]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Mark the static memory latency tables const.
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
2dafb1e0 38static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
39static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42 int write);
43static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
673a394b 47static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
48static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49 unsigned alignment);
de151cf6 50static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
07f73f69 51static int i915_gem_evict_something(struct drm_device *dev, int min_size);
ab5ee576 52static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
71acb5eb
DA
53static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file_priv);
be72615b 56static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 57
31169714
CW
58static LIST_HEAD(shrink_list);
59static DEFINE_SPINLOCK(shrink_list_lock);
60
79e53945
JB
61int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
673a394b
EA
63{
64 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 65
79e53945
JB
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
69 return -EINVAL;
70 }
71
79e53945
JB
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
673a394b 74
79e53945
JB
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78}
673a394b 79
79e53945
JB
80int
81i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83{
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
89 mutex_unlock(&dev->struct_mutex);
90
79e53945 91 return ret;
673a394b
EA
92}
93
5a125c3c
EA
94int
95i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97{
5a125c3c 98 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
2678d9d6
KP
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
5a125c3c
EA
106
107 return 0;
108}
109
673a394b
EA
110
111/**
112 * Creates a new mm object and returns a handle to it.
113 */
114int
115i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117{
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
a1a2d1d3
PP
120 int ret;
121 u32 handle;
673a394b
EA
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
ac52bc56 126 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
86f100b1 131 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
132 if (ret)
133 return ret;
134
135 args->handle = handle;
136
137 return 0;
138}
139
eb01459f
EA
140static inline int
141fast_shmem_read(struct page **pages,
142 loff_t page_base, int page_offset,
143 char __user *data,
144 int length)
145{
146 char __iomem *vaddr;
2bc43b5c 147 int unwritten;
eb01459f
EA
148
149 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150 if (vaddr == NULL)
151 return -ENOMEM;
2bc43b5c 152 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
153 kunmap_atomic(vaddr, KM_USER0);
154
2bc43b5c
FM
155 if (unwritten)
156 return -EFAULT;
157
158 return 0;
eb01459f
EA
159}
160
280b713b
EA
161static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
162{
163 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 164 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
165
166 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167 obj_priv->tiling_mode != I915_TILING_NONE;
168}
169
99a03df5 170static inline void
40123c1f
EA
171slow_shmem_copy(struct page *dst_page,
172 int dst_offset,
173 struct page *src_page,
174 int src_offset,
175 int length)
176{
177 char *dst_vaddr, *src_vaddr;
178
99a03df5
CW
179 dst_vaddr = kmap(dst_page);
180 src_vaddr = kmap(src_page);
40123c1f
EA
181
182 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
183
99a03df5
CW
184 kunmap(src_page);
185 kunmap(dst_page);
40123c1f
EA
186}
187
99a03df5 188static inline void
280b713b
EA
189slow_shmem_bit17_copy(struct page *gpu_page,
190 int gpu_offset,
191 struct page *cpu_page,
192 int cpu_offset,
193 int length,
194 int is_read)
195{
196 char *gpu_vaddr, *cpu_vaddr;
197
198 /* Use the unswizzled path if this page isn't affected. */
199 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
200 if (is_read)
201 return slow_shmem_copy(cpu_page, cpu_offset,
202 gpu_page, gpu_offset, length);
203 else
204 return slow_shmem_copy(gpu_page, gpu_offset,
205 cpu_page, cpu_offset, length);
206 }
207
99a03df5
CW
208 gpu_vaddr = kmap(gpu_page);
209 cpu_vaddr = kmap(cpu_page);
280b713b
EA
210
211 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
212 * XORing with the other bits (A9 for Y, A9 and A10 for X)
213 */
214 while (length > 0) {
215 int cacheline_end = ALIGN(gpu_offset + 1, 64);
216 int this_length = min(cacheline_end - gpu_offset, length);
217 int swizzled_gpu_offset = gpu_offset ^ 64;
218
219 if (is_read) {
220 memcpy(cpu_vaddr + cpu_offset,
221 gpu_vaddr + swizzled_gpu_offset,
222 this_length);
223 } else {
224 memcpy(gpu_vaddr + swizzled_gpu_offset,
225 cpu_vaddr + cpu_offset,
226 this_length);
227 }
228 cpu_offset += this_length;
229 gpu_offset += this_length;
230 length -= this_length;
231 }
232
99a03df5
CW
233 kunmap(cpu_page);
234 kunmap(gpu_page);
280b713b
EA
235}
236
eb01459f
EA
237/**
238 * This is the fast shmem pread path, which attempts to copy_from_user directly
239 * from the backing pages of the object to the user's address space. On a
240 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
241 */
242static int
243i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
244 struct drm_i915_gem_pread *args,
245 struct drm_file *file_priv)
246{
23010e43 247 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
248 ssize_t remain;
249 loff_t offset, page_base;
250 char __user *user_data;
251 int page_offset, page_length;
252 int ret;
253
254 user_data = (char __user *) (uintptr_t) args->data_ptr;
255 remain = args->size;
256
257 mutex_lock(&dev->struct_mutex);
258
4bdadb97 259 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
260 if (ret != 0)
261 goto fail_unlock;
262
263 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
264 args->size);
265 if (ret != 0)
266 goto fail_put_pages;
267
23010e43 268 obj_priv = to_intel_bo(obj);
eb01459f
EA
269 offset = args->offset;
270
271 while (remain > 0) {
272 /* Operation in this page
273 *
274 * page_base = page offset within aperture
275 * page_offset = offset within page
276 * page_length = bytes to copy for this page
277 */
278 page_base = (offset & ~(PAGE_SIZE-1));
279 page_offset = offset & (PAGE_SIZE-1);
280 page_length = remain;
281 if ((page_offset + remain) > PAGE_SIZE)
282 page_length = PAGE_SIZE - page_offset;
283
284 ret = fast_shmem_read(obj_priv->pages,
285 page_base, page_offset,
286 user_data, page_length);
287 if (ret)
288 goto fail_put_pages;
289
290 remain -= page_length;
291 user_data += page_length;
292 offset += page_length;
293 }
294
295fail_put_pages:
296 i915_gem_object_put_pages(obj);
297fail_unlock:
298 mutex_unlock(&dev->struct_mutex);
299
300 return ret;
301}
302
07f73f69
CW
303static int
304i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
305{
306 int ret;
307
4bdadb97 308 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
309
310 /* If we've insufficient memory to map in the pages, attempt
311 * to make some space by throwing out some old buffers.
312 */
313 if (ret == -ENOMEM) {
314 struct drm_device *dev = obj->dev;
07f73f69
CW
315
316 ret = i915_gem_evict_something(dev, obj->size);
317 if (ret)
318 return ret;
319
4bdadb97 320 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
321 }
322
323 return ret;
324}
325
eb01459f
EA
326/**
327 * This is the fallback shmem pread path, which allocates temporary storage
328 * in kernel space to copy_to_user into outside of the struct_mutex, so we
329 * can copy out of the object's backing pages while holding the struct mutex
330 * and not take page faults.
331 */
332static int
333i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file_priv)
336{
23010e43 337 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
338 struct mm_struct *mm = current->mm;
339 struct page **user_pages;
340 ssize_t remain;
341 loff_t offset, pinned_pages, i;
342 loff_t first_data_page, last_data_page, num_pages;
343 int shmem_page_index, shmem_page_offset;
344 int data_page_index, data_page_offset;
345 int page_length;
346 int ret;
347 uint64_t data_ptr = args->data_ptr;
280b713b 348 int do_bit17_swizzling;
eb01459f
EA
349
350 remain = args->size;
351
352 /* Pin the user pages containing the data. We can't fault while
353 * holding the struct mutex, yet we want to hold it while
354 * dereferencing the user data.
355 */
356 first_data_page = data_ptr / PAGE_SIZE;
357 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
358 num_pages = last_data_page - first_data_page + 1;
359
8e7d2b2c 360 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
361 if (user_pages == NULL)
362 return -ENOMEM;
363
364 down_read(&mm->mmap_sem);
365 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 366 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
367 up_read(&mm->mmap_sem);
368 if (pinned_pages < num_pages) {
369 ret = -EFAULT;
370 goto fail_put_user_pages;
371 }
372
280b713b
EA
373 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
374
eb01459f
EA
375 mutex_lock(&dev->struct_mutex);
376
07f73f69
CW
377 ret = i915_gem_object_get_pages_or_evict(obj);
378 if (ret)
eb01459f
EA
379 goto fail_unlock;
380
381 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
382 args->size);
383 if (ret != 0)
384 goto fail_put_pages;
385
23010e43 386 obj_priv = to_intel_bo(obj);
eb01459f
EA
387 offset = args->offset;
388
389 while (remain > 0) {
390 /* Operation in this page
391 *
392 * shmem_page_index = page number within shmem file
393 * shmem_page_offset = offset within page in shmem file
394 * data_page_index = page number in get_user_pages return
395 * data_page_offset = offset with data_page_index page.
396 * page_length = bytes to copy for this page
397 */
398 shmem_page_index = offset / PAGE_SIZE;
399 shmem_page_offset = offset & ~PAGE_MASK;
400 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
401 data_page_offset = data_ptr & ~PAGE_MASK;
402
403 page_length = remain;
404 if ((shmem_page_offset + page_length) > PAGE_SIZE)
405 page_length = PAGE_SIZE - shmem_page_offset;
406 if ((data_page_offset + page_length) > PAGE_SIZE)
407 page_length = PAGE_SIZE - data_page_offset;
408
280b713b 409 if (do_bit17_swizzling) {
99a03df5 410 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 411 shmem_page_offset,
99a03df5
CW
412 user_pages[data_page_index],
413 data_page_offset,
414 page_length,
415 1);
416 } else {
417 slow_shmem_copy(user_pages[data_page_index],
418 data_page_offset,
419 obj_priv->pages[shmem_page_index],
420 shmem_page_offset,
421 page_length);
280b713b 422 }
eb01459f
EA
423
424 remain -= page_length;
425 data_ptr += page_length;
426 offset += page_length;
427 }
428
429fail_put_pages:
430 i915_gem_object_put_pages(obj);
431fail_unlock:
432 mutex_unlock(&dev->struct_mutex);
433fail_put_user_pages:
434 for (i = 0; i < pinned_pages; i++) {
435 SetPageDirty(user_pages[i]);
436 page_cache_release(user_pages[i]);
437 }
8e7d2b2c 438 drm_free_large(user_pages);
eb01459f
EA
439
440 return ret;
441}
442
673a394b
EA
443/**
444 * Reads data from the object referenced by handle.
445 *
446 * On error, the contents of *data are undefined.
447 */
448int
449i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450 struct drm_file *file_priv)
451{
452 struct drm_i915_gem_pread *args = data;
453 struct drm_gem_object *obj;
454 struct drm_i915_gem_object *obj_priv;
673a394b
EA
455 int ret;
456
457 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
458 if (obj == NULL)
459 return -EBADF;
23010e43 460 obj_priv = to_intel_bo(obj);
673a394b
EA
461
462 /* Bounds check source.
463 *
464 * XXX: This could use review for overflow issues...
465 */
466 if (args->offset > obj->size || args->size > obj->size ||
467 args->offset + args->size > obj->size) {
bc9025bd 468 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
469 return -EINVAL;
470 }
471
280b713b 472 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 473 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
474 } else {
475 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
476 if (ret != 0)
477 ret = i915_gem_shmem_pread_slow(dev, obj, args,
478 file_priv);
479 }
673a394b 480
bc9025bd 481 drm_gem_object_unreference_unlocked(obj);
673a394b 482
eb01459f 483 return ret;
673a394b
EA
484}
485
0839ccb8
KP
486/* This is the fast write path which cannot handle
487 * page faults in the source data
9b7530cc 488 */
0839ccb8
KP
489
490static inline int
491fast_user_write(struct io_mapping *mapping,
492 loff_t page_base, int page_offset,
493 char __user *user_data,
494 int length)
9b7530cc 495{
9b7530cc 496 char *vaddr_atomic;
0839ccb8 497 unsigned long unwritten;
9b7530cc 498
fca3ec01 499 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
500 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
501 user_data, length);
fca3ec01 502 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
503 if (unwritten)
504 return -EFAULT;
505 return 0;
506}
507
508/* Here's the write path which can sleep for
509 * page faults
510 */
511
ab34c226 512static inline void
3de09aa3
EA
513slow_kernel_write(struct io_mapping *mapping,
514 loff_t gtt_base, int gtt_offset,
515 struct page *user_page, int user_offset,
516 int length)
0839ccb8 517{
ab34c226
CW
518 char __iomem *dst_vaddr;
519 char *src_vaddr;
0839ccb8 520
ab34c226
CW
521 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
522 src_vaddr = kmap(user_page);
523
524 memcpy_toio(dst_vaddr + gtt_offset,
525 src_vaddr + user_offset,
526 length);
527
528 kunmap(user_page);
529 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
530}
531
40123c1f
EA
532static inline int
533fast_shmem_write(struct page **pages,
534 loff_t page_base, int page_offset,
535 char __user *data,
536 int length)
537{
538 char __iomem *vaddr;
d0088775 539 unsigned long unwritten;
40123c1f
EA
540
541 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
542 if (vaddr == NULL)
543 return -ENOMEM;
d0088775 544 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
545 kunmap_atomic(vaddr, KM_USER0);
546
d0088775
DA
547 if (unwritten)
548 return -EFAULT;
40123c1f
EA
549 return 0;
550}
551
3de09aa3
EA
552/**
553 * This is the fast pwrite path, where we copy the data directly from the
554 * user into the GTT, uncached.
555 */
673a394b 556static int
3de09aa3
EA
557i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
558 struct drm_i915_gem_pwrite *args,
559 struct drm_file *file_priv)
673a394b 560{
23010e43 561 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 562 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 563 ssize_t remain;
0839ccb8 564 loff_t offset, page_base;
673a394b 565 char __user *user_data;
0839ccb8
KP
566 int page_offset, page_length;
567 int ret;
673a394b
EA
568
569 user_data = (char __user *) (uintptr_t) args->data_ptr;
570 remain = args->size;
571 if (!access_ok(VERIFY_READ, user_data, remain))
572 return -EFAULT;
573
574
575 mutex_lock(&dev->struct_mutex);
576 ret = i915_gem_object_pin(obj, 0);
577 if (ret) {
578 mutex_unlock(&dev->struct_mutex);
579 return ret;
580 }
2ef7eeaa 581 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
582 if (ret)
583 goto fail;
584
23010e43 585 obj_priv = to_intel_bo(obj);
673a394b 586 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
0839ccb8
KP
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
673a394b 594 */
0839ccb8
KP
595 page_base = (offset & ~(PAGE_SIZE-1));
596 page_offset = offset & (PAGE_SIZE-1);
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
601 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
602 page_offset, user_data, page_length);
603
604 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
605 * source page isn't available. Return the error and we'll
606 * retry in the slow path.
0839ccb8 607 */
3de09aa3
EA
608 if (ret)
609 goto fail;
673a394b 610
0839ccb8
KP
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
673a394b 614 }
673a394b
EA
615
616fail:
617 i915_gem_object_unpin(obj);
618 mutex_unlock(&dev->struct_mutex);
619
620 return ret;
621}
622
3de09aa3
EA
623/**
624 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
625 * the memory and maps it using kmap_atomic for copying.
626 *
627 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
628 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
629 */
3043c60c 630static int
3de09aa3
EA
631i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
632 struct drm_i915_gem_pwrite *args,
633 struct drm_file *file_priv)
673a394b 634{
23010e43 635 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
636 drm_i915_private_t *dev_priv = dev->dev_private;
637 ssize_t remain;
638 loff_t gtt_page_base, offset;
639 loff_t first_data_page, last_data_page, num_pages;
640 loff_t pinned_pages, i;
641 struct page **user_pages;
642 struct mm_struct *mm = current->mm;
643 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 644 int ret;
3de09aa3
EA
645 uint64_t data_ptr = args->data_ptr;
646
647 remain = args->size;
648
649 /* Pin the user pages containing the data. We can't fault while
650 * holding the struct mutex, and all of the pwrite implementations
651 * want to hold it while dereferencing the user data.
652 */
653 first_data_page = data_ptr / PAGE_SIZE;
654 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
655 num_pages = last_data_page - first_data_page + 1;
656
8e7d2b2c 657 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
658 if (user_pages == NULL)
659 return -ENOMEM;
660
661 down_read(&mm->mmap_sem);
662 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
663 num_pages, 0, 0, user_pages, NULL);
664 up_read(&mm->mmap_sem);
665 if (pinned_pages < num_pages) {
666 ret = -EFAULT;
667 goto out_unpin_pages;
668 }
673a394b
EA
669
670 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
671 ret = i915_gem_object_pin(obj, 0);
672 if (ret)
673 goto out_unlock;
674
675 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
676 if (ret)
677 goto out_unpin_object;
678
23010e43 679 obj_priv = to_intel_bo(obj);
3de09aa3
EA
680 offset = obj_priv->gtt_offset + args->offset;
681
682 while (remain > 0) {
683 /* Operation in this page
684 *
685 * gtt_page_base = page offset within aperture
686 * gtt_page_offset = offset within page in aperture
687 * data_page_index = page number in get_user_pages return
688 * data_page_offset = offset with data_page_index page.
689 * page_length = bytes to copy for this page
690 */
691 gtt_page_base = offset & PAGE_MASK;
692 gtt_page_offset = offset & ~PAGE_MASK;
693 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
694 data_page_offset = data_ptr & ~PAGE_MASK;
695
696 page_length = remain;
697 if ((gtt_page_offset + page_length) > PAGE_SIZE)
698 page_length = PAGE_SIZE - gtt_page_offset;
699 if ((data_page_offset + page_length) > PAGE_SIZE)
700 page_length = PAGE_SIZE - data_page_offset;
701
ab34c226
CW
702 slow_kernel_write(dev_priv->mm.gtt_mapping,
703 gtt_page_base, gtt_page_offset,
704 user_pages[data_page_index],
705 data_page_offset,
706 page_length);
3de09aa3
EA
707
708 remain -= page_length;
709 offset += page_length;
710 data_ptr += page_length;
711 }
712
713out_unpin_object:
714 i915_gem_object_unpin(obj);
715out_unlock:
716 mutex_unlock(&dev->struct_mutex);
717out_unpin_pages:
718 for (i = 0; i < pinned_pages; i++)
719 page_cache_release(user_pages[i]);
8e7d2b2c 720 drm_free_large(user_pages);
3de09aa3
EA
721
722 return ret;
723}
724
40123c1f
EA
725/**
726 * This is the fast shmem pwrite path, which attempts to directly
727 * copy_from_user into the kmapped pages backing the object.
728 */
3043c60c 729static int
40123c1f
EA
730i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file_priv)
673a394b 733{
23010e43 734 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
735 ssize_t remain;
736 loff_t offset, page_base;
737 char __user *user_data;
738 int page_offset, page_length;
673a394b 739 int ret;
40123c1f
EA
740
741 user_data = (char __user *) (uintptr_t) args->data_ptr;
742 remain = args->size;
673a394b
EA
743
744 mutex_lock(&dev->struct_mutex);
745
4bdadb97 746 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
747 if (ret != 0)
748 goto fail_unlock;
673a394b 749
e47c68e9 750 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
751 if (ret != 0)
752 goto fail_put_pages;
753
23010e43 754 obj_priv = to_intel_bo(obj);
40123c1f
EA
755 offset = args->offset;
756 obj_priv->dirty = 1;
757
758 while (remain > 0) {
759 /* Operation in this page
760 *
761 * page_base = page offset within aperture
762 * page_offset = offset within page
763 * page_length = bytes to copy for this page
764 */
765 page_base = (offset & ~(PAGE_SIZE-1));
766 page_offset = offset & (PAGE_SIZE-1);
767 page_length = remain;
768 if ((page_offset + remain) > PAGE_SIZE)
769 page_length = PAGE_SIZE - page_offset;
770
771 ret = fast_shmem_write(obj_priv->pages,
772 page_base, page_offset,
773 user_data, page_length);
774 if (ret)
775 goto fail_put_pages;
776
777 remain -= page_length;
778 user_data += page_length;
779 offset += page_length;
780 }
781
782fail_put_pages:
783 i915_gem_object_put_pages(obj);
784fail_unlock:
785 mutex_unlock(&dev->struct_mutex);
786
787 return ret;
788}
789
790/**
791 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
792 * the memory and maps it using kmap_atomic for copying.
793 *
794 * This avoids taking mmap_sem for faulting on the user's address while the
795 * struct_mutex is held.
796 */
797static int
798i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
799 struct drm_i915_gem_pwrite *args,
800 struct drm_file *file_priv)
801{
23010e43 802 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
803 struct mm_struct *mm = current->mm;
804 struct page **user_pages;
805 ssize_t remain;
806 loff_t offset, pinned_pages, i;
807 loff_t first_data_page, last_data_page, num_pages;
808 int shmem_page_index, shmem_page_offset;
809 int data_page_index, data_page_offset;
810 int page_length;
811 int ret;
812 uint64_t data_ptr = args->data_ptr;
280b713b 813 int do_bit17_swizzling;
40123c1f
EA
814
815 remain = args->size;
816
817 /* Pin the user pages containing the data. We can't fault while
818 * holding the struct mutex, and all of the pwrite implementations
819 * want to hold it while dereferencing the user data.
820 */
821 first_data_page = data_ptr / PAGE_SIZE;
822 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
823 num_pages = last_data_page - first_data_page + 1;
824
8e7d2b2c 825 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
826 if (user_pages == NULL)
827 return -ENOMEM;
828
829 down_read(&mm->mmap_sem);
830 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
831 num_pages, 0, 0, user_pages, NULL);
832 up_read(&mm->mmap_sem);
833 if (pinned_pages < num_pages) {
834 ret = -EFAULT;
835 goto fail_put_user_pages;
673a394b
EA
836 }
837
280b713b
EA
838 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
839
40123c1f
EA
840 mutex_lock(&dev->struct_mutex);
841
07f73f69
CW
842 ret = i915_gem_object_get_pages_or_evict(obj);
843 if (ret)
40123c1f
EA
844 goto fail_unlock;
845
846 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
847 if (ret != 0)
848 goto fail_put_pages;
849
23010e43 850 obj_priv = to_intel_bo(obj);
673a394b 851 offset = args->offset;
40123c1f 852 obj_priv->dirty = 1;
673a394b 853
40123c1f
EA
854 while (remain > 0) {
855 /* Operation in this page
856 *
857 * shmem_page_index = page number within shmem file
858 * shmem_page_offset = offset within page in shmem file
859 * data_page_index = page number in get_user_pages return
860 * data_page_offset = offset with data_page_index page.
861 * page_length = bytes to copy for this page
862 */
863 shmem_page_index = offset / PAGE_SIZE;
864 shmem_page_offset = offset & ~PAGE_MASK;
865 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
866 data_page_offset = data_ptr & ~PAGE_MASK;
867
868 page_length = remain;
869 if ((shmem_page_offset + page_length) > PAGE_SIZE)
870 page_length = PAGE_SIZE - shmem_page_offset;
871 if ((data_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - data_page_offset;
873
280b713b 874 if (do_bit17_swizzling) {
99a03df5 875 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
876 shmem_page_offset,
877 user_pages[data_page_index],
878 data_page_offset,
99a03df5
CW
879 page_length,
880 0);
881 } else {
882 slow_shmem_copy(obj_priv->pages[shmem_page_index],
883 shmem_page_offset,
884 user_pages[data_page_index],
885 data_page_offset,
886 page_length);
280b713b 887 }
40123c1f
EA
888
889 remain -= page_length;
890 data_ptr += page_length;
891 offset += page_length;
673a394b
EA
892 }
893
40123c1f
EA
894fail_put_pages:
895 i915_gem_object_put_pages(obj);
896fail_unlock:
673a394b 897 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
898fail_put_user_pages:
899 for (i = 0; i < pinned_pages; i++)
900 page_cache_release(user_pages[i]);
8e7d2b2c 901 drm_free_large(user_pages);
673a394b 902
40123c1f 903 return ret;
673a394b
EA
904}
905
906/**
907 * Writes data to the object referenced by handle.
908 *
909 * On error, the contents of the buffer that were to be modified are undefined.
910 */
911int
912i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
913 struct drm_file *file_priv)
914{
915 struct drm_i915_gem_pwrite *args = data;
916 struct drm_gem_object *obj;
917 struct drm_i915_gem_object *obj_priv;
918 int ret = 0;
919
920 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
921 if (obj == NULL)
922 return -EBADF;
23010e43 923 obj_priv = to_intel_bo(obj);
673a394b
EA
924
925 /* Bounds check destination.
926 *
927 * XXX: This could use review for overflow issues...
928 */
929 if (args->offset > obj->size || args->size > obj->size ||
930 args->offset + args->size > obj->size) {
bc9025bd 931 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
932 return -EINVAL;
933 }
934
935 /* We can only do the GTT pwrite on untiled buffers, as otherwise
936 * it would end up going through the fenced access, and we'll get
937 * different detiling behavior between reading and writing.
938 * pread/pwrite currently are reading and writing from the CPU
939 * perspective, requiring manual detiling by the client.
940 */
71acb5eb
DA
941 if (obj_priv->phys_obj)
942 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
943 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
944 dev->gtt_total != 0 &&
945 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
946 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
947 if (ret == -EFAULT) {
948 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
949 file_priv);
950 }
280b713b
EA
951 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
952 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
953 } else {
954 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
955 if (ret == -EFAULT) {
956 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
957 file_priv);
958 }
959 }
673a394b
EA
960
961#if WATCH_PWRITE
962 if (ret)
963 DRM_INFO("pwrite failed %d\n", ret);
964#endif
965
bc9025bd 966 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
967
968 return ret;
969}
970
971/**
2ef7eeaa
EA
972 * Called when user space prepares to use an object with the CPU, either
973 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
974 */
975int
976i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
977 struct drm_file *file_priv)
978{
a09ba7fa 979 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
980 struct drm_i915_gem_set_domain *args = data;
981 struct drm_gem_object *obj;
652c393a 982 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
673a394b
EA
985 int ret;
986
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
989
2ef7eeaa 990 /* Only handle setting domains to types used by the CPU. */
21d509e3 991 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
992 return -EINVAL;
993
21d509e3 994 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
995 return -EINVAL;
996
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
999 */
1000 if (write_domain != 0 && read_domains != write_domain)
1001 return -EINVAL;
1002
673a394b
EA
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004 if (obj == NULL)
1005 return -EBADF;
23010e43 1006 obj_priv = to_intel_bo(obj);
673a394b
EA
1007
1008 mutex_lock(&dev->struct_mutex);
652c393a
JB
1009
1010 intel_mark_busy(dev, obj);
1011
673a394b 1012#if WATCH_BUF
cfd43c02 1013 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1014 obj, obj->size, read_domains, write_domain);
673a394b 1015#endif
2ef7eeaa
EA
1016 if (read_domains & I915_GEM_DOMAIN_GTT) {
1017 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1018
a09ba7fa
EA
1019 /* Update the LRU on the fence for the CPU access that's
1020 * about to occur.
1021 */
1022 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1023 struct drm_i915_fence_reg *reg =
1024 &dev_priv->fence_regs[obj_priv->fence_reg];
1025 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1026 &dev_priv->mm.fence_list);
1027 }
1028
02354392
EA
1029 /* Silently promote "you're not bound, there was nothing to do"
1030 * to success, since the client was just asking us to
1031 * make sure everything was done.
1032 */
1033 if (ret == -EINVAL)
1034 ret = 0;
2ef7eeaa 1035 } else {
e47c68e9 1036 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1037 }
1038
673a394b
EA
1039 drm_gem_object_unreference(obj);
1040 mutex_unlock(&dev->struct_mutex);
1041 return ret;
1042}
1043
1044/**
1045 * Called when user space has done writes to this buffer
1046 */
1047int
1048i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1049 struct drm_file *file_priv)
1050{
1051 struct drm_i915_gem_sw_finish *args = data;
1052 struct drm_gem_object *obj;
1053 struct drm_i915_gem_object *obj_priv;
1054 int ret = 0;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
1059 mutex_lock(&dev->struct_mutex);
1060 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1061 if (obj == NULL) {
1062 mutex_unlock(&dev->struct_mutex);
1063 return -EBADF;
1064 }
1065
1066#if WATCH_BUF
cfd43c02 1067 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1068 __func__, args->handle, obj, obj->size);
1069#endif
23010e43 1070 obj_priv = to_intel_bo(obj);
673a394b
EA
1071
1072 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1073 if (obj_priv->pin_count)
1074 i915_gem_object_flush_cpu_write_domain(obj);
1075
673a394b
EA
1076 drm_gem_object_unreference(obj);
1077 mutex_unlock(&dev->struct_mutex);
1078 return ret;
1079}
1080
1081/**
1082 * Maps the contents of an object, returning the address it is mapped
1083 * into.
1084 *
1085 * While the mapping holds a reference on the contents of the object, it doesn't
1086 * imply a ref on the object itself.
1087 */
1088int
1089i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1090 struct drm_file *file_priv)
1091{
1092 struct drm_i915_gem_mmap *args = data;
1093 struct drm_gem_object *obj;
1094 loff_t offset;
1095 unsigned long addr;
1096
1097 if (!(dev->driver->driver_features & DRIVER_GEM))
1098 return -ENODEV;
1099
1100 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1101 if (obj == NULL)
1102 return -EBADF;
1103
1104 offset = args->offset;
1105
1106 down_write(&current->mm->mmap_sem);
1107 addr = do_mmap(obj->filp, 0, args->size,
1108 PROT_READ | PROT_WRITE, MAP_SHARED,
1109 args->offset);
1110 up_write(&current->mm->mmap_sem);
bc9025bd 1111 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1112 if (IS_ERR((void *)addr))
1113 return addr;
1114
1115 args->addr_ptr = (uint64_t) addr;
1116
1117 return 0;
1118}
1119
de151cf6
JB
1120/**
1121 * i915_gem_fault - fault a page into the GTT
1122 * vma: VMA in question
1123 * vmf: fault info
1124 *
1125 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1126 * from userspace. The fault handler takes care of binding the object to
1127 * the GTT (if needed), allocating and programming a fence register (again,
1128 * only if needed based on whether the old reg is still valid or the object
1129 * is tiled) and inserting a new PTE into the faulting process.
1130 *
1131 * Note that the faulting process may involve evicting existing objects
1132 * from the GTT and/or fence registers to make room. So performance may
1133 * suffer if the GTT working set is large or there are few fence registers
1134 * left.
1135 */
1136int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1137{
1138 struct drm_gem_object *obj = vma->vm_private_data;
1139 struct drm_device *dev = obj->dev;
1140 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1142 pgoff_t page_offset;
1143 unsigned long pfn;
1144 int ret = 0;
0f973f27 1145 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1146
1147 /* We don't use vmf->pgoff since that has the fake offset */
1148 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1149 PAGE_SHIFT;
1150
1151 /* Now bind it into the GTT if needed */
1152 mutex_lock(&dev->struct_mutex);
1153 if (!obj_priv->gtt_space) {
e67b8ce1 1154 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1155 if (ret)
1156 goto unlock;
07f4f3e8 1157
14b60391 1158 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
07f4f3e8
KH
1159
1160 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1161 if (ret)
1162 goto unlock;
de151cf6
JB
1163 }
1164
1165 /* Need a new fence register? */
a09ba7fa 1166 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1167 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1168 if (ret)
1169 goto unlock;
d9ddcb96 1170 }
de151cf6
JB
1171
1172 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1173 page_offset;
1174
1175 /* Finally, remap it using the new GTT offset */
1176 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1177unlock:
de151cf6
JB
1178 mutex_unlock(&dev->struct_mutex);
1179
1180 switch (ret) {
c715089f
CW
1181 case 0:
1182 case -ERESTARTSYS:
1183 return VM_FAULT_NOPAGE;
de151cf6
JB
1184 case -ENOMEM:
1185 case -EAGAIN:
1186 return VM_FAULT_OOM;
de151cf6 1187 default:
c715089f 1188 return VM_FAULT_SIGBUS;
de151cf6
JB
1189 }
1190}
1191
1192/**
1193 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1194 * @obj: obj in question
1195 *
1196 * GEM memory mapping works by handing back to userspace a fake mmap offset
1197 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1198 * up the object based on the offset and sets up the various memory mapping
1199 * structures.
1200 *
1201 * This routine allocates and attaches a fake offset for @obj.
1202 */
1203static int
1204i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1205{
1206 struct drm_device *dev = obj->dev;
1207 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1208 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1209 struct drm_map_list *list;
f77d390c 1210 struct drm_local_map *map;
de151cf6
JB
1211 int ret = 0;
1212
1213 /* Set the object up for mmap'ing */
1214 list = &obj->map_list;
9a298b2a 1215 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1216 if (!list->map)
1217 return -ENOMEM;
1218
1219 map = list->map;
1220 map->type = _DRM_GEM;
1221 map->size = obj->size;
1222 map->handle = obj;
1223
1224 /* Get a DRM GEM mmap offset allocated... */
1225 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1226 obj->size / PAGE_SIZE, 0, 0);
1227 if (!list->file_offset_node) {
1228 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1229 ret = -ENOMEM;
1230 goto out_free_list;
1231 }
1232
1233 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1234 obj->size / PAGE_SIZE, 0);
1235 if (!list->file_offset_node) {
1236 ret = -ENOMEM;
1237 goto out_free_list;
1238 }
1239
1240 list->hash.key = list->file_offset_node->start;
1241 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1242 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1243 ret = -ENOMEM;
de151cf6
JB
1244 goto out_free_mm;
1245 }
1246
1247 /* By now we should be all set, any drm_mmap request on the offset
1248 * below will get to our mmap & fault handler */
1249 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1250
1251 return 0;
1252
1253out_free_mm:
1254 drm_mm_put_block(list->file_offset_node);
1255out_free_list:
9a298b2a 1256 kfree(list->map);
de151cf6
JB
1257
1258 return ret;
1259}
1260
901782b2
CW
1261/**
1262 * i915_gem_release_mmap - remove physical page mappings
1263 * @obj: obj in question
1264 *
af901ca1 1265 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1266 * relinquish ownership of the pages back to the system.
1267 *
1268 * It is vital that we remove the page mapping if we have mapped a tiled
1269 * object through the GTT and then lose the fence register due to
1270 * resource pressure. Similarly if the object has been moved out of the
1271 * aperture, than pages mapped into userspace must be revoked. Removing the
1272 * mapping will then trigger a page fault on the next user access, allowing
1273 * fixup by i915_gem_fault().
1274 */
d05ca301 1275void
901782b2
CW
1276i915_gem_release_mmap(struct drm_gem_object *obj)
1277{
1278 struct drm_device *dev = obj->dev;
23010e43 1279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1280
1281 if (dev->dev_mapping)
1282 unmap_mapping_range(dev->dev_mapping,
1283 obj_priv->mmap_offset, obj->size, 1);
1284}
1285
ab00b3e5
JB
1286static void
1287i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1288{
1289 struct drm_device *dev = obj->dev;
23010e43 1290 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1291 struct drm_gem_mm *mm = dev->mm_private;
1292 struct drm_map_list *list;
1293
1294 list = &obj->map_list;
1295 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1296
1297 if (list->file_offset_node) {
1298 drm_mm_put_block(list->file_offset_node);
1299 list->file_offset_node = NULL;
1300 }
1301
1302 if (list->map) {
9a298b2a 1303 kfree(list->map);
ab00b3e5
JB
1304 list->map = NULL;
1305 }
1306
1307 obj_priv->mmap_offset = 0;
1308}
1309
de151cf6
JB
1310/**
1311 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1312 * @obj: object to check
1313 *
1314 * Return the required GTT alignment for an object, taking into account
1315 * potential fence register mapping if needed.
1316 */
1317static uint32_t
1318i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1319{
1320 struct drm_device *dev = obj->dev;
23010e43 1321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1322 int start, i;
1323
1324 /*
1325 * Minimum alignment is 4k (GTT page size), but might be greater
1326 * if a fence register is needed for the object.
1327 */
1328 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1329 return 4096;
1330
1331 /*
1332 * Previous chips need to be aligned to the size of the smallest
1333 * fence register that can contain the object.
1334 */
1335 if (IS_I9XX(dev))
1336 start = 1024*1024;
1337 else
1338 start = 512*1024;
1339
1340 for (i = start; i < obj->size; i <<= 1)
1341 ;
1342
1343 return i;
1344}
1345
1346/**
1347 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1348 * @dev: DRM device
1349 * @data: GTT mapping ioctl data
1350 * @file_priv: GEM object info
1351 *
1352 * Simply returns the fake offset to userspace so it can mmap it.
1353 * The mmap call will end up in drm_gem_mmap(), which will set things
1354 * up so we can get faults in the handler above.
1355 *
1356 * The fault handler will take care of binding the object into the GTT
1357 * (since it may have been evicted to make room for something), allocating
1358 * a fence register, and mapping the appropriate aperture address into
1359 * userspace.
1360 */
1361int
1362i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1363 struct drm_file *file_priv)
1364{
1365 struct drm_i915_gem_mmap_gtt *args = data;
1366 struct drm_i915_private *dev_priv = dev->dev_private;
1367 struct drm_gem_object *obj;
1368 struct drm_i915_gem_object *obj_priv;
1369 int ret;
1370
1371 if (!(dev->driver->driver_features & DRIVER_GEM))
1372 return -ENODEV;
1373
1374 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1375 if (obj == NULL)
1376 return -EBADF;
1377
1378 mutex_lock(&dev->struct_mutex);
1379
23010e43 1380 obj_priv = to_intel_bo(obj);
de151cf6 1381
ab18282d
CW
1382 if (obj_priv->madv != I915_MADV_WILLNEED) {
1383 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1384 drm_gem_object_unreference(obj);
1385 mutex_unlock(&dev->struct_mutex);
1386 return -EINVAL;
1387 }
1388
1389
de151cf6
JB
1390 if (!obj_priv->mmap_offset) {
1391 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1392 if (ret) {
1393 drm_gem_object_unreference(obj);
1394 mutex_unlock(&dev->struct_mutex);
de151cf6 1395 return ret;
13af1062 1396 }
de151cf6
JB
1397 }
1398
1399 args->offset = obj_priv->mmap_offset;
1400
de151cf6
JB
1401 /*
1402 * Pull it into the GTT so that we have a page list (makes the
1403 * initial fault faster and any subsequent flushing possible).
1404 */
1405 if (!obj_priv->agp_mem) {
e67b8ce1 1406 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1407 if (ret) {
1408 drm_gem_object_unreference(obj);
1409 mutex_unlock(&dev->struct_mutex);
1410 return ret;
1411 }
14b60391 1412 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
de151cf6
JB
1413 }
1414
1415 drm_gem_object_unreference(obj);
1416 mutex_unlock(&dev->struct_mutex);
1417
1418 return 0;
1419}
1420
6911a9b8 1421void
856fa198 1422i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1423{
23010e43 1424 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1425 int page_count = obj->size / PAGE_SIZE;
1426 int i;
1427
856fa198 1428 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1429 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1430
856fa198
EA
1431 if (--obj_priv->pages_refcount != 0)
1432 return;
673a394b 1433
280b713b
EA
1434 if (obj_priv->tiling_mode != I915_TILING_NONE)
1435 i915_gem_object_save_bit_17_swizzle(obj);
1436
3ef94daa 1437 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1438 obj_priv->dirty = 0;
3ef94daa
CW
1439
1440 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1441 if (obj_priv->dirty)
1442 set_page_dirty(obj_priv->pages[i]);
1443
1444 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1445 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1446
1447 page_cache_release(obj_priv->pages[i]);
1448 }
673a394b
EA
1449 obj_priv->dirty = 0;
1450
8e7d2b2c 1451 drm_free_large(obj_priv->pages);
856fa198 1452 obj_priv->pages = NULL;
673a394b
EA
1453}
1454
1455static void
852835f3
ZN
1456i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1457 struct intel_ring_buffer *ring)
673a394b
EA
1458{
1459 struct drm_device *dev = obj->dev;
1460 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1461 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1462 BUG_ON(ring == NULL);
1463 obj_priv->ring = ring;
673a394b
EA
1464
1465 /* Add a reference if we're newly entering the active list. */
1466 if (!obj_priv->active) {
1467 drm_gem_object_reference(obj);
1468 obj_priv->active = 1;
1469 }
1470 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1471 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1472 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1473 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1474 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1475}
1476
ce44b0ea
EA
1477static void
1478i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1479{
1480 struct drm_device *dev = obj->dev;
1481 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1482 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1483
1484 BUG_ON(!obj_priv->active);
1485 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1486 obj_priv->last_rendering_seqno = 0;
1487}
673a394b 1488
963b4836
CW
1489/* Immediately discard the backing storage */
1490static void
1491i915_gem_object_truncate(struct drm_gem_object *obj)
1492{
23010e43 1493 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1494 struct inode *inode;
963b4836 1495
bb6baf76
CW
1496 inode = obj->filp->f_path.dentry->d_inode;
1497 if (inode->i_op->truncate)
1498 inode->i_op->truncate (inode);
1499
1500 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1501}
1502
1503static inline int
1504i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1505{
1506 return obj_priv->madv == I915_MADV_DONTNEED;
1507}
1508
673a394b
EA
1509static void
1510i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1511{
1512 struct drm_device *dev = obj->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1515
1516 i915_verify_inactive(dev, __FILE__, __LINE__);
1517 if (obj_priv->pin_count != 0)
1518 list_del_init(&obj_priv->list);
1519 else
1520 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1521
99fcb766
DV
1522 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1523
ce44b0ea 1524 obj_priv->last_rendering_seqno = 0;
852835f3 1525 obj_priv->ring = NULL;
673a394b
EA
1526 if (obj_priv->active) {
1527 obj_priv->active = 0;
1528 drm_gem_object_unreference(obj);
1529 }
1530 i915_verify_inactive(dev, __FILE__, __LINE__);
1531}
1532
63560396
DV
1533static void
1534i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1535 uint32_t flush_domains, uint32_t seqno,
1536 struct intel_ring_buffer *ring)
63560396
DV
1537{
1538 drm_i915_private_t *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_object *obj_priv, *next;
1540
1541 list_for_each_entry_safe(obj_priv, next,
1542 &dev_priv->mm.gpu_write_list,
1543 gpu_write_list) {
a8089e84 1544 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1545
1546 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1547 obj->write_domain &&
1548 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1549 uint32_t old_write_domain = obj->write_domain;
1550
1551 obj->write_domain = 0;
1552 list_del_init(&obj_priv->gpu_write_list);
852835f3 1553 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1554
1555 /* update the fence lru list */
007cc8ac
DV
1556 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1557 struct drm_i915_fence_reg *reg =
1558 &dev_priv->fence_regs[obj_priv->fence_reg];
1559 list_move_tail(&reg->lru_list,
63560396 1560 &dev_priv->mm.fence_list);
007cc8ac 1561 }
63560396
DV
1562
1563 trace_i915_gem_object_change_domain(obj,
1564 obj->read_domains,
1565 old_write_domain);
1566 }
1567 }
1568}
8187a2b7 1569
5a5a0c64 1570uint32_t
b962442e 1571i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1572 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1573{
1574 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1575 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1576 struct drm_i915_gem_request *request;
1577 uint32_t seqno;
1578 int was_empty;
673a394b 1579
b962442e
EA
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1582
9a298b2a 1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1584 if (request == NULL)
1585 return 0;
1586
852835f3 1587 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1588
1589 request->seqno = seqno;
852835f3 1590 request->ring = ring;
673a394b 1591 request->emitted_jiffies = jiffies;
852835f3
ZN
1592 was_empty = list_empty(&ring->request_list);
1593 list_add_tail(&request->list, &ring->request_list);
1594
b962442e
EA
1595 if (i915_file_priv) {
1596 list_add_tail(&request->client_list,
1597 &i915_file_priv->mm.request_list);
1598 } else {
1599 INIT_LIST_HEAD(&request->client_list);
1600 }
673a394b 1601
ce44b0ea
EA
1602 /* Associate any objects on the flushing list matching the write
1603 * domain we're flushing with our flush.
1604 */
63560396 1605 if (flush_domains != 0)
852835f3 1606 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1607
f65d9421
BG
1608 if (!dev_priv->mm.suspended) {
1609 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1610 if (was_empty)
1611 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1612 }
673a394b
EA
1613 return seqno;
1614}
1615
1616/**
1617 * Command execution barrier
1618 *
1619 * Ensures that all commands in the ring are finished
1620 * before signalling the CPU
1621 */
3043c60c 1622static uint32_t
852835f3 1623i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1624{
673a394b 1625 uint32_t flush_domains = 0;
673a394b
EA
1626
1627 /* The sampler always gets flushed on i965 (sigh) */
1628 if (IS_I965G(dev))
1629 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1630
1631 ring->flush(dev, ring,
1632 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1633 return flush_domains;
1634}
1635
1636/**
1637 * Moves buffers associated only with the given active seqno from the active
1638 * to inactive list, potentially freeing them.
1639 */
1640static void
1641i915_gem_retire_request(struct drm_device *dev,
1642 struct drm_i915_gem_request *request)
1643{
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1645
1c5d22f7
CW
1646 trace_i915_gem_request_retire(dev, request->seqno);
1647
673a394b
EA
1648 /* Move any buffers on the active list that are no longer referenced
1649 * by the ringbuffer to the flushing/inactive lists as appropriate.
1650 */
5e118f41 1651 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1652 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1653 struct drm_gem_object *obj;
1654 struct drm_i915_gem_object *obj_priv;
1655
852835f3 1656 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1657 struct drm_i915_gem_object,
1658 list);
a8089e84 1659 obj = &obj_priv->base;
673a394b
EA
1660
1661 /* If the seqno being retired doesn't match the oldest in the
1662 * list, then the oldest in the list must still be newer than
1663 * this seqno.
1664 */
1665 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1666 goto out;
de151cf6 1667
673a394b
EA
1668#if WATCH_LRU
1669 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1670 __func__, request->seqno, obj);
1671#endif
1672
ce44b0ea
EA
1673 if (obj->write_domain != 0)
1674 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1675 else {
1676 /* Take a reference on the object so it won't be
1677 * freed while the spinlock is held. The list
1678 * protection for this spinlock is safe when breaking
1679 * the lock like this since the next thing we do
1680 * is just get the head of the list again.
1681 */
1682 drm_gem_object_reference(obj);
673a394b 1683 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1684 spin_unlock(&dev_priv->mm.active_list_lock);
1685 drm_gem_object_unreference(obj);
1686 spin_lock(&dev_priv->mm.active_list_lock);
1687 }
673a394b 1688 }
5e118f41
CW
1689out:
1690 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1691}
1692
1693/**
1694 * Returns true if seq1 is later than seq2.
1695 */
22be1724 1696bool
673a394b
EA
1697i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1698{
1699 return (int32_t)(seq1 - seq2) >= 0;
1700}
1701
1702uint32_t
852835f3 1703i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1704 struct intel_ring_buffer *ring)
673a394b 1705{
852835f3 1706 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1707}
1708
1709/**
1710 * This function clears the request list as sequence numbers are passed.
1711 */
b09a1fec
CW
1712static void
1713i915_gem_retire_requests_ring(struct drm_device *dev,
1714 struct intel_ring_buffer *ring)
673a394b
EA
1715{
1716 drm_i915_private_t *dev_priv = dev->dev_private;
1717 uint32_t seqno;
1718
8187a2b7 1719 if (!ring->status_page.page_addr
852835f3 1720 || list_empty(&ring->request_list))
6c0594a3
KW
1721 return;
1722
852835f3 1723 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1724
852835f3 1725 while (!list_empty(&ring->request_list)) {
673a394b
EA
1726 struct drm_i915_gem_request *request;
1727 uint32_t retiring_seqno;
1728
852835f3 1729 request = list_first_entry(&ring->request_list,
673a394b
EA
1730 struct drm_i915_gem_request,
1731 list);
1732 retiring_seqno = request->seqno;
1733
1734 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1735 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1736 i915_gem_retire_request(dev, request);
1737
1738 list_del(&request->list);
b962442e 1739 list_del(&request->client_list);
9a298b2a 1740 kfree(request);
673a394b
EA
1741 } else
1742 break;
1743 }
9d34e5db
CW
1744
1745 if (unlikely (dev_priv->trace_irq_seqno &&
1746 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1747
1748 ring->user_irq_put(dev, ring);
9d34e5db
CW
1749 dev_priv->trace_irq_seqno = 0;
1750 }
673a394b
EA
1751}
1752
b09a1fec
CW
1753void
1754i915_gem_retire_requests(struct drm_device *dev)
1755{
1756 drm_i915_private_t *dev_priv = dev->dev_private;
1757
be72615b
CW
1758 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1759 struct drm_i915_gem_object *obj_priv, *tmp;
1760
1761 /* We must be careful that during unbind() we do not
1762 * accidentally infinitely recurse into retire requests.
1763 * Currently:
1764 * retire -> free -> unbind -> wait -> retire_ring
1765 */
1766 list_for_each_entry_safe(obj_priv, tmp,
1767 &dev_priv->mm.deferred_free_list,
1768 list)
1769 i915_gem_free_object_tail(&obj_priv->base);
1770 }
1771
b09a1fec
CW
1772 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1773 if (HAS_BSD(dev))
1774 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1775}
1776
673a394b
EA
1777void
1778i915_gem_retire_work_handler(struct work_struct *work)
1779{
1780 drm_i915_private_t *dev_priv;
1781 struct drm_device *dev;
1782
1783 dev_priv = container_of(work, drm_i915_private_t,
1784 mm.retire_work.work);
1785 dev = dev_priv->dev;
1786
1787 mutex_lock(&dev->struct_mutex);
b09a1fec 1788 i915_gem_retire_requests(dev);
d1b851fc 1789
6dbe2772 1790 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1791 (!list_empty(&dev_priv->render_ring.request_list) ||
1792 (HAS_BSD(dev) &&
1793 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1794 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1795 mutex_unlock(&dev->struct_mutex);
1796}
1797
5a5a0c64 1798int
852835f3
ZN
1799i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1800 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1801{
1802 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1803 u32 ier;
673a394b
EA
1804 int ret = 0;
1805
1806 BUG_ON(seqno == 0);
1807
ba1234d1 1808 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1809 return -EIO;
1810
852835f3 1811 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1812 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1813 ier = I915_READ(DEIER) | I915_READ(GTIER);
1814 else
1815 ier = I915_READ(IER);
802c7eb6
JB
1816 if (!ier) {
1817 DRM_ERROR("something (likely vbetool) disabled "
1818 "interrupts, re-enabling\n");
1819 i915_driver_irq_preinstall(dev);
1820 i915_driver_irq_postinstall(dev);
1821 }
1822
1c5d22f7
CW
1823 trace_i915_gem_request_wait_begin(dev, seqno);
1824
852835f3 1825 ring->waiting_gem_seqno = seqno;
8187a2b7 1826 ring->user_irq_get(dev, ring);
48764bf4 1827 if (interruptible)
852835f3
ZN
1828 ret = wait_event_interruptible(ring->irq_queue,
1829 i915_seqno_passed(
1830 ring->get_gem_seqno(dev, ring), seqno)
1831 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1832 else
852835f3
ZN
1833 wait_event(ring->irq_queue,
1834 i915_seqno_passed(
1835 ring->get_gem_seqno(dev, ring), seqno)
1836 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1837
8187a2b7 1838 ring->user_irq_put(dev, ring);
852835f3 1839 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1840
1841 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1842 }
ba1234d1 1843 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1844 ret = -EIO;
1845
1846 if (ret && ret != -ERESTARTSYS)
1847 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
852835f3 1848 __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
673a394b
EA
1849
1850 /* Directly dispatch request retiring. While we have the work queue
1851 * to handle this, the waiter on a request often wants an associated
1852 * buffer to have made it to the inactive list, and we would need
1853 * a separate wait queue to handle that.
1854 */
1855 if (ret == 0)
b09a1fec 1856 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1857
1858 return ret;
1859}
1860
48764bf4
DV
1861/**
1862 * Waits for a sequence number to be signaled, and cleans up the
1863 * request and object lists appropriately for that event.
1864 */
1865static int
852835f3
ZN
1866i915_wait_request(struct drm_device *dev, uint32_t seqno,
1867 struct intel_ring_buffer *ring)
48764bf4 1868{
852835f3 1869 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1870}
1871
8187a2b7
ZN
1872static void
1873i915_gem_flush(struct drm_device *dev,
1874 uint32_t invalidate_domains,
1875 uint32_t flush_domains)
1876{
1877 drm_i915_private_t *dev_priv = dev->dev_private;
1878 if (flush_domains & I915_GEM_DOMAIN_CPU)
1879 drm_agp_chipset_flush(dev);
1880 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1881 invalidate_domains,
1882 flush_domains);
d1b851fc
ZN
1883
1884 if (HAS_BSD(dev))
1885 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1886 invalidate_domains,
1887 flush_domains);
8187a2b7
ZN
1888}
1889
852835f3
ZN
1890static void
1891i915_gem_flush_ring(struct drm_device *dev,
1892 uint32_t invalidate_domains,
1893 uint32_t flush_domains,
1894 struct intel_ring_buffer *ring)
1895{
1896 if (flush_domains & I915_GEM_DOMAIN_CPU)
1897 drm_agp_chipset_flush(dev);
1898 ring->flush(dev, ring,
1899 invalidate_domains,
1900 flush_domains);
1901}
1902
673a394b
EA
1903/**
1904 * Ensures that all rendering to the object has completed and the object is
1905 * safe to unbind from the GTT or access from the CPU.
1906 */
1907static int
1908i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1909{
1910 struct drm_device *dev = obj->dev;
23010e43 1911 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1912 int ret;
1913
e47c68e9
EA
1914 /* This function only exists to support waiting for existing rendering,
1915 * not for emitting required flushes.
673a394b 1916 */
e47c68e9 1917 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1918
1919 /* If there is rendering queued on the buffer being evicted, wait for
1920 * it.
1921 */
1922 if (obj_priv->active) {
1923#if WATCH_BUF
1924 DRM_INFO("%s: object %p wait for seqno %08x\n",
1925 __func__, obj, obj_priv->last_rendering_seqno);
1926#endif
852835f3
ZN
1927 ret = i915_wait_request(dev,
1928 obj_priv->last_rendering_seqno, obj_priv->ring);
673a394b
EA
1929 if (ret != 0)
1930 return ret;
1931 }
1932
1933 return 0;
1934}
1935
1936/**
1937 * Unbinds an object from the GTT aperture.
1938 */
0f973f27 1939int
673a394b
EA
1940i915_gem_object_unbind(struct drm_gem_object *obj)
1941{
1942 struct drm_device *dev = obj->dev;
4a87b8ca 1943 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1944 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1945 int ret = 0;
1946
1947#if WATCH_BUF
1948 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1949 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1950#endif
1951 if (obj_priv->gtt_space == NULL)
1952 return 0;
1953
1954 if (obj_priv->pin_count != 0) {
1955 DRM_ERROR("Attempting to unbind pinned buffer\n");
1956 return -EINVAL;
1957 }
1958
5323fd04
EA
1959 /* blow away mappings if mapped through GTT */
1960 i915_gem_release_mmap(obj);
1961
673a394b
EA
1962 /* Move the object to the CPU domain to ensure that
1963 * any possible CPU writes while it's not in the GTT
1964 * are flushed when we go to remap it. This will
1965 * also ensure that all pending GPU writes are finished
1966 * before we unbind.
1967 */
e47c68e9 1968 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1969 if (ret == -ERESTARTSYS)
673a394b 1970 return ret;
8dc1775d
CW
1971 /* Continue on if we fail due to EIO, the GPU is hung so we
1972 * should be safe and we need to cleanup or else we might
1973 * cause memory corruption through use-after-free.
1974 */
673a394b 1975
5323fd04
EA
1976 BUG_ON(obj_priv->active);
1977
96b47b65
DV
1978 /* release the fence reg _after_ flushing */
1979 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1980 i915_gem_clear_fence_reg(obj);
1981
673a394b
EA
1982 if (obj_priv->agp_mem != NULL) {
1983 drm_unbind_agp(obj_priv->agp_mem);
1984 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1985 obj_priv->agp_mem = NULL;
1986 }
1987
856fa198 1988 i915_gem_object_put_pages(obj);
a32808c0 1989 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
1990
1991 if (obj_priv->gtt_space) {
1992 atomic_dec(&dev->gtt_count);
1993 atomic_sub(obj->size, &dev->gtt_memory);
1994
1995 drm_mm_put_block(obj_priv->gtt_space);
1996 obj_priv->gtt_space = NULL;
1997 }
1998
1999 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2000 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2001 if (!list_empty(&obj_priv->list))
2002 list_del_init(&obj_priv->list);
4a87b8ca 2003 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2004
963b4836
CW
2005 if (i915_gem_object_is_purgeable(obj_priv))
2006 i915_gem_object_truncate(obj);
2007
1c5d22f7
CW
2008 trace_i915_gem_object_unbind(obj);
2009
8dc1775d 2010 return ret;
673a394b
EA
2011}
2012
07f73f69
CW
2013static struct drm_gem_object *
2014i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2015{
2016 drm_i915_private_t *dev_priv = dev->dev_private;
2017 struct drm_i915_gem_object *obj_priv;
2018 struct drm_gem_object *best = NULL;
2019 struct drm_gem_object *first = NULL;
2020
2021 /* Try to find the smallest clean object */
2022 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
a8089e84 2023 struct drm_gem_object *obj = &obj_priv->base;
07f73f69 2024 if (obj->size >= min_size) {
963b4836
CW
2025 if ((!obj_priv->dirty ||
2026 i915_gem_object_is_purgeable(obj_priv)) &&
07f73f69
CW
2027 (!best || obj->size < best->size)) {
2028 best = obj;
2029 if (best->size == min_size)
2030 return best;
2031 }
2032 if (!first)
2033 first = obj;
2034 }
2035 }
2036
2037 return best ? best : first;
2038}
2039
4df2faf4
DV
2040static int
2041i915_gpu_idle(struct drm_device *dev)
2042{
2043 drm_i915_private_t *dev_priv = dev->dev_private;
2044 bool lists_empty;
d1b851fc 2045 uint32_t seqno1, seqno2;
852835f3 2046 int ret;
4df2faf4
DV
2047
2048 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2049 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2050 list_empty(&dev_priv->render_ring.active_list) &&
2051 (!HAS_BSD(dev) ||
2052 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2053 spin_unlock(&dev_priv->mm.active_list_lock);
2054
2055 if (lists_empty)
2056 return 0;
2057
2058 /* Flush everything onto the inactive list. */
2059 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
d1b851fc 2060 seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
852835f3 2061 &dev_priv->render_ring);
d1b851fc 2062 if (seqno1 == 0)
4df2faf4 2063 return -ENOMEM;
d1b851fc
ZN
2064 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2065
2066 if (HAS_BSD(dev)) {
2067 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2068 &dev_priv->bsd_ring);
2069 if (seqno2 == 0)
2070 return -ENOMEM;
2071
2072 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2073 if (ret)
2074 return ret;
2075 }
2076
4df2faf4 2077
852835f3 2078 return ret;
4df2faf4
DV
2079}
2080
673a394b 2081static int
07f73f69
CW
2082i915_gem_evict_everything(struct drm_device *dev)
2083{
2084 drm_i915_private_t *dev_priv = dev->dev_private;
07f73f69
CW
2085 int ret;
2086 bool lists_empty;
2087
07f73f69
CW
2088 spin_lock(&dev_priv->mm.active_list_lock);
2089 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2090 list_empty(&dev_priv->mm.flushing_list) &&
d1b851fc
ZN
2091 list_empty(&dev_priv->render_ring.active_list) &&
2092 (!HAS_BSD(dev)
2093 || list_empty(&dev_priv->bsd_ring.active_list)));
07f73f69
CW
2094 spin_unlock(&dev_priv->mm.active_list_lock);
2095
9731129c 2096 if (lists_empty)
07f73f69 2097 return -ENOSPC;
07f73f69
CW
2098
2099 /* Flush everything (on to the inactive lists) and evict */
4df2faf4 2100 ret = i915_gpu_idle(dev);
07f73f69
CW
2101 if (ret)
2102 return ret;
2103
99fcb766
DV
2104 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2105
ab5ee576 2106 ret = i915_gem_evict_from_inactive_list(dev);
07f73f69
CW
2107 if (ret)
2108 return ret;
2109
2110 spin_lock(&dev_priv->mm.active_list_lock);
2111 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2112 list_empty(&dev_priv->mm.flushing_list) &&
d1b851fc
ZN
2113 list_empty(&dev_priv->render_ring.active_list) &&
2114 (!HAS_BSD(dev)
2115 || list_empty(&dev_priv->bsd_ring.active_list)));
07f73f69
CW
2116 spin_unlock(&dev_priv->mm.active_list_lock);
2117 BUG_ON(!lists_empty);
2118
2119 return 0;
2120}
2121
673a394b 2122static int
07f73f69 2123i915_gem_evict_something(struct drm_device *dev, int min_size)
673a394b
EA
2124{
2125 drm_i915_private_t *dev_priv = dev->dev_private;
2126 struct drm_gem_object *obj;
07f73f69 2127 int ret;
673a394b 2128
852835f3 2129 struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
d1b851fc 2130 struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
673a394b 2131 for (;;) {
b09a1fec 2132 i915_gem_retire_requests(dev);
d1b851fc 2133
673a394b
EA
2134 /* If there's an inactive buffer available now, grab it
2135 * and be done.
2136 */
07f73f69
CW
2137 obj = i915_gem_find_inactive_object(dev, min_size);
2138 if (obj) {
2139 struct drm_i915_gem_object *obj_priv;
2140
673a394b
EA
2141#if WATCH_LRU
2142 DRM_INFO("%s: evicting %p\n", __func__, obj);
2143#endif
23010e43 2144 obj_priv = to_intel_bo(obj);
07f73f69 2145 BUG_ON(obj_priv->pin_count != 0);
673a394b
EA
2146 BUG_ON(obj_priv->active);
2147
2148 /* Wait on the rendering and unbind the buffer. */
07f73f69 2149 return i915_gem_object_unbind(obj);
673a394b
EA
2150 }
2151
2152 /* If we didn't get anything, but the ring is still processing
07f73f69
CW
2153 * things, wait for the next to finish and hopefully leave us
2154 * a buffer to evict.
673a394b 2155 */
852835f3 2156 if (!list_empty(&render_ring->request_list)) {
673a394b
EA
2157 struct drm_i915_gem_request *request;
2158
852835f3 2159 request = list_first_entry(&render_ring->request_list,
673a394b
EA
2160 struct drm_i915_gem_request,
2161 list);
2162
852835f3
ZN
2163 ret = i915_wait_request(dev,
2164 request->seqno, request->ring);
673a394b 2165 if (ret)
07f73f69 2166 return ret;
673a394b 2167
07f73f69 2168 continue;
673a394b
EA
2169 }
2170
d1b851fc
ZN
2171 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2172 struct drm_i915_gem_request *request;
2173
2174 request = list_first_entry(&bsd_ring->request_list,
2175 struct drm_i915_gem_request,
2176 list);
2177
2178 ret = i915_wait_request(dev,
2179 request->seqno, request->ring);
2180 if (ret)
2181 return ret;
2182
2183 continue;
2184 }
2185
673a394b
EA
2186 /* If we didn't have anything on the request list but there
2187 * are buffers awaiting a flush, emit one and try again.
2188 * When we wait on it, those buffers waiting for that flush
2189 * will get moved to inactive.
2190 */
2191 if (!list_empty(&dev_priv->mm.flushing_list)) {
07f73f69 2192 struct drm_i915_gem_object *obj_priv;
673a394b 2193
9a1e2582
CW
2194 /* Find an object that we can immediately reuse */
2195 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
a8089e84 2196 obj = &obj_priv->base;
9a1e2582
CW
2197 if (obj->size >= min_size)
2198 break;
673a394b 2199
9a1e2582
CW
2200 obj = NULL;
2201 }
673a394b 2202
9a1e2582
CW
2203 if (obj != NULL) {
2204 uint32_t seqno;
673a394b 2205
852835f3
ZN
2206 i915_gem_flush_ring(dev,
2207 obj->write_domain,
9a1e2582 2208 obj->write_domain,
852835f3
ZN
2209 obj_priv->ring);
2210 seqno = i915_add_request(dev, NULL,
2211 obj->write_domain,
2212 obj_priv->ring);
9a1e2582
CW
2213 if (seqno == 0)
2214 return -ENOMEM;
9a1e2582
CW
2215 continue;
2216 }
673a394b
EA
2217 }
2218
07f73f69
CW
2219 /* If we didn't do any of the above, there's no single buffer
2220 * large enough to swap out for the new one, so just evict
2221 * everything and start again. (This should be rare.)
673a394b 2222 */
9731129c 2223 if (!list_empty (&dev_priv->mm.inactive_list))
ab5ee576 2224 return i915_gem_evict_from_inactive_list(dev);
9731129c 2225 else
07f73f69 2226 return i915_gem_evict_everything(dev);
ac94a962 2227 }
ac94a962
KP
2228}
2229
6911a9b8 2230int
4bdadb97
CW
2231i915_gem_object_get_pages(struct drm_gem_object *obj,
2232 gfp_t gfpmask)
673a394b 2233{
23010e43 2234 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2235 int page_count, i;
2236 struct address_space *mapping;
2237 struct inode *inode;
2238 struct page *page;
673a394b 2239
778c3544
DV
2240 BUG_ON(obj_priv->pages_refcount
2241 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2242
856fa198 2243 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2244 return 0;
2245
2246 /* Get the list of pages out of our struct file. They'll be pinned
2247 * at this point until we release them.
2248 */
2249 page_count = obj->size / PAGE_SIZE;
856fa198 2250 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2251 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2252 if (obj_priv->pages == NULL) {
856fa198 2253 obj_priv->pages_refcount--;
673a394b
EA
2254 return -ENOMEM;
2255 }
2256
2257 inode = obj->filp->f_path.dentry->d_inode;
2258 mapping = inode->i_mapping;
2259 for (i = 0; i < page_count; i++) {
4bdadb97 2260 page = read_cache_page_gfp(mapping, i,
985b823b 2261 GFP_HIGHUSER |
4bdadb97 2262 __GFP_COLD |
cd9f040d 2263 __GFP_RECLAIMABLE |
4bdadb97 2264 gfpmask);
1f2b1013
CW
2265 if (IS_ERR(page))
2266 goto err_pages;
2267
856fa198 2268 obj_priv->pages[i] = page;
673a394b 2269 }
280b713b
EA
2270
2271 if (obj_priv->tiling_mode != I915_TILING_NONE)
2272 i915_gem_object_do_bit_17_swizzle(obj);
2273
673a394b 2274 return 0;
1f2b1013
CW
2275
2276err_pages:
2277 while (i--)
2278 page_cache_release(obj_priv->pages[i]);
2279
2280 drm_free_large(obj_priv->pages);
2281 obj_priv->pages = NULL;
2282 obj_priv->pages_refcount--;
2283 return PTR_ERR(page);
673a394b
EA
2284}
2285
4e901fdc
EA
2286static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2287{
2288 struct drm_gem_object *obj = reg->obj;
2289 struct drm_device *dev = obj->dev;
2290 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2291 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2292 int regnum = obj_priv->fence_reg;
2293 uint64_t val;
2294
2295 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2296 0xfffff000) << 32;
2297 val |= obj_priv->gtt_offset & 0xfffff000;
2298 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2299 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2300
2301 if (obj_priv->tiling_mode == I915_TILING_Y)
2302 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2303 val |= I965_FENCE_REG_VALID;
2304
2305 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2306}
2307
de151cf6
JB
2308static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2309{
2310 struct drm_gem_object *obj = reg->obj;
2311 struct drm_device *dev = obj->dev;
2312 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2313 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2314 int regnum = obj_priv->fence_reg;
2315 uint64_t val;
2316
2317 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2318 0xfffff000) << 32;
2319 val |= obj_priv->gtt_offset & 0xfffff000;
2320 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2321 if (obj_priv->tiling_mode == I915_TILING_Y)
2322 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2323 val |= I965_FENCE_REG_VALID;
2324
2325 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2326}
2327
2328static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2329{
2330 struct drm_gem_object *obj = reg->obj;
2331 struct drm_device *dev = obj->dev;
2332 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2333 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2334 int regnum = obj_priv->fence_reg;
0f973f27 2335 int tile_width;
dc529a4f 2336 uint32_t fence_reg, val;
de151cf6
JB
2337 uint32_t pitch_val;
2338
2339 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2340 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2341 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2342 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2343 return;
2344 }
2345
0f973f27
JB
2346 if (obj_priv->tiling_mode == I915_TILING_Y &&
2347 HAS_128_BYTE_Y_TILING(dev))
2348 tile_width = 128;
de151cf6 2349 else
0f973f27
JB
2350 tile_width = 512;
2351
2352 /* Note: pitch better be a power of two tile widths */
2353 pitch_val = obj_priv->stride / tile_width;
2354 pitch_val = ffs(pitch_val) - 1;
de151cf6 2355
c36a2a6d
DV
2356 if (obj_priv->tiling_mode == I915_TILING_Y &&
2357 HAS_128_BYTE_Y_TILING(dev))
2358 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2359 else
2360 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2361
de151cf6
JB
2362 val = obj_priv->gtt_offset;
2363 if (obj_priv->tiling_mode == I915_TILING_Y)
2364 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2365 val |= I915_FENCE_SIZE_BITS(obj->size);
2366 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2367 val |= I830_FENCE_REG_VALID;
2368
dc529a4f
EA
2369 if (regnum < 8)
2370 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2371 else
2372 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2373 I915_WRITE(fence_reg, val);
de151cf6
JB
2374}
2375
2376static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2377{
2378 struct drm_gem_object *obj = reg->obj;
2379 struct drm_device *dev = obj->dev;
2380 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2381 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2382 int regnum = obj_priv->fence_reg;
2383 uint32_t val;
2384 uint32_t pitch_val;
8d7773a3 2385 uint32_t fence_size_bits;
de151cf6 2386
8d7773a3 2387 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2388 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2389 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2390 __func__, obj_priv->gtt_offset);
de151cf6
JB
2391 return;
2392 }
2393
e76a16de
EA
2394 pitch_val = obj_priv->stride / 128;
2395 pitch_val = ffs(pitch_val) - 1;
2396 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2397
de151cf6
JB
2398 val = obj_priv->gtt_offset;
2399 if (obj_priv->tiling_mode == I915_TILING_Y)
2400 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2401 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2402 WARN_ON(fence_size_bits & ~0x00000f00);
2403 val |= fence_size_bits;
de151cf6
JB
2404 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2405 val |= I830_FENCE_REG_VALID;
2406
2407 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2408}
2409
ae3db24a
DV
2410static int i915_find_fence_reg(struct drm_device *dev)
2411{
2412 struct drm_i915_fence_reg *reg = NULL;
2413 struct drm_i915_gem_object *obj_priv = NULL;
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 struct drm_gem_object *obj = NULL;
2416 int i, avail, ret;
2417
2418 /* First try to find a free reg */
2419 avail = 0;
2420 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2421 reg = &dev_priv->fence_regs[i];
2422 if (!reg->obj)
2423 return i;
2424
23010e43 2425 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2426 if (!obj_priv->pin_count)
2427 avail++;
2428 }
2429
2430 if (avail == 0)
2431 return -ENOSPC;
2432
2433 /* None available, try to steal one or wait for a user to finish */
2434 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2435 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2436 lru_list) {
2437 obj = reg->obj;
2438 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2439
2440 if (obj_priv->pin_count)
2441 continue;
2442
2443 /* found one! */
2444 i = obj_priv->fence_reg;
2445 break;
2446 }
2447
2448 BUG_ON(i == I915_FENCE_REG_NONE);
2449
2450 /* We only have a reference on obj from the active list. put_fence_reg
2451 * might drop that one, causing a use-after-free in it. So hold a
2452 * private reference to obj like the other callers of put_fence_reg
2453 * (set_tiling ioctl) do. */
2454 drm_gem_object_reference(obj);
2455 ret = i915_gem_object_put_fence_reg(obj);
2456 drm_gem_object_unreference(obj);
2457 if (ret != 0)
2458 return ret;
2459
2460 return i;
2461}
2462
de151cf6
JB
2463/**
2464 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2465 * @obj: object to map through a fence reg
2466 *
2467 * When mapping objects through the GTT, userspace wants to be able to write
2468 * to them without having to worry about swizzling if the object is tiled.
2469 *
2470 * This function walks the fence regs looking for a free one for @obj,
2471 * stealing one if it can't find any.
2472 *
2473 * It then sets up the reg based on the object's properties: address, pitch
2474 * and tiling format.
2475 */
8c4b8c3f
CW
2476int
2477i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2478{
2479 struct drm_device *dev = obj->dev;
79e53945 2480 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2481 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2482 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2483 int ret;
de151cf6 2484
a09ba7fa
EA
2485 /* Just update our place in the LRU if our fence is getting used. */
2486 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2487 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2488 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2489 return 0;
2490 }
2491
de151cf6
JB
2492 switch (obj_priv->tiling_mode) {
2493 case I915_TILING_NONE:
2494 WARN(1, "allocating a fence for non-tiled object?\n");
2495 break;
2496 case I915_TILING_X:
0f973f27
JB
2497 if (!obj_priv->stride)
2498 return -EINVAL;
2499 WARN((obj_priv->stride & (512 - 1)),
2500 "object 0x%08x is X tiled but has non-512B pitch\n",
2501 obj_priv->gtt_offset);
de151cf6
JB
2502 break;
2503 case I915_TILING_Y:
0f973f27
JB
2504 if (!obj_priv->stride)
2505 return -EINVAL;
2506 WARN((obj_priv->stride & (128 - 1)),
2507 "object 0x%08x is Y tiled but has non-128B pitch\n",
2508 obj_priv->gtt_offset);
de151cf6
JB
2509 break;
2510 }
2511
ae3db24a
DV
2512 ret = i915_find_fence_reg(dev);
2513 if (ret < 0)
2514 return ret;
de151cf6 2515
ae3db24a
DV
2516 obj_priv->fence_reg = ret;
2517 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2518 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2519
de151cf6
JB
2520 reg->obj = obj;
2521
4e901fdc
EA
2522 if (IS_GEN6(dev))
2523 sandybridge_write_fence_reg(reg);
2524 else if (IS_I965G(dev))
de151cf6
JB
2525 i965_write_fence_reg(reg);
2526 else if (IS_I9XX(dev))
2527 i915_write_fence_reg(reg);
2528 else
2529 i830_write_fence_reg(reg);
d9ddcb96 2530
ae3db24a
DV
2531 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2532 obj_priv->tiling_mode);
1c5d22f7 2533
d9ddcb96 2534 return 0;
de151cf6
JB
2535}
2536
2537/**
2538 * i915_gem_clear_fence_reg - clear out fence register info
2539 * @obj: object to clear
2540 *
2541 * Zeroes out the fence register itself and clears out the associated
2542 * data structures in dev_priv and obj_priv.
2543 */
2544static void
2545i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2546{
2547 struct drm_device *dev = obj->dev;
79e53945 2548 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2549 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2550 struct drm_i915_fence_reg *reg =
2551 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2552
4e901fdc
EA
2553 if (IS_GEN6(dev)) {
2554 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2555 (obj_priv->fence_reg * 8), 0);
2556 } else if (IS_I965G(dev)) {
de151cf6 2557 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2558 } else {
dc529a4f
EA
2559 uint32_t fence_reg;
2560
2561 if (obj_priv->fence_reg < 8)
2562 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2563 else
2564 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2565 8) * 4;
2566
2567 I915_WRITE(fence_reg, 0);
2568 }
de151cf6 2569
007cc8ac 2570 reg->obj = NULL;
de151cf6 2571 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2572 list_del_init(&reg->lru_list);
de151cf6
JB
2573}
2574
52dc7d32
CW
2575/**
2576 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2577 * to the buffer to finish, and then resets the fence register.
2578 * @obj: tiled object holding a fence register.
2579 *
2580 * Zeroes out the fence register itself and clears out the associated
2581 * data structures in dev_priv and obj_priv.
2582 */
2583int
2584i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2585{
2586 struct drm_device *dev = obj->dev;
23010e43 2587 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2588
2589 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2590 return 0;
2591
10ae9bd2
DV
2592 /* If we've changed tiling, GTT-mappings of the object
2593 * need to re-fault to ensure that the correct fence register
2594 * setup is in place.
2595 */
2596 i915_gem_release_mmap(obj);
2597
52dc7d32
CW
2598 /* On the i915, GPU access to tiled buffers is via a fence,
2599 * therefore we must wait for any outstanding access to complete
2600 * before clearing the fence.
2601 */
2602 if (!IS_I965G(dev)) {
2603 int ret;
2604
2dafb1e0
CW
2605 ret = i915_gem_object_flush_gpu_write_domain(obj);
2606 if (ret != 0)
2607 return ret;
2608
52dc7d32
CW
2609 ret = i915_gem_object_wait_rendering(obj);
2610 if (ret != 0)
2611 return ret;
2612 }
2613
4a726612 2614 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2615 i915_gem_clear_fence_reg (obj);
2616
2617 return 0;
2618}
2619
673a394b
EA
2620/**
2621 * Finds free space in the GTT aperture and binds the object there.
2622 */
2623static int
2624i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2625{
2626 struct drm_device *dev = obj->dev;
2627 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2628 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2629 struct drm_mm_node *free_space;
4bdadb97 2630 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2631 int ret;
673a394b 2632
bb6baf76 2633 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2634 DRM_ERROR("Attempting to bind a purgeable object\n");
2635 return -EINVAL;
2636 }
2637
673a394b 2638 if (alignment == 0)
0f973f27 2639 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2640 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2641 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2642 return -EINVAL;
2643 }
2644
654fc607
CW
2645 /* If the object is bigger than the entire aperture, reject it early
2646 * before evicting everything in a vain attempt to find space.
2647 */
2648 if (obj->size > dev->gtt_total) {
2649 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2650 return -E2BIG;
2651 }
2652
673a394b
EA
2653 search_free:
2654 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2655 obj->size, alignment, 0);
2656 if (free_space != NULL) {
2657 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2658 alignment);
db3307a9 2659 if (obj_priv->gtt_space != NULL)
673a394b 2660 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2661 }
2662 if (obj_priv->gtt_space == NULL) {
2663 /* If the gtt is empty and we're still having trouble
2664 * fitting our object in, we're out of memory.
2665 */
2666#if WATCH_LRU
2667 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2668#endif
07f73f69 2669 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2670 if (ret)
673a394b 2671 return ret;
9731129c 2672
673a394b
EA
2673 goto search_free;
2674 }
2675
2676#if WATCH_BUF
cfd43c02 2677 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2678 obj->size, obj_priv->gtt_offset);
2679#endif
4bdadb97 2680 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2681 if (ret) {
2682 drm_mm_put_block(obj_priv->gtt_space);
2683 obj_priv->gtt_space = NULL;
07f73f69
CW
2684
2685 if (ret == -ENOMEM) {
2686 /* first try to clear up some space from the GTT */
2687 ret = i915_gem_evict_something(dev, obj->size);
2688 if (ret) {
07f73f69 2689 /* now try to shrink everyone else */
4bdadb97
CW
2690 if (gfpmask) {
2691 gfpmask = 0;
2692 goto search_free;
07f73f69
CW
2693 }
2694
2695 return ret;
2696 }
2697
2698 goto search_free;
2699 }
2700
673a394b
EA
2701 return ret;
2702 }
2703
673a394b
EA
2704 /* Create an AGP memory structure pointing at our pages, and bind it
2705 * into the GTT.
2706 */
2707 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2708 obj_priv->pages,
07f73f69 2709 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2710 obj_priv->gtt_offset,
2711 obj_priv->agp_type);
673a394b 2712 if (obj_priv->agp_mem == NULL) {
856fa198 2713 i915_gem_object_put_pages(obj);
673a394b
EA
2714 drm_mm_put_block(obj_priv->gtt_space);
2715 obj_priv->gtt_space = NULL;
07f73f69
CW
2716
2717 ret = i915_gem_evict_something(dev, obj->size);
9731129c 2718 if (ret)
07f73f69 2719 return ret;
07f73f69
CW
2720
2721 goto search_free;
673a394b
EA
2722 }
2723 atomic_inc(&dev->gtt_count);
2724 atomic_add(obj->size, &dev->gtt_memory);
2725
2726 /* Assert that the object is not currently in any GPU domain. As it
2727 * wasn't in the GTT, there shouldn't be any way it could have been in
2728 * a GPU cache
2729 */
21d509e3
CW
2730 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2731 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2732
1c5d22f7
CW
2733 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2734
673a394b
EA
2735 return 0;
2736}
2737
2738void
2739i915_gem_clflush_object(struct drm_gem_object *obj)
2740{
23010e43 2741 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2742
2743 /* If we don't have a page list set up, then we're not pinned
2744 * to GPU, and we can ignore the cache flush because it'll happen
2745 * again at bind time.
2746 */
856fa198 2747 if (obj_priv->pages == NULL)
673a394b
EA
2748 return;
2749
1c5d22f7 2750 trace_i915_gem_object_clflush(obj);
cfa16a0d 2751
856fa198 2752 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2753}
2754
e47c68e9 2755/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2756static int
e47c68e9
EA
2757i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2758{
2759 struct drm_device *dev = obj->dev;
1c5d22f7 2760 uint32_t old_write_domain;
852835f3 2761 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2762
2763 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2764 return 0;
e47c68e9
EA
2765
2766 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2767 old_write_domain = obj->write_domain;
e47c68e9 2768 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2769 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2770 return -ENOMEM;
1c5d22f7
CW
2771
2772 trace_i915_gem_object_change_domain(obj,
2773 obj->read_domains,
2774 old_write_domain);
2dafb1e0 2775 return 0;
e47c68e9
EA
2776}
2777
2778/** Flushes the GTT write domain for the object if it's dirty. */
2779static void
2780i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2781{
1c5d22f7
CW
2782 uint32_t old_write_domain;
2783
e47c68e9
EA
2784 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2785 return;
2786
2787 /* No actual flushing is required for the GTT write domain. Writes
2788 * to it immediately go to main memory as far as we know, so there's
2789 * no chipset flush. It also doesn't land in render cache.
2790 */
1c5d22f7 2791 old_write_domain = obj->write_domain;
e47c68e9 2792 obj->write_domain = 0;
1c5d22f7
CW
2793
2794 trace_i915_gem_object_change_domain(obj,
2795 obj->read_domains,
2796 old_write_domain);
e47c68e9
EA
2797}
2798
2799/** Flushes the CPU write domain for the object if it's dirty. */
2800static void
2801i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2802{
2803 struct drm_device *dev = obj->dev;
1c5d22f7 2804 uint32_t old_write_domain;
e47c68e9
EA
2805
2806 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2807 return;
2808
2809 i915_gem_clflush_object(obj);
2810 drm_agp_chipset_flush(dev);
1c5d22f7 2811 old_write_domain = obj->write_domain;
e47c68e9 2812 obj->write_domain = 0;
1c5d22f7
CW
2813
2814 trace_i915_gem_object_change_domain(obj,
2815 obj->read_domains,
2816 old_write_domain);
e47c68e9
EA
2817}
2818
2dafb1e0 2819int
6b95a207
KH
2820i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2821{
2dafb1e0
CW
2822 int ret = 0;
2823
6b95a207
KH
2824 switch (obj->write_domain) {
2825 case I915_GEM_DOMAIN_GTT:
2826 i915_gem_object_flush_gtt_write_domain(obj);
2827 break;
2828 case I915_GEM_DOMAIN_CPU:
2829 i915_gem_object_flush_cpu_write_domain(obj);
2830 break;
2831 default:
2dafb1e0 2832 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2833 break;
2834 }
2dafb1e0
CW
2835
2836 return ret;
6b95a207
KH
2837}
2838
2ef7eeaa
EA
2839/**
2840 * Moves a single object to the GTT read, and possibly write domain.
2841 *
2842 * This function returns when the move is complete, including waiting on
2843 * flushes to occur.
2844 */
79e53945 2845int
2ef7eeaa
EA
2846i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2847{
23010e43 2848 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2849 uint32_t old_write_domain, old_read_domains;
e47c68e9 2850 int ret;
2ef7eeaa 2851
02354392
EA
2852 /* Not valid to be called on unbound objects. */
2853 if (obj_priv->gtt_space == NULL)
2854 return -EINVAL;
2855
2dafb1e0
CW
2856 ret = i915_gem_object_flush_gpu_write_domain(obj);
2857 if (ret != 0)
2858 return ret;
2859
e47c68e9
EA
2860 /* Wait on any GPU rendering and flushing to occur. */
2861 ret = i915_gem_object_wait_rendering(obj);
2862 if (ret != 0)
2863 return ret;
2864
1c5d22f7
CW
2865 old_write_domain = obj->write_domain;
2866 old_read_domains = obj->read_domains;
2867
e47c68e9
EA
2868 /* If we're writing through the GTT domain, then CPU and GPU caches
2869 * will need to be invalidated at next use.
2ef7eeaa 2870 */
e47c68e9
EA
2871 if (write)
2872 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2873
e47c68e9 2874 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2875
e47c68e9
EA
2876 /* It should now be out of any other write domains, and we can update
2877 * the domain values for our changes.
2878 */
2879 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2880 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2881 if (write) {
2882 obj->write_domain = I915_GEM_DOMAIN_GTT;
2883 obj_priv->dirty = 1;
2ef7eeaa
EA
2884 }
2885
1c5d22f7
CW
2886 trace_i915_gem_object_change_domain(obj,
2887 old_read_domains,
2888 old_write_domain);
2889
e47c68e9
EA
2890 return 0;
2891}
2892
b9241ea3
ZW
2893/*
2894 * Prepare buffer for display plane. Use uninterruptible for possible flush
2895 * wait, as in modesetting process we're not supposed to be interrupted.
2896 */
2897int
2898i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2899{
2900 struct drm_device *dev = obj->dev;
23010e43 2901 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2902 uint32_t old_write_domain, old_read_domains;
2903 int ret;
2904
2905 /* Not valid to be called on unbound objects. */
2906 if (obj_priv->gtt_space == NULL)
2907 return -EINVAL;
2908
2dafb1e0
CW
2909 ret = i915_gem_object_flush_gpu_write_domain(obj);
2910 if (ret)
2911 return ret;
b9241ea3
ZW
2912
2913 /* Wait on any GPU rendering and flushing to occur. */
2914 if (obj_priv->active) {
2915#if WATCH_BUF
2916 DRM_INFO("%s: object %p wait for seqno %08x\n",
2917 __func__, obj, obj_priv->last_rendering_seqno);
2918#endif
852835f3
ZN
2919 ret = i915_do_wait_request(dev,
2920 obj_priv->last_rendering_seqno,
2921 0,
2922 obj_priv->ring);
b9241ea3
ZW
2923 if (ret != 0)
2924 return ret;
2925 }
2926
b118c1e3
CW
2927 i915_gem_object_flush_cpu_write_domain(obj);
2928
b9241ea3
ZW
2929 old_write_domain = obj->write_domain;
2930 old_read_domains = obj->read_domains;
2931
b9241ea3
ZW
2932 /* It should now be out of any other write domains, and we can update
2933 * the domain values for our changes.
2934 */
2935 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2936 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2937 obj->write_domain = I915_GEM_DOMAIN_GTT;
2938 obj_priv->dirty = 1;
2939
2940 trace_i915_gem_object_change_domain(obj,
2941 old_read_domains,
2942 old_write_domain);
2943
2944 return 0;
2945}
2946
e47c68e9
EA
2947/**
2948 * Moves a single object to the CPU read, and possibly write domain.
2949 *
2950 * This function returns when the move is complete, including waiting on
2951 * flushes to occur.
2952 */
2953static int
2954i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2955{
1c5d22f7 2956 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2957 int ret;
2958
2dafb1e0
CW
2959 ret = i915_gem_object_flush_gpu_write_domain(obj);
2960 if (ret)
2961 return ret;
2962
2ef7eeaa 2963 /* Wait on any GPU rendering and flushing to occur. */
e47c68e9
EA
2964 ret = i915_gem_object_wait_rendering(obj);
2965 if (ret != 0)
2966 return ret;
2ef7eeaa 2967
e47c68e9 2968 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2969
e47c68e9
EA
2970 /* If we have a partially-valid cache of the object in the CPU,
2971 * finish invalidating it and free the per-page flags.
2ef7eeaa 2972 */
e47c68e9 2973 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2974
1c5d22f7
CW
2975 old_write_domain = obj->write_domain;
2976 old_read_domains = obj->read_domains;
2977
e47c68e9
EA
2978 /* Flush the CPU cache if it's still invalid. */
2979 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2980 i915_gem_clflush_object(obj);
2ef7eeaa 2981
e47c68e9 2982 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2983 }
2984
2985 /* It should now be out of any other write domains, and we can update
2986 * the domain values for our changes.
2987 */
e47c68e9
EA
2988 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2989
2990 /* If we're writing through the CPU, then the GPU read domains will
2991 * need to be invalidated at next use.
2992 */
2993 if (write) {
2994 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2995 obj->write_domain = I915_GEM_DOMAIN_CPU;
2996 }
2ef7eeaa 2997
1c5d22f7
CW
2998 trace_i915_gem_object_change_domain(obj,
2999 old_read_domains,
3000 old_write_domain);
3001
2ef7eeaa
EA
3002 return 0;
3003}
3004
673a394b
EA
3005/*
3006 * Set the next domain for the specified object. This
3007 * may not actually perform the necessary flushing/invaliding though,
3008 * as that may want to be batched with other set_domain operations
3009 *
3010 * This is (we hope) the only really tricky part of gem. The goal
3011 * is fairly simple -- track which caches hold bits of the object
3012 * and make sure they remain coherent. A few concrete examples may
3013 * help to explain how it works. For shorthand, we use the notation
3014 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3015 * a pair of read and write domain masks.
3016 *
3017 * Case 1: the batch buffer
3018 *
3019 * 1. Allocated
3020 * 2. Written by CPU
3021 * 3. Mapped to GTT
3022 * 4. Read by GPU
3023 * 5. Unmapped from GTT
3024 * 6. Freed
3025 *
3026 * Let's take these a step at a time
3027 *
3028 * 1. Allocated
3029 * Pages allocated from the kernel may still have
3030 * cache contents, so we set them to (CPU, CPU) always.
3031 * 2. Written by CPU (using pwrite)
3032 * The pwrite function calls set_domain (CPU, CPU) and
3033 * this function does nothing (as nothing changes)
3034 * 3. Mapped by GTT
3035 * This function asserts that the object is not
3036 * currently in any GPU-based read or write domains
3037 * 4. Read by GPU
3038 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3039 * As write_domain is zero, this function adds in the
3040 * current read domains (CPU+COMMAND, 0).
3041 * flush_domains is set to CPU.
3042 * invalidate_domains is set to COMMAND
3043 * clflush is run to get data out of the CPU caches
3044 * then i915_dev_set_domain calls i915_gem_flush to
3045 * emit an MI_FLUSH and drm_agp_chipset_flush
3046 * 5. Unmapped from GTT
3047 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3048 * flush_domains and invalidate_domains end up both zero
3049 * so no flushing/invalidating happens
3050 * 6. Freed
3051 * yay, done
3052 *
3053 * Case 2: The shared render buffer
3054 *
3055 * 1. Allocated
3056 * 2. Mapped to GTT
3057 * 3. Read/written by GPU
3058 * 4. set_domain to (CPU,CPU)
3059 * 5. Read/written by CPU
3060 * 6. Read/written by GPU
3061 *
3062 * 1. Allocated
3063 * Same as last example, (CPU, CPU)
3064 * 2. Mapped to GTT
3065 * Nothing changes (assertions find that it is not in the GPU)
3066 * 3. Read/written by GPU
3067 * execbuffer calls set_domain (RENDER, RENDER)
3068 * flush_domains gets CPU
3069 * invalidate_domains gets GPU
3070 * clflush (obj)
3071 * MI_FLUSH and drm_agp_chipset_flush
3072 * 4. set_domain (CPU, CPU)
3073 * flush_domains gets GPU
3074 * invalidate_domains gets CPU
3075 * wait_rendering (obj) to make sure all drawing is complete.
3076 * This will include an MI_FLUSH to get the data from GPU
3077 * to memory
3078 * clflush (obj) to invalidate the CPU cache
3079 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3080 * 5. Read/written by CPU
3081 * cache lines are loaded and dirtied
3082 * 6. Read written by GPU
3083 * Same as last GPU access
3084 *
3085 * Case 3: The constant buffer
3086 *
3087 * 1. Allocated
3088 * 2. Written by CPU
3089 * 3. Read by GPU
3090 * 4. Updated (written) by CPU again
3091 * 5. Read by GPU
3092 *
3093 * 1. Allocated
3094 * (CPU, CPU)
3095 * 2. Written by CPU
3096 * (CPU, CPU)
3097 * 3. Read by GPU
3098 * (CPU+RENDER, 0)
3099 * flush_domains = CPU
3100 * invalidate_domains = RENDER
3101 * clflush (obj)
3102 * MI_FLUSH
3103 * drm_agp_chipset_flush
3104 * 4. Updated (written) by CPU again
3105 * (CPU, CPU)
3106 * flush_domains = 0 (no previous write domain)
3107 * invalidate_domains = 0 (no new read domains)
3108 * 5. Read by GPU
3109 * (CPU+RENDER, 0)
3110 * flush_domains = CPU
3111 * invalidate_domains = RENDER
3112 * clflush (obj)
3113 * MI_FLUSH
3114 * drm_agp_chipset_flush
3115 */
c0d90829 3116static void
8b0e378a 3117i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3118{
3119 struct drm_device *dev = obj->dev;
88f356b7 3120 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3121 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3122 uint32_t invalidate_domains = 0;
3123 uint32_t flush_domains = 0;
1c5d22f7 3124 uint32_t old_read_domains;
e47c68e9 3125
8b0e378a
EA
3126 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3127 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 3128
652c393a
JB
3129 intel_mark_busy(dev, obj);
3130
673a394b
EA
3131#if WATCH_BUF
3132 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3133 __func__, obj,
8b0e378a
EA
3134 obj->read_domains, obj->pending_read_domains,
3135 obj->write_domain, obj->pending_write_domain);
673a394b
EA
3136#endif
3137 /*
3138 * If the object isn't moving to a new write domain,
3139 * let the object stay in multiple read domains
3140 */
8b0e378a
EA
3141 if (obj->pending_write_domain == 0)
3142 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3143 else
3144 obj_priv->dirty = 1;
3145
3146 /*
3147 * Flush the current write domain if
3148 * the new read domains don't match. Invalidate
3149 * any read domains which differ from the old
3150 * write domain
3151 */
8b0e378a
EA
3152 if (obj->write_domain &&
3153 obj->write_domain != obj->pending_read_domains) {
673a394b 3154 flush_domains |= obj->write_domain;
8b0e378a
EA
3155 invalidate_domains |=
3156 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3157 }
3158 /*
3159 * Invalidate any read caches which may have
3160 * stale data. That is, any new read domains.
3161 */
8b0e378a 3162 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3163 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3164#if WATCH_BUF
3165 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3166 __func__, flush_domains, invalidate_domains);
3167#endif
673a394b
EA
3168 i915_gem_clflush_object(obj);
3169 }
3170
1c5d22f7
CW
3171 old_read_domains = obj->read_domains;
3172
efbeed96
EA
3173 /* The actual obj->write_domain will be updated with
3174 * pending_write_domain after we emit the accumulated flush for all
3175 * of our domain changes in execbuffers (which clears objects'
3176 * write_domains). So if we have a current write domain that we
3177 * aren't changing, set pending_write_domain to that.
3178 */
3179 if (flush_domains == 0 && obj->pending_write_domain == 0)
3180 obj->pending_write_domain = obj->write_domain;
8b0e378a 3181 obj->read_domains = obj->pending_read_domains;
673a394b 3182
88f356b7
CW
3183 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3184 if (obj_priv->ring == &dev_priv->render_ring)
3185 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3186 else if (obj_priv->ring == &dev_priv->bsd_ring)
3187 dev_priv->flush_rings |= FLUSH_BSD_RING;
3188 }
3189
673a394b
EA
3190 dev->invalidate_domains |= invalidate_domains;
3191 dev->flush_domains |= flush_domains;
3192#if WATCH_BUF
3193 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3194 __func__,
3195 obj->read_domains, obj->write_domain,
3196 dev->invalidate_domains, dev->flush_domains);
3197#endif
1c5d22f7
CW
3198
3199 trace_i915_gem_object_change_domain(obj,
3200 old_read_domains,
3201 obj->write_domain);
673a394b
EA
3202}
3203
3204/**
e47c68e9 3205 * Moves the object from a partially CPU read to a full one.
673a394b 3206 *
e47c68e9
EA
3207 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3208 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3209 */
e47c68e9
EA
3210static void
3211i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3212{
23010e43 3213 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3214
e47c68e9
EA
3215 if (!obj_priv->page_cpu_valid)
3216 return;
3217
3218 /* If we're partially in the CPU read domain, finish moving it in.
3219 */
3220 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3221 int i;
3222
3223 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3224 if (obj_priv->page_cpu_valid[i])
3225 continue;
856fa198 3226 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3227 }
e47c68e9
EA
3228 }
3229
3230 /* Free the page_cpu_valid mappings which are now stale, whether
3231 * or not we've got I915_GEM_DOMAIN_CPU.
3232 */
9a298b2a 3233 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3234 obj_priv->page_cpu_valid = NULL;
3235}
3236
3237/**
3238 * Set the CPU read domain on a range of the object.
3239 *
3240 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3241 * not entirely valid. The page_cpu_valid member of the object flags which
3242 * pages have been flushed, and will be respected by
3243 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3244 * of the whole object.
3245 *
3246 * This function returns when the move is complete, including waiting on
3247 * flushes to occur.
3248 */
3249static int
3250i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3251 uint64_t offset, uint64_t size)
3252{
23010e43 3253 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3254 uint32_t old_read_domains;
e47c68e9 3255 int i, ret;
673a394b 3256
e47c68e9
EA
3257 if (offset == 0 && size == obj->size)
3258 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3259
2dafb1e0
CW
3260 ret = i915_gem_object_flush_gpu_write_domain(obj);
3261 if (ret)
3262 return ret;
3263
e47c68e9 3264 /* Wait on any GPU rendering and flushing to occur. */
6a47baa6 3265 ret = i915_gem_object_wait_rendering(obj);
e47c68e9 3266 if (ret != 0)
6a47baa6 3267 return ret;
e47c68e9
EA
3268 i915_gem_object_flush_gtt_write_domain(obj);
3269
3270 /* If we're already fully in the CPU read domain, we're done. */
3271 if (obj_priv->page_cpu_valid == NULL &&
3272 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3273 return 0;
673a394b 3274
e47c68e9
EA
3275 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3276 * newly adding I915_GEM_DOMAIN_CPU
3277 */
673a394b 3278 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3279 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3280 GFP_KERNEL);
e47c68e9
EA
3281 if (obj_priv->page_cpu_valid == NULL)
3282 return -ENOMEM;
3283 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3284 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3285
3286 /* Flush the cache on any pages that are still invalid from the CPU's
3287 * perspective.
3288 */
e47c68e9
EA
3289 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3290 i++) {
673a394b
EA
3291 if (obj_priv->page_cpu_valid[i])
3292 continue;
3293
856fa198 3294 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3295
3296 obj_priv->page_cpu_valid[i] = 1;
3297 }
3298
e47c68e9
EA
3299 /* It should now be out of any other write domains, and we can update
3300 * the domain values for our changes.
3301 */
3302 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3303
1c5d22f7 3304 old_read_domains = obj->read_domains;
e47c68e9
EA
3305 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3306
1c5d22f7
CW
3307 trace_i915_gem_object_change_domain(obj,
3308 old_read_domains,
3309 obj->write_domain);
3310
673a394b
EA
3311 return 0;
3312}
3313
673a394b
EA
3314/**
3315 * Pin an object to the GTT and evaluate the relocations landing in it.
3316 */
3317static int
3318i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3319 struct drm_file *file_priv,
76446cac 3320 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3321 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3322{
3323 struct drm_device *dev = obj->dev;
0839ccb8 3324 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3325 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3326 int i, ret;
0839ccb8 3327 void __iomem *reloc_page;
76446cac
JB
3328 bool need_fence;
3329
3330 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3331 obj_priv->tiling_mode != I915_TILING_NONE;
3332
3333 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3334 if (need_fence &&
3335 !i915_gem_object_fence_offset_ok(obj,
3336 obj_priv->tiling_mode)) {
3337 ret = i915_gem_object_unbind(obj);
3338 if (ret)
3339 return ret;
3340 }
673a394b
EA
3341
3342 /* Choose the GTT offset for our buffer and put it there. */
3343 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3344 if (ret)
3345 return ret;
3346
76446cac
JB
3347 /*
3348 * Pre-965 chips need a fence register set up in order to
3349 * properly handle blits to/from tiled surfaces.
3350 */
3351 if (need_fence) {
3352 ret = i915_gem_object_get_fence_reg(obj);
3353 if (ret != 0) {
76446cac
JB
3354 i915_gem_object_unpin(obj);
3355 return ret;
3356 }
3357 }
3358
673a394b
EA
3359 entry->offset = obj_priv->gtt_offset;
3360
673a394b
EA
3361 /* Apply the relocations, using the GTT aperture to avoid cache
3362 * flushing requirements.
3363 */
3364 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3365 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3366 struct drm_gem_object *target_obj;
3367 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3368 uint32_t reloc_val, reloc_offset;
3369 uint32_t __iomem *reloc_entry;
673a394b 3370
673a394b 3371 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3372 reloc->target_handle);
673a394b
EA
3373 if (target_obj == NULL) {
3374 i915_gem_object_unpin(obj);
3375 return -EBADF;
3376 }
23010e43 3377 target_obj_priv = to_intel_bo(target_obj);
673a394b 3378
8542a0bb
CW
3379#if WATCH_RELOC
3380 DRM_INFO("%s: obj %p offset %08x target %d "
3381 "read %08x write %08x gtt %08x "
3382 "presumed %08x delta %08x\n",
3383 __func__,
3384 obj,
3385 (int) reloc->offset,
3386 (int) reloc->target_handle,
3387 (int) reloc->read_domains,
3388 (int) reloc->write_domain,
3389 (int) target_obj_priv->gtt_offset,
3390 (int) reloc->presumed_offset,
3391 reloc->delta);
3392#endif
3393
673a394b
EA
3394 /* The target buffer should have appeared before us in the
3395 * exec_object list, so it should have a GTT space bound by now.
3396 */
3397 if (target_obj_priv->gtt_space == NULL) {
3398 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3399 reloc->target_handle);
673a394b
EA
3400 drm_gem_object_unreference(target_obj);
3401 i915_gem_object_unpin(obj);
3402 return -EINVAL;
3403 }
3404
8542a0bb 3405 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3406 if (reloc->write_domain & (reloc->write_domain - 1)) {
3407 DRM_ERROR("reloc with multiple write domains: "
3408 "obj %p target %d offset %d "
3409 "read %08x write %08x",
3410 obj, reloc->target_handle,
3411 (int) reloc->offset,
3412 reloc->read_domains,
3413 reloc->write_domain);
3414 return -EINVAL;
3415 }
40a5f0de
EA
3416 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3417 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3418 DRM_ERROR("reloc with read/write CPU domains: "
3419 "obj %p target %d offset %d "
3420 "read %08x write %08x",
40a5f0de
EA
3421 obj, reloc->target_handle,
3422 (int) reloc->offset,
3423 reloc->read_domains,
3424 reloc->write_domain);
491152b8
CW
3425 drm_gem_object_unreference(target_obj);
3426 i915_gem_object_unpin(obj);
e47c68e9
EA
3427 return -EINVAL;
3428 }
40a5f0de
EA
3429 if (reloc->write_domain && target_obj->pending_write_domain &&
3430 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3431 DRM_ERROR("Write domain conflict: "
3432 "obj %p target %d offset %d "
3433 "new %08x old %08x\n",
40a5f0de
EA
3434 obj, reloc->target_handle,
3435 (int) reloc->offset,
3436 reloc->write_domain,
673a394b
EA
3437 target_obj->pending_write_domain);
3438 drm_gem_object_unreference(target_obj);
3439 i915_gem_object_unpin(obj);
3440 return -EINVAL;
3441 }
3442
40a5f0de
EA
3443 target_obj->pending_read_domains |= reloc->read_domains;
3444 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3445
3446 /* If the relocation already has the right value in it, no
3447 * more work needs to be done.
3448 */
40a5f0de 3449 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3450 drm_gem_object_unreference(target_obj);
3451 continue;
3452 }
3453
8542a0bb
CW
3454 /* Check that the relocation address is valid... */
3455 if (reloc->offset > obj->size - 4) {
3456 DRM_ERROR("Relocation beyond object bounds: "
3457 "obj %p target %d offset %d size %d.\n",
3458 obj, reloc->target_handle,
3459 (int) reloc->offset, (int) obj->size);
3460 drm_gem_object_unreference(target_obj);
3461 i915_gem_object_unpin(obj);
3462 return -EINVAL;
3463 }
3464 if (reloc->offset & 3) {
3465 DRM_ERROR("Relocation not 4-byte aligned: "
3466 "obj %p target %d offset %d.\n",
3467 obj, reloc->target_handle,
3468 (int) reloc->offset);
3469 drm_gem_object_unreference(target_obj);
3470 i915_gem_object_unpin(obj);
3471 return -EINVAL;
3472 }
3473
3474 /* and points to somewhere within the target object. */
3475 if (reloc->delta >= target_obj->size) {
3476 DRM_ERROR("Relocation beyond target object bounds: "
3477 "obj %p target %d delta %d size %d.\n",
3478 obj, reloc->target_handle,
3479 (int) reloc->delta, (int) target_obj->size);
3480 drm_gem_object_unreference(target_obj);
3481 i915_gem_object_unpin(obj);
3482 return -EINVAL;
3483 }
3484
2ef7eeaa
EA
3485 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3486 if (ret != 0) {
3487 drm_gem_object_unreference(target_obj);
3488 i915_gem_object_unpin(obj);
3489 return -EINVAL;
673a394b
EA
3490 }
3491
3492 /* Map the page containing the relocation we're going to
3493 * perform.
3494 */
40a5f0de 3495 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3496 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3497 (reloc_offset &
fca3ec01
CW
3498 ~(PAGE_SIZE - 1)),
3499 KM_USER0);
3043c60c 3500 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3501 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3502 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3503
3504#if WATCH_BUF
3505 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3506 obj, (unsigned int) reloc->offset,
673a394b
EA
3507 readl(reloc_entry), reloc_val);
3508#endif
3509 writel(reloc_val, reloc_entry);
fca3ec01 3510 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3511
40a5f0de
EA
3512 /* The updated presumed offset for this entry will be
3513 * copied back out to the user.
673a394b 3514 */
40a5f0de 3515 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3516
3517 drm_gem_object_unreference(target_obj);
3518 }
3519
673a394b
EA
3520#if WATCH_BUF
3521 if (0)
3522 i915_gem_dump_object(obj, 128, __func__, ~0);
3523#endif
3524 return 0;
3525}
3526
673a394b
EA
3527/* Throttle our rendering by waiting until the ring has completed our requests
3528 * emitted over 20 msec ago.
3529 *
b962442e
EA
3530 * Note that if we were to use the current jiffies each time around the loop,
3531 * we wouldn't escape the function with any frames outstanding if the time to
3532 * render a frame was over 20ms.
3533 *
673a394b
EA
3534 * This should get us reasonable parallelism between CPU and GPU but also
3535 * relatively low latency when blocking on a particular request to finish.
3536 */
3537static int
3538i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3539{
3540 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3541 int ret = 0;
b962442e 3542 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3543
3544 mutex_lock(&dev->struct_mutex);
b962442e
EA
3545 while (!list_empty(&i915_file_priv->mm.request_list)) {
3546 struct drm_i915_gem_request *request;
3547
3548 request = list_first_entry(&i915_file_priv->mm.request_list,
3549 struct drm_i915_gem_request,
3550 client_list);
3551
3552 if (time_after_eq(request->emitted_jiffies, recent_enough))
3553 break;
3554
852835f3 3555 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3556 if (ret != 0)
3557 break;
3558 }
673a394b 3559 mutex_unlock(&dev->struct_mutex);
b962442e 3560
673a394b
EA
3561 return ret;
3562}
3563
40a5f0de 3564static int
76446cac 3565i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3566 uint32_t buffer_count,
3567 struct drm_i915_gem_relocation_entry **relocs)
3568{
3569 uint32_t reloc_count = 0, reloc_index = 0, i;
3570 int ret;
3571
3572 *relocs = NULL;
3573 for (i = 0; i < buffer_count; i++) {
3574 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3575 return -EINVAL;
3576 reloc_count += exec_list[i].relocation_count;
3577 }
3578
8e7d2b2c 3579 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3580 if (*relocs == NULL) {
3581 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3582 return -ENOMEM;
76446cac 3583 }
40a5f0de
EA
3584
3585 for (i = 0; i < buffer_count; i++) {
3586 struct drm_i915_gem_relocation_entry __user *user_relocs;
3587
3588 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3589
3590 ret = copy_from_user(&(*relocs)[reloc_index],
3591 user_relocs,
3592 exec_list[i].relocation_count *
3593 sizeof(**relocs));
3594 if (ret != 0) {
8e7d2b2c 3595 drm_free_large(*relocs);
40a5f0de 3596 *relocs = NULL;
2bc43b5c 3597 return -EFAULT;
40a5f0de
EA
3598 }
3599
3600 reloc_index += exec_list[i].relocation_count;
3601 }
3602
2bc43b5c 3603 return 0;
40a5f0de
EA
3604}
3605
3606static int
76446cac 3607i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3608 uint32_t buffer_count,
3609 struct drm_i915_gem_relocation_entry *relocs)
3610{
3611 uint32_t reloc_count = 0, i;
2bc43b5c 3612 int ret = 0;
40a5f0de 3613
93533c29
CW
3614 if (relocs == NULL)
3615 return 0;
3616
40a5f0de
EA
3617 for (i = 0; i < buffer_count; i++) {
3618 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3619 int unwritten;
40a5f0de
EA
3620
3621 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3622
2bc43b5c
FM
3623 unwritten = copy_to_user(user_relocs,
3624 &relocs[reloc_count],
3625 exec_list[i].relocation_count *
3626 sizeof(*relocs));
3627
3628 if (unwritten) {
3629 ret = -EFAULT;
3630 goto err;
40a5f0de
EA
3631 }
3632
3633 reloc_count += exec_list[i].relocation_count;
3634 }
3635
2bc43b5c 3636err:
8e7d2b2c 3637 drm_free_large(relocs);
40a5f0de
EA
3638
3639 return ret;
3640}
3641
83d60795 3642static int
76446cac 3643i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3644 uint64_t exec_offset)
3645{
3646 uint32_t exec_start, exec_len;
3647
3648 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3649 exec_len = (uint32_t) exec->batch_len;
3650
3651 if ((exec_start | exec_len) & 0x7)
3652 return -EINVAL;
3653
3654 if (!exec_start)
3655 return -EINVAL;
3656
3657 return 0;
3658}
3659
6b95a207
KH
3660static int
3661i915_gem_wait_for_pending_flip(struct drm_device *dev,
3662 struct drm_gem_object **object_list,
3663 int count)
3664{
3665 drm_i915_private_t *dev_priv = dev->dev_private;
3666 struct drm_i915_gem_object *obj_priv;
3667 DEFINE_WAIT(wait);
3668 int i, ret = 0;
3669
3670 for (;;) {
3671 prepare_to_wait(&dev_priv->pending_flip_queue,
3672 &wait, TASK_INTERRUPTIBLE);
3673 for (i = 0; i < count; i++) {
23010e43 3674 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3675 if (atomic_read(&obj_priv->pending_flip) > 0)
3676 break;
3677 }
3678 if (i == count)
3679 break;
3680
3681 if (!signal_pending(current)) {
3682 mutex_unlock(&dev->struct_mutex);
3683 schedule();
3684 mutex_lock(&dev->struct_mutex);
3685 continue;
3686 }
3687 ret = -ERESTARTSYS;
3688 break;
3689 }
3690 finish_wait(&dev_priv->pending_flip_queue, &wait);
3691
3692 return ret;
3693}
3694
43b27f40 3695
673a394b 3696int
76446cac
JB
3697i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3698 struct drm_file *file_priv,
3699 struct drm_i915_gem_execbuffer2 *args,
3700 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3701{
3702 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3703 struct drm_gem_object **object_list = NULL;
3704 struct drm_gem_object *batch_obj;
b70d11da 3705 struct drm_i915_gem_object *obj_priv;
201361a5 3706 struct drm_clip_rect *cliprects = NULL;
93533c29 3707 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3708 int ret = 0, ret2, i, pinned = 0;
673a394b 3709 uint64_t exec_offset;
40a5f0de 3710 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3711 int pin_tries, flips;
673a394b 3712
852835f3
ZN
3713 struct intel_ring_buffer *ring = NULL;
3714
673a394b
EA
3715#if WATCH_EXEC
3716 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3717 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3718#endif
d1b851fc
ZN
3719 if (args->flags & I915_EXEC_BSD) {
3720 if (!HAS_BSD(dev)) {
3721 DRM_ERROR("execbuf with wrong flag\n");
3722 return -EINVAL;
3723 }
3724 ring = &dev_priv->bsd_ring;
3725 } else {
3726 ring = &dev_priv->render_ring;
3727 }
3728
4f481ed2
EA
3729 if (args->buffer_count < 1) {
3730 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3731 return -EINVAL;
3732 }
c8e0f93a 3733 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3734 if (object_list == NULL) {
3735 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3736 args->buffer_count);
3737 ret = -ENOMEM;
3738 goto pre_mutex_err;
3739 }
673a394b 3740
201361a5 3741 if (args->num_cliprects != 0) {
9a298b2a
EA
3742 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3743 GFP_KERNEL);
a40e8d31
OA
3744 if (cliprects == NULL) {
3745 ret = -ENOMEM;
201361a5 3746 goto pre_mutex_err;
a40e8d31 3747 }
201361a5
EA
3748
3749 ret = copy_from_user(cliprects,
3750 (struct drm_clip_rect __user *)
3751 (uintptr_t) args->cliprects_ptr,
3752 sizeof(*cliprects) * args->num_cliprects);
3753 if (ret != 0) {
3754 DRM_ERROR("copy %d cliprects failed: %d\n",
3755 args->num_cliprects, ret);
3756 goto pre_mutex_err;
3757 }
3758 }
3759
40a5f0de
EA
3760 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3761 &relocs);
3762 if (ret != 0)
3763 goto pre_mutex_err;
3764
673a394b
EA
3765 mutex_lock(&dev->struct_mutex);
3766
3767 i915_verify_inactive(dev, __FILE__, __LINE__);
3768
ba1234d1 3769 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3770 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3771 ret = -EIO;
3772 goto pre_mutex_err;
673a394b
EA
3773 }
3774
3775 if (dev_priv->mm.suspended) {
673a394b 3776 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3777 ret = -EBUSY;
3778 goto pre_mutex_err;
673a394b
EA
3779 }
3780
ac94a962 3781 /* Look up object handles */
6b95a207 3782 flips = 0;
673a394b
EA
3783 for (i = 0; i < args->buffer_count; i++) {
3784 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3785 exec_list[i].handle);
3786 if (object_list[i] == NULL) {
3787 DRM_ERROR("Invalid object handle %d at index %d\n",
3788 exec_list[i].handle, i);
0ce907f8
CW
3789 /* prevent error path from reading uninitialized data */
3790 args->buffer_count = i + 1;
673a394b
EA
3791 ret = -EBADF;
3792 goto err;
3793 }
b70d11da 3794
23010e43 3795 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3796 if (obj_priv->in_execbuffer) {
3797 DRM_ERROR("Object %p appears more than once in object list\n",
3798 object_list[i]);
0ce907f8
CW
3799 /* prevent error path from reading uninitialized data */
3800 args->buffer_count = i + 1;
b70d11da
KH
3801 ret = -EBADF;
3802 goto err;
3803 }
3804 obj_priv->in_execbuffer = true;
6b95a207
KH
3805 flips += atomic_read(&obj_priv->pending_flip);
3806 }
3807
3808 if (flips > 0) {
3809 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3810 args->buffer_count);
3811 if (ret)
3812 goto err;
ac94a962 3813 }
673a394b 3814
ac94a962
KP
3815 /* Pin and relocate */
3816 for (pin_tries = 0; ; pin_tries++) {
3817 ret = 0;
40a5f0de
EA
3818 reloc_index = 0;
3819
ac94a962
KP
3820 for (i = 0; i < args->buffer_count; i++) {
3821 object_list[i]->pending_read_domains = 0;
3822 object_list[i]->pending_write_domain = 0;
3823 ret = i915_gem_object_pin_and_relocate(object_list[i],
3824 file_priv,
40a5f0de
EA
3825 &exec_list[i],
3826 &relocs[reloc_index]);
ac94a962
KP
3827 if (ret)
3828 break;
3829 pinned = i + 1;
40a5f0de 3830 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3831 }
3832 /* success */
3833 if (ret == 0)
3834 break;
3835
3836 /* error other than GTT full, or we've already tried again */
2939e1f5 3837 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3838 if (ret != -ERESTARTSYS) {
3839 unsigned long long total_size = 0;
3d1cc470
CW
3840 int num_fences = 0;
3841 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3842 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3843
07f73f69 3844 total_size += object_list[i]->size;
3d1cc470
CW
3845 num_fences +=
3846 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3847 obj_priv->tiling_mode != I915_TILING_NONE;
3848 }
3849 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3850 pinned+1, args->buffer_count,
3d1cc470
CW
3851 total_size, num_fences,
3852 ret);
07f73f69
CW
3853 DRM_ERROR("%d objects [%d pinned], "
3854 "%d object bytes [%d pinned], "
3855 "%d/%d gtt bytes\n",
3856 atomic_read(&dev->object_count),
3857 atomic_read(&dev->pin_count),
3858 atomic_read(&dev->object_memory),
3859 atomic_read(&dev->pin_memory),
3860 atomic_read(&dev->gtt_memory),
3861 dev->gtt_total);
3862 }
673a394b
EA
3863 goto err;
3864 }
ac94a962
KP
3865
3866 /* unpin all of our buffers */
3867 for (i = 0; i < pinned; i++)
3868 i915_gem_object_unpin(object_list[i]);
b1177636 3869 pinned = 0;
ac94a962
KP
3870
3871 /* evict everyone we can from the aperture */
3872 ret = i915_gem_evict_everything(dev);
07f73f69 3873 if (ret && ret != -ENOSPC)
ac94a962 3874 goto err;
673a394b
EA
3875 }
3876
3877 /* Set the pending read domains for the batch buffer to COMMAND */
3878 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3879 if (batch_obj->pending_write_domain) {
3880 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3881 ret = -EINVAL;
3882 goto err;
3883 }
3884 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3885
83d60795
CW
3886 /* Sanity check the batch buffer, prior to moving objects */
3887 exec_offset = exec_list[args->buffer_count - 1].offset;
3888 ret = i915_gem_check_execbuffer (args, exec_offset);
3889 if (ret != 0) {
3890 DRM_ERROR("execbuf with invalid offset/length\n");
3891 goto err;
3892 }
3893
673a394b
EA
3894 i915_verify_inactive(dev, __FILE__, __LINE__);
3895
646f0f6e
KP
3896 /* Zero the global flush/invalidate flags. These
3897 * will be modified as new domains are computed
3898 * for each object
3899 */
3900 dev->invalidate_domains = 0;
3901 dev->flush_domains = 0;
88f356b7 3902 dev_priv->flush_rings = 0;
646f0f6e 3903
673a394b
EA
3904 for (i = 0; i < args->buffer_count; i++) {
3905 struct drm_gem_object *obj = object_list[i];
673a394b 3906
646f0f6e 3907 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3908 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3909 }
3910
3911 i915_verify_inactive(dev, __FILE__, __LINE__);
3912
646f0f6e
KP
3913 if (dev->invalidate_domains | dev->flush_domains) {
3914#if WATCH_EXEC
3915 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3916 __func__,
3917 dev->invalidate_domains,
3918 dev->flush_domains);
3919#endif
3920 i915_gem_flush(dev,
3921 dev->invalidate_domains,
3922 dev->flush_domains);
88f356b7 3923 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
b962442e 3924 (void)i915_add_request(dev, file_priv,
88f356b7
CW
3925 dev->flush_domains,
3926 &dev_priv->render_ring);
3927 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3928 (void)i915_add_request(dev, file_priv,
3929 dev->flush_domains,
3930 &dev_priv->bsd_ring);
646f0f6e 3931 }
673a394b 3932
efbeed96
EA
3933 for (i = 0; i < args->buffer_count; i++) {
3934 struct drm_gem_object *obj = object_list[i];
23010e43 3935 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3936 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3937
3938 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3939 if (obj->write_domain)
3940 list_move_tail(&obj_priv->gpu_write_list,
3941 &dev_priv->mm.gpu_write_list);
3942 else
3943 list_del_init(&obj_priv->gpu_write_list);
3944
1c5d22f7
CW
3945 trace_i915_gem_object_change_domain(obj,
3946 obj->read_domains,
3947 old_write_domain);
efbeed96
EA
3948 }
3949
673a394b
EA
3950 i915_verify_inactive(dev, __FILE__, __LINE__);
3951
3952#if WATCH_COHERENCY
3953 for (i = 0; i < args->buffer_count; i++) {
3954 i915_gem_object_check_coherency(object_list[i],
3955 exec_list[i].handle);
3956 }
3957#endif
3958
673a394b 3959#if WATCH_EXEC
6911a9b8 3960 i915_gem_dump_object(batch_obj,
673a394b
EA
3961 args->batch_len,
3962 __func__,
3963 ~0);
3964#endif
3965
673a394b 3966 /* Exec the batchbuffer */
852835f3
ZN
3967 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3968 cliprects, exec_offset);
673a394b
EA
3969 if (ret) {
3970 DRM_ERROR("dispatch failed %d\n", ret);
3971 goto err;
3972 }
3973
3974 /*
3975 * Ensure that the commands in the batch buffer are
3976 * finished before the interrupt fires
3977 */
852835f3 3978 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3979
3980 i915_verify_inactive(dev, __FILE__, __LINE__);
3981
3982 /*
3983 * Get a seqno representing the execution of the current buffer,
3984 * which we can wait on. We would like to mitigate these interrupts,
3985 * likely by only creating seqnos occasionally (so that we have
3986 * *some* interrupts representing completion of buffers that we can
3987 * wait on when trying to clear up gtt space).
3988 */
852835f3 3989 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3990 BUG_ON(seqno == 0);
673a394b
EA
3991 for (i = 0; i < args->buffer_count; i++) {
3992 struct drm_gem_object *obj = object_list[i];
852835f3 3993 obj_priv = to_intel_bo(obj);
673a394b 3994
852835f3 3995 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3996#if WATCH_LRU
3997 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3998#endif
3999 }
4000#if WATCH_LRU
4001 i915_dump_lru(dev, __func__);
4002#endif
4003
4004 i915_verify_inactive(dev, __FILE__, __LINE__);
4005
673a394b 4006err:
aad87dff
JL
4007 for (i = 0; i < pinned; i++)
4008 i915_gem_object_unpin(object_list[i]);
4009
b70d11da
KH
4010 for (i = 0; i < args->buffer_count; i++) {
4011 if (object_list[i]) {
23010e43 4012 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
4013 obj_priv->in_execbuffer = false;
4014 }
aad87dff 4015 drm_gem_object_unreference(object_list[i]);
b70d11da 4016 }
673a394b 4017
673a394b
EA
4018 mutex_unlock(&dev->struct_mutex);
4019
93533c29 4020pre_mutex_err:
40a5f0de
EA
4021 /* Copy the updated relocations out regardless of current error
4022 * state. Failure to update the relocs would mean that the next
4023 * time userland calls execbuf, it would do so with presumed offset
4024 * state that didn't match the actual object state.
4025 */
4026 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4027 relocs);
4028 if (ret2 != 0) {
4029 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4030
4031 if (ret == 0)
4032 ret = ret2;
4033 }
4034
8e7d2b2c 4035 drm_free_large(object_list);
9a298b2a 4036 kfree(cliprects);
673a394b
EA
4037
4038 return ret;
4039}
4040
76446cac
JB
4041/*
4042 * Legacy execbuffer just creates an exec2 list from the original exec object
4043 * list array and passes it to the real function.
4044 */
4045int
4046i915_gem_execbuffer(struct drm_device *dev, void *data,
4047 struct drm_file *file_priv)
4048{
4049 struct drm_i915_gem_execbuffer *args = data;
4050 struct drm_i915_gem_execbuffer2 exec2;
4051 struct drm_i915_gem_exec_object *exec_list = NULL;
4052 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4053 int ret, i;
4054
4055#if WATCH_EXEC
4056 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4057 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4058#endif
4059
4060 if (args->buffer_count < 1) {
4061 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4062 return -EINVAL;
4063 }
4064
4065 /* Copy in the exec list from userland */
4066 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4067 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4068 if (exec_list == NULL || exec2_list == NULL) {
4069 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4070 args->buffer_count);
4071 drm_free_large(exec_list);
4072 drm_free_large(exec2_list);
4073 return -ENOMEM;
4074 }
4075 ret = copy_from_user(exec_list,
4076 (struct drm_i915_relocation_entry __user *)
4077 (uintptr_t) args->buffers_ptr,
4078 sizeof(*exec_list) * args->buffer_count);
4079 if (ret != 0) {
4080 DRM_ERROR("copy %d exec entries failed %d\n",
4081 args->buffer_count, ret);
4082 drm_free_large(exec_list);
4083 drm_free_large(exec2_list);
4084 return -EFAULT;
4085 }
4086
4087 for (i = 0; i < args->buffer_count; i++) {
4088 exec2_list[i].handle = exec_list[i].handle;
4089 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4090 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4091 exec2_list[i].alignment = exec_list[i].alignment;
4092 exec2_list[i].offset = exec_list[i].offset;
4093 if (!IS_I965G(dev))
4094 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4095 else
4096 exec2_list[i].flags = 0;
4097 }
4098
4099 exec2.buffers_ptr = args->buffers_ptr;
4100 exec2.buffer_count = args->buffer_count;
4101 exec2.batch_start_offset = args->batch_start_offset;
4102 exec2.batch_len = args->batch_len;
4103 exec2.DR1 = args->DR1;
4104 exec2.DR4 = args->DR4;
4105 exec2.num_cliprects = args->num_cliprects;
4106 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 4107 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
4108
4109 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4110 if (!ret) {
4111 /* Copy the new buffer offsets back to the user's exec list. */
4112 for (i = 0; i < args->buffer_count; i++)
4113 exec_list[i].offset = exec2_list[i].offset;
4114 /* ... and back out to userspace */
4115 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4116 (uintptr_t) args->buffers_ptr,
4117 exec_list,
4118 sizeof(*exec_list) * args->buffer_count);
4119 if (ret) {
4120 ret = -EFAULT;
4121 DRM_ERROR("failed to copy %d exec entries "
4122 "back to user (%d)\n",
4123 args->buffer_count, ret);
4124 }
76446cac
JB
4125 }
4126
4127 drm_free_large(exec_list);
4128 drm_free_large(exec2_list);
4129 return ret;
4130}
4131
4132int
4133i915_gem_execbuffer2(struct drm_device *dev, void *data,
4134 struct drm_file *file_priv)
4135{
4136 struct drm_i915_gem_execbuffer2 *args = data;
4137 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4138 int ret;
4139
4140#if WATCH_EXEC
4141 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4142 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4143#endif
4144
4145 if (args->buffer_count < 1) {
4146 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4147 return -EINVAL;
4148 }
4149
4150 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4151 if (exec2_list == NULL) {
4152 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4153 args->buffer_count);
4154 return -ENOMEM;
4155 }
4156 ret = copy_from_user(exec2_list,
4157 (struct drm_i915_relocation_entry __user *)
4158 (uintptr_t) args->buffers_ptr,
4159 sizeof(*exec2_list) * args->buffer_count);
4160 if (ret != 0) {
4161 DRM_ERROR("copy %d exec entries failed %d\n",
4162 args->buffer_count, ret);
4163 drm_free_large(exec2_list);
4164 return -EFAULT;
4165 }
4166
4167 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4168 if (!ret) {
4169 /* Copy the new buffer offsets back to the user's exec list. */
4170 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4171 (uintptr_t) args->buffers_ptr,
4172 exec2_list,
4173 sizeof(*exec2_list) * args->buffer_count);
4174 if (ret) {
4175 ret = -EFAULT;
4176 DRM_ERROR("failed to copy %d exec entries "
4177 "back to user (%d)\n",
4178 args->buffer_count, ret);
4179 }
4180 }
4181
4182 drm_free_large(exec2_list);
4183 return ret;
4184}
4185
673a394b
EA
4186int
4187i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4188{
4189 struct drm_device *dev = obj->dev;
23010e43 4190 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4191 int ret;
4192
778c3544
DV
4193 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4194
673a394b 4195 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4196
4197 if (obj_priv->gtt_space != NULL) {
4198 if (alignment == 0)
4199 alignment = i915_gem_get_gtt_alignment(obj);
4200 if (obj_priv->gtt_offset & (alignment - 1)) {
4201 ret = i915_gem_object_unbind(obj);
4202 if (ret)
4203 return ret;
4204 }
4205 }
4206
673a394b
EA
4207 if (obj_priv->gtt_space == NULL) {
4208 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4209 if (ret)
673a394b 4210 return ret;
22c344e9 4211 }
76446cac 4212
673a394b
EA
4213 obj_priv->pin_count++;
4214
4215 /* If the object is not active and not pending a flush,
4216 * remove it from the inactive list
4217 */
4218 if (obj_priv->pin_count == 1) {
4219 atomic_inc(&dev->pin_count);
4220 atomic_add(obj->size, &dev->pin_memory);
4221 if (!obj_priv->active &&
21d509e3 4222 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
673a394b
EA
4223 !list_empty(&obj_priv->list))
4224 list_del_init(&obj_priv->list);
4225 }
4226 i915_verify_inactive(dev, __FILE__, __LINE__);
4227
4228 return 0;
4229}
4230
4231void
4232i915_gem_object_unpin(struct drm_gem_object *obj)
4233{
4234 struct drm_device *dev = obj->dev;
4235 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4236 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4237
4238 i915_verify_inactive(dev, __FILE__, __LINE__);
4239 obj_priv->pin_count--;
4240 BUG_ON(obj_priv->pin_count < 0);
4241 BUG_ON(obj_priv->gtt_space == NULL);
4242
4243 /* If the object is no longer pinned, and is
4244 * neither active nor being flushed, then stick it on
4245 * the inactive list
4246 */
4247 if (obj_priv->pin_count == 0) {
4248 if (!obj_priv->active &&
21d509e3 4249 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4250 list_move_tail(&obj_priv->list,
4251 &dev_priv->mm.inactive_list);
4252 atomic_dec(&dev->pin_count);
4253 atomic_sub(obj->size, &dev->pin_memory);
4254 }
4255 i915_verify_inactive(dev, __FILE__, __LINE__);
4256}
4257
4258int
4259i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4260 struct drm_file *file_priv)
4261{
4262 struct drm_i915_gem_pin *args = data;
4263 struct drm_gem_object *obj;
4264 struct drm_i915_gem_object *obj_priv;
4265 int ret;
4266
4267 mutex_lock(&dev->struct_mutex);
4268
4269 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4270 if (obj == NULL) {
4271 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4272 args->handle);
4273 mutex_unlock(&dev->struct_mutex);
4274 return -EBADF;
4275 }
23010e43 4276 obj_priv = to_intel_bo(obj);
673a394b 4277
bb6baf76
CW
4278 if (obj_priv->madv != I915_MADV_WILLNEED) {
4279 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4280 drm_gem_object_unreference(obj);
4281 mutex_unlock(&dev->struct_mutex);
4282 return -EINVAL;
4283 }
4284
79e53945
JB
4285 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4286 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4287 args->handle);
96dec61d 4288 drm_gem_object_unreference(obj);
673a394b 4289 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4290 return -EINVAL;
4291 }
4292
4293 obj_priv->user_pin_count++;
4294 obj_priv->pin_filp = file_priv;
4295 if (obj_priv->user_pin_count == 1) {
4296 ret = i915_gem_object_pin(obj, args->alignment);
4297 if (ret != 0) {
4298 drm_gem_object_unreference(obj);
4299 mutex_unlock(&dev->struct_mutex);
4300 return ret;
4301 }
673a394b
EA
4302 }
4303
4304 /* XXX - flush the CPU caches for pinned objects
4305 * as the X server doesn't manage domains yet
4306 */
e47c68e9 4307 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4308 args->offset = obj_priv->gtt_offset;
4309 drm_gem_object_unreference(obj);
4310 mutex_unlock(&dev->struct_mutex);
4311
4312 return 0;
4313}
4314
4315int
4316i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file_priv)
4318{
4319 struct drm_i915_gem_pin *args = data;
4320 struct drm_gem_object *obj;
79e53945 4321 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4322
4323 mutex_lock(&dev->struct_mutex);
4324
4325 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4326 if (obj == NULL) {
4327 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4328 args->handle);
4329 mutex_unlock(&dev->struct_mutex);
4330 return -EBADF;
4331 }
4332
23010e43 4333 obj_priv = to_intel_bo(obj);
79e53945
JB
4334 if (obj_priv->pin_filp != file_priv) {
4335 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4336 args->handle);
4337 drm_gem_object_unreference(obj);
4338 mutex_unlock(&dev->struct_mutex);
4339 return -EINVAL;
4340 }
4341 obj_priv->user_pin_count--;
4342 if (obj_priv->user_pin_count == 0) {
4343 obj_priv->pin_filp = NULL;
4344 i915_gem_object_unpin(obj);
4345 }
673a394b
EA
4346
4347 drm_gem_object_unreference(obj);
4348 mutex_unlock(&dev->struct_mutex);
4349 return 0;
4350}
4351
4352int
4353i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4354 struct drm_file *file_priv)
4355{
4356 struct drm_i915_gem_busy *args = data;
4357 struct drm_gem_object *obj;
4358 struct drm_i915_gem_object *obj_priv;
4359
673a394b
EA
4360 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4361 if (obj == NULL) {
4362 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4363 args->handle);
673a394b
EA
4364 return -EBADF;
4365 }
4366
b1ce786c 4367 mutex_lock(&dev->struct_mutex);
f21289b3
EA
4368 /* Update the active list for the hardware's current position.
4369 * Otherwise this only updates on a delayed timer or when irqs are
4370 * actually unmasked, and our working set ends up being larger than
4371 * required.
4372 */
b09a1fec 4373 i915_gem_retire_requests(dev);
d1b851fc 4374
23010e43 4375 obj_priv = to_intel_bo(obj);
c4de0a5d
EA
4376 /* Don't count being on the flushing list against the object being
4377 * done. Otherwise, a buffer left on the flushing list but not getting
4378 * flushed (because nobody's flushing that domain) won't ever return
4379 * unbusy and get reused by libdrm's bo cache. The other expected
4380 * consumer of this interface, OpenGL's occlusion queries, also specs
4381 * that the objects get unbusy "eventually" without any interference.
4382 */
4383 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
673a394b
EA
4384
4385 drm_gem_object_unreference(obj);
4386 mutex_unlock(&dev->struct_mutex);
4387 return 0;
4388}
4389
4390int
4391i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4392 struct drm_file *file_priv)
4393{
4394 return i915_gem_ring_throttle(dev, file_priv);
4395}
4396
3ef94daa
CW
4397int
4398i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4399 struct drm_file *file_priv)
4400{
4401 struct drm_i915_gem_madvise *args = data;
4402 struct drm_gem_object *obj;
4403 struct drm_i915_gem_object *obj_priv;
4404
4405 switch (args->madv) {
4406 case I915_MADV_DONTNEED:
4407 case I915_MADV_WILLNEED:
4408 break;
4409 default:
4410 return -EINVAL;
4411 }
4412
4413 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4414 if (obj == NULL) {
4415 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4416 args->handle);
4417 return -EBADF;
4418 }
4419
4420 mutex_lock(&dev->struct_mutex);
23010e43 4421 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4422
4423 if (obj_priv->pin_count) {
4424 drm_gem_object_unreference(obj);
4425 mutex_unlock(&dev->struct_mutex);
4426
4427 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4428 return -EINVAL;
4429 }
4430
bb6baf76
CW
4431 if (obj_priv->madv != __I915_MADV_PURGED)
4432 obj_priv->madv = args->madv;
3ef94daa 4433
2d7ef395
CW
4434 /* if the object is no longer bound, discard its backing storage */
4435 if (i915_gem_object_is_purgeable(obj_priv) &&
4436 obj_priv->gtt_space == NULL)
4437 i915_gem_object_truncate(obj);
4438
bb6baf76
CW
4439 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4440
3ef94daa
CW
4441 drm_gem_object_unreference(obj);
4442 mutex_unlock(&dev->struct_mutex);
4443
4444 return 0;
4445}
4446
ac52bc56
DV
4447struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4448 size_t size)
4449{
c397b908 4450 struct drm_i915_gem_object *obj;
ac52bc56 4451
c397b908
DV
4452 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4453 if (obj == NULL)
4454 return NULL;
673a394b 4455
c397b908
DV
4456 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4457 kfree(obj);
4458 return NULL;
4459 }
673a394b 4460
c397b908
DV
4461 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4462 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4463
c397b908 4464 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4465 obj->base.driver_private = NULL;
c397b908
DV
4466 obj->fence_reg = I915_FENCE_REG_NONE;
4467 INIT_LIST_HEAD(&obj->list);
4468 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4469 obj->madv = I915_MADV_WILLNEED;
de151cf6 4470
c397b908
DV
4471 trace_i915_gem_object_create(&obj->base);
4472
4473 return &obj->base;
4474}
4475
4476int i915_gem_init_object(struct drm_gem_object *obj)
4477{
4478 BUG();
de151cf6 4479
673a394b
EA
4480 return 0;
4481}
4482
be72615b 4483static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4484{
de151cf6 4485 struct drm_device *dev = obj->dev;
be72615b 4486 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4487 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4488 int ret;
673a394b 4489
be72615b
CW
4490 ret = i915_gem_object_unbind(obj);
4491 if (ret == -ERESTARTSYS) {
4492 list_move(&obj_priv->list,
4493 &dev_priv->mm.deferred_free_list);
4494 return;
4495 }
673a394b 4496
7e616158
CW
4497 if (obj_priv->mmap_offset)
4498 i915_gem_free_mmap_offset(obj);
de151cf6 4499
c397b908
DV
4500 drm_gem_object_release(obj);
4501
9a298b2a 4502 kfree(obj_priv->page_cpu_valid);
280b713b 4503 kfree(obj_priv->bit_17);
c397b908 4504 kfree(obj_priv);
673a394b
EA
4505}
4506
be72615b
CW
4507void i915_gem_free_object(struct drm_gem_object *obj)
4508{
4509 struct drm_device *dev = obj->dev;
4510 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4511
4512 trace_i915_gem_object_destroy(obj);
4513
4514 while (obj_priv->pin_count > 0)
4515 i915_gem_object_unpin(obj);
4516
4517 if (obj_priv->phys_obj)
4518 i915_gem_detach_phys_object(dev, obj);
4519
4520 i915_gem_free_object_tail(obj);
4521}
4522
ab5ee576 4523/** Unbinds all inactive objects. */
673a394b 4524static int
ab5ee576 4525i915_gem_evict_from_inactive_list(struct drm_device *dev)
673a394b 4526{
ab5ee576 4527 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 4528
ab5ee576
CW
4529 while (!list_empty(&dev_priv->mm.inactive_list)) {
4530 struct drm_gem_object *obj;
4531 int ret;
673a394b 4532
a8089e84
DV
4533 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4534 struct drm_i915_gem_object,
4535 list)->base;
673a394b
EA
4536
4537 ret = i915_gem_object_unbind(obj);
4538 if (ret != 0) {
ab5ee576 4539 DRM_ERROR("Error unbinding object: %d\n", ret);
673a394b
EA
4540 return ret;
4541 }
4542 }
4543
673a394b
EA
4544 return 0;
4545}
4546
29105ccc
CW
4547int
4548i915_gem_idle(struct drm_device *dev)
4549{
4550 drm_i915_private_t *dev_priv = dev->dev_private;
4551 int ret;
28dfe52a 4552
29105ccc 4553 mutex_lock(&dev->struct_mutex);
1c5d22f7 4554
8187a2b7 4555 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4556 (dev_priv->render_ring.gem_object == NULL) ||
4557 (HAS_BSD(dev) &&
4558 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4559 mutex_unlock(&dev->struct_mutex);
4560 return 0;
28dfe52a
EA
4561 }
4562
29105ccc 4563 ret = i915_gpu_idle(dev);
6dbe2772
KP
4564 if (ret) {
4565 mutex_unlock(&dev->struct_mutex);
673a394b 4566 return ret;
6dbe2772 4567 }
673a394b 4568
29105ccc
CW
4569 /* Under UMS, be paranoid and evict. */
4570 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4571 ret = i915_gem_evict_from_inactive_list(dev);
4572 if (ret) {
4573 mutex_unlock(&dev->struct_mutex);
4574 return ret;
4575 }
4576 }
4577
4578 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4579 * We need to replace this with a semaphore, or something.
4580 * And not confound mm.suspended!
4581 */
4582 dev_priv->mm.suspended = 1;
4583 del_timer(&dev_priv->hangcheck_timer);
4584
4585 i915_kernel_lost_context(dev);
6dbe2772 4586 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4587
6dbe2772
KP
4588 mutex_unlock(&dev->struct_mutex);
4589
29105ccc
CW
4590 /* Cancel the retire work handler, which should be idle now. */
4591 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4592
673a394b
EA
4593 return 0;
4594}
4595
e552eb70
JB
4596/*
4597 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4598 * over cache flushing.
4599 */
8187a2b7 4600static int
e552eb70
JB
4601i915_gem_init_pipe_control(struct drm_device *dev)
4602{
4603 drm_i915_private_t *dev_priv = dev->dev_private;
4604 struct drm_gem_object *obj;
4605 struct drm_i915_gem_object *obj_priv;
4606 int ret;
4607
34dc4d44 4608 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4609 if (obj == NULL) {
4610 DRM_ERROR("Failed to allocate seqno page\n");
4611 ret = -ENOMEM;
4612 goto err;
4613 }
4614 obj_priv = to_intel_bo(obj);
4615 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4616
4617 ret = i915_gem_object_pin(obj, 4096);
4618 if (ret)
4619 goto err_unref;
4620
4621 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4622 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4623 if (dev_priv->seqno_page == NULL)
4624 goto err_unpin;
4625
4626 dev_priv->seqno_obj = obj;
4627 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4628
4629 return 0;
4630
4631err_unpin:
4632 i915_gem_object_unpin(obj);
4633err_unref:
4634 drm_gem_object_unreference(obj);
4635err:
4636 return ret;
4637}
4638
8187a2b7
ZN
4639
4640static void
e552eb70
JB
4641i915_gem_cleanup_pipe_control(struct drm_device *dev)
4642{
4643 drm_i915_private_t *dev_priv = dev->dev_private;
4644 struct drm_gem_object *obj;
4645 struct drm_i915_gem_object *obj_priv;
4646
4647 obj = dev_priv->seqno_obj;
4648 obj_priv = to_intel_bo(obj);
4649 kunmap(obj_priv->pages[0]);
4650 i915_gem_object_unpin(obj);
4651 drm_gem_object_unreference(obj);
4652 dev_priv->seqno_obj = NULL;
4653
4654 dev_priv->seqno_page = NULL;
673a394b
EA
4655}
4656
8187a2b7
ZN
4657int
4658i915_gem_init_ringbuffer(struct drm_device *dev)
4659{
4660 drm_i915_private_t *dev_priv = dev->dev_private;
4661 int ret;
68f95ba9 4662
8187a2b7 4663 dev_priv->render_ring = render_ring;
68f95ba9 4664
8187a2b7
ZN
4665 if (!I915_NEED_GFX_HWS(dev)) {
4666 dev_priv->render_ring.status_page.page_addr
4667 = dev_priv->status_page_dmah->vaddr;
4668 memset(dev_priv->render_ring.status_page.page_addr,
4669 0, PAGE_SIZE);
4670 }
68f95ba9 4671
8187a2b7
ZN
4672 if (HAS_PIPE_CONTROL(dev)) {
4673 ret = i915_gem_init_pipe_control(dev);
4674 if (ret)
4675 return ret;
4676 }
68f95ba9 4677
8187a2b7 4678 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4679 if (ret)
4680 goto cleanup_pipe_control;
4681
4682 if (HAS_BSD(dev)) {
d1b851fc
ZN
4683 dev_priv->bsd_ring = bsd_ring;
4684 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4685 if (ret)
4686 goto cleanup_render_ring;
d1b851fc 4687 }
68f95ba9
CW
4688
4689 return 0;
4690
4691cleanup_render_ring:
4692 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4693cleanup_pipe_control:
4694 if (HAS_PIPE_CONTROL(dev))
4695 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4696 return ret;
4697}
4698
4699void
4700i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4701{
4702 drm_i915_private_t *dev_priv = dev->dev_private;
4703
4704 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4705 if (HAS_BSD(dev))
4706 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4707 if (HAS_PIPE_CONTROL(dev))
4708 i915_gem_cleanup_pipe_control(dev);
4709}
4710
673a394b
EA
4711int
4712i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4713 struct drm_file *file_priv)
4714{
4715 drm_i915_private_t *dev_priv = dev->dev_private;
4716 int ret;
4717
79e53945
JB
4718 if (drm_core_check_feature(dev, DRIVER_MODESET))
4719 return 0;
4720
ba1234d1 4721 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4722 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4723 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4724 }
4725
673a394b 4726 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4727 dev_priv->mm.suspended = 0;
4728
4729 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4730 if (ret != 0) {
4731 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4732 return ret;
d816f6ac 4733 }
9bb2d6f9 4734
5e118f41 4735 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4736 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4737 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4738 spin_unlock(&dev_priv->mm.active_list_lock);
4739
673a394b
EA
4740 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4741 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4742 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4743 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4744 mutex_unlock(&dev->struct_mutex);
dbb19d30 4745
5f35308b
CW
4746 ret = drm_irq_install(dev);
4747 if (ret)
4748 goto cleanup_ringbuffer;
dbb19d30 4749
673a394b 4750 return 0;
5f35308b
CW
4751
4752cleanup_ringbuffer:
4753 mutex_lock(&dev->struct_mutex);
4754 i915_gem_cleanup_ringbuffer(dev);
4755 dev_priv->mm.suspended = 1;
4756 mutex_unlock(&dev->struct_mutex);
4757
4758 return ret;
673a394b
EA
4759}
4760
4761int
4762i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4763 struct drm_file *file_priv)
4764{
79e53945
JB
4765 if (drm_core_check_feature(dev, DRIVER_MODESET))
4766 return 0;
4767
dbb19d30 4768 drm_irq_uninstall(dev);
e6890f6f 4769 return i915_gem_idle(dev);
673a394b
EA
4770}
4771
4772void
4773i915_gem_lastclose(struct drm_device *dev)
4774{
4775 int ret;
673a394b 4776
e806b495
EA
4777 if (drm_core_check_feature(dev, DRIVER_MODESET))
4778 return;
4779
6dbe2772
KP
4780 ret = i915_gem_idle(dev);
4781 if (ret)
4782 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4783}
4784
4785void
4786i915_gem_load(struct drm_device *dev)
4787{
b5aa8a0f 4788 int i;
673a394b
EA
4789 drm_i915_private_t *dev_priv = dev->dev_private;
4790
5e118f41 4791 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4792 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4793 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4794 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4795 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4796 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4797 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4798 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4799 if (HAS_BSD(dev)) {
4800 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4801 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4802 }
007cc8ac
DV
4803 for (i = 0; i < 16; i++)
4804 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4805 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4806 i915_gem_retire_work_handler);
31169714
CW
4807 spin_lock(&shrink_list_lock);
4808 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4809 spin_unlock(&shrink_list_lock);
4810
94400120
DA
4811 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4812 if (IS_GEN3(dev)) {
4813 u32 tmp = I915_READ(MI_ARB_STATE);
4814 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4815 /* arb state is a masked write, so set bit + bit in mask */
4816 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4817 I915_WRITE(MI_ARB_STATE, tmp);
4818 }
4819 }
4820
de151cf6 4821 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4822 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4823 dev_priv->fence_reg_start = 3;
de151cf6 4824
0f973f27 4825 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4826 dev_priv->num_fence_regs = 16;
4827 else
4828 dev_priv->num_fence_regs = 8;
4829
b5aa8a0f
GH
4830 /* Initialize fence registers to zero */
4831 if (IS_I965G(dev)) {
4832 for (i = 0; i < 16; i++)
4833 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4834 } else {
4835 for (i = 0; i < 8; i++)
4836 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4837 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4838 for (i = 0; i < 8; i++)
4839 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4840 }
673a394b 4841 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4842 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4843}
71acb5eb
DA
4844
4845/*
4846 * Create a physically contiguous memory object for this object
4847 * e.g. for cursor + overlay regs
4848 */
4849int i915_gem_init_phys_object(struct drm_device *dev,
4850 int id, int size)
4851{
4852 drm_i915_private_t *dev_priv = dev->dev_private;
4853 struct drm_i915_gem_phys_object *phys_obj;
4854 int ret;
4855
4856 if (dev_priv->mm.phys_objs[id - 1] || !size)
4857 return 0;
4858
9a298b2a 4859 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4860 if (!phys_obj)
4861 return -ENOMEM;
4862
4863 phys_obj->id = id;
4864
e6be8d9d 4865 phys_obj->handle = drm_pci_alloc(dev, size, 0);
71acb5eb
DA
4866 if (!phys_obj->handle) {
4867 ret = -ENOMEM;
4868 goto kfree_obj;
4869 }
4870#ifdef CONFIG_X86
4871 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4872#endif
4873
4874 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4875
4876 return 0;
4877kfree_obj:
9a298b2a 4878 kfree(phys_obj);
71acb5eb
DA
4879 return ret;
4880}
4881
4882void i915_gem_free_phys_object(struct drm_device *dev, int id)
4883{
4884 drm_i915_private_t *dev_priv = dev->dev_private;
4885 struct drm_i915_gem_phys_object *phys_obj;
4886
4887 if (!dev_priv->mm.phys_objs[id - 1])
4888 return;
4889
4890 phys_obj = dev_priv->mm.phys_objs[id - 1];
4891 if (phys_obj->cur_obj) {
4892 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4893 }
4894
4895#ifdef CONFIG_X86
4896 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4897#endif
4898 drm_pci_free(dev, phys_obj->handle);
4899 kfree(phys_obj);
4900 dev_priv->mm.phys_objs[id - 1] = NULL;
4901}
4902
4903void i915_gem_free_all_phys_object(struct drm_device *dev)
4904{
4905 int i;
4906
260883c8 4907 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4908 i915_gem_free_phys_object(dev, i);
4909}
4910
4911void i915_gem_detach_phys_object(struct drm_device *dev,
4912 struct drm_gem_object *obj)
4913{
4914 struct drm_i915_gem_object *obj_priv;
4915 int i;
4916 int ret;
4917 int page_count;
4918
23010e43 4919 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4920 if (!obj_priv->phys_obj)
4921 return;
4922
4bdadb97 4923 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4924 if (ret)
4925 goto out;
4926
4927 page_count = obj->size / PAGE_SIZE;
4928
4929 for (i = 0; i < page_count; i++) {
856fa198 4930 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4931 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4932
4933 memcpy(dst, src, PAGE_SIZE);
4934 kunmap_atomic(dst, KM_USER0);
4935 }
856fa198 4936 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4937 drm_agp_chipset_flush(dev);
d78b47b9
CW
4938
4939 i915_gem_object_put_pages(obj);
71acb5eb
DA
4940out:
4941 obj_priv->phys_obj->cur_obj = NULL;
4942 obj_priv->phys_obj = NULL;
4943}
4944
4945int
4946i915_gem_attach_phys_object(struct drm_device *dev,
4947 struct drm_gem_object *obj, int id)
4948{
4949 drm_i915_private_t *dev_priv = dev->dev_private;
4950 struct drm_i915_gem_object *obj_priv;
4951 int ret = 0;
4952 int page_count;
4953 int i;
4954
4955 if (id > I915_MAX_PHYS_OBJECT)
4956 return -EINVAL;
4957
23010e43 4958 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4959
4960 if (obj_priv->phys_obj) {
4961 if (obj_priv->phys_obj->id == id)
4962 return 0;
4963 i915_gem_detach_phys_object(dev, obj);
4964 }
4965
4966
4967 /* create a new object */
4968 if (!dev_priv->mm.phys_objs[id - 1]) {
4969 ret = i915_gem_init_phys_object(dev, id,
4970 obj->size);
4971 if (ret) {
aeb565df 4972 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4973 goto out;
4974 }
4975 }
4976
4977 /* bind to the object */
4978 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4979 obj_priv->phys_obj->cur_obj = obj;
4980
4bdadb97 4981 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4982 if (ret) {
4983 DRM_ERROR("failed to get page list\n");
4984 goto out;
4985 }
4986
4987 page_count = obj->size / PAGE_SIZE;
4988
4989 for (i = 0; i < page_count; i++) {
856fa198 4990 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4991 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4992
4993 memcpy(dst, src, PAGE_SIZE);
4994 kunmap_atomic(src, KM_USER0);
4995 }
4996
d78b47b9
CW
4997 i915_gem_object_put_pages(obj);
4998
71acb5eb
DA
4999 return 0;
5000out:
5001 return ret;
5002}
5003
5004static int
5005i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5006 struct drm_i915_gem_pwrite *args,
5007 struct drm_file *file_priv)
5008{
23010e43 5009 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
5010 void *obj_addr;
5011 int ret;
5012 char __user *user_data;
5013
5014 user_data = (char __user *) (uintptr_t) args->data_ptr;
5015 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5016
44d98a61 5017 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
5018 ret = copy_from_user(obj_addr, user_data, args->size);
5019 if (ret)
5020 return -EFAULT;
5021
5022 drm_agp_chipset_flush(dev);
5023 return 0;
5024}
b962442e
EA
5025
5026void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5027{
5028 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5029
5030 /* Clean up our request list when the client is going away, so that
5031 * later retire_requests won't dereference our soon-to-be-gone
5032 * file_priv.
5033 */
5034 mutex_lock(&dev->struct_mutex);
5035 while (!list_empty(&i915_file_priv->mm.request_list))
5036 list_del_init(i915_file_priv->mm.request_list.next);
5037 mutex_unlock(&dev->struct_mutex);
5038}
31169714 5039
1637ef41
CW
5040static int
5041i915_gpu_is_active(struct drm_device *dev)
5042{
5043 drm_i915_private_t *dev_priv = dev->dev_private;
5044 int lists_empty;
5045
5046 spin_lock(&dev_priv->mm.active_list_lock);
5047 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 5048 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
5049 if (HAS_BSD(dev))
5050 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
5051 spin_unlock(&dev_priv->mm.active_list_lock);
5052
5053 return !lists_empty;
5054}
5055
31169714 5056static int
7f8275d0 5057i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
5058{
5059 drm_i915_private_t *dev_priv, *next_dev;
5060 struct drm_i915_gem_object *obj_priv, *next_obj;
5061 int cnt = 0;
5062 int would_deadlock = 1;
5063
5064 /* "fast-path" to count number of available objects */
5065 if (nr_to_scan == 0) {
5066 spin_lock(&shrink_list_lock);
5067 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5068 struct drm_device *dev = dev_priv->dev;
5069
5070 if (mutex_trylock(&dev->struct_mutex)) {
5071 list_for_each_entry(obj_priv,
5072 &dev_priv->mm.inactive_list,
5073 list)
5074 cnt++;
5075 mutex_unlock(&dev->struct_mutex);
5076 }
5077 }
5078 spin_unlock(&shrink_list_lock);
5079
5080 return (cnt / 100) * sysctl_vfs_cache_pressure;
5081 }
5082
5083 spin_lock(&shrink_list_lock);
5084
1637ef41 5085rescan:
31169714
CW
5086 /* first scan for clean buffers */
5087 list_for_each_entry_safe(dev_priv, next_dev,
5088 &shrink_list, mm.shrink_list) {
5089 struct drm_device *dev = dev_priv->dev;
5090
5091 if (! mutex_trylock(&dev->struct_mutex))
5092 continue;
5093
5094 spin_unlock(&shrink_list_lock);
b09a1fec 5095 i915_gem_retire_requests(dev);
31169714
CW
5096
5097 list_for_each_entry_safe(obj_priv, next_obj,
5098 &dev_priv->mm.inactive_list,
5099 list) {
5100 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 5101 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5102 if (--nr_to_scan <= 0)
5103 break;
5104 }
5105 }
5106
5107 spin_lock(&shrink_list_lock);
5108 mutex_unlock(&dev->struct_mutex);
5109
963b4836
CW
5110 would_deadlock = 0;
5111
31169714
CW
5112 if (nr_to_scan <= 0)
5113 break;
5114 }
5115
5116 /* second pass, evict/count anything still on the inactive list */
5117 list_for_each_entry_safe(dev_priv, next_dev,
5118 &shrink_list, mm.shrink_list) {
5119 struct drm_device *dev = dev_priv->dev;
5120
5121 if (! mutex_trylock(&dev->struct_mutex))
5122 continue;
5123
5124 spin_unlock(&shrink_list_lock);
5125
5126 list_for_each_entry_safe(obj_priv, next_obj,
5127 &dev_priv->mm.inactive_list,
5128 list) {
5129 if (nr_to_scan > 0) {
a8089e84 5130 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5131 nr_to_scan--;
5132 } else
5133 cnt++;
5134 }
5135
5136 spin_lock(&shrink_list_lock);
5137 mutex_unlock(&dev->struct_mutex);
5138
5139 would_deadlock = 0;
5140 }
5141
1637ef41
CW
5142 if (nr_to_scan) {
5143 int active = 0;
5144
5145 /*
5146 * We are desperate for pages, so as a last resort, wait
5147 * for the GPU to finish and discard whatever we can.
5148 * This has a dramatic impact to reduce the number of
5149 * OOM-killer events whilst running the GPU aggressively.
5150 */
5151 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5152 struct drm_device *dev = dev_priv->dev;
5153
5154 if (!mutex_trylock(&dev->struct_mutex))
5155 continue;
5156
5157 spin_unlock(&shrink_list_lock);
5158
5159 if (i915_gpu_is_active(dev)) {
5160 i915_gpu_idle(dev);
5161 active++;
5162 }
5163
5164 spin_lock(&shrink_list_lock);
5165 mutex_unlock(&dev->struct_mutex);
5166 }
5167
5168 if (active)
5169 goto rescan;
5170 }
5171
31169714
CW
5172 spin_unlock(&shrink_list_lock);
5173
5174 if (would_deadlock)
5175 return -1;
5176 else if (cnt > 0)
5177 return (cnt / 100) * sysctl_vfs_cache_pressure;
5178 else
5179 return 0;
5180}
5181
5182static struct shrinker shrinker = {
5183 .shrink = i915_gem_shrink,
5184 .seeks = DEFAULT_SEEKS,
5185};
5186
5187__init void
5188i915_gem_shrinker_init(void)
5189{
5190 register_shrinker(&shrinker);
5191}
5192
5193__exit void
5194i915_gem_shrinker_exit(void)
5195{
5196 unregister_shrinker(&shrinker);
5197}