]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/cpufreq/cpufreq_ondemand.c
ixgbe: update version number for ixgbe
[net-next-2.6.git] / drivers / cpufreq / cpufreq_ondemand.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/kernel.h>
14#include <linux/module.h>
1da177e4 15#include <linux/init.h>
1da177e4 16#include <linux/cpufreq.h>
138a0128 17#include <linux/cpu.h>
1da177e4
LT
18#include <linux/jiffies.h>
19#include <linux/kernel_stat.h>
3fc54d37 20#include <linux/mutex.h>
80800913 21#include <linux/hrtimer.h>
22#include <linux/tick.h>
23#include <linux/ktime.h>
9411b4ef 24#include <linux/sched.h>
1da177e4
LT
25
26/*
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
29 */
30
e9d95bf7 31#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
1da177e4 32#define DEF_FREQUENCY_UP_THRESHOLD (80)
3f78a9f7
DN
33#define DEF_SAMPLING_DOWN_FACTOR (1)
34#define MAX_SAMPLING_DOWN_FACTOR (100000)
80800913 35#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36#define MICRO_FREQUENCY_UP_THRESHOLD (95)
cef9615a 37#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
c29f1403 38#define MIN_FREQUENCY_UP_THRESHOLD (11)
1da177e4
LT
39#define MAX_FREQUENCY_UP_THRESHOLD (100)
40
32ee8c3e
DJ
41/*
42 * The polling frequency of this governor depends on the capability of
1da177e4 43 * the processor. Default polling frequency is 1000 times the transition
32ee8c3e
DJ
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
1da177e4
LT
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
df8b59be 51#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 52
cef9615a
TR
53static unsigned int min_sampling_rate;
54
112124ab 55#define LATENCY_MULTIPLIER (1000)
cef9615a 56#define MIN_LATENCY_MULTIPLIER (100)
1c256245 57#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
1da177e4 58
c4028958 59static void do_dbs_timer(struct work_struct *work);
0e625ac1
TR
60static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 unsigned int event);
62
63#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64static
65#endif
66struct cpufreq_governor cpufreq_gov_ondemand = {
67 .name = "ondemand",
68 .governor = cpufreq_governor_dbs,
69 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70 .owner = THIS_MODULE,
71};
c4028958
DH
72
73/* Sampling types */
529af7a1 74enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
1da177e4
LT
75
76struct cpu_dbs_info_s {
ccb2fe20 77 cputime64_t prev_cpu_idle;
6b8fcd90 78 cputime64_t prev_cpu_iowait;
ccb2fe20 79 cputime64_t prev_cpu_wall;
80800913 80 cputime64_t prev_cpu_nice;
32ee8c3e 81 struct cpufreq_policy *cur_policy;
2b03f891 82 struct delayed_work work;
05ca0350
AS
83 struct cpufreq_frequency_table *freq_table;
84 unsigned int freq_lo;
85 unsigned int freq_lo_jiffies;
86 unsigned int freq_hi_jiffies;
3f78a9f7 87 unsigned int rate_mult;
529af7a1 88 int cpu;
5a75c828 89 unsigned int sample_type:1;
90 /*
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
94 */
95 struct mutex timer_mutex;
1da177e4 96};
245b2e70 97static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
1da177e4
LT
98
99static unsigned int dbs_enable; /* number of CPUs using this policy */
100
4ec223d0 101/*
7d26e2d5 102 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
5a75c828 103 * different CPUs. It protects dbs_enable in governor start/stop.
4ec223d0 104 */
ffac80e9 105static DEFINE_MUTEX(dbs_mutex);
1da177e4 106
2f8a835c 107static struct workqueue_struct *kondemand_wq;
6810b548 108
05ca0350 109static struct dbs_tuners {
32ee8c3e 110 unsigned int sampling_rate;
32ee8c3e 111 unsigned int up_threshold;
e9d95bf7 112 unsigned int down_differential;
32ee8c3e 113 unsigned int ignore_nice;
3f78a9f7 114 unsigned int sampling_down_factor;
05ca0350 115 unsigned int powersave_bias;
19379b11 116 unsigned int io_is_busy;
05ca0350 117} dbs_tuners_ins = {
32ee8c3e 118 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
3f78a9f7 119 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
e9d95bf7 120 .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
9cbad61b 121 .ignore_nice = 0,
05ca0350 122 .powersave_bias = 0,
1da177e4
LT
123};
124
80800913 125static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
126 cputime64_t *wall)
dac1c1a5 127{
ea487615 128 cputime64_t idle_time;
3430502d 129 cputime64_t cur_wall_time;
ea487615 130 cputime64_t busy_time;
ccb2fe20 131
3430502d 132 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
ea487615
VP
133 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
134 kstat_cpu(cpu).cpustat.system);
ccb2fe20 135
ea487615
VP
136 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
137 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
138 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
1ca3abdb 139 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
ea487615 140
3430502d 141 idle_time = cputime64_sub(cur_wall_time, busy_time);
142 if (wall)
54c9a35d 143 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
3430502d 144
54c9a35d 145 return (cputime64_t)jiffies_to_usecs(idle_time);
dac1c1a5
DJ
146}
147
80800913 148static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
149{
150 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
151
152 if (idle_time == -1ULL)
153 return get_cpu_idle_time_jiffy(cpu, wall);
154
80800913 155 return idle_time;
156}
157
6b8fcd90
AV
158static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
159{
160 u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
161
162 if (iowait_time == -1ULL)
163 return 0;
164
165 return iowait_time;
166}
167
05ca0350
AS
168/*
169 * Find right freq to be set now with powersave_bias on.
170 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
171 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
172 */
b5ecf60f
AB
173static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
174 unsigned int freq_next,
175 unsigned int relation)
05ca0350
AS
176{
177 unsigned int freq_req, freq_reduc, freq_avg;
178 unsigned int freq_hi, freq_lo;
179 unsigned int index = 0;
180 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
245b2e70
TH
181 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
182 policy->cpu);
05ca0350
AS
183
184 if (!dbs_info->freq_table) {
185 dbs_info->freq_lo = 0;
186 dbs_info->freq_lo_jiffies = 0;
187 return freq_next;
188 }
189
190 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
191 relation, &index);
192 freq_req = dbs_info->freq_table[index].frequency;
193 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
194 freq_avg = freq_req - freq_reduc;
195
196 /* Find freq bounds for freq_avg in freq_table */
197 index = 0;
198 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
199 CPUFREQ_RELATION_H, &index);
200 freq_lo = dbs_info->freq_table[index].frequency;
201 index = 0;
202 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
203 CPUFREQ_RELATION_L, &index);
204 freq_hi = dbs_info->freq_table[index].frequency;
205
206 /* Find out how long we have to be in hi and lo freqs */
207 if (freq_hi == freq_lo) {
208 dbs_info->freq_lo = 0;
209 dbs_info->freq_lo_jiffies = 0;
210 return freq_lo;
211 }
212 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
213 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
214 jiffies_hi += ((freq_hi - freq_lo) / 2);
215 jiffies_hi /= (freq_hi - freq_lo);
216 jiffies_lo = jiffies_total - jiffies_hi;
217 dbs_info->freq_lo = freq_lo;
218 dbs_info->freq_lo_jiffies = jiffies_lo;
219 dbs_info->freq_hi_jiffies = jiffies_hi;
220 return freq_hi;
221}
222
5a75c828 223static void ondemand_powersave_bias_init_cpu(int cpu)
224{
384be2b1 225 struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
5a75c828 226 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
227 dbs_info->freq_lo = 0;
228}
229
05ca0350
AS
230static void ondemand_powersave_bias_init(void)
231{
232 int i;
233 for_each_online_cpu(i) {
5a75c828 234 ondemand_powersave_bias_init_cpu(i);
05ca0350
AS
235 }
236}
237
1da177e4 238/************************** sysfs interface ************************/
0e625ac1
TR
239
240static ssize_t show_sampling_rate_max(struct kobject *kobj,
241 struct attribute *attr, char *buf)
1da177e4 242{
4f4d1ad6
TR
243 printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
244 "sysfs file is deprecated - used by: %s\n", current->comm);
cef9615a 245 return sprintf(buf, "%u\n", -1U);
1da177e4
LT
246}
247
0e625ac1
TR
248static ssize_t show_sampling_rate_min(struct kobject *kobj,
249 struct attribute *attr, char *buf)
1da177e4 250{
cef9615a 251 return sprintf(buf, "%u\n", min_sampling_rate);
1da177e4
LT
252}
253
6dad2a29
BP
254define_one_global_ro(sampling_rate_max);
255define_one_global_ro(sampling_rate_min);
1da177e4
LT
256
257/* cpufreq_ondemand Governor Tunables */
258#define show_one(file_name, object) \
259static ssize_t show_##file_name \
0e625ac1 260(struct kobject *kobj, struct attribute *attr, char *buf) \
1da177e4
LT
261{ \
262 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
263}
264show_one(sampling_rate, sampling_rate);
19379b11 265show_one(io_is_busy, io_is_busy);
1da177e4 266show_one(up_threshold, up_threshold);
3f78a9f7 267show_one(sampling_down_factor, sampling_down_factor);
001893cd 268show_one(ignore_nice_load, ignore_nice);
05ca0350 269show_one(powersave_bias, powersave_bias);
1da177e4 270
0e625ac1
TR
271/*** delete after deprecation time ***/
272
273#define DEPRECATION_MSG(file_name) \
274 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
275 "interface is deprecated - " #file_name "\n");
276
277#define show_one_old(file_name) \
278static ssize_t show_##file_name##_old \
279(struct cpufreq_policy *unused, char *buf) \
280{ \
281 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
282 "interface is deprecated - " #file_name "\n"); \
283 return show_##file_name(NULL, NULL, buf); \
284}
285show_one_old(sampling_rate);
286show_one_old(up_threshold);
287show_one_old(ignore_nice_load);
288show_one_old(powersave_bias);
289show_one_old(sampling_rate_min);
290show_one_old(sampling_rate_max);
291
6dad2a29
BP
292cpufreq_freq_attr_ro_old(sampling_rate_min);
293cpufreq_freq_attr_ro_old(sampling_rate_max);
0e625ac1
TR
294
295/*** delete after deprecation time ***/
296
297static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
298 const char *buf, size_t count)
1da177e4
LT
299{
300 unsigned int input;
301 int ret;
ffac80e9 302 ret = sscanf(buf, "%u", &input);
5a75c828 303 if (ret != 1)
304 return -EINVAL;
1da177e4 305
3fc54d37 306 mutex_lock(&dbs_mutex);
cef9615a 307 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
3fc54d37 308 mutex_unlock(&dbs_mutex);
1da177e4
LT
309
310 return count;
311}
312
19379b11
AV
313static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
314 const char *buf, size_t count)
315{
316 unsigned int input;
317 int ret;
318
319 ret = sscanf(buf, "%u", &input);
320 if (ret != 1)
321 return -EINVAL;
322
323 mutex_lock(&dbs_mutex);
324 dbs_tuners_ins.io_is_busy = !!input;
325 mutex_unlock(&dbs_mutex);
326
327 return count;
328}
329
0e625ac1
TR
330static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
331 const char *buf, size_t count)
1da177e4
LT
332{
333 unsigned int input;
334 int ret;
ffac80e9 335 ret = sscanf(buf, "%u", &input);
1da177e4 336
32ee8c3e 337 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
c29f1403 338 input < MIN_FREQUENCY_UP_THRESHOLD) {
1da177e4
LT
339 return -EINVAL;
340 }
341
5a75c828 342 mutex_lock(&dbs_mutex);
1da177e4 343 dbs_tuners_ins.up_threshold = input;
3fc54d37 344 mutex_unlock(&dbs_mutex);
1da177e4
LT
345
346 return count;
347}
348
3f78a9f7
DN
349static ssize_t store_sampling_down_factor(struct kobject *a,
350 struct attribute *b, const char *buf, size_t count)
351{
352 unsigned int input, j;
353 int ret;
354 ret = sscanf(buf, "%u", &input);
355
356 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
357 return -EINVAL;
358 mutex_lock(&dbs_mutex);
359 dbs_tuners_ins.sampling_down_factor = input;
360
361 /* Reset down sampling multiplier in case it was active */
362 for_each_online_cpu(j) {
363 struct cpu_dbs_info_s *dbs_info;
364 dbs_info = &per_cpu(od_cpu_dbs_info, j);
365 dbs_info->rate_mult = 1;
366 }
367 mutex_unlock(&dbs_mutex);
368
369 return count;
370}
371
0e625ac1
TR
372static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
373 const char *buf, size_t count)
3d5ee9e5
DJ
374{
375 unsigned int input;
376 int ret;
377
378 unsigned int j;
32ee8c3e 379
ffac80e9 380 ret = sscanf(buf, "%u", &input);
2b03f891 381 if (ret != 1)
3d5ee9e5
DJ
382 return -EINVAL;
383
2b03f891 384 if (input > 1)
3d5ee9e5 385 input = 1;
32ee8c3e 386
3fc54d37 387 mutex_lock(&dbs_mutex);
2b03f891 388 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 389 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
390 return count;
391 }
392 dbs_tuners_ins.ignore_nice = input;
393
ccb2fe20 394 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 395 for_each_online_cpu(j) {
ccb2fe20 396 struct cpu_dbs_info_s *dbs_info;
245b2e70 397 dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 398 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
399 &dbs_info->prev_cpu_wall);
1ca3abdb
VP
400 if (dbs_tuners_ins.ignore_nice)
401 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
402
3d5ee9e5 403 }
3fc54d37 404 mutex_unlock(&dbs_mutex);
3d5ee9e5
DJ
405
406 return count;
407}
408
0e625ac1
TR
409static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410 const char *buf, size_t count)
05ca0350
AS
411{
412 unsigned int input;
413 int ret;
414 ret = sscanf(buf, "%u", &input);
415
416 if (ret != 1)
417 return -EINVAL;
418
419 if (input > 1000)
420 input = 1000;
421
422 mutex_lock(&dbs_mutex);
423 dbs_tuners_ins.powersave_bias = input;
424 ondemand_powersave_bias_init();
425 mutex_unlock(&dbs_mutex);
426
427 return count;
428}
429
6dad2a29 430define_one_global_rw(sampling_rate);
07d77759 431define_one_global_rw(io_is_busy);
6dad2a29 432define_one_global_rw(up_threshold);
3f78a9f7 433define_one_global_rw(sampling_down_factor);
6dad2a29
BP
434define_one_global_rw(ignore_nice_load);
435define_one_global_rw(powersave_bias);
1da177e4 436
2b03f891 437static struct attribute *dbs_attributes[] = {
1da177e4
LT
438 &sampling_rate_max.attr,
439 &sampling_rate_min.attr,
440 &sampling_rate.attr,
1da177e4 441 &up_threshold.attr,
3f78a9f7 442 &sampling_down_factor.attr,
001893cd 443 &ignore_nice_load.attr,
05ca0350 444 &powersave_bias.attr,
19379b11 445 &io_is_busy.attr,
1da177e4
LT
446 NULL
447};
448
449static struct attribute_group dbs_attr_group = {
450 .attrs = dbs_attributes,
451 .name = "ondemand",
452};
453
0e625ac1
TR
454/*** delete after deprecation time ***/
455
456#define write_one_old(file_name) \
457static ssize_t store_##file_name##_old \
458(struct cpufreq_policy *unused, const char *buf, size_t count) \
459{ \
460 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
461 "interface is deprecated - " #file_name "\n"); \
462 return store_##file_name(NULL, NULL, buf, count); \
463}
464write_one_old(sampling_rate);
465write_one_old(up_threshold);
466write_one_old(ignore_nice_load);
467write_one_old(powersave_bias);
468
6dad2a29
BP
469cpufreq_freq_attr_rw_old(sampling_rate);
470cpufreq_freq_attr_rw_old(up_threshold);
471cpufreq_freq_attr_rw_old(ignore_nice_load);
472cpufreq_freq_attr_rw_old(powersave_bias);
0e625ac1
TR
473
474static struct attribute *dbs_attributes_old[] = {
475 &sampling_rate_max_old.attr,
476 &sampling_rate_min_old.attr,
477 &sampling_rate_old.attr,
478 &up_threshold_old.attr,
479 &ignore_nice_load_old.attr,
480 &powersave_bias_old.attr,
481 NULL
482};
483
484static struct attribute_group dbs_attr_group_old = {
485 .attrs = dbs_attributes_old,
486 .name = "ondemand",
487};
488
489/*** delete after deprecation time ***/
490
1da177e4
LT
491/************************** sysfs end ************************/
492
00e299ff
MC
493static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
494{
495 if (dbs_tuners_ins.powersave_bias)
496 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
497 else if (p->cur == p->max)
498 return;
499
500 __cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
501 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
502}
503
2f8a835c 504static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
1da177e4 505{
c43aa3bd 506 unsigned int max_load_freq;
1da177e4
LT
507
508 struct cpufreq_policy *policy;
509 unsigned int j;
510
05ca0350 511 this_dbs_info->freq_lo = 0;
1da177e4 512 policy = this_dbs_info->cur_policy;
ea487615 513
32ee8c3e 514 /*
c29f1403
DJ
515 * Every sampling_rate, we check, if current idle time is less
516 * than 20% (default), then we try to increase frequency
ccb2fe20 517 * Every sampling_rate, we look for a the lowest
c29f1403
DJ
518 * frequency which can sustain the load while keeping idle time over
519 * 30%. If such a frequency exist, we try to decrease to this frequency.
1da177e4 520 *
32ee8c3e
DJ
521 * Any frequency increase takes it to the maximum frequency.
522 * Frequency reduction happens at minimum steps of
523 * 5% (default) of current frequency
1da177e4
LT
524 */
525
c43aa3bd 526 /* Get Absolute Load - in terms of freq */
527 max_load_freq = 0;
528
835481d9 529 for_each_cpu(j, policy->cpus) {
1da177e4 530 struct cpu_dbs_info_s *j_dbs_info;
6b8fcd90
AV
531 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
532 unsigned int idle_time, wall_time, iowait_time;
c43aa3bd 533 unsigned int load, load_freq;
534 int freq_avg;
1da177e4 535
245b2e70 536 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
3430502d 537
538 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
6b8fcd90 539 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
3430502d 540
c43aa3bd 541 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
542 j_dbs_info->prev_cpu_wall);
543 j_dbs_info->prev_cpu_wall = cur_wall_time;
544
c43aa3bd 545 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
ccb2fe20 546 j_dbs_info->prev_cpu_idle);
c43aa3bd 547 j_dbs_info->prev_cpu_idle = cur_idle_time;
1da177e4 548
6b8fcd90
AV
549 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
550 j_dbs_info->prev_cpu_iowait);
551 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
552
1ca3abdb
VP
553 if (dbs_tuners_ins.ignore_nice) {
554 cputime64_t cur_nice;
555 unsigned long cur_nice_jiffies;
556
557 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
558 j_dbs_info->prev_cpu_nice);
559 /*
560 * Assumption: nice time between sampling periods will
561 * be less than 2^32 jiffies for 32 bit sys
562 */
563 cur_nice_jiffies = (unsigned long)
564 cputime64_to_jiffies64(cur_nice);
565
566 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
567 idle_time += jiffies_to_usecs(cur_nice_jiffies);
568 }
569
6b8fcd90
AV
570 /*
571 * For the purpose of ondemand, waiting for disk IO is an
572 * indication that you're performance critical, and not that
573 * the system is actually idle. So subtract the iowait time
574 * from the cpu idle time.
575 */
576
19379b11 577 if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
6b8fcd90
AV
578 idle_time -= iowait_time;
579
3430502d 580 if (unlikely(!wall_time || wall_time < idle_time))
c43aa3bd 581 continue;
c43aa3bd 582
583 load = 100 * (wall_time - idle_time) / wall_time;
584
585 freq_avg = __cpufreq_driver_getavg(policy, j);
586 if (freq_avg <= 0)
587 freq_avg = policy->cur;
588
589 load_freq = load * freq_avg;
590 if (load_freq > max_load_freq)
591 max_load_freq = load_freq;
1da177e4
LT
592 }
593
ccb2fe20 594 /* Check for frequency increase */
c43aa3bd 595 if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
3f78a9f7
DN
596 /* If switching to max speed, apply sampling_down_factor */
597 if (policy->cur < policy->max)
598 this_dbs_info->rate_mult =
599 dbs_tuners_ins.sampling_down_factor;
00e299ff 600 dbs_freq_increase(policy, policy->max);
1da177e4
LT
601 return;
602 }
603
604 /* Check for frequency decrease */
c29f1403
DJ
605 /* if we cannot reduce the frequency anymore, break out early */
606 if (policy->cur == policy->min)
607 return;
1da177e4 608
c29f1403
DJ
609 /*
610 * The optimal frequency is the frequency that is the lowest that
611 * can support the current CPU usage without triggering the up
612 * policy. To be safe, we focus 10 points under the threshold.
613 */
e9d95bf7 614 if (max_load_freq <
615 (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
616 policy->cur) {
c43aa3bd 617 unsigned int freq_next;
e9d95bf7 618 freq_next = max_load_freq /
619 (dbs_tuners_ins.up_threshold -
620 dbs_tuners_ins.down_differential);
dfde5d62 621
3f78a9f7
DN
622 /* No longer fully busy, reset rate_mult */
623 this_dbs_info->rate_mult = 1;
624
1dbf5888
NC
625 if (freq_next < policy->min)
626 freq_next = policy->min;
627
05ca0350
AS
628 if (!dbs_tuners_ins.powersave_bias) {
629 __cpufreq_driver_target(policy, freq_next,
630 CPUFREQ_RELATION_L);
631 } else {
632 int freq = powersave_bias_target(policy, freq_next,
633 CPUFREQ_RELATION_L);
634 __cpufreq_driver_target(policy, freq,
635 CPUFREQ_RELATION_L);
636 }
ccb2fe20 637 }
1da177e4
LT
638}
639
c4028958 640static void do_dbs_timer(struct work_struct *work)
32ee8c3e 641{
529af7a1
VP
642 struct cpu_dbs_info_s *dbs_info =
643 container_of(work, struct cpu_dbs_info_s, work.work);
644 unsigned int cpu = dbs_info->cpu;
645 int sample_type = dbs_info->sample_type;
646
1ce28d6b 647 /* We want all CPUs to do sampling nearly on same jiffy */
3f78a9f7
DN
648 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
649 * dbs_info->rate_mult);
c4028958 650
a665df9d
JF
651 if (num_online_cpus() > 1)
652 delay -= jiffies % delay;
653
5a75c828 654 mutex_lock(&dbs_info->timer_mutex);
56463b78 655
05ca0350 656 /* Common NORMAL_SAMPLE setup */
c4028958 657 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
05ca0350 658 if (!dbs_tuners_ins.powersave_bias ||
c4028958 659 sample_type == DBS_NORMAL_SAMPLE) {
05ca0350 660 dbs_check_cpu(dbs_info);
05ca0350
AS
661 if (dbs_info->freq_lo) {
662 /* Setup timer for SUB_SAMPLE */
c4028958 663 dbs_info->sample_type = DBS_SUB_SAMPLE;
05ca0350
AS
664 delay = dbs_info->freq_hi_jiffies;
665 }
666 } else {
667 __cpufreq_driver_target(dbs_info->cur_policy,
2b03f891 668 dbs_info->freq_lo, CPUFREQ_RELATION_H);
05ca0350 669 }
1ce28d6b 670 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
5a75c828 671 mutex_unlock(&dbs_info->timer_mutex);
32ee8c3e 672}
1da177e4 673
529af7a1 674static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
1da177e4 675{
1ce28d6b
AS
676 /* We want all CPUs to do sampling nearly on same jiffy */
677 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
a665df9d
JF
678
679 if (num_online_cpus() > 1)
680 delay -= jiffies % delay;
2f8a835c 681
c4028958 682 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
28287033 683 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
529af7a1 684 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
2b03f891 685 delay);
1da177e4
LT
686}
687
2cd7cbdf 688static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
1da177e4 689{
b14893a6 690 cancel_delayed_work_sync(&dbs_info->work);
1da177e4
LT
691}
692
19379b11
AV
693/*
694 * Not all CPUs want IO time to be accounted as busy; this dependson how
695 * efficient idling at a higher frequency/voltage is.
696 * Pavel Machek says this is not so for various generations of AMD and old
697 * Intel systems.
698 * Mike Chan (androidlcom) calis this is also not true for ARM.
699 * Because of this, whitelist specific known (series) of CPUs by default, and
700 * leave all others up to the user.
701 */
702static int should_io_be_busy(void)
703{
704#if defined(CONFIG_X86)
705 /*
706 * For Intel, Core 2 (model 15) andl later have an efficient idle.
707 */
708 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
709 boot_cpu_data.x86 == 6 &&
710 boot_cpu_data.x86_model >= 15)
711 return 1;
712#endif
713 return 0;
714}
715
1da177e4
LT
716static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
717 unsigned int event)
718{
719 unsigned int cpu = policy->cpu;
720 struct cpu_dbs_info_s *this_dbs_info;
721 unsigned int j;
914f7c31 722 int rc;
1da177e4 723
245b2e70 724 this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
1da177e4
LT
725
726 switch (event) {
727 case CPUFREQ_GOV_START:
ffac80e9 728 if ((!cpu_online(cpu)) || (!policy->cur))
1da177e4
LT
729 return -EINVAL;
730
3fc54d37 731 mutex_lock(&dbs_mutex);
914f7c31 732
0e625ac1 733 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
914f7c31 734 if (rc) {
914f7c31
JG
735 mutex_unlock(&dbs_mutex);
736 return rc;
737 }
738
5a75c828 739 dbs_enable++;
835481d9 740 for_each_cpu(j, policy->cpus) {
1da177e4 741 struct cpu_dbs_info_s *j_dbs_info;
245b2e70 742 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
1da177e4 743 j_dbs_info->cur_policy = policy;
32ee8c3e 744
3430502d 745 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
746 &j_dbs_info->prev_cpu_wall);
1ca3abdb
VP
747 if (dbs_tuners_ins.ignore_nice) {
748 j_dbs_info->prev_cpu_nice =
749 kstat_cpu(j).cpustat.nice;
750 }
1da177e4 751 }
529af7a1 752 this_dbs_info->cpu = cpu;
3f78a9f7 753 this_dbs_info->rate_mult = 1;
5a75c828 754 ondemand_powersave_bias_init_cpu(cpu);
1da177e4
LT
755 /*
756 * Start the timerschedule work, when this governor
757 * is used for first time
758 */
759 if (dbs_enable == 1) {
760 unsigned int latency;
0e625ac1
TR
761
762 rc = sysfs_create_group(cpufreq_global_kobject,
763 &dbs_attr_group);
764 if (rc) {
765 mutex_unlock(&dbs_mutex);
766 return rc;
767 }
768
1da177e4 769 /* policy latency is in nS. Convert it to uS first */
df8b59be
DJ
770 latency = policy->cpuinfo.transition_latency / 1000;
771 if (latency == 0)
772 latency = 1;
cef9615a
TR
773 /* Bring kernel and HW constraints together */
774 min_sampling_rate = max(min_sampling_rate,
775 MIN_LATENCY_MULTIPLIER * latency);
776 dbs_tuners_ins.sampling_rate =
777 max(min_sampling_rate,
778 latency * LATENCY_MULTIPLIER);
19379b11 779 dbs_tuners_ins.io_is_busy = should_io_be_busy();
1da177e4 780 }
3fc54d37 781 mutex_unlock(&dbs_mutex);
7d26e2d5 782
0e625ac1 783 mutex_init(&this_dbs_info->timer_mutex);
7d26e2d5 784 dbs_timer_init(this_dbs_info);
1da177e4
LT
785 break;
786
787 case CPUFREQ_GOV_STOP:
2cd7cbdf 788 dbs_timer_exit(this_dbs_info);
7d26e2d5 789
790 mutex_lock(&dbs_mutex);
0e625ac1 791 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
5a75c828 792 mutex_destroy(&this_dbs_info->timer_mutex);
1da177e4 793 dbs_enable--;
3fc54d37 794 mutex_unlock(&dbs_mutex);
0e625ac1
TR
795 if (!dbs_enable)
796 sysfs_remove_group(cpufreq_global_kobject,
797 &dbs_attr_group);
1da177e4
LT
798
799 break;
800
801 case CPUFREQ_GOV_LIMITS:
5a75c828 802 mutex_lock(&this_dbs_info->timer_mutex);
1da177e4 803 if (policy->max < this_dbs_info->cur_policy->cur)
ffac80e9 804 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 805 policy->max, CPUFREQ_RELATION_H);
1da177e4 806 else if (policy->min > this_dbs_info->cur_policy->cur)
ffac80e9 807 __cpufreq_driver_target(this_dbs_info->cur_policy,
2b03f891 808 policy->min, CPUFREQ_RELATION_L);
5a75c828 809 mutex_unlock(&this_dbs_info->timer_mutex);
1da177e4
LT
810 break;
811 }
812 return 0;
813}
814
1da177e4
LT
815static int __init cpufreq_gov_dbs_init(void)
816{
888a794c 817 int err;
80800913 818 cputime64_t wall;
4f6e6b9f
AR
819 u64 idle_time;
820 int cpu = get_cpu();
80800913 821
4f6e6b9f
AR
822 idle_time = get_cpu_idle_time_us(cpu, &wall);
823 put_cpu();
80800913 824 if (idle_time != -1ULL) {
825 /* Idle micro accounting is supported. Use finer thresholds */
826 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
827 dbs_tuners_ins.down_differential =
828 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
cef9615a
TR
829 /*
830 * In no_hz/micro accounting case we set the minimum frequency
831 * not depending on HZ, but fixed (very low). The deferred
832 * timer might skip some samples if idle/sleeping as needed.
833 */
834 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
835 } else {
836 /* For correct statistics, we need 10 ticks for each measure */
837 min_sampling_rate =
838 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
80800913 839 }
888a794c 840
56463b78
VP
841 kondemand_wq = create_workqueue("kondemand");
842 if (!kondemand_wq) {
843 printk(KERN_ERR "Creation of kondemand failed\n");
844 return -EFAULT;
845 }
888a794c
AM
846 err = cpufreq_register_governor(&cpufreq_gov_ondemand);
847 if (err)
848 destroy_workqueue(kondemand_wq);
849
850 return err;
1da177e4
LT
851}
852
853static void __exit cpufreq_gov_dbs_exit(void)
854{
1c256245 855 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
56463b78 856 destroy_workqueue(kondemand_wq);
1da177e4
LT
857}
858
859
ffac80e9
VP
860MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
861MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
862MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
2b03f891 863 "Low Latency Frequency Transition capable processors");
ffac80e9 864MODULE_LICENSE("GPL");
1da177e4 865
6915719b
JW
866#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
867fs_initcall(cpufreq_gov_dbs_init);
868#else
1da177e4 869module_init(cpufreq_gov_dbs_init);
6915719b 870#endif
1da177e4 871module_exit(cpufreq_gov_dbs_exit);