]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Unref old_obj on get_fence_reg() error path
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
79e53945 33#include <linux/pci.h>
673a394b 34
28dfe52a
EA
35#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
e47c68e9
EA
37static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
40static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 46static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
47static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
de151cf6
JB
49static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50static int i915_gem_evict_something(struct drm_device *dev);
71acb5eb
DA
51static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52 struct drm_i915_gem_pwrite *args,
53 struct drm_file *file_priv);
673a394b 54
79e53945
JB
55int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56 unsigned long end)
673a394b
EA
57{
58 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 59
79e53945
JB
60 if (start >= end ||
61 (start & (PAGE_SIZE - 1)) != 0 ||
62 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
63 return -EINVAL;
64 }
65
79e53945
JB
66 drm_mm_init(&dev_priv->mm.gtt_space, start,
67 end - start);
673a394b 68
79e53945
JB
69 dev->gtt_total = (uint32_t) (end - start);
70
71 return 0;
72}
673a394b 73
79e53945
JB
74int
75i915_gem_init_ioctl(struct drm_device *dev, void *data,
76 struct drm_file *file_priv)
77{
78 struct drm_i915_gem_init *args = data;
79 int ret;
80
81 mutex_lock(&dev->struct_mutex);
82 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
83 mutex_unlock(&dev->struct_mutex);
84
79e53945 85 return ret;
673a394b
EA
86}
87
5a125c3c
EA
88int
89i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91{
5a125c3c 92 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
93
94 if (!(dev->driver->driver_features & DRIVER_GEM))
95 return -ENODEV;
96
97 args->aper_size = dev->gtt_total;
2678d9d6
KP
98 args->aper_available_size = (args->aper_size -
99 atomic_read(&dev->pin_memory));
5a125c3c
EA
100
101 return 0;
102}
103
673a394b
EA
104
105/**
106 * Creates a new mm object and returns a handle to it.
107 */
108int
109i915_gem_create_ioctl(struct drm_device *dev, void *data,
110 struct drm_file *file_priv)
111{
112 struct drm_i915_gem_create *args = data;
113 struct drm_gem_object *obj;
114 int handle, ret;
115
116 args->size = roundup(args->size, PAGE_SIZE);
117
118 /* Allocate the new object */
119 obj = drm_gem_object_alloc(dev, args->size);
120 if (obj == NULL)
121 return -ENOMEM;
122
123 ret = drm_gem_handle_create(file_priv, obj, &handle);
124 mutex_lock(&dev->struct_mutex);
125 drm_gem_object_handle_unreference(obj);
126 mutex_unlock(&dev->struct_mutex);
127
128 if (ret)
129 return ret;
130
131 args->handle = handle;
132
133 return 0;
134}
135
eb01459f
EA
136static inline int
137fast_shmem_read(struct page **pages,
138 loff_t page_base, int page_offset,
139 char __user *data,
140 int length)
141{
142 char __iomem *vaddr;
2bc43b5c 143 int unwritten;
eb01459f
EA
144
145 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146 if (vaddr == NULL)
147 return -ENOMEM;
2bc43b5c 148 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
149 kunmap_atomic(vaddr, KM_USER0);
150
2bc43b5c
FM
151 if (unwritten)
152 return -EFAULT;
153
154 return 0;
eb01459f
EA
155}
156
280b713b
EA
157static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158{
159 drm_i915_private_t *dev_priv = obj->dev->dev_private;
160 struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163 obj_priv->tiling_mode != I915_TILING_NONE;
164}
165
40123c1f
EA
166static inline int
167slow_shmem_copy(struct page *dst_page,
168 int dst_offset,
169 struct page *src_page,
170 int src_offset,
171 int length)
172{
173 char *dst_vaddr, *src_vaddr;
174
175 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176 if (dst_vaddr == NULL)
177 return -ENOMEM;
178
179 src_vaddr = kmap_atomic(src_page, KM_USER1);
180 if (src_vaddr == NULL) {
181 kunmap_atomic(dst_vaddr, KM_USER0);
182 return -ENOMEM;
183 }
184
185 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187 kunmap_atomic(src_vaddr, KM_USER1);
188 kunmap_atomic(dst_vaddr, KM_USER0);
189
190 return 0;
191}
192
280b713b
EA
193static inline int
194slow_shmem_bit17_copy(struct page *gpu_page,
195 int gpu_offset,
196 struct page *cpu_page,
197 int cpu_offset,
198 int length,
199 int is_read)
200{
201 char *gpu_vaddr, *cpu_vaddr;
202
203 /* Use the unswizzled path if this page isn't affected. */
204 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205 if (is_read)
206 return slow_shmem_copy(cpu_page, cpu_offset,
207 gpu_page, gpu_offset, length);
208 else
209 return slow_shmem_copy(gpu_page, gpu_offset,
210 cpu_page, cpu_offset, length);
211 }
212
213 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214 if (gpu_vaddr == NULL)
215 return -ENOMEM;
216
217 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218 if (cpu_vaddr == NULL) {
219 kunmap_atomic(gpu_vaddr, KM_USER0);
220 return -ENOMEM;
221 }
222
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 */
226 while (length > 0) {
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231 if (is_read) {
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
234 this_length);
235 } else {
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
238 this_length);
239 }
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
243 }
244
245 kunmap_atomic(cpu_vaddr, KM_USER1);
246 kunmap_atomic(gpu_vaddr, KM_USER0);
247
248 return 0;
249}
250
eb01459f
EA
251/**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256static int
257i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260{
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
273 ret = i915_gem_object_get_pages(obj);
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
282 obj_priv = obj->driver_private;
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309fail_put_pages:
310 i915_gem_object_put_pages(obj);
311fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315}
316
317/**
318 * This is the fallback shmem pread path, which allocates temporary storage
319 * in kernel space to copy_to_user into outside of the struct_mutex, so we
320 * can copy out of the object's backing pages while holding the struct mutex
321 * and not take page faults.
322 */
323static int
324i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325 struct drm_i915_gem_pread *args,
326 struct drm_file *file_priv)
327{
328 struct drm_i915_gem_object *obj_priv = obj->driver_private;
329 struct mm_struct *mm = current->mm;
330 struct page **user_pages;
331 ssize_t remain;
332 loff_t offset, pinned_pages, i;
333 loff_t first_data_page, last_data_page, num_pages;
334 int shmem_page_index, shmem_page_offset;
335 int data_page_index, data_page_offset;
336 int page_length;
337 int ret;
338 uint64_t data_ptr = args->data_ptr;
280b713b 339 int do_bit17_swizzling;
eb01459f
EA
340
341 remain = args->size;
342
343 /* Pin the user pages containing the data. We can't fault while
344 * holding the struct mutex, yet we want to hold it while
345 * dereferencing the user data.
346 */
347 first_data_page = data_ptr / PAGE_SIZE;
348 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349 num_pages = last_data_page - first_data_page + 1;
350
8e7d2b2c 351 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
352 if (user_pages == NULL)
353 return -ENOMEM;
354
355 down_read(&mm->mmap_sem);
356 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 357 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
358 up_read(&mm->mmap_sem);
359 if (pinned_pages < num_pages) {
360 ret = -EFAULT;
361 goto fail_put_user_pages;
362 }
363
280b713b
EA
364 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
eb01459f
EA
366 mutex_lock(&dev->struct_mutex);
367
368 ret = i915_gem_object_get_pages(obj);
369 if (ret != 0)
370 goto fail_unlock;
371
372 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373 args->size);
374 if (ret != 0)
375 goto fail_put_pages;
376
377 obj_priv = obj->driver_private;
378 offset = args->offset;
379
380 while (remain > 0) {
381 /* Operation in this page
382 *
383 * shmem_page_index = page number within shmem file
384 * shmem_page_offset = offset within page in shmem file
385 * data_page_index = page number in get_user_pages return
386 * data_page_offset = offset with data_page_index page.
387 * page_length = bytes to copy for this page
388 */
389 shmem_page_index = offset / PAGE_SIZE;
390 shmem_page_offset = offset & ~PAGE_MASK;
391 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392 data_page_offset = data_ptr & ~PAGE_MASK;
393
394 page_length = remain;
395 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396 page_length = PAGE_SIZE - shmem_page_offset;
397 if ((data_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - data_page_offset;
399
280b713b
EA
400 if (do_bit17_swizzling) {
401 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402 shmem_page_offset,
403 user_pages[data_page_index],
404 data_page_offset,
405 page_length,
406 1);
407 } else {
408 ret = slow_shmem_copy(user_pages[data_page_index],
409 data_page_offset,
410 obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 page_length);
413 }
eb01459f
EA
414 if (ret)
415 goto fail_put_pages;
416
417 remain -= page_length;
418 data_ptr += page_length;
419 offset += page_length;
420 }
421
422fail_put_pages:
423 i915_gem_object_put_pages(obj);
424fail_unlock:
425 mutex_unlock(&dev->struct_mutex);
426fail_put_user_pages:
427 for (i = 0; i < pinned_pages; i++) {
428 SetPageDirty(user_pages[i]);
429 page_cache_release(user_pages[i]);
430 }
8e7d2b2c 431 drm_free_large(user_pages);
eb01459f
EA
432
433 return ret;
434}
435
673a394b
EA
436/**
437 * Reads data from the object referenced by handle.
438 *
439 * On error, the contents of *data are undefined.
440 */
441int
442i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443 struct drm_file *file_priv)
444{
445 struct drm_i915_gem_pread *args = data;
446 struct drm_gem_object *obj;
447 struct drm_i915_gem_object *obj_priv;
673a394b
EA
448 int ret;
449
450 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451 if (obj == NULL)
452 return -EBADF;
453 obj_priv = obj->driver_private;
454
455 /* Bounds check source.
456 *
457 * XXX: This could use review for overflow issues...
458 */
459 if (args->offset > obj->size || args->size > obj->size ||
460 args->offset + args->size > obj->size) {
461 drm_gem_object_unreference(obj);
462 return -EINVAL;
463 }
464
280b713b 465 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 466 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
467 } else {
468 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469 if (ret != 0)
470 ret = i915_gem_shmem_pread_slow(dev, obj, args,
471 file_priv);
472 }
673a394b
EA
473
474 drm_gem_object_unreference(obj);
673a394b 475
eb01459f 476 return ret;
673a394b
EA
477}
478
0839ccb8
KP
479/* This is the fast write path which cannot handle
480 * page faults in the source data
9b7530cc 481 */
0839ccb8
KP
482
483static inline int
484fast_user_write(struct io_mapping *mapping,
485 loff_t page_base, int page_offset,
486 char __user *user_data,
487 int length)
9b7530cc 488{
9b7530cc 489 char *vaddr_atomic;
0839ccb8 490 unsigned long unwritten;
9b7530cc 491
0839ccb8
KP
492 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494 user_data, length);
495 io_mapping_unmap_atomic(vaddr_atomic);
496 if (unwritten)
497 return -EFAULT;
498 return 0;
499}
500
501/* Here's the write path which can sleep for
502 * page faults
503 */
504
505static inline int
3de09aa3
EA
506slow_kernel_write(struct io_mapping *mapping,
507 loff_t gtt_base, int gtt_offset,
508 struct page *user_page, int user_offset,
509 int length)
0839ccb8 510{
3de09aa3 511 char *src_vaddr, *dst_vaddr;
0839ccb8
KP
512 unsigned long unwritten;
513
3de09aa3
EA
514 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515 src_vaddr = kmap_atomic(user_page, KM_USER1);
516 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517 src_vaddr + user_offset,
518 length);
519 kunmap_atomic(src_vaddr, KM_USER1);
520 io_mapping_unmap_atomic(dst_vaddr);
0839ccb8
KP
521 if (unwritten)
522 return -EFAULT;
9b7530cc 523 return 0;
9b7530cc
LT
524}
525
40123c1f
EA
526static inline int
527fast_shmem_write(struct page **pages,
528 loff_t page_base, int page_offset,
529 char __user *data,
530 int length)
531{
532 char __iomem *vaddr;
d0088775 533 unsigned long unwritten;
40123c1f
EA
534
535 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536 if (vaddr == NULL)
537 return -ENOMEM;
d0088775 538 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
539 kunmap_atomic(vaddr, KM_USER0);
540
d0088775
DA
541 if (unwritten)
542 return -EFAULT;
40123c1f
EA
543 return 0;
544}
545
3de09aa3
EA
546/**
547 * This is the fast pwrite path, where we copy the data directly from the
548 * user into the GTT, uncached.
549 */
673a394b 550static int
3de09aa3
EA
551i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552 struct drm_i915_gem_pwrite *args,
553 struct drm_file *file_priv)
673a394b
EA
554{
555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
0839ccb8 556 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 557 ssize_t remain;
0839ccb8 558 loff_t offset, page_base;
673a394b 559 char __user *user_data;
0839ccb8
KP
560 int page_offset, page_length;
561 int ret;
673a394b
EA
562
563 user_data = (char __user *) (uintptr_t) args->data_ptr;
564 remain = args->size;
565 if (!access_ok(VERIFY_READ, user_data, remain))
566 return -EFAULT;
567
568
569 mutex_lock(&dev->struct_mutex);
570 ret = i915_gem_object_pin(obj, 0);
571 if (ret) {
572 mutex_unlock(&dev->struct_mutex);
573 return ret;
574 }
2ef7eeaa 575 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
576 if (ret)
577 goto fail;
578
579 obj_priv = obj->driver_private;
580 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
581
582 while (remain > 0) {
583 /* Operation in this page
584 *
0839ccb8
KP
585 * page_base = page offset within aperture
586 * page_offset = offset within page
587 * page_length = bytes to copy for this page
673a394b 588 */
0839ccb8
KP
589 page_base = (offset & ~(PAGE_SIZE-1));
590 page_offset = offset & (PAGE_SIZE-1);
591 page_length = remain;
592 if ((page_offset + remain) > PAGE_SIZE)
593 page_length = PAGE_SIZE - page_offset;
594
595 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596 page_offset, user_data, page_length);
597
598 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
0839ccb8 601 */
3de09aa3
EA
602 if (ret)
603 goto fail;
673a394b 604
0839ccb8
KP
605 remain -= page_length;
606 user_data += page_length;
607 offset += page_length;
673a394b 608 }
673a394b
EA
609
610fail:
611 i915_gem_object_unpin(obj);
612 mutex_unlock(&dev->struct_mutex);
613
614 return ret;
615}
616
3de09aa3
EA
617/**
618 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619 * the memory and maps it using kmap_atomic for copying.
620 *
621 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623 */
3043c60c 624static int
3de09aa3
EA
625i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626 struct drm_i915_gem_pwrite *args,
627 struct drm_file *file_priv)
673a394b 628{
3de09aa3
EA
629 struct drm_i915_gem_object *obj_priv = obj->driver_private;
630 drm_i915_private_t *dev_priv = dev->dev_private;
631 ssize_t remain;
632 loff_t gtt_page_base, offset;
633 loff_t first_data_page, last_data_page, num_pages;
634 loff_t pinned_pages, i;
635 struct page **user_pages;
636 struct mm_struct *mm = current->mm;
637 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 638 int ret;
3de09aa3
EA
639 uint64_t data_ptr = args->data_ptr;
640
641 remain = args->size;
642
643 /* Pin the user pages containing the data. We can't fault while
644 * holding the struct mutex, and all of the pwrite implementations
645 * want to hold it while dereferencing the user data.
646 */
647 first_data_page = data_ptr / PAGE_SIZE;
648 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649 num_pages = last_data_page - first_data_page + 1;
650
8e7d2b2c 651 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
652 if (user_pages == NULL)
653 return -ENOMEM;
654
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
659 if (pinned_pages < num_pages) {
660 ret = -EFAULT;
661 goto out_unpin_pages;
662 }
673a394b
EA
663
664 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
665 ret = i915_gem_object_pin(obj, 0);
666 if (ret)
667 goto out_unlock;
668
669 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670 if (ret)
671 goto out_unpin_object;
672
673 obj_priv = obj->driver_private;
674 offset = obj_priv->gtt_offset + args->offset;
675
676 while (remain > 0) {
677 /* Operation in this page
678 *
679 * gtt_page_base = page offset within aperture
680 * gtt_page_offset = offset within page in aperture
681 * data_page_index = page number in get_user_pages return
682 * data_page_offset = offset with data_page_index page.
683 * page_length = bytes to copy for this page
684 */
685 gtt_page_base = offset & PAGE_MASK;
686 gtt_page_offset = offset & ~PAGE_MASK;
687 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688 data_page_offset = data_ptr & ~PAGE_MASK;
689
690 page_length = remain;
691 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692 page_length = PAGE_SIZE - gtt_page_offset;
693 if ((data_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - data_page_offset;
695
696 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697 gtt_page_base, gtt_page_offset,
698 user_pages[data_page_index],
699 data_page_offset,
700 page_length);
701
702 /* If we get a fault while copying data, then (presumably) our
703 * source page isn't available. Return the error and we'll
704 * retry in the slow path.
705 */
706 if (ret)
707 goto out_unpin_object;
708
709 remain -= page_length;
710 offset += page_length;
711 data_ptr += page_length;
712 }
713
714out_unpin_object:
715 i915_gem_object_unpin(obj);
716out_unlock:
717 mutex_unlock(&dev->struct_mutex);
718out_unpin_pages:
719 for (i = 0; i < pinned_pages; i++)
720 page_cache_release(user_pages[i]);
8e7d2b2c 721 drm_free_large(user_pages);
3de09aa3
EA
722
723 return ret;
724}
725
40123c1f
EA
726/**
727 * This is the fast shmem pwrite path, which attempts to directly
728 * copy_from_user into the kmapped pages backing the object.
729 */
3043c60c 730static int
40123c1f
EA
731i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file_priv)
673a394b 734{
40123c1f
EA
735 struct drm_i915_gem_object *obj_priv = obj->driver_private;
736 ssize_t remain;
737 loff_t offset, page_base;
738 char __user *user_data;
739 int page_offset, page_length;
673a394b 740 int ret;
40123c1f
EA
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
673a394b
EA
744
745 mutex_lock(&dev->struct_mutex);
746
40123c1f
EA
747 ret = i915_gem_object_get_pages(obj);
748 if (ret != 0)
749 goto fail_unlock;
673a394b 750
e47c68e9 751 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
752 if (ret != 0)
753 goto fail_put_pages;
754
755 obj_priv = obj->driver_private;
756 offset = args->offset;
757 obj_priv->dirty = 1;
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
765 */
766 page_base = (offset & ~(PAGE_SIZE-1));
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
772 ret = fast_shmem_write(obj_priv->pages,
773 page_base, page_offset,
774 user_data, page_length);
775 if (ret)
776 goto fail_put_pages;
777
778 remain -= page_length;
779 user_data += page_length;
780 offset += page_length;
781 }
782
783fail_put_pages:
784 i915_gem_object_put_pages(obj);
785fail_unlock:
786 mutex_unlock(&dev->struct_mutex);
787
788 return ret;
789}
790
791/**
792 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793 * the memory and maps it using kmap_atomic for copying.
794 *
795 * This avoids taking mmap_sem for faulting on the user's address while the
796 * struct_mutex is held.
797 */
798static int
799i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800 struct drm_i915_gem_pwrite *args,
801 struct drm_file *file_priv)
802{
803 struct drm_i915_gem_object *obj_priv = obj->driver_private;
804 struct mm_struct *mm = current->mm;
805 struct page **user_pages;
806 ssize_t remain;
807 loff_t offset, pinned_pages, i;
808 loff_t first_data_page, last_data_page, num_pages;
809 int shmem_page_index, shmem_page_offset;
810 int data_page_index, data_page_offset;
811 int page_length;
812 int ret;
813 uint64_t data_ptr = args->data_ptr;
280b713b 814 int do_bit17_swizzling;
40123c1f
EA
815
816 remain = args->size;
817
818 /* Pin the user pages containing the data. We can't fault while
819 * holding the struct mutex, and all of the pwrite implementations
820 * want to hold it while dereferencing the user data.
821 */
822 first_data_page = data_ptr / PAGE_SIZE;
823 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824 num_pages = last_data_page - first_data_page + 1;
825
8e7d2b2c 826 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
827 if (user_pages == NULL)
828 return -ENOMEM;
829
830 down_read(&mm->mmap_sem);
831 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832 num_pages, 0, 0, user_pages, NULL);
833 up_read(&mm->mmap_sem);
834 if (pinned_pages < num_pages) {
835 ret = -EFAULT;
836 goto fail_put_user_pages;
673a394b
EA
837 }
838
280b713b
EA
839 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
40123c1f
EA
841 mutex_lock(&dev->struct_mutex);
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret != 0)
845 goto fail_unlock;
846
847 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848 if (ret != 0)
849 goto fail_put_pages;
850
851 obj_priv = obj->driver_private;
673a394b 852 offset = args->offset;
40123c1f 853 obj_priv->dirty = 1;
673a394b 854
40123c1f
EA
855 while (remain > 0) {
856 /* Operation in this page
857 *
858 * shmem_page_index = page number within shmem file
859 * shmem_page_offset = offset within page in shmem file
860 * data_page_index = page number in get_user_pages return
861 * data_page_offset = offset with data_page_index page.
862 * page_length = bytes to copy for this page
863 */
864 shmem_page_index = offset / PAGE_SIZE;
865 shmem_page_offset = offset & ~PAGE_MASK;
866 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867 data_page_offset = data_ptr & ~PAGE_MASK;
868
869 page_length = remain;
870 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871 page_length = PAGE_SIZE - shmem_page_offset;
872 if ((data_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - data_page_offset;
874
280b713b
EA
875 if (do_bit17_swizzling) {
876 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877 shmem_page_offset,
878 user_pages[data_page_index],
879 data_page_offset,
880 page_length,
881 0);
882 } else {
883 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
887 page_length);
888 }
40123c1f
EA
889 if (ret)
890 goto fail_put_pages;
891
892 remain -= page_length;
893 data_ptr += page_length;
894 offset += page_length;
673a394b
EA
895 }
896
40123c1f
EA
897fail_put_pages:
898 i915_gem_object_put_pages(obj);
899fail_unlock:
673a394b 900 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
901fail_put_user_pages:
902 for (i = 0; i < pinned_pages; i++)
903 page_cache_release(user_pages[i]);
8e7d2b2c 904 drm_free_large(user_pages);
673a394b 905
40123c1f 906 return ret;
673a394b
EA
907}
908
909/**
910 * Writes data to the object referenced by handle.
911 *
912 * On error, the contents of the buffer that were to be modified are undefined.
913 */
914int
915i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916 struct drm_file *file_priv)
917{
918 struct drm_i915_gem_pwrite *args = data;
919 struct drm_gem_object *obj;
920 struct drm_i915_gem_object *obj_priv;
921 int ret = 0;
922
923 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924 if (obj == NULL)
925 return -EBADF;
926 obj_priv = obj->driver_private;
927
928 /* Bounds check destination.
929 *
930 * XXX: This could use review for overflow issues...
931 */
932 if (args->offset > obj->size || args->size > obj->size ||
933 args->offset + args->size > obj->size) {
934 drm_gem_object_unreference(obj);
935 return -EINVAL;
936 }
937
938 /* We can only do the GTT pwrite on untiled buffers, as otherwise
939 * it would end up going through the fenced access, and we'll get
940 * different detiling behavior between reading and writing.
941 * pread/pwrite currently are reading and writing from the CPU
942 * perspective, requiring manual detiling by the client.
943 */
71acb5eb
DA
944 if (obj_priv->phys_obj)
945 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
3de09aa3
EA
947 dev->gtt_total != 0) {
948 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949 if (ret == -EFAULT) {
950 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951 file_priv);
952 }
280b713b
EA
953 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
955 } else {
956 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957 if (ret == -EFAULT) {
958 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959 file_priv);
960 }
961 }
673a394b
EA
962
963#if WATCH_PWRITE
964 if (ret)
965 DRM_INFO("pwrite failed %d\n", ret);
966#endif
967
968 drm_gem_object_unreference(obj);
969
970 return ret;
971}
972
973/**
2ef7eeaa
EA
974 * Called when user space prepares to use an object with the CPU, either
975 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
976 */
977int
978i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file_priv)
980{
a09ba7fa 981 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
2ef7eeaa
EA
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
673a394b
EA
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
2ef7eeaa 991 /* Only handle setting domains to types used by the CPU. */
21d509e3 992 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
993 return -EINVAL;
994
21d509e3 995 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
673a394b
EA
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009#if WATCH_BUF
cfd43c02 1010 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1011 obj, obj->size, read_domains, write_domain);
673a394b 1012#endif
2ef7eeaa 1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
a09ba7fa
EA
1014 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1015
2ef7eeaa 1016 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1017
a09ba7fa
EA
1018 /* Update the LRU on the fence for the CPU access that's
1019 * about to occur.
1020 */
1021 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1022 list_move_tail(&obj_priv->fence_list,
1023 &dev_priv->mm.fence_list);
1024 }
1025
02354392
EA
1026 /* Silently promote "you're not bound, there was nothing to do"
1027 * to success, since the client was just asking us to
1028 * make sure everything was done.
1029 */
1030 if (ret == -EINVAL)
1031 ret = 0;
2ef7eeaa 1032 } else {
e47c68e9 1033 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1034 }
1035
673a394b
EA
1036 drm_gem_object_unreference(obj);
1037 mutex_unlock(&dev->struct_mutex);
1038 return ret;
1039}
1040
1041/**
1042 * Called when user space has done writes to this buffer
1043 */
1044int
1045i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file_priv)
1047{
1048 struct drm_i915_gem_sw_finish *args = data;
1049 struct drm_gem_object *obj;
1050 struct drm_i915_gem_object *obj_priv;
1051 int ret = 0;
1052
1053 if (!(dev->driver->driver_features & DRIVER_GEM))
1054 return -ENODEV;
1055
1056 mutex_lock(&dev->struct_mutex);
1057 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1058 if (obj == NULL) {
1059 mutex_unlock(&dev->struct_mutex);
1060 return -EBADF;
1061 }
1062
1063#if WATCH_BUF
cfd43c02 1064 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1065 __func__, args->handle, obj, obj->size);
1066#endif
1067 obj_priv = obj->driver_private;
1068
1069 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1070 if (obj_priv->pin_count)
1071 i915_gem_object_flush_cpu_write_domain(obj);
1072
673a394b
EA
1073 drm_gem_object_unreference(obj);
1074 mutex_unlock(&dev->struct_mutex);
1075 return ret;
1076}
1077
1078/**
1079 * Maps the contents of an object, returning the address it is mapped
1080 * into.
1081 *
1082 * While the mapping holds a reference on the contents of the object, it doesn't
1083 * imply a ref on the object itself.
1084 */
1085int
1086i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1087 struct drm_file *file_priv)
1088{
1089 struct drm_i915_gem_mmap *args = data;
1090 struct drm_gem_object *obj;
1091 loff_t offset;
1092 unsigned long addr;
1093
1094 if (!(dev->driver->driver_features & DRIVER_GEM))
1095 return -ENODEV;
1096
1097 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1098 if (obj == NULL)
1099 return -EBADF;
1100
1101 offset = args->offset;
1102
1103 down_write(&current->mm->mmap_sem);
1104 addr = do_mmap(obj->filp, 0, args->size,
1105 PROT_READ | PROT_WRITE, MAP_SHARED,
1106 args->offset);
1107 up_write(&current->mm->mmap_sem);
1108 mutex_lock(&dev->struct_mutex);
1109 drm_gem_object_unreference(obj);
1110 mutex_unlock(&dev->struct_mutex);
1111 if (IS_ERR((void *)addr))
1112 return addr;
1113
1114 args->addr_ptr = (uint64_t) addr;
1115
1116 return 0;
1117}
1118
de151cf6
JB
1119/**
1120 * i915_gem_fault - fault a page into the GTT
1121 * vma: VMA in question
1122 * vmf: fault info
1123 *
1124 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1125 * from userspace. The fault handler takes care of binding the object to
1126 * the GTT (if needed), allocating and programming a fence register (again,
1127 * only if needed based on whether the old reg is still valid or the object
1128 * is tiled) and inserting a new PTE into the faulting process.
1129 *
1130 * Note that the faulting process may involve evicting existing objects
1131 * from the GTT and/or fence registers to make room. So performance may
1132 * suffer if the GTT working set is large or there are few fence registers
1133 * left.
1134 */
1135int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1136{
1137 struct drm_gem_object *obj = vma->vm_private_data;
1138 struct drm_device *dev = obj->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1141 pgoff_t page_offset;
1142 unsigned long pfn;
1143 int ret = 0;
0f973f27 1144 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1145
1146 /* We don't use vmf->pgoff since that has the fake offset */
1147 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1148 PAGE_SHIFT;
1149
1150 /* Now bind it into the GTT if needed */
1151 mutex_lock(&dev->struct_mutex);
1152 if (!obj_priv->gtt_space) {
1153 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1154 if (ret) {
1155 mutex_unlock(&dev->struct_mutex);
1156 return VM_FAULT_SIGBUS;
1157 }
07f4f3e8
KH
1158
1159 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1160 if (ret) {
1161 mutex_unlock(&dev->struct_mutex);
1162 return VM_FAULT_SIGBUS;
1163 }
1164
14b60391 1165 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1166 }
1167
1168 /* Need a new fence register? */
a09ba7fa 1169 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1170 ret = i915_gem_object_get_fence_reg(obj);
7d8d58b2
CW
1171 if (ret) {
1172 mutex_unlock(&dev->struct_mutex);
d9ddcb96 1173 return VM_FAULT_SIGBUS;
7d8d58b2 1174 }
d9ddcb96 1175 }
de151cf6
JB
1176
1177 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1178 page_offset;
1179
1180 /* Finally, remap it using the new GTT offset */
1181 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1182
1183 mutex_unlock(&dev->struct_mutex);
1184
1185 switch (ret) {
1186 case -ENOMEM:
1187 case -EAGAIN:
1188 return VM_FAULT_OOM;
1189 case -EFAULT:
959b887c 1190 case -EINVAL:
de151cf6
JB
1191 return VM_FAULT_SIGBUS;
1192 default:
1193 return VM_FAULT_NOPAGE;
1194 }
1195}
1196
1197/**
1198 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1199 * @obj: obj in question
1200 *
1201 * GEM memory mapping works by handing back to userspace a fake mmap offset
1202 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1203 * up the object based on the offset and sets up the various memory mapping
1204 * structures.
1205 *
1206 * This routine allocates and attaches a fake offset for @obj.
1207 */
1208static int
1209i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1210{
1211 struct drm_device *dev = obj->dev;
1212 struct drm_gem_mm *mm = dev->mm_private;
1213 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1214 struct drm_map_list *list;
f77d390c 1215 struct drm_local_map *map;
de151cf6
JB
1216 int ret = 0;
1217
1218 /* Set the object up for mmap'ing */
1219 list = &obj->map_list;
9a298b2a 1220 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1221 if (!list->map)
1222 return -ENOMEM;
1223
1224 map = list->map;
1225 map->type = _DRM_GEM;
1226 map->size = obj->size;
1227 map->handle = obj;
1228
1229 /* Get a DRM GEM mmap offset allocated... */
1230 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1231 obj->size / PAGE_SIZE, 0, 0);
1232 if (!list->file_offset_node) {
1233 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1234 ret = -ENOMEM;
1235 goto out_free_list;
1236 }
1237
1238 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1239 obj->size / PAGE_SIZE, 0);
1240 if (!list->file_offset_node) {
1241 ret = -ENOMEM;
1242 goto out_free_list;
1243 }
1244
1245 list->hash.key = list->file_offset_node->start;
1246 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1247 DRM_ERROR("failed to add to map hash\n");
1248 goto out_free_mm;
1249 }
1250
1251 /* By now we should be all set, any drm_mmap request on the offset
1252 * below will get to our mmap & fault handler */
1253 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1254
1255 return 0;
1256
1257out_free_mm:
1258 drm_mm_put_block(list->file_offset_node);
1259out_free_list:
9a298b2a 1260 kfree(list->map);
de151cf6
JB
1261
1262 return ret;
1263}
1264
901782b2
CW
1265/**
1266 * i915_gem_release_mmap - remove physical page mappings
1267 * @obj: obj in question
1268 *
1269 * Preserve the reservation of the mmaping with the DRM core code, but
1270 * relinquish ownership of the pages back to the system.
1271 *
1272 * It is vital that we remove the page mapping if we have mapped a tiled
1273 * object through the GTT and then lose the fence register due to
1274 * resource pressure. Similarly if the object has been moved out of the
1275 * aperture, than pages mapped into userspace must be revoked. Removing the
1276 * mapping will then trigger a page fault on the next user access, allowing
1277 * fixup by i915_gem_fault().
1278 */
d05ca301 1279void
901782b2
CW
1280i915_gem_release_mmap(struct drm_gem_object *obj)
1281{
1282 struct drm_device *dev = obj->dev;
1283 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1284
1285 if (dev->dev_mapping)
1286 unmap_mapping_range(dev->dev_mapping,
1287 obj_priv->mmap_offset, obj->size, 1);
1288}
1289
ab00b3e5
JB
1290static void
1291i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1292{
1293 struct drm_device *dev = obj->dev;
1294 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1295 struct drm_gem_mm *mm = dev->mm_private;
1296 struct drm_map_list *list;
1297
1298 list = &obj->map_list;
1299 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1300
1301 if (list->file_offset_node) {
1302 drm_mm_put_block(list->file_offset_node);
1303 list->file_offset_node = NULL;
1304 }
1305
1306 if (list->map) {
9a298b2a 1307 kfree(list->map);
ab00b3e5
JB
1308 list->map = NULL;
1309 }
1310
1311 obj_priv->mmap_offset = 0;
1312}
1313
de151cf6
JB
1314/**
1315 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1316 * @obj: object to check
1317 *
1318 * Return the required GTT alignment for an object, taking into account
1319 * potential fence register mapping if needed.
1320 */
1321static uint32_t
1322i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1323{
1324 struct drm_device *dev = obj->dev;
1325 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1326 int start, i;
1327
1328 /*
1329 * Minimum alignment is 4k (GTT page size), but might be greater
1330 * if a fence register is needed for the object.
1331 */
1332 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1333 return 4096;
1334
1335 /*
1336 * Previous chips need to be aligned to the size of the smallest
1337 * fence register that can contain the object.
1338 */
1339 if (IS_I9XX(dev))
1340 start = 1024*1024;
1341 else
1342 start = 512*1024;
1343
1344 for (i = start; i < obj->size; i <<= 1)
1345 ;
1346
1347 return i;
1348}
1349
1350/**
1351 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1352 * @dev: DRM device
1353 * @data: GTT mapping ioctl data
1354 * @file_priv: GEM object info
1355 *
1356 * Simply returns the fake offset to userspace so it can mmap it.
1357 * The mmap call will end up in drm_gem_mmap(), which will set things
1358 * up so we can get faults in the handler above.
1359 *
1360 * The fault handler will take care of binding the object into the GTT
1361 * (since it may have been evicted to make room for something), allocating
1362 * a fence register, and mapping the appropriate aperture address into
1363 * userspace.
1364 */
1365int
1366i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1367 struct drm_file *file_priv)
1368{
1369 struct drm_i915_gem_mmap_gtt *args = data;
1370 struct drm_i915_private *dev_priv = dev->dev_private;
1371 struct drm_gem_object *obj;
1372 struct drm_i915_gem_object *obj_priv;
1373 int ret;
1374
1375 if (!(dev->driver->driver_features & DRIVER_GEM))
1376 return -ENODEV;
1377
1378 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1379 if (obj == NULL)
1380 return -EBADF;
1381
1382 mutex_lock(&dev->struct_mutex);
1383
1384 obj_priv = obj->driver_private;
1385
1386 if (!obj_priv->mmap_offset) {
1387 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1388 if (ret) {
1389 drm_gem_object_unreference(obj);
1390 mutex_unlock(&dev->struct_mutex);
de151cf6 1391 return ret;
13af1062 1392 }
de151cf6
JB
1393 }
1394
1395 args->offset = obj_priv->mmap_offset;
1396
1397 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1398
1399 /* Make sure the alignment is correct for fence regs etc */
1400 if (obj_priv->agp_mem &&
1401 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1402 drm_gem_object_unreference(obj);
1403 mutex_unlock(&dev->struct_mutex);
1404 return -EINVAL;
1405 }
1406
1407 /*
1408 * Pull it into the GTT so that we have a page list (makes the
1409 * initial fault faster and any subsequent flushing possible).
1410 */
1411 if (!obj_priv->agp_mem) {
1412 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1413 if (ret) {
1414 drm_gem_object_unreference(obj);
1415 mutex_unlock(&dev->struct_mutex);
1416 return ret;
1417 }
14b60391 1418 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1419 }
1420
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423
1424 return 0;
1425}
1426
6911a9b8 1427void
856fa198 1428i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b
EA
1429{
1430 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1431 int page_count = obj->size / PAGE_SIZE;
1432 int i;
1433
856fa198 1434 BUG_ON(obj_priv->pages_refcount == 0);
673a394b 1435
856fa198
EA
1436 if (--obj_priv->pages_refcount != 0)
1437 return;
673a394b 1438
280b713b
EA
1439 if (obj_priv->tiling_mode != I915_TILING_NONE)
1440 i915_gem_object_save_bit_17_swizzle(obj);
1441
673a394b 1442 for (i = 0; i < page_count; i++)
856fa198 1443 if (obj_priv->pages[i] != NULL) {
673a394b 1444 if (obj_priv->dirty)
856fa198
EA
1445 set_page_dirty(obj_priv->pages[i]);
1446 mark_page_accessed(obj_priv->pages[i]);
1447 page_cache_release(obj_priv->pages[i]);
673a394b
EA
1448 }
1449 obj_priv->dirty = 0;
1450
8e7d2b2c 1451 drm_free_large(obj_priv->pages);
856fa198 1452 obj_priv->pages = NULL;
673a394b
EA
1453}
1454
1455static void
ce44b0ea 1456i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
673a394b
EA
1457{
1458 struct drm_device *dev = obj->dev;
1459 drm_i915_private_t *dev_priv = dev->dev_private;
1460 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1461
1462 /* Add a reference if we're newly entering the active list. */
1463 if (!obj_priv->active) {
1464 drm_gem_object_reference(obj);
1465 obj_priv->active = 1;
1466 }
1467 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1468 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1469 list_move_tail(&obj_priv->list,
1470 &dev_priv->mm.active_list);
5e118f41 1471 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1472 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1473}
1474
ce44b0ea
EA
1475static void
1476i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1477{
1478 struct drm_device *dev = obj->dev;
1479 drm_i915_private_t *dev_priv = dev->dev_private;
1480 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1481
1482 BUG_ON(!obj_priv->active);
1483 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1484 obj_priv->last_rendering_seqno = 0;
1485}
673a394b
EA
1486
1487static void
1488i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1489{
1490 struct drm_device *dev = obj->dev;
1491 drm_i915_private_t *dev_priv = dev->dev_private;
1492 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1493
1494 i915_verify_inactive(dev, __FILE__, __LINE__);
1495 if (obj_priv->pin_count != 0)
1496 list_del_init(&obj_priv->list);
1497 else
1498 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1499
ce44b0ea 1500 obj_priv->last_rendering_seqno = 0;
673a394b
EA
1501 if (obj_priv->active) {
1502 obj_priv->active = 0;
1503 drm_gem_object_unreference(obj);
1504 }
1505 i915_verify_inactive(dev, __FILE__, __LINE__);
1506}
1507
1508/**
1509 * Creates a new sequence number, emitting a write of it to the status page
1510 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1511 *
1512 * Must be called with struct_lock held.
1513 *
1514 * Returned sequence numbers are nonzero on success.
1515 */
1516static uint32_t
b962442e
EA
1517i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1518 uint32_t flush_domains)
673a394b
EA
1519{
1520 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1521 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1522 struct drm_i915_gem_request *request;
1523 uint32_t seqno;
1524 int was_empty;
1525 RING_LOCALS;
1526
b962442e
EA
1527 if (file_priv != NULL)
1528 i915_file_priv = file_priv->driver_priv;
1529
9a298b2a 1530 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1531 if (request == NULL)
1532 return 0;
1533
1534 /* Grab the seqno we're going to make this request be, and bump the
1535 * next (skipping 0 so it can be the reserved no-seqno value).
1536 */
1537 seqno = dev_priv->mm.next_gem_seqno;
1538 dev_priv->mm.next_gem_seqno++;
1539 if (dev_priv->mm.next_gem_seqno == 0)
1540 dev_priv->mm.next_gem_seqno++;
1541
1542 BEGIN_LP_RING(4);
1543 OUT_RING(MI_STORE_DWORD_INDEX);
1544 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1545 OUT_RING(seqno);
1546
1547 OUT_RING(MI_USER_INTERRUPT);
1548 ADVANCE_LP_RING();
1549
1550 DRM_DEBUG("%d\n", seqno);
1551
1552 request->seqno = seqno;
1553 request->emitted_jiffies = jiffies;
673a394b
EA
1554 was_empty = list_empty(&dev_priv->mm.request_list);
1555 list_add_tail(&request->list, &dev_priv->mm.request_list);
b962442e
EA
1556 if (i915_file_priv) {
1557 list_add_tail(&request->client_list,
1558 &i915_file_priv->mm.request_list);
1559 } else {
1560 INIT_LIST_HEAD(&request->client_list);
1561 }
673a394b 1562
ce44b0ea
EA
1563 /* Associate any objects on the flushing list matching the write
1564 * domain we're flushing with our flush.
1565 */
1566 if (flush_domains != 0) {
1567 struct drm_i915_gem_object *obj_priv, *next;
1568
1569 list_for_each_entry_safe(obj_priv, next,
1570 &dev_priv->mm.flushing_list, list) {
1571 struct drm_gem_object *obj = obj_priv->obj;
1572
1573 if ((obj->write_domain & flush_domains) ==
1574 obj->write_domain) {
1575 obj->write_domain = 0;
1576 i915_gem_object_move_to_active(obj, seqno);
1577 }
1578 }
1579
1580 }
1581
6dbe2772 1582 if (was_empty && !dev_priv->mm.suspended)
9c9fe1f8 1583 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1584 return seqno;
1585}
1586
1587/**
1588 * Command execution barrier
1589 *
1590 * Ensures that all commands in the ring are finished
1591 * before signalling the CPU
1592 */
3043c60c 1593static uint32_t
673a394b
EA
1594i915_retire_commands(struct drm_device *dev)
1595{
1596 drm_i915_private_t *dev_priv = dev->dev_private;
1597 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1598 uint32_t flush_domains = 0;
1599 RING_LOCALS;
1600
1601 /* The sampler always gets flushed on i965 (sigh) */
1602 if (IS_I965G(dev))
1603 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1604 BEGIN_LP_RING(2);
1605 OUT_RING(cmd);
1606 OUT_RING(0); /* noop */
1607 ADVANCE_LP_RING();
1608 return flush_domains;
1609}
1610
1611/**
1612 * Moves buffers associated only with the given active seqno from the active
1613 * to inactive list, potentially freeing them.
1614 */
1615static void
1616i915_gem_retire_request(struct drm_device *dev,
1617 struct drm_i915_gem_request *request)
1618{
1619 drm_i915_private_t *dev_priv = dev->dev_private;
1620
1621 /* Move any buffers on the active list that are no longer referenced
1622 * by the ringbuffer to the flushing/inactive lists as appropriate.
1623 */
5e118f41 1624 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
1625 while (!list_empty(&dev_priv->mm.active_list)) {
1626 struct drm_gem_object *obj;
1627 struct drm_i915_gem_object *obj_priv;
1628
1629 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1630 struct drm_i915_gem_object,
1631 list);
1632 obj = obj_priv->obj;
1633
1634 /* If the seqno being retired doesn't match the oldest in the
1635 * list, then the oldest in the list must still be newer than
1636 * this seqno.
1637 */
1638 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1639 goto out;
de151cf6 1640
673a394b
EA
1641#if WATCH_LRU
1642 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1643 __func__, request->seqno, obj);
1644#endif
1645
ce44b0ea
EA
1646 if (obj->write_domain != 0)
1647 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1648 else {
1649 /* Take a reference on the object so it won't be
1650 * freed while the spinlock is held. The list
1651 * protection for this spinlock is safe when breaking
1652 * the lock like this since the next thing we do
1653 * is just get the head of the list again.
1654 */
1655 drm_gem_object_reference(obj);
673a394b 1656 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1657 spin_unlock(&dev_priv->mm.active_list_lock);
1658 drm_gem_object_unreference(obj);
1659 spin_lock(&dev_priv->mm.active_list_lock);
1660 }
673a394b 1661 }
5e118f41
CW
1662out:
1663 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1664}
1665
1666/**
1667 * Returns true if seq1 is later than seq2.
1668 */
1669static int
1670i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1671{
1672 return (int32_t)(seq1 - seq2) >= 0;
1673}
1674
1675uint32_t
1676i915_get_gem_seqno(struct drm_device *dev)
1677{
1678 drm_i915_private_t *dev_priv = dev->dev_private;
1679
1680 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1681}
1682
1683/**
1684 * This function clears the request list as sequence numbers are passed.
1685 */
1686void
1687i915_gem_retire_requests(struct drm_device *dev)
1688{
1689 drm_i915_private_t *dev_priv = dev->dev_private;
1690 uint32_t seqno;
1691
6c0594a3
KW
1692 if (!dev_priv->hw_status_page)
1693 return;
1694
673a394b
EA
1695 seqno = i915_get_gem_seqno(dev);
1696
1697 while (!list_empty(&dev_priv->mm.request_list)) {
1698 struct drm_i915_gem_request *request;
1699 uint32_t retiring_seqno;
1700
1701 request = list_first_entry(&dev_priv->mm.request_list,
1702 struct drm_i915_gem_request,
1703 list);
1704 retiring_seqno = request->seqno;
1705
1706 if (i915_seqno_passed(seqno, retiring_seqno) ||
1707 dev_priv->mm.wedged) {
1708 i915_gem_retire_request(dev, request);
1709
1710 list_del(&request->list);
b962442e 1711 list_del(&request->client_list);
9a298b2a 1712 kfree(request);
673a394b
EA
1713 } else
1714 break;
1715 }
1716}
1717
1718void
1719i915_gem_retire_work_handler(struct work_struct *work)
1720{
1721 drm_i915_private_t *dev_priv;
1722 struct drm_device *dev;
1723
1724 dev_priv = container_of(work, drm_i915_private_t,
1725 mm.retire_work.work);
1726 dev = dev_priv->dev;
1727
1728 mutex_lock(&dev->struct_mutex);
1729 i915_gem_retire_requests(dev);
6dbe2772
KP
1730 if (!dev_priv->mm.suspended &&
1731 !list_empty(&dev_priv->mm.request_list))
9c9fe1f8 1732 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1733 mutex_unlock(&dev->struct_mutex);
1734}
1735
1736/**
1737 * Waits for a sequence number to be signaled, and cleans up the
1738 * request and object lists appropriately for that event.
1739 */
3043c60c 1740static int
673a394b
EA
1741i915_wait_request(struct drm_device *dev, uint32_t seqno)
1742{
1743 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1744 u32 ier;
673a394b
EA
1745 int ret = 0;
1746
1747 BUG_ON(seqno == 0);
1748
1749 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
036a4a7d
ZW
1750 if (IS_IGDNG(dev))
1751 ier = I915_READ(DEIER) | I915_READ(GTIER);
1752 else
1753 ier = I915_READ(IER);
802c7eb6
JB
1754 if (!ier) {
1755 DRM_ERROR("something (likely vbetool) disabled "
1756 "interrupts, re-enabling\n");
1757 i915_driver_irq_preinstall(dev);
1758 i915_driver_irq_postinstall(dev);
1759 }
1760
673a394b
EA
1761 dev_priv->mm.waiting_gem_seqno = seqno;
1762 i915_user_irq_get(dev);
1763 ret = wait_event_interruptible(dev_priv->irq_queue,
1764 i915_seqno_passed(i915_get_gem_seqno(dev),
1765 seqno) ||
1766 dev_priv->mm.wedged);
1767 i915_user_irq_put(dev);
1768 dev_priv->mm.waiting_gem_seqno = 0;
1769 }
1770 if (dev_priv->mm.wedged)
1771 ret = -EIO;
1772
1773 if (ret && ret != -ERESTARTSYS)
1774 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1775 __func__, ret, seqno, i915_get_gem_seqno(dev));
1776
1777 /* Directly dispatch request retiring. While we have the work queue
1778 * to handle this, the waiter on a request often wants an associated
1779 * buffer to have made it to the inactive list, and we would need
1780 * a separate wait queue to handle that.
1781 */
1782 if (ret == 0)
1783 i915_gem_retire_requests(dev);
1784
1785 return ret;
1786}
1787
1788static void
1789i915_gem_flush(struct drm_device *dev,
1790 uint32_t invalidate_domains,
1791 uint32_t flush_domains)
1792{
1793 drm_i915_private_t *dev_priv = dev->dev_private;
1794 uint32_t cmd;
1795 RING_LOCALS;
1796
1797#if WATCH_EXEC
1798 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1799 invalidate_domains, flush_domains);
1800#endif
1801
1802 if (flush_domains & I915_GEM_DOMAIN_CPU)
1803 drm_agp_chipset_flush(dev);
1804
21d509e3 1805 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
673a394b
EA
1806 /*
1807 * read/write caches:
1808 *
1809 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1810 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1811 * also flushed at 2d versus 3d pipeline switches.
1812 *
1813 * read-only caches:
1814 *
1815 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1816 * MI_READ_FLUSH is set, and is always flushed on 965.
1817 *
1818 * I915_GEM_DOMAIN_COMMAND may not exist?
1819 *
1820 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1821 * invalidated when MI_EXE_FLUSH is set.
1822 *
1823 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1824 * invalidated with every MI_FLUSH.
1825 *
1826 * TLBs:
1827 *
1828 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1829 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1830 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1831 * are flushed at any MI_FLUSH.
1832 */
1833
1834 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1835 if ((invalidate_domains|flush_domains) &
1836 I915_GEM_DOMAIN_RENDER)
1837 cmd &= ~MI_NO_WRITE_FLUSH;
1838 if (!IS_I965G(dev)) {
1839 /*
1840 * On the 965, the sampler cache always gets flushed
1841 * and this bit is reserved.
1842 */
1843 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1844 cmd |= MI_READ_FLUSH;
1845 }
1846 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1847 cmd |= MI_EXE_FLUSH;
1848
1849#if WATCH_EXEC
1850 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1851#endif
1852 BEGIN_LP_RING(2);
1853 OUT_RING(cmd);
1854 OUT_RING(0); /* noop */
1855 ADVANCE_LP_RING();
1856 }
1857}
1858
1859/**
1860 * Ensures that all rendering to the object has completed and the object is
1861 * safe to unbind from the GTT or access from the CPU.
1862 */
1863static int
1864i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1865{
1866 struct drm_device *dev = obj->dev;
1867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1868 int ret;
1869
e47c68e9
EA
1870 /* This function only exists to support waiting for existing rendering,
1871 * not for emitting required flushes.
673a394b 1872 */
e47c68e9 1873 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1874
1875 /* If there is rendering queued on the buffer being evicted, wait for
1876 * it.
1877 */
1878 if (obj_priv->active) {
1879#if WATCH_BUF
1880 DRM_INFO("%s: object %p wait for seqno %08x\n",
1881 __func__, obj, obj_priv->last_rendering_seqno);
1882#endif
1883 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1884 if (ret != 0)
1885 return ret;
1886 }
1887
1888 return 0;
1889}
1890
1891/**
1892 * Unbinds an object from the GTT aperture.
1893 */
0f973f27 1894int
673a394b
EA
1895i915_gem_object_unbind(struct drm_gem_object *obj)
1896{
1897 struct drm_device *dev = obj->dev;
1898 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1899 int ret = 0;
1900
1901#if WATCH_BUF
1902 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1903 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1904#endif
1905 if (obj_priv->gtt_space == NULL)
1906 return 0;
1907
1908 if (obj_priv->pin_count != 0) {
1909 DRM_ERROR("Attempting to unbind pinned buffer\n");
1910 return -EINVAL;
1911 }
1912
673a394b
EA
1913 /* Move the object to the CPU domain to ensure that
1914 * any possible CPU writes while it's not in the GTT
1915 * are flushed when we go to remap it. This will
1916 * also ensure that all pending GPU writes are finished
1917 * before we unbind.
1918 */
e47c68e9 1919 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
673a394b 1920 if (ret) {
e47c68e9
EA
1921 if (ret != -ERESTARTSYS)
1922 DRM_ERROR("set_domain failed: %d\n", ret);
673a394b
EA
1923 return ret;
1924 }
1925
1926 if (obj_priv->agp_mem != NULL) {
1927 drm_unbind_agp(obj_priv->agp_mem);
1928 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1929 obj_priv->agp_mem = NULL;
1930 }
1931
1932 BUG_ON(obj_priv->active);
1933
de151cf6 1934 /* blow away mappings if mapped through GTT */
901782b2 1935 i915_gem_release_mmap(obj);
de151cf6
JB
1936
1937 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1938 i915_gem_clear_fence_reg(obj);
1939
856fa198 1940 i915_gem_object_put_pages(obj);
673a394b
EA
1941
1942 if (obj_priv->gtt_space) {
1943 atomic_dec(&dev->gtt_count);
1944 atomic_sub(obj->size, &dev->gtt_memory);
1945
1946 drm_mm_put_block(obj_priv->gtt_space);
1947 obj_priv->gtt_space = NULL;
1948 }
1949
1950 /* Remove ourselves from the LRU list if present. */
1951 if (!list_empty(&obj_priv->list))
1952 list_del_init(&obj_priv->list);
1953
1954 return 0;
1955}
1956
1957static int
1958i915_gem_evict_something(struct drm_device *dev)
1959{
1960 drm_i915_private_t *dev_priv = dev->dev_private;
1961 struct drm_gem_object *obj;
1962 struct drm_i915_gem_object *obj_priv;
1963 int ret = 0;
1964
1965 for (;;) {
1966 /* If there's an inactive buffer available now, grab it
1967 * and be done.
1968 */
1969 if (!list_empty(&dev_priv->mm.inactive_list)) {
1970 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1971 struct drm_i915_gem_object,
1972 list);
1973 obj = obj_priv->obj;
1974 BUG_ON(obj_priv->pin_count != 0);
1975#if WATCH_LRU
1976 DRM_INFO("%s: evicting %p\n", __func__, obj);
1977#endif
1978 BUG_ON(obj_priv->active);
1979
1980 /* Wait on the rendering and unbind the buffer. */
1981 ret = i915_gem_object_unbind(obj);
1982 break;
1983 }
1984
1985 /* If we didn't get anything, but the ring is still processing
1986 * things, wait for one of those things to finish and hopefully
1987 * leave us a buffer to evict.
1988 */
1989 if (!list_empty(&dev_priv->mm.request_list)) {
1990 struct drm_i915_gem_request *request;
1991
1992 request = list_first_entry(&dev_priv->mm.request_list,
1993 struct drm_i915_gem_request,
1994 list);
1995
1996 ret = i915_wait_request(dev, request->seqno);
1997 if (ret)
1998 break;
1999
2000 /* if waiting caused an object to become inactive,
2001 * then loop around and wait for it. Otherwise, we
2002 * assume that waiting freed and unbound something,
2003 * so there should now be some space in the GTT
2004 */
2005 if (!list_empty(&dev_priv->mm.inactive_list))
2006 continue;
2007 break;
2008 }
2009
2010 /* If we didn't have anything on the request list but there
2011 * are buffers awaiting a flush, emit one and try again.
2012 * When we wait on it, those buffers waiting for that flush
2013 * will get moved to inactive.
2014 */
2015 if (!list_empty(&dev_priv->mm.flushing_list)) {
2016 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2017 struct drm_i915_gem_object,
2018 list);
2019 obj = obj_priv->obj;
2020
2021 i915_gem_flush(dev,
2022 obj->write_domain,
2023 obj->write_domain);
b962442e 2024 i915_add_request(dev, NULL, obj->write_domain);
673a394b
EA
2025
2026 obj = NULL;
2027 continue;
2028 }
2029
2030 DRM_ERROR("inactive empty %d request empty %d "
2031 "flushing empty %d\n",
2032 list_empty(&dev_priv->mm.inactive_list),
2033 list_empty(&dev_priv->mm.request_list),
2034 list_empty(&dev_priv->mm.flushing_list));
2035 /* If we didn't do any of the above, there's nothing to be done
2036 * and we just can't fit it in.
2037 */
2939e1f5 2038 return -ENOSPC;
673a394b
EA
2039 }
2040 return ret;
2041}
2042
ac94a962
KP
2043static int
2044i915_gem_evict_everything(struct drm_device *dev)
2045{
2046 int ret;
2047
2048 for (;;) {
2049 ret = i915_gem_evict_something(dev);
2050 if (ret != 0)
2051 break;
2052 }
2939e1f5 2053 if (ret == -ENOSPC)
15c35334 2054 return 0;
ac94a962
KP
2055 return ret;
2056}
2057
6911a9b8 2058int
856fa198 2059i915_gem_object_get_pages(struct drm_gem_object *obj)
673a394b
EA
2060{
2061 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2062 int page_count, i;
2063 struct address_space *mapping;
2064 struct inode *inode;
2065 struct page *page;
2066 int ret;
2067
856fa198 2068 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2069 return 0;
2070
2071 /* Get the list of pages out of our struct file. They'll be pinned
2072 * at this point until we release them.
2073 */
2074 page_count = obj->size / PAGE_SIZE;
856fa198 2075 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2076 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2077 if (obj_priv->pages == NULL) {
673a394b 2078 DRM_ERROR("Faled to allocate page list\n");
856fa198 2079 obj_priv->pages_refcount--;
673a394b
EA
2080 return -ENOMEM;
2081 }
2082
2083 inode = obj->filp->f_path.dentry->d_inode;
2084 mapping = inode->i_mapping;
2085 for (i = 0; i < page_count; i++) {
2086 page = read_mapping_page(mapping, i, NULL);
2087 if (IS_ERR(page)) {
2088 ret = PTR_ERR(page);
2089 DRM_ERROR("read_mapping_page failed: %d\n", ret);
856fa198 2090 i915_gem_object_put_pages(obj);
673a394b
EA
2091 return ret;
2092 }
856fa198 2093 obj_priv->pages[i] = page;
673a394b 2094 }
280b713b
EA
2095
2096 if (obj_priv->tiling_mode != I915_TILING_NONE)
2097 i915_gem_object_do_bit_17_swizzle(obj);
2098
673a394b
EA
2099 return 0;
2100}
2101
de151cf6
JB
2102static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2103{
2104 struct drm_gem_object *obj = reg->obj;
2105 struct drm_device *dev = obj->dev;
2106 drm_i915_private_t *dev_priv = dev->dev_private;
2107 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2108 int regnum = obj_priv->fence_reg;
2109 uint64_t val;
2110
2111 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2112 0xfffff000) << 32;
2113 val |= obj_priv->gtt_offset & 0xfffff000;
2114 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2115 if (obj_priv->tiling_mode == I915_TILING_Y)
2116 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2117 val |= I965_FENCE_REG_VALID;
2118
2119 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2120}
2121
2122static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2123{
2124 struct drm_gem_object *obj = reg->obj;
2125 struct drm_device *dev = obj->dev;
2126 drm_i915_private_t *dev_priv = dev->dev_private;
2127 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2128 int regnum = obj_priv->fence_reg;
0f973f27 2129 int tile_width;
dc529a4f 2130 uint32_t fence_reg, val;
de151cf6
JB
2131 uint32_t pitch_val;
2132
2133 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2134 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2135 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2136 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2137 return;
2138 }
2139
0f973f27
JB
2140 if (obj_priv->tiling_mode == I915_TILING_Y &&
2141 HAS_128_BYTE_Y_TILING(dev))
2142 tile_width = 128;
de151cf6 2143 else
0f973f27
JB
2144 tile_width = 512;
2145
2146 /* Note: pitch better be a power of two tile widths */
2147 pitch_val = obj_priv->stride / tile_width;
2148 pitch_val = ffs(pitch_val) - 1;
de151cf6
JB
2149
2150 val = obj_priv->gtt_offset;
2151 if (obj_priv->tiling_mode == I915_TILING_Y)
2152 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2153 val |= I915_FENCE_SIZE_BITS(obj->size);
2154 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2155 val |= I830_FENCE_REG_VALID;
2156
dc529a4f
EA
2157 if (regnum < 8)
2158 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2159 else
2160 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2161 I915_WRITE(fence_reg, val);
de151cf6
JB
2162}
2163
2164static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2165{
2166 struct drm_gem_object *obj = reg->obj;
2167 struct drm_device *dev = obj->dev;
2168 drm_i915_private_t *dev_priv = dev->dev_private;
2169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2170 int regnum = obj_priv->fence_reg;
2171 uint32_t val;
2172 uint32_t pitch_val;
8d7773a3 2173 uint32_t fence_size_bits;
de151cf6 2174
8d7773a3 2175 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2176 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2177 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2178 __func__, obj_priv->gtt_offset);
de151cf6
JB
2179 return;
2180 }
2181
e76a16de
EA
2182 pitch_val = obj_priv->stride / 128;
2183 pitch_val = ffs(pitch_val) - 1;
2184 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2185
de151cf6
JB
2186 val = obj_priv->gtt_offset;
2187 if (obj_priv->tiling_mode == I915_TILING_Y)
2188 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2189 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2190 WARN_ON(fence_size_bits & ~0x00000f00);
2191 val |= fence_size_bits;
de151cf6
JB
2192 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2193 val |= I830_FENCE_REG_VALID;
2194
2195 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2196}
2197
2198/**
2199 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2200 * @obj: object to map through a fence reg
2201 *
2202 * When mapping objects through the GTT, userspace wants to be able to write
2203 * to them without having to worry about swizzling if the object is tiled.
2204 *
2205 * This function walks the fence regs looking for a free one for @obj,
2206 * stealing one if it can't find any.
2207 *
2208 * It then sets up the reg based on the object's properties: address, pitch
2209 * and tiling format.
2210 */
8c4b8c3f
CW
2211int
2212i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2213{
2214 struct drm_device *dev = obj->dev;
79e53945 2215 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
2216 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2217 struct drm_i915_fence_reg *reg = NULL;
fc7170ba
CW
2218 struct drm_i915_gem_object *old_obj_priv = NULL;
2219 int i, ret, avail;
de151cf6 2220
a09ba7fa
EA
2221 /* Just update our place in the LRU if our fence is getting used. */
2222 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2223 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2224 return 0;
2225 }
2226
de151cf6
JB
2227 switch (obj_priv->tiling_mode) {
2228 case I915_TILING_NONE:
2229 WARN(1, "allocating a fence for non-tiled object?\n");
2230 break;
2231 case I915_TILING_X:
0f973f27
JB
2232 if (!obj_priv->stride)
2233 return -EINVAL;
2234 WARN((obj_priv->stride & (512 - 1)),
2235 "object 0x%08x is X tiled but has non-512B pitch\n",
2236 obj_priv->gtt_offset);
de151cf6
JB
2237 break;
2238 case I915_TILING_Y:
0f973f27
JB
2239 if (!obj_priv->stride)
2240 return -EINVAL;
2241 WARN((obj_priv->stride & (128 - 1)),
2242 "object 0x%08x is Y tiled but has non-128B pitch\n",
2243 obj_priv->gtt_offset);
de151cf6
JB
2244 break;
2245 }
2246
2247 /* First try to find a free reg */
fc7170ba 2248 avail = 0;
de151cf6
JB
2249 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2250 reg = &dev_priv->fence_regs[i];
2251 if (!reg->obj)
2252 break;
fc7170ba
CW
2253
2254 old_obj_priv = reg->obj->driver_private;
2255 if (!old_obj_priv->pin_count)
2256 avail++;
de151cf6
JB
2257 }
2258
2259 /* None available, try to steal one or wait for a user to finish */
2260 if (i == dev_priv->num_fence_regs) {
a09ba7fa 2261 struct drm_gem_object *old_obj = NULL;
de151cf6 2262
fc7170ba 2263 if (avail == 0)
2939e1f5 2264 return -ENOSPC;
fc7170ba 2265
a09ba7fa
EA
2266 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2267 fence_list) {
2268 old_obj = old_obj_priv->obj;
d7619c4b 2269
d7619c4b
CW
2270 if (old_obj_priv->pin_count)
2271 continue;
2272
a09ba7fa
EA
2273 /* Take a reference, as otherwise the wait_rendering
2274 * below may cause the object to get freed out from
2275 * under us.
2276 */
2277 drm_gem_object_reference(old_obj);
2278
d7619c4b
CW
2279 /* i915 uses fences for GPU access to tiled buffers */
2280 if (IS_I965G(dev) || !old_obj_priv->active)
de151cf6 2281 break;
d7619c4b 2282
a09ba7fa
EA
2283 /* This brings the object to the head of the LRU if it
2284 * had been written to. The only way this should
2285 * result in us waiting longer than the expected
2286 * optimal amount of time is if there was a
2287 * fence-using buffer later that was read-only.
2288 */
2289 i915_gem_object_flush_gpu_write_domain(old_obj);
2290 ret = i915_gem_object_wait_rendering(old_obj);
58c2fb64
CW
2291 if (ret != 0) {
2292 drm_gem_object_unreference(old_obj);
d7619c4b 2293 return ret;
58c2fb64
CW
2294 }
2295
a09ba7fa 2296 break;
de151cf6
JB
2297 }
2298
2299 /*
2300 * Zap this virtual mapping so we can set up a fence again
2301 * for this object next time we need it.
2302 */
58c2fb64
CW
2303 i915_gem_release_mmap(old_obj);
2304
a09ba7fa 2305 i = old_obj_priv->fence_reg;
58c2fb64
CW
2306 reg = &dev_priv->fence_regs[i];
2307
de151cf6 2308 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2309 list_del_init(&old_obj_priv->fence_list);
58c2fb64 2310
a09ba7fa 2311 drm_gem_object_unreference(old_obj);
de151cf6
JB
2312 }
2313
2314 obj_priv->fence_reg = i;
a09ba7fa
EA
2315 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2316
de151cf6
JB
2317 reg->obj = obj;
2318
2319 if (IS_I965G(dev))
2320 i965_write_fence_reg(reg);
2321 else if (IS_I9XX(dev))
2322 i915_write_fence_reg(reg);
2323 else
2324 i830_write_fence_reg(reg);
d9ddcb96
EA
2325
2326 return 0;
de151cf6
JB
2327}
2328
2329/**
2330 * i915_gem_clear_fence_reg - clear out fence register info
2331 * @obj: object to clear
2332 *
2333 * Zeroes out the fence register itself and clears out the associated
2334 * data structures in dev_priv and obj_priv.
2335 */
2336static void
2337i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2338{
2339 struct drm_device *dev = obj->dev;
79e53945 2340 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342
2343 if (IS_I965G(dev))
2344 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
dc529a4f
EA
2345 else {
2346 uint32_t fence_reg;
2347
2348 if (obj_priv->fence_reg < 8)
2349 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2350 else
2351 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2352 8) * 4;
2353
2354 I915_WRITE(fence_reg, 0);
2355 }
de151cf6
JB
2356
2357 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2358 obj_priv->fence_reg = I915_FENCE_REG_NONE;
a09ba7fa 2359 list_del_init(&obj_priv->fence_list);
de151cf6
JB
2360}
2361
52dc7d32
CW
2362/**
2363 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2364 * to the buffer to finish, and then resets the fence register.
2365 * @obj: tiled object holding a fence register.
2366 *
2367 * Zeroes out the fence register itself and clears out the associated
2368 * data structures in dev_priv and obj_priv.
2369 */
2370int
2371i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2372{
2373 struct drm_device *dev = obj->dev;
2374 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2375
2376 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2377 return 0;
2378
2379 /* On the i915, GPU access to tiled buffers is via a fence,
2380 * therefore we must wait for any outstanding access to complete
2381 * before clearing the fence.
2382 */
2383 if (!IS_I965G(dev)) {
2384 int ret;
2385
2386 i915_gem_object_flush_gpu_write_domain(obj);
2387 i915_gem_object_flush_gtt_write_domain(obj);
2388 ret = i915_gem_object_wait_rendering(obj);
2389 if (ret != 0)
2390 return ret;
2391 }
2392
2393 i915_gem_clear_fence_reg (obj);
2394
2395 return 0;
2396}
2397
673a394b
EA
2398/**
2399 * Finds free space in the GTT aperture and binds the object there.
2400 */
2401static int
2402i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2403{
2404 struct drm_device *dev = obj->dev;
2405 drm_i915_private_t *dev_priv = dev->dev_private;
2406 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2407 struct drm_mm_node *free_space;
2408 int page_count, ret;
2409
9bb2d6f9
EA
2410 if (dev_priv->mm.suspended)
2411 return -EBUSY;
673a394b 2412 if (alignment == 0)
0f973f27 2413 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2414 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2415 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2416 return -EINVAL;
2417 }
2418
2419 search_free:
2420 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2421 obj->size, alignment, 0);
2422 if (free_space != NULL) {
2423 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2424 alignment);
2425 if (obj_priv->gtt_space != NULL) {
2426 obj_priv->gtt_space->private = obj;
2427 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2428 }
2429 }
2430 if (obj_priv->gtt_space == NULL) {
5e118f41
CW
2431 bool lists_empty;
2432
673a394b
EA
2433 /* If the gtt is empty and we're still having trouble
2434 * fitting our object in, we're out of memory.
2435 */
2436#if WATCH_LRU
2437 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2438#endif
5e118f41
CW
2439 spin_lock(&dev_priv->mm.active_list_lock);
2440 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2441 list_empty(&dev_priv->mm.flushing_list) &&
2442 list_empty(&dev_priv->mm.active_list));
2443 spin_unlock(&dev_priv->mm.active_list_lock);
2444 if (lists_empty) {
673a394b 2445 DRM_ERROR("GTT full, but LRU list empty\n");
2939e1f5 2446 return -ENOSPC;
673a394b
EA
2447 }
2448
2449 ret = i915_gem_evict_something(dev);
2450 if (ret != 0) {
ac94a962
KP
2451 if (ret != -ERESTARTSYS)
2452 DRM_ERROR("Failed to evict a buffer %d\n", ret);
673a394b
EA
2453 return ret;
2454 }
2455 goto search_free;
2456 }
2457
2458#if WATCH_BUF
cfd43c02 2459 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2460 obj->size, obj_priv->gtt_offset);
2461#endif
856fa198 2462 ret = i915_gem_object_get_pages(obj);
673a394b
EA
2463 if (ret) {
2464 drm_mm_put_block(obj_priv->gtt_space);
2465 obj_priv->gtt_space = NULL;
2466 return ret;
2467 }
2468
2469 page_count = obj->size / PAGE_SIZE;
2470 /* Create an AGP memory structure pointing at our pages, and bind it
2471 * into the GTT.
2472 */
2473 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2474 obj_priv->pages,
673a394b 2475 page_count,
ba1eb1d8
KP
2476 obj_priv->gtt_offset,
2477 obj_priv->agp_type);
673a394b 2478 if (obj_priv->agp_mem == NULL) {
856fa198 2479 i915_gem_object_put_pages(obj);
673a394b
EA
2480 drm_mm_put_block(obj_priv->gtt_space);
2481 obj_priv->gtt_space = NULL;
2482 return -ENOMEM;
2483 }
2484 atomic_inc(&dev->gtt_count);
2485 atomic_add(obj->size, &dev->gtt_memory);
2486
2487 /* Assert that the object is not currently in any GPU domain. As it
2488 * wasn't in the GTT, there shouldn't be any way it could have been in
2489 * a GPU cache
2490 */
21d509e3
CW
2491 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2492 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b
EA
2493
2494 return 0;
2495}
2496
2497void
2498i915_gem_clflush_object(struct drm_gem_object *obj)
2499{
2500 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2501
2502 /* If we don't have a page list set up, then we're not pinned
2503 * to GPU, and we can ignore the cache flush because it'll happen
2504 * again at bind time.
2505 */
856fa198 2506 if (obj_priv->pages == NULL)
673a394b
EA
2507 return;
2508
cfa16a0d
EA
2509 /* XXX: The 865 in particular appears to be weird in how it handles
2510 * cache flushing. We haven't figured it out, but the
2511 * clflush+agp_chipset_flush doesn't appear to successfully get the
2512 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2513 */
2514 if (IS_I865G(obj->dev)) {
2515 wbinvd();
2516 return;
2517 }
2518
856fa198 2519 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2520}
2521
e47c68e9
EA
2522/** Flushes any GPU write domain for the object if it's dirty. */
2523static void
2524i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2525{
2526 struct drm_device *dev = obj->dev;
2527 uint32_t seqno;
2528
2529 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2530 return;
2531
2532 /* Queue the GPU write cache flushing we need. */
2533 i915_gem_flush(dev, 0, obj->write_domain);
b962442e 2534 seqno = i915_add_request(dev, NULL, obj->write_domain);
e47c68e9
EA
2535 obj->write_domain = 0;
2536 i915_gem_object_move_to_active(obj, seqno);
2537}
2538
2539/** Flushes the GTT write domain for the object if it's dirty. */
2540static void
2541i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2542{
2543 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2544 return;
2545
2546 /* No actual flushing is required for the GTT write domain. Writes
2547 * to it immediately go to main memory as far as we know, so there's
2548 * no chipset flush. It also doesn't land in render cache.
2549 */
2550 obj->write_domain = 0;
2551}
2552
2553/** Flushes the CPU write domain for the object if it's dirty. */
2554static void
2555i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2556{
2557 struct drm_device *dev = obj->dev;
2558
2559 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2560 return;
2561
2562 i915_gem_clflush_object(obj);
2563 drm_agp_chipset_flush(dev);
2564 obj->write_domain = 0;
2565}
2566
2ef7eeaa
EA
2567/**
2568 * Moves a single object to the GTT read, and possibly write domain.
2569 *
2570 * This function returns when the move is complete, including waiting on
2571 * flushes to occur.
2572 */
79e53945 2573int
2ef7eeaa
EA
2574i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2575{
2ef7eeaa 2576 struct drm_i915_gem_object *obj_priv = obj->driver_private;
e47c68e9 2577 int ret;
2ef7eeaa 2578
02354392
EA
2579 /* Not valid to be called on unbound objects. */
2580 if (obj_priv->gtt_space == NULL)
2581 return -EINVAL;
2582
e47c68e9
EA
2583 i915_gem_object_flush_gpu_write_domain(obj);
2584 /* Wait on any GPU rendering and flushing to occur. */
2585 ret = i915_gem_object_wait_rendering(obj);
2586 if (ret != 0)
2587 return ret;
2588
2589 /* If we're writing through the GTT domain, then CPU and GPU caches
2590 * will need to be invalidated at next use.
2ef7eeaa 2591 */
e47c68e9
EA
2592 if (write)
2593 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2594
e47c68e9 2595 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2596
e47c68e9
EA
2597 /* It should now be out of any other write domains, and we can update
2598 * the domain values for our changes.
2599 */
2600 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2601 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2602 if (write) {
2603 obj->write_domain = I915_GEM_DOMAIN_GTT;
2604 obj_priv->dirty = 1;
2ef7eeaa
EA
2605 }
2606
e47c68e9
EA
2607 return 0;
2608}
2609
2610/**
2611 * Moves a single object to the CPU read, and possibly write domain.
2612 *
2613 * This function returns when the move is complete, including waiting on
2614 * flushes to occur.
2615 */
2616static int
2617i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2618{
e47c68e9
EA
2619 int ret;
2620
2621 i915_gem_object_flush_gpu_write_domain(obj);
2ef7eeaa 2622 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2623 ret = i915_gem_object_wait_rendering(obj);
2624 if (ret != 0)
2625 return ret;
2ef7eeaa 2626
e47c68e9 2627 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2628
e47c68e9
EA
2629 /* If we have a partially-valid cache of the object in the CPU,
2630 * finish invalidating it and free the per-page flags.
2ef7eeaa 2631 */
e47c68e9 2632 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2633
e47c68e9
EA
2634 /* Flush the CPU cache if it's still invalid. */
2635 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2636 i915_gem_clflush_object(obj);
2ef7eeaa 2637
e47c68e9 2638 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2639 }
2640
2641 /* It should now be out of any other write domains, and we can update
2642 * the domain values for our changes.
2643 */
e47c68e9
EA
2644 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2645
2646 /* If we're writing through the CPU, then the GPU read domains will
2647 * need to be invalidated at next use.
2648 */
2649 if (write) {
2650 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2651 obj->write_domain = I915_GEM_DOMAIN_CPU;
2652 }
2ef7eeaa
EA
2653
2654 return 0;
2655}
2656
673a394b
EA
2657/*
2658 * Set the next domain for the specified object. This
2659 * may not actually perform the necessary flushing/invaliding though,
2660 * as that may want to be batched with other set_domain operations
2661 *
2662 * This is (we hope) the only really tricky part of gem. The goal
2663 * is fairly simple -- track which caches hold bits of the object
2664 * and make sure they remain coherent. A few concrete examples may
2665 * help to explain how it works. For shorthand, we use the notation
2666 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2667 * a pair of read and write domain masks.
2668 *
2669 * Case 1: the batch buffer
2670 *
2671 * 1. Allocated
2672 * 2. Written by CPU
2673 * 3. Mapped to GTT
2674 * 4. Read by GPU
2675 * 5. Unmapped from GTT
2676 * 6. Freed
2677 *
2678 * Let's take these a step at a time
2679 *
2680 * 1. Allocated
2681 * Pages allocated from the kernel may still have
2682 * cache contents, so we set them to (CPU, CPU) always.
2683 * 2. Written by CPU (using pwrite)
2684 * The pwrite function calls set_domain (CPU, CPU) and
2685 * this function does nothing (as nothing changes)
2686 * 3. Mapped by GTT
2687 * This function asserts that the object is not
2688 * currently in any GPU-based read or write domains
2689 * 4. Read by GPU
2690 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2691 * As write_domain is zero, this function adds in the
2692 * current read domains (CPU+COMMAND, 0).
2693 * flush_domains is set to CPU.
2694 * invalidate_domains is set to COMMAND
2695 * clflush is run to get data out of the CPU caches
2696 * then i915_dev_set_domain calls i915_gem_flush to
2697 * emit an MI_FLUSH and drm_agp_chipset_flush
2698 * 5. Unmapped from GTT
2699 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2700 * flush_domains and invalidate_domains end up both zero
2701 * so no flushing/invalidating happens
2702 * 6. Freed
2703 * yay, done
2704 *
2705 * Case 2: The shared render buffer
2706 *
2707 * 1. Allocated
2708 * 2. Mapped to GTT
2709 * 3. Read/written by GPU
2710 * 4. set_domain to (CPU,CPU)
2711 * 5. Read/written by CPU
2712 * 6. Read/written by GPU
2713 *
2714 * 1. Allocated
2715 * Same as last example, (CPU, CPU)
2716 * 2. Mapped to GTT
2717 * Nothing changes (assertions find that it is not in the GPU)
2718 * 3. Read/written by GPU
2719 * execbuffer calls set_domain (RENDER, RENDER)
2720 * flush_domains gets CPU
2721 * invalidate_domains gets GPU
2722 * clflush (obj)
2723 * MI_FLUSH and drm_agp_chipset_flush
2724 * 4. set_domain (CPU, CPU)
2725 * flush_domains gets GPU
2726 * invalidate_domains gets CPU
2727 * wait_rendering (obj) to make sure all drawing is complete.
2728 * This will include an MI_FLUSH to get the data from GPU
2729 * to memory
2730 * clflush (obj) to invalidate the CPU cache
2731 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2732 * 5. Read/written by CPU
2733 * cache lines are loaded and dirtied
2734 * 6. Read written by GPU
2735 * Same as last GPU access
2736 *
2737 * Case 3: The constant buffer
2738 *
2739 * 1. Allocated
2740 * 2. Written by CPU
2741 * 3. Read by GPU
2742 * 4. Updated (written) by CPU again
2743 * 5. Read by GPU
2744 *
2745 * 1. Allocated
2746 * (CPU, CPU)
2747 * 2. Written by CPU
2748 * (CPU, CPU)
2749 * 3. Read by GPU
2750 * (CPU+RENDER, 0)
2751 * flush_domains = CPU
2752 * invalidate_domains = RENDER
2753 * clflush (obj)
2754 * MI_FLUSH
2755 * drm_agp_chipset_flush
2756 * 4. Updated (written) by CPU again
2757 * (CPU, CPU)
2758 * flush_domains = 0 (no previous write domain)
2759 * invalidate_domains = 0 (no new read domains)
2760 * 5. Read by GPU
2761 * (CPU+RENDER, 0)
2762 * flush_domains = CPU
2763 * invalidate_domains = RENDER
2764 * clflush (obj)
2765 * MI_FLUSH
2766 * drm_agp_chipset_flush
2767 */
c0d90829 2768static void
8b0e378a 2769i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2770{
2771 struct drm_device *dev = obj->dev;
2772 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2773 uint32_t invalidate_domains = 0;
2774 uint32_t flush_domains = 0;
e47c68e9 2775
8b0e378a
EA
2776 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2777 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b
EA
2778
2779#if WATCH_BUF
2780 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2781 __func__, obj,
8b0e378a
EA
2782 obj->read_domains, obj->pending_read_domains,
2783 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2784#endif
2785 /*
2786 * If the object isn't moving to a new write domain,
2787 * let the object stay in multiple read domains
2788 */
8b0e378a
EA
2789 if (obj->pending_write_domain == 0)
2790 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2791 else
2792 obj_priv->dirty = 1;
2793
2794 /*
2795 * Flush the current write domain if
2796 * the new read domains don't match. Invalidate
2797 * any read domains which differ from the old
2798 * write domain
2799 */
8b0e378a
EA
2800 if (obj->write_domain &&
2801 obj->write_domain != obj->pending_read_domains) {
673a394b 2802 flush_domains |= obj->write_domain;
8b0e378a
EA
2803 invalidate_domains |=
2804 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2805 }
2806 /*
2807 * Invalidate any read caches which may have
2808 * stale data. That is, any new read domains.
2809 */
8b0e378a 2810 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2811 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2812#if WATCH_BUF
2813 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2814 __func__, flush_domains, invalidate_domains);
2815#endif
673a394b
EA
2816 i915_gem_clflush_object(obj);
2817 }
2818
efbeed96
EA
2819 /* The actual obj->write_domain will be updated with
2820 * pending_write_domain after we emit the accumulated flush for all
2821 * of our domain changes in execbuffers (which clears objects'
2822 * write_domains). So if we have a current write domain that we
2823 * aren't changing, set pending_write_domain to that.
2824 */
2825 if (flush_domains == 0 && obj->pending_write_domain == 0)
2826 obj->pending_write_domain = obj->write_domain;
8b0e378a 2827 obj->read_domains = obj->pending_read_domains;
673a394b
EA
2828
2829 dev->invalidate_domains |= invalidate_domains;
2830 dev->flush_domains |= flush_domains;
2831#if WATCH_BUF
2832 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2833 __func__,
2834 obj->read_domains, obj->write_domain,
2835 dev->invalidate_domains, dev->flush_domains);
2836#endif
673a394b
EA
2837}
2838
2839/**
e47c68e9 2840 * Moves the object from a partially CPU read to a full one.
673a394b 2841 *
e47c68e9
EA
2842 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2843 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 2844 */
e47c68e9
EA
2845static void
2846i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b
EA
2847{
2848 struct drm_i915_gem_object *obj_priv = obj->driver_private;
673a394b 2849
e47c68e9
EA
2850 if (!obj_priv->page_cpu_valid)
2851 return;
2852
2853 /* If we're partially in the CPU read domain, finish moving it in.
2854 */
2855 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2856 int i;
2857
2858 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2859 if (obj_priv->page_cpu_valid[i])
2860 continue;
856fa198 2861 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 2862 }
e47c68e9
EA
2863 }
2864
2865 /* Free the page_cpu_valid mappings which are now stale, whether
2866 * or not we've got I915_GEM_DOMAIN_CPU.
2867 */
9a298b2a 2868 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
2869 obj_priv->page_cpu_valid = NULL;
2870}
2871
2872/**
2873 * Set the CPU read domain on a range of the object.
2874 *
2875 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2876 * not entirely valid. The page_cpu_valid member of the object flags which
2877 * pages have been flushed, and will be respected by
2878 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2879 * of the whole object.
2880 *
2881 * This function returns when the move is complete, including waiting on
2882 * flushes to occur.
2883 */
2884static int
2885i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2886 uint64_t offset, uint64_t size)
2887{
2888 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2889 int i, ret;
673a394b 2890
e47c68e9
EA
2891 if (offset == 0 && size == obj->size)
2892 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 2893
e47c68e9
EA
2894 i915_gem_object_flush_gpu_write_domain(obj);
2895 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 2896 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 2897 if (ret != 0)
6a47baa6 2898 return ret;
e47c68e9
EA
2899 i915_gem_object_flush_gtt_write_domain(obj);
2900
2901 /* If we're already fully in the CPU read domain, we're done. */
2902 if (obj_priv->page_cpu_valid == NULL &&
2903 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2904 return 0;
673a394b 2905
e47c68e9
EA
2906 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2907 * newly adding I915_GEM_DOMAIN_CPU
2908 */
673a394b 2909 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
2910 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2911 GFP_KERNEL);
e47c68e9
EA
2912 if (obj_priv->page_cpu_valid == NULL)
2913 return -ENOMEM;
2914 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2915 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
2916
2917 /* Flush the cache on any pages that are still invalid from the CPU's
2918 * perspective.
2919 */
e47c68e9
EA
2920 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2921 i++) {
673a394b
EA
2922 if (obj_priv->page_cpu_valid[i])
2923 continue;
2924
856fa198 2925 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
2926
2927 obj_priv->page_cpu_valid[i] = 1;
2928 }
2929
e47c68e9
EA
2930 /* It should now be out of any other write domains, and we can update
2931 * the domain values for our changes.
2932 */
2933 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2934
2935 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2936
673a394b
EA
2937 return 0;
2938}
2939
673a394b
EA
2940/**
2941 * Pin an object to the GTT and evaluate the relocations landing in it.
2942 */
2943static int
2944i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2945 struct drm_file *file_priv,
40a5f0de
EA
2946 struct drm_i915_gem_exec_object *entry,
2947 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
2948{
2949 struct drm_device *dev = obj->dev;
0839ccb8 2950 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
2951 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2952 int i, ret;
0839ccb8 2953 void __iomem *reloc_page;
673a394b
EA
2954
2955 /* Choose the GTT offset for our buffer and put it there. */
2956 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2957 if (ret)
2958 return ret;
2959
2960 entry->offset = obj_priv->gtt_offset;
2961
673a394b
EA
2962 /* Apply the relocations, using the GTT aperture to avoid cache
2963 * flushing requirements.
2964 */
2965 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 2966 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
2967 struct drm_gem_object *target_obj;
2968 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
2969 uint32_t reloc_val, reloc_offset;
2970 uint32_t __iomem *reloc_entry;
673a394b 2971
673a394b 2972 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 2973 reloc->target_handle);
673a394b
EA
2974 if (target_obj == NULL) {
2975 i915_gem_object_unpin(obj);
2976 return -EBADF;
2977 }
2978 target_obj_priv = target_obj->driver_private;
2979
2980 /* The target buffer should have appeared before us in the
2981 * exec_object list, so it should have a GTT space bound by now.
2982 */
2983 if (target_obj_priv->gtt_space == NULL) {
2984 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 2985 reloc->target_handle);
673a394b
EA
2986 drm_gem_object_unreference(target_obj);
2987 i915_gem_object_unpin(obj);
2988 return -EINVAL;
2989 }
2990
40a5f0de 2991 if (reloc->offset > obj->size - 4) {
673a394b
EA
2992 DRM_ERROR("Relocation beyond object bounds: "
2993 "obj %p target %d offset %d size %d.\n",
40a5f0de
EA
2994 obj, reloc->target_handle,
2995 (int) reloc->offset, (int) obj->size);
673a394b
EA
2996 drm_gem_object_unreference(target_obj);
2997 i915_gem_object_unpin(obj);
2998 return -EINVAL;
2999 }
40a5f0de 3000 if (reloc->offset & 3) {
673a394b
EA
3001 DRM_ERROR("Relocation not 4-byte aligned: "
3002 "obj %p target %d offset %d.\n",
40a5f0de
EA
3003 obj, reloc->target_handle,
3004 (int) reloc->offset);
673a394b
EA
3005 drm_gem_object_unreference(target_obj);
3006 i915_gem_object_unpin(obj);
3007 return -EINVAL;
3008 }
3009
40a5f0de
EA
3010 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3011 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3012 DRM_ERROR("reloc with read/write CPU domains: "
3013 "obj %p target %d offset %d "
3014 "read %08x write %08x",
40a5f0de
EA
3015 obj, reloc->target_handle,
3016 (int) reloc->offset,
3017 reloc->read_domains,
3018 reloc->write_domain);
491152b8
CW
3019 drm_gem_object_unreference(target_obj);
3020 i915_gem_object_unpin(obj);
e47c68e9
EA
3021 return -EINVAL;
3022 }
3023
40a5f0de
EA
3024 if (reloc->write_domain && target_obj->pending_write_domain &&
3025 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3026 DRM_ERROR("Write domain conflict: "
3027 "obj %p target %d offset %d "
3028 "new %08x old %08x\n",
40a5f0de
EA
3029 obj, reloc->target_handle,
3030 (int) reloc->offset,
3031 reloc->write_domain,
673a394b
EA
3032 target_obj->pending_write_domain);
3033 drm_gem_object_unreference(target_obj);
3034 i915_gem_object_unpin(obj);
3035 return -EINVAL;
3036 }
3037
3038#if WATCH_RELOC
3039 DRM_INFO("%s: obj %p offset %08x target %d "
3040 "read %08x write %08x gtt %08x "
3041 "presumed %08x delta %08x\n",
3042 __func__,
3043 obj,
40a5f0de
EA
3044 (int) reloc->offset,
3045 (int) reloc->target_handle,
3046 (int) reloc->read_domains,
3047 (int) reloc->write_domain,
673a394b 3048 (int) target_obj_priv->gtt_offset,
40a5f0de
EA
3049 (int) reloc->presumed_offset,
3050 reloc->delta);
673a394b
EA
3051#endif
3052
40a5f0de
EA
3053 target_obj->pending_read_domains |= reloc->read_domains;
3054 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3055
3056 /* If the relocation already has the right value in it, no
3057 * more work needs to be done.
3058 */
40a5f0de 3059 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3060 drm_gem_object_unreference(target_obj);
3061 continue;
3062 }
3063
2ef7eeaa
EA
3064 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3065 if (ret != 0) {
3066 drm_gem_object_unreference(target_obj);
3067 i915_gem_object_unpin(obj);
3068 return -EINVAL;
673a394b
EA
3069 }
3070
3071 /* Map the page containing the relocation we're going to
3072 * perform.
3073 */
40a5f0de 3074 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3075 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3076 (reloc_offset &
3077 ~(PAGE_SIZE - 1)));
3043c60c 3078 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3079 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3080 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3081
3082#if WATCH_BUF
3083 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3084 obj, (unsigned int) reloc->offset,
673a394b
EA
3085 readl(reloc_entry), reloc_val);
3086#endif
3087 writel(reloc_val, reloc_entry);
0839ccb8 3088 io_mapping_unmap_atomic(reloc_page);
673a394b 3089
40a5f0de
EA
3090 /* The updated presumed offset for this entry will be
3091 * copied back out to the user.
673a394b 3092 */
40a5f0de 3093 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3094
3095 drm_gem_object_unreference(target_obj);
3096 }
3097
673a394b
EA
3098#if WATCH_BUF
3099 if (0)
3100 i915_gem_dump_object(obj, 128, __func__, ~0);
3101#endif
3102 return 0;
3103}
3104
3105/** Dispatch a batchbuffer to the ring
3106 */
3107static int
3108i915_dispatch_gem_execbuffer(struct drm_device *dev,
3109 struct drm_i915_gem_execbuffer *exec,
201361a5 3110 struct drm_clip_rect *cliprects,
673a394b
EA
3111 uint64_t exec_offset)
3112{
3113 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3114 int nbox = exec->num_cliprects;
3115 int i = 0, count;
83d60795 3116 uint32_t exec_start, exec_len;
673a394b
EA
3117 RING_LOCALS;
3118
3119 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3120 exec_len = (uint32_t) exec->batch_len;
3121
673a394b
EA
3122 count = nbox ? nbox : 1;
3123
3124 for (i = 0; i < count; i++) {
3125 if (i < nbox) {
201361a5 3126 int ret = i915_emit_box(dev, cliprects, i,
673a394b
EA
3127 exec->DR1, exec->DR4);
3128 if (ret)
3129 return ret;
3130 }
3131
3132 if (IS_I830(dev) || IS_845G(dev)) {
3133 BEGIN_LP_RING(4);
3134 OUT_RING(MI_BATCH_BUFFER);
3135 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3136 OUT_RING(exec_start + exec_len - 4);
3137 OUT_RING(0);
3138 ADVANCE_LP_RING();
3139 } else {
3140 BEGIN_LP_RING(2);
3141 if (IS_I965G(dev)) {
3142 OUT_RING(MI_BATCH_BUFFER_START |
3143 (2 << 6) |
3144 MI_BATCH_NON_SECURE_I965);
3145 OUT_RING(exec_start);
3146 } else {
3147 OUT_RING(MI_BATCH_BUFFER_START |
3148 (2 << 6));
3149 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3150 }
3151 ADVANCE_LP_RING();
3152 }
3153 }
3154
3155 /* XXX breadcrumb */
3156 return 0;
3157}
3158
3159/* Throttle our rendering by waiting until the ring has completed our requests
3160 * emitted over 20 msec ago.
3161 *
b962442e
EA
3162 * Note that if we were to use the current jiffies each time around the loop,
3163 * we wouldn't escape the function with any frames outstanding if the time to
3164 * render a frame was over 20ms.
3165 *
673a394b
EA
3166 * This should get us reasonable parallelism between CPU and GPU but also
3167 * relatively low latency when blocking on a particular request to finish.
3168 */
3169static int
3170i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3171{
3172 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3173 int ret = 0;
b962442e 3174 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3175
3176 mutex_lock(&dev->struct_mutex);
b962442e
EA
3177 while (!list_empty(&i915_file_priv->mm.request_list)) {
3178 struct drm_i915_gem_request *request;
3179
3180 request = list_first_entry(&i915_file_priv->mm.request_list,
3181 struct drm_i915_gem_request,
3182 client_list);
3183
3184 if (time_after_eq(request->emitted_jiffies, recent_enough))
3185 break;
3186
3187 ret = i915_wait_request(dev, request->seqno);
3188 if (ret != 0)
3189 break;
3190 }
673a394b 3191 mutex_unlock(&dev->struct_mutex);
b962442e 3192
673a394b
EA
3193 return ret;
3194}
3195
40a5f0de
EA
3196static int
3197i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3198 uint32_t buffer_count,
3199 struct drm_i915_gem_relocation_entry **relocs)
3200{
3201 uint32_t reloc_count = 0, reloc_index = 0, i;
3202 int ret;
3203
3204 *relocs = NULL;
3205 for (i = 0; i < buffer_count; i++) {
3206 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3207 return -EINVAL;
3208 reloc_count += exec_list[i].relocation_count;
3209 }
3210
8e7d2b2c 3211 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
40a5f0de
EA
3212 if (*relocs == NULL)
3213 return -ENOMEM;
3214
3215 for (i = 0; i < buffer_count; i++) {
3216 struct drm_i915_gem_relocation_entry __user *user_relocs;
3217
3218 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3219
3220 ret = copy_from_user(&(*relocs)[reloc_index],
3221 user_relocs,
3222 exec_list[i].relocation_count *
3223 sizeof(**relocs));
3224 if (ret != 0) {
8e7d2b2c 3225 drm_free_large(*relocs);
40a5f0de 3226 *relocs = NULL;
2bc43b5c 3227 return -EFAULT;
40a5f0de
EA
3228 }
3229
3230 reloc_index += exec_list[i].relocation_count;
3231 }
3232
2bc43b5c 3233 return 0;
40a5f0de
EA
3234}
3235
3236static int
3237i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3238 uint32_t buffer_count,
3239 struct drm_i915_gem_relocation_entry *relocs)
3240{
3241 uint32_t reloc_count = 0, i;
2bc43b5c 3242 int ret = 0;
40a5f0de
EA
3243
3244 for (i = 0; i < buffer_count; i++) {
3245 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3246 int unwritten;
40a5f0de
EA
3247
3248 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3249
2bc43b5c
FM
3250 unwritten = copy_to_user(user_relocs,
3251 &relocs[reloc_count],
3252 exec_list[i].relocation_count *
3253 sizeof(*relocs));
3254
3255 if (unwritten) {
3256 ret = -EFAULT;
3257 goto err;
40a5f0de
EA
3258 }
3259
3260 reloc_count += exec_list[i].relocation_count;
3261 }
3262
2bc43b5c 3263err:
8e7d2b2c 3264 drm_free_large(relocs);
40a5f0de
EA
3265
3266 return ret;
3267}
3268
83d60795
CW
3269static int
3270i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3271 uint64_t exec_offset)
3272{
3273 uint32_t exec_start, exec_len;
3274
3275 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3276 exec_len = (uint32_t) exec->batch_len;
3277
3278 if ((exec_start | exec_len) & 0x7)
3279 return -EINVAL;
3280
3281 if (!exec_start)
3282 return -EINVAL;
3283
3284 return 0;
3285}
3286
673a394b
EA
3287int
3288i915_gem_execbuffer(struct drm_device *dev, void *data,
3289 struct drm_file *file_priv)
3290{
3291 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3292 struct drm_i915_gem_execbuffer *args = data;
3293 struct drm_i915_gem_exec_object *exec_list = NULL;
3294 struct drm_gem_object **object_list = NULL;
3295 struct drm_gem_object *batch_obj;
b70d11da 3296 struct drm_i915_gem_object *obj_priv;
201361a5 3297 struct drm_clip_rect *cliprects = NULL;
40a5f0de
EA
3298 struct drm_i915_gem_relocation_entry *relocs;
3299 int ret, ret2, i, pinned = 0;
673a394b 3300 uint64_t exec_offset;
40a5f0de 3301 uint32_t seqno, flush_domains, reloc_index;
ac94a962 3302 int pin_tries;
673a394b
EA
3303
3304#if WATCH_EXEC
3305 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3306 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3307#endif
3308
4f481ed2
EA
3309 if (args->buffer_count < 1) {
3310 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3311 return -EINVAL;
3312 }
673a394b 3313 /* Copy in the exec list from userland */
8e7d2b2c
JB
3314 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3315 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
673a394b
EA
3316 if (exec_list == NULL || object_list == NULL) {
3317 DRM_ERROR("Failed to allocate exec or object list "
3318 "for %d buffers\n",
3319 args->buffer_count);
3320 ret = -ENOMEM;
3321 goto pre_mutex_err;
3322 }
3323 ret = copy_from_user(exec_list,
3324 (struct drm_i915_relocation_entry __user *)
3325 (uintptr_t) args->buffers_ptr,
3326 sizeof(*exec_list) * args->buffer_count);
3327 if (ret != 0) {
3328 DRM_ERROR("copy %d exec entries failed %d\n",
3329 args->buffer_count, ret);
3330 goto pre_mutex_err;
3331 }
3332
201361a5 3333 if (args->num_cliprects != 0) {
9a298b2a
EA
3334 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3335 GFP_KERNEL);
201361a5
EA
3336 if (cliprects == NULL)
3337 goto pre_mutex_err;
3338
3339 ret = copy_from_user(cliprects,
3340 (struct drm_clip_rect __user *)
3341 (uintptr_t) args->cliprects_ptr,
3342 sizeof(*cliprects) * args->num_cliprects);
3343 if (ret != 0) {
3344 DRM_ERROR("copy %d cliprects failed: %d\n",
3345 args->num_cliprects, ret);
3346 goto pre_mutex_err;
3347 }
3348 }
3349
40a5f0de
EA
3350 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3351 &relocs);
3352 if (ret != 0)
3353 goto pre_mutex_err;
3354
673a394b
EA
3355 mutex_lock(&dev->struct_mutex);
3356
3357 i915_verify_inactive(dev, __FILE__, __LINE__);
3358
3359 if (dev_priv->mm.wedged) {
3360 DRM_ERROR("Execbuf while wedged\n");
3361 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3362 ret = -EIO;
3363 goto pre_mutex_err;
673a394b
EA
3364 }
3365
3366 if (dev_priv->mm.suspended) {
3367 DRM_ERROR("Execbuf while VT-switched.\n");
3368 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3369 ret = -EBUSY;
3370 goto pre_mutex_err;
673a394b
EA
3371 }
3372
ac94a962 3373 /* Look up object handles */
673a394b
EA
3374 for (i = 0; i < args->buffer_count; i++) {
3375 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3376 exec_list[i].handle);
3377 if (object_list[i] == NULL) {
3378 DRM_ERROR("Invalid object handle %d at index %d\n",
3379 exec_list[i].handle, i);
3380 ret = -EBADF;
3381 goto err;
3382 }
b70d11da
KH
3383
3384 obj_priv = object_list[i]->driver_private;
3385 if (obj_priv->in_execbuffer) {
3386 DRM_ERROR("Object %p appears more than once in object list\n",
3387 object_list[i]);
3388 ret = -EBADF;
3389 goto err;
3390 }
3391 obj_priv->in_execbuffer = true;
ac94a962 3392 }
673a394b 3393
ac94a962
KP
3394 /* Pin and relocate */
3395 for (pin_tries = 0; ; pin_tries++) {
3396 ret = 0;
40a5f0de
EA
3397 reloc_index = 0;
3398
ac94a962
KP
3399 for (i = 0; i < args->buffer_count; i++) {
3400 object_list[i]->pending_read_domains = 0;
3401 object_list[i]->pending_write_domain = 0;
3402 ret = i915_gem_object_pin_and_relocate(object_list[i],
3403 file_priv,
40a5f0de
EA
3404 &exec_list[i],
3405 &relocs[reloc_index]);
ac94a962
KP
3406 if (ret)
3407 break;
3408 pinned = i + 1;
40a5f0de 3409 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3410 }
3411 /* success */
3412 if (ret == 0)
3413 break;
3414
3415 /* error other than GTT full, or we've already tried again */
2939e1f5 3416 if (ret != -ENOSPC || pin_tries >= 1) {
f1acec93
EA
3417 if (ret != -ERESTARTSYS)
3418 DRM_ERROR("Failed to pin buffers %d\n", ret);
673a394b
EA
3419 goto err;
3420 }
ac94a962
KP
3421
3422 /* unpin all of our buffers */
3423 for (i = 0; i < pinned; i++)
3424 i915_gem_object_unpin(object_list[i]);
b1177636 3425 pinned = 0;
ac94a962
KP
3426
3427 /* evict everyone we can from the aperture */
3428 ret = i915_gem_evict_everything(dev);
3429 if (ret)
3430 goto err;
673a394b
EA
3431 }
3432
3433 /* Set the pending read domains for the batch buffer to COMMAND */
3434 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3435 if (batch_obj->pending_write_domain) {
3436 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3437 ret = -EINVAL;
3438 goto err;
3439 }
3440 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3441
83d60795
CW
3442 /* Sanity check the batch buffer, prior to moving objects */
3443 exec_offset = exec_list[args->buffer_count - 1].offset;
3444 ret = i915_gem_check_execbuffer (args, exec_offset);
3445 if (ret != 0) {
3446 DRM_ERROR("execbuf with invalid offset/length\n");
3447 goto err;
3448 }
3449
673a394b
EA
3450 i915_verify_inactive(dev, __FILE__, __LINE__);
3451
646f0f6e
KP
3452 /* Zero the global flush/invalidate flags. These
3453 * will be modified as new domains are computed
3454 * for each object
3455 */
3456 dev->invalidate_domains = 0;
3457 dev->flush_domains = 0;
3458
673a394b
EA
3459 for (i = 0; i < args->buffer_count; i++) {
3460 struct drm_gem_object *obj = object_list[i];
673a394b 3461
646f0f6e 3462 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3463 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3464 }
3465
3466 i915_verify_inactive(dev, __FILE__, __LINE__);
3467
646f0f6e
KP
3468 if (dev->invalidate_domains | dev->flush_domains) {
3469#if WATCH_EXEC
3470 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3471 __func__,
3472 dev->invalidate_domains,
3473 dev->flush_domains);
3474#endif
3475 i915_gem_flush(dev,
3476 dev->invalidate_domains,
3477 dev->flush_domains);
3478 if (dev->flush_domains)
b962442e
EA
3479 (void)i915_add_request(dev, file_priv,
3480 dev->flush_domains);
646f0f6e 3481 }
673a394b 3482
efbeed96
EA
3483 for (i = 0; i < args->buffer_count; i++) {
3484 struct drm_gem_object *obj = object_list[i];
3485
3486 obj->write_domain = obj->pending_write_domain;
3487 }
3488
673a394b
EA
3489 i915_verify_inactive(dev, __FILE__, __LINE__);
3490
3491#if WATCH_COHERENCY
3492 for (i = 0; i < args->buffer_count; i++) {
3493 i915_gem_object_check_coherency(object_list[i],
3494 exec_list[i].handle);
3495 }
3496#endif
3497
673a394b 3498#if WATCH_EXEC
6911a9b8 3499 i915_gem_dump_object(batch_obj,
673a394b
EA
3500 args->batch_len,
3501 __func__,
3502 ~0);
3503#endif
3504
673a394b 3505 /* Exec the batchbuffer */
201361a5 3506 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
673a394b
EA
3507 if (ret) {
3508 DRM_ERROR("dispatch failed %d\n", ret);
3509 goto err;
3510 }
3511
3512 /*
3513 * Ensure that the commands in the batch buffer are
3514 * finished before the interrupt fires
3515 */
3516 flush_domains = i915_retire_commands(dev);
3517
3518 i915_verify_inactive(dev, __FILE__, __LINE__);
3519
3520 /*
3521 * Get a seqno representing the execution of the current buffer,
3522 * which we can wait on. We would like to mitigate these interrupts,
3523 * likely by only creating seqnos occasionally (so that we have
3524 * *some* interrupts representing completion of buffers that we can
3525 * wait on when trying to clear up gtt space).
3526 */
b962442e 3527 seqno = i915_add_request(dev, file_priv, flush_domains);
673a394b 3528 BUG_ON(seqno == 0);
673a394b
EA
3529 for (i = 0; i < args->buffer_count; i++) {
3530 struct drm_gem_object *obj = object_list[i];
673a394b 3531
ce44b0ea 3532 i915_gem_object_move_to_active(obj, seqno);
673a394b
EA
3533#if WATCH_LRU
3534 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3535#endif
3536 }
3537#if WATCH_LRU
3538 i915_dump_lru(dev, __func__);
3539#endif
3540
3541 i915_verify_inactive(dev, __FILE__, __LINE__);
3542
673a394b 3543err:
aad87dff
JL
3544 for (i = 0; i < pinned; i++)
3545 i915_gem_object_unpin(object_list[i]);
3546
b70d11da
KH
3547 for (i = 0; i < args->buffer_count; i++) {
3548 if (object_list[i]) {
3549 obj_priv = object_list[i]->driver_private;
3550 obj_priv->in_execbuffer = false;
3551 }
aad87dff 3552 drm_gem_object_unreference(object_list[i]);
b70d11da 3553 }
673a394b 3554
673a394b
EA
3555 mutex_unlock(&dev->struct_mutex);
3556
a35f2e2b
RD
3557 if (!ret) {
3558 /* Copy the new buffer offsets back to the user's exec list. */
3559 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3560 (uintptr_t) args->buffers_ptr,
3561 exec_list,
3562 sizeof(*exec_list) * args->buffer_count);
2bc43b5c
FM
3563 if (ret) {
3564 ret = -EFAULT;
a35f2e2b
RD
3565 DRM_ERROR("failed to copy %d exec entries "
3566 "back to user (%d)\n",
3567 args->buffer_count, ret);
2bc43b5c 3568 }
a35f2e2b
RD
3569 }
3570
40a5f0de
EA
3571 /* Copy the updated relocations out regardless of current error
3572 * state. Failure to update the relocs would mean that the next
3573 * time userland calls execbuf, it would do so with presumed offset
3574 * state that didn't match the actual object state.
3575 */
3576 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3577 relocs);
3578 if (ret2 != 0) {
3579 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3580
3581 if (ret == 0)
3582 ret = ret2;
3583 }
3584
673a394b 3585pre_mutex_err:
8e7d2b2c
JB
3586 drm_free_large(object_list);
3587 drm_free_large(exec_list);
9a298b2a 3588 kfree(cliprects);
673a394b
EA
3589
3590 return ret;
3591}
3592
3593int
3594i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3595{
3596 struct drm_device *dev = obj->dev;
3597 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3598 int ret;
3599
3600 i915_verify_inactive(dev, __FILE__, __LINE__);
3601 if (obj_priv->gtt_space == NULL) {
3602 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3603 if (ret != 0) {
9bb2d6f9 3604 if (ret != -EBUSY && ret != -ERESTARTSYS)
0fce81e3 3605 DRM_ERROR("Failure to bind: %d\n", ret);
673a394b
EA
3606 return ret;
3607 }
22c344e9
CW
3608 }
3609 /*
3610 * Pre-965 chips need a fence register set up in order to
3611 * properly handle tiled surfaces.
3612 */
a09ba7fa 3613 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 3614 ret = i915_gem_object_get_fence_reg(obj);
22c344e9
CW
3615 if (ret != 0) {
3616 if (ret != -EBUSY && ret != -ERESTARTSYS)
3617 DRM_ERROR("Failure to install fence: %d\n",
3618 ret);
3619 return ret;
3620 }
673a394b
EA
3621 }
3622 obj_priv->pin_count++;
3623
3624 /* If the object is not active and not pending a flush,
3625 * remove it from the inactive list
3626 */
3627 if (obj_priv->pin_count == 1) {
3628 atomic_inc(&dev->pin_count);
3629 atomic_add(obj->size, &dev->pin_memory);
3630 if (!obj_priv->active &&
21d509e3 3631 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
3632 !list_empty(&obj_priv->list))
3633 list_del_init(&obj_priv->list);
3634 }
3635 i915_verify_inactive(dev, __FILE__, __LINE__);
3636
3637 return 0;
3638}
3639
3640void
3641i915_gem_object_unpin(struct drm_gem_object *obj)
3642{
3643 struct drm_device *dev = obj->dev;
3644 drm_i915_private_t *dev_priv = dev->dev_private;
3645 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3646
3647 i915_verify_inactive(dev, __FILE__, __LINE__);
3648 obj_priv->pin_count--;
3649 BUG_ON(obj_priv->pin_count < 0);
3650 BUG_ON(obj_priv->gtt_space == NULL);
3651
3652 /* If the object is no longer pinned, and is
3653 * neither active nor being flushed, then stick it on
3654 * the inactive list
3655 */
3656 if (obj_priv->pin_count == 0) {
3657 if (!obj_priv->active &&
21d509e3 3658 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
3659 list_move_tail(&obj_priv->list,
3660 &dev_priv->mm.inactive_list);
3661 atomic_dec(&dev->pin_count);
3662 atomic_sub(obj->size, &dev->pin_memory);
3663 }
3664 i915_verify_inactive(dev, __FILE__, __LINE__);
3665}
3666
3667int
3668i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3669 struct drm_file *file_priv)
3670{
3671 struct drm_i915_gem_pin *args = data;
3672 struct drm_gem_object *obj;
3673 struct drm_i915_gem_object *obj_priv;
3674 int ret;
3675
3676 mutex_lock(&dev->struct_mutex);
3677
3678 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3679 if (obj == NULL) {
3680 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3681 args->handle);
3682 mutex_unlock(&dev->struct_mutex);
3683 return -EBADF;
3684 }
3685 obj_priv = obj->driver_private;
3686
79e53945
JB
3687 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3688 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3689 args->handle);
96dec61d 3690 drm_gem_object_unreference(obj);
673a394b 3691 mutex_unlock(&dev->struct_mutex);
79e53945
JB
3692 return -EINVAL;
3693 }
3694
3695 obj_priv->user_pin_count++;
3696 obj_priv->pin_filp = file_priv;
3697 if (obj_priv->user_pin_count == 1) {
3698 ret = i915_gem_object_pin(obj, args->alignment);
3699 if (ret != 0) {
3700 drm_gem_object_unreference(obj);
3701 mutex_unlock(&dev->struct_mutex);
3702 return ret;
3703 }
673a394b
EA
3704 }
3705
3706 /* XXX - flush the CPU caches for pinned objects
3707 * as the X server doesn't manage domains yet
3708 */
e47c68e9 3709 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
3710 args->offset = obj_priv->gtt_offset;
3711 drm_gem_object_unreference(obj);
3712 mutex_unlock(&dev->struct_mutex);
3713
3714 return 0;
3715}
3716
3717int
3718i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3719 struct drm_file *file_priv)
3720{
3721 struct drm_i915_gem_pin *args = data;
3722 struct drm_gem_object *obj;
79e53945 3723 struct drm_i915_gem_object *obj_priv;
673a394b
EA
3724
3725 mutex_lock(&dev->struct_mutex);
3726
3727 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3728 if (obj == NULL) {
3729 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3730 args->handle);
3731 mutex_unlock(&dev->struct_mutex);
3732 return -EBADF;
3733 }
3734
79e53945
JB
3735 obj_priv = obj->driver_private;
3736 if (obj_priv->pin_filp != file_priv) {
3737 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3738 args->handle);
3739 drm_gem_object_unreference(obj);
3740 mutex_unlock(&dev->struct_mutex);
3741 return -EINVAL;
3742 }
3743 obj_priv->user_pin_count--;
3744 if (obj_priv->user_pin_count == 0) {
3745 obj_priv->pin_filp = NULL;
3746 i915_gem_object_unpin(obj);
3747 }
673a394b
EA
3748
3749 drm_gem_object_unreference(obj);
3750 mutex_unlock(&dev->struct_mutex);
3751 return 0;
3752}
3753
3754int
3755i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3756 struct drm_file *file_priv)
3757{
3758 struct drm_i915_gem_busy *args = data;
3759 struct drm_gem_object *obj;
3760 struct drm_i915_gem_object *obj_priv;
3761
673a394b
EA
3762 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3763 if (obj == NULL) {
3764 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3765 args->handle);
673a394b
EA
3766 return -EBADF;
3767 }
3768
b1ce786c 3769 mutex_lock(&dev->struct_mutex);
f21289b3
EA
3770 /* Update the active list for the hardware's current position.
3771 * Otherwise this only updates on a delayed timer or when irqs are
3772 * actually unmasked, and our working set ends up being larger than
3773 * required.
3774 */
3775 i915_gem_retire_requests(dev);
3776
673a394b 3777 obj_priv = obj->driver_private;
c4de0a5d
EA
3778 /* Don't count being on the flushing list against the object being
3779 * done. Otherwise, a buffer left on the flushing list but not getting
3780 * flushed (because nobody's flushing that domain) won't ever return
3781 * unbusy and get reused by libdrm's bo cache. The other expected
3782 * consumer of this interface, OpenGL's occlusion queries, also specs
3783 * that the objects get unbusy "eventually" without any interference.
3784 */
3785 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
3786
3787 drm_gem_object_unreference(obj);
3788 mutex_unlock(&dev->struct_mutex);
3789 return 0;
3790}
3791
3792int
3793i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3794 struct drm_file *file_priv)
3795{
3796 return i915_gem_ring_throttle(dev, file_priv);
3797}
3798
3799int i915_gem_init_object(struct drm_gem_object *obj)
3800{
3801 struct drm_i915_gem_object *obj_priv;
3802
9a298b2a 3803 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
673a394b
EA
3804 if (obj_priv == NULL)
3805 return -ENOMEM;
3806
3807 /*
3808 * We've just allocated pages from the kernel,
3809 * so they've just been written by the CPU with
3810 * zeros. They'll need to be clflushed before we
3811 * use them with the GPU.
3812 */
3813 obj->write_domain = I915_GEM_DOMAIN_CPU;
3814 obj->read_domains = I915_GEM_DOMAIN_CPU;
3815
ba1eb1d8
KP
3816 obj_priv->agp_type = AGP_USER_MEMORY;
3817
673a394b
EA
3818 obj->driver_private = obj_priv;
3819 obj_priv->obj = obj;
de151cf6 3820 obj_priv->fence_reg = I915_FENCE_REG_NONE;
673a394b 3821 INIT_LIST_HEAD(&obj_priv->list);
a09ba7fa 3822 INIT_LIST_HEAD(&obj_priv->fence_list);
de151cf6 3823
673a394b
EA
3824 return 0;
3825}
3826
3827void i915_gem_free_object(struct drm_gem_object *obj)
3828{
de151cf6 3829 struct drm_device *dev = obj->dev;
673a394b
EA
3830 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3831
3832 while (obj_priv->pin_count > 0)
3833 i915_gem_object_unpin(obj);
3834
71acb5eb
DA
3835 if (obj_priv->phys_obj)
3836 i915_gem_detach_phys_object(dev, obj);
3837
673a394b
EA
3838 i915_gem_object_unbind(obj);
3839
ab00b3e5 3840 i915_gem_free_mmap_offset(obj);
de151cf6 3841
9a298b2a 3842 kfree(obj_priv->page_cpu_valid);
280b713b 3843 kfree(obj_priv->bit_17);
9a298b2a 3844 kfree(obj->driver_private);
673a394b
EA
3845}
3846
673a394b
EA
3847/** Unbinds all objects that are on the given buffer list. */
3848static int
3849i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3850{
3851 struct drm_gem_object *obj;
3852 struct drm_i915_gem_object *obj_priv;
3853 int ret;
3854
3855 while (!list_empty(head)) {
3856 obj_priv = list_first_entry(head,
3857 struct drm_i915_gem_object,
3858 list);
3859 obj = obj_priv->obj;
3860
3861 if (obj_priv->pin_count != 0) {
3862 DRM_ERROR("Pinned object in unbind list\n");
3863 mutex_unlock(&dev->struct_mutex);
3864 return -EINVAL;
3865 }
3866
3867 ret = i915_gem_object_unbind(obj);
3868 if (ret != 0) {
3869 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3870 ret);
3871 mutex_unlock(&dev->struct_mutex);
3872 return ret;
3873 }
3874 }
3875
3876
3877 return 0;
3878}
3879
5669fcac 3880int
673a394b
EA
3881i915_gem_idle(struct drm_device *dev)
3882{
3883 drm_i915_private_t *dev_priv = dev->dev_private;
3884 uint32_t seqno, cur_seqno, last_seqno;
3885 int stuck, ret;
3886
6dbe2772
KP
3887 mutex_lock(&dev->struct_mutex);
3888
3889 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3890 mutex_unlock(&dev->struct_mutex);
673a394b 3891 return 0;
6dbe2772 3892 }
673a394b
EA
3893
3894 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3895 * We need to replace this with a semaphore, or something.
3896 */
3897 dev_priv->mm.suspended = 1;
3898
6dbe2772
KP
3899 /* Cancel the retire work handler, wait for it to finish if running
3900 */
3901 mutex_unlock(&dev->struct_mutex);
3902 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3903 mutex_lock(&dev->struct_mutex);
3904
673a394b
EA
3905 i915_kernel_lost_context(dev);
3906
3907 /* Flush the GPU along with all non-CPU write domains
3908 */
21d509e3
CW
3909 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3910 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
673a394b
EA
3911
3912 if (seqno == 0) {
3913 mutex_unlock(&dev->struct_mutex);
3914 return -ENOMEM;
3915 }
3916
3917 dev_priv->mm.waiting_gem_seqno = seqno;
3918 last_seqno = 0;
3919 stuck = 0;
3920 for (;;) {
3921 cur_seqno = i915_get_gem_seqno(dev);
3922 if (i915_seqno_passed(cur_seqno, seqno))
3923 break;
3924 if (last_seqno == cur_seqno) {
3925 if (stuck++ > 100) {
3926 DRM_ERROR("hardware wedged\n");
3927 dev_priv->mm.wedged = 1;
3928 DRM_WAKEUP(&dev_priv->irq_queue);
3929 break;
3930 }
3931 }
3932 msleep(10);
3933 last_seqno = cur_seqno;
3934 }
3935 dev_priv->mm.waiting_gem_seqno = 0;
3936
3937 i915_gem_retire_requests(dev);
3938
5e118f41 3939 spin_lock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3940 if (!dev_priv->mm.wedged) {
3941 /* Active and flushing should now be empty as we've
3942 * waited for a sequence higher than any pending execbuffer
3943 */
3944 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3945 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3946 /* Request should now be empty as we've also waited
3947 * for the last request in the list
3948 */
3949 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3950 }
673a394b 3951
28dfe52a
EA
3952 /* Empty the active and flushing lists to inactive. If there's
3953 * anything left at this point, it means that we're wedged and
3954 * nothing good's going to happen by leaving them there. So strip
3955 * the GPU domains and just stuff them onto inactive.
673a394b 3956 */
28dfe52a
EA
3957 while (!list_empty(&dev_priv->mm.active_list)) {
3958 struct drm_i915_gem_object *obj_priv;
673a394b 3959
28dfe52a
EA
3960 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3961 struct drm_i915_gem_object,
3962 list);
3963 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3964 i915_gem_object_move_to_inactive(obj_priv->obj);
3965 }
5e118f41 3966 spin_unlock(&dev_priv->mm.active_list_lock);
28dfe52a
EA
3967
3968 while (!list_empty(&dev_priv->mm.flushing_list)) {
3969 struct drm_i915_gem_object *obj_priv;
3970
151903d5 3971 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
28dfe52a
EA
3972 struct drm_i915_gem_object,
3973 list);
3974 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3975 i915_gem_object_move_to_inactive(obj_priv->obj);
3976 }
3977
3978
3979 /* Move all inactive buffers out of the GTT. */
673a394b 3980 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
28dfe52a 3981 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
6dbe2772
KP
3982 if (ret) {
3983 mutex_unlock(&dev->struct_mutex);
673a394b 3984 return ret;
6dbe2772 3985 }
673a394b 3986
6dbe2772
KP
3987 i915_gem_cleanup_ringbuffer(dev);
3988 mutex_unlock(&dev->struct_mutex);
3989
673a394b
EA
3990 return 0;
3991}
3992
3993static int
3994i915_gem_init_hws(struct drm_device *dev)
3995{
3996 drm_i915_private_t *dev_priv = dev->dev_private;
3997 struct drm_gem_object *obj;
3998 struct drm_i915_gem_object *obj_priv;
3999 int ret;
4000
4001 /* If we need a physical address for the status page, it's already
4002 * initialized at driver load time.
4003 */
4004 if (!I915_NEED_GFX_HWS(dev))
4005 return 0;
4006
4007 obj = drm_gem_object_alloc(dev, 4096);
4008 if (obj == NULL) {
4009 DRM_ERROR("Failed to allocate status page\n");
4010 return -ENOMEM;
4011 }
4012 obj_priv = obj->driver_private;
ba1eb1d8 4013 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
4014
4015 ret = i915_gem_object_pin(obj, 4096);
4016 if (ret != 0) {
4017 drm_gem_object_unreference(obj);
4018 return ret;
4019 }
4020
4021 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 4022
856fa198 4023 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
ba1eb1d8 4024 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
4025 DRM_ERROR("Failed to map status page.\n");
4026 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3eb2ee77 4027 i915_gem_object_unpin(obj);
673a394b
EA
4028 drm_gem_object_unreference(obj);
4029 return -EINVAL;
4030 }
4031 dev_priv->hws_obj = obj;
673a394b
EA
4032 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4033 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 4034 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
4035 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4036
4037 return 0;
4038}
4039
85a7bb98
CW
4040static void
4041i915_gem_cleanup_hws(struct drm_device *dev)
4042{
4043 drm_i915_private_t *dev_priv = dev->dev_private;
bab2d1f6
CW
4044 struct drm_gem_object *obj;
4045 struct drm_i915_gem_object *obj_priv;
85a7bb98
CW
4046
4047 if (dev_priv->hws_obj == NULL)
4048 return;
4049
bab2d1f6
CW
4050 obj = dev_priv->hws_obj;
4051 obj_priv = obj->driver_private;
4052
856fa198 4053 kunmap(obj_priv->pages[0]);
85a7bb98
CW
4054 i915_gem_object_unpin(obj);
4055 drm_gem_object_unreference(obj);
4056 dev_priv->hws_obj = NULL;
bab2d1f6 4057
85a7bb98
CW
4058 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4059 dev_priv->hw_status_page = NULL;
4060
4061 /* Write high address into HWS_PGA when disabling. */
4062 I915_WRITE(HWS_PGA, 0x1ffff000);
4063}
4064
79e53945 4065int
673a394b
EA
4066i915_gem_init_ringbuffer(struct drm_device *dev)
4067{
4068 drm_i915_private_t *dev_priv = dev->dev_private;
4069 struct drm_gem_object *obj;
4070 struct drm_i915_gem_object *obj_priv;
79e53945 4071 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
673a394b 4072 int ret;
50aa253d 4073 u32 head;
673a394b
EA
4074
4075 ret = i915_gem_init_hws(dev);
4076 if (ret != 0)
4077 return ret;
4078
4079 obj = drm_gem_object_alloc(dev, 128 * 1024);
4080 if (obj == NULL) {
4081 DRM_ERROR("Failed to allocate ringbuffer\n");
85a7bb98 4082 i915_gem_cleanup_hws(dev);
673a394b
EA
4083 return -ENOMEM;
4084 }
4085 obj_priv = obj->driver_private;
4086
4087 ret = i915_gem_object_pin(obj, 4096);
4088 if (ret != 0) {
4089 drm_gem_object_unreference(obj);
85a7bb98 4090 i915_gem_cleanup_hws(dev);
673a394b
EA
4091 return ret;
4092 }
4093
4094 /* Set up the kernel mapping for the ring. */
79e53945
JB
4095 ring->Size = obj->size;
4096 ring->tail_mask = obj->size - 1;
673a394b 4097
79e53945
JB
4098 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4099 ring->map.size = obj->size;
4100 ring->map.type = 0;
4101 ring->map.flags = 0;
4102 ring->map.mtrr = 0;
673a394b 4103
79e53945
JB
4104 drm_core_ioremap_wc(&ring->map, dev);
4105 if (ring->map.handle == NULL) {
673a394b
EA
4106 DRM_ERROR("Failed to map ringbuffer.\n");
4107 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
47ed185a 4108 i915_gem_object_unpin(obj);
673a394b 4109 drm_gem_object_unreference(obj);
85a7bb98 4110 i915_gem_cleanup_hws(dev);
673a394b
EA
4111 return -EINVAL;
4112 }
79e53945
JB
4113 ring->ring_obj = obj;
4114 ring->virtual_start = ring->map.handle;
673a394b
EA
4115
4116 /* Stop the ring if it's running. */
4117 I915_WRITE(PRB0_CTL, 0);
673a394b 4118 I915_WRITE(PRB0_TAIL, 0);
50aa253d 4119 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
4120
4121 /* Initialize the ring. */
4122 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
4123 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4124
4125 /* G45 ring initialization fails to reset head to zero */
4126 if (head != 0) {
4127 DRM_ERROR("Ring head not reset to zero "
4128 "ctl %08x head %08x tail %08x start %08x\n",
4129 I915_READ(PRB0_CTL),
4130 I915_READ(PRB0_HEAD),
4131 I915_READ(PRB0_TAIL),
4132 I915_READ(PRB0_START));
4133 I915_WRITE(PRB0_HEAD, 0);
4134
4135 DRM_ERROR("Ring head forced to zero "
4136 "ctl %08x head %08x tail %08x start %08x\n",
4137 I915_READ(PRB0_CTL),
4138 I915_READ(PRB0_HEAD),
4139 I915_READ(PRB0_TAIL),
4140 I915_READ(PRB0_START));
4141 }
4142
673a394b
EA
4143 I915_WRITE(PRB0_CTL,
4144 ((obj->size - 4096) & RING_NR_PAGES) |
4145 RING_NO_REPORT |
4146 RING_VALID);
4147
50aa253d
KP
4148 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4149
4150 /* If the head is still not zero, the ring is dead */
4151 if (head != 0) {
4152 DRM_ERROR("Ring initialization failed "
4153 "ctl %08x head %08x tail %08x start %08x\n",
4154 I915_READ(PRB0_CTL),
4155 I915_READ(PRB0_HEAD),
4156 I915_READ(PRB0_TAIL),
4157 I915_READ(PRB0_START));
4158 return -EIO;
4159 }
4160
673a394b 4161 /* Update our cache of the ring state */
79e53945
JB
4162 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4163 i915_kernel_lost_context(dev);
4164 else {
4165 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4166 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4167 ring->space = ring->head - (ring->tail + 8);
4168 if (ring->space < 0)
4169 ring->space += ring->Size;
4170 }
673a394b
EA
4171
4172 return 0;
4173}
4174
79e53945 4175void
673a394b
EA
4176i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4177{
4178 drm_i915_private_t *dev_priv = dev->dev_private;
4179
4180 if (dev_priv->ring.ring_obj == NULL)
4181 return;
4182
4183 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4184
4185 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4186 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4187 dev_priv->ring.ring_obj = NULL;
4188 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4189
85a7bb98 4190 i915_gem_cleanup_hws(dev);
673a394b
EA
4191}
4192
4193int
4194i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4195 struct drm_file *file_priv)
4196{
4197 drm_i915_private_t *dev_priv = dev->dev_private;
4198 int ret;
4199
79e53945
JB
4200 if (drm_core_check_feature(dev, DRIVER_MODESET))
4201 return 0;
4202
673a394b
EA
4203 if (dev_priv->mm.wedged) {
4204 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4205 dev_priv->mm.wedged = 0;
4206 }
4207
673a394b 4208 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4209 dev_priv->mm.suspended = 0;
4210
4211 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4212 if (ret != 0) {
4213 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4214 return ret;
d816f6ac 4215 }
9bb2d6f9 4216
5e118f41 4217 spin_lock(&dev_priv->mm.active_list_lock);
673a394b 4218 BUG_ON(!list_empty(&dev_priv->mm.active_list));
5e118f41
CW
4219 spin_unlock(&dev_priv->mm.active_list_lock);
4220
673a394b
EA
4221 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4222 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4223 BUG_ON(!list_empty(&dev_priv->mm.request_list));
673a394b 4224 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
4225
4226 drm_irq_install(dev);
4227
673a394b
EA
4228 return 0;
4229}
4230
4231int
4232i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4233 struct drm_file *file_priv)
4234{
4235 int ret;
4236
79e53945
JB
4237 if (drm_core_check_feature(dev, DRIVER_MODESET))
4238 return 0;
4239
673a394b 4240 ret = i915_gem_idle(dev);
dbb19d30
KH
4241 drm_irq_uninstall(dev);
4242
6dbe2772 4243 return ret;
673a394b
EA
4244}
4245
4246void
4247i915_gem_lastclose(struct drm_device *dev)
4248{
4249 int ret;
673a394b 4250
e806b495
EA
4251 if (drm_core_check_feature(dev, DRIVER_MODESET))
4252 return;
4253
6dbe2772
KP
4254 ret = i915_gem_idle(dev);
4255 if (ret)
4256 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4257}
4258
4259void
4260i915_gem_load(struct drm_device *dev)
4261{
b5aa8a0f 4262 int i;
673a394b
EA
4263 drm_i915_private_t *dev_priv = dev->dev_private;
4264
5e118f41 4265 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b
EA
4266 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4267 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4268 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4269 INIT_LIST_HEAD(&dev_priv->mm.request_list);
a09ba7fa 4270 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
673a394b
EA
4271 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4272 i915_gem_retire_work_handler);
4273 dev_priv->mm.next_gem_seqno = 1;
4274
de151cf6
JB
4275 /* Old X drivers will take 0-2 for front, back, depth buffers */
4276 dev_priv->fence_reg_start = 3;
4277
0f973f27 4278 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4279 dev_priv->num_fence_regs = 16;
4280 else
4281 dev_priv->num_fence_regs = 8;
4282
b5aa8a0f
GH
4283 /* Initialize fence registers to zero */
4284 if (IS_I965G(dev)) {
4285 for (i = 0; i < 16; i++)
4286 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4287 } else {
4288 for (i = 0; i < 8; i++)
4289 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4290 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4291 for (i = 0; i < 8; i++)
4292 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4293 }
4294
673a394b
EA
4295 i915_gem_detect_bit_6_swizzle(dev);
4296}
71acb5eb
DA
4297
4298/*
4299 * Create a physically contiguous memory object for this object
4300 * e.g. for cursor + overlay regs
4301 */
4302int i915_gem_init_phys_object(struct drm_device *dev,
4303 int id, int size)
4304{
4305 drm_i915_private_t *dev_priv = dev->dev_private;
4306 struct drm_i915_gem_phys_object *phys_obj;
4307 int ret;
4308
4309 if (dev_priv->mm.phys_objs[id - 1] || !size)
4310 return 0;
4311
9a298b2a 4312 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4313 if (!phys_obj)
4314 return -ENOMEM;
4315
4316 phys_obj->id = id;
4317
4318 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4319 if (!phys_obj->handle) {
4320 ret = -ENOMEM;
4321 goto kfree_obj;
4322 }
4323#ifdef CONFIG_X86
4324 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4325#endif
4326
4327 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4328
4329 return 0;
4330kfree_obj:
9a298b2a 4331 kfree(phys_obj);
71acb5eb
DA
4332 return ret;
4333}
4334
4335void i915_gem_free_phys_object(struct drm_device *dev, int id)
4336{
4337 drm_i915_private_t *dev_priv = dev->dev_private;
4338 struct drm_i915_gem_phys_object *phys_obj;
4339
4340 if (!dev_priv->mm.phys_objs[id - 1])
4341 return;
4342
4343 phys_obj = dev_priv->mm.phys_objs[id - 1];
4344 if (phys_obj->cur_obj) {
4345 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4346 }
4347
4348#ifdef CONFIG_X86
4349 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4350#endif
4351 drm_pci_free(dev, phys_obj->handle);
4352 kfree(phys_obj);
4353 dev_priv->mm.phys_objs[id - 1] = NULL;
4354}
4355
4356void i915_gem_free_all_phys_object(struct drm_device *dev)
4357{
4358 int i;
4359
260883c8 4360 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4361 i915_gem_free_phys_object(dev, i);
4362}
4363
4364void i915_gem_detach_phys_object(struct drm_device *dev,
4365 struct drm_gem_object *obj)
4366{
4367 struct drm_i915_gem_object *obj_priv;
4368 int i;
4369 int ret;
4370 int page_count;
4371
4372 obj_priv = obj->driver_private;
4373 if (!obj_priv->phys_obj)
4374 return;
4375
856fa198 4376 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4377 if (ret)
4378 goto out;
4379
4380 page_count = obj->size / PAGE_SIZE;
4381
4382 for (i = 0; i < page_count; i++) {
856fa198 4383 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4384 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4385
4386 memcpy(dst, src, PAGE_SIZE);
4387 kunmap_atomic(dst, KM_USER0);
4388 }
856fa198 4389 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4390 drm_agp_chipset_flush(dev);
d78b47b9
CW
4391
4392 i915_gem_object_put_pages(obj);
71acb5eb
DA
4393out:
4394 obj_priv->phys_obj->cur_obj = NULL;
4395 obj_priv->phys_obj = NULL;
4396}
4397
4398int
4399i915_gem_attach_phys_object(struct drm_device *dev,
4400 struct drm_gem_object *obj, int id)
4401{
4402 drm_i915_private_t *dev_priv = dev->dev_private;
4403 struct drm_i915_gem_object *obj_priv;
4404 int ret = 0;
4405 int page_count;
4406 int i;
4407
4408 if (id > I915_MAX_PHYS_OBJECT)
4409 return -EINVAL;
4410
4411 obj_priv = obj->driver_private;
4412
4413 if (obj_priv->phys_obj) {
4414 if (obj_priv->phys_obj->id == id)
4415 return 0;
4416 i915_gem_detach_phys_object(dev, obj);
4417 }
4418
4419
4420 /* create a new object */
4421 if (!dev_priv->mm.phys_objs[id - 1]) {
4422 ret = i915_gem_init_phys_object(dev, id,
4423 obj->size);
4424 if (ret) {
aeb565df 4425 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4426 goto out;
4427 }
4428 }
4429
4430 /* bind to the object */
4431 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4432 obj_priv->phys_obj->cur_obj = obj;
4433
856fa198 4434 ret = i915_gem_object_get_pages(obj);
71acb5eb
DA
4435 if (ret) {
4436 DRM_ERROR("failed to get page list\n");
4437 goto out;
4438 }
4439
4440 page_count = obj->size / PAGE_SIZE;
4441
4442 for (i = 0; i < page_count; i++) {
856fa198 4443 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4444 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4445
4446 memcpy(dst, src, PAGE_SIZE);
4447 kunmap_atomic(src, KM_USER0);
4448 }
4449
d78b47b9
CW
4450 i915_gem_object_put_pages(obj);
4451
71acb5eb
DA
4452 return 0;
4453out:
4454 return ret;
4455}
4456
4457static int
4458i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4459 struct drm_i915_gem_pwrite *args,
4460 struct drm_file *file_priv)
4461{
4462 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4463 void *obj_addr;
4464 int ret;
4465 char __user *user_data;
4466
4467 user_data = (char __user *) (uintptr_t) args->data_ptr;
4468 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4469
e08fb4f6 4470 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4471 ret = copy_from_user(obj_addr, user_data, args->size);
4472 if (ret)
4473 return -EFAULT;
4474
4475 drm_agp_chipset_flush(dev);
4476 return 0;
4477}
b962442e
EA
4478
4479void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4480{
4481 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4482
4483 /* Clean up our request list when the client is going away, so that
4484 * later retire_requests won't dereference our soon-to-be-gone
4485 * file_priv.
4486 */
4487 mutex_lock(&dev->struct_mutex);
4488 while (!list_empty(&i915_file_priv->mm.request_list))
4489 list_del_init(i915_file_priv->mm.request_list.next);
4490 mutex_unlock(&dev->struct_mutex);
4491}