]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/edac/i3000_edac.c
8139cp: fix checksum broken
[net-next-2.6.git] / drivers / edac / i3000_edac.c
CommitLineData
535c6a53
JU
1/*
2 * Intel 3000/3010 Memory Controller kernel module
3 * Copyright (C) 2007 Akamai Technologies, Inc.
4 * Shamelessly copied from:
5 * Intel D82875P Memory Controller kernel module
6 * (C) 2003 Linux Networx (http://lnxi.com)
7 *
8 * This file may be distributed under the terms of the
9 * GNU General Public License.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/pci_ids.h>
7ed31e0f 16#include <linux/edac.h>
535c6a53
JU
17#include "edac_core.h"
18
19#define I3000_REVISION "1.1"
20
21#define EDAC_MOD_STR "i3000_edac"
22
23#define I3000_RANKS 8
24#define I3000_RANKS_PER_CHANNEL 4
25#define I3000_CHANNELS 2
26
27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29#define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */
30#define I3000_MCHBAR_MASK 0xffffc000
31#define I3000_MMR_WINDOW_SIZE 16384
32
ce783d70
JU
33#define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b)
34 *
35 * 7:1 reserved
36 * 0 bit 32 of address
37 */
38#define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b)
39 *
40 * 31:7 address
41 * 6:1 reserved
42 * 0 Error channel 0/1
43 */
44#define I3000_DEAP_GRAIN (1 << 7)
4d2b165e 45
870897a5
JU
46/*
47 * Helper functions to decode the DEAP/EDEAP hardware registers.
48 *
49 * The type promotion here is deliberate; we're deriving an
50 * unsigned long pfn and offset from hardware regs which are u8/u32.
51 */
52
4d2b165e
JU
53static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54{
55 deap >>= PAGE_SHIFT;
56 deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57 return deap;
58}
59
60static inline unsigned long deap_offset(u32 deap)
61{
62 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63}
64
65static inline int deap_channel(u32 deap)
66{
67 return deap & 1;
68}
535c6a53 69
ce783d70
JU
70#define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b)
71 *
72 * 7:0 DRAM ECC Syndrome
73 */
74
75#define I3000_ERRSTS 0xc8 /* Error Status Register (16b)
76 *
77 * 15:12 reserved
78 * 11 MCH Thermal Sensor Event
79 * for SMI/SCI/SERR
80 * 10 reserved
81 * 9 LOCK to non-DRAM Memory Flag (LCKF)
82 * 8 Received Refresh Timeout Flag (RRTOF)
83 * 7:2 reserved
84 * 1 Multi-bit DRAM ECC Error Flag (DMERR)
85 * 0 Single-bit DRAM ECC Error Flag (DSERR)
86 */
535c6a53
JU
87#define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */
88#define I3000_ERRSTS_UE 0x0002
89#define I3000_ERRSTS_CE 0x0001
90
ce783d70
JU
91#define I3000_ERRCMD 0xca /* Error Command (16b)
92 *
93 * 15:12 reserved
94 * 11 SERR on MCH Thermal Sensor Event
95 * (TSESERR)
96 * 10 reserved
97 * 9 SERR on LOCK to non-DRAM Memory
98 * (LCKERR)
99 * 8 SERR on DRAM Refresh Timeout
100 * (DRTOERR)
101 * 7:2 reserved
102 * 1 SERR Multi-Bit DRAM ECC Error
103 * (DMERR)
104 * 0 SERR on Single-Bit ECC Error
105 * (DSERR)
106 */
535c6a53
JU
107
108/* Intel MMIO register space - device 0 function 0 - MMR space */
109
110#define I3000_DRB_SHIFT 25 /* 32MiB grain */
111
ce783d70
JU
112#define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4)
113 *
114 * 7:0 Channel 0 DRAM Rank Boundary Address
115 */
116#define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4)
117 *
118 * 7:0 Channel 1 DRAM Rank Boundary Address
119 */
120
121#define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2)
122 *
123 * 7 reserved
124 * 6:4 DRAM odd Rank Attribute
125 * 3 reserved
126 * 2:0 DRAM even Rank Attribute
127 *
128 * Each attribute defines the page
129 * size of the corresponding rank:
130 * 000: unpopulated
131 * 001: reserved
132 * 010: 4 KB
133 * 011: 8 KB
134 * 100: 16 KB
135 * Others: reserved
136 */
137#define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */
4d2b165e
JU
138
139static inline unsigned char odd_rank_attrib(unsigned char dra)
140{
141 return (dra & 0x70) >> 4;
142}
143
144static inline unsigned char even_rank_attrib(unsigned char dra)
145{
146 return dra & 0x07;
147}
ce783d70
JU
148
149#define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b)
150 *
151 * 31:30 reserved
152 * 29 Initialization Complete (IC)
153 * 28:11 reserved
154 * 10:8 Refresh Mode Select (RMS)
155 * 7 reserved
156 * 6:4 Mode Select (SMS)
157 * 3:2 reserved
158 * 1:0 DRAM Type (DT)
159 */
160
161#define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b)
162 *
163 * 31 Enhanced Addressing Enable (ENHADE)
164 * 30:0 reserved
165 */
535c6a53 166
535c6a53
JU
167enum i3000p_chips {
168 I3000 = 0,
169};
170
171struct i3000_dev_info {
172 const char *ctl_name;
173};
174
175struct i3000_error_info {
176 u16 errsts;
177 u8 derrsyn;
178 u8 edeap;
179 u32 deap;
180 u16 errsts2;
181};
182
183static const struct i3000_dev_info i3000_devs[] = {
184 [I3000] = {
052dfb45 185 .ctl_name = "i3000"},
535c6a53
JU
186};
187
f044091c 188static struct pci_dev *mci_pdev;
535c6a53 189static int i3000_registered = 1;
456a2f95 190static struct edac_pci_ctl_info *i3000_pci;
535c6a53
JU
191
192static void i3000_get_error_info(struct mem_ctl_info *mci,
36b8289e 193 struct i3000_error_info *info)
535c6a53
JU
194{
195 struct pci_dev *pdev;
196
197 pdev = to_pci_dev(mci->dev);
198
199 /*
200 * This is a mess because there is no atomic way to read all the
201 * registers at once and the registers can transition from CE being
202 * overwritten by UE.
203 */
204 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205 if (!(info->errsts & I3000_ERRSTS_BITS))
206 return;
207 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211
212 /*
213 * If the error is the same for both reads then the first set
214 * of reads is valid. If there is a change then there is a CE
215 * with no info and the second set of reads is valid and
216 * should be UE info.
217 */
218 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
36b8289e
DJ
219 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
535c6a53
JU
222 }
223
ce783d70
JU
224 /*
225 * Clear any error bits.
535c6a53
JU
226 * (Yes, we really clear bits by writing 1 to them.)
227 */
36b8289e
DJ
228 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
229 I3000_ERRSTS_BITS);
535c6a53
JU
230}
231
232static int i3000_process_error_info(struct mem_ctl_info *mci,
052dfb45
DT
233 struct i3000_error_info *info,
234 int handle_errors)
535c6a53 235{
4d2b165e
JU
236 int row, multi_chan, channel;
237 unsigned long pfn, offset;
535c6a53
JU
238
239 multi_chan = mci->csrows[0].nr_channels - 1;
240
241 if (!(info->errsts & I3000_ERRSTS_BITS))
242 return 0;
243
244 if (!handle_errors)
245 return 1;
246
247 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
249 info->errsts = info->errsts2;
250 }
251
4d2b165e
JU
252 pfn = deap_pfn(info->edeap, info->deap);
253 offset = deap_offset(info->deap);
254 channel = deap_channel(info->deap);
535c6a53
JU
255
256 row = edac_mc_find_csrow_by_page(mci, pfn);
257
258 if (info->errsts & I3000_ERRSTS_UE)
259 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
260 else
261 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
052dfb45 262 multi_chan ? channel : 0, "i3000 CE");
535c6a53
JU
263
264 return 1;
265}
266
267static void i3000_check(struct mem_ctl_info *mci)
268{
269 struct i3000_error_info info;
270
271 debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
272 i3000_get_error_info(mci, &info);
273 i3000_process_error_info(mci, &info, 1);
274}
275
276static int i3000_is_interleaved(const unsigned char *c0dra,
277 const unsigned char *c1dra,
278 const unsigned char *c0drb,
279 const unsigned char *c1drb)
280{
281 int i;
282
ce783d70
JU
283 /*
284 * If the channels aren't populated identically then
535c6a53
JU
285 * we're not interleaved.
286 */
287 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
4d2b165e
JU
288 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
289 even_rank_attrib(c0dra[i]) !=
290 even_rank_attrib(c1dra[i]))
535c6a53
JU
291 return 0;
292
ce783d70
JU
293 /*
294 * If the rank boundaries for the two channels are different
535c6a53
JU
295 * then we're not interleaved.
296 */
297 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
298 if (c0drb[i] != c1drb[i])
299 return 0;
300
301 return 1;
302}
303
304static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
305{
306 int rc;
307 int i;
308 struct mem_ctl_info *mci = NULL;
309 unsigned long last_cumul_size;
310 int interleaved, nr_channels;
311 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
312 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
313 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
314 unsigned long mchbar;
0bd8496b 315 void __iomem *window;
535c6a53
JU
316
317 debugf0("MC: %s()\n", __func__);
318
36b8289e 319 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
535c6a53
JU
320 mchbar &= I3000_MCHBAR_MASK;
321 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
322 if (!window) {
36b8289e 323 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
052dfb45 324 mchbar);
535c6a53
JU
325 return -ENODEV;
326 }
327
36b8289e
DJ
328 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
329 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
330 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
331 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */
535c6a53
JU
332
333 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
334 c0drb[i] = readb(window + I3000_C0DRB + i);
335 c1drb[i] = readb(window + I3000_C1DRB + i);
336 }
337
338 iounmap(window);
339
ce783d70
JU
340 /*
341 * Figure out how many channels we have.
535c6a53
JU
342 *
343 * If we have what the datasheet calls "asymmetric channels"
344 * (essentially the same as what was called "virtual single
345 * channel mode" in the i82875) then it's a single channel as
346 * far as EDAC is concerned.
347 */
348 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
349 nr_channels = interleaved ? 2 : 1;
b8f6f975 350 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
535c6a53
JU
351 if (!mci)
352 return -ENOMEM;
353
354 debugf3("MC: %s(): init mci\n", __func__);
355
356 mci->dev = &pdev->dev;
357 mci->mtype_cap = MEM_FLAG_DDR2;
358
359 mci->edac_ctl_cap = EDAC_FLAG_SECDED;
360 mci->edac_cap = EDAC_FLAG_SECDED;
361
362 mci->mod_name = EDAC_MOD_STR;
363 mci->mod_ver = I3000_REVISION;
364 mci->ctl_name = i3000_devs[dev_idx].ctl_name;
365 mci->dev_name = pci_name(pdev);
366 mci->edac_check = i3000_check;
367 mci->ctl_page_to_phys = NULL;
368
369 /*
370 * The dram rank boundary (DRB) reg values are boundary addresses
371 * for each DRAM rank with a granularity of 32MB. DRB regs are
372 * cumulative; the last one will contain the total memory
373 * contained in all ranks.
374 *
375 * If we're in interleaved mode then we're only walking through
376 * the ranks of controller 0, so we double all the values we see.
377 */
378 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
379 u8 value;
380 u32 cumul_size;
381 struct csrow_info *csrow = &mci->csrows[i];
382
383 value = drb[i];
384 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
385 if (interleaved)
386 cumul_size <<= 1;
387 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
388 __func__, i, cumul_size);
389 if (cumul_size == last_cumul_size) {
390 csrow->mtype = MEM_EMPTY;
391 continue;
392 }
393
394 csrow->first_page = last_cumul_size;
395 csrow->last_page = cumul_size - 1;
396 csrow->nr_pages = cumul_size - last_cumul_size;
397 last_cumul_size = cumul_size;
398 csrow->grain = I3000_DEAP_GRAIN;
399 csrow->mtype = MEM_DDR2;
400 csrow->dtype = DEV_UNKNOWN;
401 csrow->edac_mode = EDAC_UNKNOWN;
402 }
403
ce783d70
JU
404 /*
405 * Clear any error bits.
535c6a53
JU
406 * (Yes, we really clear bits by writing 1 to them.)
407 */
36b8289e
DJ
408 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
409 I3000_ERRSTS_BITS);
535c6a53
JU
410
411 rc = -ENODEV;
b8f6f975 412 if (edac_mc_add_mc(mci)) {
535c6a53
JU
413 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
414 goto fail;
415 }
416
456a2f95
DJ
417 /* allocating generic PCI control info */
418 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
419 if (!i3000_pci) {
420 printk(KERN_WARNING
421 "%s(): Unable to create PCI control\n",
422 __func__);
423 printk(KERN_WARNING
424 "%s(): PCI error report via EDAC not setup\n",
425 __func__);
426 }
427
535c6a53
JU
428 /* get this far and it's successful */
429 debugf3("MC: %s(): success\n", __func__);
430 return 0;
431
ce783d70 432fail:
535c6a53
JU
433 if (mci)
434 edac_mc_free(mci);
435
436 return rc;
437}
438
439/* returns count (>= 0), or negative on error */
440static int __devinit i3000_init_one(struct pci_dev *pdev,
052dfb45 441 const struct pci_device_id *ent)
535c6a53
JU
442{
443 int rc;
444
445 debugf0("MC: %s()\n", __func__);
446
447 if (pci_enable_device(pdev) < 0)
448 return -EIO;
449
450 rc = i3000_probe1(pdev, ent->driver_data);
ce783d70 451 if (!mci_pdev)
535c6a53
JU
452 mci_pdev = pci_dev_get(pdev);
453
454 return rc;
455}
456
457static void __devexit i3000_remove_one(struct pci_dev *pdev)
458{
459 struct mem_ctl_info *mci;
460
461 debugf0("%s()\n", __func__);
462
456a2f95
DJ
463 if (i3000_pci)
464 edac_pci_release_generic_ctl(i3000_pci);
465
ce783d70
JU
466 mci = edac_mc_del_mc(&pdev->dev);
467 if (!mci)
535c6a53
JU
468 return;
469
470 edac_mc_free(mci);
471}
472
473static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
474 {
36b8289e
DJ
475 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
476 I3000},
535c6a53 477 {
36b8289e
DJ
478 0,
479 } /* 0 terminated list. */
535c6a53
JU
480};
481
482MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
483
484static struct pci_driver i3000_driver = {
485 .name = EDAC_MOD_STR,
486 .probe = i3000_init_one,
487 .remove = __devexit_p(i3000_remove_one),
488 .id_table = i3000_pci_tbl,
489};
490
491static int __init i3000_init(void)
492{
493 int pci_rc;
494
495 debugf3("MC: %s()\n", __func__);
c3c52bce
HM
496
497 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
498 opstate_init();
499
535c6a53
JU
500 pci_rc = pci_register_driver(&i3000_driver);
501 if (pci_rc < 0)
502 goto fail0;
503
ce783d70 504 if (!mci_pdev) {
535c6a53
JU
505 i3000_registered = 0;
506 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
052dfb45 507 PCI_DEVICE_ID_INTEL_3000_HB, NULL);
535c6a53
JU
508 if (!mci_pdev) {
509 debugf0("i3000 pci_get_device fail\n");
510 pci_rc = -ENODEV;
511 goto fail1;
512 }
513
514 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
515 if (pci_rc < 0) {
516 debugf0("i3000 init fail\n");
517 pci_rc = -ENODEV;
518 goto fail1;
519 }
520 }
521
522 return 0;
523
052dfb45 524fail1:
535c6a53
JU
525 pci_unregister_driver(&i3000_driver);
526
052dfb45 527fail0:
535c6a53
JU
528 if (mci_pdev)
529 pci_dev_put(mci_pdev);
530
531 return pci_rc;
532}
533
534static void __exit i3000_exit(void)
535{
536 debugf3("MC: %s()\n", __func__);
537
538 pci_unregister_driver(&i3000_driver);
539 if (!i3000_registered) {
540 i3000_remove_one(mci_pdev);
541 pci_dev_put(mci_pdev);
542 }
543}
544
545module_init(i3000_init);
546module_exit(i3000_exit);
547
548MODULE_LICENSE("GPL");
549MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
550MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
7ed31e0f
HM
551
552module_param(edac_op_state, int, 0444);
553MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");