->dev;
be72615b 4355 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4356 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4357 int ret;
673a394b 4358
be72615b
CW
4359 ret = i915_gem_object_unbind(obj);
4360 if (ret == -ERESTARTSYS) {
4361 list_move(&obj_priv->list,
4362 &dev_priv->mm.deferred_free_list);
4363 return;
4364 }
673a394b 4365
7e616158
CW
4366 if (obj_priv->mmap_offset)
4367 i915_gem_free_mmap_offset(obj);
de151cf6 4368
c397b908
DV
4369 drm_gem_object_release(obj);
4370
9a298b2a 4371 kfree(obj_priv->page_cpu_valid);
280b713b 4372 kfree(obj_priv->bit_17);
c397b908 4373 kfree(obj_priv);
673a394b
EA
4374}
4375
be72615b
CW
4376void i915_gem_free_object(struct drm_gem_object *obj)
4377{
4378 struct drm_device *dev = obj->dev;
4379 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4380
4381 trace_i915_gem_object_destroy(obj);
4382
4383 while (obj_priv->pin_count > 0)
4384 i915_gem_object_unpin(obj);
4385
4386 if (obj_priv->phys_obj)
4387 i915_gem_detach_phys_object(dev, obj);
4388
4389 i915_gem_free_object_tail(obj);
4390}
4391
29105ccc
CW
4392int
4393i915_gem_idle(struct drm_device *dev)
4394{
4395 drm_i915_private_t *dev_priv = dev->dev_private;
4396 int ret;
28dfe52a 4397
29105ccc 4398 mutex_lock(&dev->struct_mutex);
1c5d22f7 4399
8187a2b7 4400 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4401 (dev_priv->render_ring.gem_object == NULL) ||
4402 (HAS_BSD(dev) &&
4403 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4404 mutex_unlock(&dev->struct_mutex);
4405 return 0;
28dfe52a
EA
4406 }
4407
29105ccc 4408 ret = i915_gpu_idle(dev);
6dbe2772
KP
4409 if (ret) {
4410 mutex_unlock(&dev->struct_mutex);
673a394b 4411 return ret;
6dbe2772 4412 }
673a394b 4413
29105ccc
CW
4414 /* Under UMS, be paranoid and evict. */
4415 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4416 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4417 if (ret) {
4418 mutex_unlock(&dev->struct_mutex);
4419 return ret;
4420 }
4421 }
4422
4423 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4424 * We need to replace this with a semaphore, or something.
4425 * And not confound mm.suspended!
4426 */
4427 dev_priv->mm.suspended = 1;
4428 del_timer(&dev_priv->hangcheck_timer);
4429
4430 i915_kernel_lost_context(dev);
6dbe2772 4431 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4432
6dbe2772
KP
4433 mutex_unlock(&dev->struct_mutex);
4434
29105ccc
CW
4435 /* Cancel the retire work handler, which should be idle now. */
4436 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4437
673a394b
EA
4438 return 0;
4439}
4440
e552eb70
JB
4441/*
4442 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4443 * over cache flushing.
4444 */
8187a2b7 4445static int
e552eb70
JB
4446i915_gem_init_pipe_control(struct drm_device *dev)
4447{
4448 drm_i915_private_t *dev_priv = dev->dev_private;
4449 struct drm_gem_object *obj;
4450 struct drm_i915_gem_object *obj_priv;
4451 int ret;
4452
34dc4d44 4453 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4454 if (obj == NULL) {
4455 DRM_ERROR("Failed to allocate seqno page\n");
4456 ret = -ENOMEM;
4457 goto err;
4458 }
4459 obj_priv = to_intel_bo(obj);
4460 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4461
4462 ret = i915_gem_object_pin(obj, 4096);
4463 if (ret)
4464 goto err_unref;
4465
4466 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4467 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4468 if (dev_priv->seqno_page == NULL)
4469 goto err_unpin;
4470
4471 dev_priv->seqno_obj = obj;
4472 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4473
4474 return 0;
4475
4476err_unpin:
4477 i915_gem_object_unpin(obj);
4478err_unref:
4479 drm_gem_object_unreference(obj);
4480err:
4481 return ret;
4482}
4483
8187a2b7
ZN
4484
4485static void
e552eb70
JB
4486i915_gem_cleanup_pipe_control(struct drm_device *dev)
4487{
4488 drm_i915_private_t *dev_priv = dev->dev_private;
4489 struct drm_gem_object *obj;
4490 struct drm_i915_gem_object *obj_priv;
4491
4492 obj = dev_priv->seqno_obj;
4493 obj_priv = to_intel_bo(obj);
4494 kunmap(obj_priv->pages[0]);
4495 i915_gem_object_unpin(obj);
4496 drm_gem_object_unreference(obj);
4497 dev_priv->seqno_obj = NULL;
4498
4499 dev_priv->seqno_page = NULL;
673a394b
EA
4500}
4501
8187a2b7
ZN
4502int
4503i915_gem_init_ringbuffer(struct drm_device *dev)
4504{
4505 drm_i915_private_t *dev_priv = dev->dev_private;
4506 int ret;
68f95ba9 4507
8187a2b7 4508 dev_priv->render_ring = render_ring;
68f95ba9 4509
8187a2b7
ZN
4510 if (!I915_NEED_GFX_HWS(dev)) {
4511 dev_priv->render_ring.status_page.page_addr
4512 = dev_priv->status_page_dmah->vaddr;
4513 memset(dev_priv->render_ring.status_page.page_addr,
4514 0, PAGE_SIZE);
4515 }
68f95ba9 4516
8187a2b7
ZN
4517 if (HAS_PIPE_CONTROL(dev)) {
4518 ret = i915_gem_init_pipe_control(dev);
4519 if (ret)
4520 return ret;
4521 }
68f95ba9 4522
8187a2b7 4523 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4524 if (ret)
4525 goto cleanup_pipe_control;
4526
4527 if (HAS_BSD(dev)) {
d1b851fc
ZN
4528 dev_priv->bsd_ring = bsd_ring;
4529 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4530 if (ret)
4531 goto cleanup_render_ring;
d1b851fc 4532 }
68f95ba9 4533
6f392d54
CW
4534 dev_priv->next_seqno = 1;
4535
68f95ba9
CW
4536 return 0;
4537
4538cleanup_render_ring:
4539 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4540cleanup_pipe_control:
4541 if (HAS_PIPE_CONTROL(dev))
4542 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4543 return ret;
4544}
4545
4546void
4547i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4548{
4549 drm_i915_private_t *dev_priv = dev->dev_private;
4550
4551 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4552 if (HAS_BSD(dev))
4553 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4554 if (HAS_PIPE_CONTROL(dev))
4555 i915_gem_cleanup_pipe_control(dev);
4556}
4557
673a394b
EA
4558int
4559i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4560 struct drm_file *file_priv)
4561{
4562 drm_i915_private_t *dev_priv = dev->dev_private;
4563 int ret;
4564
79e53945
JB
4565 if (drm_core_check_feature(dev, DRIVER_MODESET))
4566 return 0;
4567
ba1234d1 4568 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4569 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4570 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4571 }
4572
673a394b 4573 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4574 dev_priv->mm.suspended = 0;
4575
4576 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4577 if (ret != 0) {
4578 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4579 return ret;
d816f6ac 4580 }
9bb2d6f9 4581
5e118f41 4582 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4583 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4584 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4585 spin_unlock(&dev_priv->mm.active_list_lock);
4586
673a394b
EA
4587 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4588 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4589 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4590 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4591 mutex_unlock(&dev->struct_mutex);
dbb19d30 4592
5f35308b
CW
4593 ret = drm_irq_install(dev);
4594 if (ret)
4595 goto cleanup_ringbuffer;
dbb19d30 4596
673a394b 4597 return 0;
5f35308b
CW
4598
4599cleanup_ringbuffer:
4600 mutex_lock(&dev->struct_mutex);
4601 i915_gem_cleanup_ringbuffer(dev);
4602 dev_priv->mm.suspended = 1;
4603 mutex_unlock(&dev->struct_mutex);
4604
4605 return ret;
673a394b
EA
4606}
4607
4608int
4609i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4610 struct drm_file *file_priv)
4611{
79e53945
JB
4612 if (drm_core_check_feature(dev, DRIVER_MODESET))
4613 return 0;
4614
dbb19d30 4615 drm_irq_uninstall(dev);
e6890f6f 4616 return i915_gem_idle(dev);
673a394b
EA
4617}
4618
4619void
4620i915_gem_lastclose(struct drm_device *dev)
4621{
4622 int ret;
673a394b 4623
e806b495
EA
4624 if (drm_core_check_feature(dev, DRIVER_MODESET))
4625 return;
4626
6dbe2772
KP
4627 ret = i915_gem_idle(dev);
4628 if (ret)
4629 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4630}
4631
4632void
4633i915_gem_load(struct drm_device *dev)
4634{
b5aa8a0f 4635 int i;
673a394b
EA
4636 drm_i915_private_t *dev_priv = dev->dev_private;
4637
5e118f41 4638 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4639 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4640 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4641 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4642 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4643 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4644 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4645 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4646 if (HAS_BSD(dev)) {
4647 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4648 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4649 }
007cc8ac
DV
4650 for (i = 0; i < 16; i++)
4651 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4652 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4653 i915_gem_retire_work_handler);
31169714
CW
4654 spin_lock(&shrink_list_lock);
4655 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4656 spin_unlock(&shrink_list_lock);
4657
94400120
DA
4658 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4659 if (IS_GEN3(dev)) {
4660 u32 tmp = I915_READ(MI_ARB_STATE);
4661 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4662 /* arb state is a masked write, so set bit + bit in mask */
4663 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4664 I915_WRITE(MI_ARB_STATE, tmp);
4665 }
4666 }
4667
de151cf6 4668 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4669 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4670 dev_priv->fence_reg_start = 3;
de151cf6 4671
0f973f27 4672 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4673 dev_priv->num_fence_regs = 16;
4674 else
4675 dev_priv->num_fence_regs = 8;
4676
b5aa8a0f
GH
4677 /* Initialize fence registers to zero */
4678 if (IS_I965G(dev)) {
4679 for (i = 0; i < 16; i++)
4680 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4681 } else {
4682 for (i = 0; i < 8; i++)
4683 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4684 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4685 for (i = 0; i < 8; i++)
4686 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4687 }
673a394b 4688 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4689 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4690}
71acb5eb
DA
4691
4692/*
4693 * Create a physically contiguous memory object for this object
4694 * e.g. for cursor + overlay regs
4695 */
4696int i915_gem_init_phys_object(struct drm_device *dev,
6eeefaf3 4697 int id, int size, int align)
71acb5eb
DA
4698{
4699 drm_i915_private_t *dev_priv = dev->dev_private;
4700 struct drm_i915_gem_phys_object *phys_obj;
4701 int ret;
4702
4703 if (dev_priv->mm.phys_objs[id - 1] || !size)
4704 return 0;
4705
9a298b2a 4706 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4707 if (!phys_obj)
4708 return -ENOMEM;
4709
4710 phys_obj->id = id;
4711
6eeefaf3 4712 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4713 if (!phys_obj->handle) {
4714 ret = -ENOMEM;
4715 goto kfree_obj;
4716 }
4717#ifdef CONFIG_X86
4718 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4719#endif
4720
4721 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4722
4723 return 0;
4724kfree_obj:
9a298b2a 4725 kfree(phys_obj);
71acb5eb
DA
4726 return ret;
4727}
4728
4729void i915_gem_free_phys_object(struct drm_device *dev, int id)
4730{
4731 drm_i915_private_t *dev_priv = dev->dev_private;
4732 struct drm_i915_gem_phys_object *phys_obj;
4733
4734 if (!dev_priv->mm.phys_objs[id - 1])
4735 return;
4736
4737 phys_obj = dev_priv->mm.phys_objs[id - 1];
4738 if (phys_obj->cur_obj) {
4739 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4740 }
4741
4742#ifdef CONFIG_X86
4743 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4744#endif
4745 drm_pci_free(dev, phys_obj->handle);
4746 kfree(phys_obj);
4747 dev_priv->mm.phys_objs[id - 1] = NULL;
4748}
4749
4750void i915_gem_free_all_phys_object(struct drm_device *dev)
4751{
4752 int i;
4753
260883c8 4754 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4755 i915_gem_free_phys_object(dev, i);
4756}
4757
4758void i915_gem_detach_phys_object(struct drm_device *dev,
4759 struct drm_gem_object *obj)
4760{
4761 struct drm_i915_gem_object *obj_priv;
4762 int i;
4763 int ret;
4764 int page_count;
4765
23010e43 4766 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4767 if (!obj_priv->phys_obj)
4768 return;
4769
4bdadb97 4770 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4771 if (ret)
4772 goto out;
4773
4774 page_count = obj->size / PAGE_SIZE;
4775
4776 for (i = 0; i < page_count; i++) {
856fa198 4777 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4778 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4779
4780 memcpy(dst, src, PAGE_SIZE);
4781 kunmap_atomic(dst, KM_USER0);
4782 }
856fa198 4783 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4784 drm_agp_chipset_flush(dev);
d78b47b9
CW
4785
4786 i915_gem_object_put_pages(obj);
71acb5eb
DA
4787out:
4788 obj_priv->phys_obj->cur_obj = NULL;
4789 obj_priv->phys_obj = NULL;
4790}
4791
4792int
4793i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4794 struct drm_gem_object *obj,
4795 int id,
4796 int align)
71acb5eb
DA
4797{
4798 drm_i915_private_t *dev_priv = dev->dev_private;
4799 struct drm_i915_gem_object *obj_priv;
4800 int ret = 0;
4801 int page_count;
4802 int i;
4803
4804 if (id > I915_MAX_PHYS_OBJECT)
4805 return -EINVAL;
4806
23010e43 4807 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4808
4809 if (obj_priv->phys_obj) {
4810 if (obj_priv->phys_obj->id == id)
4811 return 0;
4812 i915_gem_detach_phys_object(dev, obj);
4813 }
4814
71acb5eb
DA
4815 /* create a new object */
4816 if (!dev_priv->mm.phys_objs[id - 1]) {
4817 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4818 obj->size, align);
71acb5eb 4819 if (ret) {
aeb565df 4820 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4821 goto out;
4822 }
4823 }
4824
4825 /* bind to the object */
4826 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4827 obj_priv->phys_obj->cur_obj = obj;
4828
4bdadb97 4829 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4830 if (ret) {
4831 DRM_ERROR("failed to get page list\n");
4832 goto out;
4833 }
4834
4835 page_count = obj->size / PAGE_SIZE;
4836
4837 for (i = 0; i < page_count; i++) {
856fa198 4838 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4839 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4840
4841 memcpy(dst, src, PAGE_SIZE);
4842 kunmap_atomic(src, KM_USER0);
4843 }
4844
d78b47b9
CW
4845 i915_gem_object_put_pages(obj);
4846
71acb5eb
DA
4847 return 0;
4848out:
4849 return ret;
4850}
4851
4852static int
4853i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4854 struct drm_i915_gem_pwrite *args,
4855 struct drm_file *file_priv)
4856{
23010e43 4857 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4858 void *obj_addr;
4859 int ret;
4860 char __user *user_data;
4861
4862 user_data = (char __user *) (uintptr_t) args->data_ptr;
4863 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4864
44d98a61 4865 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4866 ret = copy_from_user(obj_addr, user_data, args->size);
4867 if (ret)
4868 return -EFAULT;
4869
4870 drm_agp_chipset_flush(dev);
4871 return 0;
4872}
b962442e
EA
4873
4874void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4875{
4876 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4877
4878 /* Clean up our request list when the client is going away, so that
4879 * later retire_requests won't dereference our soon-to-be-gone
4880 * file_priv.
4881 */
4882 mutex_lock(&dev->struct_mutex);
4883 while (!list_empty(&i915_file_priv->mm.request_list))
4884 list_del_init(i915_file_priv->mm.request_list.next);
4885 mutex_unlock(&dev->struct_mutex);
4886}
31169714 4887
1637ef41
CW
4888static int
4889i915_gpu_is_active(struct drm_device *dev)
4890{
4891 drm_i915_private_t *dev_priv = dev->dev_private;
4892 int lists_empty;
4893
4894 spin_lock(&dev_priv->mm.active_list_lock);
4895 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4896 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4897 if (HAS_BSD(dev))
4898 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4899 spin_unlock(&dev_priv->mm.active_list_lock);
4900
4901 return !lists_empty;
4902}
4903
31169714 4904static int
7f8275d0 4905i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4906{
4907 drm_i915_private_t *dev_priv, *next_dev;
4908 struct drm_i915_gem_object *obj_priv, *next_obj;
4909 int cnt = 0;
4910 int would_deadlock = 1;
4911
4912 /* "fast-path" to count number of available objects */
4913 if (nr_to_scan == 0) {
4914 spin_lock(&shrink_list_lock);
4915 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4916 struct drm_device *dev = dev_priv->dev;
4917
4918 if (mutex_trylock(&dev->struct_mutex)) {
4919 list_for_each_entry(obj_priv,
4920 &dev_priv->mm.inactive_list,
4921 list)
4922 cnt++;
4923 mutex_unlock(&dev->struct_mutex);
4924 }
4925 }
4926 spin_unlock(&shrink_list_lock);
4927
4928 return (cnt / 100) * sysctl_vfs_cache_pressure;
4929 }
4930
4931 spin_lock(&shrink_list_lock);
4932
1637ef41 4933rescan:
31169714
CW
4934 /* first scan for clean buffers */
4935 list_for_each_entry_safe(dev_priv, next_dev,
4936 &shrink_list, mm.shrink_list) {
4937 struct drm_device *dev = dev_priv->dev;
4938
4939 if (! mutex_trylock(&dev->struct_mutex))
4940 continue;
4941
4942 spin_unlock(&shrink_list_lock);
b09a1fec 4943 i915_gem_retire_requests(dev);
31169714
CW
4944
4945 list_for_each_entry_safe(obj_priv, next_obj,
4946 &dev_priv->mm.inactive_list,
4947 list) {
4948 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4949 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4950 if (--nr_to_scan <= 0)
4951 break;
4952 }
4953 }
4954
4955 spin_lock(&shrink_list_lock);
4956 mutex_unlock(&dev->struct_mutex);
4957
963b4836
CW
4958 would_deadlock = 0;
4959
31169714
CW
4960 if (nr_to_scan <= 0)
4961 break;
4962 }
4963
4964 /* second pass, evict/count anything still on the inactive list */
4965 list_for_each_entry_safe(dev_priv, next_dev,
4966 &shrink_list, mm.shrink_list) {
4967 struct drm_device *dev = dev_priv->dev;
4968
4969 if (! mutex_trylock(&dev->struct_mutex))
4970 continue;
4971
4972 spin_unlock(&shrink_list_lock);
4973
4974 list_for_each_entry_safe(obj_priv, next_obj,
4975 &dev_priv->mm.inactive_list,
4976 list) {
4977 if (nr_to_scan > 0) {
a8089e84 4978 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4979 nr_to_scan--;
4980 } else
4981 cnt++;
4982 }
4983
4984 spin_lock(&shrink_list_lock);
4985 mutex_unlock(&dev->struct_mutex);
4986
4987 would_deadlock = 0;
4988 }
4989
1637ef41
CW
4990 if (nr_to_scan) {
4991 int active = 0;
4992
4993 /*
4994 * We are desperate for pages, so as a last resort, wait
4995 * for the GPU to finish and discard whatever we can.
4996 * This has a dramatic impact to reduce the number of
4997 * OOM-killer events whilst running the GPU aggressively.
4998 */
4999 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5000 struct drm_device *dev = dev_priv->dev;
5001
5002 if (!mutex_trylock(&dev->struct_mutex))
5003 continue;
5004
5005 spin_unlock(&shrink_list_lock);
5006
5007 if (i915_gpu_is_active(dev)) {
5008 i915_gpu_idle(dev);
5009 active++;
5010 }
5011
5012 spin_lock(&shrink_list_lock);
5013 mutex_unlock(&dev->struct_mutex);
5014 }
5015
5016 if (active)
5017 goto rescan;
5018 }
5019
31169714
CW
5020 spin_unlock(&shrink_list_lock);
5021
5022 if (would_deadlock)
5023 return -1;
5024 else if (cnt > 0)
5025 return (cnt / 100) * sysctl_vfs_cache_pressure;
5026 else
5027 return 0;
5028}
5029
5030static struct shrinker shrinker = {
5031 .shrink = i915_gem_shrink,
5032 .seeks = DEFAULT_SEEKS,
5033};
5034
5035__init void
5036i915_gem_shrinker_init(void)
5037{
5038 register_shrinker(&shrinker);
5039}
5040
5041__exit void
5042i915_gem_shrinker_exit(void)
5043{
5044 unregister_shrinker(&shrinker);
5045}