]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/block/umem.c
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
[net-next-2.6.git] / drivers / block / umem.c
CommitLineData
1da177e4
LT
1/*
2 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
3 *
4 * (C) 2001 San Mehat <nettwerk@valinux.com>
5 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
6 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
7 *
8 * This driver for the Micro Memory PCI Memory Module with Battery Backup
9 * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
10 *
11 * This driver is released to the public under the terms of the
12 * GNU GENERAL PUBLIC LICENSE version 2
13 * See the file COPYING for details.
14 *
15 * This driver provides a standard block device interface for Micro Memory(tm)
16 * PCI based RAM boards.
17 * 10/05/01: Phap Nguyen - Rebuilt the driver
18 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
19 * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
20 * - use stand disk partitioning (so fdisk works).
21 * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
22 * - incorporate into main kernel
23 * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
24 * - use spin_lock_bh instead of _irq
25 * - Never block on make_request. queue
26 * bh's instead.
27 * - unregister umem from devfs at mod unload
28 * - Change version to 2.3
29 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
30 * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
31 * 15May2002:NeilBrown - convert to bio for 2.5
32 * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
33 * - a sequence of writes that cover the card, and
34 * - set initialised bit then.
35 */
36
46308c0b 37//#define DEBUG /* uncomment if you want debugging info (pr_debug) */
1da177e4
LT
38#include <linux/sched.h>
39#include <linux/fs.h>
40#include <linux/bio.h>
41#include <linux/kernel.h>
42#include <linux/mm.h>
43#include <linux/mman.h>
44#include <linux/ioctl.h>
45#include <linux/module.h>
46#include <linux/init.h>
47#include <linux/interrupt.h>
48#include <linux/smp_lock.h>
49#include <linux/timer.h>
50#include <linux/pci.h>
51#include <linux/slab.h>
910638ae 52#include <linux/dma-mapping.h>
1da177e4
LT
53
54#include <linux/fcntl.h> /* O_ACCMODE */
55#include <linux/hdreg.h> /* HDIO_GETGEO */
56
57#include <linux/umem.h>
58
59#include <asm/uaccess.h>
60#include <asm/io.h>
61
1da177e4
LT
62#define MM_MAXCARDS 4
63#define MM_RAHEAD 2 /* two sectors */
64#define MM_BLKSIZE 1024 /* 1k blocks */
65#define MM_HARDSECT 512 /* 512-byte hardware sectors */
66#define MM_SHIFT 6 /* max 64 partitions on 4 cards */
67
68/*
69 * Version Information
70 */
71
72#define DRIVER_VERSION "v2.3"
73#define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
74#define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
75
76static int debug;
77/* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
78#define HW_TRACE(x)
79
80#define DEBUG_LED_ON_TRANSFER 0x01
81#define DEBUG_BATTERY_POLLING 0x02
82
83module_param(debug, int, 0644);
84MODULE_PARM_DESC(debug, "Debug bitmask");
85
86static int pci_read_cmd = 0x0C; /* Read Multiple */
87module_param(pci_read_cmd, int, 0);
88MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
89
90static int pci_write_cmd = 0x0F; /* Write and Invalidate */
91module_param(pci_write_cmd, int, 0);
92MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
93
94static int pci_cmds;
95
96static int major_nr;
97
98#include <linux/blkdev.h>
99#include <linux/blkpg.h>
100
101struct cardinfo {
102 int card_number;
103 struct pci_dev *dev;
104
105 int irq;
106
107 unsigned long csr_base;
108 unsigned char __iomem *csr_remap;
109 unsigned long csr_len;
110#ifdef CONFIG_MM_MAP_MEMORY
111 unsigned long mem_base;
112 unsigned char __iomem *mem_remap;
113 unsigned long mem_len;
114#endif
115
116 unsigned int win_size; /* PCI window size */
117 unsigned int mm_size; /* size in kbytes */
118
119 unsigned int init_size; /* initial segment, in sectors,
120 * that we know to
121 * have been written
122 */
123 struct bio *bio, *currentbio, **biotail;
124
125 request_queue_t *queue;
126
127 struct mm_page {
128 dma_addr_t page_dma;
129 struct mm_dma_desc *desc;
130 int cnt, headcnt;
131 struct bio *bio, **biotail;
132 } mm_pages[2];
133#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
134
135 int Active, Ready;
136
137 struct tasklet_struct tasklet;
138 unsigned int dma_status;
139
140 struct {
141 int good;
142 int warned;
143 unsigned long last_change;
144 } battery[2];
145
146 spinlock_t lock;
147 int check_batteries;
148
149 int flags;
150};
151
152static struct cardinfo cards[MM_MAXCARDS];
153static struct block_device_operations mm_fops;
154static struct timer_list battery_timer;
155
156static int num_cards = 0;
157
158static struct gendisk *mm_gendisk[MM_MAXCARDS];
159
160static void check_batteries(struct cardinfo *card);
161
162/*
163-----------------------------------------------------------------------------------
164-- get_userbit
165-----------------------------------------------------------------------------------
166*/
167static int get_userbit(struct cardinfo *card, int bit)
168{
169 unsigned char led;
170
171 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
172 return led & bit;
173}
174/*
175-----------------------------------------------------------------------------------
176-- set_userbit
177-----------------------------------------------------------------------------------
178*/
179static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
180{
181 unsigned char led;
182
183 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
184 if (state)
185 led |= bit;
186 else
187 led &= ~bit;
188 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
189
190 return 0;
191}
192/*
193-----------------------------------------------------------------------------------
194-- set_led
195-----------------------------------------------------------------------------------
196*/
197/*
198 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
199 */
200static void set_led(struct cardinfo *card, int shift, unsigned char state)
201{
202 unsigned char led;
203
204 led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
205 if (state == LED_FLIP)
206 led ^= (1<<shift);
207 else {
208 led &= ~(0x03 << shift);
209 led |= (state << shift);
210 }
211 writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
212
213}
214
215#ifdef MM_DIAG
216/*
217-----------------------------------------------------------------------------------
218-- dump_regs
219-----------------------------------------------------------------------------------
220*/
221static void dump_regs(struct cardinfo *card)
222{
223 unsigned char *p;
224 int i, i1;
225
226 p = card->csr_remap;
227 for (i = 0; i < 8; i++) {
228 printk(KERN_DEBUG "%p ", p);
229
230 for (i1 = 0; i1 < 16; i1++)
231 printk("%02x ", *p++);
232
233 printk("\n");
234 }
235}
236#endif
237/*
238-----------------------------------------------------------------------------------
239-- dump_dmastat
240-----------------------------------------------------------------------------------
241*/
242static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
243{
244 printk(KERN_DEBUG "MM%d*: DMAstat - ", card->card_number);
245 if (dmastat & DMASCR_ANY_ERR)
246 printk("ANY_ERR ");
247 if (dmastat & DMASCR_MBE_ERR)
248 printk("MBE_ERR ");
249 if (dmastat & DMASCR_PARITY_ERR_REP)
250 printk("PARITY_ERR_REP ");
251 if (dmastat & DMASCR_PARITY_ERR_DET)
252 printk("PARITY_ERR_DET ");
253 if (dmastat & DMASCR_SYSTEM_ERR_SIG)
254 printk("SYSTEM_ERR_SIG ");
255 if (dmastat & DMASCR_TARGET_ABT)
256 printk("TARGET_ABT ");
257 if (dmastat & DMASCR_MASTER_ABT)
258 printk("MASTER_ABT ");
259 if (dmastat & DMASCR_CHAIN_COMPLETE)
260 printk("CHAIN_COMPLETE ");
261 if (dmastat & DMASCR_DMA_COMPLETE)
262 printk("DMA_COMPLETE ");
263 printk("\n");
264}
265
266/*
267 * Theory of request handling
268 *
269 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
270 * We have two pages of mm_dma_desc, holding about 64 descriptors
271 * each. These are allocated at init time.
272 * One page is "Ready" and is either full, or can have request added.
273 * The other page might be "Active", which DMA is happening on it.
274 *
275 * Whenever IO on the active page completes, the Ready page is activated
276 * and the ex-Active page is clean out and made Ready.
277 * Otherwise the Ready page is only activated when it becomes full, or
278 * when mm_unplug_device is called via the unplug_io_fn.
279 *
280 * If a request arrives while both pages a full, it is queued, and b_rdev is
281 * overloaded to record whether it was a read or a write.
282 *
283 * The interrupt handler only polls the device to clear the interrupt.
284 * The processing of the result is done in a tasklet.
285 */
286
287static void mm_start_io(struct cardinfo *card)
288{
289 /* we have the lock, we know there is
290 * no IO active, and we know that card->Active
291 * is set
292 */
293 struct mm_dma_desc *desc;
294 struct mm_page *page;
295 int offset;
296
297 /* make the last descriptor end the chain */
298 page = &card->mm_pages[card->Active];
46308c0b 299 pr_debug("start_io: %d %d->%d\n", card->Active, page->headcnt, page->cnt-1);
1da177e4
LT
300 desc = &page->desc[page->cnt-1];
301
302 desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
303 desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
304 desc->sem_control_bits = desc->control_bits;
305
306
307 if (debug & DEBUG_LED_ON_TRANSFER)
308 set_led(card, LED_REMOVE, LED_ON);
309
310 desc = &page->desc[page->headcnt];
311 writel(0, card->csr_remap + DMA_PCI_ADDR);
312 writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
313
314 writel(0, card->csr_remap + DMA_LOCAL_ADDR);
315 writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
316
317 writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
318 writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
319
320 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
321 writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
322
323 offset = ((char*)desc) - ((char*)page->desc);
324 writel(cpu_to_le32((page->page_dma+offset)&0xffffffff),
325 card->csr_remap + DMA_DESCRIPTOR_ADDR);
326 /* Force the value to u64 before shifting otherwise >> 32 is undefined C
327 * and on some ports will do nothing ! */
328 writel(cpu_to_le32(((u64)page->page_dma)>>32),
329 card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
330
331 /* Go, go, go */
332 writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
333 card->csr_remap + DMA_STATUS_CTRL);
334}
335
336static int add_bio(struct cardinfo *card);
337
338static void activate(struct cardinfo *card)
339{
340 /* if No page is Active, and Ready is
341 * not empty, then switch Ready page
342 * to active and start IO.
343 * Then add any bh's that are available to Ready
344 */
345
346 do {
347 while (add_bio(card))
348 ;
349
350 if (card->Active == -1 &&
351 card->mm_pages[card->Ready].cnt > 0) {
352 card->Active = card->Ready;
353 card->Ready = 1-card->Ready;
354 mm_start_io(card);
355 }
356
357 } while (card->Active == -1 && add_bio(card));
358}
359
360static inline void reset_page(struct mm_page *page)
361{
362 page->cnt = 0;
363 page->headcnt = 0;
364 page->bio = NULL;
365 page->biotail = & page->bio;
366}
367
368static void mm_unplug_device(request_queue_t *q)
369{
370 struct cardinfo *card = q->queuedata;
371 unsigned long flags;
372
373 spin_lock_irqsave(&card->lock, flags);
374 if (blk_remove_plug(q))
375 activate(card);
376 spin_unlock_irqrestore(&card->lock, flags);
377}
378
379/*
380 * If there is room on Ready page, take
381 * one bh off list and add it.
382 * return 1 if there was room, else 0.
383 */
384static int add_bio(struct cardinfo *card)
385{
386 struct mm_page *p;
387 struct mm_dma_desc *desc;
388 dma_addr_t dma_handle;
389 int offset;
390 struct bio *bio;
391 int rw;
392 int len;
393
394 bio = card->currentbio;
395 if (!bio && card->bio) {
396 card->currentbio = card->bio;
397 card->bio = card->bio->bi_next;
398 if (card->bio == NULL)
399 card->biotail = &card->bio;
400 card->currentbio->bi_next = NULL;
401 return 1;
402 }
403 if (!bio)
404 return 0;
405
406 rw = bio_rw(bio);
407 if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
408 return 0;
409
410 len = bio_iovec(bio)->bv_len;
411 dma_handle = pci_map_page(card->dev,
412 bio_page(bio),
413 bio_offset(bio),
414 len,
415 (rw==READ) ?
416 PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
417
418 p = &card->mm_pages[card->Ready];
419 desc = &p->desc[p->cnt];
420 p->cnt++;
421 if ((p->biotail) != &bio->bi_next) {
422 *(p->biotail) = bio;
423 p->biotail = &(bio->bi_next);
424 bio->bi_next = NULL;
425 }
426
427 desc->data_dma_handle = dma_handle;
428
429 desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
430 desc->local_addr= cpu_to_le64(bio->bi_sector << 9);
431 desc->transfer_size = cpu_to_le32(len);
432 offset = ( ((char*)&desc->sem_control_bits) - ((char*)p->desc));
433 desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
434 desc->zero1 = desc->zero2 = 0;
435 offset = ( ((char*)(desc+1)) - ((char*)p->desc));
436 desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
437 desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
438 DMASCR_PARITY_INT_EN|
439 DMASCR_CHAIN_EN |
440 DMASCR_SEM_EN |
441 pci_cmds);
442 if (rw == WRITE)
443 desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
444 desc->sem_control_bits = desc->control_bits;
445
446 bio->bi_sector += (len>>9);
447 bio->bi_size -= len;
448 bio->bi_idx++;
449 if (bio->bi_idx >= bio->bi_vcnt)
450 card->currentbio = NULL;
451
452 return 1;
453}
454
455static void process_page(unsigned long data)
456{
457 /* check if any of the requests in the page are DMA_COMPLETE,
458 * and deal with them appropriately.
459 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
460 * dma must have hit an error on that descriptor, so use dma_status instead
461 * and assume that all following descriptors must be re-tried.
462 */
463 struct mm_page *page;
464 struct bio *return_bio=NULL;
465 struct cardinfo *card = (struct cardinfo *)data;
466 unsigned int dma_status = card->dma_status;
467
468 spin_lock_bh(&card->lock);
469 if (card->Active < 0)
470 goto out_unlock;
471 page = &card->mm_pages[card->Active];
472
473 while (page->headcnt < page->cnt) {
474 struct bio *bio = page->bio;
475 struct mm_dma_desc *desc = &page->desc[page->headcnt];
476 int control = le32_to_cpu(desc->sem_control_bits);
477 int last=0;
478 int idx;
479
480 if (!(control & DMASCR_DMA_COMPLETE)) {
481 control = dma_status;
482 last=1;
483 }
484 page->headcnt++;
485 idx = bio->bi_phys_segments;
486 bio->bi_phys_segments++;
487 if (bio->bi_phys_segments >= bio->bi_vcnt)
488 page->bio = bio->bi_next;
489
490 pci_unmap_page(card->dev, desc->data_dma_handle,
491 bio_iovec_idx(bio,idx)->bv_len,
492 (control& DMASCR_TRANSFER_READ) ?
493 PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
494 if (control & DMASCR_HARD_ERROR) {
495 /* error */
496 clear_bit(BIO_UPTODATE, &bio->bi_flags);
497 printk(KERN_WARNING "MM%d: I/O error on sector %d/%d\n",
498 card->card_number,
499 le32_to_cpu(desc->local_addr)>>9,
500 le32_to_cpu(desc->transfer_size));
501 dump_dmastat(card, control);
502 } else if (test_bit(BIO_RW, &bio->bi_rw) &&
503 le32_to_cpu(desc->local_addr)>>9 == card->init_size) {
504 card->init_size += le32_to_cpu(desc->transfer_size)>>9;
505 if (card->init_size>>1 >= card->mm_size) {
506 printk(KERN_INFO "MM%d: memory now initialised\n",
507 card->card_number);
508 set_userbit(card, MEMORY_INITIALIZED, 1);
509 }
510 }
511 if (bio != page->bio) {
512 bio->bi_next = return_bio;
513 return_bio = bio;
514 }
515
516 if (last) break;
517 }
518
519 if (debug & DEBUG_LED_ON_TRANSFER)
520 set_led(card, LED_REMOVE, LED_OFF);
521
522 if (card->check_batteries) {
523 card->check_batteries = 0;
524 check_batteries(card);
525 }
526 if (page->headcnt >= page->cnt) {
527 reset_page(page);
528 card->Active = -1;
529 activate(card);
530 } else {
531 /* haven't finished with this one yet */
46308c0b 532 pr_debug("do some more\n");
1da177e4
LT
533 mm_start_io(card);
534 }
535 out_unlock:
536 spin_unlock_bh(&card->lock);
537
538 while(return_bio) {
539 struct bio *bio = return_bio;
540
541 return_bio = bio->bi_next;
542 bio->bi_next = NULL;
543 bio_endio(bio, bio->bi_size, 0);
544 }
545}
546
547/*
548-----------------------------------------------------------------------------------
549-- mm_make_request
550-----------------------------------------------------------------------------------
551*/
552static int mm_make_request(request_queue_t *q, struct bio *bio)
553{
554 struct cardinfo *card = q->queuedata;
f2b9ecc4
ZB
555 pr_debug("mm_make_request %llu %u\n",
556 (unsigned long long)bio->bi_sector, bio->bi_size);
1da177e4
LT
557
558 bio->bi_phys_segments = bio->bi_idx; /* count of completed segments*/
559 spin_lock_irq(&card->lock);
560 *card->biotail = bio;
561 bio->bi_next = NULL;
562 card->biotail = &bio->bi_next;
563 blk_plug_device(q);
564 spin_unlock_irq(&card->lock);
565
566 return 0;
567}
568
569/*
570-----------------------------------------------------------------------------------
571-- mm_interrupt
572-----------------------------------------------------------------------------------
573*/
7d12e780 574static irqreturn_t mm_interrupt(int irq, void *__card)
1da177e4
LT
575{
576 struct cardinfo *card = (struct cardinfo *) __card;
577 unsigned int dma_status;
578 unsigned short cfg_status;
579
580HW_TRACE(0x30);
581
582 dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
583
584 if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
585 /* interrupt wasn't for me ... */
586 return IRQ_NONE;
587 }
588
589 /* clear COMPLETION interrupts */
590 if (card->flags & UM_FLAG_NO_BYTE_STATUS)
591 writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
592 card->csr_remap+ DMA_STATUS_CTRL);
593 else
594 writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
595 card->csr_remap+ DMA_STATUS_CTRL + 2);
596
597 /* log errors and clear interrupt status */
598 if (dma_status & DMASCR_ANY_ERR) {
599 unsigned int data_log1, data_log2;
600 unsigned int addr_log1, addr_log2;
601 unsigned char stat, count, syndrome, check;
602
603 stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
604
605 data_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG));
606 data_log2 = le32_to_cpu(readl(card->csr_remap + ERROR_DATA_LOG + 4));
607 addr_log1 = le32_to_cpu(readl(card->csr_remap + ERROR_ADDR_LOG));
608 addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
609
610 count = readb(card->csr_remap + ERROR_COUNT);
611 syndrome = readb(card->csr_remap + ERROR_SYNDROME);
612 check = readb(card->csr_remap + ERROR_CHECK);
613
614 dump_dmastat(card, dma_status);
615
616 if (stat & 0x01)
617 printk(KERN_ERR "MM%d*: Memory access error detected (err count %d)\n",
618 card->card_number, count);
619 if (stat & 0x02)
620 printk(KERN_ERR "MM%d*: Multi-bit EDC error\n",
621 card->card_number);
622
623 printk(KERN_ERR "MM%d*: Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
624 card->card_number, addr_log2, addr_log1, data_log2, data_log1);
625 printk(KERN_ERR "MM%d*: Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
626 card->card_number, check, syndrome);
627
628 writeb(0, card->csr_remap + ERROR_COUNT);
629 }
630
631 if (dma_status & DMASCR_PARITY_ERR_REP) {
632 printk(KERN_ERR "MM%d*: PARITY ERROR REPORTED\n", card->card_number);
633 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
634 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
635 }
636
637 if (dma_status & DMASCR_PARITY_ERR_DET) {
638 printk(KERN_ERR "MM%d*: PARITY ERROR DETECTED\n", card->card_number);
639 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
640 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
641 }
642
643 if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
644 printk(KERN_ERR "MM%d*: SYSTEM ERROR\n", card->card_number);
645 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
646 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
647 }
648
649 if (dma_status & DMASCR_TARGET_ABT) {
650 printk(KERN_ERR "MM%d*: TARGET ABORT\n", card->card_number);
651 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
652 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
653 }
654
655 if (dma_status & DMASCR_MASTER_ABT) {
656 printk(KERN_ERR "MM%d*: MASTER ABORT\n", card->card_number);
657 pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
658 pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
659 }
660
661 /* and process the DMA descriptors */
662 card->dma_status = dma_status;
663 tasklet_schedule(&card->tasklet);
664
665HW_TRACE(0x36);
666
667 return IRQ_HANDLED;
668}
669/*
670-----------------------------------------------------------------------------------
671-- set_fault_to_battery_status
672-----------------------------------------------------------------------------------
673*/
674/*
675 * If both batteries are good, no LED
676 * If either battery has been warned, solid LED
677 * If both batteries are bad, flash the LED quickly
678 * If either battery is bad, flash the LED semi quickly
679 */
680static void set_fault_to_battery_status(struct cardinfo *card)
681{
682 if (card->battery[0].good && card->battery[1].good)
683 set_led(card, LED_FAULT, LED_OFF);
684 else if (card->battery[0].warned || card->battery[1].warned)
685 set_led(card, LED_FAULT, LED_ON);
686 else if (!card->battery[0].good && !card->battery[1].good)
687 set_led(card, LED_FAULT, LED_FLASH_7_0);
688 else
689 set_led(card, LED_FAULT, LED_FLASH_3_5);
690}
691
692static void init_battery_timer(void);
693
694
695/*
696-----------------------------------------------------------------------------------
697-- check_battery
698-----------------------------------------------------------------------------------
699*/
700static int check_battery(struct cardinfo *card, int battery, int status)
701{
702 if (status != card->battery[battery].good) {
703 card->battery[battery].good = !card->battery[battery].good;
704 card->battery[battery].last_change = jiffies;
705
706 if (card->battery[battery].good) {
707 printk(KERN_ERR "MM%d: Battery %d now good\n",
708 card->card_number, battery + 1);
709 card->battery[battery].warned = 0;
710 } else
711 printk(KERN_ERR "MM%d: Battery %d now FAILED\n",
712 card->card_number, battery + 1);
713
714 return 1;
715 } else if (!card->battery[battery].good &&
716 !card->battery[battery].warned &&
717 time_after_eq(jiffies, card->battery[battery].last_change +
718 (HZ * 60 * 60 * 5))) {
719 printk(KERN_ERR "MM%d: Battery %d still FAILED after 5 hours\n",
720 card->card_number, battery + 1);
721 card->battery[battery].warned = 1;
722
723 return 1;
724 }
725
726 return 0;
727}
728/*
729-----------------------------------------------------------------------------------
730-- check_batteries
731-----------------------------------------------------------------------------------
732*/
733static void check_batteries(struct cardinfo *card)
734{
735 /* NOTE: this must *never* be called while the card
736 * is doing (bus-to-card) DMA, or you will need the
737 * reset switch
738 */
739 unsigned char status;
740 int ret1, ret2;
741
742 status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
743 if (debug & DEBUG_BATTERY_POLLING)
744 printk(KERN_DEBUG "MM%d: checking battery status, 1 = %s, 2 = %s\n",
745 card->card_number,
746 (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
747 (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
748
749 ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
750 ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
751
752 if (ret1 || ret2)
753 set_fault_to_battery_status(card);
754}
755
756static void check_all_batteries(unsigned long ptr)
757{
758 int i;
759
760 for (i = 0; i < num_cards; i++)
761 if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
762 struct cardinfo *card = &cards[i];
763 spin_lock_bh(&card->lock);
764 if (card->Active >= 0)
765 card->check_batteries = 1;
766 else
767 check_batteries(card);
768 spin_unlock_bh(&card->lock);
769 }
770
771 init_battery_timer();
772}
773/*
774-----------------------------------------------------------------------------------
775-- init_battery_timer
776-----------------------------------------------------------------------------------
777*/
778static void init_battery_timer(void)
779{
780 init_timer(&battery_timer);
781 battery_timer.function = check_all_batteries;
782 battery_timer.expires = jiffies + (HZ * 60);
783 add_timer(&battery_timer);
784}
785/*
786-----------------------------------------------------------------------------------
787-- del_battery_timer
788-----------------------------------------------------------------------------------
789*/
790static void del_battery_timer(void)
791{
792 del_timer(&battery_timer);
793}
794/*
795-----------------------------------------------------------------------------------
796-- mm_revalidate
797-----------------------------------------------------------------------------------
798*/
799/*
800 * Note no locks taken out here. In a worst case scenario, we could drop
801 * a chunk of system memory. But that should never happen, since validation
802 * happens at open or mount time, when locks are held.
803 *
804 * That's crap, since doing that while some partitions are opened
805 * or mounted will give you really nasty results.
806 */
807static int mm_revalidate(struct gendisk *disk)
808{
809 struct cardinfo *card = disk->private_data;
810 set_capacity(disk, card->mm_size << 1);
811 return 0;
812}
a885c8c4
CH
813
814static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1da177e4 815{
a885c8c4
CH
816 struct cardinfo *card = bdev->bd_disk->private_data;
817 int size = card->mm_size * (1024 / MM_HARDSECT);
1da177e4 818
a885c8c4
CH
819 /*
820 * get geometry: we have to fake one... trim the size to a
821 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
822 * whatever cylinders.
823 */
824 geo->heads = 64;
825 geo->sectors = 32;
826 geo->cylinders = size / (geo->heads * geo->sectors);
827 return 0;
1da177e4 828}
a885c8c4 829
1da177e4
LT
830/*
831-----------------------------------------------------------------------------------
832-- mm_check_change
833-----------------------------------------------------------------------------------
834 Future support for removable devices
835*/
836static int mm_check_change(struct gendisk *disk)
837{
838/* struct cardinfo *dev = disk->private_data; */
839 return 0;
840}
841/*
842-----------------------------------------------------------------------------------
843-- mm_fops
844-----------------------------------------------------------------------------------
845*/
846static struct block_device_operations mm_fops = {
847 .owner = THIS_MODULE,
a885c8c4 848 .getgeo = mm_getgeo,
1da177e4
LT
849 .revalidate_disk= mm_revalidate,
850 .media_changed = mm_check_change,
851};
852/*
853-----------------------------------------------------------------------------------
854-- mm_pci_probe
855-----------------------------------------------------------------------------------
856*/
857static int __devinit mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
858{
859 int ret = -ENODEV;
860 struct cardinfo *card = &cards[num_cards];
861 unsigned char mem_present;
862 unsigned char batt_status;
863 unsigned int saved_bar, data;
864 int magic_number;
865
866 if (pci_enable_device(dev) < 0)
867 return -ENODEV;
868
869 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
870 pci_set_master(dev);
871
872 card->dev = dev;
873 card->card_number = num_cards;
874
875 card->csr_base = pci_resource_start(dev, 0);
876 card->csr_len = pci_resource_len(dev, 0);
877#ifdef CONFIG_MM_MAP_MEMORY
878 card->mem_base = pci_resource_start(dev, 1);
879 card->mem_len = pci_resource_len(dev, 1);
880#endif
881
882 printk(KERN_INFO "Micro Memory(tm) controller #%d found at %02x:%02x (PCI Mem Module (Battery Backup))\n",
883 card->card_number, dev->bus->number, dev->devfn);
884
910638ae
MG
885 if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
886 pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
1da177e4
LT
887 printk(KERN_WARNING "MM%d: NO suitable DMA found\n",num_cards);
888 return -ENOMEM;
889 }
890 if (!request_mem_region(card->csr_base, card->csr_len, "Micro Memory")) {
891 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
892 ret = -ENOMEM;
893
894 goto failed_req_csr;
895 }
896
897 card->csr_remap = ioremap_nocache(card->csr_base, card->csr_len);
898 if (!card->csr_remap) {
899 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
900 ret = -ENOMEM;
901
902 goto failed_remap_csr;
903 }
904
905 printk(KERN_INFO "MM%d: CSR 0x%08lx -> 0x%p (0x%lx)\n", card->card_number,
906 card->csr_base, card->csr_remap, card->csr_len);
907
908#ifdef CONFIG_MM_MAP_MEMORY
909 if (!request_mem_region(card->mem_base, card->mem_len, "Micro Memory")) {
910 printk(KERN_ERR "MM%d: Unable to request memory region\n", card->card_number);
911 ret = -ENOMEM;
912
913 goto failed_req_mem;
914 }
915
916 if (!(card->mem_remap = ioremap(card->mem_base, cards->mem_len))) {
917 printk(KERN_ERR "MM%d: Unable to remap memory region\n", card->card_number);
918 ret = -ENOMEM;
919
920 goto failed_remap_mem;
921 }
922
923 printk(KERN_INFO "MM%d: MEM 0x%8lx -> 0x%8lx (0x%lx)\n", card->card_number,
924 card->mem_base, card->mem_remap, card->mem_len);
925#else
926 printk(KERN_INFO "MM%d: MEM area not remapped (CONFIG_MM_MAP_MEMORY not set)\n",
927 card->card_number);
928#endif
929 switch(card->dev->device) {
930 case 0x5415:
931 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
932 magic_number = 0x59;
933 break;
934
935 case 0x5425:
936 card->flags |= UM_FLAG_NO_BYTE_STATUS;
937 magic_number = 0x5C;
938 break;
939
940 case 0x6155:
941 card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
942 magic_number = 0x99;
943 break;
944
945 default:
946 magic_number = 0x100;
947 break;
948 }
949
950 if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
951 printk(KERN_ERR "MM%d: Magic number invalid\n", card->card_number);
952 ret = -ENOMEM;
953 goto failed_magic;
954 }
955
956 card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
957 PAGE_SIZE*2,
958 &card->mm_pages[0].page_dma);
959 card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
960 PAGE_SIZE*2,
961 &card->mm_pages[1].page_dma);
962 if (card->mm_pages[0].desc == NULL ||
963 card->mm_pages[1].desc == NULL) {
964 printk(KERN_ERR "MM%d: alloc failed\n", card->card_number);
965 goto failed_alloc;
966 }
967 reset_page(&card->mm_pages[0]);
968 reset_page(&card->mm_pages[1]);
969 card->Ready = 0; /* page 0 is ready */
970 card->Active = -1; /* no page is active */
971 card->bio = NULL;
972 card->biotail = &card->bio;
973
974 card->queue = blk_alloc_queue(GFP_KERNEL);
975 if (!card->queue)
976 goto failed_alloc;
977
978 blk_queue_make_request(card->queue, mm_make_request);
979 card->queue->queuedata = card;
980 card->queue->unplug_fn = mm_unplug_device;
981
982 tasklet_init(&card->tasklet, process_page, (unsigned long)card);
983
984 card->check_batteries = 0;
985
986 mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
987 switch (mem_present) {
988 case MEM_128_MB:
989 card->mm_size = 1024 * 128;
990 break;
991 case MEM_256_MB:
992 card->mm_size = 1024 * 256;
993 break;
994 case MEM_512_MB:
995 card->mm_size = 1024 * 512;
996 break;
997 case MEM_1_GB:
998 card->mm_size = 1024 * 1024;
999 break;
1000 case MEM_2_GB:
1001 card->mm_size = 1024 * 2048;
1002 break;
1003 default:
1004 card->mm_size = 0;
1005 break;
1006 }
1007
1008 /* Clear the LED's we control */
1009 set_led(card, LED_REMOVE, LED_OFF);
1010 set_led(card, LED_FAULT, LED_OFF);
1011
1012 batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
1013
1014 card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
1015 card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
1016 card->battery[0].last_change = card->battery[1].last_change = jiffies;
1017
1018 if (card->flags & UM_FLAG_NO_BATT)
1019 printk(KERN_INFO "MM%d: Size %d KB\n",
1020 card->card_number, card->mm_size);
1021 else {
1022 printk(KERN_INFO "MM%d: Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
1023 card->card_number, card->mm_size,
1024 (batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled"),
1025 card->battery[0].good ? "OK" : "FAILURE",
1026 (batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled"),
1027 card->battery[1].good ? "OK" : "FAILURE");
1028
1029 set_fault_to_battery_status(card);
1030 }
1031
1032 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
1033 data = 0xffffffff;
1034 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
1035 pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
1036 pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
1037 data &= 0xfffffff0;
1038 data = ~data;
1039 data += 1;
1040
1041 card->win_size = data;
1042
1043
69ab3912 1044 if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, "pci-umem", card)) {
1da177e4
LT
1045 printk(KERN_ERR "MM%d: Unable to allocate IRQ\n", card->card_number);
1046 ret = -ENODEV;
1047
1048 goto failed_req_irq;
1049 }
1050
1051 card->irq = dev->irq;
1052 printk(KERN_INFO "MM%d: Window size %d bytes, IRQ %d\n", card->card_number,
1053 card->win_size, card->irq);
1054
1055 spin_lock_init(&card->lock);
1056
1057 pci_set_drvdata(dev, card);
1058
1059 if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
1060 pci_write_cmd = 0x07; /* then Memory Write command */
1061
1062 if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
1063 unsigned short cfg_command;
1064 pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
1065 cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
1066 pci_write_config_word(dev, PCI_COMMAND, cfg_command);
1067 }
1068 pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
1069
1070 num_cards++;
1071
1072 if (!get_userbit(card, MEMORY_INITIALIZED)) {
1073 printk(KERN_INFO "MM%d: memory NOT initialized. Consider over-writing whole device.\n", card->card_number);
1074 card->init_size = 0;
1075 } else {
1076 printk(KERN_INFO "MM%d: memory already initialized\n", card->card_number);
1077 card->init_size = card->mm_size;
1078 }
1079
1080 /* Enable ECC */
1081 writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
1082
1083 return 0;
1084
1085 failed_req_irq:
1086 failed_alloc:
1087 if (card->mm_pages[0].desc)
1088 pci_free_consistent(card->dev, PAGE_SIZE*2,
1089 card->mm_pages[0].desc,
1090 card->mm_pages[0].page_dma);
1091 if (card->mm_pages[1].desc)
1092 pci_free_consistent(card->dev, PAGE_SIZE*2,
1093 card->mm_pages[1].desc,
1094 card->mm_pages[1].page_dma);
1095 failed_magic:
1096#ifdef CONFIG_MM_MAP_MEMORY
1097 iounmap(card->mem_remap);
1098 failed_remap_mem:
1099 release_mem_region(card->mem_base, card->mem_len);
1100 failed_req_mem:
1101#endif
1102 iounmap(card->csr_remap);
1103 failed_remap_csr:
1104 release_mem_region(card->csr_base, card->csr_len);
1105 failed_req_csr:
1106
1107 return ret;
1108}
1109/*
1110-----------------------------------------------------------------------------------
1111-- mm_pci_remove
1112-----------------------------------------------------------------------------------
1113*/
1114static void mm_pci_remove(struct pci_dev *dev)
1115{
1116 struct cardinfo *card = pci_get_drvdata(dev);
1117
1118 tasklet_kill(&card->tasklet);
1119 iounmap(card->csr_remap);
1120 release_mem_region(card->csr_base, card->csr_len);
1121#ifdef CONFIG_MM_MAP_MEMORY
1122 iounmap(card->mem_remap);
1123 release_mem_region(card->mem_base, card->mem_len);
1124#endif
1125 free_irq(card->irq, card);
1126
1127 if (card->mm_pages[0].desc)
1128 pci_free_consistent(card->dev, PAGE_SIZE*2,
1129 card->mm_pages[0].desc,
1130 card->mm_pages[0].page_dma);
1131 if (card->mm_pages[1].desc)
1132 pci_free_consistent(card->dev, PAGE_SIZE*2,
1133 card->mm_pages[1].desc,
1134 card->mm_pages[1].page_dma);
1312f40e 1135 blk_cleanup_queue(card->queue);
1da177e4
LT
1136}
1137
1138static const struct pci_device_id mm_pci_ids[] = { {
1139 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1140 .device = PCI_DEVICE_ID_MICRO_MEMORY_5415CN,
1141 }, {
1142 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1143 .device = PCI_DEVICE_ID_MICRO_MEMORY_5425CN,
1144 }, {
1145 .vendor = PCI_VENDOR_ID_MICRO_MEMORY,
1146 .device = PCI_DEVICE_ID_MICRO_MEMORY_6155,
1147 }, {
1148 .vendor = 0x8086,
1149 .device = 0xB555,
1150 .subvendor= 0x1332,
1151 .subdevice= 0x5460,
1152 .class = 0x050000,
1153 .class_mask= 0,
1154 }, { /* end: all zeroes */ }
1155};
1156
1157MODULE_DEVICE_TABLE(pci, mm_pci_ids);
1158
1159static struct pci_driver mm_pci_driver = {
1160 .name = "umem",
1161 .id_table = mm_pci_ids,
1162 .probe = mm_pci_probe,
1163 .remove = mm_pci_remove,
1164};
1165/*
1166-----------------------------------------------------------------------------------
1167-- mm_init
1168-----------------------------------------------------------------------------------
1169*/
1170
1171static int __init mm_init(void)
1172{
1173 int retval, i;
1174 int err;
1175
1176 printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
1177
9bfab8ce 1178 retval = pci_register_driver(&mm_pci_driver);
1da177e4
LT
1179 if (retval)
1180 return -ENOMEM;
1181
1182 err = major_nr = register_blkdev(0, "umem");
1183 if (err < 0)
1184 return -EIO;
1185
1186 for (i = 0; i < num_cards; i++) {
1187 mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
1188 if (!mm_gendisk[i])
1189 goto out;
1190 }
1191
1192 for (i = 0; i < num_cards; i++) {
1193 struct gendisk *disk = mm_gendisk[i];
1194 sprintf(disk->disk_name, "umem%c", 'a'+i);
1da177e4
LT
1195 spin_lock_init(&cards[i].lock);
1196 disk->major = major_nr;
1197 disk->first_minor = i << MM_SHIFT;
1198 disk->fops = &mm_fops;
1199 disk->private_data = &cards[i];
1200 disk->queue = cards[i].queue;
1201 set_capacity(disk, cards[i].mm_size << 1);
1202 add_disk(disk);
1203 }
1204
1205 init_battery_timer();
1206 printk("MM: desc_per_page = %ld\n", DESC_PER_PAGE);
1207/* printk("mm_init: Done. 10-19-01 9:00\n"); */
1208 return 0;
1209
1210out:
1211 unregister_blkdev(major_nr, "umem");
1212 while (i--)
1213 put_disk(mm_gendisk[i]);
1214 return -ENOMEM;
1215}
1216/*
1217-----------------------------------------------------------------------------------
1218-- mm_cleanup
1219-----------------------------------------------------------------------------------
1220*/
1221static void __exit mm_cleanup(void)
1222{
1223 int i;
1224
1225 del_battery_timer();
1226
1227 for (i=0; i < num_cards ; i++) {
1228 del_gendisk(mm_gendisk[i]);
1229 put_disk(mm_gendisk[i]);
1230 }
1231
1232 pci_unregister_driver(&mm_pci_driver);
1233
1234 unregister_blkdev(major_nr, "umem");
1235}
1236
1237module_init(mm_init);
1238module_exit(mm_cleanup);
1239
1240MODULE_AUTHOR(DRIVER_AUTHOR);
1241MODULE_DESCRIPTION(DRIVER_DESC);
1242MODULE_LICENSE("GPL");