]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/char/ipmi/ipmi_si_intf.c
ipmi: reduce polling when interrupts are available
[net-next-2.6.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
dba9b4f6 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
1da177e4
LT
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36/*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
1da177e4
LT
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4 57#include <asm/irq.h>
1da177e4
LT
58#include <linux/interrupt.h>
59#include <linux/rcupdate.h>
60#include <linux/ipmi_smi.h>
61#include <asm/io.h>
62#include "ipmi_si_sm.h"
63#include <linux/init.h>
b224cd3a 64#include <linux/dmi.h>
b361e27b
CM
65#include <linux/string.h>
66#include <linux/ctype.h>
9e368fa0 67#include <linux/pnp.h>
b361e27b 68
dba9b4f6 69#ifdef CONFIG_PPC_OF
11c675ce
SR
70#include <linux/of_device.h>
71#include <linux/of_platform.h>
dba9b4f6
CM
72#endif
73
b361e27b 74#define PFX "ipmi_si: "
1da177e4
LT
75
76/* Measure times between events in the driver. */
77#undef DEBUG_TIMING
78
79/* Call every 10 ms. */
80#define SI_TIMEOUT_TIME_USEC 10000
81#define SI_USEC_PER_JIFFY (1000000/HZ)
82#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
c305e3d3 84 short timeout */
1da177e4
LT
85
86enum si_intf_state {
87 SI_NORMAL,
88 SI_GETTING_FLAGS,
89 SI_GETTING_EVENTS,
90 SI_CLEARING_FLAGS,
91 SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 SI_GETTING_MESSAGES,
93 SI_ENABLE_INTERRUPTS1,
ee6cd5f8
CM
94 SI_ENABLE_INTERRUPTS2,
95 SI_DISABLE_INTERRUPTS1,
96 SI_DISABLE_INTERRUPTS2
1da177e4
LT
97 /* FIXME - add watchdog stuff. */
98};
99
9dbf68f9
CM
100/* Some BT-specific defines we need here. */
101#define IPMI_BT_INTMASK_REG 2
102#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
103#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
104
1da177e4
LT
105enum si_type {
106 SI_KCS, SI_SMIC, SI_BT
107};
b361e27b 108static char *si_to_str[] = { "kcs", "smic", "bt" };
1da177e4 109
5fedc4a2
MG
110enum ipmi_addr_src {
111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 SI_PCI, SI_DEVICETREE, SI_DEFAULT
113};
114static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 "ACPI", "SMBIOS", "PCI",
116 "device-tree", "default" };
117
50c812b2
CM
118#define DEVICE_NAME "ipmi_si"
119
fe2d5ffc
DW
120static struct platform_driver ipmi_driver = {
121 .driver = {
122 .name = DEVICE_NAME,
123 .bus = &platform_bus_type
124 }
50c812b2 125};
3ae0e0f9 126
64959e2d
CM
127
128/*
129 * Indexes into stats[] in smi_info below.
130 */
ba8ff1c6
CM
131enum si_stat_indexes {
132 /*
133 * Number of times the driver requested a timer while an operation
134 * was in progress.
135 */
136 SI_STAT_short_timeouts = 0,
137
138 /*
139 * Number of times the driver requested a timer while nothing was in
140 * progress.
141 */
142 SI_STAT_long_timeouts,
143
144 /* Number of times the interface was idle while being polled. */
145 SI_STAT_idles,
146
147 /* Number of interrupts the driver handled. */
148 SI_STAT_interrupts,
149
150 /* Number of time the driver got an ATTN from the hardware. */
151 SI_STAT_attentions,
64959e2d 152
ba8ff1c6
CM
153 /* Number of times the driver requested flags from the hardware. */
154 SI_STAT_flag_fetches,
155
156 /* Number of times the hardware didn't follow the state machine. */
157 SI_STAT_hosed_count,
158
159 /* Number of completed messages. */
160 SI_STAT_complete_transactions,
161
162 /* Number of IPMI events received from the hardware. */
163 SI_STAT_events,
164
165 /* Number of watchdog pretimeouts. */
166 SI_STAT_watchdog_pretimeouts,
167
168 /* Number of asyncronous messages received. */
169 SI_STAT_incoming_messages,
170
171
172 /* This *must* remain last, add new values above this. */
173 SI_NUM_STATS
174};
64959e2d 175
c305e3d3 176struct smi_info {
a9a2c44f 177 int intf_num;
1da177e4
LT
178 ipmi_smi_t intf;
179 struct si_sm_data *si_sm;
180 struct si_sm_handlers *handlers;
181 enum si_type si_type;
182 spinlock_t si_lock;
183 spinlock_t msg_lock;
184 struct list_head xmit_msgs;
185 struct list_head hp_xmit_msgs;
186 struct ipmi_smi_msg *curr_msg;
187 enum si_intf_state si_state;
188
c305e3d3
CM
189 /*
190 * Used to handle the various types of I/O that can occur with
191 * IPMI
192 */
1da177e4
LT
193 struct si_sm_io io;
194 int (*io_setup)(struct smi_info *info);
195 void (*io_cleanup)(struct smi_info *info);
196 int (*irq_setup)(struct smi_info *info);
197 void (*irq_cleanup)(struct smi_info *info);
198 unsigned int io_size;
5fedc4a2 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
b0defcdb
CM
200 void (*addr_source_cleanup)(struct smi_info *info);
201 void *addr_source_data;
1da177e4 202
c305e3d3
CM
203 /*
204 * Per-OEM handler, called from handle_flags(). Returns 1
205 * when handle_flags() needs to be re-run or 0 indicating it
206 * set si_state itself.
207 */
3ae0e0f9
CM
208 int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
c305e3d3
CM
210 /*
211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 * is set to hold the flags until we are done handling everything
213 * from the flags.
214 */
1da177e4
LT
215#define RECEIVE_MSG_AVAIL 0x01
216#define EVENT_MSG_BUFFER_FULL 0x02
217#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
218#define OEM0_DATA_AVAIL 0x20
219#define OEM1_DATA_AVAIL 0x40
220#define OEM2_DATA_AVAIL 0x80
221#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
c305e3d3
CM
222 OEM1_DATA_AVAIL | \
223 OEM2_DATA_AVAIL)
1da177e4
LT
224 unsigned char msg_flags;
225
40112ae7
CM
226 /* Does the BMC have an event buffer? */
227 char has_event_buffer;
228
c305e3d3
CM
229 /*
230 * If set to true, this will request events the next time the
231 * state machine is idle.
232 */
1da177e4
LT
233 atomic_t req_events;
234
c305e3d3
CM
235 /*
236 * If true, run the state machine to completion on every send
237 * call. Generally used after a panic to make sure stuff goes
238 * out.
239 */
1da177e4
LT
240 int run_to_completion;
241
242 /* The I/O port of an SI interface. */
243 int port;
244
c305e3d3
CM
245 /*
246 * The space between start addresses of the two ports. For
247 * instance, if the first port is 0xca2 and the spacing is 4, then
248 * the second port is 0xca6.
249 */
1da177e4
LT
250 unsigned int spacing;
251
252 /* zero if no irq; */
253 int irq;
254
255 /* The timer for this si. */
256 struct timer_list si_timer;
257
258 /* The time (in jiffies) the last timeout occurred at. */
259 unsigned long last_timeout_jiffies;
260
261 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 262 atomic_t stop_operation;
1da177e4 263
c305e3d3
CM
264 /*
265 * The driver will disable interrupts when it gets into a
266 * situation where it cannot handle messages due to lack of
267 * memory. Once that situation clears up, it will re-enable
268 * interrupts.
269 */
1da177e4
LT
270 int interrupt_disabled;
271
50c812b2 272 /* From the get device id response... */
3ae0e0f9 273 struct ipmi_device_id device_id;
1da177e4 274
50c812b2
CM
275 /* Driver model stuff. */
276 struct device *dev;
277 struct platform_device *pdev;
278
c305e3d3
CM
279 /*
280 * True if we allocated the device, false if it came from
281 * someplace else (like PCI).
282 */
50c812b2
CM
283 int dev_registered;
284
1da177e4
LT
285 /* Slave address, could be reported from DMI. */
286 unsigned char slave_addr;
287
288 /* Counters and things for the proc filesystem. */
64959e2d 289 atomic_t stats[SI_NUM_STATS];
a9a2c44f 290
c305e3d3 291 struct task_struct *thread;
b0defcdb
CM
292
293 struct list_head link;
1da177e4
LT
294};
295
64959e2d
CM
296#define smi_inc_stat(smi, stat) \
297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298#define smi_get_stat(smi, stat) \
299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
a51f4a81
CM
301#define SI_MAX_PARMS 4
302
303static int force_kipmid[SI_MAX_PARMS];
304static int num_force_kipmid;
305
ae74e823
MW
306static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307static int num_max_busy_us;
308
b361e27b
CM
309static int unload_when_empty = 1;
310
2407d77a 311static int add_smi(struct smi_info *smi);
b0defcdb 312static int try_smi_init(struct smi_info *smi);
b361e27b 313static void cleanup_one_si(struct smi_info *to_clean);
b0defcdb 314
e041c683 315static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
c305e3d3 316static int register_xaction_notifier(struct notifier_block *nb)
ea94027b 317{
e041c683 318 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
ea94027b
CM
319}
320
1da177e4
LT
321static void deliver_recv_msg(struct smi_info *smi_info,
322 struct ipmi_smi_msg *msg)
323{
324 /* Deliver the message to the upper layer with the lock
c305e3d3 325 released. */
1da177e4
LT
326 spin_unlock(&(smi_info->si_lock));
327 ipmi_smi_msg_received(smi_info->intf, msg);
328 spin_lock(&(smi_info->si_lock));
329}
330
4d7cbac7 331static void return_hosed_msg(struct smi_info *smi_info, int cCode)
1da177e4
LT
332{
333 struct ipmi_smi_msg *msg = smi_info->curr_msg;
334
4d7cbac7
CM
335 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
336 cCode = IPMI_ERR_UNSPECIFIED;
337 /* else use it as is */
338
1da177e4
LT
339 /* Make it a reponse */
340 msg->rsp[0] = msg->data[0] | 4;
341 msg->rsp[1] = msg->data[1];
4d7cbac7 342 msg->rsp[2] = cCode;
1da177e4
LT
343 msg->rsp_size = 3;
344
345 smi_info->curr_msg = NULL;
346 deliver_recv_msg(smi_info, msg);
347}
348
349static enum si_sm_result start_next_msg(struct smi_info *smi_info)
350{
351 int rv;
352 struct list_head *entry = NULL;
353#ifdef DEBUG_TIMING
354 struct timeval t;
355#endif
356
c305e3d3
CM
357 /*
358 * No need to save flags, we aleady have interrupts off and we
359 * already hold the SMI lock.
360 */
5956dce1
KB
361 if (!smi_info->run_to_completion)
362 spin_lock(&(smi_info->msg_lock));
1da177e4
LT
363
364 /* Pick the high priority queue first. */
b0defcdb 365 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 366 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 367 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
368 entry = smi_info->xmit_msgs.next;
369 }
370
b0defcdb 371 if (!entry) {
1da177e4
LT
372 smi_info->curr_msg = NULL;
373 rv = SI_SM_IDLE;
374 } else {
375 int err;
376
377 list_del(entry);
378 smi_info->curr_msg = list_entry(entry,
379 struct ipmi_smi_msg,
380 link);
381#ifdef DEBUG_TIMING
382 do_gettimeofday(&t);
c305e3d3 383 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4 384#endif
e041c683
AS
385 err = atomic_notifier_call_chain(&xaction_notifier_list,
386 0, smi_info);
ea94027b
CM
387 if (err & NOTIFY_STOP_MASK) {
388 rv = SI_SM_CALL_WITHOUT_DELAY;
389 goto out;
390 }
1da177e4
LT
391 err = smi_info->handlers->start_transaction(
392 smi_info->si_sm,
393 smi_info->curr_msg->data,
394 smi_info->curr_msg->data_size);
c305e3d3 395 if (err)
4d7cbac7 396 return_hosed_msg(smi_info, err);
1da177e4
LT
397
398 rv = SI_SM_CALL_WITHOUT_DELAY;
399 }
c305e3d3 400 out:
5956dce1
KB
401 if (!smi_info->run_to_completion)
402 spin_unlock(&(smi_info->msg_lock));
1da177e4
LT
403
404 return rv;
405}
406
407static void start_enable_irq(struct smi_info *smi_info)
408{
409 unsigned char msg[2];
410
c305e3d3
CM
411 /*
412 * If we are enabling interrupts, we have to tell the
413 * BMC to use them.
414 */
1da177e4
LT
415 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
416 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
417
418 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
419 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
420}
421
ee6cd5f8
CM
422static void start_disable_irq(struct smi_info *smi_info)
423{
424 unsigned char msg[2];
425
426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
428
429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
430 smi_info->si_state = SI_DISABLE_INTERRUPTS1;
431}
432
1da177e4
LT
433static void start_clear_flags(struct smi_info *smi_info)
434{
435 unsigned char msg[3];
436
437 /* Make sure the watchdog pre-timeout flag is not set at startup. */
438 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
439 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
440 msg[2] = WDT_PRE_TIMEOUT_INT;
441
442 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
443 smi_info->si_state = SI_CLEARING_FLAGS;
444}
445
c305e3d3
CM
446/*
447 * When we have a situtaion where we run out of memory and cannot
448 * allocate messages, we just leave them in the BMC and run the system
449 * polled until we can allocate some memory. Once we have some
450 * memory, we will re-enable the interrupt.
451 */
1da177e4
LT
452static inline void disable_si_irq(struct smi_info *smi_info)
453{
b0defcdb 454 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
ee6cd5f8 455 start_disable_irq(smi_info);
1da177e4 456 smi_info->interrupt_disabled = 1;
ea4078ca
MG
457 if (!atomic_read(&smi_info->stop_operation))
458 mod_timer(&smi_info->si_timer,
459 jiffies + SI_TIMEOUT_JIFFIES);
1da177e4
LT
460 }
461}
462
463static inline void enable_si_irq(struct smi_info *smi_info)
464{
465 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
ee6cd5f8 466 start_enable_irq(smi_info);
1da177e4
LT
467 smi_info->interrupt_disabled = 0;
468 }
469}
470
471static void handle_flags(struct smi_info *smi_info)
472{
3ae0e0f9 473 retry:
1da177e4
LT
474 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
475 /* Watchdog pre-timeout */
64959e2d 476 smi_inc_stat(smi_info, watchdog_pretimeouts);
1da177e4
LT
477
478 start_clear_flags(smi_info);
479 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
480 spin_unlock(&(smi_info->si_lock));
481 ipmi_smi_watchdog_pretimeout(smi_info->intf);
482 spin_lock(&(smi_info->si_lock));
483 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
484 /* Messages available. */
485 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 486 if (!smi_info->curr_msg) {
1da177e4
LT
487 disable_si_irq(smi_info);
488 smi_info->si_state = SI_NORMAL;
489 return;
490 }
491 enable_si_irq(smi_info);
492
493 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
494 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
495 smi_info->curr_msg->data_size = 2;
496
497 smi_info->handlers->start_transaction(
498 smi_info->si_sm,
499 smi_info->curr_msg->data,
500 smi_info->curr_msg->data_size);
501 smi_info->si_state = SI_GETTING_MESSAGES;
502 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
503 /* Events available. */
504 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 505 if (!smi_info->curr_msg) {
1da177e4
LT
506 disable_si_irq(smi_info);
507 smi_info->si_state = SI_NORMAL;
508 return;
509 }
510 enable_si_irq(smi_info);
511
512 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
513 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
514 smi_info->curr_msg->data_size = 2;
515
516 smi_info->handlers->start_transaction(
517 smi_info->si_sm,
518 smi_info->curr_msg->data,
519 smi_info->curr_msg->data_size);
520 smi_info->si_state = SI_GETTING_EVENTS;
4064d5ef 521 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
c305e3d3 522 smi_info->oem_data_avail_handler) {
4064d5ef
CM
523 if (smi_info->oem_data_avail_handler(smi_info))
524 goto retry;
c305e3d3 525 } else
1da177e4 526 smi_info->si_state = SI_NORMAL;
1da177e4
LT
527}
528
529static void handle_transaction_done(struct smi_info *smi_info)
530{
531 struct ipmi_smi_msg *msg;
532#ifdef DEBUG_TIMING
533 struct timeval t;
534
535 do_gettimeofday(&t);
c305e3d3 536 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
537#endif
538 switch (smi_info->si_state) {
539 case SI_NORMAL:
b0defcdb 540 if (!smi_info->curr_msg)
1da177e4
LT
541 break;
542
543 smi_info->curr_msg->rsp_size
544 = smi_info->handlers->get_result(
545 smi_info->si_sm,
546 smi_info->curr_msg->rsp,
547 IPMI_MAX_MSG_LENGTH);
548
c305e3d3
CM
549 /*
550 * Do this here becase deliver_recv_msg() releases the
551 * lock, and a new message can be put in during the
552 * time the lock is released.
553 */
1da177e4
LT
554 msg = smi_info->curr_msg;
555 smi_info->curr_msg = NULL;
556 deliver_recv_msg(smi_info, msg);
557 break;
558
559 case SI_GETTING_FLAGS:
560 {
561 unsigned char msg[4];
562 unsigned int len;
563
564 /* We got the flags from the SMI, now handle them. */
565 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
566 if (msg[2] != 0) {
c305e3d3 567 /* Error fetching flags, just give up for now. */
1da177e4
LT
568 smi_info->si_state = SI_NORMAL;
569 } else if (len < 4) {
c305e3d3
CM
570 /*
571 * Hmm, no flags. That's technically illegal, but
572 * don't use uninitialized data.
573 */
1da177e4
LT
574 smi_info->si_state = SI_NORMAL;
575 } else {
576 smi_info->msg_flags = msg[3];
577 handle_flags(smi_info);
578 }
579 break;
580 }
581
582 case SI_CLEARING_FLAGS:
583 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
584 {
585 unsigned char msg[3];
586
587 /* We cleared the flags. */
588 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
589 if (msg[2] != 0) {
590 /* Error clearing flags */
591 printk(KERN_WARNING
592 "ipmi_si: Error clearing flags: %2.2x\n",
593 msg[2]);
594 }
595 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
596 start_enable_irq(smi_info);
597 else
598 smi_info->si_state = SI_NORMAL;
599 break;
600 }
601
602 case SI_GETTING_EVENTS:
603 {
604 smi_info->curr_msg->rsp_size
605 = smi_info->handlers->get_result(
606 smi_info->si_sm,
607 smi_info->curr_msg->rsp,
608 IPMI_MAX_MSG_LENGTH);
609
c305e3d3
CM
610 /*
611 * Do this here becase deliver_recv_msg() releases the
612 * lock, and a new message can be put in during the
613 * time the lock is released.
614 */
1da177e4
LT
615 msg = smi_info->curr_msg;
616 smi_info->curr_msg = NULL;
617 if (msg->rsp[2] != 0) {
618 /* Error getting event, probably done. */
619 msg->done(msg);
620
621 /* Take off the event flag. */
622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 handle_flags(smi_info);
624 } else {
64959e2d 625 smi_inc_stat(smi_info, events);
1da177e4 626
c305e3d3
CM
627 /*
628 * Do this before we deliver the message
629 * because delivering the message releases the
630 * lock and something else can mess with the
631 * state.
632 */
1da177e4
LT
633 handle_flags(smi_info);
634
635 deliver_recv_msg(smi_info, msg);
636 }
637 break;
638 }
639
640 case SI_GETTING_MESSAGES:
641 {
642 smi_info->curr_msg->rsp_size
643 = smi_info->handlers->get_result(
644 smi_info->si_sm,
645 smi_info->curr_msg->rsp,
646 IPMI_MAX_MSG_LENGTH);
647
c305e3d3
CM
648 /*
649 * Do this here becase deliver_recv_msg() releases the
650 * lock, and a new message can be put in during the
651 * time the lock is released.
652 */
1da177e4
LT
653 msg = smi_info->curr_msg;
654 smi_info->curr_msg = NULL;
655 if (msg->rsp[2] != 0) {
656 /* Error getting event, probably done. */
657 msg->done(msg);
658
659 /* Take off the msg flag. */
660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 handle_flags(smi_info);
662 } else {
64959e2d 663 smi_inc_stat(smi_info, incoming_messages);
1da177e4 664
c305e3d3
CM
665 /*
666 * Do this before we deliver the message
667 * because delivering the message releases the
668 * lock and something else can mess with the
669 * state.
670 */
1da177e4
LT
671 handle_flags(smi_info);
672
673 deliver_recv_msg(smi_info, msg);
674 }
675 break;
676 }
677
678 case SI_ENABLE_INTERRUPTS1:
679 {
680 unsigned char msg[4];
681
682 /* We got the flags from the SMI, now handle them. */
683 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684 if (msg[2] != 0) {
685 printk(KERN_WARNING
686 "ipmi_si: Could not enable interrupts"
687 ", failed get, using polled mode.\n");
688 smi_info->si_state = SI_NORMAL;
689 } else {
690 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
691 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
ee6cd5f8
CM
692 msg[2] = (msg[3] |
693 IPMI_BMC_RCV_MSG_INTR |
694 IPMI_BMC_EVT_MSG_INTR);
1da177e4
LT
695 smi_info->handlers->start_transaction(
696 smi_info->si_sm, msg, 3);
697 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
698 }
699 break;
700 }
701
702 case SI_ENABLE_INTERRUPTS2:
703 {
704 unsigned char msg[4];
705
706 /* We got the flags from the SMI, now handle them. */
707 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708 if (msg[2] != 0) {
709 printk(KERN_WARNING
710 "ipmi_si: Could not enable interrupts"
711 ", failed set, using polled mode.\n");
ea4078ca
MG
712 } else {
713 smi_info->interrupt_disabled = 0;
1da177e4
LT
714 }
715 smi_info->si_state = SI_NORMAL;
716 break;
717 }
ee6cd5f8
CM
718
719 case SI_DISABLE_INTERRUPTS1:
720 {
721 unsigned char msg[4];
722
723 /* We got the flags from the SMI, now handle them. */
724 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
725 if (msg[2] != 0) {
726 printk(KERN_WARNING
727 "ipmi_si: Could not disable interrupts"
728 ", failed get.\n");
729 smi_info->si_state = SI_NORMAL;
730 } else {
731 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733 msg[2] = (msg[3] &
734 ~(IPMI_BMC_RCV_MSG_INTR |
735 IPMI_BMC_EVT_MSG_INTR));
736 smi_info->handlers->start_transaction(
737 smi_info->si_sm, msg, 3);
738 smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739 }
740 break;
741 }
742
743 case SI_DISABLE_INTERRUPTS2:
744 {
745 unsigned char msg[4];
746
747 /* We got the flags from the SMI, now handle them. */
748 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749 if (msg[2] != 0) {
750 printk(KERN_WARNING
751 "ipmi_si: Could not disable interrupts"
752 ", failed set.\n");
753 }
754 smi_info->si_state = SI_NORMAL;
755 break;
756 }
1da177e4
LT
757 }
758}
759
c305e3d3
CM
760/*
761 * Called on timeouts and events. Timeouts should pass the elapsed
762 * time, interrupts should pass in zero. Must be called with
763 * si_lock held and interrupts disabled.
764 */
1da177e4
LT
765static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
766 int time)
767{
768 enum si_sm_result si_sm_result;
769
770 restart:
c305e3d3
CM
771 /*
772 * There used to be a loop here that waited a little while
773 * (around 25us) before giving up. That turned out to be
774 * pointless, the minimum delays I was seeing were in the 300us
775 * range, which is far too long to wait in an interrupt. So
776 * we just run until the state machine tells us something
777 * happened or it needs a delay.
778 */
1da177e4
LT
779 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
780 time = 0;
781 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
1da177e4 782 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
1da177e4 783
c305e3d3 784 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
64959e2d 785 smi_inc_stat(smi_info, complete_transactions);
1da177e4
LT
786
787 handle_transaction_done(smi_info);
788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 789 } else if (si_sm_result == SI_SM_HOSED) {
64959e2d 790 smi_inc_stat(smi_info, hosed_count);
1da177e4 791
c305e3d3
CM
792 /*
793 * Do the before return_hosed_msg, because that
794 * releases the lock.
795 */
1da177e4
LT
796 smi_info->si_state = SI_NORMAL;
797 if (smi_info->curr_msg != NULL) {
c305e3d3
CM
798 /*
799 * If we were handling a user message, format
800 * a response to send to the upper layer to
801 * tell it about the error.
802 */
4d7cbac7 803 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
1da177e4
LT
804 }
805 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
806 }
807
4ea18425
CM
808 /*
809 * We prefer handling attn over new messages. But don't do
810 * this if there is not yet an upper layer to handle anything.
811 */
c305e3d3 812 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
1da177e4
LT
813 unsigned char msg[2];
814
64959e2d 815 smi_inc_stat(smi_info, attentions);
1da177e4 816
c305e3d3
CM
817 /*
818 * Got a attn, send down a get message flags to see
819 * what's causing it. It would be better to handle
820 * this in the upper layer, but due to the way
821 * interrupts work with the SMI, that's not really
822 * possible.
823 */
1da177e4
LT
824 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
825 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
826
827 smi_info->handlers->start_transaction(
828 smi_info->si_sm, msg, 2);
829 smi_info->si_state = SI_GETTING_FLAGS;
830 goto restart;
831 }
832
833 /* If we are currently idle, try to start the next message. */
834 if (si_sm_result == SI_SM_IDLE) {
64959e2d 835 smi_inc_stat(smi_info, idles);
1da177e4
LT
836
837 si_sm_result = start_next_msg(smi_info);
838 if (si_sm_result != SI_SM_IDLE)
839 goto restart;
c305e3d3 840 }
1da177e4
LT
841
842 if ((si_sm_result == SI_SM_IDLE)
c305e3d3
CM
843 && (atomic_read(&smi_info->req_events))) {
844 /*
845 * We are idle and the upper layer requested that I fetch
846 * events, so do so.
847 */
55162fb1 848 atomic_set(&smi_info->req_events, 0);
1da177e4 849
55162fb1
CM
850 smi_info->curr_msg = ipmi_alloc_smi_msg();
851 if (!smi_info->curr_msg)
852 goto out;
1da177e4 853
55162fb1
CM
854 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
855 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
856 smi_info->curr_msg->data_size = 2;
1da177e4
LT
857
858 smi_info->handlers->start_transaction(
55162fb1
CM
859 smi_info->si_sm,
860 smi_info->curr_msg->data,
861 smi_info->curr_msg->data_size);
862 smi_info->si_state = SI_GETTING_EVENTS;
1da177e4
LT
863 goto restart;
864 }
55162fb1 865 out:
1da177e4
LT
866 return si_sm_result;
867}
868
869static void sender(void *send_info,
870 struct ipmi_smi_msg *msg,
871 int priority)
872{
873 struct smi_info *smi_info = send_info;
874 enum si_sm_result result;
875 unsigned long flags;
876#ifdef DEBUG_TIMING
877 struct timeval t;
878#endif
879
b361e27b
CM
880 if (atomic_read(&smi_info->stop_operation)) {
881 msg->rsp[0] = msg->data[0] | 4;
882 msg->rsp[1] = msg->data[1];
883 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
884 msg->rsp_size = 3;
885 deliver_recv_msg(smi_info, msg);
886 return;
887 }
888
1da177e4
LT
889#ifdef DEBUG_TIMING
890 do_gettimeofday(&t);
891 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
892#endif
893
ea4078ca
MG
894 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
895
1da177e4 896 if (smi_info->run_to_completion) {
bda4c30a
CM
897 /*
898 * If we are running to completion, then throw it in
899 * the list and run transactions until everything is
900 * clear. Priority doesn't matter here.
901 */
902
903 /*
904 * Run to completion means we are single-threaded, no
905 * need for locks.
906 */
1da177e4
LT
907 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
908
1da177e4
LT
909 result = smi_event_handler(smi_info, 0);
910 while (result != SI_SM_IDLE) {
911 udelay(SI_SHORT_TIMEOUT_USEC);
912 result = smi_event_handler(smi_info,
913 SI_SHORT_TIMEOUT_USEC);
914 }
1da177e4 915 return;
1da177e4 916 }
1da177e4 917
bda4c30a
CM
918 spin_lock_irqsave(&smi_info->msg_lock, flags);
919 if (priority > 0)
920 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
921 else
922 list_add_tail(&msg->link, &smi_info->xmit_msgs);
923 spin_unlock_irqrestore(&smi_info->msg_lock, flags);
924
925 spin_lock_irqsave(&smi_info->si_lock, flags);
c305e3d3 926 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
1da177e4 927 start_next_msg(smi_info);
bda4c30a 928 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
929}
930
931static void set_run_to_completion(void *send_info, int i_run_to_completion)
932{
933 struct smi_info *smi_info = send_info;
934 enum si_sm_result result;
1da177e4
LT
935
936 smi_info->run_to_completion = i_run_to_completion;
937 if (i_run_to_completion) {
938 result = smi_event_handler(smi_info, 0);
939 while (result != SI_SM_IDLE) {
940 udelay(SI_SHORT_TIMEOUT_USEC);
941 result = smi_event_handler(smi_info,
942 SI_SHORT_TIMEOUT_USEC);
943 }
944 }
1da177e4
LT
945}
946
ae74e823
MW
947/*
948 * Use -1 in the nsec value of the busy waiting timespec to tell that
949 * we are spinning in kipmid looking for something and not delaying
950 * between checks
951 */
952static inline void ipmi_si_set_not_busy(struct timespec *ts)
953{
954 ts->tv_nsec = -1;
955}
956static inline int ipmi_si_is_busy(struct timespec *ts)
957{
958 return ts->tv_nsec != -1;
959}
960
961static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
962 const struct smi_info *smi_info,
963 struct timespec *busy_until)
964{
965 unsigned int max_busy_us = 0;
966
967 if (smi_info->intf_num < num_max_busy_us)
968 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
969 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
970 ipmi_si_set_not_busy(busy_until);
971 else if (!ipmi_si_is_busy(busy_until)) {
972 getnstimeofday(busy_until);
973 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
974 } else {
975 struct timespec now;
976 getnstimeofday(&now);
977 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
978 ipmi_si_set_not_busy(busy_until);
979 return 0;
980 }
981 }
982 return 1;
983}
984
985
986/*
987 * A busy-waiting loop for speeding up IPMI operation.
988 *
989 * Lousy hardware makes this hard. This is only enabled for systems
990 * that are not BT and do not have interrupts. It starts spinning
991 * when an operation is complete or until max_busy tells it to stop
992 * (if that is enabled). See the paragraph on kimid_max_busy_us in
993 * Documentation/IPMI.txt for details.
994 */
a9a2c44f
CM
995static int ipmi_thread(void *data)
996{
997 struct smi_info *smi_info = data;
e9a705a0 998 unsigned long flags;
a9a2c44f 999 enum si_sm_result smi_result;
ae74e823 1000 struct timespec busy_until;
a9a2c44f 1001
ae74e823 1002 ipmi_si_set_not_busy(&busy_until);
a9a2c44f 1003 set_user_nice(current, 19);
e9a705a0 1004 while (!kthread_should_stop()) {
ae74e823
MW
1005 int busy_wait;
1006
a9a2c44f 1007 spin_lock_irqsave(&(smi_info->si_lock), flags);
8a3628d5 1008 smi_result = smi_event_handler(smi_info, 0);
a9a2c44f 1009 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
ae74e823
MW
1010 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1011 &busy_until);
c305e3d3
CM
1012 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1013 ; /* do nothing */
ae74e823 1014 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
33979734 1015 schedule();
e9a705a0 1016 else
ae74e823 1017 schedule_timeout_interruptible(0);
a9a2c44f 1018 }
a9a2c44f
CM
1019 return 0;
1020}
1021
1022
1da177e4
LT
1023static void poll(void *send_info)
1024{
1025 struct smi_info *smi_info = send_info;
fcfa4724 1026 unsigned long flags;
1da177e4 1027
15c62e10
CM
1028 /*
1029 * Make sure there is some delay in the poll loop so we can
1030 * drive time forward and timeout things.
1031 */
1032 udelay(10);
fcfa4724 1033 spin_lock_irqsave(&smi_info->si_lock, flags);
15c62e10 1034 smi_event_handler(smi_info, 10);
fcfa4724 1035 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1da177e4
LT
1036}
1037
1038static void request_events(void *send_info)
1039{
1040 struct smi_info *smi_info = send_info;
1041
40112ae7
CM
1042 if (atomic_read(&smi_info->stop_operation) ||
1043 !smi_info->has_event_buffer)
b361e27b
CM
1044 return;
1045
1da177e4
LT
1046 atomic_set(&smi_info->req_events, 1);
1047}
1048
0c8204b3 1049static int initialized;
1da177e4 1050
1da177e4
LT
1051static void smi_timeout(unsigned long data)
1052{
1053 struct smi_info *smi_info = (struct smi_info *) data;
1054 enum si_sm_result smi_result;
1055 unsigned long flags;
1056 unsigned long jiffies_now;
c4edff1c 1057 long time_diff;
1da177e4
LT
1058#ifdef DEBUG_TIMING
1059 struct timeval t;
1060#endif
1061
1da177e4
LT
1062 spin_lock_irqsave(&(smi_info->si_lock), flags);
1063#ifdef DEBUG_TIMING
1064 do_gettimeofday(&t);
c305e3d3 1065 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1066#endif
1067 jiffies_now = jiffies;
c4edff1c 1068 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
1069 * SI_USEC_PER_JIFFY);
1070 smi_result = smi_event_handler(smi_info, time_diff);
1071
1072 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1073
1074 smi_info->last_timeout_jiffies = jiffies_now;
1075
b0defcdb 1076 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
1077 /* Running with interrupts, only do long timeouts. */
1078 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
64959e2d 1079 smi_inc_stat(smi_info, long_timeouts);
1da177e4
LT
1080 goto do_add_timer;
1081 }
1082
c305e3d3
CM
1083 /*
1084 * If the state machine asks for a short delay, then shorten
1085 * the timer timeout.
1086 */
1da177e4 1087 if (smi_result == SI_SM_CALL_WITH_DELAY) {
64959e2d 1088 smi_inc_stat(smi_info, short_timeouts);
1da177e4 1089 smi_info->si_timer.expires = jiffies + 1;
1da177e4 1090 } else {
64959e2d 1091 smi_inc_stat(smi_info, long_timeouts);
1da177e4 1092 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1da177e4
LT
1093 }
1094
1095 do_add_timer:
ea4078ca
MG
1096 if ((smi_result != SI_SM_IDLE) || smi_info->interrupt_disabled)
1097 add_timer(&(smi_info->si_timer));
1da177e4
LT
1098}
1099
7d12e780 1100static irqreturn_t si_irq_handler(int irq, void *data)
1da177e4
LT
1101{
1102 struct smi_info *smi_info = data;
1103 unsigned long flags;
1104#ifdef DEBUG_TIMING
1105 struct timeval t;
1106#endif
1107
1108 spin_lock_irqsave(&(smi_info->si_lock), flags);
1109
64959e2d 1110 smi_inc_stat(smi_info, interrupts);
1da177e4 1111
1da177e4
LT
1112#ifdef DEBUG_TIMING
1113 do_gettimeofday(&t);
c305e3d3 1114 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1da177e4
LT
1115#endif
1116 smi_event_handler(smi_info, 0);
1da177e4
LT
1117 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1118 return IRQ_HANDLED;
1119}
1120
7d12e780 1121static irqreturn_t si_bt_irq_handler(int irq, void *data)
9dbf68f9
CM
1122{
1123 struct smi_info *smi_info = data;
1124 /* We need to clear the IRQ flag for the BT interface. */
1125 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1126 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1127 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
7d12e780 1128 return si_irq_handler(irq, data);
9dbf68f9
CM
1129}
1130
453823ba
CM
1131static int smi_start_processing(void *send_info,
1132 ipmi_smi_t intf)
1133{
1134 struct smi_info *new_smi = send_info;
a51f4a81 1135 int enable = 0;
453823ba
CM
1136
1137 new_smi->intf = intf;
1138
c45adc39
CM
1139 /* Try to claim any interrupts. */
1140 if (new_smi->irq_setup)
1141 new_smi->irq_setup(new_smi);
1142
453823ba
CM
1143 /* Set up the timer that drives the interface. */
1144 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1145 new_smi->last_timeout_jiffies = jiffies;
1146 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1147
a51f4a81
CM
1148 /*
1149 * Check if the user forcefully enabled the daemon.
1150 */
1151 if (new_smi->intf_num < num_force_kipmid)
1152 enable = force_kipmid[new_smi->intf_num];
df3fe8de
CM
1153 /*
1154 * The BT interface is efficient enough to not need a thread,
1155 * and there is no need for a thread if we have interrupts.
1156 */
c305e3d3 1157 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
a51f4a81
CM
1158 enable = 1;
1159
1160 if (enable) {
453823ba
CM
1161 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1162 "kipmi%d", new_smi->intf_num);
1163 if (IS_ERR(new_smi->thread)) {
1164 printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1165 " kernel thread due to error %ld, only using"
1166 " timers to drive the interface\n",
1167 PTR_ERR(new_smi->thread));
1168 new_smi->thread = NULL;
1169 }
1170 }
1171
1172 return 0;
1173}
9dbf68f9 1174
b9675136
CM
1175static void set_maintenance_mode(void *send_info, int enable)
1176{
1177 struct smi_info *smi_info = send_info;
1178
1179 if (!enable)
1180 atomic_set(&smi_info->req_events, 0);
1181}
1182
c305e3d3 1183static struct ipmi_smi_handlers handlers = {
1da177e4 1184 .owner = THIS_MODULE,
453823ba 1185 .start_processing = smi_start_processing,
1da177e4
LT
1186 .sender = sender,
1187 .request_events = request_events,
b9675136 1188 .set_maintenance_mode = set_maintenance_mode,
1da177e4
LT
1189 .set_run_to_completion = set_run_to_completion,
1190 .poll = poll,
1191};
1192
c305e3d3
CM
1193/*
1194 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1195 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1196 */
1da177e4 1197
b0defcdb 1198static LIST_HEAD(smi_infos);
d6dfd131 1199static DEFINE_MUTEX(smi_infos_lock);
b0defcdb 1200static int smi_num; /* Used to sequence the SMIs */
1da177e4 1201
1da177e4 1202#define DEFAULT_REGSPACING 1
dba9b4f6 1203#define DEFAULT_REGSIZE 1
1da177e4
LT
1204
1205static int si_trydefaults = 1;
1206static char *si_type[SI_MAX_PARMS];
1207#define MAX_SI_TYPE_STR 30
1208static char si_type_str[MAX_SI_TYPE_STR];
1209static unsigned long addrs[SI_MAX_PARMS];
64a6f950 1210static unsigned int num_addrs;
1da177e4 1211static unsigned int ports[SI_MAX_PARMS];
64a6f950 1212static unsigned int num_ports;
1da177e4 1213static int irqs[SI_MAX_PARMS];
64a6f950 1214static unsigned int num_irqs;
1da177e4 1215static int regspacings[SI_MAX_PARMS];
64a6f950 1216static unsigned int num_regspacings;
1da177e4 1217static int regsizes[SI_MAX_PARMS];
64a6f950 1218static unsigned int num_regsizes;
1da177e4 1219static int regshifts[SI_MAX_PARMS];
64a6f950 1220static unsigned int num_regshifts;
2f95d513 1221static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
64a6f950 1222static unsigned int num_slave_addrs;
1da177e4 1223
b361e27b
CM
1224#define IPMI_IO_ADDR_SPACE 0
1225#define IPMI_MEM_ADDR_SPACE 1
1d5636cc 1226static char *addr_space_to_str[] = { "i/o", "mem" };
b361e27b
CM
1227
1228static int hotmod_handler(const char *val, struct kernel_param *kp);
1229
1230module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1231MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1232 " Documentation/IPMI.txt in the kernel sources for the"
1233 " gory details.");
1da177e4
LT
1234
1235module_param_named(trydefaults, si_trydefaults, bool, 0);
1236MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1237 " default scan of the KCS and SMIC interface at the standard"
1238 " address");
1239module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1240MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1241 " interface separated by commas. The types are 'kcs',"
1242 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1243 " the first interface to kcs and the second to bt");
64a6f950 1244module_param_array(addrs, ulong, &num_addrs, 0);
1da177e4
LT
1245MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1246 " addresses separated by commas. Only use if an interface"
1247 " is in memory. Otherwise, set it to zero or leave"
1248 " it blank.");
64a6f950 1249module_param_array(ports, uint, &num_ports, 0);
1da177e4
LT
1250MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1251 " addresses separated by commas. Only use if an interface"
1252 " is a port. Otherwise, set it to zero or leave"
1253 " it blank.");
1254module_param_array(irqs, int, &num_irqs, 0);
1255MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1256 " addresses separated by commas. Only use if an interface"
1257 " has an interrupt. Otherwise, set it to zero or leave"
1258 " it blank.");
1259module_param_array(regspacings, int, &num_regspacings, 0);
1260MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1261 " and each successive register used by the interface. For"
1262 " instance, if the start address is 0xca2 and the spacing"
1263 " is 2, then the second address is at 0xca4. Defaults"
1264 " to 1.");
1265module_param_array(regsizes, int, &num_regsizes, 0);
1266MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1267 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1268 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1269 " the 8-bit IPMI register has to be read from a larger"
1270 " register.");
1271module_param_array(regshifts, int, &num_regshifts, 0);
1272MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1273 " IPMI register, in bits. For instance, if the data"
1274 " is read from a 32-bit word and the IPMI data is in"
1275 " bit 8-15, then the shift would be 8");
1276module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1277MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1278 " the controller. Normally this is 0x20, but can be"
1279 " overridden by this parm. This is an array indexed"
1280 " by interface number.");
a51f4a81
CM
1281module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1282MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1283 " disabled(0). Normally the IPMI driver auto-detects"
1284 " this, but the value may be overridden by this parm.");
b361e27b
CM
1285module_param(unload_when_empty, int, 0);
1286MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1287 " specified or found, default is 1. Setting to 0"
1288 " is useful for hot add of devices using hotmod.");
ae74e823
MW
1289module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1290MODULE_PARM_DESC(kipmid_max_busy_us,
1291 "Max time (in microseconds) to busy-wait for IPMI data before"
1292 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1293 " if kipmid is using up a lot of CPU time.");
1da177e4
LT
1294
1295
b0defcdb 1296static void std_irq_cleanup(struct smi_info *info)
1da177e4 1297{
b0defcdb
CM
1298 if (info->si_type == SI_BT)
1299 /* Disable the interrupt in the BT interface. */
1300 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1301 free_irq(info->irq, info);
1da177e4 1302}
1da177e4
LT
1303
1304static int std_irq_setup(struct smi_info *info)
1305{
1306 int rv;
1307
b0defcdb 1308 if (!info->irq)
1da177e4
LT
1309 return 0;
1310
9dbf68f9
CM
1311 if (info->si_type == SI_BT) {
1312 rv = request_irq(info->irq,
1313 si_bt_irq_handler,
ee6cd5f8 1314 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1315 DEVICE_NAME,
1316 info);
b0defcdb 1317 if (!rv)
9dbf68f9
CM
1318 /* Enable the interrupt in the BT interface. */
1319 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1320 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1321 } else
1322 rv = request_irq(info->irq,
1323 si_irq_handler,
ee6cd5f8 1324 IRQF_SHARED | IRQF_DISABLED,
9dbf68f9
CM
1325 DEVICE_NAME,
1326 info);
1da177e4
LT
1327 if (rv) {
1328 printk(KERN_WARNING
1329 "ipmi_si: %s unable to claim interrupt %d,"
1330 " running polled\n",
1331 DEVICE_NAME, info->irq);
1332 info->irq = 0;
1333 } else {
b0defcdb 1334 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1335 printk(" Using irq %d\n", info->irq);
1336 }
1337
1338 return rv;
1339}
1340
1da177e4
LT
1341static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1342{
b0defcdb 1343 unsigned int addr = io->addr_data;
1da177e4 1344
b0defcdb 1345 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1346}
1347
1348static void port_outb(struct si_sm_io *io, unsigned int offset,
1349 unsigned char b)
1350{
b0defcdb 1351 unsigned int addr = io->addr_data;
1da177e4 1352
b0defcdb 1353 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1354}
1355
1356static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1357{
b0defcdb 1358 unsigned int addr = io->addr_data;
1da177e4 1359
b0defcdb 1360 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1361}
1362
1363static void port_outw(struct si_sm_io *io, unsigned int offset,
1364 unsigned char b)
1365{
b0defcdb 1366 unsigned int addr = io->addr_data;
1da177e4 1367
b0defcdb 1368 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1369}
1370
1371static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1372{
b0defcdb 1373 unsigned int addr = io->addr_data;
1da177e4 1374
b0defcdb 1375 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1376}
1377
1378static void port_outl(struct si_sm_io *io, unsigned int offset,
1379 unsigned char b)
1380{
b0defcdb 1381 unsigned int addr = io->addr_data;
1da177e4 1382
b0defcdb 1383 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1384}
1385
1386static void port_cleanup(struct smi_info *info)
1387{
b0defcdb 1388 unsigned int addr = info->io.addr_data;
d61a3ead 1389 int idx;
1da177e4 1390
b0defcdb 1391 if (addr) {
c305e3d3 1392 for (idx = 0; idx < info->io_size; idx++)
d61a3ead
CM
1393 release_region(addr + idx * info->io.regspacing,
1394 info->io.regsize);
1da177e4 1395 }
1da177e4
LT
1396}
1397
1398static int port_setup(struct smi_info *info)
1399{
b0defcdb 1400 unsigned int addr = info->io.addr_data;
d61a3ead 1401 int idx;
1da177e4 1402
b0defcdb 1403 if (!addr)
1da177e4
LT
1404 return -ENODEV;
1405
1406 info->io_cleanup = port_cleanup;
1407
c305e3d3
CM
1408 /*
1409 * Figure out the actual inb/inw/inl/etc routine to use based
1410 * upon the register size.
1411 */
1da177e4
LT
1412 switch (info->io.regsize) {
1413 case 1:
1414 info->io.inputb = port_inb;
1415 info->io.outputb = port_outb;
1416 break;
1417 case 2:
1418 info->io.inputb = port_inw;
1419 info->io.outputb = port_outw;
1420 break;
1421 case 4:
1422 info->io.inputb = port_inl;
1423 info->io.outputb = port_outl;
1424 break;
1425 default:
c305e3d3 1426 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1da177e4
LT
1427 info->io.regsize);
1428 return -EINVAL;
1429 }
1430
c305e3d3
CM
1431 /*
1432 * Some BIOSes reserve disjoint I/O regions in their ACPI
d61a3ead
CM
1433 * tables. This causes problems when trying to register the
1434 * entire I/O region. Therefore we must register each I/O
1435 * port separately.
1436 */
c305e3d3 1437 for (idx = 0; idx < info->io_size; idx++) {
d61a3ead
CM
1438 if (request_region(addr + idx * info->io.regspacing,
1439 info->io.regsize, DEVICE_NAME) == NULL) {
1440 /* Undo allocations */
1441 while (idx--) {
1442 release_region(addr + idx * info->io.regspacing,
1443 info->io.regsize);
1444 }
1445 return -EIO;
1446 }
1447 }
1da177e4
LT
1448 return 0;
1449}
1450
546cfdf4 1451static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1452{
1453 return readb((io->addr)+(offset * io->regspacing));
1454}
1455
546cfdf4 1456static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1457 unsigned char b)
1458{
1459 writeb(b, (io->addr)+(offset * io->regspacing));
1460}
1461
546cfdf4 1462static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1463{
1464 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1465 & 0xff;
1da177e4
LT
1466}
1467
546cfdf4 1468static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1469 unsigned char b)
1470{
1471 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1472}
1473
546cfdf4 1474static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1475{
1476 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1477 & 0xff;
1da177e4
LT
1478}
1479
546cfdf4 1480static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1481 unsigned char b)
1482{
1483 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1484}
1485
1486#ifdef readq
1487static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1488{
1489 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
64d9fe69 1490 & 0xff;
1da177e4
LT
1491}
1492
1493static void mem_outq(struct si_sm_io *io, unsigned int offset,
1494 unsigned char b)
1495{
1496 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1497}
1498#endif
1499
1500static void mem_cleanup(struct smi_info *info)
1501{
b0defcdb 1502 unsigned long addr = info->io.addr_data;
1da177e4
LT
1503 int mapsize;
1504
1505 if (info->io.addr) {
1506 iounmap(info->io.addr);
1507
1508 mapsize = ((info->io_size * info->io.regspacing)
1509 - (info->io.regspacing - info->io.regsize));
1510
b0defcdb 1511 release_mem_region(addr, mapsize);
1da177e4 1512 }
1da177e4
LT
1513}
1514
1515static int mem_setup(struct smi_info *info)
1516{
b0defcdb 1517 unsigned long addr = info->io.addr_data;
1da177e4
LT
1518 int mapsize;
1519
b0defcdb 1520 if (!addr)
1da177e4
LT
1521 return -ENODEV;
1522
1523 info->io_cleanup = mem_cleanup;
1524
c305e3d3
CM
1525 /*
1526 * Figure out the actual readb/readw/readl/etc routine to use based
1527 * upon the register size.
1528 */
1da177e4
LT
1529 switch (info->io.regsize) {
1530 case 1:
546cfdf4
AD
1531 info->io.inputb = intf_mem_inb;
1532 info->io.outputb = intf_mem_outb;
1da177e4
LT
1533 break;
1534 case 2:
546cfdf4
AD
1535 info->io.inputb = intf_mem_inw;
1536 info->io.outputb = intf_mem_outw;
1da177e4
LT
1537 break;
1538 case 4:
546cfdf4
AD
1539 info->io.inputb = intf_mem_inl;
1540 info->io.outputb = intf_mem_outl;
1da177e4
LT
1541 break;
1542#ifdef readq
1543 case 8:
1544 info->io.inputb = mem_inq;
1545 info->io.outputb = mem_outq;
1546 break;
1547#endif
1548 default:
c305e3d3 1549 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1da177e4
LT
1550 info->io.regsize);
1551 return -EINVAL;
1552 }
1553
c305e3d3
CM
1554 /*
1555 * Calculate the total amount of memory to claim. This is an
1da177e4
LT
1556 * unusual looking calculation, but it avoids claiming any
1557 * more memory than it has to. It will claim everything
1558 * between the first address to the end of the last full
c305e3d3
CM
1559 * register.
1560 */
1da177e4
LT
1561 mapsize = ((info->io_size * info->io.regspacing)
1562 - (info->io.regspacing - info->io.regsize));
1563
b0defcdb 1564 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1565 return -EIO;
1566
b0defcdb 1567 info->io.addr = ioremap(addr, mapsize);
1da177e4 1568 if (info->io.addr == NULL) {
b0defcdb 1569 release_mem_region(addr, mapsize);
1da177e4
LT
1570 return -EIO;
1571 }
1572 return 0;
1573}
1574
b361e27b
CM
1575/*
1576 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1577 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1578 * Options are:
1579 * rsp=<regspacing>
1580 * rsi=<regsize>
1581 * rsh=<regshift>
1582 * irq=<irq>
1583 * ipmb=<ipmb addr>
1584 */
1585enum hotmod_op { HM_ADD, HM_REMOVE };
1586struct hotmod_vals {
1587 char *name;
1588 int val;
1589};
1590static struct hotmod_vals hotmod_ops[] = {
1591 { "add", HM_ADD },
1592 { "remove", HM_REMOVE },
1593 { NULL }
1594};
1595static struct hotmod_vals hotmod_si[] = {
1596 { "kcs", SI_KCS },
1597 { "smic", SI_SMIC },
1598 { "bt", SI_BT },
1599 { NULL }
1600};
1601static struct hotmod_vals hotmod_as[] = {
1602 { "mem", IPMI_MEM_ADDR_SPACE },
1603 { "i/o", IPMI_IO_ADDR_SPACE },
1604 { NULL }
1605};
1d5636cc 1606
b361e27b
CM
1607static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1608{
1609 char *s;
1610 int i;
1611
1612 s = strchr(*curr, ',');
1613 if (!s) {
1614 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1615 return -EINVAL;
1616 }
1617 *s = '\0';
1618 s++;
1619 for (i = 0; hotmod_ops[i].name; i++) {
1d5636cc 1620 if (strcmp(*curr, v[i].name) == 0) {
b361e27b
CM
1621 *val = v[i].val;
1622 *curr = s;
1623 return 0;
1624 }
1625 }
1626
1627 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1628 return -EINVAL;
1629}
1630
1d5636cc
CM
1631static int check_hotmod_int_op(const char *curr, const char *option,
1632 const char *name, int *val)
1633{
1634 char *n;
1635
1636 if (strcmp(curr, name) == 0) {
1637 if (!option) {
1638 printk(KERN_WARNING PFX
1639 "No option given for '%s'\n",
1640 curr);
1641 return -EINVAL;
1642 }
1643 *val = simple_strtoul(option, &n, 0);
1644 if ((*n != '\0') || (*option == '\0')) {
1645 printk(KERN_WARNING PFX
1646 "Bad option given for '%s'\n",
1647 curr);
1648 return -EINVAL;
1649 }
1650 return 1;
1651 }
1652 return 0;
1653}
1654
b361e27b
CM
1655static int hotmod_handler(const char *val, struct kernel_param *kp)
1656{
1657 char *str = kstrdup(val, GFP_KERNEL);
1d5636cc 1658 int rv;
b361e27b
CM
1659 char *next, *curr, *s, *n, *o;
1660 enum hotmod_op op;
1661 enum si_type si_type;
1662 int addr_space;
1663 unsigned long addr;
1664 int regspacing;
1665 int regsize;
1666 int regshift;
1667 int irq;
1668 int ipmb;
1669 int ival;
1d5636cc 1670 int len;
b361e27b
CM
1671 struct smi_info *info;
1672
1673 if (!str)
1674 return -ENOMEM;
1675
1676 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1d5636cc
CM
1677 len = strlen(str);
1678 ival = len - 1;
b361e27b
CM
1679 while ((ival >= 0) && isspace(str[ival])) {
1680 str[ival] = '\0';
1681 ival--;
1682 }
1683
1684 for (curr = str; curr; curr = next) {
1685 regspacing = 1;
1686 regsize = 1;
1687 regshift = 0;
1688 irq = 0;
2f95d513 1689 ipmb = 0; /* Choose the default if not specified */
b361e27b
CM
1690
1691 next = strchr(curr, ':');
1692 if (next) {
1693 *next = '\0';
1694 next++;
1695 }
1696
1697 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1698 if (rv)
1699 break;
1700 op = ival;
1701
1702 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1703 if (rv)
1704 break;
1705 si_type = ival;
1706
1707 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1708 if (rv)
1709 break;
1710
1711 s = strchr(curr, ',');
1712 if (s) {
1713 *s = '\0';
1714 s++;
1715 }
1716 addr = simple_strtoul(curr, &n, 0);
1717 if ((*n != '\0') || (*curr == '\0')) {
1718 printk(KERN_WARNING PFX "Invalid hotmod address"
1719 " '%s'\n", curr);
1720 break;
1721 }
1722
1723 while (s) {
1724 curr = s;
1725 s = strchr(curr, ',');
1726 if (s) {
1727 *s = '\0';
1728 s++;
1729 }
1730 o = strchr(curr, '=');
1731 if (o) {
1732 *o = '\0';
1733 o++;
1734 }
1d5636cc
CM
1735 rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1736 if (rv < 0)
b361e27b 1737 goto out;
1d5636cc
CM
1738 else if (rv)
1739 continue;
1740 rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1741 if (rv < 0)
1742 goto out;
1743 else if (rv)
1744 continue;
1745 rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1746 if (rv < 0)
1747 goto out;
1748 else if (rv)
1749 continue;
1750 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1751 if (rv < 0)
1752 goto out;
1753 else if (rv)
1754 continue;
1755 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1756 if (rv < 0)
1757 goto out;
1758 else if (rv)
1759 continue;
1760
1761 rv = -EINVAL;
1762 printk(KERN_WARNING PFX
1763 "Invalid hotmod option '%s'\n",
1764 curr);
1765 goto out;
b361e27b
CM
1766 }
1767
1768 if (op == HM_ADD) {
1769 info = kzalloc(sizeof(*info), GFP_KERNEL);
1770 if (!info) {
1771 rv = -ENOMEM;
1772 goto out;
1773 }
1774
5fedc4a2 1775 info->addr_source = SI_HOTMOD;
b361e27b
CM
1776 info->si_type = si_type;
1777 info->io.addr_data = addr;
1778 info->io.addr_type = addr_space;
1779 if (addr_space == IPMI_MEM_ADDR_SPACE)
1780 info->io_setup = mem_setup;
1781 else
1782 info->io_setup = port_setup;
1783
1784 info->io.addr = NULL;
1785 info->io.regspacing = regspacing;
1786 if (!info->io.regspacing)
1787 info->io.regspacing = DEFAULT_REGSPACING;
1788 info->io.regsize = regsize;
1789 if (!info->io.regsize)
1790 info->io.regsize = DEFAULT_REGSPACING;
1791 info->io.regshift = regshift;
1792 info->irq = irq;
1793 if (info->irq)
1794 info->irq_setup = std_irq_setup;
1795 info->slave_addr = ipmb;
1796
2407d77a
MG
1797 if (!add_smi(info))
1798 if (try_smi_init(info))
1799 cleanup_one_si(info);
b361e27b
CM
1800 } else {
1801 /* remove */
1802 struct smi_info *e, *tmp_e;
1803
1804 mutex_lock(&smi_infos_lock);
1805 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1806 if (e->io.addr_type != addr_space)
1807 continue;
1808 if (e->si_type != si_type)
1809 continue;
1810 if (e->io.addr_data == addr)
1811 cleanup_one_si(e);
1812 }
1813 mutex_unlock(&smi_infos_lock);
1814 }
1815 }
1d5636cc 1816 rv = len;
b361e27b
CM
1817 out:
1818 kfree(str);
1819 return rv;
1820}
b0defcdb
CM
1821
1822static __devinit void hardcode_find_bmc(void)
1da177e4 1823{
b0defcdb 1824 int i;
1da177e4
LT
1825 struct smi_info *info;
1826
b0defcdb
CM
1827 for (i = 0; i < SI_MAX_PARMS; i++) {
1828 if (!ports[i] && !addrs[i])
1829 continue;
1da177e4 1830
b0defcdb
CM
1831 info = kzalloc(sizeof(*info), GFP_KERNEL);
1832 if (!info)
1833 return;
1da177e4 1834
5fedc4a2 1835 info->addr_source = SI_HARDCODED;
1da177e4 1836
1d5636cc 1837 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
b0defcdb 1838 info->si_type = SI_KCS;
1d5636cc 1839 } else if (strcmp(si_type[i], "smic") == 0) {
b0defcdb 1840 info->si_type = SI_SMIC;
1d5636cc 1841 } else if (strcmp(si_type[i], "bt") == 0) {
b0defcdb
CM
1842 info->si_type = SI_BT;
1843 } else {
1844 printk(KERN_WARNING
1845 "ipmi_si: Interface type specified "
1846 "for interface %d, was invalid: %s\n",
1847 i, si_type[i]);
1848 kfree(info);
1849 continue;
1850 }
1da177e4 1851
b0defcdb
CM
1852 if (ports[i]) {
1853 /* An I/O port */
1854 info->io_setup = port_setup;
1855 info->io.addr_data = ports[i];
1856 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1857 } else if (addrs[i]) {
1858 /* A memory port */
1859 info->io_setup = mem_setup;
1860 info->io.addr_data = addrs[i];
1861 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1862 } else {
1863 printk(KERN_WARNING
1864 "ipmi_si: Interface type specified "
1865 "for interface %d, "
1866 "but port and address were not set or "
1867 "set to zero.\n", i);
1868 kfree(info);
1869 continue;
1870 }
1da177e4 1871
b0defcdb
CM
1872 info->io.addr = NULL;
1873 info->io.regspacing = regspacings[i];
1874 if (!info->io.regspacing)
1875 info->io.regspacing = DEFAULT_REGSPACING;
1876 info->io.regsize = regsizes[i];
1877 if (!info->io.regsize)
1878 info->io.regsize = DEFAULT_REGSPACING;
1879 info->io.regshift = regshifts[i];
1880 info->irq = irqs[i];
1881 if (info->irq)
1882 info->irq_setup = std_irq_setup;
2f95d513 1883 info->slave_addr = slave_addrs[i];
1da177e4 1884
2407d77a
MG
1885 if (!add_smi(info))
1886 if (try_smi_init(info))
1887 cleanup_one_si(info);
b0defcdb
CM
1888 }
1889}
1da177e4 1890
8466361a 1891#ifdef CONFIG_ACPI
1da177e4
LT
1892
1893#include <linux/acpi.h>
1894
c305e3d3
CM
1895/*
1896 * Once we get an ACPI failure, we don't try any more, because we go
1897 * through the tables sequentially. Once we don't find a table, there
1898 * are no more.
1899 */
0c8204b3 1900static int acpi_failure;
1da177e4
LT
1901
1902/* For GPE-type interrupts. */
1903static u32 ipmi_acpi_gpe(void *context)
1904{
1905 struct smi_info *smi_info = context;
1906 unsigned long flags;
1907#ifdef DEBUG_TIMING
1908 struct timeval t;
1909#endif
1910
1911 spin_lock_irqsave(&(smi_info->si_lock), flags);
1912
64959e2d 1913 smi_inc_stat(smi_info, interrupts);
1da177e4 1914
1da177e4
LT
1915#ifdef DEBUG_TIMING
1916 do_gettimeofday(&t);
1917 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1918#endif
1919 smi_event_handler(smi_info, 0);
1da177e4
LT
1920 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1921
1922 return ACPI_INTERRUPT_HANDLED;
1923}
1924
b0defcdb
CM
1925static void acpi_gpe_irq_cleanup(struct smi_info *info)
1926{
1927 if (!info->irq)
1928 return;
1929
1930 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1931}
1932
1da177e4
LT
1933static int acpi_gpe_irq_setup(struct smi_info *info)
1934{
1935 acpi_status status;
1936
b0defcdb 1937 if (!info->irq)
1da177e4
LT
1938 return 0;
1939
1940 /* FIXME - is level triggered right? */
1941 status = acpi_install_gpe_handler(NULL,
1942 info->irq,
1943 ACPI_GPE_LEVEL_TRIGGERED,
1944 &ipmi_acpi_gpe,
1945 info);
1946 if (status != AE_OK) {
1947 printk(KERN_WARNING
1948 "ipmi_si: %s unable to claim ACPI GPE %d,"
1949 " running polled\n",
1950 DEVICE_NAME, info->irq);
1951 info->irq = 0;
1952 return -EINVAL;
1953 } else {
b0defcdb 1954 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1955 printk(" Using ACPI GPE %d\n", info->irq);
1956 return 0;
1957 }
1958}
1959
1da177e4
LT
1960/*
1961 * Defined at
c305e3d3
CM
1962 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1963 * Docs/TechPapers/IA64/hpspmi.pdf
1da177e4
LT
1964 */
1965struct SPMITable {
1966 s8 Signature[4];
1967 u32 Length;
1968 u8 Revision;
1969 u8 Checksum;
1970 s8 OEMID[6];
1971 s8 OEMTableID[8];
1972 s8 OEMRevision[4];
1973 s8 CreatorID[4];
1974 s8 CreatorRevision[4];
1975 u8 InterfaceType;
1976 u8 IPMIlegacy;
1977 s16 SpecificationRevision;
1978
1979 /*
1980 * Bit 0 - SCI interrupt supported
1981 * Bit 1 - I/O APIC/SAPIC
1982 */
1983 u8 InterruptType;
1984
c305e3d3
CM
1985 /*
1986 * If bit 0 of InterruptType is set, then this is the SCI
1987 * interrupt in the GPEx_STS register.
1988 */
1da177e4
LT
1989 u8 GPE;
1990
1991 s16 Reserved;
1992
c305e3d3
CM
1993 /*
1994 * If bit 1 of InterruptType is set, then this is the I/O
1995 * APIC/SAPIC interrupt.
1996 */
1da177e4
LT
1997 u32 GlobalSystemInterrupt;
1998
1999 /* The actual register address. */
2000 struct acpi_generic_address addr;
2001
2002 u8 UID[4];
2003
2004 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2005};
2006
18a3e0bf 2007static __devinit int try_init_spmi(struct SPMITable *spmi)
1da177e4
LT
2008{
2009 struct smi_info *info;
1da177e4
LT
2010 u8 addr_space;
2011
1da177e4
LT
2012 if (spmi->IPMIlegacy != 1) {
2013 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
c305e3d3 2014 return -ENODEV;
1da177e4
LT
2015 }
2016
15a58ed1 2017 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1da177e4
LT
2018 addr_space = IPMI_MEM_ADDR_SPACE;
2019 else
2020 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
2021
2022 info = kzalloc(sizeof(*info), GFP_KERNEL);
2023 if (!info) {
2024 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2025 return -ENOMEM;
2026 }
2027
5fedc4a2 2028 info->addr_source = SI_SPMI;
1da177e4 2029
1da177e4 2030 /* Figure out the interface type. */
c305e3d3 2031 switch (spmi->InterfaceType) {
1da177e4 2032 case 1: /* KCS */
b0defcdb 2033 info->si_type = SI_KCS;
1da177e4 2034 break;
1da177e4 2035 case 2: /* SMIC */
b0defcdb 2036 info->si_type = SI_SMIC;
1da177e4 2037 break;
1da177e4 2038 case 3: /* BT */
b0defcdb 2039 info->si_type = SI_BT;
1da177e4 2040 break;
1da177e4
LT
2041 default:
2042 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2043 spmi->InterfaceType);
b0defcdb 2044 kfree(info);
1da177e4
LT
2045 return -EIO;
2046 }
2047
1da177e4
LT
2048 if (spmi->InterruptType & 1) {
2049 /* We've got a GPE interrupt. */
2050 info->irq = spmi->GPE;
2051 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
2052 } else if (spmi->InterruptType & 2) {
2053 /* We've got an APIC/SAPIC interrupt. */
2054 info->irq = spmi->GlobalSystemInterrupt;
2055 info->irq_setup = std_irq_setup;
1da177e4
LT
2056 } else {
2057 /* Use the default interrupt setting. */
2058 info->irq = 0;
2059 info->irq_setup = NULL;
2060 }
2061
15a58ed1 2062 if (spmi->addr.bit_width) {
35bc37a0 2063 /* A (hopefully) properly formed register bit width. */
15a58ed1 2064 info->io.regspacing = spmi->addr.bit_width / 8;
35bc37a0 2065 } else {
35bc37a0
CM
2066 info->io.regspacing = DEFAULT_REGSPACING;
2067 }
b0defcdb 2068 info->io.regsize = info->io.regspacing;
15a58ed1 2069 info->io.regshift = spmi->addr.bit_offset;
1da177e4 2070
15a58ed1 2071 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1da177e4 2072 info->io_setup = mem_setup;
8fe1425a 2073 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
15a58ed1 2074 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1da177e4 2075 info->io_setup = port_setup;
8fe1425a 2076 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
2077 } else {
2078 kfree(info);
c305e3d3
CM
2079 printk(KERN_WARNING
2080 "ipmi_si: Unknown ACPI I/O Address type\n");
1da177e4
LT
2081 return -EIO;
2082 }
b0defcdb 2083 info->io.addr_data = spmi->addr.address;
1da177e4 2084
2407d77a 2085 add_smi(info);
1da177e4 2086
1da177e4
LT
2087 return 0;
2088}
b0defcdb 2089
18a3e0bf 2090static __devinit void spmi_find_bmc(void)
b0defcdb
CM
2091{
2092 acpi_status status;
2093 struct SPMITable *spmi;
2094 int i;
2095
2096 if (acpi_disabled)
2097 return;
2098
2099 if (acpi_failure)
2100 return;
2101
2102 for (i = 0; ; i++) {
15a58ed1
AS
2103 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2104 (struct acpi_table_header **)&spmi);
b0defcdb
CM
2105 if (status != AE_OK)
2106 return;
2107
18a3e0bf 2108 try_init_spmi(spmi);
b0defcdb
CM
2109 }
2110}
9e368fa0
BH
2111
2112static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2113 const struct pnp_device_id *dev_id)
2114{
2115 struct acpi_device *acpi_dev;
2116 struct smi_info *info;
2117 acpi_handle handle;
2118 acpi_status status;
2119 unsigned long long tmp;
2120
2121 acpi_dev = pnp_acpi_device(dev);
2122 if (!acpi_dev)
2123 return -ENODEV;
2124
2125 info = kzalloc(sizeof(*info), GFP_KERNEL);
2126 if (!info)
2127 return -ENOMEM;
2128
5fedc4a2 2129 info->addr_source = SI_ACPI;
9e368fa0
BH
2130
2131 handle = acpi_dev->handle;
2132
2133 /* _IFT tells us the interface type: KCS, BT, etc */
2134 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2135 if (ACPI_FAILURE(status))
2136 goto err_free;
2137
2138 switch (tmp) {
2139 case 1:
2140 info->si_type = SI_KCS;
2141 break;
2142 case 2:
2143 info->si_type = SI_SMIC;
2144 break;
2145 case 3:
2146 info->si_type = SI_BT;
2147 break;
2148 default:
2149 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2150 goto err_free;
2151 }
2152
2153 if (pnp_port_valid(dev, 0)) {
2154 info->io_setup = port_setup;
2155 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2156 info->io.addr_data = pnp_port_start(dev, 0);
2157 } else if (pnp_mem_valid(dev, 0)) {
2158 info->io_setup = mem_setup;
2159 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2160 info->io.addr_data = pnp_mem_start(dev, 0);
2161 } else {
2162 dev_err(&dev->dev, "no I/O or memory address\n");
2163 goto err_free;
2164 }
2165
2166 info->io.regspacing = DEFAULT_REGSPACING;
2167 info->io.regsize = DEFAULT_REGSPACING;
2168 info->io.regshift = 0;
2169
2170 /* If _GPE exists, use it; otherwise use standard interrupts */
2171 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2172 if (ACPI_SUCCESS(status)) {
2173 info->irq = tmp;
2174 info->irq_setup = acpi_gpe_irq_setup;
2175 } else if (pnp_irq_valid(dev, 0)) {
2176 info->irq = pnp_irq(dev, 0);
2177 info->irq_setup = std_irq_setup;
2178 }
2179
2180 info->dev = &acpi_dev->dev;
2181 pnp_set_drvdata(dev, info);
2182
2407d77a 2183 return add_smi(info);
9e368fa0
BH
2184
2185err_free:
2186 kfree(info);
2187 return -EINVAL;
2188}
2189
2190static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2191{
2192 struct smi_info *info = pnp_get_drvdata(dev);
2193
2194 cleanup_one_si(info);
2195}
2196
2197static const struct pnp_device_id pnp_dev_table[] = {
2198 {"IPI0001", 0},
2199 {"", 0},
2200};
2201
2202static struct pnp_driver ipmi_pnp_driver = {
2203 .name = DEVICE_NAME,
2204 .probe = ipmi_pnp_probe,
2205 .remove = __devexit_p(ipmi_pnp_remove),
2206 .id_table = pnp_dev_table,
2207};
1da177e4
LT
2208#endif
2209
a9fad4cc 2210#ifdef CONFIG_DMI
c305e3d3 2211struct dmi_ipmi_data {
1da177e4
LT
2212 u8 type;
2213 u8 addr_space;
2214 unsigned long base_addr;
2215 u8 irq;
2216 u8 offset;
2217 u8 slave_addr;
b0defcdb 2218};
1da177e4 2219
1855256c 2220static int __devinit decode_dmi(const struct dmi_header *dm,
b0defcdb 2221 struct dmi_ipmi_data *dmi)
1da177e4 2222{
1855256c 2223 const u8 *data = (const u8 *)dm;
1da177e4
LT
2224 unsigned long base_addr;
2225 u8 reg_spacing;
b224cd3a 2226 u8 len = dm->length;
1da177e4 2227
b0defcdb 2228 dmi->type = data[4];
1da177e4
LT
2229
2230 memcpy(&base_addr, data+8, sizeof(unsigned long));
2231 if (len >= 0x11) {
2232 if (base_addr & 1) {
2233 /* I/O */
2234 base_addr &= 0xFFFE;
b0defcdb 2235 dmi->addr_space = IPMI_IO_ADDR_SPACE;
c305e3d3 2236 } else
1da177e4 2237 /* Memory */
b0defcdb 2238 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
c305e3d3 2239
1da177e4
LT
2240 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2241 is odd. */
b0defcdb 2242 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 2243
b0defcdb 2244 dmi->irq = data[0x11];
1da177e4
LT
2245
2246 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 2247 reg_spacing = (data[0x10] & 0xC0) >> 6;
c305e3d3 2248 switch (reg_spacing) {
1da177e4 2249 case 0x00: /* Byte boundaries */
b0defcdb 2250 dmi->offset = 1;
1da177e4
LT
2251 break;
2252 case 0x01: /* 32-bit boundaries */
b0defcdb 2253 dmi->offset = 4;
1da177e4
LT
2254 break;
2255 case 0x02: /* 16-byte boundaries */
b0defcdb 2256 dmi->offset = 16;
1da177e4
LT
2257 break;
2258 default:
2259 /* Some other interface, just ignore it. */
2260 return -EIO;
2261 }
2262 } else {
2263 /* Old DMI spec. */
c305e3d3
CM
2264 /*
2265 * Note that technically, the lower bit of the base
92068801
CM
2266 * address should be 1 if the address is I/O and 0 if
2267 * the address is in memory. So many systems get that
2268 * wrong (and all that I have seen are I/O) so we just
2269 * ignore that bit and assume I/O. Systems that use
c305e3d3
CM
2270 * memory should use the newer spec, anyway.
2271 */
b0defcdb
CM
2272 dmi->base_addr = base_addr & 0xfffe;
2273 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2274 dmi->offset = 1;
1da177e4
LT
2275 }
2276
b0defcdb 2277 dmi->slave_addr = data[6];
1da177e4 2278
b0defcdb 2279 return 0;
1da177e4
LT
2280}
2281
b0defcdb 2282static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 2283{
b0defcdb 2284 struct smi_info *info;
1da177e4 2285
b0defcdb
CM
2286 info = kzalloc(sizeof(*info), GFP_KERNEL);
2287 if (!info) {
2288 printk(KERN_ERR
2289 "ipmi_si: Could not allocate SI data\n");
2290 return;
1da177e4 2291 }
1da177e4 2292
5fedc4a2 2293 info->addr_source = SI_SMBIOS;
1da177e4 2294
e8b33617 2295 switch (ipmi_data->type) {
b0defcdb
CM
2296 case 0x01: /* KCS */
2297 info->si_type = SI_KCS;
2298 break;
2299 case 0x02: /* SMIC */
2300 info->si_type = SI_SMIC;
2301 break;
2302 case 0x03: /* BT */
2303 info->si_type = SI_BT;
2304 break;
2305 default:
80cd6920 2306 kfree(info);
b0defcdb 2307 return;
1da177e4 2308 }
1da177e4 2309
b0defcdb
CM
2310 switch (ipmi_data->addr_space) {
2311 case IPMI_MEM_ADDR_SPACE:
1da177e4 2312 info->io_setup = mem_setup;
b0defcdb
CM
2313 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2314 break;
2315
2316 case IPMI_IO_ADDR_SPACE:
1da177e4 2317 info->io_setup = port_setup;
b0defcdb
CM
2318 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2319 break;
2320
2321 default:
1da177e4 2322 kfree(info);
b0defcdb
CM
2323 printk(KERN_WARNING
2324 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2325 ipmi_data->addr_space);
2326 return;
1da177e4 2327 }
b0defcdb 2328 info->io.addr_data = ipmi_data->base_addr;
1da177e4 2329
b0defcdb
CM
2330 info->io.regspacing = ipmi_data->offset;
2331 if (!info->io.regspacing)
1da177e4
LT
2332 info->io.regspacing = DEFAULT_REGSPACING;
2333 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2334 info->io.regshift = 0;
1da177e4
LT
2335
2336 info->slave_addr = ipmi_data->slave_addr;
2337
b0defcdb
CM
2338 info->irq = ipmi_data->irq;
2339 if (info->irq)
2340 info->irq_setup = std_irq_setup;
1da177e4 2341
2407d77a 2342 add_smi(info);
b0defcdb 2343}
1da177e4 2344
b0defcdb
CM
2345static void __devinit dmi_find_bmc(void)
2346{
1855256c 2347 const struct dmi_device *dev = NULL;
b0defcdb
CM
2348 struct dmi_ipmi_data data;
2349 int rv;
2350
2351 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
397f4ebf 2352 memset(&data, 0, sizeof(data));
1855256c
JG
2353 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2354 &data);
b0defcdb
CM
2355 if (!rv)
2356 try_init_dmi(&data);
2357 }
1da177e4 2358}
a9fad4cc 2359#endif /* CONFIG_DMI */
1da177e4
LT
2360
2361#ifdef CONFIG_PCI
2362
b0defcdb
CM
2363#define PCI_ERMC_CLASSCODE 0x0C0700
2364#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2365#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2366#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2367#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2368#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2369
1da177e4
LT
2370#define PCI_HP_VENDOR_ID 0x103C
2371#define PCI_MMC_DEVICE_ID 0x121A
2372#define PCI_MMC_ADDR_CW 0x10
2373
b0defcdb
CM
2374static void ipmi_pci_cleanup(struct smi_info *info)
2375{
2376 struct pci_dev *pdev = info->addr_source_data;
2377
2378 pci_disable_device(pdev);
2379}
1da177e4 2380
b0defcdb
CM
2381static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2382 const struct pci_device_id *ent)
1da177e4 2383{
b0defcdb
CM
2384 int rv;
2385 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2386 struct smi_info *info;
1da177e4 2387
b0defcdb
CM
2388 info = kzalloc(sizeof(*info), GFP_KERNEL);
2389 if (!info)
1cd441f9 2390 return -ENOMEM;
1da177e4 2391
5fedc4a2 2392 info->addr_source = SI_PCI;
1da177e4 2393
b0defcdb
CM
2394 switch (class_type) {
2395 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2396 info->si_type = SI_SMIC;
2397 break;
1da177e4 2398
b0defcdb
CM
2399 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2400 info->si_type = SI_KCS;
2401 break;
2402
2403 case PCI_ERMC_CLASSCODE_TYPE_BT:
2404 info->si_type = SI_BT;
2405 break;
2406
2407 default:
2408 kfree(info);
2409 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2410 pci_name(pdev), class_type);
1cd441f9 2411 return -ENOMEM;
1da177e4
LT
2412 }
2413
b0defcdb
CM
2414 rv = pci_enable_device(pdev);
2415 if (rv) {
2416 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2417 pci_name(pdev));
2418 kfree(info);
2419 return rv;
1da177e4
LT
2420 }
2421
b0defcdb
CM
2422 info->addr_source_cleanup = ipmi_pci_cleanup;
2423 info->addr_source_data = pdev;
1da177e4 2424
b0defcdb
CM
2425 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2426 info->io_setup = port_setup;
2427 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2428 } else {
2429 info->io_setup = mem_setup;
2430 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 2431 }
b0defcdb 2432 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 2433
b0defcdb 2434 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 2435 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 2436 info->io.regshift = 0;
1da177e4 2437
b0defcdb
CM
2438 info->irq = pdev->irq;
2439 if (info->irq)
2440 info->irq_setup = std_irq_setup;
1da177e4 2441
50c812b2 2442 info->dev = &pdev->dev;
fca3b747 2443 pci_set_drvdata(pdev, info);
50c812b2 2444
2407d77a 2445 return add_smi(info);
b0defcdb 2446}
1da177e4 2447
b0defcdb
CM
2448static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2449{
fca3b747
CM
2450 struct smi_info *info = pci_get_drvdata(pdev);
2451 cleanup_one_si(info);
b0defcdb 2452}
1da177e4 2453
b0defcdb
CM
2454#ifdef CONFIG_PM
2455static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2456{
1da177e4
LT
2457 return 0;
2458}
1da177e4 2459
b0defcdb 2460static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 2461{
b0defcdb
CM
2462 return 0;
2463}
1da177e4 2464#endif
1da177e4 2465
b0defcdb
CM
2466static struct pci_device_id ipmi_pci_devices[] = {
2467 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
248bdd5e
KC
2468 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2469 { 0, }
b0defcdb
CM
2470};
2471MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2472
2473static struct pci_driver ipmi_pci_driver = {
c305e3d3
CM
2474 .name = DEVICE_NAME,
2475 .id_table = ipmi_pci_devices,
2476 .probe = ipmi_pci_probe,
2477 .remove = __devexit_p(ipmi_pci_remove),
b0defcdb 2478#ifdef CONFIG_PM
c305e3d3
CM
2479 .suspend = ipmi_pci_suspend,
2480 .resume = ipmi_pci_resume,
b0defcdb
CM
2481#endif
2482};
2483#endif /* CONFIG_PCI */
1da177e4
LT
2484
2485
dba9b4f6
CM
2486#ifdef CONFIG_PPC_OF
2487static int __devinit ipmi_of_probe(struct of_device *dev,
2488 const struct of_device_id *match)
2489{
2490 struct smi_info *info;
2491 struct resource resource;
2492 const int *regsize, *regspacing, *regshift;
61c7a080 2493 struct device_node *np = dev->dev.of_node;
dba9b4f6
CM
2494 int ret;
2495 int proplen;
2496
2497 dev_info(&dev->dev, PFX "probing via device tree\n");
2498
2499 ret = of_address_to_resource(np, 0, &resource);
2500 if (ret) {
2501 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2502 return ret;
2503 }
2504
9c25099d 2505 regsize = of_get_property(np, "reg-size", &proplen);
dba9b4f6
CM
2506 if (regsize && proplen != 4) {
2507 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2508 return -EINVAL;
2509 }
2510
9c25099d 2511 regspacing = of_get_property(np, "reg-spacing", &proplen);
dba9b4f6
CM
2512 if (regspacing && proplen != 4) {
2513 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2514 return -EINVAL;
2515 }
2516
9c25099d 2517 regshift = of_get_property(np, "reg-shift", &proplen);
dba9b4f6
CM
2518 if (regshift && proplen != 4) {
2519 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2520 return -EINVAL;
2521 }
2522
2523 info = kzalloc(sizeof(*info), GFP_KERNEL);
2524
2525 if (!info) {
2526 dev_err(&dev->dev,
2527 PFX "could not allocate memory for OF probe\n");
2528 return -ENOMEM;
2529 }
2530
2531 info->si_type = (enum si_type) match->data;
5fedc4a2 2532 info->addr_source = SI_DEVICETREE;
dba9b4f6
CM
2533 info->irq_setup = std_irq_setup;
2534
3b7ec117
NC
2535 if (resource.flags & IORESOURCE_IO) {
2536 info->io_setup = port_setup;
2537 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2538 } else {
2539 info->io_setup = mem_setup;
2540 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2541 }
2542
dba9b4f6
CM
2543 info->io.addr_data = resource.start;
2544
2545 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
2546 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
2547 info->io.regshift = regshift ? *regshift : 0;
2548
61c7a080 2549 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
dba9b4f6
CM
2550 info->dev = &dev->dev;
2551
32d21985 2552 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
dba9b4f6
CM
2553 info->io.addr_data, info->io.regsize, info->io.regspacing,
2554 info->irq);
2555
9de33df4 2556 dev_set_drvdata(&dev->dev, info);
dba9b4f6 2557
2407d77a 2558 return add_smi(info);
dba9b4f6
CM
2559}
2560
2561static int __devexit ipmi_of_remove(struct of_device *dev)
2562{
9de33df4 2563 cleanup_one_si(dev_get_drvdata(&dev->dev));
dba9b4f6
CM
2564 return 0;
2565}
2566
2567static struct of_device_id ipmi_match[] =
2568{
c305e3d3
CM
2569 { .type = "ipmi", .compatible = "ipmi-kcs",
2570 .data = (void *)(unsigned long) SI_KCS },
2571 { .type = "ipmi", .compatible = "ipmi-smic",
2572 .data = (void *)(unsigned long) SI_SMIC },
2573 { .type = "ipmi", .compatible = "ipmi-bt",
2574 .data = (void *)(unsigned long) SI_BT },
dba9b4f6
CM
2575 {},
2576};
2577
c305e3d3 2578static struct of_platform_driver ipmi_of_platform_driver = {
4018294b
GL
2579 .driver = {
2580 .name = "ipmi",
2581 .owner = THIS_MODULE,
2582 .of_match_table = ipmi_match,
2583 },
dba9b4f6
CM
2584 .probe = ipmi_of_probe,
2585 .remove = __devexit_p(ipmi_of_remove),
2586};
2587#endif /* CONFIG_PPC_OF */
2588
40112ae7 2589static int wait_for_msg_done(struct smi_info *smi_info)
1da177e4 2590{
50c812b2 2591 enum si_sm_result smi_result;
1da177e4
LT
2592
2593 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
c305e3d3 2594 for (;;) {
c3e7e791
CM
2595 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2596 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 2597 schedule_timeout_uninterruptible(1);
1da177e4
LT
2598 smi_result = smi_info->handlers->event(
2599 smi_info->si_sm, 100);
c305e3d3 2600 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1da177e4
LT
2601 smi_result = smi_info->handlers->event(
2602 smi_info->si_sm, 0);
c305e3d3 2603 } else
1da177e4
LT
2604 break;
2605 }
40112ae7 2606 if (smi_result == SI_SM_HOSED)
c305e3d3
CM
2607 /*
2608 * We couldn't get the state machine to run, so whatever's at
2609 * the port is probably not an IPMI SMI interface.
2610 */
40112ae7
CM
2611 return -ENODEV;
2612
2613 return 0;
2614}
2615
2616static int try_get_dev_id(struct smi_info *smi_info)
2617{
2618 unsigned char msg[2];
2619 unsigned char *resp;
2620 unsigned long resp_len;
2621 int rv = 0;
2622
2623 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2624 if (!resp)
2625 return -ENOMEM;
2626
2627 /*
2628 * Do a Get Device ID command, since it comes back with some
2629 * useful info.
2630 */
2631 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2632 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2633 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2634
2635 rv = wait_for_msg_done(smi_info);
2636 if (rv)
1da177e4 2637 goto out;
1da177e4 2638
1da177e4
LT
2639 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2640 resp, IPMI_MAX_MSG_LENGTH);
1da177e4 2641
d8c98618
CM
2642 /* Check and record info from the get device id, in case we need it. */
2643 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
1da177e4
LT
2644
2645 out:
2646 kfree(resp);
2647 return rv;
2648}
2649
40112ae7
CM
2650static int try_enable_event_buffer(struct smi_info *smi_info)
2651{
2652 unsigned char msg[3];
2653 unsigned char *resp;
2654 unsigned long resp_len;
2655 int rv = 0;
2656
2657 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2658 if (!resp)
2659 return -ENOMEM;
2660
2661 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2662 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2663 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2664
2665 rv = wait_for_msg_done(smi_info);
2666 if (rv) {
2667 printk(KERN_WARNING
2668 "ipmi_si: Error getting response from get global,"
2669 " enables command, the event buffer is not"
2670 " enabled.\n");
2671 goto out;
2672 }
2673
2674 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2675 resp, IPMI_MAX_MSG_LENGTH);
2676
2677 if (resp_len < 4 ||
2678 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2679 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2680 resp[2] != 0) {
2681 printk(KERN_WARNING
2682 "ipmi_si: Invalid return from get global"
2683 " enables command, cannot enable the event"
2684 " buffer.\n");
2685 rv = -EINVAL;
2686 goto out;
2687 }
2688
2689 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2690 /* buffer is already enabled, nothing to do. */
2691 goto out;
2692
2693 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2694 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2695 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2696 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2697
2698 rv = wait_for_msg_done(smi_info);
2699 if (rv) {
2700 printk(KERN_WARNING
2701 "ipmi_si: Error getting response from set global,"
2702 " enables command, the event buffer is not"
2703 " enabled.\n");
2704 goto out;
2705 }
2706
2707 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2708 resp, IPMI_MAX_MSG_LENGTH);
2709
2710 if (resp_len < 3 ||
2711 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2712 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2713 printk(KERN_WARNING
2714 "ipmi_si: Invalid return from get global,"
2715 "enables command, not enable the event"
2716 " buffer.\n");
2717 rv = -EINVAL;
2718 goto out;
2719 }
2720
2721 if (resp[2] != 0)
2722 /*
2723 * An error when setting the event buffer bit means
2724 * that the event buffer is not supported.
2725 */
2726 rv = -ENOENT;
2727 out:
2728 kfree(resp);
2729 return rv;
2730}
2731
1da177e4
LT
2732static int type_file_read_proc(char *page, char **start, off_t off,
2733 int count, int *eof, void *data)
2734{
1da177e4
LT
2735 struct smi_info *smi = data;
2736
b361e27b 2737 return sprintf(page, "%s\n", si_to_str[smi->si_type]);
1da177e4
LT
2738}
2739
2740static int stat_file_read_proc(char *page, char **start, off_t off,
2741 int count, int *eof, void *data)
2742{
2743 char *out = (char *) page;
2744 struct smi_info *smi = data;
2745
2746 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 2747 smi->irq && !smi->interrupt_disabled);
64959e2d
CM
2748 out += sprintf(out, "short_timeouts: %u\n",
2749 smi_get_stat(smi, short_timeouts));
2750 out += sprintf(out, "long_timeouts: %u\n",
2751 smi_get_stat(smi, long_timeouts));
64959e2d
CM
2752 out += sprintf(out, "idles: %u\n",
2753 smi_get_stat(smi, idles));
2754 out += sprintf(out, "interrupts: %u\n",
2755 smi_get_stat(smi, interrupts));
2756 out += sprintf(out, "attentions: %u\n",
2757 smi_get_stat(smi, attentions));
2758 out += sprintf(out, "flag_fetches: %u\n",
2759 smi_get_stat(smi, flag_fetches));
2760 out += sprintf(out, "hosed_count: %u\n",
2761 smi_get_stat(smi, hosed_count));
2762 out += sprintf(out, "complete_transactions: %u\n",
2763 smi_get_stat(smi, complete_transactions));
2764 out += sprintf(out, "events: %u\n",
2765 smi_get_stat(smi, events));
2766 out += sprintf(out, "watchdog_pretimeouts: %u\n",
2767 smi_get_stat(smi, watchdog_pretimeouts));
2768 out += sprintf(out, "incoming_messages: %u\n",
2769 smi_get_stat(smi, incoming_messages));
1da177e4 2770
b361e27b
CM
2771 return out - page;
2772}
2773
2774static int param_read_proc(char *page, char **start, off_t off,
2775 int count, int *eof, void *data)
2776{
2777 struct smi_info *smi = data;
2778
2779 return sprintf(page,
2780 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2781 si_to_str[smi->si_type],
2782 addr_space_to_str[smi->io.addr_type],
2783 smi->io.addr_data,
2784 smi->io.regspacing,
2785 smi->io.regsize,
2786 smi->io.regshift,
2787 smi->irq,
2788 smi->slave_addr);
1da177e4
LT
2789}
2790
3ae0e0f9
CM
2791/*
2792 * oem_data_avail_to_receive_msg_avail
2793 * @info - smi_info structure with msg_flags set
2794 *
2795 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2796 * Returns 1 indicating need to re-run handle_flags().
2797 */
2798static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2799{
e8b33617 2800 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
c305e3d3 2801 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2802 return 1;
2803}
2804
2805/*
2806 * setup_dell_poweredge_oem_data_handler
2807 * @info - smi_info.device_id must be populated
2808 *
2809 * Systems that match, but have firmware version < 1.40 may assert
2810 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2811 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2812 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2813 * as RECEIVE_MSG_AVAIL instead.
2814 *
2815 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2816 * assert the OEM[012] bits, and if it did, the driver would have to
2817 * change to handle that properly, we don't actually check for the
2818 * firmware version.
2819 * Device ID = 0x20 BMC on PowerEdge 8G servers
2820 * Device Revision = 0x80
2821 * Firmware Revision1 = 0x01 BMC version 1.40
2822 * Firmware Revision2 = 0x40 BCD encoded
2823 * IPMI Version = 0x51 IPMI 1.5
2824 * Manufacturer ID = A2 02 00 Dell IANA
2825 *
d5a2b89a
CM
2826 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2827 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2828 *
3ae0e0f9
CM
2829 */
2830#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2831#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2832#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
50c812b2 2833#define DELL_IANA_MFR_ID 0x0002a2
3ae0e0f9
CM
2834static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2835{
2836 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2837 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
d5a2b89a
CM
2838 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2839 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
50c812b2 2840 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
d5a2b89a
CM
2841 smi_info->oem_data_avail_handler =
2842 oem_data_avail_to_receive_msg_avail;
c305e3d3
CM
2843 } else if (ipmi_version_major(id) < 1 ||
2844 (ipmi_version_major(id) == 1 &&
2845 ipmi_version_minor(id) < 5)) {
d5a2b89a
CM
2846 smi_info->oem_data_avail_handler =
2847 oem_data_avail_to_receive_msg_avail;
2848 }
3ae0e0f9
CM
2849 }
2850}
2851
ea94027b
CM
2852#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2853static void return_hosed_msg_badsize(struct smi_info *smi_info)
2854{
2855 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2856
2857 /* Make it a reponse */
2858 msg->rsp[0] = msg->data[0] | 4;
2859 msg->rsp[1] = msg->data[1];
2860 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2861 msg->rsp_size = 3;
2862 smi_info->curr_msg = NULL;
2863 deliver_recv_msg(smi_info, msg);
2864}
2865
2866/*
2867 * dell_poweredge_bt_xaction_handler
2868 * @info - smi_info.device_id must be populated
2869 *
2870 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2871 * not respond to a Get SDR command if the length of the data
2872 * requested is exactly 0x3A, which leads to command timeouts and no
2873 * data returned. This intercepts such commands, and causes userspace
2874 * callers to try again with a different-sized buffer, which succeeds.
2875 */
2876
2877#define STORAGE_NETFN 0x0A
2878#define STORAGE_CMD_GET_SDR 0x23
2879static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2880 unsigned long unused,
2881 void *in)
2882{
2883 struct smi_info *smi_info = in;
2884 unsigned char *data = smi_info->curr_msg->data;
2885 unsigned int size = smi_info->curr_msg->data_size;
2886 if (size >= 8 &&
2887 (data[0]>>2) == STORAGE_NETFN &&
2888 data[1] == STORAGE_CMD_GET_SDR &&
2889 data[7] == 0x3A) {
2890 return_hosed_msg_badsize(smi_info);
2891 return NOTIFY_STOP;
2892 }
2893 return NOTIFY_DONE;
2894}
2895
2896static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2897 .notifier_call = dell_poweredge_bt_xaction_handler,
2898};
2899
2900/*
2901 * setup_dell_poweredge_bt_xaction_handler
2902 * @info - smi_info.device_id must be filled in already
2903 *
2904 * Fills in smi_info.device_id.start_transaction_pre_hook
2905 * when we know what function to use there.
2906 */
2907static void
2908setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2909{
2910 struct ipmi_device_id *id = &smi_info->device_id;
50c812b2 2911 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
ea94027b
CM
2912 smi_info->si_type == SI_BT)
2913 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2914}
2915
3ae0e0f9
CM
2916/*
2917 * setup_oem_data_handler
2918 * @info - smi_info.device_id must be filled in already
2919 *
2920 * Fills in smi_info.device_id.oem_data_available_handler
2921 * when we know what function to use there.
2922 */
2923
2924static void setup_oem_data_handler(struct smi_info *smi_info)
2925{
2926 setup_dell_poweredge_oem_data_handler(smi_info);
2927}
2928
ea94027b
CM
2929static void setup_xaction_handlers(struct smi_info *smi_info)
2930{
2931 setup_dell_poweredge_bt_xaction_handler(smi_info);
2932}
2933
a9a2c44f
CM
2934static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2935{
453823ba 2936 if (smi_info->intf) {
c305e3d3
CM
2937 /*
2938 * The timer and thread are only running if the
2939 * interface has been started up and registered.
2940 */
453823ba
CM
2941 if (smi_info->thread != NULL)
2942 kthread_stop(smi_info->thread);
2943 del_timer_sync(&smi_info->si_timer);
2944 }
a9a2c44f
CM
2945}
2946
7420884c 2947static __devinitdata struct ipmi_default_vals
b0defcdb
CM
2948{
2949 int type;
2950 int port;
7420884c 2951} ipmi_defaults[] =
b0defcdb
CM
2952{
2953 { .type = SI_KCS, .port = 0xca2 },
2954 { .type = SI_SMIC, .port = 0xca9 },
2955 { .type = SI_BT, .port = 0xe4 },
2956 { .port = 0 }
2957};
2958
2959static __devinit void default_find_bmc(void)
2960{
2961 struct smi_info *info;
2962 int i;
2963
2964 for (i = 0; ; i++) {
2965 if (!ipmi_defaults[i].port)
2966 break;
68e1ee62 2967#ifdef CONFIG_PPC
4ff31d77
CK
2968 if (check_legacy_ioport(ipmi_defaults[i].port))
2969 continue;
2970#endif
a09f4855
AM
2971 info = kzalloc(sizeof(*info), GFP_KERNEL);
2972 if (!info)
2973 return;
4ff31d77 2974
5fedc4a2 2975 info->addr_source = SI_DEFAULT;
b0defcdb
CM
2976
2977 info->si_type = ipmi_defaults[i].type;
2978 info->io_setup = port_setup;
2979 info->io.addr_data = ipmi_defaults[i].port;
2980 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2981
2982 info->io.addr = NULL;
2983 info->io.regspacing = DEFAULT_REGSPACING;
2984 info->io.regsize = DEFAULT_REGSPACING;
2985 info->io.regshift = 0;
2986
2407d77a
MG
2987 if (add_smi(info) == 0) {
2988 if ((try_smi_init(info)) == 0) {
2989 /* Found one... */
2990 printk(KERN_INFO "ipmi_si: Found default %s"
2991 " state machine at %s address 0x%lx\n",
2992 si_to_str[info->si_type],
2993 addr_space_to_str[info->io.addr_type],
2994 info->io.addr_data);
2995 } else
2996 cleanup_one_si(info);
b0defcdb
CM
2997 }
2998 }
2999}
3000
3001static int is_new_interface(struct smi_info *info)
1da177e4 3002{
b0defcdb 3003 struct smi_info *e;
1da177e4 3004
b0defcdb
CM
3005 list_for_each_entry(e, &smi_infos, link) {
3006 if (e->io.addr_type != info->io.addr_type)
3007 continue;
3008 if (e->io.addr_data == info->io.addr_data)
3009 return 0;
3010 }
1da177e4 3011
b0defcdb
CM
3012 return 1;
3013}
1da177e4 3014
2407d77a 3015static int add_smi(struct smi_info *new_smi)
b0defcdb 3016{
2407d77a 3017 int rv = 0;
b0defcdb 3018
2407d77a
MG
3019 printk(KERN_INFO "ipmi_si: Adding %s-specified %s state machine",
3020 ipmi_addr_src_to_str[new_smi->addr_source],
3021 si_to_str[new_smi->si_type]);
d6dfd131 3022 mutex_lock(&smi_infos_lock);
b0defcdb 3023 if (!is_new_interface(new_smi)) {
2407d77a 3024 printk(KERN_CONT ": duplicate interface\n");
b0defcdb
CM
3025 rv = -EBUSY;
3026 goto out_err;
3027 }
1da177e4 3028
2407d77a
MG
3029 printk(KERN_CONT "\n");
3030
1da177e4
LT
3031 /* So we know not to free it unless we have allocated one. */
3032 new_smi->intf = NULL;
3033 new_smi->si_sm = NULL;
3034 new_smi->handlers = NULL;
3035
2407d77a
MG
3036 list_add_tail(&new_smi->link, &smi_infos);
3037
3038out_err:
3039 mutex_unlock(&smi_infos_lock);
3040 return rv;
3041}
3042
3043static int try_smi_init(struct smi_info *new_smi)
3044{
3045 int rv = 0;
3046 int i;
3047
3048 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
3049 " machine at %s address 0x%lx, slave address 0x%x,"
3050 " irq %d\n",
3051 ipmi_addr_src_to_str[new_smi->addr_source],
3052 si_to_str[new_smi->si_type],
3053 addr_space_to_str[new_smi->io.addr_type],
3054 new_smi->io.addr_data,
3055 new_smi->slave_addr, new_smi->irq);
3056
b0defcdb
CM
3057 switch (new_smi->si_type) {
3058 case SI_KCS:
1da177e4 3059 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
3060 break;
3061
3062 case SI_SMIC:
1da177e4 3063 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
3064 break;
3065
3066 case SI_BT:
1da177e4 3067 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
3068 break;
3069
3070 default:
1da177e4
LT
3071 /* No support for anything else yet. */
3072 rv = -EIO;
3073 goto out_err;
3074 }
3075
3076 /* Allocate the state machine's data and initialize it. */
3077 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 3078 if (!new_smi->si_sm) {
c305e3d3 3079 printk(KERN_ERR "Could not allocate state machine memory\n");
1da177e4
LT
3080 rv = -ENOMEM;
3081 goto out_err;
3082 }
3083 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3084 &new_smi->io);
3085
3086 /* Now that we know the I/O size, we can set up the I/O. */
3087 rv = new_smi->io_setup(new_smi);
3088 if (rv) {
c305e3d3 3089 printk(KERN_ERR "Could not set up I/O space\n");
1da177e4
LT
3090 goto out_err;
3091 }
3092
3093 spin_lock_init(&(new_smi->si_lock));
3094 spin_lock_init(&(new_smi->msg_lock));
1da177e4
LT
3095
3096 /* Do low-level detection first. */
3097 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
3098 if (new_smi->addr_source)
3099 printk(KERN_INFO "ipmi_si: Interface detection"
3100 " failed\n");
1da177e4
LT
3101 rv = -ENODEV;
3102 goto out_err;
3103 }
3104
c305e3d3
CM
3105 /*
3106 * Attempt a get device id command. If it fails, we probably
3107 * don't have a BMC here.
3108 */
1da177e4 3109 rv = try_get_dev_id(new_smi);
b0defcdb
CM
3110 if (rv) {
3111 if (new_smi->addr_source)
3112 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3113 " at this location\n");
1da177e4 3114 goto out_err;
b0defcdb 3115 }
1da177e4 3116
3ae0e0f9 3117 setup_oem_data_handler(new_smi);
ea94027b 3118 setup_xaction_handlers(new_smi);
3ae0e0f9 3119
1da177e4
LT
3120 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3121 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3122 new_smi->curr_msg = NULL;
3123 atomic_set(&new_smi->req_events, 0);
3124 new_smi->run_to_completion = 0;
64959e2d
CM
3125 for (i = 0; i < SI_NUM_STATS; i++)
3126 atomic_set(&new_smi->stats[i], 0);
1da177e4 3127
ea4078ca 3128 new_smi->interrupt_disabled = 1;
a9a2c44f 3129 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
3130 new_smi->intf_num = smi_num;
3131 smi_num++;
1da177e4 3132
40112ae7
CM
3133 rv = try_enable_event_buffer(new_smi);
3134 if (rv == 0)
3135 new_smi->has_event_buffer = 1;
3136
c305e3d3
CM
3137 /*
3138 * Start clearing the flags before we enable interrupts or the
3139 * timer to avoid racing with the timer.
3140 */
1da177e4
LT
3141 start_clear_flags(new_smi);
3142 /* IRQ is defined to be set when non-zero. */
3143 if (new_smi->irq)
3144 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3145
50c812b2 3146 if (!new_smi->dev) {
c305e3d3
CM
3147 /*
3148 * If we don't already have a device from something
3149 * else (like PCI), then register a new one.
3150 */
50c812b2
CM
3151 new_smi->pdev = platform_device_alloc("ipmi_si",
3152 new_smi->intf_num);
8b32b5d0 3153 if (!new_smi->pdev) {
50c812b2
CM
3154 printk(KERN_ERR
3155 "ipmi_si_intf:"
3156 " Unable to allocate platform device\n");
453823ba 3157 goto out_err;
50c812b2
CM
3158 }
3159 new_smi->dev = &new_smi->pdev->dev;
fe2d5ffc 3160 new_smi->dev->driver = &ipmi_driver.driver;
50c812b2 3161
b48f5457 3162 rv = platform_device_add(new_smi->pdev);
50c812b2
CM
3163 if (rv) {
3164 printk(KERN_ERR
3165 "ipmi_si_intf:"
3166 " Unable to register system interface device:"
3167 " %d\n",
3168 rv);
453823ba 3169 goto out_err;
50c812b2
CM
3170 }
3171 new_smi->dev_registered = 1;
3172 }
3173
1da177e4
LT
3174 rv = ipmi_register_smi(&handlers,
3175 new_smi,
50c812b2
CM
3176 &new_smi->device_id,
3177 new_smi->dev,
759643b8 3178 "bmc",
453823ba 3179 new_smi->slave_addr);
1da177e4
LT
3180 if (rv) {
3181 printk(KERN_ERR
3182 "ipmi_si: Unable to register device: error %d\n",
3183 rv);
3184 goto out_err_stop_timer;
3185 }
3186
3187 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
fa68be0d 3188 type_file_read_proc,
99b76233 3189 new_smi);
1da177e4
LT
3190 if (rv) {
3191 printk(KERN_ERR
3192 "ipmi_si: Unable to create proc entry: %d\n",
3193 rv);
3194 goto out_err_stop_timer;
3195 }
3196
3197 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
fa68be0d 3198 stat_file_read_proc,
99b76233 3199 new_smi);
1da177e4
LT
3200 if (rv) {
3201 printk(KERN_ERR
3202 "ipmi_si: Unable to create proc entry: %d\n",
3203 rv);
3204 goto out_err_stop_timer;
3205 }
3206
b361e27b 3207 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
fa68be0d 3208 param_read_proc,
99b76233 3209 new_smi);
b361e27b
CM
3210 if (rv) {
3211 printk(KERN_ERR
3212 "ipmi_si: Unable to create proc entry: %d\n",
3213 rv);
3214 goto out_err_stop_timer;
3215 }
3216
c305e3d3
CM
3217 printk(KERN_INFO "IPMI %s interface initialized\n",
3218 si_to_str[new_smi->si_type]);
1da177e4
LT
3219
3220 return 0;
3221
3222 out_err_stop_timer:
a9a2c44f
CM
3223 atomic_inc(&new_smi->stop_operation);
3224 wait_for_timer_and_thread(new_smi);
1da177e4
LT
3225
3226 out_err:
2407d77a
MG
3227 new_smi->interrupt_disabled = 1;
3228
3229 if (new_smi->intf) {
1da177e4 3230 ipmi_unregister_smi(new_smi->intf);
2407d77a
MG
3231 new_smi->intf = NULL;
3232 }
1da177e4 3233
2407d77a 3234 if (new_smi->irq_cleanup) {
b0defcdb 3235 new_smi->irq_cleanup(new_smi);
2407d77a
MG
3236 new_smi->irq_cleanup = NULL;
3237 }
1da177e4 3238
c305e3d3
CM
3239 /*
3240 * Wait until we know that we are out of any interrupt
3241 * handlers might have been running before we freed the
3242 * interrupt.
3243 */
fbd568a3 3244 synchronize_sched();
1da177e4
LT
3245
3246 if (new_smi->si_sm) {
3247 if (new_smi->handlers)
3248 new_smi->handlers->cleanup(new_smi->si_sm);
3249 kfree(new_smi->si_sm);
2407d77a 3250 new_smi->si_sm = NULL;
1da177e4 3251 }
2407d77a 3252 if (new_smi->addr_source_cleanup) {
b0defcdb 3253 new_smi->addr_source_cleanup(new_smi);
2407d77a
MG
3254 new_smi->addr_source_cleanup = NULL;
3255 }
3256 if (new_smi->io_cleanup) {
7767e126 3257 new_smi->io_cleanup(new_smi);
2407d77a
MG
3258 new_smi->io_cleanup = NULL;
3259 }
1da177e4 3260
2407d77a 3261 if (new_smi->dev_registered) {
50c812b2 3262 platform_device_unregister(new_smi->pdev);
2407d77a
MG
3263 new_smi->dev_registered = 0;
3264 }
b0defcdb 3265
1da177e4
LT
3266 return rv;
3267}
3268
b0defcdb 3269static __devinit int init_ipmi_si(void)
1da177e4 3270{
1da177e4
LT
3271 int i;
3272 char *str;
50c812b2 3273 int rv;
2407d77a 3274 struct smi_info *e;
1da177e4
LT
3275
3276 if (initialized)
3277 return 0;
3278 initialized = 1;
3279
50c812b2 3280 /* Register the device drivers. */
fe2d5ffc 3281 rv = driver_register(&ipmi_driver.driver);
50c812b2
CM
3282 if (rv) {
3283 printk(KERN_ERR
3284 "init_ipmi_si: Unable to register driver: %d\n",
3285 rv);
3286 return rv;
3287 }
3288
3289
1da177e4
LT
3290 /* Parse out the si_type string into its components. */
3291 str = si_type_str;
3292 if (*str != '\0') {
e8b33617 3293 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
3294 si_type[i] = str;
3295 str = strchr(str, ',');
3296 if (str) {
3297 *str = '\0';
3298 str++;
3299 } else {
3300 break;
3301 }
3302 }
3303 }
3304
1fdd75bd 3305 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 3306
b0defcdb
CM
3307 hardcode_find_bmc();
3308
d8cc5267
MG
3309 /* If the user gave us a device, they presumably want us to use it */
3310 mutex_lock(&smi_infos_lock);
3311 if (!list_empty(&smi_infos)) {
3312 mutex_unlock(&smi_infos_lock);
3313 return 0;
3314 }
3315 mutex_unlock(&smi_infos_lock);
3316
b0defcdb 3317#ifdef CONFIG_PCI
168b35a7 3318 rv = pci_register_driver(&ipmi_pci_driver);
c305e3d3 3319 if (rv)
168b35a7
CM
3320 printk(KERN_ERR
3321 "init_ipmi_si: Unable to register PCI driver: %d\n",
3322 rv);
b0defcdb
CM
3323#endif
3324
754d4531
MG
3325#ifdef CONFIG_ACPI
3326 pnp_register_driver(&ipmi_pnp_driver);
3327#endif
3328
3329#ifdef CONFIG_DMI
3330 dmi_find_bmc();
3331#endif
3332
3333#ifdef CONFIG_ACPI
3334 spmi_find_bmc();
3335#endif
3336
dba9b4f6
CM
3337#ifdef CONFIG_PPC_OF
3338 of_register_platform_driver(&ipmi_of_platform_driver);
3339#endif
3340
d8cc5267
MG
3341 /* Try to register something with interrupts first */
3342
2407d77a
MG
3343 mutex_lock(&smi_infos_lock);
3344 list_for_each_entry(e, &smi_infos, link) {
d8cc5267
MG
3345 if (e->irq) {
3346 if (!try_smi_init(e)) {
3347 mutex_unlock(&smi_infos_lock);
3348 return 0;
3349 }
3350 }
3351 }
3352
3353 /* Fall back to the preferred device */
3354
3355 list_for_each_entry(e, &smi_infos, link) {
3356 if (!e->irq) {
3357 if (!try_smi_init(e)) {
3358 mutex_unlock(&smi_infos_lock);
3359 return 0;
3360 }
3361 }
2407d77a
MG
3362 }
3363 mutex_unlock(&smi_infos_lock);
3364
b0defcdb 3365 if (si_trydefaults) {
d6dfd131 3366 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3367 if (list_empty(&smi_infos)) {
3368 /* No BMC was found, try defaults. */
d6dfd131 3369 mutex_unlock(&smi_infos_lock);
b0defcdb 3370 default_find_bmc();
2407d77a 3371 } else
d6dfd131 3372 mutex_unlock(&smi_infos_lock);
1da177e4
LT
3373 }
3374
d6dfd131 3375 mutex_lock(&smi_infos_lock);
b361e27b 3376 if (unload_when_empty && list_empty(&smi_infos)) {
d6dfd131 3377 mutex_unlock(&smi_infos_lock);
b0defcdb
CM
3378#ifdef CONFIG_PCI
3379 pci_unregister_driver(&ipmi_pci_driver);
3380#endif
10fb62e5
CK
3381
3382#ifdef CONFIG_PPC_OF
3383 of_unregister_platform_driver(&ipmi_of_platform_driver);
3384#endif
fe2d5ffc 3385 driver_unregister(&ipmi_driver.driver);
c305e3d3
CM
3386 printk(KERN_WARNING
3387 "ipmi_si: Unable to find any System Interface(s)\n");
1da177e4 3388 return -ENODEV;
b0defcdb 3389 } else {
d6dfd131 3390 mutex_unlock(&smi_infos_lock);
b0defcdb 3391 return 0;
1da177e4 3392 }
1da177e4
LT
3393}
3394module_init(init_ipmi_si);
3395
b361e27b 3396static void cleanup_one_si(struct smi_info *to_clean)
1da177e4 3397{
2407d77a 3398 int rv = 0;
1da177e4
LT
3399 unsigned long flags;
3400
b0defcdb 3401 if (!to_clean)
1da177e4
LT
3402 return;
3403
b0defcdb
CM
3404 list_del(&to_clean->link);
3405
ee6cd5f8 3406 /* Tell the driver that we are shutting down. */
a9a2c44f 3407 atomic_inc(&to_clean->stop_operation);
b0defcdb 3408
c305e3d3
CM
3409 /*
3410 * Make sure the timer and thread are stopped and will not run
3411 * again.
3412 */
a9a2c44f 3413 wait_for_timer_and_thread(to_clean);
1da177e4 3414
c305e3d3
CM
3415 /*
3416 * Timeouts are stopped, now make sure the interrupts are off
3417 * for the device. A little tricky with locks to make sure
3418 * there are no races.
3419 */
ee6cd5f8
CM
3420 spin_lock_irqsave(&to_clean->si_lock, flags);
3421 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3422 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3423 poll(to_clean);
3424 schedule_timeout_uninterruptible(1);
3425 spin_lock_irqsave(&to_clean->si_lock, flags);
3426 }
3427 disable_si_irq(to_clean);
3428 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3429 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3430 poll(to_clean);
3431 schedule_timeout_uninterruptible(1);
3432 }
3433
3434 /* Clean up interrupts and make sure that everything is done. */
3435 if (to_clean->irq_cleanup)
3436 to_clean->irq_cleanup(to_clean);
e8b33617 3437 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 3438 poll(to_clean);
da4cd8df 3439 schedule_timeout_uninterruptible(1);
1da177e4
LT
3440 }
3441
2407d77a
MG
3442 if (to_clean->intf)
3443 rv = ipmi_unregister_smi(to_clean->intf);
3444
1da177e4
LT
3445 if (rv) {
3446 printk(KERN_ERR
3447 "ipmi_si: Unable to unregister device: errno=%d\n",
3448 rv);
3449 }
3450
2407d77a
MG
3451 if (to_clean->handlers)
3452 to_clean->handlers->cleanup(to_clean->si_sm);
1da177e4
LT
3453
3454 kfree(to_clean->si_sm);
3455
b0defcdb
CM
3456 if (to_clean->addr_source_cleanup)
3457 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
3458 if (to_clean->io_cleanup)
3459 to_clean->io_cleanup(to_clean);
50c812b2
CM
3460
3461 if (to_clean->dev_registered)
3462 platform_device_unregister(to_clean->pdev);
3463
3464 kfree(to_clean);
1da177e4
LT
3465}
3466
3467static __exit void cleanup_ipmi_si(void)
3468{
b0defcdb 3469 struct smi_info *e, *tmp_e;
1da177e4 3470
b0defcdb 3471 if (!initialized)
1da177e4
LT
3472 return;
3473
b0defcdb
CM
3474#ifdef CONFIG_PCI
3475 pci_unregister_driver(&ipmi_pci_driver);
3476#endif
27d0567a 3477#ifdef CONFIG_ACPI
9e368fa0
BH
3478 pnp_unregister_driver(&ipmi_pnp_driver);
3479#endif
b0defcdb 3480
dba9b4f6
CM
3481#ifdef CONFIG_PPC_OF
3482 of_unregister_platform_driver(&ipmi_of_platform_driver);
3483#endif
3484
d6dfd131 3485 mutex_lock(&smi_infos_lock);
b0defcdb
CM
3486 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3487 cleanup_one_si(e);
d6dfd131 3488 mutex_unlock(&smi_infos_lock);
50c812b2 3489
fe2d5ffc 3490 driver_unregister(&ipmi_driver.driver);
1da177e4
LT
3491}
3492module_exit(cleanup_ipmi_si);
3493
3494MODULE_LICENSE("GPL");
1fdd75bd 3495MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
c305e3d3
CM
3496MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3497 " system interfaces.");