]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/edac/amd64_edac.c
amd64_edac: add functionality to compute the DRAM hole
[net-next-2.6.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418
DT
1#include "amd64_edac.h"
2
3static struct edac_pci_ctl_info *amd64_ctl_pci;
4
5static int report_gart_errors;
6module_param(report_gart_errors, int, 0644);
7
8/*
9 * Set by command line parameter. If BIOS has enabled the ECC, this override is
10 * cleared to prevent re-enabling the hardware by this driver.
11 */
12static int ecc_enable_override;
13module_param(ecc_enable_override, int, 0644);
14
15/* Lookup table for all possible MC control instances */
16struct amd64_pvt;
17static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
18static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
19
20/*
21 * Memory scrubber control interface. For K8, memory scrubbing is handled by
22 * hardware and can involve L2 cache, dcache as well as the main memory. With
23 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
24 * functionality.
25 *
26 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
27 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
28 * bytes/sec for the setting.
29 *
30 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
31 * other archs, we might not have access to the caches directly.
32 */
33
34/*
35 * scan the scrub rate mapping table for a close or matching bandwidth value to
36 * issue. If requested is too big, then use last maximum value found.
37 */
38static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
39 u32 min_scrubrate)
40{
41 u32 scrubval;
42 int i;
43
44 /*
45 * map the configured rate (new_bw) to a value specific to the AMD64
46 * memory controller and apply to register. Search for the first
47 * bandwidth entry that is greater or equal than the setting requested
48 * and program that. If at last entry, turn off DRAM scrubbing.
49 */
50 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
51 /*
52 * skip scrub rates which aren't recommended
53 * (see F10 BKDG, F3x58)
54 */
55 if (scrubrates[i].scrubval < min_scrubrate)
56 continue;
57
58 if (scrubrates[i].bandwidth <= new_bw)
59 break;
60
61 /*
62 * if no suitable bandwidth found, turn off DRAM scrubbing
63 * entirely by falling back to the last element in the
64 * scrubrates array.
65 */
66 }
67
68 scrubval = scrubrates[i].scrubval;
69 if (scrubval)
70 edac_printk(KERN_DEBUG, EDAC_MC,
71 "Setting scrub rate bandwidth: %u\n",
72 scrubrates[i].bandwidth);
73 else
74 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
75
76 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
77
78 return 0;
79}
80
81static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
82{
83 struct amd64_pvt *pvt = mci->pvt_info;
84 u32 min_scrubrate = 0x0;
85
86 switch (boot_cpu_data.x86) {
87 case 0xf:
88 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
89 break;
90 case 0x10:
91 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
92 break;
93 case 0x11:
94 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
95 break;
96
97 default:
98 amd64_printk(KERN_ERR, "Unsupported family!\n");
99 break;
100 }
101 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
102 min_scrubrate);
103}
104
105static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
106{
107 struct amd64_pvt *pvt = mci->pvt_info;
108 u32 scrubval = 0;
109 int status = -1, i, ret = 0;
110
111 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
112 if (ret)
113 debugf0("Reading K8_SCRCTRL failed\n");
114
115 scrubval = scrubval & 0x001F;
116
117 edac_printk(KERN_DEBUG, EDAC_MC,
118 "pci-read, sdram scrub control value: %d \n", scrubval);
119
120 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
121 if (scrubrates[i].scrubval == scrubval) {
122 *bw = scrubrates[i].bandwidth;
123 status = 0;
124 break;
125 }
126 }
127
128 return status;
129}
130
6775763a
DT
131/* Map from a CSROW entry to the mask entry that operates on it */
132static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
133{
134 return csrow >> (pvt->num_dcsm >> 3);
135}
136
137/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
138static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
139{
140 if (dct == 0)
141 return pvt->dcsb0[csrow];
142 else
143 return pvt->dcsb1[csrow];
144}
145
146/*
147 * Return the 'mask' address the i'th CS entry. This function is needed because
148 * there number of DCSM registers on Rev E and prior vs Rev F and later is
149 * different.
150 */
151static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
152{
153 if (dct == 0)
154 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
155 else
156 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
157}
158
159
160/*
161 * In *base and *limit, pass back the full 40-bit base and limit physical
162 * addresses for the node given by node_id. This information is obtained from
163 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
164 * base and limit addresses are of type SysAddr, as defined at the start of
165 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
166 * in the address range they represent.
167 */
168static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
169 u64 *base, u64 *limit)
170{
171 *base = pvt->dram_base[node_id];
172 *limit = pvt->dram_limit[node_id];
173}
174
175/*
176 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
177 * with node_id
178 */
179static int amd64_base_limit_match(struct amd64_pvt *pvt,
180 u64 sys_addr, int node_id)
181{
182 u64 base, limit, addr;
183
184 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
185
186 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
187 * all ones if the most significant implemented address bit is 1.
188 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
189 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
190 * Application Programming.
191 */
192 addr = sys_addr & 0x000000ffffffffffull;
193
194 return (addr >= base) && (addr <= limit);
195}
196
197/*
198 * Attempt to map a SysAddr to a node. On success, return a pointer to the
199 * mem_ctl_info structure for the node that the SysAddr maps to.
200 *
201 * On failure, return NULL.
202 */
203static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
204 u64 sys_addr)
205{
206 struct amd64_pvt *pvt;
207 int node_id;
208 u32 intlv_en, bits;
209
210 /*
211 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
212 * 3.4.4.2) registers to map the SysAddr to a node ID.
213 */
214 pvt = mci->pvt_info;
215
216 /*
217 * The value of this field should be the same for all DRAM Base
218 * registers. Therefore we arbitrarily choose to read it from the
219 * register for node 0.
220 */
221 intlv_en = pvt->dram_IntlvEn[0];
222
223 if (intlv_en == 0) {
224 for (node_id = 0; ; ) {
225 if (amd64_base_limit_match(pvt, sys_addr, node_id))
226 break;
227
228 if (++node_id >= DRAM_REG_COUNT)
229 goto err_no_match;
230 }
231 goto found;
232 }
233
234 if (unlikely((intlv_en != (0x01 << 8)) &&
235 (intlv_en != (0x03 << 8)) &&
236 (intlv_en != (0x07 << 8)))) {
237 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
238 "IntlvEn field of DRAM Base Register for node 0: "
239 "This probably indicates a BIOS bug.\n", intlv_en);
240 return NULL;
241 }
242
243 bits = (((u32) sys_addr) >> 12) & intlv_en;
244
245 for (node_id = 0; ; ) {
246 if ((pvt->dram_limit[node_id] & intlv_en) == bits)
247 break; /* intlv_sel field matches */
248
249 if (++node_id >= DRAM_REG_COUNT)
250 goto err_no_match;
251 }
252
253 /* sanity test for sys_addr */
254 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
255 amd64_printk(KERN_WARNING,
256 "%s(): sys_addr 0x%lx falls outside base/limit "
257 "address range for node %d with node interleaving "
258 "enabled.\n", __func__, (unsigned long)sys_addr,
259 node_id);
260 return NULL;
261 }
262
263found:
264 return edac_mc_find(node_id);
265
266err_no_match:
267 debugf2("sys_addr 0x%lx doesn't match any node\n",
268 (unsigned long)sys_addr);
269
270 return NULL;
271}
e2ce7255
DT
272
273/*
274 * Extract the DRAM CS base address from selected csrow register.
275 */
276static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
277{
278 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
279 pvt->dcs_shift;
280}
281
282/*
283 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
284 */
285static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
286{
287 u64 dcsm_bits, other_bits;
288 u64 mask;
289
290 /* Extract bits from DRAM CS Mask. */
291 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
292
293 other_bits = pvt->dcsm_mask;
294 other_bits = ~(other_bits << pvt->dcs_shift);
295
296 /*
297 * The extracted bits from DCSM belong in the spaces represented by
298 * the cleared bits in other_bits.
299 */
300 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
301
302 return mask;
303}
304
305/*
306 * @input_addr is an InputAddr associated with the node given by mci. Return the
307 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
308 */
309static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
310{
311 struct amd64_pvt *pvt;
312 int csrow;
313 u64 base, mask;
314
315 pvt = mci->pvt_info;
316
317 /*
318 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
319 * base/mask register pair, test the condition shown near the start of
320 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
321 */
322 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
323
324 /* This DRAM chip select is disabled on this node */
325 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
326 continue;
327
328 base = base_from_dct_base(pvt, csrow);
329 mask = ~mask_from_dct_mask(pvt, csrow);
330
331 if ((input_addr & mask) == (base & mask)) {
332 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
333 (unsigned long)input_addr, csrow,
334 pvt->mc_node_id);
335
336 return csrow;
337 }
338 }
339
340 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
341 (unsigned long)input_addr, pvt->mc_node_id);
342
343 return -1;
344}
345
346/*
347 * Return the base value defined by the DRAM Base register for the node
348 * represented by mci. This function returns the full 40-bit value despite the
349 * fact that the register only stores bits 39-24 of the value. See section
350 * 3.4.4.1 (BKDG #26094, K8, revA-E)
351 */
352static inline u64 get_dram_base(struct mem_ctl_info *mci)
353{
354 struct amd64_pvt *pvt = mci->pvt_info;
355
356 return pvt->dram_base[pvt->mc_node_id];
357}
358
359/*
360 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
361 * for the node represented by mci. Info is passed back in *hole_base,
362 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
363 * info is invalid. Info may be invalid for either of the following reasons:
364 *
365 * - The revision of the node is not E or greater. In this case, the DRAM Hole
366 * Address Register does not exist.
367 *
368 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
369 * indicating that its contents are not valid.
370 *
371 * The values passed back in *hole_base, *hole_offset, and *hole_size are
372 * complete 32-bit values despite the fact that the bitfields in the DHAR
373 * only represent bits 31-24 of the base and offset values.
374 */
375int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
376 u64 *hole_offset, u64 *hole_size)
377{
378 struct amd64_pvt *pvt = mci->pvt_info;
379 u64 base;
380
381 /* only revE and later have the DRAM Hole Address Register */
382 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
383 debugf1(" revision %d for node %d does not support DHAR\n",
384 pvt->ext_model, pvt->mc_node_id);
385 return 1;
386 }
387
388 /* only valid for Fam10h */
389 if (boot_cpu_data.x86 == 0x10 &&
390 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
391 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
392 return 1;
393 }
394
395 if ((pvt->dhar & DHAR_VALID) == 0) {
396 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
397 pvt->mc_node_id);
398 return 1;
399 }
400
401 /* This node has Memory Hoisting */
402
403 /* +------------------+--------------------+--------------------+-----
404 * | memory | DRAM hole | relocated |
405 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
406 * | | | DRAM hole |
407 * | | | [0x100000000, |
408 * | | | (0x100000000+ |
409 * | | | (0xffffffff-x))] |
410 * +------------------+--------------------+--------------------+-----
411 *
412 * Above is a diagram of physical memory showing the DRAM hole and the
413 * relocated addresses from the DRAM hole. As shown, the DRAM hole
414 * starts at address x (the base address) and extends through address
415 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
416 * addresses in the hole so that they start at 0x100000000.
417 */
418
419 base = dhar_base(pvt->dhar);
420
421 *hole_base = base;
422 *hole_size = (0x1ull << 32) - base;
423
424 if (boot_cpu_data.x86 > 0xf)
425 *hole_offset = f10_dhar_offset(pvt->dhar);
426 else
427 *hole_offset = k8_dhar_offset(pvt->dhar);
428
429 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
430 pvt->mc_node_id, (unsigned long)*hole_base,
431 (unsigned long)*hole_offset, (unsigned long)*hole_size);
432
433 return 0;
434}
435EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
436
437