]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/edac/amd64_edac.c
amd64_edac: remove early hw support check
[net-next-2.6.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
7d6034d3 2#include <asm/k8.h>
2bc65418
DT
3
4static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
16/* Lookup table for all possible MC control instances */
17struct amd64_pvt;
3011b20d
BP
18static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
2bc65418 20
b70ef010 21/*
1433eb99
BP
22 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
23 * later.
b70ef010 24 */
1433eb99
BP
25static int ddr2_dbam_revCG[] = {
26 [0] = 32,
27 [1] = 64,
28 [2] = 128,
29 [3] = 256,
30 [4] = 512,
31 [5] = 1024,
32 [6] = 2048,
33};
34
35static int ddr2_dbam_revD[] = {
36 [0] = 32,
37 [1] = 64,
38 [2 ... 3] = 128,
39 [4] = 256,
40 [5] = 512,
41 [6] = 256,
42 [7] = 512,
43 [8 ... 9] = 1024,
44 [10] = 2048,
45};
46
47static int ddr2_dbam[] = { [0] = 128,
48 [1] = 256,
49 [2 ... 4] = 512,
50 [5 ... 6] = 1024,
51 [7 ... 8] = 2048,
52 [9 ... 10] = 4096,
53 [11] = 8192,
54};
55
56static int ddr3_dbam[] = { [0] = -1,
57 [1] = 256,
58 [2] = 512,
59 [3 ... 4] = -1,
60 [5 ... 6] = 1024,
61 [7 ... 8] = 2048,
62 [9 ... 10] = 4096,
63 [11] = 8192,
b70ef010
BP
64};
65
66/*
67 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
68 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
69 * or higher value'.
70 *
71 *FIXME: Produce a better mapping/linearisation.
72 */
73
74struct scrubrate scrubrates[] = {
75 { 0x01, 1600000000UL},
76 { 0x02, 800000000UL},
77 { 0x03, 400000000UL},
78 { 0x04, 200000000UL},
79 { 0x05, 100000000UL},
80 { 0x06, 50000000UL},
81 { 0x07, 25000000UL},
82 { 0x08, 12284069UL},
83 { 0x09, 6274509UL},
84 { 0x0A, 3121951UL},
85 { 0x0B, 1560975UL},
86 { 0x0C, 781440UL},
87 { 0x0D, 390720UL},
88 { 0x0E, 195300UL},
89 { 0x0F, 97650UL},
90 { 0x10, 48854UL},
91 { 0x11, 24427UL},
92 { 0x12, 12213UL},
93 { 0x13, 6101UL},
94 { 0x14, 3051UL},
95 { 0x15, 1523UL},
96 { 0x16, 761UL},
97 { 0x00, 0UL}, /* scrubbing off */
98};
99
2bc65418
DT
100/*
101 * Memory scrubber control interface. For K8, memory scrubbing is handled by
102 * hardware and can involve L2 cache, dcache as well as the main memory. With
103 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
104 * functionality.
105 *
106 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
107 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
108 * bytes/sec for the setting.
109 *
110 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
111 * other archs, we might not have access to the caches directly.
112 */
113
114/*
115 * scan the scrub rate mapping table for a close or matching bandwidth value to
116 * issue. If requested is too big, then use last maximum value found.
117 */
118static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
119 u32 min_scrubrate)
120{
121 u32 scrubval;
122 int i;
123
124 /*
125 * map the configured rate (new_bw) to a value specific to the AMD64
126 * memory controller and apply to register. Search for the first
127 * bandwidth entry that is greater or equal than the setting requested
128 * and program that. If at last entry, turn off DRAM scrubbing.
129 */
130 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
131 /*
132 * skip scrub rates which aren't recommended
133 * (see F10 BKDG, F3x58)
134 */
135 if (scrubrates[i].scrubval < min_scrubrate)
136 continue;
137
138 if (scrubrates[i].bandwidth <= new_bw)
139 break;
140
141 /*
142 * if no suitable bandwidth found, turn off DRAM scrubbing
143 * entirely by falling back to the last element in the
144 * scrubrates array.
145 */
146 }
147
148 scrubval = scrubrates[i].scrubval;
149 if (scrubval)
150 edac_printk(KERN_DEBUG, EDAC_MC,
151 "Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
153 else
154 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
155
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
157
158 return 0;
159}
160
161static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
162{
163 struct amd64_pvt *pvt = mci->pvt_info;
164 u32 min_scrubrate = 0x0;
165
166 switch (boot_cpu_data.x86) {
167 case 0xf:
168 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
169 break;
170 case 0x10:
171 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
172 break;
173 case 0x11:
174 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
175 break;
176
177 default:
178 amd64_printk(KERN_ERR, "Unsupported family!\n");
179 break;
180 }
181 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
182 min_scrubrate);
183}
184
185static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
186{
187 struct amd64_pvt *pvt = mci->pvt_info;
188 u32 scrubval = 0;
6ba5dcdc 189 int status = -1, i;
2bc65418 190
6ba5dcdc 191 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
2bc65418
DT
192
193 scrubval = scrubval & 0x001F;
194
195 edac_printk(KERN_DEBUG, EDAC_MC,
196 "pci-read, sdram scrub control value: %d \n", scrubval);
197
198 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
199 if (scrubrates[i].scrubval == scrubval) {
200 *bw = scrubrates[i].bandwidth;
201 status = 0;
202 break;
203 }
204 }
205
206 return status;
207}
208
6775763a
DT
209/* Map from a CSROW entry to the mask entry that operates on it */
210static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
211{
1433eb99 212 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
9d858bb1
BP
213 return csrow;
214 else
215 return csrow >> 1;
6775763a
DT
216}
217
218/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
219static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
220{
221 if (dct == 0)
222 return pvt->dcsb0[csrow];
223 else
224 return pvt->dcsb1[csrow];
225}
226
227/*
228 * Return the 'mask' address the i'th CS entry. This function is needed because
229 * there number of DCSM registers on Rev E and prior vs Rev F and later is
230 * different.
231 */
232static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
233{
234 if (dct == 0)
235 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
236 else
237 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
238}
239
240
241/*
242 * In *base and *limit, pass back the full 40-bit base and limit physical
243 * addresses for the node given by node_id. This information is obtained from
244 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
245 * base and limit addresses are of type SysAddr, as defined at the start of
246 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
247 * in the address range they represent.
248 */
249static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
250 u64 *base, u64 *limit)
251{
252 *base = pvt->dram_base[node_id];
253 *limit = pvt->dram_limit[node_id];
254}
255
256/*
257 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
258 * with node_id
259 */
260static int amd64_base_limit_match(struct amd64_pvt *pvt,
261 u64 sys_addr, int node_id)
262{
263 u64 base, limit, addr;
264
265 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
266
267 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
268 * all ones if the most significant implemented address bit is 1.
269 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
270 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
271 * Application Programming.
272 */
273 addr = sys_addr & 0x000000ffffffffffull;
274
275 return (addr >= base) && (addr <= limit);
276}
277
278/*
279 * Attempt to map a SysAddr to a node. On success, return a pointer to the
280 * mem_ctl_info structure for the node that the SysAddr maps to.
281 *
282 * On failure, return NULL.
283 */
284static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
285 u64 sys_addr)
286{
287 struct amd64_pvt *pvt;
288 int node_id;
289 u32 intlv_en, bits;
290
291 /*
292 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
293 * 3.4.4.2) registers to map the SysAddr to a node ID.
294 */
295 pvt = mci->pvt_info;
296
297 /*
298 * The value of this field should be the same for all DRAM Base
299 * registers. Therefore we arbitrarily choose to read it from the
300 * register for node 0.
301 */
302 intlv_en = pvt->dram_IntlvEn[0];
303
304 if (intlv_en == 0) {
8edc5445 305 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
6775763a 306 if (amd64_base_limit_match(pvt, sys_addr, node_id))
8edc5445 307 goto found;
6775763a 308 }
8edc5445 309 goto err_no_match;
6775763a
DT
310 }
311
72f158fe
BP
312 if (unlikely((intlv_en != 0x01) &&
313 (intlv_en != 0x03) &&
314 (intlv_en != 0x07))) {
6775763a
DT
315 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
316 "IntlvEn field of DRAM Base Register for node 0: "
72f158fe 317 "this probably indicates a BIOS bug.\n", intlv_en);
6775763a
DT
318 return NULL;
319 }
320
321 bits = (((u32) sys_addr) >> 12) & intlv_en;
322
323 for (node_id = 0; ; ) {
8edc5445 324 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
6775763a
DT
325 break; /* intlv_sel field matches */
326
327 if (++node_id >= DRAM_REG_COUNT)
328 goto err_no_match;
329 }
330
331 /* sanity test for sys_addr */
332 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
333 amd64_printk(KERN_WARNING,
8edc5445
BP
334 "%s(): sys_addr 0x%llx falls outside base/limit "
335 "address range for node %d with node interleaving "
336 "enabled.\n",
337 __func__, sys_addr, node_id);
6775763a
DT
338 return NULL;
339 }
340
341found:
342 return edac_mc_find(node_id);
343
344err_no_match:
345 debugf2("sys_addr 0x%lx doesn't match any node\n",
346 (unsigned long)sys_addr);
347
348 return NULL;
349}
e2ce7255
DT
350
351/*
352 * Extract the DRAM CS base address from selected csrow register.
353 */
354static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
355{
356 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
357 pvt->dcs_shift;
358}
359
360/*
361 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
362 */
363static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
364{
365 u64 dcsm_bits, other_bits;
366 u64 mask;
367
368 /* Extract bits from DRAM CS Mask. */
369 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
370
371 other_bits = pvt->dcsm_mask;
372 other_bits = ~(other_bits << pvt->dcs_shift);
373
374 /*
375 * The extracted bits from DCSM belong in the spaces represented by
376 * the cleared bits in other_bits.
377 */
378 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
379
380 return mask;
381}
382
383/*
384 * @input_addr is an InputAddr associated with the node given by mci. Return the
385 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
386 */
387static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
388{
389 struct amd64_pvt *pvt;
390 int csrow;
391 u64 base, mask;
392
393 pvt = mci->pvt_info;
394
395 /*
396 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
397 * base/mask register pair, test the condition shown near the start of
398 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
399 */
9d858bb1 400 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
e2ce7255
DT
401
402 /* This DRAM chip select is disabled on this node */
403 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
404 continue;
405
406 base = base_from_dct_base(pvt, csrow);
407 mask = ~mask_from_dct_mask(pvt, csrow);
408
409 if ((input_addr & mask) == (base & mask)) {
410 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
411 (unsigned long)input_addr, csrow,
412 pvt->mc_node_id);
413
414 return csrow;
415 }
416 }
417
418 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
419 (unsigned long)input_addr, pvt->mc_node_id);
420
421 return -1;
422}
423
424/*
425 * Return the base value defined by the DRAM Base register for the node
426 * represented by mci. This function returns the full 40-bit value despite the
427 * fact that the register only stores bits 39-24 of the value. See section
428 * 3.4.4.1 (BKDG #26094, K8, revA-E)
429 */
430static inline u64 get_dram_base(struct mem_ctl_info *mci)
431{
432 struct amd64_pvt *pvt = mci->pvt_info;
433
434 return pvt->dram_base[pvt->mc_node_id];
435}
436
437/*
438 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
439 * for the node represented by mci. Info is passed back in *hole_base,
440 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
441 * info is invalid. Info may be invalid for either of the following reasons:
442 *
443 * - The revision of the node is not E or greater. In this case, the DRAM Hole
444 * Address Register does not exist.
445 *
446 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
447 * indicating that its contents are not valid.
448 *
449 * The values passed back in *hole_base, *hole_offset, and *hole_size are
450 * complete 32-bit values despite the fact that the bitfields in the DHAR
451 * only represent bits 31-24 of the base and offset values.
452 */
453int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
454 u64 *hole_offset, u64 *hole_size)
455{
456 struct amd64_pvt *pvt = mci->pvt_info;
457 u64 base;
458
459 /* only revE and later have the DRAM Hole Address Register */
1433eb99 460 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
e2ce7255
DT
461 debugf1(" revision %d for node %d does not support DHAR\n",
462 pvt->ext_model, pvt->mc_node_id);
463 return 1;
464 }
465
466 /* only valid for Fam10h */
467 if (boot_cpu_data.x86 == 0x10 &&
468 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
469 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
470 return 1;
471 }
472
473 if ((pvt->dhar & DHAR_VALID) == 0) {
474 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
475 pvt->mc_node_id);
476 return 1;
477 }
478
479 /* This node has Memory Hoisting */
480
481 /* +------------------+--------------------+--------------------+-----
482 * | memory | DRAM hole | relocated |
483 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
484 * | | | DRAM hole |
485 * | | | [0x100000000, |
486 * | | | (0x100000000+ |
487 * | | | (0xffffffff-x))] |
488 * +------------------+--------------------+--------------------+-----
489 *
490 * Above is a diagram of physical memory showing the DRAM hole and the
491 * relocated addresses from the DRAM hole. As shown, the DRAM hole
492 * starts at address x (the base address) and extends through address
493 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
494 * addresses in the hole so that they start at 0x100000000.
495 */
496
497 base = dhar_base(pvt->dhar);
498
499 *hole_base = base;
500 *hole_size = (0x1ull << 32) - base;
501
502 if (boot_cpu_data.x86 > 0xf)
503 *hole_offset = f10_dhar_offset(pvt->dhar);
504 else
505 *hole_offset = k8_dhar_offset(pvt->dhar);
506
507 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
508 pvt->mc_node_id, (unsigned long)*hole_base,
509 (unsigned long)*hole_offset, (unsigned long)*hole_size);
510
511 return 0;
512}
513EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
514
93c2df58
DT
515/*
516 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
517 * assumed that sys_addr maps to the node given by mci.
518 *
519 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
520 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
521 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
522 * then it is also involved in translating a SysAddr to a DramAddr. Sections
523 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
524 * These parts of the documentation are unclear. I interpret them as follows:
525 *
526 * When node n receives a SysAddr, it processes the SysAddr as follows:
527 *
528 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
529 * Limit registers for node n. If the SysAddr is not within the range
530 * specified by the base and limit values, then node n ignores the Sysaddr
531 * (since it does not map to node n). Otherwise continue to step 2 below.
532 *
533 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
534 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
535 * the range of relocated addresses (starting at 0x100000000) from the DRAM
536 * hole. If not, skip to step 3 below. Else get the value of the
537 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
538 * offset defined by this value from the SysAddr.
539 *
540 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
541 * Base register for node n. To obtain the DramAddr, subtract the base
542 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
543 */
544static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
545{
546 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
547 int ret = 0;
548
549 dram_base = get_dram_base(mci);
550
551 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
552 &hole_size);
553 if (!ret) {
554 if ((sys_addr >= (1ull << 32)) &&
555 (sys_addr < ((1ull << 32) + hole_size))) {
556 /* use DHAR to translate SysAddr to DramAddr */
557 dram_addr = sys_addr - hole_offset;
558
559 debugf2("using DHAR to translate SysAddr 0x%lx to "
560 "DramAddr 0x%lx\n",
561 (unsigned long)sys_addr,
562 (unsigned long)dram_addr);
563
564 return dram_addr;
565 }
566 }
567
568 /*
569 * Translate the SysAddr to a DramAddr as shown near the start of
570 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
571 * only deals with 40-bit values. Therefore we discard bits 63-40 of
572 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
573 * discard are all 1s. Otherwise the bits we discard are all 0s. See
574 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
575 * Programmer's Manual Volume 1 Application Programming.
576 */
577 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
578
579 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
580 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
581 (unsigned long)dram_addr);
582 return dram_addr;
583}
584
585/*
586 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
587 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
588 * for node interleaving.
589 */
590static int num_node_interleave_bits(unsigned intlv_en)
591{
592 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
593 int n;
594
595 BUG_ON(intlv_en > 7);
596 n = intlv_shift_table[intlv_en];
597 return n;
598}
599
600/* Translate the DramAddr given by @dram_addr to an InputAddr. */
601static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
602{
603 struct amd64_pvt *pvt;
604 int intlv_shift;
605 u64 input_addr;
606
607 pvt = mci->pvt_info;
608
609 /*
610 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
611 * concerning translating a DramAddr to an InputAddr.
612 */
613 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
614 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
615 (dram_addr & 0xfff);
616
617 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
618 intlv_shift, (unsigned long)dram_addr,
619 (unsigned long)input_addr);
620
621 return input_addr;
622}
623
624/*
625 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
626 * assumed that @sys_addr maps to the node given by mci.
627 */
628static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
629{
630 u64 input_addr;
631
632 input_addr =
633 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
634
635 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
636 (unsigned long)sys_addr, (unsigned long)input_addr);
637
638 return input_addr;
639}
640
641
642/*
643 * @input_addr is an InputAddr associated with the node represented by mci.
644 * Translate @input_addr to a DramAddr and return the result.
645 */
646static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
647{
648 struct amd64_pvt *pvt;
649 int node_id, intlv_shift;
650 u64 bits, dram_addr;
651 u32 intlv_sel;
652
653 /*
654 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
655 * shows how to translate a DramAddr to an InputAddr. Here we reverse
656 * this procedure. When translating from a DramAddr to an InputAddr, the
657 * bits used for node interleaving are discarded. Here we recover these
658 * bits from the IntlvSel field of the DRAM Limit register (section
659 * 3.4.4.2) for the node that input_addr is associated with.
660 */
661 pvt = mci->pvt_info;
662 node_id = pvt->mc_node_id;
663 BUG_ON((node_id < 0) || (node_id > 7));
664
665 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
666
667 if (intlv_shift == 0) {
668 debugf1(" InputAddr 0x%lx translates to DramAddr of "
669 "same value\n", (unsigned long)input_addr);
670
671 return input_addr;
672 }
673
674 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
675 (input_addr & 0xfff);
676
677 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
678 dram_addr = bits + (intlv_sel << 12);
679
680 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
681 "(%d node interleave bits)\n", (unsigned long)input_addr,
682 (unsigned long)dram_addr, intlv_shift);
683
684 return dram_addr;
685}
686
687/*
688 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
689 * @dram_addr to a SysAddr.
690 */
691static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
692{
693 struct amd64_pvt *pvt = mci->pvt_info;
694 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
695 int ret = 0;
696
697 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
698 &hole_size);
699 if (!ret) {
700 if ((dram_addr >= hole_base) &&
701 (dram_addr < (hole_base + hole_size))) {
702 sys_addr = dram_addr + hole_offset;
703
704 debugf1("using DHAR to translate DramAddr 0x%lx to "
705 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
706 (unsigned long)sys_addr);
707
708 return sys_addr;
709 }
710 }
711
712 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
713 sys_addr = dram_addr + base;
714
715 /*
716 * The sys_addr we have computed up to this point is a 40-bit value
717 * because the k8 deals with 40-bit values. However, the value we are
718 * supposed to return is a full 64-bit physical address. The AMD
719 * x86-64 architecture specifies that the most significant implemented
720 * address bit through bit 63 of a physical address must be either all
721 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
722 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
723 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
724 * Programming.
725 */
726 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
727
728 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
729 pvt->mc_node_id, (unsigned long)dram_addr,
730 (unsigned long)sys_addr);
731
732 return sys_addr;
733}
734
735/*
736 * @input_addr is an InputAddr associated with the node given by mci. Translate
737 * @input_addr to a SysAddr.
738 */
739static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
740 u64 input_addr)
741{
742 return dram_addr_to_sys_addr(mci,
743 input_addr_to_dram_addr(mci, input_addr));
744}
745
746/*
747 * Find the minimum and maximum InputAddr values that map to the given @csrow.
748 * Pass back these values in *input_addr_min and *input_addr_max.
749 */
750static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
751 u64 *input_addr_min, u64 *input_addr_max)
752{
753 struct amd64_pvt *pvt;
754 u64 base, mask;
755
756 pvt = mci->pvt_info;
9d858bb1 757 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
93c2df58
DT
758
759 base = base_from_dct_base(pvt, csrow);
760 mask = mask_from_dct_mask(pvt, csrow);
761
762 *input_addr_min = base & ~mask;
763 *input_addr_max = base | mask | pvt->dcs_mask_notused;
764}
765
93c2df58
DT
766/* Map the Error address to a PAGE and PAGE OFFSET. */
767static inline void error_address_to_page_and_offset(u64 error_address,
768 u32 *page, u32 *offset)
769{
770 *page = (u32) (error_address >> PAGE_SHIFT);
771 *offset = ((u32) error_address) & ~PAGE_MASK;
772}
773
774/*
775 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
776 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
777 * of a node that detected an ECC memory error. mci represents the node that
778 * the error address maps to (possibly different from the node that detected
779 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
780 * error.
781 */
782static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
783{
784 int csrow;
785
786 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
787
788 if (csrow == -1)
789 amd64_mc_printk(mci, KERN_ERR,
790 "Failed to translate InputAddr to csrow for "
791 "address 0x%lx\n", (unsigned long)sys_addr);
792 return csrow;
793}
e2ce7255 794
2da11654
DT
795static int get_channel_from_ecc_syndrome(unsigned short syndrome);
796
797static void amd64_cpu_display_info(struct amd64_pvt *pvt)
798{
799 if (boot_cpu_data.x86 == 0x11)
800 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
801 else if (boot_cpu_data.x86 == 0x10)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0xf)
804 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
1433eb99 805 (pvt->ext_model >= K8_REV_F) ?
2da11654
DT
806 "Rev F or later" : "Rev E or earlier");
807 else
808 /* we'll hardly ever ever get here */
809 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
810}
811
812/*
813 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
814 * are ECC capable.
815 */
816static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
817{
818 int bit;
584fcff4 819 enum dev_type edac_cap = EDAC_FLAG_NONE;
2da11654 820
1433eb99 821 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
822 ? 19
823 : 17;
824
584fcff4 825 if (pvt->dclr0 & BIT(bit))
2da11654
DT
826 edac_cap = EDAC_FLAG_SECDED;
827
828 return edac_cap;
829}
830
831
8566c4df 832static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
2da11654 833
68798e17
BP
834static void amd64_dump_dramcfg_low(u32 dclr, int chan)
835{
836 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
837
838 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
839 (dclr & BIT(16)) ? "un" : "",
840 (dclr & BIT(19)) ? "yes" : "no");
841
842 debugf1(" PAR/ERR parity: %s\n",
843 (dclr & BIT(8)) ? "enabled" : "disabled");
844
845 debugf1(" DCT 128bit mode width: %s\n",
846 (dclr & BIT(11)) ? "128b" : "64b");
847
848 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
849 (dclr & BIT(12)) ? "yes" : "no",
850 (dclr & BIT(13)) ? "yes" : "no",
851 (dclr & BIT(14)) ? "yes" : "no",
852 (dclr & BIT(15)) ? "yes" : "no");
853}
854
2da11654
DT
855/* Display and decode various NB registers for debug purposes. */
856static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
857{
858 int ganged;
859
68798e17
BP
860 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
861
862 debugf1(" NB two channel DRAM capable: %s\n",
863 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 864
68798e17
BP
865 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
866 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
867 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
868
869 amd64_dump_dramcfg_low(pvt->dclr0, 0);
2da11654 870
8de1d91e 871 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 872
8de1d91e
BP
873 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
874 "offset: 0x%08x\n",
875 pvt->dhar,
876 dhar_base(pvt->dhar),
877 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
878 : f10_dhar_offset(pvt->dhar));
2da11654 879
8de1d91e
BP
880 debugf1(" DramHoleValid: %s\n",
881 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
2da11654 882
8de1d91e 883 /* everything below this point is Fam10h and above */
8566c4df
BP
884 if (boot_cpu_data.x86 == 0xf) {
885 amd64_debug_display_dimm_sizes(0, pvt);
2da11654 886 return;
8566c4df 887 }
2da11654 888
8de1d91e 889 /* Only if NOT ganged does dclr1 have valid info */
68798e17
BP
890 if (!dct_ganging_enabled(pvt))
891 amd64_dump_dramcfg_low(pvt->dclr1, 1);
2da11654
DT
892
893 /*
894 * Determine if ganged and then dump memory sizes for first controller,
895 * and if NOT ganged dump info for 2nd controller.
896 */
897 ganged = dct_ganging_enabled(pvt);
898
8566c4df 899 amd64_debug_display_dimm_sizes(0, pvt);
2da11654
DT
900
901 if (!ganged)
8566c4df 902 amd64_debug_display_dimm_sizes(1, pvt);
2da11654
DT
903}
904
905/* Read in both of DBAM registers */
906static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
907{
6ba5dcdc 908 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
2da11654 909
6ba5dcdc
BP
910 if (boot_cpu_data.x86 >= 0x10)
911 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
2da11654
DT
912}
913
94be4bff
DT
914/*
915 * NOTE: CPU Revision Dependent code: Rev E and Rev F
916 *
917 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
918 * set the shift factor for the DCSB and DCSM values.
919 *
920 * ->dcs_mask_notused, RevE:
921 *
922 * To find the max InputAddr for the csrow, start with the base address and set
923 * all bits that are "don't care" bits in the test at the start of section
924 * 3.5.4 (p. 84).
925 *
926 * The "don't care" bits are all set bits in the mask and all bits in the gaps
927 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
928 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
929 * gaps.
930 *
931 * ->dcs_mask_notused, RevF and later:
932 *
933 * To find the max InputAddr for the csrow, start with the base address and set
934 * all bits that are "don't care" bits in the test at the start of NPT section
935 * 4.5.4 (p. 87).
936 *
937 * The "don't care" bits are all set bits in the mask and all bits in the gaps
938 * between bit ranges [36:27] and [21:13].
939 *
940 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
941 * which are all bits in the above-mentioned gaps.
942 */
943static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
944{
9d858bb1 945
1433eb99 946 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
9d858bb1
BP
947 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
948 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
949 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
950 pvt->dcs_shift = REV_E_DCS_SHIFT;
951 pvt->cs_count = 8;
952 pvt->num_dcsm = 8;
953 } else {
94be4bff
DT
954 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
955 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
956 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
957 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
958
9d858bb1
BP
959 if (boot_cpu_data.x86 == 0x11) {
960 pvt->cs_count = 4;
961 pvt->num_dcsm = 2;
962 } else {
963 pvt->cs_count = 8;
964 pvt->num_dcsm = 4;
94be4bff 965 }
94be4bff
DT
966 }
967}
968
969/*
970 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
971 */
972static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
973{
6ba5dcdc 974 int cs, reg;
94be4bff
DT
975
976 amd64_set_dct_base_and_mask(pvt);
977
9d858bb1 978 for (cs = 0; cs < pvt->cs_count; cs++) {
94be4bff 979 reg = K8_DCSB0 + (cs * 4);
6ba5dcdc 980 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
94be4bff
DT
981 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
982 cs, pvt->dcsb0[cs], reg);
983
984 /* If DCT are NOT ganged, then read in DCT1's base */
985 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
986 reg = F10_DCSB1 + (cs * 4);
6ba5dcdc
BP
987 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
988 &pvt->dcsb1[cs]))
94be4bff
DT
989 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsb1[cs], reg);
991 } else {
992 pvt->dcsb1[cs] = 0;
993 }
994 }
995
996 for (cs = 0; cs < pvt->num_dcsm; cs++) {
4afcd2dc 997 reg = K8_DCSM0 + (cs * 4);
6ba5dcdc 998 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
94be4bff
DT
999 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1000 cs, pvt->dcsm0[cs], reg);
1001
1002 /* If DCT are NOT ganged, then read in DCT1's mask */
1003 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1004 reg = F10_DCSM1 + (cs * 4);
6ba5dcdc
BP
1005 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1006 &pvt->dcsm1[cs]))
94be4bff
DT
1007 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1008 cs, pvt->dcsm1[cs], reg);
6ba5dcdc 1009 } else {
94be4bff 1010 pvt->dcsm1[cs] = 0;
6ba5dcdc 1011 }
94be4bff
DT
1012 }
1013}
1014
1015static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1016{
1017 enum mem_type type;
1018
1433eb99 1019 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
6b4c0bde
BP
1020 if (pvt->dchr0 & DDR3_MODE)
1021 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1022 else
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
94be4bff 1024 } else {
94be4bff
DT
1025 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1026 }
1027
239642fe 1028 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
94be4bff
DT
1029
1030 return type;
1031}
1032
ddff876d
DT
1033/*
1034 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1035 * and the later RevF memory controllers (DDR vs DDR2)
1036 *
1037 * Return:
1038 * number of memory channels in operation
1039 * Pass back:
1040 * contents of the DCL0_LOW register
1041 */
1042static int k8_early_channel_count(struct amd64_pvt *pvt)
1043{
1044 int flag, err = 0;
1045
6ba5dcdc 1046 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
ddff876d
DT
1047 if (err)
1048 return err;
1049
1433eb99 1050 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
ddff876d
DT
1051 /* RevF (NPT) and later */
1052 flag = pvt->dclr0 & F10_WIDTH_128;
1053 } else {
1054 /* RevE and earlier */
1055 flag = pvt->dclr0 & REVE_WIDTH_128;
1056 }
1057
1058 /* not used */
1059 pvt->dclr1 = 0;
1060
1061 return (flag) ? 2 : 1;
1062}
1063
1064/* extract the ERROR ADDRESS for the K8 CPUs */
1065static u64 k8_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1066 struct err_regs *info)
ddff876d
DT
1067{
1068 return (((u64) (info->nbeah & 0xff)) << 32) +
1069 (info->nbeal & ~0x03);
1070}
1071
1072/*
1073 * Read the Base and Limit registers for K8 based Memory controllers; extract
1074 * fields from the 'raw' reg into separate data fields
1075 *
1076 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1077 */
1078static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1079{
1080 u32 low;
1081 u32 off = dram << 3; /* 8 bytes between DRAM entries */
ddff876d 1082
6ba5dcdc 1083 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
ddff876d
DT
1084
1085 /* Extract parts into separate data entries */
4997811e 1086 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
ddff876d
DT
1087 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1088 pvt->dram_rw_en[dram] = (low & 0x3);
1089
6ba5dcdc 1090 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
ddff876d
DT
1091
1092 /*
1093 * Extract parts into separate data entries. Limit is the HIGHEST memory
1094 * location of the region, so lower 24 bits need to be all ones
1095 */
4997811e 1096 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
ddff876d
DT
1097 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1098 pvt->dram_DstNode[dram] = (low & 0x7);
1099}
1100
1101static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ef44cc4c 1102 struct err_regs *info,
44e9e2ee 1103 u64 sys_addr)
ddff876d
DT
1104{
1105 struct mem_ctl_info *src_mci;
1106 unsigned short syndrome;
1107 int channel, csrow;
1108 u32 page, offset;
1109
1110 /* Extract the syndrome parts and form a 16-bit syndrome */
b70ef010
BP
1111 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1112 syndrome |= LOW_SYNDROME(info->nbsh);
ddff876d
DT
1113
1114 /* CHIPKILL enabled */
1115 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1116 channel = get_channel_from_ecc_syndrome(syndrome);
1117 if (channel < 0) {
1118 /*
1119 * Syndrome didn't map, so we don't know which of the
1120 * 2 DIMMs is in error. So we need to ID 'both' of them
1121 * as suspect.
1122 */
1123 amd64_mc_printk(mci, KERN_WARNING,
1124 "unknown syndrome 0x%x - possible error "
1125 "reporting race\n", syndrome);
1126 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1127 return;
1128 }
1129 } else {
1130 /*
1131 * non-chipkill ecc mode
1132 *
1133 * The k8 documentation is unclear about how to determine the
1134 * channel number when using non-chipkill memory. This method
1135 * was obtained from email communication with someone at AMD.
1136 * (Wish the email was placed in this comment - norsk)
1137 */
44e9e2ee 1138 channel = ((sys_addr & BIT(3)) != 0);
ddff876d
DT
1139 }
1140
1141 /*
1142 * Find out which node the error address belongs to. This may be
1143 * different from the node that detected the error.
1144 */
44e9e2ee 1145 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2cff18c2 1146 if (!src_mci) {
ddff876d
DT
1147 amd64_mc_printk(mci, KERN_ERR,
1148 "failed to map error address 0x%lx to a node\n",
44e9e2ee 1149 (unsigned long)sys_addr);
ddff876d
DT
1150 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1151 return;
1152 }
1153
44e9e2ee
BP
1154 /* Now map the sys_addr to a CSROW */
1155 csrow = sys_addr_to_csrow(src_mci, sys_addr);
ddff876d
DT
1156 if (csrow < 0) {
1157 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1158 } else {
44e9e2ee 1159 error_address_to_page_and_offset(sys_addr, &page, &offset);
ddff876d
DT
1160
1161 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1162 channel, EDAC_MOD_STR);
1163 }
1164}
1165
1433eb99 1166static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
ddff876d 1167{
1433eb99 1168 int *dbam_map;
ddff876d 1169
1433eb99
BP
1170 if (pvt->ext_model >= K8_REV_F)
1171 dbam_map = ddr2_dbam;
1172 else if (pvt->ext_model >= K8_REV_D)
1173 dbam_map = ddr2_dbam_revD;
1174 else
1175 dbam_map = ddr2_dbam_revCG;
ddff876d 1176
1433eb99 1177 return dbam_map[cs_mode];
ddff876d
DT
1178}
1179
1afd3c98
DT
1180/*
1181 * Get the number of DCT channels in use.
1182 *
1183 * Return:
1184 * number of Memory Channels in operation
1185 * Pass back:
1186 * contents of the DCL0_LOW register
1187 */
1188static int f10_early_channel_count(struct amd64_pvt *pvt)
1189{
57a30854 1190 int dbams[] = { DBAM0, DBAM1 };
6ba5dcdc 1191 int i, j, channels = 0;
1afd3c98
DT
1192 u32 dbam;
1193
1afd3c98
DT
1194 /* If we are in 128 bit mode, then we are using 2 channels */
1195 if (pvt->dclr0 & F10_WIDTH_128) {
1afd3c98
DT
1196 channels = 2;
1197 return channels;
1198 }
1199
1200 /*
d16149e8
BP
1201 * Need to check if in unganged mode: In such, there are 2 channels,
1202 * but they are not in 128 bit mode and thus the above 'dclr0' status
1203 * bit will be OFF.
1afd3c98
DT
1204 *
1205 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1206 * their CSEnable bit on. If so, then SINGLE DIMM case.
1207 */
d16149e8 1208 debugf0("Data width is not 128 bits - need more decoding\n");
ddff876d 1209
1afd3c98
DT
1210 /*
1211 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1212 * is more than just one DIMM present in unganged mode. Need to check
1213 * both controllers since DIMMs can be placed in either one.
1214 */
57a30854 1215 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
6ba5dcdc 1216 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1afd3c98
DT
1217 goto err_reg;
1218
57a30854
WW
1219 for (j = 0; j < 4; j++) {
1220 if (DBAM_DIMM(j, dbam) > 0) {
1221 channels++;
1222 break;
1223 }
1224 }
1afd3c98
DT
1225 }
1226
d16149e8
BP
1227 if (channels > 2)
1228 channels = 2;
1229
37da0450 1230 debugf0("MCT channel count: %d\n", channels);
1afd3c98
DT
1231
1232 return channels;
1233
1234err_reg:
1235 return -1;
1236
1237}
1238
1433eb99 1239static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1afd3c98 1240{
1433eb99
BP
1241 int *dbam_map;
1242
1243 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1244 dbam_map = ddr3_dbam;
1245 else
1246 dbam_map = ddr2_dbam;
1247
1248 return dbam_map[cs_mode];
1afd3c98
DT
1249}
1250
1251/* Enable extended configuration access via 0xCF8 feature */
1252static void amd64_setup(struct amd64_pvt *pvt)
1253{
1254 u32 reg;
1255
6ba5dcdc 1256 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1257
1258 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1259 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1260 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1261}
1262
1263/* Restore the extended configuration access via 0xCF8 feature */
1264static void amd64_teardown(struct amd64_pvt *pvt)
1265{
1266 u32 reg;
1267
6ba5dcdc 1268 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1afd3c98
DT
1269
1270 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1271 if (pvt->flags.cf8_extcfg)
1272 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1274}
1275
1276static u64 f10_get_error_address(struct mem_ctl_info *mci,
ef44cc4c 1277 struct err_regs *info)
1afd3c98
DT
1278{
1279 return (((u64) (info->nbeah & 0xffff)) << 32) +
1280 (info->nbeal & ~0x01);
1281}
1282
1283/*
1284 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1285 * fields from the 'raw' reg into separate data fields.
1286 *
1287 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1288 */
1289static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1290{
1291 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1292
1293 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1294 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1295
1296 /* read the 'raw' DRAM BASE Address register */
6ba5dcdc 1297 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1afd3c98
DT
1298
1299 /* Read from the ECS data register */
6ba5dcdc 1300 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1afd3c98
DT
1301
1302 /* Extract parts into separate data entries */
1303 pvt->dram_rw_en[dram] = (low_base & 0x3);
1304
1305 if (pvt->dram_rw_en[dram] == 0)
1306 return;
1307
1308 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1309
66216a7a 1310 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
4997811e 1311 (((u64)low_base & 0xFFFF0000) << 8);
1afd3c98
DT
1312
1313 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1314 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1315
1316 /* read the 'raw' LIMIT registers */
6ba5dcdc 1317 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1afd3c98
DT
1318
1319 /* Read from the ECS data register for the HIGH portion */
6ba5dcdc 1320 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1afd3c98 1321
1afd3c98
DT
1322 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1323 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1324
1325 /*
1326 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1327 * memory location of the region, so low 24 bits need to be all ones.
1328 */
66216a7a 1329 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
4997811e 1330 (((u64) low_limit & 0xFFFF0000) << 8) |
66216a7a 1331 0x00FFFFFF;
1afd3c98 1332}
6163b5d4
DT
1333
1334static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1335{
6163b5d4 1336
6ba5dcdc
BP
1337 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1338 &pvt->dram_ctl_select_low)) {
72381bd5
BP
1339 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1340 "High range addresses at: 0x%x\n",
1341 pvt->dram_ctl_select_low,
1342 dct_sel_baseaddr(pvt));
1343
1344 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1345 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1346 (dct_dram_enabled(pvt) ? "yes" : "no"));
1347
1348 if (!dct_ganging_enabled(pvt))
1349 debugf0(" Address range split per DCT: %s\n",
1350 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1351
1352 debugf0(" DCT data interleave for ECC: %s, "
1353 "DRAM cleared since last warm reset: %s\n",
1354 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1355 (dct_memory_cleared(pvt) ? "yes" : "no"));
1356
1357 debugf0(" DCT channel interleave: %s, "
1358 "DCT interleave bits selector: 0x%x\n",
1359 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
6163b5d4
DT
1360 dct_sel_interleave_addr(pvt));
1361 }
1362
6ba5dcdc
BP
1363 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1364 &pvt->dram_ctl_select_high);
6163b5d4
DT
1365}
1366
f71d0a05
DT
1367/*
1368 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1369 * Interleaving Modes.
1370 */
6163b5d4
DT
1371static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1372 int hi_range_sel, u32 intlv_en)
1373{
1374 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1375
1376 if (dct_ganging_enabled(pvt))
1377 cs = 0;
1378 else if (hi_range_sel)
1379 cs = dct_sel_high;
1380 else if (dct_interleave_enabled(pvt)) {
f71d0a05
DT
1381 /*
1382 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1383 */
6163b5d4
DT
1384 if (dct_sel_interleave_addr(pvt) == 0)
1385 cs = sys_addr >> 6 & 1;
1386 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1387 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1388
1389 if (dct_sel_interleave_addr(pvt) & 1)
1390 cs = (sys_addr >> 9 & 1) ^ temp;
1391 else
1392 cs = (sys_addr >> 6 & 1) ^ temp;
1393 } else if (intlv_en & 4)
1394 cs = sys_addr >> 15 & 1;
1395 else if (intlv_en & 2)
1396 cs = sys_addr >> 14 & 1;
1397 else if (intlv_en & 1)
1398 cs = sys_addr >> 13 & 1;
1399 else
1400 cs = sys_addr >> 12 & 1;
1401 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1402 cs = ~dct_sel_high & 1;
1403 else
1404 cs = 0;
1405
1406 return cs;
1407}
1408
1409static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1410{
1411 if (intlv_en == 1)
1412 return 1;
1413 else if (intlv_en == 3)
1414 return 2;
1415 else if (intlv_en == 7)
1416 return 3;
1417
1418 return 0;
1419}
1420
f71d0a05
DT
1421/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1422static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
6163b5d4
DT
1423 u32 dct_sel_base_addr,
1424 u64 dct_sel_base_off,
f71d0a05 1425 u32 hole_valid, u32 hole_off,
6163b5d4
DT
1426 u64 dram_base)
1427{
1428 u64 chan_off;
1429
1430 if (hi_range_sel) {
1431 if (!(dct_sel_base_addr & 0xFFFFF800) &&
f71d0a05 1432 hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1433 chan_off = hole_off << 16;
1434 else
1435 chan_off = dct_sel_base_off;
1436 } else {
f71d0a05 1437 if (hole_valid && (sys_addr >= 0x100000000ULL))
6163b5d4
DT
1438 chan_off = hole_off << 16;
1439 else
1440 chan_off = dram_base & 0xFFFFF8000000ULL;
1441 }
1442
1443 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1444 (chan_off & 0x0000FFFFFF800000ULL);
1445}
1446
1447/* Hack for the time being - Can we get this from BIOS?? */
1448#define CH0SPARE_RANK 0
1449#define CH1SPARE_RANK 1
1450
1451/*
1452 * checks if the csrow passed in is marked as SPARED, if so returns the new
1453 * spare row
1454 */
1455static inline int f10_process_possible_spare(int csrow,
1456 u32 cs, struct amd64_pvt *pvt)
1457{
1458 u32 swap_done;
1459 u32 bad_dram_cs;
1460
1461 /* Depending on channel, isolate respective SPARING info */
1462 if (cs) {
1463 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1464 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1465 if (swap_done && (csrow == bad_dram_cs))
1466 csrow = CH1SPARE_RANK;
1467 } else {
1468 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1469 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1470 if (swap_done && (csrow == bad_dram_cs))
1471 csrow = CH0SPARE_RANK;
1472 }
1473 return csrow;
1474}
1475
1476/*
1477 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1478 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1479 *
1480 * Return:
1481 * -EINVAL: NOT FOUND
1482 * 0..csrow = Chip-Select Row
1483 */
1484static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1485{
1486 struct mem_ctl_info *mci;
1487 struct amd64_pvt *pvt;
1488 u32 cs_base, cs_mask;
1489 int cs_found = -EINVAL;
1490 int csrow;
1491
1492 mci = mci_lookup[nid];
1493 if (!mci)
1494 return cs_found;
1495
1496 pvt = mci->pvt_info;
1497
1498 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1499
9d858bb1 1500 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
6163b5d4
DT
1501
1502 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1503 if (!(cs_base & K8_DCSB_CS_ENABLE))
1504 continue;
1505
1506 /*
1507 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1508 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1509 * of the actual address.
1510 */
1511 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1512
1513 /*
1514 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1515 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1516 */
1517 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1518
1519 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1520 csrow, cs_base, cs_mask);
1521
1522 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1523
1524 debugf1(" Final CSMask=0x%x\n", cs_mask);
1525 debugf1(" (InputAddr & ~CSMask)=0x%x "
1526 "(CSBase & ~CSMask)=0x%x\n",
1527 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1528
1529 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1530 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1531
1532 debugf1(" MATCH csrow=%d\n", cs_found);
1533 break;
1534 }
1535 }
1536 return cs_found;
1537}
1538
f71d0a05
DT
1539/* For a given @dram_range, check if @sys_addr falls within it. */
1540static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1541 u64 sys_addr, int *nid, int *chan_sel)
1542{
1543 int node_id, cs_found = -EINVAL, high_range = 0;
1544 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1545 u32 hole_valid, tmp, dct_sel_base, channel;
1546 u64 dram_base, chan_addr, dct_sel_base_off;
1547
1548 dram_base = pvt->dram_base[dram_range];
1549 intlv_en = pvt->dram_IntlvEn[dram_range];
1550
1551 node_id = pvt->dram_DstNode[dram_range];
1552 intlv_sel = pvt->dram_IntlvSel[dram_range];
1553
1554 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1555 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1556
1557 /*
1558 * This assumes that one node's DHAR is the same as all the other
1559 * nodes' DHAR.
1560 */
1561 hole_off = (pvt->dhar & 0x0000FF80);
1562 hole_valid = (pvt->dhar & 0x1);
1563 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1564
1565 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1566 hole_off, hole_valid, intlv_sel);
1567
1568 if (intlv_en ||
1569 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1570 return -EINVAL;
1571
1572 dct_sel_base = dct_sel_baseaddr(pvt);
1573
1574 /*
1575 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1576 * select between DCT0 and DCT1.
1577 */
1578 if (dct_high_range_enabled(pvt) &&
1579 !dct_ganging_enabled(pvt) &&
1580 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1581 high_range = 1;
1582
1583 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1584
1585 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1586 dct_sel_base_off, hole_valid,
1587 hole_off, dram_base);
1588
1589 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1590
1591 /* remove Node ID (in case of memory interleaving) */
1592 tmp = chan_addr & 0xFC0;
1593
1594 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1595
1596 /* remove channel interleave and hash */
1597 if (dct_interleave_enabled(pvt) &&
1598 !dct_high_range_enabled(pvt) &&
1599 !dct_ganging_enabled(pvt)) {
1600 if (dct_sel_interleave_addr(pvt) != 1)
1601 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1602 else {
1603 tmp = chan_addr & 0xFC0;
1604 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1605 | tmp;
1606 }
1607 }
1608
1609 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1610 chan_addr, (u32)(chan_addr >> 8));
1611
1612 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1613
1614 if (cs_found >= 0) {
1615 *nid = node_id;
1616 *chan_sel = channel;
1617 }
1618 return cs_found;
1619}
1620
1621static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1622 int *node, int *chan_sel)
1623{
1624 int dram_range, cs_found = -EINVAL;
1625 u64 dram_base, dram_limit;
1626
1627 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1628
1629 if (!pvt->dram_rw_en[dram_range])
1630 continue;
1631
1632 dram_base = pvt->dram_base[dram_range];
1633 dram_limit = pvt->dram_limit[dram_range];
1634
1635 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1636
1637 cs_found = f10_match_to_this_node(pvt, dram_range,
1638 sys_addr, node,
1639 chan_sel);
1640 if (cs_found >= 0)
1641 break;
1642 }
1643 }
1644 return cs_found;
1645}
1646
1647/*
1648 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1649 * CSROW, Channel.
1650 *
1651 * The @sys_addr is usually an error address received from the hardware.
1652 */
1653static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
ef44cc4c 1654 struct err_regs *info,
f71d0a05
DT
1655 u64 sys_addr)
1656{
1657 struct amd64_pvt *pvt = mci->pvt_info;
1658 u32 page, offset;
1659 unsigned short syndrome;
1660 int nid, csrow, chan = 0;
1661
1662 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1663
1664 if (csrow >= 0) {
1665 error_address_to_page_and_offset(sys_addr, &page, &offset);
1666
b70ef010
BP
1667 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1668 syndrome |= LOW_SYNDROME(info->nbsh);
f71d0a05
DT
1669
1670 /*
1671 * Is CHIPKILL on? If so, then we can attempt to use the
1672 * syndrome to isolate which channel the error was on.
1673 */
1674 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1675 chan = get_channel_from_ecc_syndrome(syndrome);
1676
1677 if (chan >= 0) {
1678 edac_mc_handle_ce(mci, page, offset, syndrome,
1679 csrow, chan, EDAC_MOD_STR);
1680 } else {
1681 /*
1682 * Channel unknown, report all channels on this
1683 * CSROW as failed.
1684 */
1685 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1686 chan++) {
1687 edac_mc_handle_ce(mci, page, offset,
1688 syndrome,
1689 csrow, chan,
1690 EDAC_MOD_STR);
1691 }
1692 }
1693
1694 } else {
1695 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1696 }
1697}
1698
f71d0a05 1699/*
8566c4df 1700 * debug routine to display the memory sizes of all logical DIMMs and its
f71d0a05
DT
1701 * CSROWs as well
1702 */
8566c4df 1703static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
f71d0a05
DT
1704{
1705 int dimm, size0, size1;
1706 u32 dbam;
1707 u32 *dcsb;
1708
8566c4df
BP
1709 if (boot_cpu_data.x86 == 0xf) {
1710 /* K8 families < revF not supported yet */
1433eb99 1711 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1712 return;
1713 else
1714 WARN_ON(ctrl != 0);
1715 }
1716
1717 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1718 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
f71d0a05
DT
1719
1720 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1721 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1722
8566c4df
BP
1723 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1724
f71d0a05
DT
1725 /* Dump memory sizes for DIMM and its CSROWs */
1726 for (dimm = 0; dimm < 4; dimm++) {
1727
1728 size0 = 0;
1729 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1433eb99 1730 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05
DT
1731
1732 size1 = 0;
1733 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1433eb99 1734 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
f71d0a05 1735
8566c4df
BP
1736 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1737 dimm * 2, size0, dimm * 2 + 1, size1);
f71d0a05
DT
1738 }
1739}
1740
4d37607a
DT
1741/*
1742 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1743 * (as per PCI DEVICE_IDs):
1744 *
1745 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1746 * DEVICE ID, even though there is differences between the different Revisions
1747 * (CG,D,E,F).
1748 *
1749 * Family F10h and F11h.
1750 *
1751 */
1752static struct amd64_family_type amd64_family_types[] = {
1753 [K8_CPUS] = {
1754 .ctl_name = "RevF",
1755 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1756 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1757 .ops = {
1433eb99
BP
1758 .early_channel_count = k8_early_channel_count,
1759 .get_error_address = k8_get_error_address,
1760 .read_dram_base_limit = k8_read_dram_base_limit,
1761 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1762 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1763 }
1764 },
1765 [F10_CPUS] = {
1766 .ctl_name = "Family 10h",
1767 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1768 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1769 .ops = {
1433eb99
BP
1770 .early_channel_count = f10_early_channel_count,
1771 .get_error_address = f10_get_error_address,
1772 .read_dram_base_limit = f10_read_dram_base_limit,
1773 .read_dram_ctl_register = f10_read_dram_ctl_register,
1774 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1775 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1776 }
1777 },
1778 [F11_CPUS] = {
1779 .ctl_name = "Family 11h",
1780 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1781 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1782 .ops = {
1433eb99
BP
1783 .early_channel_count = f10_early_channel_count,
1784 .get_error_address = f10_get_error_address,
1785 .read_dram_base_limit = f10_read_dram_base_limit,
1786 .read_dram_ctl_register = f10_read_dram_ctl_register,
1787 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1788 .dbam_to_cs = f10_dbam_to_chip_select,
4d37607a
DT
1789 }
1790 },
1791};
1792
1793static struct pci_dev *pci_get_related_function(unsigned int vendor,
1794 unsigned int device,
1795 struct pci_dev *related)
1796{
1797 struct pci_dev *dev = NULL;
1798
1799 dev = pci_get_device(vendor, device, dev);
1800 while (dev) {
1801 if ((dev->bus->number == related->bus->number) &&
1802 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1803 break;
1804 dev = pci_get_device(vendor, device, dev);
1805 }
1806
1807 return dev;
1808}
1809
b1289d6f
DT
1810/*
1811 * syndrome mapping table for ECC ChipKill devices
1812 *
1813 * The comment in each row is the token (nibble) number that is in error.
1814 * The least significant nibble of the syndrome is the mask for the bits
1815 * that are in error (need to be toggled) for the particular nibble.
1816 *
1817 * Each row contains 16 entries.
1818 * The first entry (0th) is the channel number for that row of syndromes.
1819 * The remaining 15 entries are the syndromes for the respective Error
1820 * bit mask index.
1821 *
1822 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1823 * bit in error.
1824 * The 2nd index entry is 0x0010 that the second bit is damaged.
1825 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1826 * are damaged.
1827 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1828 * indicating that all 4 bits are damaged.
1829 *
1830 * A search is performed on this table looking for a given syndrome.
1831 *
1832 * See the AMD documentation for ECC syndromes. This ECC table is valid
1833 * across all the versions of the AMD64 processors.
1834 *
1835 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1836 * COLUMN index, then search all ROWS of that column, looking for a match
1837 * with the input syndrome. The ROW value will be the token number.
1838 *
1839 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1840 * error.
1841 */
1842#define NUMBER_ECC_ROWS 36
1843static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1844 /* Channel 0 syndromes */
1845 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1846 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1847 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1848 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1849 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1850 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1851 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1852 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1853 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1854 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1855 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1856 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1857 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1858 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1859 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1860 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1861 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1862 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1863 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1864 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1865 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1866 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1867 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1868 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1869 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1870 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1871 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1872 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1873 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1874 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1875 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1876 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
1877
1878 /* Channel 1 syndromes */
1879 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1880 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1881 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1882 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1883 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1884 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
1885 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
1886 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
1887 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
1888 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
1889 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
1890 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
1891 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
1892 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
1893 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
1894 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
1895 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
1896 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
1897 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
1898 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
1899 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
1900 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
1901 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
1902 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
1903 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
1904 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
1905 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
1906 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
1907 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
1908 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
1909 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
1910 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
1911
1912 /* ECC bits are also in the set of tokens and they too can go bad
1913 * first 2 cover channel 0, while the second 2 cover channel 1
1914 */
1915 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
1916 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
1917 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
1918 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
1919 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
1920 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
1921 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
1922 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
1923};
1924
1925/*
1926 * Given the syndrome argument, scan each of the channel tables for a syndrome
1927 * match. Depending on which table it is found, return the channel number.
1928 */
1929static int get_channel_from_ecc_syndrome(unsigned short syndrome)
1930{
1931 int row;
1932 int column;
4d37607a 1933
b1289d6f
DT
1934 /* Determine column to scan */
1935 column = syndrome & 0xF;
1936
1937 /* Scan all rows, looking for syndrome, or end of table */
1938 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
1939 if (ecc_chipkill_syndromes[row][column] == syndrome)
1940 return ecc_chipkill_syndromes[row][0];
1941 }
1942
1943 debugf0("syndrome(%x) not found\n", syndrome);
1944 return -1;
1945}
d27bf6fa
DT
1946
1947/*
1948 * Check for valid error in the NB Status High register. If so, proceed to read
1949 * NB Status Low, NB Address Low and NB Address High registers and store data
1950 * into error structure.
1951 *
1952 * Returns:
1953 * - 1: if hardware regs contains valid error info
1954 * - 0: if no valid error is indicated
1955 */
1956static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
ef44cc4c 1957 struct err_regs *regs)
d27bf6fa
DT
1958{
1959 struct amd64_pvt *pvt;
1960 struct pci_dev *misc_f3_ctl;
d27bf6fa
DT
1961
1962 pvt = mci->pvt_info;
1963 misc_f3_ctl = pvt->misc_f3_ctl;
1964
6ba5dcdc
BP
1965 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1966 return 0;
d27bf6fa
DT
1967
1968 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1969 return 0;
1970
1971 /* valid error, read remaining error information registers */
6ba5dcdc
BP
1972 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
1973 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
1974 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
1975 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
1976 return 0;
d27bf6fa
DT
1977
1978 return 1;
d27bf6fa
DT
1979}
1980
1981/*
1982 * This function is called to retrieve the error data from hardware and store it
1983 * in the info structure.
1984 *
1985 * Returns:
1986 * - 1: if a valid error is found
1987 * - 0: if no error is found
1988 */
1989static int amd64_get_error_info(struct mem_ctl_info *mci,
ef44cc4c 1990 struct err_regs *info)
d27bf6fa
DT
1991{
1992 struct amd64_pvt *pvt;
ef44cc4c 1993 struct err_regs regs;
d27bf6fa
DT
1994
1995 pvt = mci->pvt_info;
1996
1997 if (!amd64_get_error_info_regs(mci, info))
1998 return 0;
1999
2000 /*
2001 * Here's the problem with the K8's EDAC reporting: There are four
2002 * registers which report pieces of error information. They are shared
2003 * between CEs and UEs. Furthermore, contrary to what is stated in the
2004 * BKDG, the overflow bit is never used! Every error always updates the
2005 * reporting registers.
2006 *
2007 * Can you see the race condition? All four error reporting registers
2008 * must be read before a new error updates them! There is no way to read
2009 * all four registers atomically. The best than can be done is to detect
2010 * that a race has occured and then report the error without any kind of
2011 * precision.
2012 *
2013 * What is still positive is that errors are still reported and thus
2014 * problems can still be detected - just not localized because the
2015 * syndrome and address are spread out across registers.
2016 *
2017 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2018 * UEs and CEs should have separate register sets with proper overflow
2019 * bits that are used! At very least the problem can be fixed by
2020 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2021 * set the overflow bit - unless the current error is CE and the new
2022 * error is UE which would be the only situation for overwriting the
2023 * current values.
2024 */
2025
2026 regs = *info;
2027
2028 /* Use info from the second read - most current */
2029 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2030 return 0;
2031
2032 /* clear the error bits in hardware */
2033 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2034
2035 /* Check for the possible race condition */
2036 if ((regs.nbsh != info->nbsh) ||
2037 (regs.nbsl != info->nbsl) ||
2038 (regs.nbeah != info->nbeah) ||
2039 (regs.nbeal != info->nbeal)) {
2040 amd64_mc_printk(mci, KERN_WARNING,
2041 "hardware STATUS read access race condition "
2042 "detected!\n");
2043 return 0;
2044 }
2045 return 1;
2046}
2047
d27bf6fa
DT
2048/*
2049 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2050 * ADDRESS and process.
2051 */
2052static void amd64_handle_ce(struct mem_ctl_info *mci,
ef44cc4c 2053 struct err_regs *info)
d27bf6fa
DT
2054{
2055 struct amd64_pvt *pvt = mci->pvt_info;
44e9e2ee 2056 u64 sys_addr;
d27bf6fa
DT
2057
2058 /* Ensure that the Error Address is VALID */
2059 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2060 amd64_mc_printk(mci, KERN_ERR,
2061 "HW has no ERROR_ADDRESS available\n");
2062 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2063 return;
2064 }
2065
1f6bcee7 2066 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
2067
2068 amd64_mc_printk(mci, KERN_ERR,
44e9e2ee 2069 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
d27bf6fa 2070
44e9e2ee 2071 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
d27bf6fa
DT
2072}
2073
2074/* Handle any Un-correctable Errors (UEs) */
2075static void amd64_handle_ue(struct mem_ctl_info *mci,
ef44cc4c 2076 struct err_regs *info)
d27bf6fa 2077{
1f6bcee7
BP
2078 struct amd64_pvt *pvt = mci->pvt_info;
2079 struct mem_ctl_info *log_mci, *src_mci = NULL;
d27bf6fa 2080 int csrow;
44e9e2ee 2081 u64 sys_addr;
d27bf6fa 2082 u32 page, offset;
d27bf6fa
DT
2083
2084 log_mci = mci;
2085
2086 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2087 amd64_mc_printk(mci, KERN_CRIT,
2088 "HW has no ERROR_ADDRESS available\n");
2089 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2090 return;
2091 }
2092
1f6bcee7 2093 sys_addr = pvt->ops->get_error_address(mci, info);
d27bf6fa
DT
2094
2095 /*
2096 * Find out which node the error address belongs to. This may be
2097 * different from the node that detected the error.
2098 */
44e9e2ee 2099 src_mci = find_mc_by_sys_addr(mci, sys_addr);
d27bf6fa
DT
2100 if (!src_mci) {
2101 amd64_mc_printk(mci, KERN_CRIT,
2102 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
44e9e2ee 2103 (unsigned long)sys_addr);
d27bf6fa
DT
2104 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2105 return;
2106 }
2107
2108 log_mci = src_mci;
2109
44e9e2ee 2110 csrow = sys_addr_to_csrow(log_mci, sys_addr);
d27bf6fa
DT
2111 if (csrow < 0) {
2112 amd64_mc_printk(mci, KERN_CRIT,
2113 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
44e9e2ee 2114 (unsigned long)sys_addr);
d27bf6fa
DT
2115 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2116 } else {
44e9e2ee 2117 error_address_to_page_and_offset(sys_addr, &page, &offset);
d27bf6fa
DT
2118 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2119 }
2120}
2121
549d042d 2122static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
b69b29de 2123 struct err_regs *info)
d27bf6fa 2124{
b70ef010
BP
2125 u32 ec = ERROR_CODE(info->nbsl);
2126 u32 xec = EXT_ERROR_CODE(info->nbsl);
17adea01 2127 int ecc_type = (info->nbsh >> 13) & 0x3;
d27bf6fa 2128
b70ef010
BP
2129 /* Bail early out if this was an 'observed' error */
2130 if (PP(ec) == K8_NBSL_PP_OBS)
2131 return;
d27bf6fa 2132
ecaf5606
BP
2133 /* Do only ECC errors */
2134 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2135 return;
d27bf6fa 2136
ecaf5606 2137 if (ecc_type == 2)
d27bf6fa 2138 amd64_handle_ce(mci, info);
ecaf5606 2139 else if (ecc_type == 1)
d27bf6fa
DT
2140 amd64_handle_ue(mci, info);
2141
2142 /*
2143 * If main error is CE then overflow must be CE. If main error is UE
2144 * then overflow is unknown. We'll call the overflow a CE - if
2145 * panic_on_ue is set then we're already panic'ed and won't arrive
2146 * here. Else, then apparently someone doesn't think that UE's are
2147 * catastrophic.
2148 */
2149 if (info->nbsh & K8_NBSH_OVERFLOW)
ecaf5606 2150 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
d27bf6fa
DT
2151}
2152
b69b29de 2153void amd64_decode_bus_error(int node_id, struct err_regs *regs)
d27bf6fa 2154{
549d042d 2155 struct mem_ctl_info *mci = mci_lookup[node_id];
d27bf6fa 2156
b69b29de 2157 __amd64_decode_bus_error(mci, regs);
d27bf6fa 2158
d27bf6fa
DT
2159 /*
2160 * Check the UE bit of the NB status high register, if set generate some
2161 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2162 * If it was a GART error, skip that process.
549d042d
BP
2163 *
2164 * FIXME: this should go somewhere else, if at all.
d27bf6fa 2165 */
5110dbde
BP
2166 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2167 edac_mc_handle_ue_no_info(mci, "UE bit is set");
549d042d 2168
d27bf6fa 2169}
d27bf6fa 2170
0ec449ee
DT
2171/*
2172 * The main polling 'check' function, called FROM the edac core to perform the
2173 * error checking and if an error is encountered, error processing.
2174 */
2175static void amd64_check(struct mem_ctl_info *mci)
2176{
ef44cc4c 2177 struct err_regs regs;
0ec449ee 2178
549d042d
BP
2179 if (amd64_get_error_info(mci, &regs)) {
2180 struct amd64_pvt *pvt = mci->pvt_info;
2181 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2182 }
0ec449ee
DT
2183}
2184
2185/*
2186 * Input:
2187 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2188 * 2) AMD Family index value
2189 *
2190 * Ouput:
2191 * Upon return of 0, the following filled in:
2192 *
2193 * struct pvt->addr_f1_ctl
2194 * struct pvt->misc_f3_ctl
2195 *
2196 * Filled in with related device funcitions of 'dram_f2_ctl'
2197 * These devices are "reserved" via the pci_get_device()
2198 *
2199 * Upon return of 1 (error status):
2200 *
2201 * Nothing reserved
2202 */
2203static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2204{
2205 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2206
2207 /* Reserve the ADDRESS MAP Device */
2208 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2209 amd64_dev->addr_f1_ctl,
2210 pvt->dram_f2_ctl);
2211
2212 if (!pvt->addr_f1_ctl) {
2213 amd64_printk(KERN_ERR, "error address map device not found: "
2214 "vendor %x device 0x%x (broken BIOS?)\n",
2215 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2216 return 1;
2217 }
2218
2219 /* Reserve the MISC Device */
2220 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2221 amd64_dev->misc_f3_ctl,
2222 pvt->dram_f2_ctl);
2223
2224 if (!pvt->misc_f3_ctl) {
2225 pci_dev_put(pvt->addr_f1_ctl);
2226 pvt->addr_f1_ctl = NULL;
2227
2228 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2229 "vendor %x device 0x%x (broken BIOS?)\n",
2230 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2231 return 1;
2232 }
2233
2234 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2235 pci_name(pvt->addr_f1_ctl));
2236 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2237 pci_name(pvt->dram_f2_ctl));
2238 debugf1(" Misc device PCI Bus ID:\t%s\n",
2239 pci_name(pvt->misc_f3_ctl));
2240
2241 return 0;
2242}
2243
2244static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2245{
2246 pci_dev_put(pvt->addr_f1_ctl);
2247 pci_dev_put(pvt->misc_f3_ctl);
2248}
2249
2250/*
2251 * Retrieve the hardware registers of the memory controller (this includes the
2252 * 'Address Map' and 'Misc' device regs)
2253 */
2254static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2255{
2256 u64 msr_val;
6ba5dcdc 2257 int dram;
0ec449ee
DT
2258
2259 /*
2260 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2261 * those are Read-As-Zero
2262 */
e97f8bb8
BP
2263 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2264 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2265
2266 /* check first whether TOP_MEM2 is enabled */
2267 rdmsrl(MSR_K8_SYSCFG, msr_val);
2268 if (msr_val & (1U << 21)) {
e97f8bb8
BP
2269 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2270 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee
DT
2271 } else
2272 debugf0(" TOP_MEM2 disabled.\n");
2273
2274 amd64_cpu_display_info(pvt);
2275
6ba5dcdc 2276 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
0ec449ee
DT
2277
2278 if (pvt->ops->read_dram_ctl_register)
2279 pvt->ops->read_dram_ctl_register(pvt);
2280
2281 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2282 /*
2283 * Call CPU specific READ function to get the DRAM Base and
2284 * Limit values from the DCT.
2285 */
2286 pvt->ops->read_dram_base_limit(pvt, dram);
2287
2288 /*
2289 * Only print out debug info on rows with both R and W Enabled.
2290 * Normal processing, compiler should optimize this whole 'if'
2291 * debug output block away.
2292 */
2293 if (pvt->dram_rw_en[dram] != 0) {
e97f8bb8
BP
2294 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2295 "DRAM-LIMIT: 0x%016llx\n",
0ec449ee 2296 dram,
e97f8bb8
BP
2297 pvt->dram_base[dram],
2298 pvt->dram_limit[dram]);
2299
0ec449ee
DT
2300 debugf1(" IntlvEn=%s %s %s "
2301 "IntlvSel=%d DstNode=%d\n",
2302 pvt->dram_IntlvEn[dram] ?
2303 "Enabled" : "Disabled",
2304 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2305 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2306 pvt->dram_IntlvSel[dram],
2307 pvt->dram_DstNode[dram]);
2308 }
2309 }
2310
2311 amd64_read_dct_base_mask(pvt);
2312
6ba5dcdc 2313 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
0ec449ee
DT
2314 amd64_read_dbam_reg(pvt);
2315
6ba5dcdc
BP
2316 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2317 F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2318
6ba5dcdc
BP
2319 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2320 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
0ec449ee
DT
2321
2322 if (!dct_ganging_enabled(pvt)) {
6ba5dcdc
BP
2323 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2324 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
0ec449ee 2325 }
0ec449ee 2326 amd64_dump_misc_regs(pvt);
0ec449ee
DT
2327}
2328
2329/*
2330 * NOTE: CPU Revision Dependent code
2331 *
2332 * Input:
9d858bb1 2333 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
0ec449ee
DT
2334 * k8 private pointer to -->
2335 * DRAM Bank Address mapping register
2336 * node_id
2337 * DCL register where dual_channel_active is
2338 *
2339 * The DBAM register consists of 4 sets of 4 bits each definitions:
2340 *
2341 * Bits: CSROWs
2342 * 0-3 CSROWs 0 and 1
2343 * 4-7 CSROWs 2 and 3
2344 * 8-11 CSROWs 4 and 5
2345 * 12-15 CSROWs 6 and 7
2346 *
2347 * Values range from: 0 to 15
2348 * The meaning of the values depends on CPU revision and dual-channel state,
2349 * see relevant BKDG more info.
2350 *
2351 * The memory controller provides for total of only 8 CSROWs in its current
2352 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2353 * single channel or two (2) DIMMs in dual channel mode.
2354 *
2355 * The following code logic collapses the various tables for CSROW based on CPU
2356 * revision.
2357 *
2358 * Returns:
2359 * The number of PAGE_SIZE pages on the specified CSROW number it
2360 * encompasses
2361 *
2362 */
2363static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2364{
1433eb99 2365 u32 cs_mode, nr_pages;
0ec449ee
DT
2366
2367 /*
2368 * The math on this doesn't look right on the surface because x/2*4 can
2369 * be simplified to x*2 but this expression makes use of the fact that
2370 * it is integral math where 1/2=0. This intermediate value becomes the
2371 * number of bits to shift the DBAM register to extract the proper CSROW
2372 * field.
2373 */
1433eb99 2374 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
0ec449ee 2375
1433eb99 2376 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
0ec449ee
DT
2377
2378 /*
2379 * If dual channel then double the memory size of single channel.
2380 * Channel count is 1 or 2
2381 */
2382 nr_pages <<= (pvt->channel_count - 1);
2383
1433eb99 2384 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
0ec449ee
DT
2385 debugf0(" nr_pages= %u channel-count = %d\n",
2386 nr_pages, pvt->channel_count);
2387
2388 return nr_pages;
2389}
2390
2391/*
2392 * Initialize the array of csrow attribute instances, based on the values
2393 * from pci config hardware registers.
2394 */
2395static int amd64_init_csrows(struct mem_ctl_info *mci)
2396{
2397 struct csrow_info *csrow;
2398 struct amd64_pvt *pvt;
2399 u64 input_addr_min, input_addr_max, sys_addr;
6ba5dcdc 2400 int i, empty = 1;
0ec449ee
DT
2401
2402 pvt = mci->pvt_info;
2403
6ba5dcdc 2404 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
0ec449ee
DT
2405
2406 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2407 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2408 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2409 );
2410
9d858bb1 2411 for (i = 0; i < pvt->cs_count; i++) {
0ec449ee
DT
2412 csrow = &mci->csrows[i];
2413
2414 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2415 debugf1("----CSROW %d EMPTY for node %d\n", i,
2416 pvt->mc_node_id);
2417 continue;
2418 }
2419
2420 debugf1("----CSROW %d VALID for MC node %d\n",
2421 i, pvt->mc_node_id);
2422
2423 empty = 0;
2424 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2425 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2426 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2427 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2428 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2429 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2430 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2431 /* 8 bytes of resolution */
2432
2433 csrow->mtype = amd64_determine_memory_type(pvt);
2434
2435 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2436 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2437 (unsigned long)input_addr_min,
2438 (unsigned long)input_addr_max);
2439 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2440 (unsigned long)sys_addr, csrow->page_mask);
2441 debugf1(" nr_pages: %u first_page: 0x%lx "
2442 "last_page: 0x%lx\n",
2443 (unsigned)csrow->nr_pages,
2444 csrow->first_page, csrow->last_page);
2445
2446 /*
2447 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2448 */
2449 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2450 csrow->edac_mode =
2451 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2452 EDAC_S4ECD4ED : EDAC_SECDED;
2453 else
2454 csrow->edac_mode = EDAC_NONE;
2455 }
2456
2457 return empty;
2458}
d27bf6fa 2459
f6d6ae96
BP
2460/* get all cores on this DCT */
2461static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2462{
2463 int cpu;
2464
2465 for_each_online_cpu(cpu)
2466 if (amd_get_nb_id(cpu) == nid)
2467 cpumask_set_cpu(cpu, mask);
2468}
2469
2470/* check MCG_CTL on all the cpus on this node */
2471static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2472{
2473 cpumask_var_t mask;
2474 struct msr *msrs;
2475 int cpu, nbe, idx = 0;
2476 bool ret = false;
2477
2478 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2479 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2480 __func__);
2481 return false;
2482 }
2483
2484 get_cpus_on_this_dct_cpumask(mask, nid);
2485
2486 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
2487 if (!msrs) {
2488 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2489 __func__);
2490 free_cpumask_var(mask);
2491 return false;
2492 }
2493
2494 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2495
2496 for_each_cpu(cpu, mask) {
2497 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2498
2499 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2500 cpu, msrs[idx].q,
2501 (nbe ? "enabled" : "disabled"));
2502
2503 if (!nbe)
2504 goto out;
2505
2506 idx++;
2507 }
2508 ret = true;
2509
2510out:
2511 kfree(msrs);
2512 free_cpumask_var(mask);
2513 return ret;
2514}
2515
2516static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2517{
2518 cpumask_var_t cmask;
2519 struct msr *msrs = NULL;
2520 int cpu, idx = 0;
2521
2522 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2523 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2524 __func__);
2525 return false;
2526 }
2527
2528 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2529
2530 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
2531 if (!msrs) {
2532 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2533 __func__);
2534 return -ENOMEM;
2535 }
2536
2537 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2538
2539 for_each_cpu(cpu, cmask) {
2540
2541 if (on) {
2542 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2543 pvt->flags.ecc_report = 1;
2544
2545 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2546 } else {
2547 /*
2548 * Turn off ECC reporting only when it was off before
2549 */
2550 if (!pvt->flags.ecc_report)
2551 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2552 }
2553 idx++;
2554 }
2555 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2556
2557 kfree(msrs);
2558 free_cpumask_var(cmask);
2559
2560 return 0;
2561}
2562
f9431992
DT
2563/*
2564 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2565 * enable it.
2566 */
2567static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2568{
2569 struct amd64_pvt *pvt = mci->pvt_info;
f6d6ae96 2570 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2571
2572 if (!ecc_enable_override)
2573 return;
2574
f9431992
DT
2575 amd64_printk(KERN_WARNING,
2576 "'ecc_enable_override' parameter is active, "
2577 "Enabling AMD ECC hardware now: CAUTION\n");
2578
6ba5dcdc 2579 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2580
2581 /* turn on UECCn and CECCEn bits */
2582 pvt->old_nbctl = value & mask;
2583 pvt->nbctl_mcgctl_saved = 1;
2584
2585 value |= mask;
2586 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2587
f6d6ae96
BP
2588 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2589 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2590 "MCGCTL!\n");
f9431992 2591
6ba5dcdc 2592 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2593
2594 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2595 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2596 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2597
2598 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2599 amd64_printk(KERN_WARNING,
2600 "This node reports that DRAM ECC is "
2601 "currently Disabled; ENABLING now\n");
2602
2603 /* Attempt to turn on DRAM ECC Enable */
2604 value |= K8_NBCFG_ECC_ENABLE;
2605 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2606
6ba5dcdc 2607 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2608
2609 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2610 amd64_printk(KERN_WARNING,
2611 "Hardware rejects Enabling DRAM ECC checking\n"
2612 "Check memory DIMM configuration\n");
2613 } else {
2614 amd64_printk(KERN_DEBUG,
2615 "Hardware accepted DRAM ECC Enable\n");
2616 }
2617 }
2618 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2619 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2620 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2621
2622 pvt->ctl_error_info.nbcfg = value;
2623}
2624
2625static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2626{
f6d6ae96 2627 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
f9431992
DT
2628
2629 if (!pvt->nbctl_mcgctl_saved)
2630 return;
2631
6ba5dcdc 2632 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
f9431992
DT
2633 value &= ~mask;
2634 value |= pvt->old_nbctl;
2635
2636 /* restore the NB Enable MCGCTL bit */
2637 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2638
f6d6ae96
BP
2639 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2640 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2641 "MCGCTL!\n");
f9431992
DT
2642}
2643
2644/*
2645 * EDAC requires that the BIOS have ECC enabled before taking over the
2646 * processing of ECC errors. This is because the BIOS can properly initialize
2647 * the memory system completely. A command line option allows to force-enable
2648 * hardware ECC later in amd64_enable_ecc_error_reporting().
2649 */
be3468e8
BP
2650static const char *ecc_warning =
2651 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2652 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2653 " Also, use of the override can cause unknown side effects.\n";
2654
f9431992
DT
2655static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2656{
2657 u32 value;
06724535
BP
2658 u8 ecc_enabled = 0;
2659 bool nb_mce_en = false;
f9431992 2660
6ba5dcdc 2661 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
f9431992
DT
2662
2663 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
be3468e8
BP
2664 if (!ecc_enabled)
2665 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2666 "is currently disabled, set F3x%x[22] (%s).\n",
2667 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2668 else
2669 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
f9431992 2670
06724535
BP
2671 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2672 if (!nb_mce_en)
be3468e8
BP
2673 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2674 "0x%08x[4] on node %d to enable.\n",
2675 MSR_IA32_MCG_CTL, pvt->mc_node_id);
f9431992 2676
06724535 2677 if (!ecc_enabled || !nb_mce_en) {
f9431992 2678 if (!ecc_enable_override) {
be3468e8
BP
2679 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2680 return -ENODEV;
2681 }
2682 } else
f9431992
DT
2683 /* CLEAR the override, since BIOS controlled it */
2684 ecc_enable_override = 0;
f9431992 2685
be3468e8 2686 return 0;
f9431992
DT
2687}
2688
7d6034d3
DT
2689struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2690 ARRAY_SIZE(amd64_inj_attrs) +
2691 1];
2692
2693struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2694
2695static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2696{
2697 unsigned int i = 0, j = 0;
2698
2699 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2700 sysfs_attrs[i] = amd64_dbg_attrs[i];
2701
2702 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2703 sysfs_attrs[i] = amd64_inj_attrs[j];
2704
2705 sysfs_attrs[i] = terminator;
2706
2707 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2708}
2709
2710static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2711{
2712 struct amd64_pvt *pvt = mci->pvt_info;
2713
2714 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2715 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3
DT
2716
2717 if (pvt->nbcap & K8_NBCAP_SECDED)
2718 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2719
2720 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2721 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2722
2723 mci->edac_cap = amd64_determine_edac_cap(pvt);
2724 mci->mod_name = EDAC_MOD_STR;
2725 mci->mod_ver = EDAC_AMD64_VERSION;
2726 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2727 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2728 mci->ctl_page_to_phys = NULL;
2729
2730 /* IMPORTANT: Set the polling 'check' function in this module */
2731 mci->edac_check = amd64_check;
2732
2733 /* memory scrubber interface */
2734 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2735 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2736}
2737
2738/*
2739 * Init stuff for this DRAM Controller device.
2740 *
2741 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2742 * Space feature MUST be enabled on ALL Processors prior to actually reading
2743 * from the ECS registers. Since the loading of the module can occur on any
2744 * 'core', and cores don't 'see' all the other processors ECS data when the
2745 * others are NOT enabled. Our solution is to first enable ECS access in this
2746 * routine on all processors, gather some data in a amd64_pvt structure and
2747 * later come back in a finish-setup function to perform that final
2748 * initialization. See also amd64_init_2nd_stage() for that.
2749 */
2750static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2751 int mc_type_index)
2752{
2753 struct amd64_pvt *pvt = NULL;
2754 int err = 0, ret;
2755
2756 ret = -ENOMEM;
2757 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2758 if (!pvt)
2759 goto err_exit;
2760
37da0450 2761 pvt->mc_node_id = get_node_id(dram_f2_ctl);
7d6034d3
DT
2762
2763 pvt->dram_f2_ctl = dram_f2_ctl;
2764 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2765 pvt->mc_type_index = mc_type_index;
2766 pvt->ops = family_ops(mc_type_index);
7d6034d3
DT
2767
2768 /*
2769 * We have the dram_f2_ctl device as an argument, now go reserve its
2770 * sibling devices from the PCI system.
2771 */
2772 ret = -ENODEV;
2773 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2774 if (err)
2775 goto err_free;
2776
2777 ret = -EINVAL;
2778 err = amd64_check_ecc_enabled(pvt);
2779 if (err)
2780 goto err_put;
2781
2782 /*
2783 * Key operation here: setup of HW prior to performing ops on it. Some
2784 * setup is required to access ECS data. After this is performed, the
2785 * 'teardown' function must be called upon error and normal exit paths.
2786 */
2787 if (boot_cpu_data.x86 >= 0x10)
2788 amd64_setup(pvt);
2789
2790 /*
2791 * Save the pointer to the private data for use in 2nd initialization
2792 * stage
2793 */
2794 pvt_lookup[pvt->mc_node_id] = pvt;
2795
2796 return 0;
2797
2798err_put:
2799 amd64_free_mc_sibling_devices(pvt);
2800
2801err_free:
2802 kfree(pvt);
2803
2804err_exit:
2805 return ret;
2806}
2807
2808/*
2809 * This is the finishing stage of the init code. Needs to be performed after all
2810 * MCs' hardware have been prepped for accessing extended config space.
2811 */
2812static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2813{
2814 int node_id = pvt->mc_node_id;
2815 struct mem_ctl_info *mci;
986a42a2 2816 int ret;
7d6034d3
DT
2817
2818 amd64_read_mc_registers(pvt);
2819
7d6034d3
DT
2820 /*
2821 * We need to determine how many memory channels there are. Then use
2822 * that information for calculating the size of the dynamic instance
2823 * tables in the 'mci' structure
2824 */
2825 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2826 if (pvt->channel_count < 0)
2827 goto err_exit;
2828
2829 ret = -ENOMEM;
9d858bb1 2830 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
7d6034d3
DT
2831 if (!mci)
2832 goto err_exit;
2833
2834 mci->pvt_info = pvt;
2835
2836 mci->dev = &pvt->dram_f2_ctl->dev;
2837 amd64_setup_mci_misc_attributes(mci);
2838
2839 if (amd64_init_csrows(mci))
2840 mci->edac_cap = EDAC_FLAG_NONE;
2841
2842 amd64_enable_ecc_error_reporting(mci);
2843 amd64_set_mc_sysfs_attributes(mci);
2844
2845 ret = -ENODEV;
2846 if (edac_mc_add_mc(mci)) {
2847 debugf1("failed edac_mc_add_mc()\n");
2848 goto err_add_mc;
2849 }
2850
2851 mci_lookup[node_id] = mci;
2852 pvt_lookup[node_id] = NULL;
549d042d
BP
2853
2854 /* register stuff with EDAC MCE */
2855 if (report_gart_errors)
2856 amd_report_gart_errors(true);
2857
2858 amd_register_ecc_decoder(amd64_decode_bus_error);
2859
7d6034d3
DT
2860 return 0;
2861
2862err_add_mc:
2863 edac_mc_free(mci);
2864
2865err_exit:
2866 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2867
2868 amd64_restore_ecc_error_reporting(pvt);
2869
2870 if (boot_cpu_data.x86 > 0xf)
2871 amd64_teardown(pvt);
2872
2873 amd64_free_mc_sibling_devices(pvt);
2874
2875 kfree(pvt_lookup[pvt->mc_node_id]);
2876 pvt_lookup[node_id] = NULL;
2877
2878 return ret;
2879}
2880
2881
2882static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2883 const struct pci_device_id *mc_type)
2884{
2885 int ret = 0;
2886
37da0450 2887 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
7d6034d3
DT
2888 get_amd_family_name(mc_type->driver_data));
2889
2890 ret = pci_enable_device(pdev);
2891 if (ret < 0)
2892 ret = -EIO;
2893 else
2894 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2895
2896 if (ret < 0)
2897 debugf0("ret=%d\n", ret);
2898
2899 return ret;
2900}
2901
2902static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2903{
2904 struct mem_ctl_info *mci;
2905 struct amd64_pvt *pvt;
2906
2907 /* Remove from EDAC CORE tracking list */
2908 mci = edac_mc_del_mc(&pdev->dev);
2909 if (!mci)
2910 return;
2911
2912 pvt = mci->pvt_info;
2913
2914 amd64_restore_ecc_error_reporting(pvt);
2915
2916 if (boot_cpu_data.x86 > 0xf)
2917 amd64_teardown(pvt);
2918
2919 amd64_free_mc_sibling_devices(pvt);
2920
2921 kfree(pvt);
2922 mci->pvt_info = NULL;
2923
2924 mci_lookup[pvt->mc_node_id] = NULL;
2925
549d042d
BP
2926 /* unregister from EDAC MCE */
2927 amd_report_gart_errors(false);
2928 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2929
7d6034d3
DT
2930 /* Free the EDAC CORE resources */
2931 edac_mc_free(mci);
2932}
2933
2934/*
2935 * This table is part of the interface for loading drivers for PCI devices. The
2936 * PCI core identifies what devices are on a system during boot, and then
2937 * inquiry this table to see if this driver is for a given device found.
2938 */
2939static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2940 {
2941 .vendor = PCI_VENDOR_ID_AMD,
2942 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2943 .subvendor = PCI_ANY_ID,
2944 .subdevice = PCI_ANY_ID,
2945 .class = 0,
2946 .class_mask = 0,
2947 .driver_data = K8_CPUS
2948 },
2949 {
2950 .vendor = PCI_VENDOR_ID_AMD,
2951 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2952 .subvendor = PCI_ANY_ID,
2953 .subdevice = PCI_ANY_ID,
2954 .class = 0,
2955 .class_mask = 0,
2956 .driver_data = F10_CPUS
2957 },
2958 {
2959 .vendor = PCI_VENDOR_ID_AMD,
2960 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2961 .subvendor = PCI_ANY_ID,
2962 .subdevice = PCI_ANY_ID,
2963 .class = 0,
2964 .class_mask = 0,
2965 .driver_data = F11_CPUS
2966 },
2967 {0, }
2968};
2969MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2970
2971static struct pci_driver amd64_pci_driver = {
2972 .name = EDAC_MOD_STR,
2973 .probe = amd64_init_one_instance,
2974 .remove = __devexit_p(amd64_remove_one_instance),
2975 .id_table = amd64_pci_table,
2976};
2977
2978static void amd64_setup_pci_device(void)
2979{
2980 struct mem_ctl_info *mci;
2981 struct amd64_pvt *pvt;
2982
2983 if (amd64_ctl_pci)
2984 return;
2985
2986 mci = mci_lookup[0];
2987 if (mci) {
2988
2989 pvt = mci->pvt_info;
2990 amd64_ctl_pci =
2991 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
2992 EDAC_MOD_STR);
2993
2994 if (!amd64_ctl_pci) {
2995 pr_warning("%s(): Unable to create PCI control\n",
2996 __func__);
2997
2998 pr_warning("%s(): PCI error report via EDAC not set\n",
2999 __func__);
3000 }
3001 }
3002}
3003
3004static int __init amd64_edac_init(void)
3005{
3006 int nb, err = -ENODEV;
3007
3008 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3009
3010 opstate_init();
3011
3012 if (cache_k8_northbridges() < 0)
a3c4c580 3013 return err;
7d6034d3
DT
3014
3015 err = pci_register_driver(&amd64_pci_driver);
3016 if (err)
3017 return err;
3018
3019 /*
3020 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3021 * amd64_pvt structs. These will be used in the 2nd stage init function
3022 * to finish initialization of the MC instances.
3023 */
3024 for (nb = 0; nb < num_k8_northbridges; nb++) {
3025 if (!pvt_lookup[nb])
3026 continue;
3027
3028 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3029 if (err)
37da0450 3030 goto err_2nd_stage;
7d6034d3
DT
3031 }
3032
3033 amd64_setup_pci_device();
3034
3035 return 0;
3036
37da0450
BP
3037err_2nd_stage:
3038 debugf0("2nd stage failed\n");
7d6034d3
DT
3039 pci_unregister_driver(&amd64_pci_driver);
3040
3041 return err;
3042}
3043
3044static void __exit amd64_edac_exit(void)
3045{
3046 if (amd64_ctl_pci)
3047 edac_pci_release_generic_ctl(amd64_ctl_pci);
3048
3049 pci_unregister_driver(&amd64_pci_driver);
3050}
3051
3052module_init(amd64_edac_init);
3053module_exit(amd64_edac_exit);
3054
3055MODULE_LICENSE("GPL");
3056MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3057 "Dave Peterson, Thayne Harbaugh");
3058MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3059 EDAC_AMD64_VERSION);
3060
3061module_param(edac_op_state, int, 0444);
3062MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");