]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/cpuidle/governors/menu.c
Merge branch 'pnp-log' into release
[net-next-2.6.git] / drivers / cpuidle / governors / menu.c
CommitLineData
4f86d3a8
LB
1/*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
69d25870
AV
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
4f86d3a8 8 *
69d25870
AV
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
4f86d3a8
LB
11 */
12
13#include <linux/kernel.h>
14#include <linux/cpuidle.h>
d82b3518 15#include <linux/pm_qos_params.h>
4f86d3a8
LB
16#include <linux/time.h>
17#include <linux/ktime.h>
18#include <linux/hrtimer.h>
19#include <linux/tick.h>
69d25870 20#include <linux/sched.h>
5787536e 21#include <linux/math64.h>
4f86d3a8 22
69d25870 23#define BUCKETS 12
1f85f87d 24#define INTERVALS 8
69d25870 25#define RESOLUTION 1024
1f85f87d 26#define DECAY 8
69d25870 27#define MAX_INTERESTING 50000
1f85f87d
AV
28#define STDDEV_THRESH 400
29
69d25870
AV
30
31/*
32 * Concepts and ideas behind the menu governor
33 *
34 * For the menu governor, there are 3 decision factors for picking a C
35 * state:
36 * 1) Energy break even point
37 * 2) Performance impact
38 * 3) Latency tolerance (from pmqos infrastructure)
39 * These these three factors are treated independently.
40 *
41 * Energy break even point
42 * -----------------------
43 * C state entry and exit have an energy cost, and a certain amount of time in
44 * the C state is required to actually break even on this cost. CPUIDLE
45 * provides us this duration in the "target_residency" field. So all that we
46 * need is a good prediction of how long we'll be idle. Like the traditional
47 * menu governor, we start with the actual known "next timer event" time.
48 *
49 * Since there are other source of wakeups (interrupts for example) than
50 * the next timer event, this estimation is rather optimistic. To get a
51 * more realistic estimate, a correction factor is applied to the estimate,
52 * that is based on historic behavior. For example, if in the past the actual
53 * duration always was 50% of the next timer tick, the correction factor will
54 * be 0.5.
55 *
56 * menu uses a running average for this correction factor, however it uses a
57 * set of factors, not just a single factor. This stems from the realization
58 * that the ratio is dependent on the order of magnitude of the expected
59 * duration; if we expect 500 milliseconds of idle time the likelihood of
60 * getting an interrupt very early is much higher than if we expect 50 micro
61 * seconds of idle time. A second independent factor that has big impact on
62 * the actual factor is if there is (disk) IO outstanding or not.
63 * (as a special twist, we consider every sleep longer than 50 milliseconds
64 * as perfect; there are no power gains for sleeping longer than this)
65 *
66 * For these two reasons we keep an array of 12 independent factors, that gets
67 * indexed based on the magnitude of the expected duration as well as the
68 * "is IO outstanding" property.
69 *
1f85f87d
AV
70 * Repeatable-interval-detector
71 * ----------------------------
72 * There are some cases where "next timer" is a completely unusable predictor:
73 * Those cases where the interval is fixed, for example due to hardware
74 * interrupt mitigation, but also due to fixed transfer rate devices such as
75 * mice.
76 * For this, we use a different predictor: We track the duration of the last 8
77 * intervals and if the stand deviation of these 8 intervals is below a
78 * threshold value, we use the average of these intervals as prediction.
79 *
69d25870
AV
80 * Limiting Performance Impact
81 * ---------------------------
82 * C states, especially those with large exit latencies, can have a real
20e3341b 83 * noticeable impact on workloads, which is not acceptable for most sysadmins,
69d25870
AV
84 * and in addition, less performance has a power price of its own.
85 *
86 * As a general rule of thumb, menu assumes that the following heuristic
87 * holds:
88 * The busier the system, the less impact of C states is acceptable
89 *
90 * This rule-of-thumb is implemented using a performance-multiplier:
91 * If the exit latency times the performance multiplier is longer than
92 * the predicted duration, the C state is not considered a candidate
93 * for selection due to a too high performance impact. So the higher
94 * this multiplier is, the longer we need to be idle to pick a deep C
95 * state, and thus the less likely a busy CPU will hit such a deep
96 * C state.
97 *
98 * Two factors are used in determing this multiplier:
99 * a value of 10 is added for each point of "per cpu load average" we have.
100 * a value of 5 points is added for each process that is waiting for
101 * IO on this CPU.
102 * (these values are experimentally determined)
103 *
104 * The load average factor gives a longer term (few seconds) input to the
105 * decision, while the iowait value gives a cpu local instantanious input.
106 * The iowait factor may look low, but realize that this is also already
107 * represented in the system load average.
108 *
109 */
4f86d3a8
LB
110
111struct menu_device {
112 int last_state_idx;
672917dc 113 int needs_update;
4f86d3a8
LB
114
115 unsigned int expected_us;
56e6943b 116 u64 predicted_us;
69d25870
AV
117 unsigned int exit_us;
118 unsigned int bucket;
119 u64 correction_factor[BUCKETS];
1f85f87d
AV
120 u32 intervals[INTERVALS];
121 int interval_ptr;
4f86d3a8
LB
122};
123
69d25870
AV
124
125#define LOAD_INT(x) ((x) >> FSHIFT)
126#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
127
128static int get_loadavg(void)
129{
130 unsigned long this = this_cpu_load();
131
132
133 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
134}
135
136static inline int which_bucket(unsigned int duration)
137{
138 int bucket = 0;
139
140 /*
141 * We keep two groups of stats; one with no
142 * IO pending, one without.
143 * This allows us to calculate
144 * E(duration)|iowait
145 */
8c215bd3 146 if (nr_iowait_cpu(smp_processor_id()))
69d25870
AV
147 bucket = BUCKETS/2;
148
149 if (duration < 10)
150 return bucket;
151 if (duration < 100)
152 return bucket + 1;
153 if (duration < 1000)
154 return bucket + 2;
155 if (duration < 10000)
156 return bucket + 3;
157 if (duration < 100000)
158 return bucket + 4;
159 return bucket + 5;
160}
161
162/*
163 * Return a multiplier for the exit latency that is intended
164 * to take performance requirements into account.
165 * The more performance critical we estimate the system
166 * to be, the higher this multiplier, and thus the higher
167 * the barrier to go to an expensive C state.
168 */
169static inline int performance_multiplier(void)
170{
171 int mult = 1;
172
173 /* for higher loadavg, we are more reluctant */
174
175 mult += 2 * get_loadavg();
176
177 /* for IO wait tasks (per cpu!) we add 5x each */
8c215bd3 178 mult += 10 * nr_iowait_cpu(smp_processor_id());
69d25870
AV
179
180 return mult;
181}
182
4f86d3a8
LB
183static DEFINE_PER_CPU(struct menu_device, menu_devices);
184
672917dc
CZ
185static void menu_update(struct cpuidle_device *dev);
186
5787536e
SH
187/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
188static u64 div_round64(u64 dividend, u32 divisor)
189{
190 return div_u64(dividend + (divisor / 2), divisor);
191}
192
1f85f87d
AV
193/*
194 * Try detecting repeating patterns by keeping track of the last 8
195 * intervals, and checking if the standard deviation of that set
196 * of points is below a threshold. If it is... then use the
197 * average of these 8 points as the estimated value.
198 */
199static void detect_repeating_patterns(struct menu_device *data)
200{
201 int i;
202 uint64_t avg = 0;
203 uint64_t stddev = 0; /* contains the square of the std deviation */
204
205 /* first calculate average and standard deviation of the past */
206 for (i = 0; i < INTERVALS; i++)
207 avg += data->intervals[i];
208 avg = avg / INTERVALS;
209
210 /* if the avg is beyond the known next tick, it's worthless */
211 if (avg > data->expected_us)
212 return;
213
214 for (i = 0; i < INTERVALS; i++)
215 stddev += (data->intervals[i] - avg) *
216 (data->intervals[i] - avg);
217
218 stddev = stddev / INTERVALS;
219
220 /*
221 * now.. if stddev is small.. then assume we have a
222 * repeating pattern and predict we keep doing this.
223 */
224
225 if (avg && stddev < STDDEV_THRESH)
226 data->predicted_us = avg;
227}
228
4f86d3a8
LB
229/**
230 * menu_select - selects the next idle state to enter
231 * @dev: the CPU
232 */
233static int menu_select(struct cpuidle_device *dev)
234{
235 struct menu_device *data = &__get_cpu_var(menu_devices);
ed77134b 236 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
71abbbf8 237 unsigned int power_usage = -1;
4f86d3a8 238 int i;
69d25870
AV
239 int multiplier;
240
672917dc
CZ
241 if (data->needs_update) {
242 menu_update(dev);
243 data->needs_update = 0;
244 }
245
1c6fe036
AV
246 data->last_state_idx = 0;
247 data->exit_us = 0;
248
a2bd9202 249 /* Special case when user has set very strict latency requirement */
69d25870 250 if (unlikely(latency_req == 0))
a2bd9202 251 return 0;
a2bd9202 252
69d25870 253 /* determine the expected residency time, round up */
4f86d3a8 254 data->expected_us =
69d25870
AV
255 DIV_ROUND_UP((u32)ktime_to_ns(tick_nohz_get_sleep_length()), 1000);
256
257
258 data->bucket = which_bucket(data->expected_us);
259
260 multiplier = performance_multiplier();
261
262 /*
263 * if the correction factor is 0 (eg first time init or cpu hotplug
264 * etc), we actually want to start out with a unity factor.
265 */
266 if (data->correction_factor[data->bucket] == 0)
267 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
268
269 /* Make sure to round up for half microseconds */
5787536e
SH
270 data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
271 RESOLUTION * DECAY);
69d25870 272
1f85f87d
AV
273 detect_repeating_patterns(data);
274
69d25870
AV
275 /*
276 * We want to default to C1 (hlt), not to busy polling
277 * unless the timer is happening really really soon.
278 */
279 if (data->expected_us > 5)
280 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
4f86d3a8 281
71abbbf8
AL
282 /*
283 * Find the idle state with the lowest power while satisfying
284 * our constraints.
285 */
69d25870 286 for (i = CPUIDLE_DRIVER_STATE_START; i < dev->state_count; i++) {
4f86d3a8
LB
287 struct cpuidle_state *s = &dev->states[i];
288
71abbbf8
AL
289 if (s->flags & CPUIDLE_FLAG_IGNORE)
290 continue;
4f86d3a8 291 if (s->target_residency > data->predicted_us)
71abbbf8 292 continue;
a2bd9202 293 if (s->exit_latency > latency_req)
71abbbf8 294 continue;
69d25870 295 if (s->exit_latency * multiplier > data->predicted_us)
71abbbf8
AL
296 continue;
297
298 if (s->power_usage < power_usage) {
299 power_usage = s->power_usage;
300 data->last_state_idx = i;
301 data->exit_us = s->exit_latency;
302 }
4f86d3a8
LB
303 }
304
69d25870 305 return data->last_state_idx;
4f86d3a8
LB
306}
307
308/**
672917dc 309 * menu_reflect - records that data structures need update
4f86d3a8
LB
310 * @dev: the CPU
311 *
312 * NOTE: it's important to be fast here because this operation will add to
313 * the overall exit latency.
314 */
315static void menu_reflect(struct cpuidle_device *dev)
672917dc
CZ
316{
317 struct menu_device *data = &__get_cpu_var(menu_devices);
318 data->needs_update = 1;
319}
320
321/**
322 * menu_update - attempts to guess what happened after entry
323 * @dev: the CPU
324 */
325static void menu_update(struct cpuidle_device *dev)
4f86d3a8
LB
326{
327 struct menu_device *data = &__get_cpu_var(menu_devices);
328 int last_idx = data->last_state_idx;
320eee77 329 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
4f86d3a8 330 struct cpuidle_state *target = &dev->states[last_idx];
320eee77 331 unsigned int measured_us;
69d25870 332 u64 new_factor;
4f86d3a8
LB
333
334 /*
335 * Ugh, this idle state doesn't support residency measurements, so we
336 * are basically lost in the dark. As a compromise, assume we slept
69d25870 337 * for the whole expected time.
4f86d3a8 338 */
320eee77 339 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
69d25870
AV
340 last_idle_us = data->expected_us;
341
342
343 measured_us = last_idle_us;
4f86d3a8 344
320eee77 345 /*
69d25870
AV
346 * We correct for the exit latency; we are assuming here that the
347 * exit latency happens after the event that we're interested in.
320eee77 348 */
69d25870
AV
349 if (measured_us > data->exit_us)
350 measured_us -= data->exit_us;
351
352
353 /* update our correction ratio */
354
355 new_factor = data->correction_factor[data->bucket]
356 * (DECAY - 1) / DECAY;
357
1c6fe036 358 if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
69d25870 359 new_factor += RESOLUTION * measured_us / data->expected_us;
320eee77 360 else
69d25870
AV
361 /*
362 * we were idle so long that we count it as a perfect
363 * prediction
364 */
365 new_factor += RESOLUTION;
320eee77 366
69d25870
AV
367 /*
368 * We don't want 0 as factor; we always want at least
369 * a tiny bit of estimated time.
370 */
371 if (new_factor == 0)
372 new_factor = 1;
320eee77 373
69d25870 374 data->correction_factor[data->bucket] = new_factor;
1f85f87d
AV
375
376 /* update the repeating-pattern data */
377 data->intervals[data->interval_ptr++] = last_idle_us;
378 if (data->interval_ptr >= INTERVALS)
379 data->interval_ptr = 0;
4f86d3a8
LB
380}
381
382/**
383 * menu_enable_device - scans a CPU's states and does setup
384 * @dev: the CPU
385 */
386static int menu_enable_device(struct cpuidle_device *dev)
387{
388 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
389
390 memset(data, 0, sizeof(struct menu_device));
391
392 return 0;
393}
394
395static struct cpuidle_governor menu_governor = {
396 .name = "menu",
397 .rating = 20,
398 .enable = menu_enable_device,
399 .select = menu_select,
400 .reflect = menu_reflect,
401 .owner = THIS_MODULE,
402};
403
404/**
405 * init_menu - initializes the governor
406 */
407static int __init init_menu(void)
408{
409 return cpuidle_register_governor(&menu_governor);
410}
411
412/**
413 * exit_menu - exits the governor
414 */
415static void __exit exit_menu(void)
416{
417 cpuidle_unregister_governor(&menu_governor);
418}
419
420MODULE_LICENSE("GPL");
421module_init(init_menu);
422module_exit(exit_menu);