]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/block/pktcdvd.c
[PATCH] Let CDROM_PKTCDVD_WCACHE depend on EXPERIMENTAL
[net-next-2.6.git] / drivers / block / pktcdvd.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 *
5 * May be copied or modified under the terms of the GNU General Public
6 * License. See linux/COPYING for more information.
7 *
a676f8d0
PO
8 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
9 * DVD-RAM devices.
1da177e4
LT
10 *
11 * Theory of operation:
12 *
a676f8d0
PO
13 * At the lowest level, there is the standard driver for the CD/DVD device,
14 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
15 * but it doesn't know anything about the special restrictions that apply to
16 * packet writing. One restriction is that write requests must be aligned to
17 * packet boundaries on the physical media, and the size of a write request
18 * must be equal to the packet size. Another restriction is that a
19 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
20 * command, if the previous command was a write.
21 *
22 * The purpose of the packet writing driver is to hide these restrictions from
23 * higher layers, such as file systems, and present a block device that can be
24 * randomly read and written using 2kB-sized blocks.
25 *
26 * The lowest layer in the packet writing driver is the packet I/O scheduler.
27 * Its data is defined by the struct packet_iosched and includes two bio
28 * queues with pending read and write requests. These queues are processed
29 * by the pkt_iosched_process_queue() function. The write requests in this
30 * queue are already properly aligned and sized. This layer is responsible for
31 * issuing the flush cache commands and scheduling the I/O in a good order.
32 *
33 * The next layer transforms unaligned write requests to aligned writes. This
34 * transformation requires reading missing pieces of data from the underlying
35 * block device, assembling the pieces to full packets and queuing them to the
36 * packet I/O scheduler.
37 *
38 * At the top layer there is a custom make_request_fn function that forwards
39 * read requests directly to the iosched queue and puts write requests in the
40 * unaligned write queue. A kernel thread performs the necessary read
41 * gathering to convert the unaligned writes to aligned writes and then feeds
42 * them to the packet I/O scheduler.
1da177e4
LT
43 *
44 *************************************************************************/
45
1da177e4
LT
46#include <linux/pktcdvd.h>
47#include <linux/config.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/kthread.h>
52#include <linux/errno.h>
53#include <linux/spinlock.h>
54#include <linux/file.h>
55#include <linux/proc_fs.h>
56#include <linux/seq_file.h>
57#include <linux/miscdevice.h>
58#include <linux/suspend.h>
59#include <scsi/scsi_cmnd.h>
60#include <scsi/scsi_ioctl.h>
61
62#include <asm/uaccess.h>
63
64#if PACKET_DEBUG
65#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
66#else
67#define DPRINTK(fmt, args...)
68#endif
69
70#if PACKET_DEBUG > 1
71#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72#else
73#define VPRINTK(fmt, args...)
74#endif
75
76#define MAX_SPEED 0xffff
77
78#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
79
80static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
81static struct proc_dir_entry *pkt_proc;
82static int pkt_major;
83static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
84static mempool_t *psd_pool;
85
86
87static void pkt_bio_finished(struct pktcdvd_device *pd)
88{
89 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
90 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
91 VPRINTK("pktcdvd: queue empty\n");
92 atomic_set(&pd->iosched.attention, 1);
93 wake_up(&pd->wqueue);
94 }
95}
96
97static void pkt_bio_destructor(struct bio *bio)
98{
99 kfree(bio->bi_io_vec);
100 kfree(bio);
101}
102
103static struct bio *pkt_bio_alloc(int nr_iovecs)
104{
105 struct bio_vec *bvl = NULL;
106 struct bio *bio;
107
108 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
109 if (!bio)
110 goto no_bio;
111 bio_init(bio);
112
1107d2e0 113 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
1da177e4
LT
114 if (!bvl)
115 goto no_bvl;
1da177e4
LT
116
117 bio->bi_max_vecs = nr_iovecs;
118 bio->bi_io_vec = bvl;
119 bio->bi_destructor = pkt_bio_destructor;
120
121 return bio;
122
123 no_bvl:
124 kfree(bio);
125 no_bio:
126 return NULL;
127}
128
129/*
130 * Allocate a packet_data struct
131 */
132static struct packet_data *pkt_alloc_packet_data(void)
133{
134 int i;
135 struct packet_data *pkt;
136
1107d2e0 137 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
1da177e4
LT
138 if (!pkt)
139 goto no_pkt;
1da177e4
LT
140
141 pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
142 if (!pkt->w_bio)
143 goto no_bio;
144
145 for (i = 0; i < PAGES_PER_PACKET; i++) {
146 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
147 if (!pkt->pages[i])
148 goto no_page;
149 }
150
151 spin_lock_init(&pkt->lock);
152
153 for (i = 0; i < PACKET_MAX_SIZE; i++) {
154 struct bio *bio = pkt_bio_alloc(1);
155 if (!bio)
156 goto no_rd_bio;
157 pkt->r_bios[i] = bio;
158 }
159
160 return pkt;
161
162no_rd_bio:
163 for (i = 0; i < PACKET_MAX_SIZE; i++) {
164 struct bio *bio = pkt->r_bios[i];
165 if (bio)
166 bio_put(bio);
167 }
168
169no_page:
170 for (i = 0; i < PAGES_PER_PACKET; i++)
171 if (pkt->pages[i])
172 __free_page(pkt->pages[i]);
173 bio_put(pkt->w_bio);
174no_bio:
175 kfree(pkt);
176no_pkt:
177 return NULL;
178}
179
180/*
181 * Free a packet_data struct
182 */
183static void pkt_free_packet_data(struct packet_data *pkt)
184{
185 int i;
186
187 for (i = 0; i < PACKET_MAX_SIZE; i++) {
188 struct bio *bio = pkt->r_bios[i];
189 if (bio)
190 bio_put(bio);
191 }
192 for (i = 0; i < PAGES_PER_PACKET; i++)
193 __free_page(pkt->pages[i]);
194 bio_put(pkt->w_bio);
195 kfree(pkt);
196}
197
198static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
199{
200 struct packet_data *pkt, *next;
201
202 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
203
204 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
205 pkt_free_packet_data(pkt);
206 }
207}
208
209static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
210{
211 struct packet_data *pkt;
212
213 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
214 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
215 spin_lock_init(&pd->cdrw.active_list_lock);
216 while (nr_packets > 0) {
217 pkt = pkt_alloc_packet_data();
218 if (!pkt) {
219 pkt_shrink_pktlist(pd);
220 return 0;
221 }
222 pkt->id = nr_packets;
223 pkt->pd = pd;
224 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
225 nr_packets--;
226 }
227 return 1;
228}
229
dd0fc66f 230static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
1da177e4
LT
231{
232 return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
233}
234
235static void pkt_rb_free(void *ptr, void *data)
236{
237 kfree(ptr);
238}
239
240static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
241{
242 struct rb_node *n = rb_next(&node->rb_node);
243 if (!n)
244 return NULL;
245 return rb_entry(n, struct pkt_rb_node, rb_node);
246}
247
ac893963 248static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
1da177e4
LT
249{
250 rb_erase(&node->rb_node, &pd->bio_queue);
251 mempool_free(node, pd->rb_pool);
252 pd->bio_queue_size--;
253 BUG_ON(pd->bio_queue_size < 0);
254}
255
256/*
257 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
258 */
259static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
260{
261 struct rb_node *n = pd->bio_queue.rb_node;
262 struct rb_node *next;
263 struct pkt_rb_node *tmp;
264
265 if (!n) {
266 BUG_ON(pd->bio_queue_size > 0);
267 return NULL;
268 }
269
270 for (;;) {
271 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
272 if (s <= tmp->bio->bi_sector)
273 next = n->rb_left;
274 else
275 next = n->rb_right;
276 if (!next)
277 break;
278 n = next;
279 }
280
281 if (s > tmp->bio->bi_sector) {
282 tmp = pkt_rbtree_next(tmp);
283 if (!tmp)
284 return NULL;
285 }
286 BUG_ON(s > tmp->bio->bi_sector);
287 return tmp;
288}
289
290/*
291 * Insert a node into the pd->bio_queue rb tree.
292 */
293static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
294{
295 struct rb_node **p = &pd->bio_queue.rb_node;
296 struct rb_node *parent = NULL;
297 sector_t s = node->bio->bi_sector;
298 struct pkt_rb_node *tmp;
299
300 while (*p) {
301 parent = *p;
302 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
303 if (s < tmp->bio->bi_sector)
304 p = &(*p)->rb_left;
305 else
306 p = &(*p)->rb_right;
307 }
308 rb_link_node(&node->rb_node, parent, p);
309 rb_insert_color(&node->rb_node, &pd->bio_queue);
310 pd->bio_queue_size++;
311}
312
313/*
314 * Add a bio to a single linked list defined by its head and tail pointers.
315 */
ac893963 316static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
1da177e4
LT
317{
318 bio->bi_next = NULL;
319 if (*list_tail) {
320 BUG_ON((*list_head) == NULL);
321 (*list_tail)->bi_next = bio;
322 (*list_tail) = bio;
323 } else {
324 BUG_ON((*list_head) != NULL);
325 (*list_head) = bio;
326 (*list_tail) = bio;
327 }
328}
329
330/*
331 * Remove and return the first bio from a single linked list defined by its
332 * head and tail pointers.
333 */
334static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
335{
336 struct bio *bio;
337
338 if (*list_head == NULL)
339 return NULL;
340
341 bio = *list_head;
342 *list_head = bio->bi_next;
343 if (*list_head == NULL)
344 *list_tail = NULL;
345
346 bio->bi_next = NULL;
347 return bio;
348}
349
350/*
351 * Send a packet_command to the underlying block device and
352 * wait for completion.
353 */
354static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
355{
356 char sense[SCSI_SENSE_BUFFERSIZE];
357 request_queue_t *q;
358 struct request *rq;
359 DECLARE_COMPLETION(wait);
360 int err = 0;
361
362 q = bdev_get_queue(pd->bdev);
363
364 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
365 __GFP_WAIT);
366 rq->errors = 0;
367 rq->rq_disk = pd->bdev->bd_disk;
368 rq->bio = NULL;
369 rq->buffer = NULL;
370 rq->timeout = 60*HZ;
371 rq->data = cgc->buffer;
372 rq->data_len = cgc->buflen;
373 rq->sense = sense;
374 memset(sense, 0, sizeof(sense));
375 rq->sense_len = 0;
376 rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
377 if (cgc->quiet)
378 rq->flags |= REQ_QUIET;
379 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
380 if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
381 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
382
383 rq->ref_count++;
384 rq->flags |= REQ_NOMERGE;
385 rq->waiting = &wait;
386 rq->end_io = blk_end_sync_rq;
387 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
388 generic_unplug_device(q);
389 wait_for_completion(&wait);
390
391 if (rq->errors)
392 err = -EIO;
393
394 blk_put_request(rq);
395 return err;
396}
397
398/*
399 * A generic sense dump / resolve mechanism should be implemented across
400 * all ATAPI + SCSI devices.
401 */
402static void pkt_dump_sense(struct packet_command *cgc)
403{
404 static char *info[9] = { "No sense", "Recovered error", "Not ready",
405 "Medium error", "Hardware error", "Illegal request",
406 "Unit attention", "Data protect", "Blank check" };
407 int i;
408 struct request_sense *sense = cgc->sense;
409
410 printk("pktcdvd:");
411 for (i = 0; i < CDROM_PACKET_SIZE; i++)
412 printk(" %02x", cgc->cmd[i]);
413 printk(" - ");
414
415 if (sense == NULL) {
416 printk("no sense\n");
417 return;
418 }
419
420 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
421
422 if (sense->sense_key > 8) {
423 printk(" (INVALID)\n");
424 return;
425 }
426
427 printk(" (%s)\n", info[sense->sense_key]);
428}
429
430/*
431 * flush the drive cache to media
432 */
433static int pkt_flush_cache(struct pktcdvd_device *pd)
434{
435 struct packet_command cgc;
436
437 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
438 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
439 cgc.quiet = 1;
440
441 /*
442 * the IMMED bit -- we default to not setting it, although that
443 * would allow a much faster close, this is safer
444 */
445#if 0
446 cgc.cmd[1] = 1 << 1;
447#endif
448 return pkt_generic_packet(pd, &cgc);
449}
450
451/*
452 * speed is given as the normal factor, e.g. 4 for 4x
453 */
454static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
455{
456 struct packet_command cgc;
457 struct request_sense sense;
458 int ret;
459
460 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
461 cgc.sense = &sense;
462 cgc.cmd[0] = GPCMD_SET_SPEED;
463 cgc.cmd[2] = (read_speed >> 8) & 0xff;
464 cgc.cmd[3] = read_speed & 0xff;
465 cgc.cmd[4] = (write_speed >> 8) & 0xff;
466 cgc.cmd[5] = write_speed & 0xff;
467
468 if ((ret = pkt_generic_packet(pd, &cgc)))
469 pkt_dump_sense(&cgc);
470
471 return ret;
472}
473
474/*
475 * Queue a bio for processing by the low-level CD device. Must be called
476 * from process context.
477 */
46c271be 478static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
1da177e4
LT
479{
480 spin_lock(&pd->iosched.lock);
481 if (bio_data_dir(bio) == READ) {
482 pkt_add_list_last(bio, &pd->iosched.read_queue,
483 &pd->iosched.read_queue_tail);
1da177e4
LT
484 } else {
485 pkt_add_list_last(bio, &pd->iosched.write_queue,
486 &pd->iosched.write_queue_tail);
487 }
488 spin_unlock(&pd->iosched.lock);
489
490 atomic_set(&pd->iosched.attention, 1);
491 wake_up(&pd->wqueue);
492}
493
494/*
495 * Process the queued read/write requests. This function handles special
496 * requirements for CDRW drives:
497 * - A cache flush command must be inserted before a read request if the
498 * previous request was a write.
46c271be 499 * - Switching between reading and writing is slow, so don't do it more often
1da177e4 500 * than necessary.
46c271be
PO
501 * - Optimize for throughput at the expense of latency. This means that streaming
502 * writes will never be interrupted by a read, but if the drive has to seek
503 * before the next write, switch to reading instead if there are any pending
504 * read requests.
1da177e4
LT
505 * - Set the read speed according to current usage pattern. When only reading
506 * from the device, it's best to use the highest possible read speed, but
507 * when switching often between reading and writing, it's better to have the
508 * same read and write speeds.
1da177e4
LT
509 */
510static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
511{
1da177e4
LT
512
513 if (atomic_read(&pd->iosched.attention) == 0)
514 return;
515 atomic_set(&pd->iosched.attention, 0);
516
1da177e4
LT
517 for (;;) {
518 struct bio *bio;
46c271be 519 int reads_queued, writes_queued;
1da177e4
LT
520
521 spin_lock(&pd->iosched.lock);
522 reads_queued = (pd->iosched.read_queue != NULL);
523 writes_queued = (pd->iosched.write_queue != NULL);
1da177e4
LT
524 spin_unlock(&pd->iosched.lock);
525
526 if (!reads_queued && !writes_queued)
527 break;
528
529 if (pd->iosched.writing) {
46c271be
PO
530 int need_write_seek = 1;
531 spin_lock(&pd->iosched.lock);
532 bio = pd->iosched.write_queue;
533 spin_unlock(&pd->iosched.lock);
534 if (bio && (bio->bi_sector == pd->iosched.last_write))
535 need_write_seek = 0;
536 if (need_write_seek && reads_queued) {
1da177e4
LT
537 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
538 VPRINTK("pktcdvd: write, waiting\n");
539 break;
540 }
541 pkt_flush_cache(pd);
542 pd->iosched.writing = 0;
543 }
544 } else {
545 if (!reads_queued && writes_queued) {
546 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
547 VPRINTK("pktcdvd: read, waiting\n");
548 break;
549 }
550 pd->iosched.writing = 1;
551 }
552 }
553
554 spin_lock(&pd->iosched.lock);
555 if (pd->iosched.writing) {
556 bio = pkt_get_list_first(&pd->iosched.write_queue,
557 &pd->iosched.write_queue_tail);
558 } else {
559 bio = pkt_get_list_first(&pd->iosched.read_queue,
560 &pd->iosched.read_queue_tail);
561 }
562 spin_unlock(&pd->iosched.lock);
563
564 if (!bio)
565 continue;
566
567 if (bio_data_dir(bio) == READ)
568 pd->iosched.successive_reads += bio->bi_size >> 10;
46c271be 569 else {
1da177e4 570 pd->iosched.successive_reads = 0;
46c271be
PO
571 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
572 }
1da177e4
LT
573 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
574 if (pd->read_speed == pd->write_speed) {
575 pd->read_speed = MAX_SPEED;
576 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
577 }
578 } else {
579 if (pd->read_speed != pd->write_speed) {
580 pd->read_speed = pd->write_speed;
581 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
582 }
583 }
584
585 atomic_inc(&pd->cdrw.pending_bios);
586 generic_make_request(bio);
587 }
588}
589
590/*
591 * Special care is needed if the underlying block device has a small
592 * max_phys_segments value.
593 */
594static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
595{
596 if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
597 /*
598 * The cdrom device can handle one segment/frame
599 */
600 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
601 return 0;
602 } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
603 /*
604 * We can handle this case at the expense of some extra memory
605 * copies during write operations
606 */
607 set_bit(PACKET_MERGE_SEGS, &pd->flags);
608 return 0;
609 } else {
610 printk("pktcdvd: cdrom max_phys_segments too small\n");
611 return -EIO;
612 }
613}
614
615/*
616 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
617 */
618static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
619{
620 unsigned int copy_size = CD_FRAMESIZE;
621
622 while (copy_size > 0) {
623 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
624 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
625 src_bvl->bv_offset + offs;
626 void *vto = page_address(dst_page) + dst_offs;
627 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
628
629 BUG_ON(len < 0);
630 memcpy(vto, vfrom, len);
631 kunmap_atomic(vfrom, KM_USER0);
632
633 seg++;
634 offs = 0;
635 dst_offs += len;
636 copy_size -= len;
637 }
638}
639
640/*
641 * Copy all data for this packet to pkt->pages[], so that
642 * a) The number of required segments for the write bio is minimized, which
643 * is necessary for some scsi controllers.
644 * b) The data can be used as cache to avoid read requests if we receive a
645 * new write request for the same zone.
646 */
647static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
648{
649 int f, p, offs;
650
651 /* Copy all data to pkt->pages[] */
652 p = 0;
653 offs = 0;
654 for (f = 0; f < pkt->frames; f++) {
655 if (pages[f] != pkt->pages[p]) {
656 void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
657 void *vto = page_address(pkt->pages[p]) + offs;
658 memcpy(vto, vfrom, CD_FRAMESIZE);
659 kunmap_atomic(vfrom, KM_USER0);
660 pages[f] = pkt->pages[p];
661 offsets[f] = offs;
662 } else {
663 BUG_ON(offsets[f] != offs);
664 }
665 offs += CD_FRAMESIZE;
666 if (offs >= PAGE_SIZE) {
1da177e4
LT
667 offs = 0;
668 p++;
669 }
670 }
671}
672
673static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
674{
675 struct packet_data *pkt = bio->bi_private;
676 struct pktcdvd_device *pd = pkt->pd;
677 BUG_ON(!pd);
678
679 if (bio->bi_size)
680 return 1;
681
682 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
683 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
684
685 if (err)
686 atomic_inc(&pkt->io_errors);
687 if (atomic_dec_and_test(&pkt->io_wait)) {
688 atomic_inc(&pkt->run_sm);
689 wake_up(&pd->wqueue);
690 }
691 pkt_bio_finished(pd);
692
693 return 0;
694}
695
696static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
697{
698 struct packet_data *pkt = bio->bi_private;
699 struct pktcdvd_device *pd = pkt->pd;
700 BUG_ON(!pd);
701
702 if (bio->bi_size)
703 return 1;
704
705 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
706
707 pd->stats.pkt_ended++;
708
709 pkt_bio_finished(pd);
710 atomic_dec(&pkt->io_wait);
711 atomic_inc(&pkt->run_sm);
712 wake_up(&pd->wqueue);
713 return 0;
714}
715
716/*
717 * Schedule reads for the holes in a packet
718 */
719static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
720{
721 int frames_read = 0;
722 struct bio *bio;
723 int f;
724 char written[PACKET_MAX_SIZE];
725
726 BUG_ON(!pkt->orig_bios);
727
728 atomic_set(&pkt->io_wait, 0);
729 atomic_set(&pkt->io_errors, 0);
730
1da177e4
LT
731 /*
732 * Figure out which frames we need to read before we can write.
733 */
734 memset(written, 0, sizeof(written));
735 spin_lock(&pkt->lock);
736 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
737 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
738 int num_frames = bio->bi_size / CD_FRAMESIZE;
06e7ab53 739 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1da177e4
LT
740 BUG_ON(first_frame < 0);
741 BUG_ON(first_frame + num_frames > pkt->frames);
742 for (f = first_frame; f < first_frame + num_frames; f++)
743 written[f] = 1;
744 }
745 spin_unlock(&pkt->lock);
746
06e7ab53
PO
747 if (pkt->cache_valid) {
748 VPRINTK("pkt_gather_data: zone %llx cached\n",
749 (unsigned long long)pkt->sector);
750 goto out_account;
751 }
752
1da177e4
LT
753 /*
754 * Schedule reads for missing parts of the packet.
755 */
756 for (f = 0; f < pkt->frames; f++) {
757 int p, offset;
758 if (written[f])
759 continue;
760 bio = pkt->r_bios[f];
761 bio_init(bio);
762 bio->bi_max_vecs = 1;
763 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
764 bio->bi_bdev = pd->bdev;
765 bio->bi_end_io = pkt_end_io_read;
766 bio->bi_private = pkt;
767
768 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
769 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
770 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
771 f, pkt->pages[p], offset);
772 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
773 BUG();
774
775 atomic_inc(&pkt->io_wait);
776 bio->bi_rw = READ;
46c271be 777 pkt_queue_bio(pd, bio);
1da177e4
LT
778 frames_read++;
779 }
780
781out_account:
782 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
783 frames_read, (unsigned long long)pkt->sector);
784 pd->stats.pkt_started++;
785 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1da177e4
LT
786}
787
788/*
789 * Find a packet matching zone, or the least recently used packet if
790 * there is no match.
791 */
792static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
793{
794 struct packet_data *pkt;
795
796 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
797 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
798 list_del_init(&pkt->list);
799 if (pkt->sector != zone)
800 pkt->cache_valid = 0;
610827de 801 return pkt;
1da177e4
LT
802 }
803 }
610827de
PO
804 BUG();
805 return NULL;
1da177e4
LT
806}
807
808static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
809{
810 if (pkt->cache_valid) {
811 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
812 } else {
813 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
814 }
815}
816
817/*
818 * recover a failed write, query for relocation if possible
819 *
820 * returns 1 if recovery is possible, or 0 if not
821 *
822 */
823static int pkt_start_recovery(struct packet_data *pkt)
824{
825 /*
826 * FIXME. We need help from the file system to implement
827 * recovery handling.
828 */
829 return 0;
830#if 0
831 struct request *rq = pkt->rq;
832 struct pktcdvd_device *pd = rq->rq_disk->private_data;
833 struct block_device *pkt_bdev;
834 struct super_block *sb = NULL;
835 unsigned long old_block, new_block;
836 sector_t new_sector;
837
838 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
839 if (pkt_bdev) {
840 sb = get_super(pkt_bdev);
841 bdput(pkt_bdev);
842 }
843
844 if (!sb)
845 return 0;
846
847 if (!sb->s_op || !sb->s_op->relocate_blocks)
848 goto out;
849
850 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
851 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
852 goto out;
853
854 new_sector = new_block * (CD_FRAMESIZE >> 9);
855 pkt->sector = new_sector;
856
857 pkt->bio->bi_sector = new_sector;
858 pkt->bio->bi_next = NULL;
859 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
860 pkt->bio->bi_idx = 0;
861
862 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
863 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
864 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
865 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
866 BUG_ON(pkt->bio->bi_private != pkt);
867
868 drop_super(sb);
869 return 1;
870
871out:
872 drop_super(sb);
873 return 0;
874#endif
875}
876
877static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
878{
879#if PACKET_DEBUG > 1
880 static const char *state_name[] = {
881 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
882 };
883 enum packet_data_state old_state = pkt->state;
884 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
885 state_name[old_state], state_name[state]);
886#endif
887 pkt->state = state;
888}
889
890/*
891 * Scan the work queue to see if we can start a new packet.
892 * returns non-zero if any work was done.
893 */
894static int pkt_handle_queue(struct pktcdvd_device *pd)
895{
896 struct packet_data *pkt, *p;
897 struct bio *bio = NULL;
898 sector_t zone = 0; /* Suppress gcc warning */
899 struct pkt_rb_node *node, *first_node;
900 struct rb_node *n;
901
902 VPRINTK("handle_queue\n");
903
904 atomic_set(&pd->scan_queue, 0);
905
906 if (list_empty(&pd->cdrw.pkt_free_list)) {
907 VPRINTK("handle_queue: no pkt\n");
908 return 0;
909 }
910
911 /*
912 * Try to find a zone we are not already working on.
913 */
914 spin_lock(&pd->lock);
915 first_node = pkt_rbtree_find(pd, pd->current_sector);
916 if (!first_node) {
917 n = rb_first(&pd->bio_queue);
918 if (n)
919 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
920 }
921 node = first_node;
922 while (node) {
923 bio = node->bio;
924 zone = ZONE(bio->bi_sector, pd);
925 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
7baeb6a5
PO
926 if (p->sector == zone) {
927 bio = NULL;
1da177e4 928 goto try_next_bio;
7baeb6a5 929 }
1da177e4
LT
930 }
931 break;
932try_next_bio:
933 node = pkt_rbtree_next(node);
934 if (!node) {
935 n = rb_first(&pd->bio_queue);
936 if (n)
937 node = rb_entry(n, struct pkt_rb_node, rb_node);
938 }
939 if (node == first_node)
940 node = NULL;
941 }
942 spin_unlock(&pd->lock);
943 if (!bio) {
944 VPRINTK("handle_queue: no bio\n");
945 return 0;
946 }
947
948 pkt = pkt_get_packet_data(pd, zone);
1da177e4
LT
949
950 pd->current_sector = zone + pd->settings.size;
951 pkt->sector = zone;
952 pkt->frames = pd->settings.size >> 2;
1da177e4
LT
953 pkt->write_size = 0;
954
955 /*
956 * Scan work queue for bios in the same zone and link them
957 * to this packet.
958 */
959 spin_lock(&pd->lock);
960 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
961 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
962 bio = node->bio;
963 VPRINTK("pkt_handle_queue: found zone=%llx\n",
964 (unsigned long long)ZONE(bio->bi_sector, pd));
965 if (ZONE(bio->bi_sector, pd) != zone)
966 break;
967 pkt_rbtree_erase(pd, node);
968 spin_lock(&pkt->lock);
969 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
970 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
971 spin_unlock(&pkt->lock);
972 }
973 spin_unlock(&pd->lock);
974
975 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
976 pkt_set_state(pkt, PACKET_WAITING_STATE);
977 atomic_set(&pkt->run_sm, 1);
978
979 spin_lock(&pd->cdrw.active_list_lock);
980 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
981 spin_unlock(&pd->cdrw.active_list_lock);
982
983 return 1;
984}
985
986/*
987 * Assemble a bio to write one packet and queue the bio for processing
988 * by the underlying block device.
989 */
990static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
991{
992 struct bio *bio;
993 struct page *pages[PACKET_MAX_SIZE];
994 int offsets[PACKET_MAX_SIZE];
995 int f;
996 int frames_write;
997
998 for (f = 0; f < pkt->frames; f++) {
999 pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1000 offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
1001 }
1002
1003 /*
1004 * Fill-in pages[] and offsets[] with data from orig_bios.
1005 */
1006 frames_write = 0;
1007 spin_lock(&pkt->lock);
1008 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1009 int segment = bio->bi_idx;
1010 int src_offs = 0;
1011 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1012 int num_frames = bio->bi_size / CD_FRAMESIZE;
1013 BUG_ON(first_frame < 0);
1014 BUG_ON(first_frame + num_frames > pkt->frames);
1015 for (f = first_frame; f < first_frame + num_frames; f++) {
1016 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1017
1018 while (src_offs >= src_bvl->bv_len) {
1019 src_offs -= src_bvl->bv_len;
1020 segment++;
1021 BUG_ON(segment >= bio->bi_vcnt);
1022 src_bvl = bio_iovec_idx(bio, segment);
1023 }
1024
1025 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1026 pages[f] = src_bvl->bv_page;
1027 offsets[f] = src_bvl->bv_offset + src_offs;
1028 } else {
1029 pkt_copy_bio_data(bio, segment, src_offs,
1030 pages[f], offsets[f]);
1031 }
1032 src_offs += CD_FRAMESIZE;
1033 frames_write++;
1034 }
1035 }
1036 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1037 spin_unlock(&pkt->lock);
1038
1039 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1040 frames_write, (unsigned long long)pkt->sector);
1041 BUG_ON(frames_write != pkt->write_size);
1042
1043 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1044 pkt_make_local_copy(pkt, pages, offsets);
1045 pkt->cache_valid = 1;
1046 } else {
1047 pkt->cache_valid = 0;
1048 }
1049
1050 /* Start the write request */
1051 bio_init(pkt->w_bio);
1052 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1053 pkt->w_bio->bi_sector = pkt->sector;
1054 pkt->w_bio->bi_bdev = pd->bdev;
1055 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1056 pkt->w_bio->bi_private = pkt;
1057 for (f = 0; f < pkt->frames; f++) {
1058 if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
1059 (offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
1060 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
1061 BUG();
1062 f++;
1063 } else {
1064 if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
1065 BUG();
1066 }
1067 }
1068 VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
1069
1070 atomic_set(&pkt->io_wait, 1);
1071 pkt->w_bio->bi_rw = WRITE;
46c271be 1072 pkt_queue_bio(pd, pkt->w_bio);
1da177e4
LT
1073}
1074
1075static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1076{
1077 struct bio *bio, *next;
1078
1079 if (!uptodate)
1080 pkt->cache_valid = 0;
1081
1082 /* Finish all bios corresponding to this packet */
1083 bio = pkt->orig_bios;
1084 while (bio) {
1085 next = bio->bi_next;
1086 bio->bi_next = NULL;
1087 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1088 bio = next;
1089 }
1090 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1091}
1092
1093static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1094{
1095 int uptodate;
1096
1097 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1098
1099 for (;;) {
1100 switch (pkt->state) {
1101 case PACKET_WAITING_STATE:
1102 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1103 return;
1104
1105 pkt->sleep_time = 0;
1106 pkt_gather_data(pd, pkt);
1107 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1108 break;
1109
1110 case PACKET_READ_WAIT_STATE:
1111 if (atomic_read(&pkt->io_wait) > 0)
1112 return;
1113
1114 if (atomic_read(&pkt->io_errors) > 0) {
1115 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1116 } else {
1117 pkt_start_write(pd, pkt);
1118 }
1119 break;
1120
1121 case PACKET_WRITE_WAIT_STATE:
1122 if (atomic_read(&pkt->io_wait) > 0)
1123 return;
1124
1125 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1126 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1127 } else {
1128 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1129 }
1130 break;
1131
1132 case PACKET_RECOVERY_STATE:
1133 if (pkt_start_recovery(pkt)) {
1134 pkt_start_write(pd, pkt);
1135 } else {
1136 VPRINTK("No recovery possible\n");
1137 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1138 }
1139 break;
1140
1141 case PACKET_FINISHED_STATE:
1142 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1143 pkt_finish_packet(pkt, uptodate);
1144 return;
1145
1146 default:
1147 BUG();
1148 break;
1149 }
1150 }
1151}
1152
1153static void pkt_handle_packets(struct pktcdvd_device *pd)
1154{
1155 struct packet_data *pkt, *next;
1156
1157 VPRINTK("pkt_handle_packets\n");
1158
1159 /*
1160 * Run state machine for active packets
1161 */
1162 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1163 if (atomic_read(&pkt->run_sm) > 0) {
1164 atomic_set(&pkt->run_sm, 0);
1165 pkt_run_state_machine(pd, pkt);
1166 }
1167 }
1168
1169 /*
1170 * Move no longer active packets to the free list
1171 */
1172 spin_lock(&pd->cdrw.active_list_lock);
1173 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1174 if (pkt->state == PACKET_FINISHED_STATE) {
1175 list_del(&pkt->list);
1176 pkt_put_packet_data(pd, pkt);
1177 pkt_set_state(pkt, PACKET_IDLE_STATE);
1178 atomic_set(&pd->scan_queue, 1);
1179 }
1180 }
1181 spin_unlock(&pd->cdrw.active_list_lock);
1182}
1183
1184static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1185{
1186 struct packet_data *pkt;
1187 int i;
1188
ae7642bb 1189 for (i = 0; i < PACKET_NUM_STATES; i++)
1da177e4
LT
1190 states[i] = 0;
1191
1192 spin_lock(&pd->cdrw.active_list_lock);
1193 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1194 states[pkt->state]++;
1195 }
1196 spin_unlock(&pd->cdrw.active_list_lock);
1197}
1198
1199/*
1200 * kcdrwd is woken up when writes have been queued for one of our
1201 * registered devices
1202 */
1203static int kcdrwd(void *foobar)
1204{
1205 struct pktcdvd_device *pd = foobar;
1206 struct packet_data *pkt;
1207 long min_sleep_time, residue;
1208
1209 set_user_nice(current, -20);
1210
1211 for (;;) {
1212 DECLARE_WAITQUEUE(wait, current);
1213
1214 /*
1215 * Wait until there is something to do
1216 */
1217 add_wait_queue(&pd->wqueue, &wait);
1218 for (;;) {
1219 set_current_state(TASK_INTERRUPTIBLE);
1220
1221 /* Check if we need to run pkt_handle_queue */
1222 if (atomic_read(&pd->scan_queue) > 0)
1223 goto work_to_do;
1224
1225 /* Check if we need to run the state machine for some packet */
1226 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1227 if (atomic_read(&pkt->run_sm) > 0)
1228 goto work_to_do;
1229 }
1230
1231 /* Check if we need to process the iosched queues */
1232 if (atomic_read(&pd->iosched.attention) != 0)
1233 goto work_to_do;
1234
1235 /* Otherwise, go to sleep */
1236 if (PACKET_DEBUG > 1) {
1237 int states[PACKET_NUM_STATES];
1238 pkt_count_states(pd, states);
1239 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1240 states[0], states[1], states[2], states[3],
1241 states[4], states[5]);
1242 }
1243
1244 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1245 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1246 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1247 min_sleep_time = pkt->sleep_time;
1248 }
1249
1250 generic_unplug_device(bdev_get_queue(pd->bdev));
1251
1252 VPRINTK("kcdrwd: sleeping\n");
1253 residue = schedule_timeout(min_sleep_time);
1254 VPRINTK("kcdrwd: wake up\n");
1255
1256 /* make swsusp happy with our thread */
3e1d1d28 1257 try_to_freeze();
1da177e4
LT
1258
1259 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1260 if (!pkt->sleep_time)
1261 continue;
1262 pkt->sleep_time -= min_sleep_time - residue;
1263 if (pkt->sleep_time <= 0) {
1264 pkt->sleep_time = 0;
1265 atomic_inc(&pkt->run_sm);
1266 }
1267 }
1268
1269 if (signal_pending(current)) {
1270 flush_signals(current);
1271 }
1272 if (kthread_should_stop())
1273 break;
1274 }
1275work_to_do:
1276 set_current_state(TASK_RUNNING);
1277 remove_wait_queue(&pd->wqueue, &wait);
1278
1279 if (kthread_should_stop())
1280 break;
1281
1282 /*
1283 * if pkt_handle_queue returns true, we can queue
1284 * another request.
1285 */
1286 while (pkt_handle_queue(pd))
1287 ;
1288
1289 /*
1290 * Handle packet state machine
1291 */
1292 pkt_handle_packets(pd);
1293
1294 /*
1295 * Handle iosched queues
1296 */
1297 pkt_iosched_process_queue(pd);
1298 }
1299
1300 return 0;
1301}
1302
1303static void pkt_print_settings(struct pktcdvd_device *pd)
1304{
1305 printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1306 printk("%u blocks, ", pd->settings.size >> 2);
1307 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1308}
1309
1310static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1311{
1312 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1313
1314 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1315 cgc->cmd[2] = page_code | (page_control << 6);
1316 cgc->cmd[7] = cgc->buflen >> 8;
1317 cgc->cmd[8] = cgc->buflen & 0xff;
1318 cgc->data_direction = CGC_DATA_READ;
1319 return pkt_generic_packet(pd, cgc);
1320}
1321
1322static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1323{
1324 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1325 memset(cgc->buffer, 0, 2);
1326 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1327 cgc->cmd[1] = 0x10; /* PF */
1328 cgc->cmd[7] = cgc->buflen >> 8;
1329 cgc->cmd[8] = cgc->buflen & 0xff;
1330 cgc->data_direction = CGC_DATA_WRITE;
1331 return pkt_generic_packet(pd, cgc);
1332}
1333
1334static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1335{
1336 struct packet_command cgc;
1337 int ret;
1338
1339 /* set up command and get the disc info */
1340 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1341 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1342 cgc.cmd[8] = cgc.buflen = 2;
1343 cgc.quiet = 1;
1344
1345 if ((ret = pkt_generic_packet(pd, &cgc)))
1346 return ret;
1347
1348 /* not all drives have the same disc_info length, so requeue
1349 * packet with the length the drive tells us it can supply
1350 */
1351 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1352 sizeof(di->disc_information_length);
1353
1354 if (cgc.buflen > sizeof(disc_information))
1355 cgc.buflen = sizeof(disc_information);
1356
1357 cgc.cmd[8] = cgc.buflen;
1358 return pkt_generic_packet(pd, &cgc);
1359}
1360
1361static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1362{
1363 struct packet_command cgc;
1364 int ret;
1365
1366 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1367 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1368 cgc.cmd[1] = type & 3;
1369 cgc.cmd[4] = (track & 0xff00) >> 8;
1370 cgc.cmd[5] = track & 0xff;
1371 cgc.cmd[8] = 8;
1372 cgc.quiet = 1;
1373
1374 if ((ret = pkt_generic_packet(pd, &cgc)))
1375 return ret;
1376
1377 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1378 sizeof(ti->track_information_length);
1379
1380 if (cgc.buflen > sizeof(track_information))
1381 cgc.buflen = sizeof(track_information);
1382
1383 cgc.cmd[8] = cgc.buflen;
1384 return pkt_generic_packet(pd, &cgc);
1385}
1386
1387static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1388{
1389 disc_information di;
1390 track_information ti;
1391 __u32 last_track;
1392 int ret = -1;
1393
1394 if ((ret = pkt_get_disc_info(pd, &di)))
1395 return ret;
1396
1397 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1398 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1399 return ret;
1400
1401 /* if this track is blank, try the previous. */
1402 if (ti.blank) {
1403 last_track--;
1404 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1405 return ret;
1406 }
1407
1408 /* if last recorded field is valid, return it. */
1409 if (ti.lra_v) {
1410 *last_written = be32_to_cpu(ti.last_rec_address);
1411 } else {
1412 /* make it up instead */
1413 *last_written = be32_to_cpu(ti.track_start) +
1414 be32_to_cpu(ti.track_size);
1415 if (ti.free_blocks)
1416 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1417 }
1418 return 0;
1419}
1420
1421/*
1422 * write mode select package based on pd->settings
1423 */
1424static int pkt_set_write_settings(struct pktcdvd_device *pd)
1425{
1426 struct packet_command cgc;
1427 struct request_sense sense;
1428 write_param_page *wp;
1429 char buffer[128];
1430 int ret, size;
1431
1432 /* doesn't apply to DVD+RW or DVD-RAM */
1433 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1434 return 0;
1435
1436 memset(buffer, 0, sizeof(buffer));
1437 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1438 cgc.sense = &sense;
1439 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1440 pkt_dump_sense(&cgc);
1441 return ret;
1442 }
1443
1444 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1445 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1446 if (size > sizeof(buffer))
1447 size = sizeof(buffer);
1448
1449 /*
1450 * now get it all
1451 */
1452 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1453 cgc.sense = &sense;
1454 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1455 pkt_dump_sense(&cgc);
1456 return ret;
1457 }
1458
1459 /*
1460 * write page is offset header + block descriptor length
1461 */
1462 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1463
1464 wp->fp = pd->settings.fp;
1465 wp->track_mode = pd->settings.track_mode;
1466 wp->write_type = pd->settings.write_type;
1467 wp->data_block_type = pd->settings.block_mode;
1468
1469 wp->multi_session = 0;
1470
1471#ifdef PACKET_USE_LS
1472 wp->link_size = 7;
1473 wp->ls_v = 1;
1474#endif
1475
1476 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1477 wp->session_format = 0;
1478 wp->subhdr2 = 0x20;
1479 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1480 wp->session_format = 0x20;
1481 wp->subhdr2 = 8;
1482#if 0
1483 wp->mcn[0] = 0x80;
1484 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1485#endif
1486 } else {
1487 /*
1488 * paranoia
1489 */
1490 printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
1491 return 1;
1492 }
1493 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1494
1495 cgc.buflen = cgc.cmd[8] = size;
1496 if ((ret = pkt_mode_select(pd, &cgc))) {
1497 pkt_dump_sense(&cgc);
1498 return ret;
1499 }
1500
1501 pkt_print_settings(pd);
1502 return 0;
1503}
1504
1505/*
1506 * 0 -- we can write to this track, 1 -- we can't
1507 */
1508static int pkt_good_track(track_information *ti)
1509{
1510 /*
1511 * only good for CD-RW at the moment, not DVD-RW
1512 */
1513
1514 /*
1515 * FIXME: only for FP
1516 */
1517 if (ti->fp == 0)
1518 return 0;
1519
1520 /*
1521 * "good" settings as per Mt Fuji.
1522 */
1523 if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
1524 return 0;
1525
1526 if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
1527 return 0;
1528
1529 if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
1530 return 0;
1531
1532 printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1533 return 1;
1534}
1535
1536/*
1537 * 0 -- we can write to this disc, 1 -- we can't
1538 */
1539static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
1540{
1541 switch (pd->mmc3_profile) {
1542 case 0x0a: /* CD-RW */
1543 case 0xffff: /* MMC3 not supported */
1544 break;
1545 case 0x1a: /* DVD+RW */
1546 case 0x13: /* DVD-RW */
1547 case 0x12: /* DVD-RAM */
1548 return 0;
1549 default:
1550 printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
1551 return 1;
1552 }
1553
1554 /*
1555 * for disc type 0xff we should probably reserve a new track.
1556 * but i'm not sure, should we leave this to user apps? probably.
1557 */
1558 if (di->disc_type == 0xff) {
1559 printk("pktcdvd: Unknown disc. No track?\n");
1560 return 1;
1561 }
1562
1563 if (di->disc_type != 0x20 && di->disc_type != 0) {
1564 printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
1565 return 1;
1566 }
1567
1568 if (di->erasable == 0) {
1569 printk("pktcdvd: Disc not erasable\n");
1570 return 1;
1571 }
1572
1573 if (di->border_status == PACKET_SESSION_RESERVED) {
1574 printk("pktcdvd: Can't write to last track (reserved)\n");
1575 return 1;
1576 }
1577
1578 return 0;
1579}
1580
1581static int pkt_probe_settings(struct pktcdvd_device *pd)
1582{
1583 struct packet_command cgc;
1584 unsigned char buf[12];
1585 disc_information di;
1586 track_information ti;
1587 int ret, track;
1588
1589 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1590 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1591 cgc.cmd[8] = 8;
1592 ret = pkt_generic_packet(pd, &cgc);
1593 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1594
1595 memset(&di, 0, sizeof(disc_information));
1596 memset(&ti, 0, sizeof(track_information));
1597
1598 if ((ret = pkt_get_disc_info(pd, &di))) {
1599 printk("failed get_disc\n");
1600 return ret;
1601 }
1602
1603 if (pkt_good_disc(pd, &di))
1604 return -ENXIO;
1605
1606 switch (pd->mmc3_profile) {
1607 case 0x1a: /* DVD+RW */
1608 printk("pktcdvd: inserted media is DVD+RW\n");
1609 break;
1610 case 0x13: /* DVD-RW */
1611 printk("pktcdvd: inserted media is DVD-RW\n");
1612 break;
1613 case 0x12: /* DVD-RAM */
1614 printk("pktcdvd: inserted media is DVD-RAM\n");
1615 break;
1616 default:
1617 printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
1618 break;
1619 }
1620 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1621
1622 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1623 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1624 printk("pktcdvd: failed get_track\n");
1625 return ret;
1626 }
1627
1628 if (pkt_good_track(&ti)) {
1629 printk("pktcdvd: can't write to this track\n");
1630 return -ENXIO;
1631 }
1632
1633 /*
1634 * we keep packet size in 512 byte units, makes it easier to
1635 * deal with request calculations.
1636 */
1637 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1638 if (pd->settings.size == 0) {
1639 printk("pktcdvd: detected zero packet size!\n");
a460ad62 1640 return -ENXIO;
1da177e4 1641 }
d0272e78
PO
1642 if (pd->settings.size > PACKET_MAX_SECTORS) {
1643 printk("pktcdvd: packet size is too big\n");
1644 return -ENXIO;
1645 }
1da177e4
LT
1646 pd->settings.fp = ti.fp;
1647 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1648
1649 if (ti.nwa_v) {
1650 pd->nwa = be32_to_cpu(ti.next_writable);
1651 set_bit(PACKET_NWA_VALID, &pd->flags);
1652 }
1653
1654 /*
1655 * in theory we could use lra on -RW media as well and just zero
1656 * blocks that haven't been written yet, but in practice that
1657 * is just a no-go. we'll use that for -R, naturally.
1658 */
1659 if (ti.lra_v) {
1660 pd->lra = be32_to_cpu(ti.last_rec_address);
1661 set_bit(PACKET_LRA_VALID, &pd->flags);
1662 } else {
1663 pd->lra = 0xffffffff;
1664 set_bit(PACKET_LRA_VALID, &pd->flags);
1665 }
1666
1667 /*
1668 * fine for now
1669 */
1670 pd->settings.link_loss = 7;
1671 pd->settings.write_type = 0; /* packet */
1672 pd->settings.track_mode = ti.track_mode;
1673
1674 /*
1675 * mode1 or mode2 disc
1676 */
1677 switch (ti.data_mode) {
1678 case PACKET_MODE1:
1679 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1680 break;
1681 case PACKET_MODE2:
1682 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1683 break;
1684 default:
1685 printk("pktcdvd: unknown data mode\n");
1686 return 1;
1687 }
1688 return 0;
1689}
1690
1691/*
1692 * enable/disable write caching on drive
1693 */
1694static int pkt_write_caching(struct pktcdvd_device *pd, int set)
1695{
1696 struct packet_command cgc;
1697 struct request_sense sense;
1698 unsigned char buf[64];
1699 int ret;
1700
1701 memset(buf, 0, sizeof(buf));
1702 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1703 cgc.sense = &sense;
1704 cgc.buflen = pd->mode_offset + 12;
1705
1706 /*
1707 * caching mode page might not be there, so quiet this command
1708 */
1709 cgc.quiet = 1;
1710
1711 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1712 return ret;
1713
1714 buf[pd->mode_offset + 10] |= (!!set << 2);
1715
1716 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1717 ret = pkt_mode_select(pd, &cgc);
1718 if (ret) {
1719 printk("pktcdvd: write caching control failed\n");
1720 pkt_dump_sense(&cgc);
1721 } else if (!ret && set)
1722 printk("pktcdvd: enabled write caching on %s\n", pd->name);
1723 return ret;
1724}
1725
1726static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1727{
1728 struct packet_command cgc;
1729
1730 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1731 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1732 cgc.cmd[4] = lockflag ? 1 : 0;
1733 return pkt_generic_packet(pd, &cgc);
1734}
1735
1736/*
1737 * Returns drive maximum write speed
1738 */
1739static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
1740{
1741 struct packet_command cgc;
1742 struct request_sense sense;
1743 unsigned char buf[256+18];
1744 unsigned char *cap_buf;
1745 int ret, offset;
1746
1747 memset(buf, 0, sizeof(buf));
1748 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1749 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1750 cgc.sense = &sense;
1751
1752 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1753 if (ret) {
1754 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1755 sizeof(struct mode_page_header);
1756 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1757 if (ret) {
1758 pkt_dump_sense(&cgc);
1759 return ret;
1760 }
1761 }
1762
1763 offset = 20; /* Obsoleted field, used by older drives */
1764 if (cap_buf[1] >= 28)
1765 offset = 28; /* Current write speed selected */
1766 if (cap_buf[1] >= 30) {
1767 /* If the drive reports at least one "Logical Unit Write
1768 * Speed Performance Descriptor Block", use the information
1769 * in the first block. (contains the highest speed)
1770 */
1771 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1772 if (num_spdb > 0)
1773 offset = 34;
1774 }
1775
1776 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1777 return 0;
1778}
1779
1780/* These tables from cdrecord - I don't have orange book */
1781/* standard speed CD-RW (1-4x) */
1782static char clv_to_speed[16] = {
1783 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1784 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1785};
1786/* high speed CD-RW (-10x) */
1787static char hs_clv_to_speed[16] = {
1788 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1789 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1790};
1791/* ultra high speed CD-RW */
1792static char us_clv_to_speed[16] = {
1793 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1794 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1795};
1796
1797/*
1798 * reads the maximum media speed from ATIP
1799 */
1800static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
1801{
1802 struct packet_command cgc;
1803 struct request_sense sense;
1804 unsigned char buf[64];
1805 unsigned int size, st, sp;
1806 int ret;
1807
1808 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1809 cgc.sense = &sense;
1810 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1811 cgc.cmd[1] = 2;
1812 cgc.cmd[2] = 4; /* READ ATIP */
1813 cgc.cmd[8] = 2;
1814 ret = pkt_generic_packet(pd, &cgc);
1815 if (ret) {
1816 pkt_dump_sense(&cgc);
1817 return ret;
1818 }
1819 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
1820 if (size > sizeof(buf))
1821 size = sizeof(buf);
1822
1823 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
1824 cgc.sense = &sense;
1825 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1826 cgc.cmd[1] = 2;
1827 cgc.cmd[2] = 4;
1828 cgc.cmd[8] = size;
1829 ret = pkt_generic_packet(pd, &cgc);
1830 if (ret) {
1831 pkt_dump_sense(&cgc);
1832 return ret;
1833 }
1834
1835 if (!buf[6] & 0x40) {
1836 printk("pktcdvd: Disc type is not CD-RW\n");
1837 return 1;
1838 }
1839 if (!buf[6] & 0x4) {
1840 printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
1841 return 1;
1842 }
1843
1844 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
1845
1846 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
1847
1848 /* Info from cdrecord */
1849 switch (st) {
1850 case 0: /* standard speed */
1851 *speed = clv_to_speed[sp];
1852 break;
1853 case 1: /* high speed */
1854 *speed = hs_clv_to_speed[sp];
1855 break;
1856 case 2: /* ultra high speed */
1857 *speed = us_clv_to_speed[sp];
1858 break;
1859 default:
1860 printk("pktcdvd: Unknown disc sub-type %d\n",st);
1861 return 1;
1862 }
1863 if (*speed) {
1864 printk("pktcdvd: Max. media speed: %d\n",*speed);
1865 return 0;
1866 } else {
1867 printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
1868 return 1;
1869 }
1870}
1871
1872static int pkt_perform_opc(struct pktcdvd_device *pd)
1873{
1874 struct packet_command cgc;
1875 struct request_sense sense;
1876 int ret;
1877
1878 VPRINTK("pktcdvd: Performing OPC\n");
1879
1880 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1881 cgc.sense = &sense;
1882 cgc.timeout = 60*HZ;
1883 cgc.cmd[0] = GPCMD_SEND_OPC;
1884 cgc.cmd[1] = 1;
1885 if ((ret = pkt_generic_packet(pd, &cgc)))
1886 pkt_dump_sense(&cgc);
1887 return ret;
1888}
1889
1890static int pkt_open_write(struct pktcdvd_device *pd)
1891{
1892 int ret;
1893 unsigned int write_speed, media_write_speed, read_speed;
1894
1895 if ((ret = pkt_probe_settings(pd))) {
1896 DPRINTK("pktcdvd: %s failed probe\n", pd->name);
1897 return -EIO;
1898 }
1899
1900 if ((ret = pkt_set_write_settings(pd))) {
1901 DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
1902 return -EIO;
1903 }
1904
1905 pkt_write_caching(pd, USE_WCACHING);
1906
1907 if ((ret = pkt_get_max_speed(pd, &write_speed)))
1908 write_speed = 16 * 177;
1909 switch (pd->mmc3_profile) {
1910 case 0x13: /* DVD-RW */
1911 case 0x1a: /* DVD+RW */
1912 case 0x12: /* DVD-RAM */
1913 DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
1914 break;
1915 default:
1916 if ((ret = pkt_media_speed(pd, &media_write_speed)))
1917 media_write_speed = 16;
1918 write_speed = min(write_speed, media_write_speed * 177);
1919 DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
1920 break;
1921 }
1922 read_speed = write_speed;
1923
1924 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
1925 DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
1926 return -EIO;
1927 }
1928 pd->write_speed = write_speed;
1929 pd->read_speed = read_speed;
1930
1931 if ((ret = pkt_perform_opc(pd))) {
1932 DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
1933 }
1934
1935 return 0;
1936}
1937
1938/*
1939 * called at open time.
1940 */
1941static int pkt_open_dev(struct pktcdvd_device *pd, int write)
1942{
1943 int ret;
1944 long lba;
1945 request_queue_t *q;
1946
1947 /*
1948 * We need to re-open the cdrom device without O_NONBLOCK to be able
1949 * to read/write from/to it. It is already opened in O_NONBLOCK mode
1950 * so bdget() can't fail.
1951 */
1952 bdget(pd->bdev->bd_dev);
1953 if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
1954 goto out;
1955
8382bf2e
PO
1956 if ((ret = bd_claim(pd->bdev, pd)))
1957 goto out_putdev;
1958
1da177e4
LT
1959 if ((ret = pkt_get_last_written(pd, &lba))) {
1960 printk("pktcdvd: pkt_get_last_written failed\n");
8382bf2e 1961 goto out_unclaim;
1da177e4
LT
1962 }
1963
1964 set_capacity(pd->disk, lba << 2);
1965 set_capacity(pd->bdev->bd_disk, lba << 2);
1966 bd_set_size(pd->bdev, (loff_t)lba << 11);
1967
1968 q = bdev_get_queue(pd->bdev);
1969 if (write) {
1970 if ((ret = pkt_open_write(pd)))
8382bf2e 1971 goto out_unclaim;
1da177e4
LT
1972 /*
1973 * Some CDRW drives can not handle writes larger than one packet,
1974 * even if the size is a multiple of the packet size.
1975 */
1976 spin_lock_irq(q->queue_lock);
1977 blk_queue_max_sectors(q, pd->settings.size);
1978 spin_unlock_irq(q->queue_lock);
1979 set_bit(PACKET_WRITABLE, &pd->flags);
1980 } else {
1981 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
1982 clear_bit(PACKET_WRITABLE, &pd->flags);
1983 }
1984
1985 if ((ret = pkt_set_segment_merging(pd, q)))
8382bf2e 1986 goto out_unclaim;
1da177e4
LT
1987
1988 if (write)
1989 printk("pktcdvd: %lukB available on disc\n", lba << 1);
1990
1991 return 0;
1992
8382bf2e
PO
1993out_unclaim:
1994 bd_release(pd->bdev);
1da177e4
LT
1995out_putdev:
1996 blkdev_put(pd->bdev);
1997out:
1998 return ret;
1999}
2000
2001/*
2002 * called when the device is closed. makes sure that the device flushes
2003 * the internal cache before we close.
2004 */
2005static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2006{
2007 if (flush && pkt_flush_cache(pd))
2008 DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
2009
2010 pkt_lock_door(pd, 0);
2011
2012 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
8382bf2e 2013 bd_release(pd->bdev);
1da177e4
LT
2014 blkdev_put(pd->bdev);
2015}
2016
2017static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2018{
2019 if (dev_minor >= MAX_WRITERS)
2020 return NULL;
2021 return pkt_devs[dev_minor];
2022}
2023
2024static int pkt_open(struct inode *inode, struct file *file)
2025{
2026 struct pktcdvd_device *pd = NULL;
2027 int ret;
2028
2029 VPRINTK("pktcdvd: entering open\n");
2030
2031 down(&ctl_mutex);
2032 pd = pkt_find_dev_from_minor(iminor(inode));
2033 if (!pd) {
2034 ret = -ENODEV;
2035 goto out;
2036 }
2037 BUG_ON(pd->refcnt < 0);
2038
2039 pd->refcnt++;
46f4e1b7
PO
2040 if (pd->refcnt > 1) {
2041 if ((file->f_mode & FMODE_WRITE) &&
2042 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2043 ret = -EBUSY;
2044 goto out_dec;
2045 }
2046 } else {
1da177e4
LT
2047 if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
2048 ret = -EIO;
2049 goto out_dec;
2050 }
2051 /*
2052 * needed here as well, since ext2 (among others) may change
2053 * the blocksize at mount time
2054 */
2055 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2056 }
2057
2058 up(&ctl_mutex);
2059 return 0;
2060
2061out_dec:
2062 pd->refcnt--;
2063out:
2064 VPRINTK("pktcdvd: failed open (%d)\n", ret);
2065 up(&ctl_mutex);
2066 return ret;
2067}
2068
2069static int pkt_close(struct inode *inode, struct file *file)
2070{
2071 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2072 int ret = 0;
2073
2074 down(&ctl_mutex);
2075 pd->refcnt--;
2076 BUG_ON(pd->refcnt < 0);
2077 if (pd->refcnt == 0) {
2078 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2079 pkt_release_dev(pd, flush);
2080 }
2081 up(&ctl_mutex);
2082 return ret;
2083}
2084
2085
dd0fc66f 2086static void *psd_pool_alloc(gfp_t gfp_mask, void *data)
1da177e4
LT
2087{
2088 return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
2089}
2090
2091static void psd_pool_free(void *ptr, void *data)
2092{
2093 kfree(ptr);
2094}
2095
2096static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2097{
2098 struct packet_stacked_data *psd = bio->bi_private;
2099 struct pktcdvd_device *pd = psd->pd;
2100
2101 if (bio->bi_size)
2102 return 1;
2103
2104 bio_put(bio);
2105 bio_endio(psd->bio, psd->bio->bi_size, err);
2106 mempool_free(psd, psd_pool);
2107 pkt_bio_finished(pd);
2108 return 0;
2109}
2110
2111static int pkt_make_request(request_queue_t *q, struct bio *bio)
2112{
2113 struct pktcdvd_device *pd;
2114 char b[BDEVNAME_SIZE];
2115 sector_t zone;
2116 struct packet_data *pkt;
2117 int was_empty, blocked_bio;
2118 struct pkt_rb_node *node;
2119
2120 pd = q->queuedata;
2121 if (!pd) {
2122 printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2123 goto end_io;
2124 }
2125
2126 /*
2127 * Clone READ bios so we can have our own bi_end_io callback.
2128 */
2129 if (bio_data_dir(bio) == READ) {
2130 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2131 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2132
2133 psd->pd = pd;
2134 psd->bio = bio;
2135 cloned_bio->bi_bdev = pd->bdev;
2136 cloned_bio->bi_private = psd;
2137 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2138 pd->stats.secs_r += bio->bi_size >> 9;
46c271be 2139 pkt_queue_bio(pd, cloned_bio);
1da177e4
LT
2140 return 0;
2141 }
2142
2143 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2144 printk("pktcdvd: WRITE for ro device %s (%llu)\n",
2145 pd->name, (unsigned long long)bio->bi_sector);
2146 goto end_io;
2147 }
2148
2149 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2150 printk("pktcdvd: wrong bio size\n");
2151 goto end_io;
2152 }
2153
2154 blk_queue_bounce(q, &bio);
2155
2156 zone = ZONE(bio->bi_sector, pd);
2157 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2158 (unsigned long long)bio->bi_sector,
2159 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2160
2161 /* Check if we have to split the bio */
2162 {
2163 struct bio_pair *bp;
2164 sector_t last_zone;
2165 int first_sectors;
2166
2167 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2168 if (last_zone != zone) {
2169 BUG_ON(last_zone != zone + pd->settings.size);
2170 first_sectors = last_zone - bio->bi_sector;
2171 bp = bio_split(bio, bio_split_pool, first_sectors);
2172 BUG_ON(!bp);
2173 pkt_make_request(q, &bp->bio1);
2174 pkt_make_request(q, &bp->bio2);
2175 bio_pair_release(bp);
2176 return 0;
2177 }
2178 }
2179
2180 /*
2181 * If we find a matching packet in state WAITING or READ_WAIT, we can
2182 * just append this bio to that packet.
2183 */
2184 spin_lock(&pd->cdrw.active_list_lock);
2185 blocked_bio = 0;
2186 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2187 if (pkt->sector == zone) {
2188 spin_lock(&pkt->lock);
2189 if ((pkt->state == PACKET_WAITING_STATE) ||
2190 (pkt->state == PACKET_READ_WAIT_STATE)) {
2191 pkt_add_list_last(bio, &pkt->orig_bios,
2192 &pkt->orig_bios_tail);
2193 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2194 if ((pkt->write_size >= pkt->frames) &&
2195 (pkt->state == PACKET_WAITING_STATE)) {
2196 atomic_inc(&pkt->run_sm);
2197 wake_up(&pd->wqueue);
2198 }
2199 spin_unlock(&pkt->lock);
2200 spin_unlock(&pd->cdrw.active_list_lock);
2201 return 0;
2202 } else {
2203 blocked_bio = 1;
2204 }
2205 spin_unlock(&pkt->lock);
2206 }
2207 }
2208 spin_unlock(&pd->cdrw.active_list_lock);
2209
2210 /*
2211 * No matching packet found. Store the bio in the work queue.
2212 */
2213 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
1da177e4
LT
2214 node->bio = bio;
2215 spin_lock(&pd->lock);
2216 BUG_ON(pd->bio_queue_size < 0);
2217 was_empty = (pd->bio_queue_size == 0);
2218 pkt_rbtree_insert(pd, node);
2219 spin_unlock(&pd->lock);
2220
2221 /*
2222 * Wake up the worker thread.
2223 */
2224 atomic_set(&pd->scan_queue, 1);
2225 if (was_empty) {
2226 /* This wake_up is required for correct operation */
2227 wake_up(&pd->wqueue);
2228 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2229 /*
2230 * This wake up is not required for correct operation,
2231 * but improves performance in some cases.
2232 */
2233 wake_up(&pd->wqueue);
2234 }
2235 return 0;
2236end_io:
2237 bio_io_error(bio, bio->bi_size);
2238 return 0;
2239}
2240
2241
2242
2243static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2244{
2245 struct pktcdvd_device *pd = q->queuedata;
2246 sector_t zone = ZONE(bio->bi_sector, pd);
2247 int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2248 int remaining = (pd->settings.size << 9) - used;
2249 int remaining2;
2250
2251 /*
2252 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2253 * boundary, pkt_make_request() will split the bio.
2254 */
2255 remaining2 = PAGE_SIZE - bio->bi_size;
2256 remaining = max(remaining, remaining2);
2257
2258 BUG_ON(remaining < 0);
2259 return remaining;
2260}
2261
2262static void pkt_init_queue(struct pktcdvd_device *pd)
2263{
2264 request_queue_t *q = pd->disk->queue;
2265
2266 blk_queue_make_request(q, pkt_make_request);
2267 blk_queue_hardsect_size(q, CD_FRAMESIZE);
2268 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2269 blk_queue_merge_bvec(q, pkt_merge_bvec);
2270 q->queuedata = pd;
2271}
2272
2273static int pkt_seq_show(struct seq_file *m, void *p)
2274{
2275 struct pktcdvd_device *pd = m->private;
2276 char *msg;
2277 char bdev_buf[BDEVNAME_SIZE];
2278 int states[PACKET_NUM_STATES];
2279
2280 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2281 bdevname(pd->bdev, bdev_buf));
2282
2283 seq_printf(m, "\nSettings:\n");
2284 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2285
2286 if (pd->settings.write_type == 0)
2287 msg = "Packet";
2288 else
2289 msg = "Unknown";
2290 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2291
2292 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2293 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2294
2295 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2296
2297 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2298 msg = "Mode 1";
2299 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2300 msg = "Mode 2";
2301 else
2302 msg = "Unknown";
2303 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2304
2305 seq_printf(m, "\nStatistics:\n");
2306 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2307 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2308 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2309 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2310 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2311
2312 seq_printf(m, "\nMisc:\n");
2313 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2314 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2315 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2316 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2317 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2318 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2319
2320 seq_printf(m, "\nQueue state:\n");
2321 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2322 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2323 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2324
2325 pkt_count_states(pd, states);
2326 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2327 states[0], states[1], states[2], states[3], states[4], states[5]);
2328
2329 return 0;
2330}
2331
2332static int pkt_seq_open(struct inode *inode, struct file *file)
2333{
2334 return single_open(file, pkt_seq_show, PDE(inode)->data);
2335}
2336
2337static struct file_operations pkt_proc_fops = {
2338 .open = pkt_seq_open,
2339 .read = seq_read,
2340 .llseek = seq_lseek,
2341 .release = single_release
2342};
2343
2344static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2345{
2346 int i;
2347 int ret = 0;
2348 char b[BDEVNAME_SIZE];
2349 struct proc_dir_entry *proc;
2350 struct block_device *bdev;
2351
2352 if (pd->pkt_dev == dev) {
2353 printk("pktcdvd: Recursive setup not allowed\n");
2354 return -EBUSY;
2355 }
2356 for (i = 0; i < MAX_WRITERS; i++) {
2357 struct pktcdvd_device *pd2 = pkt_devs[i];
2358 if (!pd2)
2359 continue;
2360 if (pd2->bdev->bd_dev == dev) {
2361 printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
2362 return -EBUSY;
2363 }
2364 if (pd2->pkt_dev == dev) {
2365 printk("pktcdvd: Can't chain pktcdvd devices\n");
2366 return -EBUSY;
2367 }
2368 }
2369
2370 bdev = bdget(dev);
2371 if (!bdev)
2372 return -ENOMEM;
2373 ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2374 if (ret)
2375 return ret;
2376
2377 /* This is safe, since we have a reference from open(). */
2378 __module_get(THIS_MODULE);
2379
2380 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2381 printk("pktcdvd: not enough memory for buffers\n");
2382 ret = -ENOMEM;
2383 goto out_mem;
2384 }
2385
2386 pd->bdev = bdev;
2387 set_blocksize(bdev, CD_FRAMESIZE);
2388
2389 pkt_init_queue(pd);
2390
2391 atomic_set(&pd->cdrw.pending_bios, 0);
2392 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2393 if (IS_ERR(pd->cdrw.thread)) {
2394 printk("pktcdvd: can't start kernel thread\n");
2395 ret = -ENOMEM;
2396 goto out_thread;
2397 }
2398
2399 proc = create_proc_entry(pd->name, 0, pkt_proc);
2400 if (proc) {
2401 proc->data = pd;
2402 proc->proc_fops = &pkt_proc_fops;
2403 }
2404 DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2405 return 0;
2406
2407out_thread:
2408 pkt_shrink_pktlist(pd);
2409out_mem:
2410 blkdev_put(bdev);
2411 /* This is safe: open() is still holding a reference. */
2412 module_put(THIS_MODULE);
2413 return ret;
2414}
2415
2416static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2417{
2418 struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2419
2420 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
1da177e4
LT
2421
2422 switch (cmd) {
2423 /*
2424 * forward selected CDROM ioctls to CD-ROM, for UDF
2425 */
2426 case CDROMMULTISESSION:
2427 case CDROMREADTOCENTRY:
2428 case CDROM_LAST_WRITTEN:
2429 case CDROM_SEND_PACKET:
2430 case SCSI_IOCTL_SEND_COMMAND:
118326e9 2431 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
1da177e4
LT
2432
2433 case CDROMEJECT:
2434 /*
2435 * The door gets locked when the device is opened, so we
2436 * have to unlock it or else the eject command fails.
2437 */
2438 pkt_lock_door(pd, 0);
118326e9 2439 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
1da177e4
LT
2440
2441 default:
2442 printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
2443 return -ENOTTY;
2444 }
2445
2446 return 0;
2447}
2448
2449static int pkt_media_changed(struct gendisk *disk)
2450{
2451 struct pktcdvd_device *pd = disk->private_data;
2452 struct gendisk *attached_disk;
2453
2454 if (!pd)
2455 return 0;
2456 if (!pd->bdev)
2457 return 0;
2458 attached_disk = pd->bdev->bd_disk;
2459 if (!attached_disk)
2460 return 0;
2461 return attached_disk->fops->media_changed(attached_disk);
2462}
2463
2464static struct block_device_operations pktcdvd_ops = {
2465 .owner = THIS_MODULE,
2466 .open = pkt_open,
2467 .release = pkt_close,
2468 .ioctl = pkt_ioctl,
2469 .media_changed = pkt_media_changed,
2470};
2471
2472/*
2473 * Set up mapping from pktcdvd device to CD-ROM device.
2474 */
2475static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
2476{
2477 int idx;
2478 int ret = -ENOMEM;
2479 struct pktcdvd_device *pd;
2480 struct gendisk *disk;
2481 dev_t dev = new_decode_dev(ctrl_cmd->dev);
2482
2483 for (idx = 0; idx < MAX_WRITERS; idx++)
2484 if (!pkt_devs[idx])
2485 break;
2486 if (idx == MAX_WRITERS) {
2487 printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
2488 return -EBUSY;
2489 }
2490
1107d2e0 2491 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
1da177e4
LT
2492 if (!pd)
2493 return ret;
1da177e4
LT
2494
2495 pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
2496 if (!pd->rb_pool)
2497 goto out_mem;
2498
2499 disk = alloc_disk(1);
2500 if (!disk)
2501 goto out_mem;
2502 pd->disk = disk;
2503
2504 spin_lock_init(&pd->lock);
2505 spin_lock_init(&pd->iosched.lock);
2506 sprintf(pd->name, "pktcdvd%d", idx);
2507 init_waitqueue_head(&pd->wqueue);
2508 pd->bio_queue = RB_ROOT;
2509
2510 disk->major = pkt_major;
2511 disk->first_minor = idx;
2512 disk->fops = &pktcdvd_ops;
2513 disk->flags = GENHD_FL_REMOVABLE;
2514 sprintf(disk->disk_name, "pktcdvd%d", idx);
2515 disk->private_data = pd;
2516 disk->queue = blk_alloc_queue(GFP_KERNEL);
2517 if (!disk->queue)
2518 goto out_mem2;
2519
2520 pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2521 ret = pkt_new_dev(pd, dev);
2522 if (ret)
2523 goto out_new_dev;
2524
2525 add_disk(disk);
2526 pkt_devs[idx] = pd;
2527 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2528 return 0;
2529
2530out_new_dev:
2531 blk_put_queue(disk->queue);
2532out_mem2:
2533 put_disk(disk);
2534out_mem:
2535 if (pd->rb_pool)
2536 mempool_destroy(pd->rb_pool);
2537 kfree(pd);
2538 return ret;
2539}
2540
2541/*
2542 * Tear down mapping from pktcdvd device to CD-ROM device.
2543 */
2544static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
2545{
2546 struct pktcdvd_device *pd;
2547 int idx;
2548 dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
2549
2550 for (idx = 0; idx < MAX_WRITERS; idx++) {
2551 pd = pkt_devs[idx];
2552 if (pd && (pd->pkt_dev == pkt_dev))
2553 break;
2554 }
2555 if (idx == MAX_WRITERS) {
2556 DPRINTK("pktcdvd: dev not setup\n");
2557 return -ENXIO;
2558 }
2559
2560 if (pd->refcnt > 0)
2561 return -EBUSY;
2562
2563 if (!IS_ERR(pd->cdrw.thread))
2564 kthread_stop(pd->cdrw.thread);
2565
2566 blkdev_put(pd->bdev);
2567
2568 pkt_shrink_pktlist(pd);
2569
2570 remove_proc_entry(pd->name, pkt_proc);
2571 DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
2572
2573 del_gendisk(pd->disk);
2574 blk_put_queue(pd->disk->queue);
2575 put_disk(pd->disk);
2576
2577 pkt_devs[idx] = NULL;
2578 mempool_destroy(pd->rb_pool);
2579 kfree(pd);
2580
2581 /* This is safe: open() is still holding a reference. */
2582 module_put(THIS_MODULE);
2583 return 0;
2584}
2585
2586static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2587{
2588 struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2589 if (pd) {
2590 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2591 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2592 } else {
2593 ctrl_cmd->dev = 0;
2594 ctrl_cmd->pkt_dev = 0;
2595 }
2596 ctrl_cmd->num_devices = MAX_WRITERS;
2597}
2598
2599static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2600{
2601 void __user *argp = (void __user *)arg;
2602 struct pkt_ctrl_command ctrl_cmd;
2603 int ret = 0;
2604
2605 if (cmd != PACKET_CTRL_CMD)
2606 return -ENOTTY;
2607
2608 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2609 return -EFAULT;
2610
2611 switch (ctrl_cmd.command) {
2612 case PKT_CTRL_CMD_SETUP:
2613 if (!capable(CAP_SYS_ADMIN))
2614 return -EPERM;
2615 down(&ctl_mutex);
2616 ret = pkt_setup_dev(&ctrl_cmd);
2617 up(&ctl_mutex);
2618 break;
2619 case PKT_CTRL_CMD_TEARDOWN:
2620 if (!capable(CAP_SYS_ADMIN))
2621 return -EPERM;
2622 down(&ctl_mutex);
2623 ret = pkt_remove_dev(&ctrl_cmd);
2624 up(&ctl_mutex);
2625 break;
2626 case PKT_CTRL_CMD_STATUS:
2627 down(&ctl_mutex);
2628 pkt_get_status(&ctrl_cmd);
2629 up(&ctl_mutex);
2630 break;
2631 default:
2632 return -ENOTTY;
2633 }
2634
2635 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2636 return -EFAULT;
2637 return ret;
2638}
2639
2640
2641static struct file_operations pkt_ctl_fops = {
2642 .ioctl = pkt_ctl_ioctl,
2643 .owner = THIS_MODULE,
2644};
2645
2646static struct miscdevice pkt_misc = {
2647 .minor = MISC_DYNAMIC_MINOR,
2648 .name = "pktcdvd",
2649 .devfs_name = "pktcdvd/control",
2650 .fops = &pkt_ctl_fops
2651};
2652
2653static int __init pkt_init(void)
2654{
2655 int ret;
2656
2657 psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
2658 if (!psd_pool)
2659 return -ENOMEM;
2660
2661 ret = register_blkdev(pkt_major, "pktcdvd");
2662 if (ret < 0) {
2663 printk("pktcdvd: Unable to register block device\n");
2664 goto out2;
2665 }
2666 if (!pkt_major)
2667 pkt_major = ret;
2668
2669 ret = misc_register(&pkt_misc);
2670 if (ret) {
2671 printk("pktcdvd: Unable to register misc device\n");
2672 goto out;
2673 }
2674
2675 init_MUTEX(&ctl_mutex);
2676
2677 pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
2678
1da177e4
LT
2679 return 0;
2680
2681out:
2682 unregister_blkdev(pkt_major, "pktcdvd");
2683out2:
2684 mempool_destroy(psd_pool);
2685 return ret;
2686}
2687
2688static void __exit pkt_exit(void)
2689{
2690 remove_proc_entry("pktcdvd", proc_root_driver);
2691 misc_deregister(&pkt_misc);
2692 unregister_blkdev(pkt_major, "pktcdvd");
2693 mempool_destroy(psd_pool);
2694}
2695
2696MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2697MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2698MODULE_LICENSE("GPL");
2699
2700module_init(pkt_init);
2701module_exit(pkt_exit);