]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/dma/ste_dma40.c
DMAENGINE: ste_dma40: allocate LCLA dynamically
[net-next-2.6.git] / drivers / dma / ste_dma40.c
CommitLineData
8d318a50
LW
1/*
2 * driver/dma/ste_dma40.c
3 *
4 * Copyright (C) ST-Ericsson 2007-2010
5 * License terms: GNU General Public License (GPL) version 2
6 * Author: Per Friden <per.friden@stericsson.com>
7 * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8 *
9 */
10
11#include <linux/kernel.h>
12#include <linux/slab.h>
13#include <linux/dmaengine.h>
14#include <linux/platform_device.h>
15#include <linux/clk.h>
16#include <linux/delay.h>
17
18#include <plat/ste_dma40.h>
19
20#include "ste_dma40_ll.h"
21
22#define D40_NAME "dma40"
23
24#define D40_PHY_CHAN -1
25
26/* For masking out/in 2 bit channel positions */
27#define D40_CHAN_POS(chan) (2 * (chan / 2))
28#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29
30/* Maximum iterations taken before giving up suspending a channel */
31#define D40_SUSPEND_MAX_IT 500
32
508849ad
LW
33/* Hardware requirement on LCLA alignment */
34#define LCLA_ALIGNMENT 0x40000
35/* Attempts before giving up to trying to get pages that are aligned */
36#define MAX_LCLA_ALLOC_ATTEMPTS 256
37
38/* Bit markings for allocation map */
8d318a50
LW
39#define D40_ALLOC_FREE (1 << 31)
40#define D40_ALLOC_PHY (1 << 30)
41#define D40_ALLOC_LOG_FREE 0
42
8d318a50
LW
43/* Hardware designer of the block */
44#define D40_PERIPHID2_DESIGNER 0x8
45
46/**
47 * enum 40_command - The different commands and/or statuses.
48 *
49 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
50 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
51 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
52 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
53 */
54enum d40_command {
55 D40_DMA_STOP = 0,
56 D40_DMA_RUN = 1,
57 D40_DMA_SUSPEND_REQ = 2,
58 D40_DMA_SUSPENDED = 3
59};
60
61/**
62 * struct d40_lli_pool - Structure for keeping LLIs in memory
63 *
64 * @base: Pointer to memory area when the pre_alloc_lli's are not large
65 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
66 * pre_alloc_lli is used.
67 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
68 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
69 * one buffer to one buffer.
70 */
71struct d40_lli_pool {
72 void *base;
508849ad 73 int size;
8d318a50 74 /* Space for dst and src, plus an extra for padding */
508849ad 75 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
8d318a50
LW
76};
77
78/**
79 * struct d40_desc - A descriptor is one DMA job.
80 *
81 * @lli_phy: LLI settings for physical channel. Both src and dst=
82 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
83 * lli_len equals one.
84 * @lli_log: Same as above but for logical channels.
85 * @lli_pool: The pool with two entries pre-allocated.
941b77a3
PF
86 * @lli_len: Number of llis of current descriptor.
87 * @lli_count: Number of transfered llis.
88 * @lli_tx_len: Max number of LLIs per transfer, there can be
89 * many transfer for one descriptor.
8d318a50
LW
90 * @txd: DMA engine struct. Used for among other things for communication
91 * during a transfer.
92 * @node: List entry.
93 * @dir: The transfer direction of this job.
94 * @is_in_client_list: true if the client owns this descriptor.
95 *
96 * This descriptor is used for both logical and physical transfers.
97 */
98
99struct d40_desc {
100 /* LLI physical */
101 struct d40_phy_lli_bidir lli_phy;
102 /* LLI logical */
103 struct d40_log_lli_bidir lli_log;
104
105 struct d40_lli_pool lli_pool;
941b77a3
PF
106 int lli_len;
107 int lli_count;
108 u32 lli_tx_len;
8d318a50
LW
109
110 struct dma_async_tx_descriptor txd;
111 struct list_head node;
112
113 enum dma_data_direction dir;
114 bool is_in_client_list;
115};
116
117/**
118 * struct d40_lcla_pool - LCLA pool settings and data.
119 *
508849ad
LW
120 * @base: The virtual address of LCLA. 18 bit aligned.
121 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
122 * This pointer is only there for clean-up on error.
123 * @pages: The number of pages needed for all physical channels.
124 * Only used later for clean-up on error
8d318a50 125 * @lock: Lock to protect the content in this struct.
508849ad 126 * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
8d318a50
LW
127 * @num_blocks: The number of entries of alloc_map. Equals to the
128 * number of physical channels.
129 */
130struct d40_lcla_pool {
131 void *base;
508849ad
LW
132 void *base_unaligned;
133 int pages;
8d318a50
LW
134 spinlock_t lock;
135 u32 *alloc_map;
136 int num_blocks;
137};
138
139/**
140 * struct d40_phy_res - struct for handling eventlines mapped to physical
141 * channels.
142 *
143 * @lock: A lock protection this entity.
144 * @num: The physical channel number of this entity.
145 * @allocated_src: Bit mapped to show which src event line's are mapped to
146 * this physical channel. Can also be free or physically allocated.
147 * @allocated_dst: Same as for src but is dst.
148 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149 * event line number. Both allocated_src and allocated_dst can not be
150 * allocated to a physical channel, since the interrupt handler has then
151 * no way of figure out which one the interrupt belongs to.
152 */
153struct d40_phy_res {
154 spinlock_t lock;
155 int num;
156 u32 allocated_src;
157 u32 allocated_dst;
158};
159
160struct d40_base;
161
162/**
163 * struct d40_chan - Struct that describes a channel.
164 *
165 * @lock: A spinlock to protect this struct.
166 * @log_num: The logical number, if any of this channel.
167 * @completed: Starts with 1, after first interrupt it is set to dma engine's
168 * current cookie.
169 * @pending_tx: The number of pending transfers. Used between interrupt handler
170 * and tasklet.
171 * @busy: Set to true when transfer is ongoing on this channel.
2a614340
JA
172 * @phy_chan: Pointer to physical channel which this instance runs on. If this
173 * point is NULL, then the channel is not allocated.
8d318a50
LW
174 * @chan: DMA engine handle.
175 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176 * transfer and call client callback.
177 * @client: Cliented owned descriptor list.
178 * @active: Active descriptor.
179 * @queue: Queued jobs.
8d318a50
LW
180 * @dma_cfg: The client configuration of this dma channel.
181 * @base: Pointer to the device instance struct.
182 * @src_def_cfg: Default cfg register setting for src.
183 * @dst_def_cfg: Default cfg register setting for dst.
184 * @log_def: Default logical channel settings.
185 * @lcla: Space for one dst src pair for logical channel transfers.
186 * @lcpa: Pointer to dst and src lcpa settings.
187 *
188 * This struct can either "be" a logical or a physical channel.
189 */
190struct d40_chan {
191 spinlock_t lock;
192 int log_num;
193 /* ID of the most recent completed transfer */
194 int completed;
195 int pending_tx;
196 bool busy;
197 struct d40_phy_res *phy_chan;
198 struct dma_chan chan;
199 struct tasklet_struct tasklet;
200 struct list_head client;
201 struct list_head active;
202 struct list_head queue;
8d318a50
LW
203 struct stedma40_chan_cfg dma_cfg;
204 struct d40_base *base;
205 /* Default register configurations */
206 u32 src_def_cfg;
207 u32 dst_def_cfg;
208 struct d40_def_lcsp log_def;
209 struct d40_lcla_elem lcla;
210 struct d40_log_lli_full *lcpa;
211};
212
213/**
214 * struct d40_base - The big global struct, one for each probe'd instance.
215 *
216 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
217 * @execmd_lock: Lock for execute command usage since several channels share
218 * the same physical register.
219 * @dev: The device structure.
220 * @virtbase: The virtual base address of the DMA's register.
221 * @clk: Pointer to the DMA clock structure.
222 * @phy_start: Physical memory start of the DMA registers.
223 * @phy_size: Size of the DMA register map.
224 * @irq: The IRQ number.
225 * @num_phy_chans: The number of physical channels. Read from HW. This
226 * is the number of available channels for this driver, not counting "Secure
227 * mode" allocated physical channels.
228 * @num_log_chans: The number of logical channels. Calculated from
229 * num_phy_chans.
230 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
231 * @dma_slave: dma_device channels that can do only do slave transfers.
232 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
233 * @phy_chans: Room for all possible physical channels in system.
234 * @log_chans: Room for all possible logical channels in system.
235 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
236 * to log_chans entries.
237 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
238 * to phy_chans entries.
239 * @plat_data: Pointer to provided platform_data which is the driver
240 * configuration.
241 * @phy_res: Vector containing all physical channels.
242 * @lcla_pool: lcla pool settings and data.
243 * @lcpa_base: The virtual mapped address of LCPA.
244 * @phy_lcpa: The physical address of the LCPA.
245 * @lcpa_size: The size of the LCPA area.
c675b1b4 246 * @desc_slab: cache for descriptors.
8d318a50
LW
247 */
248struct d40_base {
249 spinlock_t interrupt_lock;
250 spinlock_t execmd_lock;
251 struct device *dev;
252 void __iomem *virtbase;
253 struct clk *clk;
254 phys_addr_t phy_start;
255 resource_size_t phy_size;
256 int irq;
257 int num_phy_chans;
258 int num_log_chans;
259 struct dma_device dma_both;
260 struct dma_device dma_slave;
261 struct dma_device dma_memcpy;
262 struct d40_chan *phy_chans;
263 struct d40_chan *log_chans;
264 struct d40_chan **lookup_log_chans;
265 struct d40_chan **lookup_phy_chans;
266 struct stedma40_platform_data *plat_data;
267 /* Physical half channels */
268 struct d40_phy_res *phy_res;
269 struct d40_lcla_pool lcla_pool;
270 void *lcpa_base;
271 dma_addr_t phy_lcpa;
272 resource_size_t lcpa_size;
c675b1b4 273 struct kmem_cache *desc_slab;
8d318a50
LW
274};
275
276/**
277 * struct d40_interrupt_lookup - lookup table for interrupt handler
278 *
279 * @src: Interrupt mask register.
280 * @clr: Interrupt clear register.
281 * @is_error: true if this is an error interrupt.
282 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
283 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
284 */
285struct d40_interrupt_lookup {
286 u32 src;
287 u32 clr;
288 bool is_error;
289 int offset;
290};
291
292/**
293 * struct d40_reg_val - simple lookup struct
294 *
295 * @reg: The register.
296 * @val: The value that belongs to the register in reg.
297 */
298struct d40_reg_val {
299 unsigned int reg;
300 unsigned int val;
301};
302
303static int d40_pool_lli_alloc(struct d40_desc *d40d,
304 int lli_len, bool is_log)
305{
306 u32 align;
307 void *base;
308
309 if (is_log)
310 align = sizeof(struct d40_log_lli);
311 else
312 align = sizeof(struct d40_phy_lli);
313
314 if (lli_len == 1) {
315 base = d40d->lli_pool.pre_alloc_lli;
316 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
317 d40d->lli_pool.base = NULL;
318 } else {
319 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
320
321 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
322 d40d->lli_pool.base = base;
323
324 if (d40d->lli_pool.base == NULL)
325 return -ENOMEM;
326 }
327
328 if (is_log) {
329 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
330 align);
331 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
332 align);
333 } else {
334 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
335 align);
336 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
337 align);
338
339 d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
340 d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
341 }
342
343 return 0;
344}
345
346static void d40_pool_lli_free(struct d40_desc *d40d)
347{
348 kfree(d40d->lli_pool.base);
349 d40d->lli_pool.base = NULL;
350 d40d->lli_pool.size = 0;
351 d40d->lli_log.src = NULL;
352 d40d->lli_log.dst = NULL;
353 d40d->lli_phy.src = NULL;
354 d40d->lli_phy.dst = NULL;
355 d40d->lli_phy.src_addr = 0;
356 d40d->lli_phy.dst_addr = 0;
357}
358
359static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
360 struct d40_desc *desc)
361{
362 dma_cookie_t cookie = d40c->chan.cookie;
363
364 if (++cookie < 0)
365 cookie = 1;
366
367 d40c->chan.cookie = cookie;
368 desc->txd.cookie = cookie;
369
370 return cookie;
371}
372
8d318a50
LW
373static void d40_desc_remove(struct d40_desc *d40d)
374{
375 list_del(&d40d->node);
376}
377
378static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
379{
8d318a50
LW
380 struct d40_desc *d;
381 struct d40_desc *_d;
382
383 if (!list_empty(&d40c->client)) {
384 list_for_each_entry_safe(d, _d, &d40c->client, node)
385 if (async_tx_test_ack(&d->txd)) {
386 d40_pool_lli_free(d);
387 d40_desc_remove(d);
c675b1b4 388 break;
8d318a50 389 }
8d318a50 390 } else {
c675b1b4
JA
391 d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
392 if (d != NULL) {
393 memset(d, 0, sizeof(struct d40_desc));
394 INIT_LIST_HEAD(&d->node);
395 }
8d318a50 396 }
c675b1b4 397 return d;
8d318a50
LW
398}
399
400static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
401{
c675b1b4 402 kmem_cache_free(d40c->base->desc_slab, d40d);
8d318a50
LW
403}
404
405static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
406{
407 list_add_tail(&desc->node, &d40c->active);
408}
409
410static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
411{
412 struct d40_desc *d;
413
414 if (list_empty(&d40c->active))
415 return NULL;
416
417 d = list_first_entry(&d40c->active,
418 struct d40_desc,
419 node);
420 return d;
421}
422
423static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
424{
425 list_add_tail(&desc->node, &d40c->queue);
426}
427
428static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
429{
430 struct d40_desc *d;
431
432 if (list_empty(&d40c->queue))
433 return NULL;
434
435 d = list_first_entry(&d40c->queue,
436 struct d40_desc,
437 node);
438 return d;
439}
440
441/* Support functions for logical channels */
442
508849ad 443static int d40_lcla_id_get(struct d40_chan *d40c)
8d318a50
LW
444{
445 int src_id = 0;
446 int dst_id = 0;
447 struct d40_log_lli *lcla_lidx_base =
508849ad 448 d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
8d318a50
LW
449 int i;
450 int lli_per_log = d40c->base->plat_data->llis_per_log;
2292b880 451 unsigned long flags;
8d318a50
LW
452
453 if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
454 return 0;
455
508849ad 456 if (d40c->base->lcla_pool.num_blocks > 32)
8d318a50
LW
457 return -EINVAL;
458
508849ad 459 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
8d318a50 460
508849ad
LW
461 for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
462 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
463 (0x1 << i))) {
464 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
465 (0x1 << i);
8d318a50
LW
466 break;
467 }
468 }
469 src_id = i;
508849ad 470 if (src_id >= d40c->base->lcla_pool.num_blocks)
8d318a50
LW
471 goto err;
472
508849ad
LW
473 for (; i < d40c->base->lcla_pool.num_blocks; i++) {
474 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
475 (0x1 << i))) {
476 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
477 (0x1 << i);
8d318a50
LW
478 break;
479 }
480 }
481
482 dst_id = i;
483 if (dst_id == src_id)
484 goto err;
485
486 d40c->lcla.src_id = src_id;
487 d40c->lcla.dst_id = dst_id;
488 d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
489 d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
490
508849ad 491 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
8d318a50
LW
492 return 0;
493err:
508849ad 494 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
8d318a50
LW
495 return -EINVAL;
496}
497
8d318a50
LW
498
499static int d40_channel_execute_command(struct d40_chan *d40c,
500 enum d40_command command)
501{
502 int status, i;
503 void __iomem *active_reg;
504 int ret = 0;
505 unsigned long flags;
1d392a7b 506 u32 wmask;
8d318a50
LW
507
508 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
509
510 if (d40c->phy_chan->num % 2 == 0)
511 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
512 else
513 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
514
515 if (command == D40_DMA_SUSPEND_REQ) {
516 status = (readl(active_reg) &
517 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
518 D40_CHAN_POS(d40c->phy_chan->num);
519
520 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
521 goto done;
522 }
523
1d392a7b
JA
524 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
525 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
526 active_reg);
8d318a50
LW
527
528 if (command == D40_DMA_SUSPEND_REQ) {
529
530 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
531 status = (readl(active_reg) &
532 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
533 D40_CHAN_POS(d40c->phy_chan->num);
534
535 cpu_relax();
536 /*
537 * Reduce the number of bus accesses while
538 * waiting for the DMA to suspend.
539 */
540 udelay(3);
541
542 if (status == D40_DMA_STOP ||
543 status == D40_DMA_SUSPENDED)
544 break;
545 }
546
547 if (i == D40_SUSPEND_MAX_IT) {
548 dev_err(&d40c->chan.dev->device,
549 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
550 __func__, d40c->phy_chan->num, d40c->log_num,
551 status);
552 dump_stack();
553 ret = -EBUSY;
554 }
555
556 }
557done:
558 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
559 return ret;
560}
561
562static void d40_term_all(struct d40_chan *d40c)
563{
564 struct d40_desc *d40d;
508849ad 565 unsigned long flags;
8d318a50
LW
566
567 /* Release active descriptors */
568 while ((d40d = d40_first_active_get(d40c))) {
569 d40_desc_remove(d40d);
570
571 /* Return desc to free-list */
572 d40_desc_free(d40c, d40d);
573 }
574
575 /* Release queued descriptors waiting for transfer */
576 while ((d40d = d40_first_queued(d40c))) {
577 d40_desc_remove(d40d);
578
579 /* Return desc to free-list */
580 d40_desc_free(d40c, d40d);
581 }
582
508849ad
LW
583 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
584
585 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
586 (~(0x1 << d40c->lcla.dst_id));
587 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
588 (~(0x1 << d40c->lcla.src_id));
589
590 d40c->lcla.src_id = -1;
591 d40c->lcla.dst_id = -1;
592
593 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
8d318a50
LW
594
595 d40c->pending_tx = 0;
596 d40c->busy = false;
597}
598
599static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
600{
601 u32 val;
602 unsigned long flags;
603
0c32269d 604 /* Notice, that disable requires the physical channel to be stopped */
8d318a50
LW
605 if (do_enable)
606 val = D40_ACTIVATE_EVENTLINE;
607 else
608 val = D40_DEACTIVATE_EVENTLINE;
609
610 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
611
612 /* Enable event line connected to device (or memcpy) */
613 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
614 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
615 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
616
617 writel((val << D40_EVENTLINE_POS(event)) |
618 ~D40_EVENTLINE_MASK(event),
619 d40c->base->virtbase + D40_DREG_PCBASE +
620 d40c->phy_chan->num * D40_DREG_PCDELTA +
621 D40_CHAN_REG_SSLNK);
622 }
623 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
624 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
625
626 writel((val << D40_EVENTLINE_POS(event)) |
627 ~D40_EVENTLINE_MASK(event),
628 d40c->base->virtbase + D40_DREG_PCBASE +
629 d40c->phy_chan->num * D40_DREG_PCDELTA +
630 D40_CHAN_REG_SDLNK);
631 }
632
633 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
634}
635
a5ebca47 636static u32 d40_chan_has_events(struct d40_chan *d40c)
8d318a50
LW
637{
638 u32 val = 0;
639
640 /* If SSLNK or SDLNK is zero all events are disabled */
641 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
642 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
643 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
644 d40c->phy_chan->num * D40_DREG_PCDELTA +
645 D40_CHAN_REG_SSLNK);
646
647 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM)
648 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
649 d40c->phy_chan->num * D40_DREG_PCDELTA +
650 D40_CHAN_REG_SDLNK);
a5ebca47 651 return val;
8d318a50
LW
652}
653
654static void d40_config_enable_lidx(struct d40_chan *d40c)
655{
656 /* Set LIDX for lcla */
657 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
658 D40_SREG_ELEM_LOG_LIDX_MASK,
659 d40c->base->virtbase + D40_DREG_PCBASE +
660 d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
661
662 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
663 D40_SREG_ELEM_LOG_LIDX_MASK,
664 d40c->base->virtbase + D40_DREG_PCBASE +
665 d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
666}
667
668static int d40_config_write(struct d40_chan *d40c)
669{
670 u32 addr_base;
671 u32 var;
672 int res;
673
674 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
675 if (res)
676 return res;
677
678 /* Odd addresses are even addresses + 4 */
679 addr_base = (d40c->phy_chan->num % 2) * 4;
680 /* Setup channel mode to logical or physical */
681 var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
682 D40_CHAN_POS(d40c->phy_chan->num);
683 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
684
685 /* Setup operational mode option register */
686 var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
687 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
688
689 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
690
691 if (d40c->log_num != D40_PHY_CHAN) {
692 /* Set default config for CFG reg */
693 writel(d40c->src_def_cfg,
694 d40c->base->virtbase + D40_DREG_PCBASE +
695 d40c->phy_chan->num * D40_DREG_PCDELTA +
696 D40_CHAN_REG_SSCFG);
697 writel(d40c->dst_def_cfg,
698 d40c->base->virtbase + D40_DREG_PCBASE +
699 d40c->phy_chan->num * D40_DREG_PCDELTA +
700 D40_CHAN_REG_SDCFG);
701
702 d40_config_enable_lidx(d40c);
703 }
704 return res;
705}
706
707static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
708{
8d318a50
LW
709 if (d40d->lli_phy.dst && d40d->lli_phy.src) {
710 d40_phy_lli_write(d40c->base->virtbase,
711 d40c->phy_chan->num,
712 d40d->lli_phy.dst,
713 d40d->lli_phy.src);
8d318a50 714 } else if (d40d->lli_log.dst && d40d->lli_log.src) {
8d318a50
LW
715 struct d40_log_lli *src = d40d->lli_log.src;
716 struct d40_log_lli *dst = d40d->lli_log.dst;
508849ad 717 int s;
8d318a50 718
941b77a3
PF
719 src += d40d->lli_count;
720 dst += d40d->lli_count;
508849ad
LW
721 s = d40_log_lli_write(d40c->lcpa,
722 d40c->lcla.src, d40c->lcla.dst,
723 dst, src,
724 d40c->base->plat_data->llis_per_log);
725
726 /* If s equals to zero, the job is not linked */
727 if (s > 0) {
728 (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
729 s * sizeof(struct d40_log_lli),
730 DMA_TO_DEVICE);
731 (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
732 s * sizeof(struct d40_log_lli),
733 DMA_TO_DEVICE);
734 }
8d318a50 735 }
941b77a3 736 d40d->lli_count += d40d->lli_tx_len;
8d318a50
LW
737}
738
739static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
740{
741 struct d40_chan *d40c = container_of(tx->chan,
742 struct d40_chan,
743 chan);
744 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
745 unsigned long flags;
746
747 spin_lock_irqsave(&d40c->lock, flags);
748
749 tx->cookie = d40_assign_cookie(d40c, d40d);
750
751 d40_desc_queue(d40c, d40d);
752
753 spin_unlock_irqrestore(&d40c->lock, flags);
754
755 return tx->cookie;
756}
757
758static int d40_start(struct d40_chan *d40c)
759{
0c32269d 760 if (d40c->log_num != D40_PHY_CHAN)
8d318a50 761 d40_config_set_event(d40c, true);
8d318a50 762
0c32269d 763 return d40_channel_execute_command(d40c, D40_DMA_RUN);
8d318a50
LW
764}
765
766static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
767{
768 struct d40_desc *d40d;
769 int err;
770
771 /* Start queued jobs, if any */
772 d40d = d40_first_queued(d40c);
773
774 if (d40d != NULL) {
775 d40c->busy = true;
776
777 /* Remove from queue */
778 d40_desc_remove(d40d);
779
780 /* Add to active queue */
781 d40_desc_submit(d40c, d40d);
782
783 /* Initiate DMA job */
784 d40_desc_load(d40c, d40d);
785
786 /* Start dma job */
787 err = d40_start(d40c);
788
789 if (err)
790 return NULL;
791 }
792
793 return d40d;
794}
795
796/* called from interrupt context */
797static void dma_tc_handle(struct d40_chan *d40c)
798{
799 struct d40_desc *d40d;
800
801 if (!d40c->phy_chan)
802 return;
803
804 /* Get first active entry from list */
805 d40d = d40_first_active_get(d40c);
806
807 if (d40d == NULL)
808 return;
809
941b77a3 810 if (d40d->lli_count < d40d->lli_len) {
8d318a50
LW
811
812 d40_desc_load(d40c, d40d);
813 /* Start dma job */
814 (void) d40_start(d40c);
815 return;
816 }
817
818 if (d40_queue_start(d40c) == NULL)
819 d40c->busy = false;
820
821 d40c->pending_tx++;
822 tasklet_schedule(&d40c->tasklet);
823
824}
825
826static void dma_tasklet(unsigned long data)
827{
828 struct d40_chan *d40c = (struct d40_chan *) data;
829 struct d40_desc *d40d_fin;
830 unsigned long flags;
831 dma_async_tx_callback callback;
832 void *callback_param;
833
834 spin_lock_irqsave(&d40c->lock, flags);
835
836 /* Get first active entry from list */
837 d40d_fin = d40_first_active_get(d40c);
838
839 if (d40d_fin == NULL)
840 goto err;
841
842 d40c->completed = d40d_fin->txd.cookie;
843
844 /*
845 * If terminating a channel pending_tx is set to zero.
846 * This prevents any finished active jobs to return to the client.
847 */
848 if (d40c->pending_tx == 0) {
849 spin_unlock_irqrestore(&d40c->lock, flags);
850 return;
851 }
852
853 /* Callback to client */
854 callback = d40d_fin->txd.callback;
855 callback_param = d40d_fin->txd.callback_param;
856
857 if (async_tx_test_ack(&d40d_fin->txd)) {
858 d40_pool_lli_free(d40d_fin);
859 d40_desc_remove(d40d_fin);
860 /* Return desc to free-list */
861 d40_desc_free(d40c, d40d_fin);
862 } else {
8d318a50
LW
863 if (!d40d_fin->is_in_client_list) {
864 d40_desc_remove(d40d_fin);
865 list_add_tail(&d40d_fin->node, &d40c->client);
866 d40d_fin->is_in_client_list = true;
867 }
868 }
869
870 d40c->pending_tx--;
871
872 if (d40c->pending_tx)
873 tasklet_schedule(&d40c->tasklet);
874
875 spin_unlock_irqrestore(&d40c->lock, flags);
876
877 if (callback)
878 callback(callback_param);
879
880 return;
881
882 err:
883 /* Rescue manouver if receiving double interrupts */
884 if (d40c->pending_tx > 0)
885 d40c->pending_tx--;
886 spin_unlock_irqrestore(&d40c->lock, flags);
887}
888
889static irqreturn_t d40_handle_interrupt(int irq, void *data)
890{
891 static const struct d40_interrupt_lookup il[] = {
892 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
893 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
894 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
895 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
896 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
897 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
898 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
899 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
900 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
901 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
902 };
903
904 int i;
905 u32 regs[ARRAY_SIZE(il)];
906 u32 tmp;
907 u32 idx;
908 u32 row;
909 long chan = -1;
910 struct d40_chan *d40c;
911 unsigned long flags;
912 struct d40_base *base = data;
913
914 spin_lock_irqsave(&base->interrupt_lock, flags);
915
916 /* Read interrupt status of both logical and physical channels */
917 for (i = 0; i < ARRAY_SIZE(il); i++)
918 regs[i] = readl(base->virtbase + il[i].src);
919
920 for (;;) {
921
922 chan = find_next_bit((unsigned long *)regs,
923 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
924
925 /* No more set bits found? */
926 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
927 break;
928
929 row = chan / BITS_PER_LONG;
930 idx = chan & (BITS_PER_LONG - 1);
931
932 /* ACK interrupt */
933 tmp = readl(base->virtbase + il[row].clr);
934 tmp |= 1 << idx;
935 writel(tmp, base->virtbase + il[row].clr);
936
937 if (il[row].offset == D40_PHY_CHAN)
938 d40c = base->lookup_phy_chans[idx];
939 else
940 d40c = base->lookup_log_chans[il[row].offset + idx];
941 spin_lock(&d40c->lock);
942
943 if (!il[row].is_error)
944 dma_tc_handle(d40c);
945 else
508849ad
LW
946 dev_err(base->dev,
947 "[%s] IRQ chan: %ld offset %d idx %d\n",
8d318a50
LW
948 __func__, chan, il[row].offset, idx);
949
950 spin_unlock(&d40c->lock);
951 }
952
953 spin_unlock_irqrestore(&base->interrupt_lock, flags);
954
955 return IRQ_HANDLED;
956}
957
958
959static int d40_validate_conf(struct d40_chan *d40c,
960 struct stedma40_chan_cfg *conf)
961{
962 int res = 0;
963 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
964 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
965 bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
966 == STEDMA40_CHANNEL_IN_LOG_MODE;
967
968 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH &&
969 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
970 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
971 __func__);
972 res = -EINVAL;
973 }
974
975 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM &&
976 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
977 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
978 __func__);
979 res = -EINVAL;
980 }
981
982 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
983 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
984 dev_err(&d40c->chan.dev->device,
985 "[%s] No event line\n", __func__);
986 res = -EINVAL;
987 }
988
989 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
990 (src_event_group != dst_event_group)) {
991 dev_err(&d40c->chan.dev->device,
992 "[%s] Invalid event group\n", __func__);
993 res = -EINVAL;
994 }
995
996 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
997 /*
998 * DMAC HW supports it. Will be added to this driver,
999 * in case any dma client requires it.
1000 */
1001 dev_err(&d40c->chan.dev->device,
1002 "[%s] periph to periph not supported\n",
1003 __func__);
1004 res = -EINVAL;
1005 }
1006
1007 return res;
1008}
1009
1010static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
4aed79b2 1011 int log_event_line, bool is_log)
8d318a50
LW
1012{
1013 unsigned long flags;
1014 spin_lock_irqsave(&phy->lock, flags);
4aed79b2 1015 if (!is_log) {
8d318a50
LW
1016 /* Physical interrupts are masked per physical full channel */
1017 if (phy->allocated_src == D40_ALLOC_FREE &&
1018 phy->allocated_dst == D40_ALLOC_FREE) {
1019 phy->allocated_dst = D40_ALLOC_PHY;
1020 phy->allocated_src = D40_ALLOC_PHY;
1021 goto found;
1022 } else
1023 goto not_found;
1024 }
1025
1026 /* Logical channel */
1027 if (is_src) {
1028 if (phy->allocated_src == D40_ALLOC_PHY)
1029 goto not_found;
1030
1031 if (phy->allocated_src == D40_ALLOC_FREE)
1032 phy->allocated_src = D40_ALLOC_LOG_FREE;
1033
1034 if (!(phy->allocated_src & (1 << log_event_line))) {
1035 phy->allocated_src |= 1 << log_event_line;
1036 goto found;
1037 } else
1038 goto not_found;
1039 } else {
1040 if (phy->allocated_dst == D40_ALLOC_PHY)
1041 goto not_found;
1042
1043 if (phy->allocated_dst == D40_ALLOC_FREE)
1044 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1045
1046 if (!(phy->allocated_dst & (1 << log_event_line))) {
1047 phy->allocated_dst |= 1 << log_event_line;
1048 goto found;
1049 } else
1050 goto not_found;
1051 }
1052
1053not_found:
1054 spin_unlock_irqrestore(&phy->lock, flags);
1055 return false;
1056found:
1057 spin_unlock_irqrestore(&phy->lock, flags);
1058 return true;
1059}
1060
1061static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1062 int log_event_line)
1063{
1064 unsigned long flags;
1065 bool is_free = false;
1066
1067 spin_lock_irqsave(&phy->lock, flags);
1068 if (!log_event_line) {
1069 /* Physical interrupts are masked per physical full channel */
1070 phy->allocated_dst = D40_ALLOC_FREE;
1071 phy->allocated_src = D40_ALLOC_FREE;
1072 is_free = true;
1073 goto out;
1074 }
1075
1076 /* Logical channel */
1077 if (is_src) {
1078 phy->allocated_src &= ~(1 << log_event_line);
1079 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1080 phy->allocated_src = D40_ALLOC_FREE;
1081 } else {
1082 phy->allocated_dst &= ~(1 << log_event_line);
1083 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1084 phy->allocated_dst = D40_ALLOC_FREE;
1085 }
1086
1087 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1088 D40_ALLOC_FREE);
1089
1090out:
1091 spin_unlock_irqrestore(&phy->lock, flags);
1092
1093 return is_free;
1094}
1095
1096static int d40_allocate_channel(struct d40_chan *d40c)
1097{
1098 int dev_type;
1099 int event_group;
1100 int event_line;
1101 struct d40_phy_res *phys;
1102 int i;
1103 int j;
1104 int log_num;
1105 bool is_src;
508849ad
LW
1106 bool is_log = (d40c->dma_cfg.channel_type &
1107 STEDMA40_CHANNEL_IN_OPER_MODE)
8d318a50
LW
1108 == STEDMA40_CHANNEL_IN_LOG_MODE;
1109
1110
1111 phys = d40c->base->phy_res;
1112
1113 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1114 dev_type = d40c->dma_cfg.src_dev_type;
1115 log_num = 2 * dev_type;
1116 is_src = true;
1117 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1118 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1119 /* dst event lines are used for logical memcpy */
1120 dev_type = d40c->dma_cfg.dst_dev_type;
1121 log_num = 2 * dev_type + 1;
1122 is_src = false;
1123 } else
1124 return -EINVAL;
1125
1126 event_group = D40_TYPE_TO_GROUP(dev_type);
1127 event_line = D40_TYPE_TO_EVENT(dev_type);
1128
1129 if (!is_log) {
1130 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1131 /* Find physical half channel */
1132 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1133
4aed79b2
MM
1134 if (d40_alloc_mask_set(&phys[i], is_src,
1135 0, is_log))
8d318a50
LW
1136 goto found_phy;
1137 }
1138 } else
1139 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1140 int phy_num = j + event_group * 2;
1141 for (i = phy_num; i < phy_num + 2; i++) {
508849ad
LW
1142 if (d40_alloc_mask_set(&phys[i],
1143 is_src,
1144 0,
1145 is_log))
8d318a50
LW
1146 goto found_phy;
1147 }
1148 }
1149 return -EINVAL;
1150found_phy:
1151 d40c->phy_chan = &phys[i];
1152 d40c->log_num = D40_PHY_CHAN;
1153 goto out;
1154 }
1155 if (dev_type == -1)
1156 return -EINVAL;
1157
1158 /* Find logical channel */
1159 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1160 int phy_num = j + event_group * 2;
1161 /*
1162 * Spread logical channels across all available physical rather
1163 * than pack every logical channel at the first available phy
1164 * channels.
1165 */
1166 if (is_src) {
1167 for (i = phy_num; i < phy_num + 2; i++) {
1168 if (d40_alloc_mask_set(&phys[i], is_src,
4aed79b2 1169 event_line, is_log))
8d318a50
LW
1170 goto found_log;
1171 }
1172 } else {
1173 for (i = phy_num + 1; i >= phy_num; i--) {
1174 if (d40_alloc_mask_set(&phys[i], is_src,
4aed79b2 1175 event_line, is_log))
8d318a50
LW
1176 goto found_log;
1177 }
1178 }
1179 }
1180 return -EINVAL;
1181
1182found_log:
1183 d40c->phy_chan = &phys[i];
1184 d40c->log_num = log_num;
1185out:
1186
1187 if (is_log)
1188 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1189 else
1190 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1191
1192 return 0;
1193
1194}
1195
8d318a50
LW
1196static int d40_config_memcpy(struct d40_chan *d40c)
1197{
1198 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1199
1200 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1201 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1202 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1203 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1204 memcpy[d40c->chan.chan_id];
1205
1206 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1207 dma_has_cap(DMA_SLAVE, cap)) {
1208 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1209 } else {
1210 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1211 __func__);
1212 return -EINVAL;
1213 }
1214
1215 return 0;
1216}
1217
1218
1219static int d40_free_dma(struct d40_chan *d40c)
1220{
1221
1222 int res = 0;
1223 u32 event, dir;
1224 struct d40_phy_res *phy = d40c->phy_chan;
1225 bool is_src;
a8be8627
PF
1226 struct d40_desc *d;
1227 struct d40_desc *_d;
1228
8d318a50
LW
1229
1230 /* Terminate all queued and active transfers */
1231 d40_term_all(d40c);
1232
a8be8627
PF
1233 /* Release client owned descriptors */
1234 if (!list_empty(&d40c->client))
1235 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1236 d40_pool_lli_free(d);
1237 d40_desc_remove(d);
1238 /* Return desc to free-list */
1239 d40_desc_free(d40c, d);
1240 }
1241
8d318a50
LW
1242 if (phy == NULL) {
1243 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1244 __func__);
1245 return -EINVAL;
1246 }
1247
1248 if (phy->allocated_src == D40_ALLOC_FREE &&
1249 phy->allocated_dst == D40_ALLOC_FREE) {
1250 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1251 __func__);
1252 return -EINVAL;
1253 }
1254
8d318a50
LW
1255 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1256 if (res) {
ff0b12ba 1257 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
8d318a50
LW
1258 __func__);
1259 return res;
1260 }
1261
1262 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1263 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1264 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1265 dir = D40_CHAN_REG_SDLNK;
1266 is_src = false;
1267 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1268 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1269 dir = D40_CHAN_REG_SSLNK;
1270 is_src = true;
1271 } else {
1272 dev_err(&d40c->chan.dev->device,
1273 "[%s] Unknown direction\n", __func__);
1274 return -EINVAL;
1275 }
1276
1277 if (d40c->log_num != D40_PHY_CHAN) {
1278 /*
1279 * Release logical channel, deactivate the event line during
1280 * the time physical res is suspended.
1281 */
1282 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) &
1283 D40_EVENTLINE_MASK(event),
1284 d40c->base->virtbase + D40_DREG_PCBASE +
1285 phy->num * D40_DREG_PCDELTA + dir);
1286
1287 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1288
1289 /*
1290 * Check if there are more logical allocation
1291 * on this phy channel.
1292 */
1293 if (!d40_alloc_mask_free(phy, is_src, event)) {
1294 /* Resume the other logical channels if any */
1295 if (d40_chan_has_events(d40c)) {
1296 res = d40_channel_execute_command(d40c,
1297 D40_DMA_RUN);
1298 if (res) {
1299 dev_err(&d40c->chan.dev->device,
1300 "[%s] Executing RUN command\n",
1301 __func__);
1302 return res;
1303 }
1304 }
1305 return 0;
1306 }
1307 } else
1308 d40_alloc_mask_free(phy, is_src, 0);
1309
1310 /* Release physical channel */
1311 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1312 if (res) {
1313 dev_err(&d40c->chan.dev->device,
1314 "[%s] Failed to stop channel\n", __func__);
1315 return res;
1316 }
1317 d40c->phy_chan = NULL;
1318 /* Invalidate channel type */
1319 d40c->dma_cfg.channel_type = 0;
1320 d40c->base->lookup_phy_chans[phy->num] = NULL;
1321
1322 return 0;
8d318a50
LW
1323}
1324
1325static int d40_pause(struct dma_chan *chan)
1326{
1327 struct d40_chan *d40c =
1328 container_of(chan, struct d40_chan, chan);
1329 int res;
8d318a50
LW
1330 unsigned long flags;
1331
1332 spin_lock_irqsave(&d40c->lock, flags);
1333
1334 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1335 if (res == 0) {
1336 if (d40c->log_num != D40_PHY_CHAN) {
1337 d40_config_set_event(d40c, false);
1338 /* Resume the other logical channels if any */
1339 if (d40_chan_has_events(d40c))
1340 res = d40_channel_execute_command(d40c,
1341 D40_DMA_RUN);
1342 }
1343 }
1344
1345 spin_unlock_irqrestore(&d40c->lock, flags);
1346 return res;
1347}
1348
a5ebca47
JA
1349static bool d40_is_paused(struct d40_chan *d40c)
1350{
1351 bool is_paused = false;
1352 unsigned long flags;
1353 void __iomem *active_reg;
1354 u32 status;
1355 u32 event;
a5ebca47
JA
1356
1357 spin_lock_irqsave(&d40c->lock, flags);
1358
1359 if (d40c->log_num == D40_PHY_CHAN) {
1360 if (d40c->phy_chan->num % 2 == 0)
1361 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1362 else
1363 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1364
1365 status = (readl(active_reg) &
1366 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1367 D40_CHAN_POS(d40c->phy_chan->num);
1368 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1369 is_paused = true;
1370
1371 goto _exit;
1372 }
1373
a5ebca47
JA
1374 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1375 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1376 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1377 else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1378 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1379 else {
1380 dev_err(&d40c->chan.dev->device,
1381 "[%s] Unknown direction\n", __func__);
1382 goto _exit;
1383 }
1384 status = d40_chan_has_events(d40c);
1385 status = (status & D40_EVENTLINE_MASK(event)) >>
1386 D40_EVENTLINE_POS(event);
1387
1388 if (status != D40_DMA_RUN)
1389 is_paused = true;
a5ebca47
JA
1390_exit:
1391 spin_unlock_irqrestore(&d40c->lock, flags);
1392 return is_paused;
1393
1394}
1395
1396
8d318a50
LW
1397static bool d40_tx_is_linked(struct d40_chan *d40c)
1398{
1399 bool is_link;
1400
1401 if (d40c->log_num != D40_PHY_CHAN)
1402 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1403 else
1404 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1405 d40c->phy_chan->num * D40_DREG_PCDELTA +
1406 D40_CHAN_REG_SDLNK) &
1407 D40_SREG_LNK_PHYS_LNK_MASK;
1408 return is_link;
1409}
1410
1411static u32 d40_residue(struct d40_chan *d40c)
1412{
1413 u32 num_elt;
1414
1415 if (d40c->log_num != D40_PHY_CHAN)
508849ad 1416 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
8d318a50
LW
1417 >> D40_MEM_LCSP2_ECNT_POS;
1418 else
1419 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1420 d40c->phy_chan->num * D40_DREG_PCDELTA +
1421 D40_CHAN_REG_SDELT) &
508849ad
LW
1422 D40_SREG_ELEM_PHY_ECNT_MASK) >>
1423 D40_SREG_ELEM_PHY_ECNT_POS;
8d318a50
LW
1424 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1425}
1426
1427static int d40_resume(struct dma_chan *chan)
1428{
1429 struct d40_chan *d40c =
1430 container_of(chan, struct d40_chan, chan);
1431 int res = 0;
1432 unsigned long flags;
1433
1434 spin_lock_irqsave(&d40c->lock, flags);
1435
0c32269d
JA
1436 /* If bytes left to transfer or linked tx resume job */
1437 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1438 if (d40c->log_num != D40_PHY_CHAN)
8d318a50 1439 d40_config_set_event(d40c, true);
8d318a50 1440 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
0c32269d 1441 }
8d318a50 1442
8d318a50
LW
1443 spin_unlock_irqrestore(&d40c->lock, flags);
1444 return res;
1445}
1446
1447static u32 stedma40_residue(struct dma_chan *chan)
1448{
1449 struct d40_chan *d40c =
1450 container_of(chan, struct d40_chan, chan);
1451 u32 bytes_left;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&d40c->lock, flags);
1455 bytes_left = d40_residue(d40c);
1456 spin_unlock_irqrestore(&d40c->lock, flags);
1457
1458 return bytes_left;
1459}
1460
1461/* Public DMA functions in addition to the DMA engine framework */
1462
1463int stedma40_set_psize(struct dma_chan *chan,
1464 int src_psize,
1465 int dst_psize)
1466{
1467 struct d40_chan *d40c =
1468 container_of(chan, struct d40_chan, chan);
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(&d40c->lock, flags);
1472
1473 if (d40c->log_num != D40_PHY_CHAN) {
1474 d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1475 d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
508849ad
LW
1476 d40c->log_def.lcsp1 |= src_psize <<
1477 D40_MEM_LCSP1_SCFG_PSIZE_POS;
1478 d40c->log_def.lcsp3 |= dst_psize <<
1479 D40_MEM_LCSP1_SCFG_PSIZE_POS;
8d318a50
LW
1480 goto out;
1481 }
1482
1483 if (src_psize == STEDMA40_PSIZE_PHY_1)
1484 d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1485 else {
1486 d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1487 d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1488 D40_SREG_CFG_PSIZE_POS);
1489 d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1490 }
1491
1492 if (dst_psize == STEDMA40_PSIZE_PHY_1)
1493 d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1494 else {
1495 d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1496 d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1497 D40_SREG_CFG_PSIZE_POS);
1498 d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1499 }
1500out:
1501 spin_unlock_irqrestore(&d40c->lock, flags);
1502 return 0;
1503}
1504EXPORT_SYMBOL(stedma40_set_psize);
1505
1506struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1507 struct scatterlist *sgl_dst,
1508 struct scatterlist *sgl_src,
1509 unsigned int sgl_len,
2a614340 1510 unsigned long dma_flags)
8d318a50
LW
1511{
1512 int res;
1513 struct d40_desc *d40d;
1514 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1515 chan);
2a614340 1516 unsigned long flags;
8d318a50 1517
0d0f6b8b
JA
1518 if (d40c->phy_chan == NULL) {
1519 dev_err(&d40c->chan.dev->device,
1520 "[%s] Unallocated channel.\n", __func__);
1521 return ERR_PTR(-EINVAL);
1522 }
1523
2a614340 1524 spin_lock_irqsave(&d40c->lock, flags);
8d318a50
LW
1525 d40d = d40_desc_get(d40c);
1526
1527 if (d40d == NULL)
1528 goto err;
1529
8d318a50 1530 d40d->lli_len = sgl_len;
941b77a3 1531 d40d->lli_tx_len = d40d->lli_len;
2a614340 1532 d40d->txd.flags = dma_flags;
8d318a50
LW
1533
1534 if (d40c->log_num != D40_PHY_CHAN) {
941b77a3
PF
1535 if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
1536 d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1537
8d318a50
LW
1538 if (sgl_len > 1)
1539 /*
1540 * Check if there is space available in lcla. If not,
1541 * split list into 1-length and run only in lcpa
1542 * space.
1543 */
508849ad 1544 if (d40_lcla_id_get(d40c) != 0)
941b77a3 1545 d40d->lli_tx_len = 1;
8d318a50
LW
1546
1547 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1548 dev_err(&d40c->chan.dev->device,
1549 "[%s] Out of memory\n", __func__);
1550 goto err;
1551 }
1552
1553 (void) d40_log_sg_to_lli(d40c->lcla.src_id,
1554 sgl_src,
1555 sgl_len,
1556 d40d->lli_log.src,
1557 d40c->log_def.lcsp1,
1558 d40c->dma_cfg.src_info.data_width,
2a614340 1559 dma_flags & DMA_PREP_INTERRUPT,
941b77a3 1560 d40d->lli_tx_len,
8d318a50
LW
1561 d40c->base->plat_data->llis_per_log);
1562
1563 (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1564 sgl_dst,
1565 sgl_len,
1566 d40d->lli_log.dst,
1567 d40c->log_def.lcsp3,
1568 d40c->dma_cfg.dst_info.data_width,
2a614340 1569 dma_flags & DMA_PREP_INTERRUPT,
941b77a3 1570 d40d->lli_tx_len,
8d318a50
LW
1571 d40c->base->plat_data->llis_per_log);
1572
1573
1574 } else {
1575 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1576 dev_err(&d40c->chan.dev->device,
1577 "[%s] Out of memory\n", __func__);
1578 goto err;
1579 }
1580
1581 res = d40_phy_sg_to_lli(sgl_src,
1582 sgl_len,
1583 0,
1584 d40d->lli_phy.src,
1585 d40d->lli_phy.src_addr,
1586 d40c->src_def_cfg,
1587 d40c->dma_cfg.src_info.data_width,
1588 d40c->dma_cfg.src_info.psize,
1589 true);
1590
1591 if (res < 0)
1592 goto err;
1593
1594 res = d40_phy_sg_to_lli(sgl_dst,
1595 sgl_len,
1596 0,
1597 d40d->lli_phy.dst,
1598 d40d->lli_phy.dst_addr,
1599 d40c->dst_def_cfg,
1600 d40c->dma_cfg.dst_info.data_width,
1601 d40c->dma_cfg.dst_info.psize,
1602 true);
1603
1604 if (res < 0)
1605 goto err;
1606
1607 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1608 d40d->lli_pool.size, DMA_TO_DEVICE);
1609 }
1610
1611 dma_async_tx_descriptor_init(&d40d->txd, chan);
1612
1613 d40d->txd.tx_submit = d40_tx_submit;
1614
2a614340 1615 spin_unlock_irqrestore(&d40c->lock, flags);
8d318a50
LW
1616
1617 return &d40d->txd;
1618err:
2a614340 1619 spin_unlock_irqrestore(&d40c->lock, flags);
8d318a50
LW
1620 return NULL;
1621}
1622EXPORT_SYMBOL(stedma40_memcpy_sg);
1623
1624bool stedma40_filter(struct dma_chan *chan, void *data)
1625{
1626 struct stedma40_chan_cfg *info = data;
1627 struct d40_chan *d40c =
1628 container_of(chan, struct d40_chan, chan);
1629 int err;
1630
1631 if (data) {
1632 err = d40_validate_conf(d40c, info);
1633 if (!err)
1634 d40c->dma_cfg = *info;
1635 } else
1636 err = d40_config_memcpy(d40c);
1637
1638 return err == 0;
1639}
1640EXPORT_SYMBOL(stedma40_filter);
1641
1642/* DMA ENGINE functions */
1643static int d40_alloc_chan_resources(struct dma_chan *chan)
1644{
1645 int err;
1646 unsigned long flags;
1647 struct d40_chan *d40c =
1648 container_of(chan, struct d40_chan, chan);
ef1872ec 1649 bool is_free_phy;
8d318a50
LW
1650 spin_lock_irqsave(&d40c->lock, flags);
1651
1652 d40c->completed = chan->cookie = 1;
1653
1654 /*
1655 * If no dma configuration is set (channel_type == 0)
ef1872ec 1656 * use default configuration (memcpy)
8d318a50
LW
1657 */
1658 if (d40c->dma_cfg.channel_type == 0) {
1659 err = d40_config_memcpy(d40c);
ff0b12ba
JA
1660 if (err) {
1661 dev_err(&d40c->chan.dev->device,
1662 "[%s] Failed to configure memcpy channel\n",
1663 __func__);
1664 goto fail;
1665 }
8d318a50 1666 }
ef1872ec 1667 is_free_phy = (d40c->phy_chan == NULL);
8d318a50
LW
1668
1669 err = d40_allocate_channel(d40c);
1670 if (err) {
1671 dev_err(&d40c->chan.dev->device,
1672 "[%s] Failed to allocate channel\n", __func__);
ff0b12ba 1673 goto fail;
8d318a50
LW
1674 }
1675
ef1872ec
LW
1676 /* Fill in basic CFG register values */
1677 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1678 &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1679
1680 if (d40c->log_num != D40_PHY_CHAN) {
1681 d40_log_cfg(&d40c->dma_cfg,
1682 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1683
1684 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1685 d40c->lcpa = d40c->base->lcpa_base +
1686 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1687 else
1688 d40c->lcpa = d40c->base->lcpa_base +
1689 d40c->dma_cfg.dst_dev_type *
1690 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1691 }
1692
1693 /*
1694 * Only write channel configuration to the DMA if the physical
1695 * resource is free. In case of multiple logical channels
1696 * on the same physical resource, only the first write is necessary.
1697 */
1698 if (is_free_phy) {
1699 err = d40_config_write(d40c);
1700 if (err) {
1701 dev_err(&d40c->chan.dev->device,
1702 "[%s] Failed to configure channel\n",
1703 __func__);
1704 }
8d318a50 1705 }
ff0b12ba 1706fail:
8d318a50 1707 spin_unlock_irqrestore(&d40c->lock, flags);
ff0b12ba 1708 return err;
8d318a50
LW
1709}
1710
1711static void d40_free_chan_resources(struct dma_chan *chan)
1712{
1713 struct d40_chan *d40c =
1714 container_of(chan, struct d40_chan, chan);
1715 int err;
1716 unsigned long flags;
1717
0d0f6b8b
JA
1718 if (d40c->phy_chan == NULL) {
1719 dev_err(&d40c->chan.dev->device,
1720 "[%s] Cannot free unallocated channel\n", __func__);
1721 return;
1722 }
1723
1724
8d318a50
LW
1725 spin_lock_irqsave(&d40c->lock, flags);
1726
1727 err = d40_free_dma(d40c);
1728
1729 if (err)
1730 dev_err(&d40c->chan.dev->device,
1731 "[%s] Failed to free channel\n", __func__);
1732 spin_unlock_irqrestore(&d40c->lock, flags);
1733}
1734
1735static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1736 dma_addr_t dst,
1737 dma_addr_t src,
1738 size_t size,
2a614340 1739 unsigned long dma_flags)
8d318a50
LW
1740{
1741 struct d40_desc *d40d;
1742 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1743 chan);
2a614340 1744 unsigned long flags;
8d318a50
LW
1745 int err = 0;
1746
0d0f6b8b
JA
1747 if (d40c->phy_chan == NULL) {
1748 dev_err(&d40c->chan.dev->device,
1749 "[%s] Channel is not allocated.\n", __func__);
1750 return ERR_PTR(-EINVAL);
1751 }
1752
2a614340 1753 spin_lock_irqsave(&d40c->lock, flags);
8d318a50
LW
1754 d40d = d40_desc_get(d40c);
1755
1756 if (d40d == NULL) {
1757 dev_err(&d40c->chan.dev->device,
1758 "[%s] Descriptor is NULL\n", __func__);
1759 goto err;
1760 }
1761
2a614340 1762 d40d->txd.flags = dma_flags;
8d318a50
LW
1763
1764 dma_async_tx_descriptor_init(&d40d->txd, chan);
1765
1766 d40d->txd.tx_submit = d40_tx_submit;
1767
1768 if (d40c->log_num != D40_PHY_CHAN) {
1769
1770 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1771 dev_err(&d40c->chan.dev->device,
1772 "[%s] Out of memory\n", __func__);
1773 goto err;
1774 }
1775 d40d->lli_len = 1;
941b77a3 1776 d40d->lli_tx_len = 1;
8d318a50
LW
1777
1778 d40_log_fill_lli(d40d->lli_log.src,
1779 src,
1780 size,
1781 0,
1782 d40c->log_def.lcsp1,
1783 d40c->dma_cfg.src_info.data_width,
2123a61e 1784 false, true);
8d318a50
LW
1785
1786 d40_log_fill_lli(d40d->lli_log.dst,
1787 dst,
1788 size,
1789 0,
1790 d40c->log_def.lcsp3,
1791 d40c->dma_cfg.dst_info.data_width,
1792 true, true);
1793
1794 } else {
1795
1796 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1797 dev_err(&d40c->chan.dev->device,
1798 "[%s] Out of memory\n", __func__);
1799 goto err;
1800 }
1801
1802 err = d40_phy_fill_lli(d40d->lli_phy.src,
1803 src,
1804 size,
1805 d40c->dma_cfg.src_info.psize,
1806 0,
1807 d40c->src_def_cfg,
1808 true,
1809 d40c->dma_cfg.src_info.data_width,
1810 false);
1811 if (err)
1812 goto err_fill_lli;
1813
1814 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1815 dst,
1816 size,
1817 d40c->dma_cfg.dst_info.psize,
1818 0,
1819 d40c->dst_def_cfg,
1820 true,
1821 d40c->dma_cfg.dst_info.data_width,
1822 false);
1823
1824 if (err)
1825 goto err_fill_lli;
1826
1827 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1828 d40d->lli_pool.size, DMA_TO_DEVICE);
1829 }
1830
2a614340 1831 spin_unlock_irqrestore(&d40c->lock, flags);
8d318a50
LW
1832 return &d40d->txd;
1833
1834err_fill_lli:
1835 dev_err(&d40c->chan.dev->device,
1836 "[%s] Failed filling in PHY LLI\n", __func__);
1837 d40_pool_lli_free(d40d);
1838err:
2a614340 1839 spin_unlock_irqrestore(&d40c->lock, flags);
8d318a50
LW
1840 return NULL;
1841}
1842
1843static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1844 struct d40_chan *d40c,
1845 struct scatterlist *sgl,
1846 unsigned int sg_len,
1847 enum dma_data_direction direction,
2a614340 1848 unsigned long dma_flags)
8d318a50
LW
1849{
1850 dma_addr_t dev_addr = 0;
1851 int total_size;
8d318a50
LW
1852
1853 if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1854 dev_err(&d40c->chan.dev->device,
1855 "[%s] Out of memory\n", __func__);
1856 return -ENOMEM;
1857 }
1858
1859 d40d->lli_len = sg_len;
941b77a3
PF
1860 if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
1861 d40d->lli_tx_len = d40d->lli_len;
1862 else
1863 d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
8d318a50
LW
1864
1865 if (sg_len > 1)
1866 /*
1867 * Check if there is space available in lcla.
1868 * If not, split list into 1-length and run only
1869 * in lcpa space.
1870 */
508849ad 1871 if (d40_lcla_id_get(d40c) != 0)
941b77a3 1872 d40d->lli_tx_len = 1;
8d318a50 1873
2a614340 1874 if (direction == DMA_FROM_DEVICE)
8d318a50 1875 dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2a614340 1876 else if (direction == DMA_TO_DEVICE)
8d318a50 1877 dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2a614340 1878 else
8d318a50 1879 return -EINVAL;
2a614340
JA
1880
1881 total_size = d40_log_sg_to_dev(&d40c->lcla,
1882 sgl, sg_len,
1883 &d40d->lli_log,
1884 &d40c->log_def,
1885 d40c->dma_cfg.src_info.data_width,
1886 d40c->dma_cfg.dst_info.data_width,
1887 direction,
1888 dma_flags & DMA_PREP_INTERRUPT,
1889 dev_addr, d40d->lli_tx_len,
1890 d40c->base->plat_data->llis_per_log);
1891
8d318a50
LW
1892 if (total_size < 0)
1893 return -EINVAL;
1894
1895 return 0;
1896}
1897
1898static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1899 struct d40_chan *d40c,
1900 struct scatterlist *sgl,
1901 unsigned int sgl_len,
1902 enum dma_data_direction direction,
2a614340 1903 unsigned long dma_flags)
8d318a50
LW
1904{
1905 dma_addr_t src_dev_addr;
1906 dma_addr_t dst_dev_addr;
1907 int res;
1908
1909 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1910 dev_err(&d40c->chan.dev->device,
1911 "[%s] Out of memory\n", __func__);
1912 return -ENOMEM;
1913 }
1914
1915 d40d->lli_len = sgl_len;
941b77a3 1916 d40d->lli_tx_len = sgl_len;
8d318a50
LW
1917
1918 if (direction == DMA_FROM_DEVICE) {
1919 dst_dev_addr = 0;
1920 src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1921 } else if (direction == DMA_TO_DEVICE) {
1922 dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1923 src_dev_addr = 0;
1924 } else
1925 return -EINVAL;
1926
1927 res = d40_phy_sg_to_lli(sgl,
1928 sgl_len,
1929 src_dev_addr,
1930 d40d->lli_phy.src,
1931 d40d->lli_phy.src_addr,
1932 d40c->src_def_cfg,
1933 d40c->dma_cfg.src_info.data_width,
1934 d40c->dma_cfg.src_info.psize,
1935 true);
1936 if (res < 0)
1937 return res;
1938
1939 res = d40_phy_sg_to_lli(sgl,
1940 sgl_len,
1941 dst_dev_addr,
1942 d40d->lli_phy.dst,
1943 d40d->lli_phy.dst_addr,
1944 d40c->dst_def_cfg,
1945 d40c->dma_cfg.dst_info.data_width,
1946 d40c->dma_cfg.dst_info.psize,
1947 true);
1948 if (res < 0)
1949 return res;
1950
1951 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1952 d40d->lli_pool.size, DMA_TO_DEVICE);
1953 return 0;
1954}
1955
1956static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1957 struct scatterlist *sgl,
1958 unsigned int sg_len,
1959 enum dma_data_direction direction,
2a614340 1960 unsigned long dma_flags)
8d318a50
LW
1961{
1962 struct d40_desc *d40d;
1963 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1964 chan);
2a614340 1965 unsigned long flags;
8d318a50
LW
1966 int err;
1967
0d0f6b8b
JA
1968 if (d40c->phy_chan == NULL) {
1969 dev_err(&d40c->chan.dev->device,
1970 "[%s] Cannot prepare unallocated channel\n", __func__);
1971 return ERR_PTR(-EINVAL);
1972 }
1973
8d318a50
LW
1974 if (d40c->dma_cfg.pre_transfer)
1975 d40c->dma_cfg.pre_transfer(chan,
1976 d40c->dma_cfg.pre_transfer_data,
1977 sg_dma_len(sgl));
1978
2a614340 1979 spin_lock_irqsave(&d40c->lock, flags);
8d318a50 1980 d40d = d40_desc_get(d40c);
2a614340 1981 spin_unlock_irqrestore(&d40c->lock, flags);
8d318a50
LW
1982
1983 if (d40d == NULL)
1984 return NULL;
1985
8d318a50
LW
1986 if (d40c->log_num != D40_PHY_CHAN)
1987 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2a614340 1988 direction, dma_flags);
8d318a50
LW
1989 else
1990 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2a614340 1991 direction, dma_flags);
8d318a50
LW
1992 if (err) {
1993 dev_err(&d40c->chan.dev->device,
1994 "[%s] Failed to prepare %s slave sg job: %d\n",
1995 __func__,
1996 d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
1997 return NULL;
1998 }
1999
2a614340 2000 d40d->txd.flags = dma_flags;
8d318a50
LW
2001
2002 dma_async_tx_descriptor_init(&d40d->txd, chan);
2003
2004 d40d->txd.tx_submit = d40_tx_submit;
2005
2006 return &d40d->txd;
2007}
2008
2009static enum dma_status d40_tx_status(struct dma_chan *chan,
2010 dma_cookie_t cookie,
2011 struct dma_tx_state *txstate)
2012{
2013 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2014 dma_cookie_t last_used;
2015 dma_cookie_t last_complete;
2016 int ret;
2017
0d0f6b8b
JA
2018 if (d40c->phy_chan == NULL) {
2019 dev_err(&d40c->chan.dev->device,
2020 "[%s] Cannot read status of unallocated channel\n",
2021 __func__);
2022 return -EINVAL;
2023 }
2024
8d318a50
LW
2025 last_complete = d40c->completed;
2026 last_used = chan->cookie;
2027
a5ebca47
JA
2028 if (d40_is_paused(d40c))
2029 ret = DMA_PAUSED;
2030 else
2031 ret = dma_async_is_complete(cookie, last_complete, last_used);
8d318a50 2032
a5ebca47
JA
2033 dma_set_tx_state(txstate, last_complete, last_used,
2034 stedma40_residue(chan));
8d318a50
LW
2035
2036 return ret;
2037}
2038
2039static void d40_issue_pending(struct dma_chan *chan)
2040{
2041 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2042 unsigned long flags;
2043
0d0f6b8b
JA
2044 if (d40c->phy_chan == NULL) {
2045 dev_err(&d40c->chan.dev->device,
2046 "[%s] Channel is not allocated!\n", __func__);
2047 return;
2048 }
2049
8d318a50
LW
2050 spin_lock_irqsave(&d40c->lock, flags);
2051
2052 /* Busy means that pending jobs are already being processed */
2053 if (!d40c->busy)
2054 (void) d40_queue_start(d40c);
2055
2056 spin_unlock_irqrestore(&d40c->lock, flags);
2057}
2058
05827630
LW
2059static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2060 unsigned long arg)
8d318a50
LW
2061{
2062 unsigned long flags;
2063 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2064
0d0f6b8b
JA
2065 if (d40c->phy_chan == NULL) {
2066 dev_err(&d40c->chan.dev->device,
2067 "[%s] Channel is not allocated!\n", __func__);
2068 return -EINVAL;
2069 }
2070
8d318a50
LW
2071 switch (cmd) {
2072 case DMA_TERMINATE_ALL:
2073 spin_lock_irqsave(&d40c->lock, flags);
2074 d40_term_all(d40c);
2075 spin_unlock_irqrestore(&d40c->lock, flags);
2076 return 0;
2077 case DMA_PAUSE:
2078 return d40_pause(chan);
2079 case DMA_RESUME:
2080 return d40_resume(chan);
2081 }
2082
2083 /* Other commands are unimplemented */
2084 return -ENXIO;
2085}
2086
2087/* Initialization functions */
2088
2089static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2090 struct d40_chan *chans, int offset,
2091 int num_chans)
2092{
2093 int i = 0;
2094 struct d40_chan *d40c;
2095
2096 INIT_LIST_HEAD(&dma->channels);
2097
2098 for (i = offset; i < offset + num_chans; i++) {
2099 d40c = &chans[i];
2100 d40c->base = base;
2101 d40c->chan.device = dma;
2102
2103 /* Invalidate lcla element */
2104 d40c->lcla.src_id = -1;
2105 d40c->lcla.dst_id = -1;
2106
2107 spin_lock_init(&d40c->lock);
2108
2109 d40c->log_num = D40_PHY_CHAN;
2110
8d318a50
LW
2111 INIT_LIST_HEAD(&d40c->active);
2112 INIT_LIST_HEAD(&d40c->queue);
2113 INIT_LIST_HEAD(&d40c->client);
2114
8d318a50
LW
2115 tasklet_init(&d40c->tasklet, dma_tasklet,
2116 (unsigned long) d40c);
2117
2118 list_add_tail(&d40c->chan.device_node,
2119 &dma->channels);
2120 }
2121}
2122
2123static int __init d40_dmaengine_init(struct d40_base *base,
2124 int num_reserved_chans)
2125{
2126 int err ;
2127
2128 d40_chan_init(base, &base->dma_slave, base->log_chans,
2129 0, base->num_log_chans);
2130
2131 dma_cap_zero(base->dma_slave.cap_mask);
2132 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2133
2134 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2135 base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2136 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2137 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2138 base->dma_slave.device_tx_status = d40_tx_status;
2139 base->dma_slave.device_issue_pending = d40_issue_pending;
2140 base->dma_slave.device_control = d40_control;
2141 base->dma_slave.dev = base->dev;
2142
2143 err = dma_async_device_register(&base->dma_slave);
2144
2145 if (err) {
2146 dev_err(base->dev,
2147 "[%s] Failed to register slave channels\n",
2148 __func__);
2149 goto failure1;
2150 }
2151
2152 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2153 base->num_log_chans, base->plat_data->memcpy_len);
2154
2155 dma_cap_zero(base->dma_memcpy.cap_mask);
2156 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2157
2158 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2159 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2160 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2161 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2162 base->dma_memcpy.device_tx_status = d40_tx_status;
2163 base->dma_memcpy.device_issue_pending = d40_issue_pending;
2164 base->dma_memcpy.device_control = d40_control;
2165 base->dma_memcpy.dev = base->dev;
2166 /*
2167 * This controller can only access address at even
2168 * 32bit boundaries, i.e. 2^2
2169 */
2170 base->dma_memcpy.copy_align = 2;
2171
2172 err = dma_async_device_register(&base->dma_memcpy);
2173
2174 if (err) {
2175 dev_err(base->dev,
2176 "[%s] Failed to regsiter memcpy only channels\n",
2177 __func__);
2178 goto failure2;
2179 }
2180
2181 d40_chan_init(base, &base->dma_both, base->phy_chans,
2182 0, num_reserved_chans);
2183
2184 dma_cap_zero(base->dma_both.cap_mask);
2185 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2186 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2187
2188 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2189 base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2190 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2191 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2192 base->dma_both.device_tx_status = d40_tx_status;
2193 base->dma_both.device_issue_pending = d40_issue_pending;
2194 base->dma_both.device_control = d40_control;
2195 base->dma_both.dev = base->dev;
2196 base->dma_both.copy_align = 2;
2197 err = dma_async_device_register(&base->dma_both);
2198
2199 if (err) {
2200 dev_err(base->dev,
2201 "[%s] Failed to register logical and physical capable channels\n",
2202 __func__);
2203 goto failure3;
2204 }
2205 return 0;
2206failure3:
2207 dma_async_device_unregister(&base->dma_memcpy);
2208failure2:
2209 dma_async_device_unregister(&base->dma_slave);
2210failure1:
2211 return err;
2212}
2213
2214/* Initialization functions. */
2215
2216static int __init d40_phy_res_init(struct d40_base *base)
2217{
2218 int i;
2219 int num_phy_chans_avail = 0;
2220 u32 val[2];
2221 int odd_even_bit = -2;
2222
2223 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2224 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2225
2226 for (i = 0; i < base->num_phy_chans; i++) {
2227 base->phy_res[i].num = i;
2228 odd_even_bit += 2 * ((i % 2) == 0);
2229 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2230 /* Mark security only channels as occupied */
2231 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2232 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2233 } else {
2234 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2235 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2236 num_phy_chans_avail++;
2237 }
2238 spin_lock_init(&base->phy_res[i].lock);
2239 }
2240 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2241 num_phy_chans_avail, base->num_phy_chans);
2242
2243 /* Verify settings extended vs standard */
2244 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2245
2246 for (i = 0; i < base->num_phy_chans; i++) {
2247
2248 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2249 (val[0] & 0x3) != 1)
2250 dev_info(base->dev,
2251 "[%s] INFO: channel %d is misconfigured (%d)\n",
2252 __func__, i, val[0] & 0x3);
2253
2254 val[0] = val[0] >> 2;
2255 }
2256
2257 return num_phy_chans_avail;
2258}
2259
2260static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2261{
2262 static const struct d40_reg_val dma_id_regs[] = {
2263 /* Peripheral Id */
2264 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2265 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2266 /*
2267 * D40_DREG_PERIPHID2 Depends on HW revision:
2268 * MOP500/HREF ED has 0x0008,
2269 * ? has 0x0018,
2270 * HREF V1 has 0x0028
2271 */
2272 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2273
2274 /* PCell Id */
2275 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2276 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2277 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2278 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2279 };
2280 struct stedma40_platform_data *plat_data;
2281 struct clk *clk = NULL;
2282 void __iomem *virtbase = NULL;
2283 struct resource *res = NULL;
2284 struct d40_base *base = NULL;
2285 int num_log_chans = 0;
2286 int num_phy_chans;
2287 int i;
2288
2289 clk = clk_get(&pdev->dev, NULL);
2290
2291 if (IS_ERR(clk)) {
2292 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2293 __func__);
2294 goto failure;
2295 }
2296
2297 clk_enable(clk);
2298
2299 /* Get IO for DMAC base address */
2300 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2301 if (!res)
2302 goto failure;
2303
2304 if (request_mem_region(res->start, resource_size(res),
2305 D40_NAME " I/O base") == NULL)
2306 goto failure;
2307
2308 virtbase = ioremap(res->start, resource_size(res));
2309 if (!virtbase)
2310 goto failure;
2311
2312 /* HW version check */
2313 for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2314 if (dma_id_regs[i].val !=
2315 readl(virtbase + dma_id_regs[i].reg)) {
2316 dev_err(&pdev->dev,
2317 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2318 __func__,
2319 dma_id_regs[i].val,
2320 dma_id_regs[i].reg,
2321 readl(virtbase + dma_id_regs[i].reg));
2322 goto failure;
2323 }
2324 }
2325
2326 i = readl(virtbase + D40_DREG_PERIPHID2);
2327
2328 if ((i & 0xf) != D40_PERIPHID2_DESIGNER) {
2329 dev_err(&pdev->dev,
2330 "[%s] Unknown designer! Got %x wanted %x\n",
2331 __func__, i & 0xf, D40_PERIPHID2_DESIGNER);
2332 goto failure;
2333 }
2334
2335 /* The number of physical channels on this HW */
2336 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2337
2338 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2339 (i >> 4) & 0xf, res->start);
2340
2341 plat_data = pdev->dev.platform_data;
2342
2343 /* Count the number of logical channels in use */
2344 for (i = 0; i < plat_data->dev_len; i++)
2345 if (plat_data->dev_rx[i] != 0)
2346 num_log_chans++;
2347
2348 for (i = 0; i < plat_data->dev_len; i++)
2349 if (plat_data->dev_tx[i] != 0)
2350 num_log_chans++;
2351
2352 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2353 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2354 sizeof(struct d40_chan), GFP_KERNEL);
2355
2356 if (base == NULL) {
2357 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2358 goto failure;
2359 }
2360
2361 base->clk = clk;
2362 base->num_phy_chans = num_phy_chans;
2363 base->num_log_chans = num_log_chans;
2364 base->phy_start = res->start;
2365 base->phy_size = resource_size(res);
2366 base->virtbase = virtbase;
2367 base->plat_data = plat_data;
2368 base->dev = &pdev->dev;
2369 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2370 base->log_chans = &base->phy_chans[num_phy_chans];
2371
2372 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2373 GFP_KERNEL);
2374 if (!base->phy_res)
2375 goto failure;
2376
2377 base->lookup_phy_chans = kzalloc(num_phy_chans *
2378 sizeof(struct d40_chan *),
2379 GFP_KERNEL);
2380 if (!base->lookup_phy_chans)
2381 goto failure;
2382
2383 if (num_log_chans + plat_data->memcpy_len) {
2384 /*
2385 * The max number of logical channels are event lines for all
2386 * src devices and dst devices
2387 */
2388 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2389 sizeof(struct d40_chan *),
2390 GFP_KERNEL);
2391 if (!base->lookup_log_chans)
2392 goto failure;
2393 }
2394 base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2395 GFP_KERNEL);
2396 if (!base->lcla_pool.alloc_map)
2397 goto failure;
2398
c675b1b4
JA
2399 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2400 0, SLAB_HWCACHE_ALIGN,
2401 NULL);
2402 if (base->desc_slab == NULL)
2403 goto failure;
2404
8d318a50
LW
2405 return base;
2406
2407failure:
2408 if (clk) {
2409 clk_disable(clk);
2410 clk_put(clk);
2411 }
2412 if (virtbase)
2413 iounmap(virtbase);
2414 if (res)
2415 release_mem_region(res->start,
2416 resource_size(res));
2417 if (virtbase)
2418 iounmap(virtbase);
2419
2420 if (base) {
2421 kfree(base->lcla_pool.alloc_map);
2422 kfree(base->lookup_log_chans);
2423 kfree(base->lookup_phy_chans);
2424 kfree(base->phy_res);
2425 kfree(base);
2426 }
2427
2428 return NULL;
2429}
2430
2431static void __init d40_hw_init(struct d40_base *base)
2432{
2433
2434 static const struct d40_reg_val dma_init_reg[] = {
2435 /* Clock every part of the DMA block from start */
2436 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2437
2438 /* Interrupts on all logical channels */
2439 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2440 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2441 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2442 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2443 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2444 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2445 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2446 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2447 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2448 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2449 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2450 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2451 };
2452 int i;
2453 u32 prmseo[2] = {0, 0};
2454 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2455 u32 pcmis = 0;
2456 u32 pcicr = 0;
2457
2458 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2459 writel(dma_init_reg[i].val,
2460 base->virtbase + dma_init_reg[i].reg);
2461
2462 /* Configure all our dma channels to default settings */
2463 for (i = 0; i < base->num_phy_chans; i++) {
2464
2465 activeo[i % 2] = activeo[i % 2] << 2;
2466
2467 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2468 == D40_ALLOC_PHY) {
2469 activeo[i % 2] |= 3;
2470 continue;
2471 }
2472
2473 /* Enable interrupt # */
2474 pcmis = (pcmis << 1) | 1;
2475
2476 /* Clear interrupt # */
2477 pcicr = (pcicr << 1) | 1;
2478
2479 /* Set channel to physical mode */
2480 prmseo[i % 2] = prmseo[i % 2] << 2;
2481 prmseo[i % 2] |= 1;
2482
2483 }
2484
2485 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2486 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2487 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2488 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2489
2490 /* Write which interrupt to enable */
2491 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2492
2493 /* Write which interrupt to clear */
2494 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2495
2496}
2497
508849ad
LW
2498static int __init d40_lcla_allocate(struct d40_base *base)
2499{
2500 unsigned long *page_list;
2501 int i, j;
2502 int ret = 0;
2503
2504 /*
2505 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2506 * To full fill this hardware requirement without wasting 256 kb
2507 * we allocate pages until we get an aligned one.
2508 */
2509 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2510 GFP_KERNEL);
2511
2512 if (!page_list) {
2513 ret = -ENOMEM;
2514 goto failure;
2515 }
2516
2517 /* Calculating how many pages that are required */
2518 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2519
2520 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2521 page_list[i] = __get_free_pages(GFP_KERNEL,
2522 base->lcla_pool.pages);
2523 if (!page_list[i]) {
2524
2525 dev_err(base->dev,
2526 "[%s] Failed to allocate %d pages.\n",
2527 __func__, base->lcla_pool.pages);
2528
2529 for (j = 0; j < i; j++)
2530 free_pages(page_list[j], base->lcla_pool.pages);
2531 goto failure;
2532 }
2533
2534 if ((virt_to_phys((void *)page_list[i]) &
2535 (LCLA_ALIGNMENT - 1)) == 0)
2536 break;
2537 }
2538
2539 for (j = 0; j < i; j++)
2540 free_pages(page_list[j], base->lcla_pool.pages);
2541
2542 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2543 base->lcla_pool.base = (void *)page_list[i];
2544 } else {
2545 /* After many attempts, no succees with finding the correct
2546 * alignment try with allocating a big buffer */
2547 dev_warn(base->dev,
2548 "[%s] Failed to get %d pages @ 18 bit align.\n",
2549 __func__, base->lcla_pool.pages);
2550 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2551 base->num_phy_chans +
2552 LCLA_ALIGNMENT,
2553 GFP_KERNEL);
2554 if (!base->lcla_pool.base_unaligned) {
2555 ret = -ENOMEM;
2556 goto failure;
2557 }
2558
2559 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2560 LCLA_ALIGNMENT);
2561 }
2562
2563 writel(virt_to_phys(base->lcla_pool.base),
2564 base->virtbase + D40_DREG_LCLA);
2565failure:
2566 kfree(page_list);
2567 return ret;
2568}
2569
8d318a50
LW
2570static int __init d40_probe(struct platform_device *pdev)
2571{
2572 int err;
2573 int ret = -ENOENT;
2574 struct d40_base *base;
2575 struct resource *res = NULL;
2576 int num_reserved_chans;
2577 u32 val;
2578
2579 base = d40_hw_detect_init(pdev);
2580
2581 if (!base)
2582 goto failure;
2583
2584 num_reserved_chans = d40_phy_res_init(base);
2585
2586 platform_set_drvdata(pdev, base);
2587
2588 spin_lock_init(&base->interrupt_lock);
2589 spin_lock_init(&base->execmd_lock);
2590
2591 /* Get IO for logical channel parameter address */
2592 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2593 if (!res) {
2594 ret = -ENOENT;
2595 dev_err(&pdev->dev,
2596 "[%s] No \"lcpa\" memory resource\n",
2597 __func__);
2598 goto failure;
2599 }
2600 base->lcpa_size = resource_size(res);
2601 base->phy_lcpa = res->start;
2602
2603 if (request_mem_region(res->start, resource_size(res),
2604 D40_NAME " I/O lcpa") == NULL) {
2605 ret = -EBUSY;
2606 dev_err(&pdev->dev,
2607 "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2608 __func__, res->start, res->end);
2609 goto failure;
2610 }
2611
2612 /* We make use of ESRAM memory for this. */
2613 val = readl(base->virtbase + D40_DREG_LCPA);
2614 if (res->start != val && val != 0) {
2615 dev_warn(&pdev->dev,
2616 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2617 __func__, val, res->start);
2618 } else
2619 writel(res->start, base->virtbase + D40_DREG_LCPA);
2620
2621 base->lcpa_base = ioremap(res->start, resource_size(res));
2622 if (!base->lcpa_base) {
2623 ret = -ENOMEM;
2624 dev_err(&pdev->dev,
2625 "[%s] Failed to ioremap LCPA region\n",
2626 __func__);
2627 goto failure;
2628 }
8d318a50 2629
508849ad
LW
2630 ret = d40_lcla_allocate(base);
2631 if (ret) {
2632 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2633 __func__);
8d318a50
LW
2634 goto failure;
2635 }
2636
2637 spin_lock_init(&base->lcla_pool.lock);
2638
2639 base->lcla_pool.num_blocks = base->num_phy_chans;
2640
2641 base->irq = platform_get_irq(pdev, 0);
2642
2643 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2644
2645 if (ret) {
2646 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2647 goto failure;
2648 }
2649
2650 err = d40_dmaengine_init(base, num_reserved_chans);
2651 if (err)
2652 goto failure;
2653
2654 d40_hw_init(base);
2655
2656 dev_info(base->dev, "initialized\n");
2657 return 0;
2658
2659failure:
2660 if (base) {
c675b1b4
JA
2661 if (base->desc_slab)
2662 kmem_cache_destroy(base->desc_slab);
8d318a50
LW
2663 if (base->virtbase)
2664 iounmap(base->virtbase);
508849ad
LW
2665 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2666 free_pages((unsigned long)base->lcla_pool.base,
2667 base->lcla_pool.pages);
2668 if (base->lcla_pool.base_unaligned)
2669 kfree(base->lcla_pool.base_unaligned);
8d318a50
LW
2670 if (base->phy_lcpa)
2671 release_mem_region(base->phy_lcpa,
2672 base->lcpa_size);
2673 if (base->phy_start)
2674 release_mem_region(base->phy_start,
2675 base->phy_size);
2676 if (base->clk) {
2677 clk_disable(base->clk);
2678 clk_put(base->clk);
2679 }
2680
2681 kfree(base->lcla_pool.alloc_map);
2682 kfree(base->lookup_log_chans);
2683 kfree(base->lookup_phy_chans);
2684 kfree(base->phy_res);
2685 kfree(base);
2686 }
2687
2688 dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2689 return ret;
2690}
2691
2692static struct platform_driver d40_driver = {
2693 .driver = {
2694 .owner = THIS_MODULE,
2695 .name = D40_NAME,
2696 },
2697};
2698
2699int __init stedma40_init(void)
2700{
2701 return platform_driver_probe(&d40_driver, d40_probe);
2702}
2703arch_initcall(stedma40_init);