]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/sata_mv.c
sata_mv: add power management support for the platform driver
[net-next-2.6.git] / drivers / ata / sata_mv.c
CommitLineData
20f733e7
BR
1/*
2 * sata_mv.c - Marvell SATA support
3 *
40f21b11 4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
8b260248 5 * Copyright 2005: EMC Corporation, all rights reserved.
e2b1be56 6 * Copyright 2005 Red Hat, Inc. All rights reserved.
20f733e7 7 *
40f21b11
ML
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
20f733e7
BR
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 */
27
4a05e209 28/*
85afb934
ML
29 * sata_mv TODO list:
30 *
85afb934
ML
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
2b748a0a 33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
85afb934
ML
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
38 *
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
41 */
4a05e209 42
65ad7fef
ML
43/*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
50 */
51
20f733e7
BR
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/init.h>
56#include <linux/blkdev.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
8d8b6004 59#include <linux/dmapool.h>
20f733e7 60#include <linux/dma-mapping.h>
a9524a76 61#include <linux/device.h>
c77a2f4e 62#include <linux/clk.h>
f351b2d6
SB
63#include <linux/platform_device.h>
64#include <linux/ata_platform.h>
15a32632 65#include <linux/mbus.h>
c46938cc 66#include <linux/bitops.h>
20f733e7 67#include <scsi/scsi_host.h>
193515d5 68#include <scsi/scsi_cmnd.h>
6c08772e 69#include <scsi/scsi_device.h>
20f733e7 70#include <linux/libata.h>
20f733e7
BR
71
72#define DRV_NAME "sata_mv"
cae5a29d 73#define DRV_VERSION "1.28"
20f733e7 74
40f21b11
ML
75/*
76 * module options
77 */
78
79static int msi;
80#ifdef CONFIG_PCI
81module_param(msi, int, S_IRUGO);
82MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
83#endif
84
2b748a0a
ML
85static int irq_coalescing_io_count;
86module_param(irq_coalescing_io_count, int, S_IRUGO);
87MODULE_PARM_DESC(irq_coalescing_io_count,
88 "IRQ coalescing I/O count threshold (0..255)");
89
90static int irq_coalescing_usecs;
91module_param(irq_coalescing_usecs, int, S_IRUGO);
92MODULE_PARM_DESC(irq_coalescing_usecs,
93 "IRQ coalescing time threshold in usecs");
94
20f733e7
BR
95enum {
96 /* BAR's are enumerated in terms of pci_resource_start() terms */
97 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
98 MV_IO_BAR = 2, /* offset 0x18: IO space */
99 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
100
101 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
102 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
103
2b748a0a
ML
104 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
105 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
106 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
107 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
108
20f733e7 109 MV_PCI_REG_BASE = 0,
615ab953 110
2b748a0a
ML
111 /*
112 * Per-chip ("all ports") interrupt coalescing feature.
113 * This is only for GEN_II / GEN_IIE hardware.
114 *
115 * Coalescing defers the interrupt until either the IO_THRESHOLD
116 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
117 */
cae5a29d
ML
118 COAL_REG_BASE = 0x18000,
119 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
2b748a0a
ML
120 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
121
cae5a29d
ML
122 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
123 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
2b748a0a
ML
124
125 /*
126 * Registers for the (unused here) transaction coalescing feature:
127 */
cae5a29d
ML
128 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
129 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
2b748a0a 130
cae5a29d
ML
131 SATAHC0_REG_BASE = 0x20000,
132 FLASH_CTL = 0x1046c,
133 GPIO_PORT_CTL = 0x104f0,
134 RESET_CFG = 0x180d8,
20f733e7
BR
135
136 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
137 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
139 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
140
31961943
BR
141 MV_MAX_Q_DEPTH = 32,
142 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
143
144 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
145 * CRPB needs alignment on a 256B boundary. Size == 256B
31961943
BR
146 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
147 */
148 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
149 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
da2fa9ba 150 MV_MAX_SG_CT = 256,
31961943 151 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
31961943 152
352fab70 153 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
20f733e7 154 MV_PORT_HC_SHIFT = 2,
352fab70
ML
155 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
156 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
157 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
20f733e7
BR
158
159 /* Host Flags */
160 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
7bb3c529 161
c5d3e45a 162 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
91b1a84c 163 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
ad3aef51 164
91b1a84c 165 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
20f733e7 166
40f21b11
ML
167 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
168 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
91b1a84c
ML
169
170 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
ad3aef51 171
31961943
BR
172 CRQB_FLAG_READ = (1 << 0),
173 CRQB_TAG_SHIFT = 1,
c5d3e45a 174 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
e12bef50 175 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
c5d3e45a 176 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
31961943
BR
177 CRQB_CMD_ADDR_SHIFT = 8,
178 CRQB_CMD_CS = (0x2 << 11),
179 CRQB_CMD_LAST = (1 << 15),
180
181 CRPB_FLAG_STATUS_SHIFT = 8,
c5d3e45a
JG
182 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
183 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
31961943
BR
184
185 EPRD_FLAG_END_OF_TBL = (1 << 31),
186
20f733e7
BR
187 /* PCI interface registers */
188
cae5a29d
ML
189 MV_PCI_COMMAND = 0xc00,
190 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
191 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
31961943 192
cae5a29d 193 PCI_MAIN_CMD_STS = 0xd30,
20f733e7
BR
194 STOP_PCI_MASTER = (1 << 2),
195 PCI_MASTER_EMPTY = (1 << 3),
196 GLOB_SFT_RST = (1 << 4),
197
cae5a29d 198 MV_PCI_MODE = 0xd00,
8e7decdb
ML
199 MV_PCI_MODE_MASK = 0x30,
200
522479fb
JG
201 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
202 MV_PCI_DISC_TIMER = 0xd04,
203 MV_PCI_MSI_TRIGGER = 0xc38,
204 MV_PCI_SERR_MASK = 0xc28,
cae5a29d 205 MV_PCI_XBAR_TMOUT = 0x1d04,
522479fb
JG
206 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
207 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
208 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
209 MV_PCI_ERR_COMMAND = 0x1d50,
210
cae5a29d
ML
211 PCI_IRQ_CAUSE = 0x1d58,
212 PCI_IRQ_MASK = 0x1d5c,
20f733e7
BR
213 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
214
cae5a29d
ML
215 PCIE_IRQ_CAUSE = 0x1900,
216 PCIE_IRQ_MASK = 0x1910,
646a4da5 217 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
02a121da 218
7368f919 219 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
cae5a29d
ML
220 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
221 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
222 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
223 SOC_HC_MAIN_IRQ_MASK = 0x20024,
40f21b11
ML
224 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
225 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
20f733e7
BR
226 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
227 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
2b748a0a
ML
228 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
229 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
20f733e7 230 PCI_ERR = (1 << 18),
40f21b11
ML
231 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
232 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
233 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
234 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
235 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
20f733e7
BR
236 GPIO_INT = (1 << 22),
237 SELF_INT = (1 << 23),
238 TWSI_INT = (1 << 24),
239 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
fb621e2f 240 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
e12bef50 241 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
20f733e7
BR
242
243 /* SATAHC registers */
cae5a29d 244 HC_CFG = 0x00,
20f733e7 245
cae5a29d 246 HC_IRQ_CAUSE = 0x14,
352fab70
ML
247 DMA_IRQ = (1 << 0), /* shift by port # */
248 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
20f733e7
BR
249 DEV_IRQ = (1 << 8), /* shift by port # */
250
2b748a0a
ML
251 /*
252 * Per-HC (Host-Controller) interrupt coalescing feature.
253 * This is present on all chip generations.
254 *
255 * Coalescing defers the interrupt until either the IO_THRESHOLD
256 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
257 */
cae5a29d
ML
258 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
259 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
2b748a0a 260
cae5a29d 261 SOC_LED_CTRL = 0x2c,
000b344f
ML
262 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
263 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
264 /* with dev activity LED */
265
20f733e7 266 /* Shadow block registers */
cae5a29d
ML
267 SHD_BLK = 0x100,
268 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
20f733e7
BR
269
270 /* SATA registers */
cae5a29d
ML
271 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
272 SATA_ACTIVE = 0x350,
273 FIS_IRQ_CAUSE = 0x364,
274 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
17c5aab5 275
cae5a29d 276 LTMODE = 0x30c, /* requires read-after-write */
17c5aab5
ML
277 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
278
cae5a29d 279 PHY_MODE2 = 0x330,
47c2b677 280 PHY_MODE3 = 0x310,
cae5a29d
ML
281
282 PHY_MODE4 = 0x314, /* requires read-after-write */
ba069e37
ML
283 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
284 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
285 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
286 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
287
cae5a29d
ML
288 SATA_IFCTL = 0x344,
289 SATA_TESTCTL = 0x348,
290 SATA_IFSTAT = 0x34c,
291 VENDOR_UNIQUE_FIS = 0x35c,
17c5aab5 292
cae5a29d 293 FISCFG = 0x360,
8e7decdb
ML
294 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
295 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
17c5aab5 296
29b7e43c
MM
297 PHY_MODE9_GEN2 = 0x398,
298 PHY_MODE9_GEN1 = 0x39c,
299 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
300
c9d39130 301 MV5_PHY_MODE = 0x74,
cae5a29d
ML
302 MV5_LTMODE = 0x30,
303 MV5_PHY_CTL = 0x0C,
304 SATA_IFCFG = 0x050,
bca1c4eb
JG
305
306 MV_M2_PREAMP_MASK = 0x7e0,
20f733e7
BR
307
308 /* Port registers */
cae5a29d 309 EDMA_CFG = 0,
0c58912e
ML
310 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
311 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
312 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
313 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
314 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
e12bef50
ML
315 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
316 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
20f733e7 317
cae5a29d
ML
318 EDMA_ERR_IRQ_CAUSE = 0x8,
319 EDMA_ERR_IRQ_MASK = 0xc,
6c1153e0
JG
320 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
321 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
322 EDMA_ERR_DEV = (1 << 2), /* device error */
323 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
324 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
325 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
c5d3e45a
JG
326 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
327 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
6c1153e0 328 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
c5d3e45a 329 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
6c1153e0
JG
330 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
331 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
332 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
333 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
646a4da5 334
6c1153e0 335 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
646a4da5
ML
336 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
337 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
338 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
339 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
340
6c1153e0 341 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
646a4da5 342
6c1153e0 343 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
646a4da5
ML
344 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
345 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
346 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
347 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
348 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
349
6c1153e0 350 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
646a4da5 351
6c1153e0 352 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
c5d3e45a
JG
353 EDMA_ERR_OVERRUN_5 = (1 << 5),
354 EDMA_ERR_UNDERRUN_5 = (1 << 6),
646a4da5
ML
355
356 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
357 EDMA_ERR_LNK_CTRL_RX_1 |
358 EDMA_ERR_LNK_CTRL_RX_3 |
85afb934 359 EDMA_ERR_LNK_CTRL_TX,
646a4da5 360
bdd4ddde
JG
361 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
362 EDMA_ERR_PRD_PAR |
363 EDMA_ERR_DEV_DCON |
364 EDMA_ERR_DEV_CON |
365 EDMA_ERR_SERR |
366 EDMA_ERR_SELF_DIS |
6c1153e0 367 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
368 EDMA_ERR_CRPB_PAR |
369 EDMA_ERR_INTRL_PAR |
370 EDMA_ERR_IORDY |
371 EDMA_ERR_LNK_CTRL_RX_2 |
372 EDMA_ERR_LNK_DATA_RX |
373 EDMA_ERR_LNK_DATA_TX |
374 EDMA_ERR_TRANS_PROTO,
e12bef50 375
bdd4ddde
JG
376 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
377 EDMA_ERR_PRD_PAR |
378 EDMA_ERR_DEV_DCON |
379 EDMA_ERR_DEV_CON |
380 EDMA_ERR_OVERRUN_5 |
381 EDMA_ERR_UNDERRUN_5 |
382 EDMA_ERR_SELF_DIS_5 |
6c1153e0 383 EDMA_ERR_CRQB_PAR |
bdd4ddde
JG
384 EDMA_ERR_CRPB_PAR |
385 EDMA_ERR_INTRL_PAR |
386 EDMA_ERR_IORDY,
20f733e7 387
cae5a29d
ML
388 EDMA_REQ_Q_BASE_HI = 0x10,
389 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
31961943 390
cae5a29d 391 EDMA_REQ_Q_OUT_PTR = 0x18,
31961943
BR
392 EDMA_REQ_Q_PTR_SHIFT = 5,
393
cae5a29d
ML
394 EDMA_RSP_Q_BASE_HI = 0x1c,
395 EDMA_RSP_Q_IN_PTR = 0x20,
396 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
31961943
BR
397 EDMA_RSP_Q_PTR_SHIFT = 3,
398
cae5a29d 399 EDMA_CMD = 0x28, /* EDMA command register */
0ea9e179
JG
400 EDMA_EN = (1 << 0), /* enable EDMA */
401 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
8e7decdb
ML
402 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
403
cae5a29d 404 EDMA_STATUS = 0x30, /* EDMA engine status */
8e7decdb
ML
405 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
406 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
20f733e7 407
cae5a29d
ML
408 EDMA_IORDY_TMOUT = 0x34,
409 EDMA_ARB_CFG = 0x38,
8e7decdb 410
cae5a29d
ML
411 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
412 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
da14265e 413
cae5a29d
ML
414 BMDMA_CMD = 0x224, /* bmdma command register */
415 BMDMA_STATUS = 0x228, /* bmdma status register */
416 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
417 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
da14265e 418
31961943
BR
419 /* Host private flags (hp_flags) */
420 MV_HP_FLAG_MSI = (1 << 0),
47c2b677
JG
421 MV_HP_ERRATA_50XXB0 = (1 << 1),
422 MV_HP_ERRATA_50XXB2 = (1 << 2),
423 MV_HP_ERRATA_60X1B2 = (1 << 3),
424 MV_HP_ERRATA_60X1C0 = (1 << 4),
0ea9e179
JG
425 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
426 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
427 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
02a121da 428 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
616d4a98 429 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
1f398472 430 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
000b344f 431 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
20f733e7 432
31961943 433 /* Port private flags (pp_flags) */
0ea9e179 434 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
72109168 435 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
00f42eab 436 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
29d187bb 437 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
d16ab3f6 438 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
20f733e7
BR
439};
440
ee9ccdf7
JG
441#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
442#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
e4e7b892 443#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
8e7decdb 444#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
1f398472 445#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
bca1c4eb 446
15a32632
LB
447#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
448#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
449
095fec88 450enum {
baf14aa1
JG
451 /* DMA boundary 0xffff is required by the s/g splitting
452 * we need on /length/ in mv_fill-sg().
453 */
454 MV_DMA_BOUNDARY = 0xffffU,
095fec88 455
0ea9e179
JG
456 /* mask of register bits containing lower 32 bits
457 * of EDMA request queue DMA address
458 */
095fec88
JG
459 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
460
0ea9e179 461 /* ditto, for response queue */
095fec88
JG
462 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
463};
464
522479fb
JG
465enum chip_type {
466 chip_504x,
467 chip_508x,
468 chip_5080,
469 chip_604x,
470 chip_608x,
e4e7b892
JG
471 chip_6042,
472 chip_7042,
f351b2d6 473 chip_soc,
522479fb
JG
474};
475
31961943
BR
476/* Command ReQuest Block: 32B */
477struct mv_crqb {
e1469874
ML
478 __le32 sg_addr;
479 __le32 sg_addr_hi;
480 __le16 ctrl_flags;
481 __le16 ata_cmd[11];
31961943 482};
20f733e7 483
e4e7b892 484struct mv_crqb_iie {
e1469874
ML
485 __le32 addr;
486 __le32 addr_hi;
487 __le32 flags;
488 __le32 len;
489 __le32 ata_cmd[4];
e4e7b892
JG
490};
491
31961943
BR
492/* Command ResPonse Block: 8B */
493struct mv_crpb {
e1469874
ML
494 __le16 id;
495 __le16 flags;
496 __le32 tmstmp;
20f733e7
BR
497};
498
31961943
BR
499/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
500struct mv_sg {
e1469874
ML
501 __le32 addr;
502 __le32 flags_size;
503 __le32 addr_hi;
504 __le32 reserved;
31961943 505};
20f733e7 506
08da1759
ML
507/*
508 * We keep a local cache of a few frequently accessed port
509 * registers here, to avoid having to read them (very slow)
510 * when switching between EDMA and non-EDMA modes.
511 */
512struct mv_cached_regs {
513 u32 fiscfg;
514 u32 ltmode;
515 u32 haltcond;
c01e8a23 516 u32 unknown_rsvd;
08da1759
ML
517};
518
31961943
BR
519struct mv_port_priv {
520 struct mv_crqb *crqb;
521 dma_addr_t crqb_dma;
522 struct mv_crpb *crpb;
523 dma_addr_t crpb_dma;
eb73d558
ML
524 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
525 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
bdd4ddde
JG
526
527 unsigned int req_idx;
528 unsigned int resp_idx;
529
31961943 530 u32 pp_flags;
08da1759 531 struct mv_cached_regs cached;
29d187bb 532 unsigned int delayed_eh_pmp_map;
31961943
BR
533};
534
bca1c4eb
JG
535struct mv_port_signal {
536 u32 amps;
537 u32 pre;
538};
539
02a121da
ML
540struct mv_host_priv {
541 u32 hp_flags;
96e2c487 542 u32 main_irq_mask;
02a121da
ML
543 struct mv_port_signal signal[8];
544 const struct mv_hw_ops *ops;
f351b2d6
SB
545 int n_ports;
546 void __iomem *base;
7368f919
ML
547 void __iomem *main_irq_cause_addr;
548 void __iomem *main_irq_mask_addr;
cae5a29d
ML
549 u32 irq_cause_offset;
550 u32 irq_mask_offset;
02a121da 551 u32 unmask_all_irqs;
c77a2f4e
SB
552
553#if defined(CONFIG_HAVE_CLK)
554 struct clk *clk;
555#endif
da2fa9ba
ML
556 /*
557 * These consistent DMA memory pools give us guaranteed
558 * alignment for hardware-accessed data structures,
559 * and less memory waste in accomplishing the alignment.
560 */
561 struct dma_pool *crqb_pool;
562 struct dma_pool *crpb_pool;
563 struct dma_pool *sg_tbl_pool;
02a121da
ML
564};
565
47c2b677 566struct mv_hw_ops {
2a47ce06
JG
567 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
568 unsigned int port);
47c2b677
JG
569 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
570 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
571 void __iomem *mmio);
c9d39130
JG
572 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
573 unsigned int n_hc);
522479fb 574 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 575 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
47c2b677
JG
576};
577
82ef04fb
TH
578static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
579static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
580static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
581static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
31961943
BR
582static int mv_port_start(struct ata_port *ap);
583static void mv_port_stop(struct ata_port *ap);
3e4a1391 584static int mv_qc_defer(struct ata_queued_cmd *qc);
31961943 585static void mv_qc_prep(struct ata_queued_cmd *qc);
e4e7b892 586static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
9a3d9eb0 587static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
a1efdaba
TH
588static int mv_hardreset(struct ata_link *link, unsigned int *class,
589 unsigned long deadline);
bdd4ddde
JG
590static void mv_eh_freeze(struct ata_port *ap);
591static void mv_eh_thaw(struct ata_port *ap);
f273827e 592static void mv6_dev_config(struct ata_device *dev);
20f733e7 593
2a47ce06
JG
594static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
595 unsigned int port);
47c2b677
JG
596static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
597static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
598 void __iomem *mmio);
c9d39130
JG
599static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
600 unsigned int n_hc);
522479fb 601static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
7bb3c529 602static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
47c2b677 603
2a47ce06
JG
604static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 unsigned int port);
47c2b677
JG
606static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
608 void __iomem *mmio);
c9d39130
JG
609static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
610 unsigned int n_hc);
522479fb 611static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
f351b2d6
SB
612static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
613 void __iomem *mmio);
614static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
615 void __iomem *mmio);
616static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
617 void __iomem *mmio, unsigned int n_hc);
618static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
619 void __iomem *mmio);
620static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
29b7e43c
MM
621static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
622 void __iomem *mmio, unsigned int port);
7bb3c529 623static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
e12bef50 624static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130 625 unsigned int port_no);
e12bef50 626static int mv_stop_edma(struct ata_port *ap);
b562468c 627static int mv_stop_edma_engine(void __iomem *port_mmio);
00b81235 628static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
47c2b677 629
e49856d8
ML
630static void mv_pmp_select(struct ata_port *ap, int pmp);
631static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
632 unsigned long deadline);
633static int mv_softreset(struct ata_link *link, unsigned int *class,
634 unsigned long deadline);
29d187bb 635static void mv_pmp_error_handler(struct ata_port *ap);
4c299ca3
ML
636static void mv_process_crpb_entries(struct ata_port *ap,
637 struct mv_port_priv *pp);
47c2b677 638
da14265e
ML
639static void mv_sff_irq_clear(struct ata_port *ap);
640static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
641static void mv_bmdma_setup(struct ata_queued_cmd *qc);
642static void mv_bmdma_start(struct ata_queued_cmd *qc);
643static void mv_bmdma_stop(struct ata_queued_cmd *qc);
644static u8 mv_bmdma_status(struct ata_port *ap);
d16ab3f6 645static u8 mv_sff_check_status(struct ata_port *ap);
da14265e 646
eb73d558
ML
647/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
648 * because we have to allow room for worst case splitting of
649 * PRDs for 64K boundaries in mv_fill_sg().
650 */
c5d3e45a 651static struct scsi_host_template mv5_sht = {
68d1d07b 652 ATA_BASE_SHT(DRV_NAME),
baf14aa1 653 .sg_tablesize = MV_MAX_SG_CT / 2,
c5d3e45a 654 .dma_boundary = MV_DMA_BOUNDARY,
c5d3e45a
JG
655};
656
657static struct scsi_host_template mv6_sht = {
68d1d07b 658 ATA_NCQ_SHT(DRV_NAME),
138bfdd0 659 .can_queue = MV_MAX_Q_DEPTH - 1,
baf14aa1 660 .sg_tablesize = MV_MAX_SG_CT / 2,
20f733e7 661 .dma_boundary = MV_DMA_BOUNDARY,
20f733e7
BR
662};
663
029cfd6b
TH
664static struct ata_port_operations mv5_ops = {
665 .inherits = &ata_sff_port_ops,
c9d39130 666
c96f1732
AC
667 .lost_interrupt = ATA_OP_NULL,
668
3e4a1391 669 .qc_defer = mv_qc_defer,
c9d39130
JG
670 .qc_prep = mv_qc_prep,
671 .qc_issue = mv_qc_issue,
c9d39130 672
bdd4ddde
JG
673 .freeze = mv_eh_freeze,
674 .thaw = mv_eh_thaw,
a1efdaba 675 .hardreset = mv_hardreset,
a1efdaba 676 .error_handler = ata_std_error_handler, /* avoid SFF EH */
029cfd6b 677 .post_internal_cmd = ATA_OP_NULL,
bdd4ddde 678
c9d39130
JG
679 .scr_read = mv5_scr_read,
680 .scr_write = mv5_scr_write,
681
682 .port_start = mv_port_start,
683 .port_stop = mv_port_stop,
c9d39130
JG
684};
685
029cfd6b
TH
686static struct ata_port_operations mv6_ops = {
687 .inherits = &mv5_ops,
f273827e 688 .dev_config = mv6_dev_config,
20f733e7
BR
689 .scr_read = mv_scr_read,
690 .scr_write = mv_scr_write,
691
e49856d8
ML
692 .pmp_hardreset = mv_pmp_hardreset,
693 .pmp_softreset = mv_softreset,
694 .softreset = mv_softreset,
29d187bb 695 .error_handler = mv_pmp_error_handler,
da14265e 696
40f21b11 697 .sff_check_status = mv_sff_check_status,
da14265e
ML
698 .sff_irq_clear = mv_sff_irq_clear,
699 .check_atapi_dma = mv_check_atapi_dma,
700 .bmdma_setup = mv_bmdma_setup,
701 .bmdma_start = mv_bmdma_start,
702 .bmdma_stop = mv_bmdma_stop,
703 .bmdma_status = mv_bmdma_status,
20f733e7
BR
704};
705
029cfd6b
TH
706static struct ata_port_operations mv_iie_ops = {
707 .inherits = &mv6_ops,
708 .dev_config = ATA_OP_NULL,
e4e7b892 709 .qc_prep = mv_qc_prep_iie,
e4e7b892
JG
710};
711
98ac62de 712static const struct ata_port_info mv_port_info[] = {
20f733e7 713 { /* chip_504x */
91b1a84c 714 .flags = MV_GEN_I_FLAGS,
c361acbc 715 .pio_mask = ATA_PIO4,
bf6263a8 716 .udma_mask = ATA_UDMA6,
c9d39130 717 .port_ops = &mv5_ops,
20f733e7
BR
718 },
719 { /* chip_508x */
91b1a84c 720 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 721 .pio_mask = ATA_PIO4,
bf6263a8 722 .udma_mask = ATA_UDMA6,
c9d39130 723 .port_ops = &mv5_ops,
20f733e7 724 },
47c2b677 725 { /* chip_5080 */
91b1a84c 726 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 727 .pio_mask = ATA_PIO4,
bf6263a8 728 .udma_mask = ATA_UDMA6,
c9d39130 729 .port_ops = &mv5_ops,
47c2b677 730 },
20f733e7 731 { /* chip_604x */
91b1a84c 732 .flags = MV_GEN_II_FLAGS,
c361acbc 733 .pio_mask = ATA_PIO4,
bf6263a8 734 .udma_mask = ATA_UDMA6,
c9d39130 735 .port_ops = &mv6_ops,
20f733e7
BR
736 },
737 { /* chip_608x */
91b1a84c 738 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
c361acbc 739 .pio_mask = ATA_PIO4,
bf6263a8 740 .udma_mask = ATA_UDMA6,
c9d39130 741 .port_ops = &mv6_ops,
20f733e7 742 },
e4e7b892 743 { /* chip_6042 */
91b1a84c 744 .flags = MV_GEN_IIE_FLAGS,
c361acbc 745 .pio_mask = ATA_PIO4,
bf6263a8 746 .udma_mask = ATA_UDMA6,
e4e7b892
JG
747 .port_ops = &mv_iie_ops,
748 },
749 { /* chip_7042 */
91b1a84c 750 .flags = MV_GEN_IIE_FLAGS,
c361acbc 751 .pio_mask = ATA_PIO4,
bf6263a8 752 .udma_mask = ATA_UDMA6,
e4e7b892
JG
753 .port_ops = &mv_iie_ops,
754 },
f351b2d6 755 { /* chip_soc */
91b1a84c 756 .flags = MV_GEN_IIE_FLAGS,
c361acbc 757 .pio_mask = ATA_PIO4,
17c5aab5
ML
758 .udma_mask = ATA_UDMA6,
759 .port_ops = &mv_iie_ops,
f351b2d6 760 },
20f733e7
BR
761};
762
3b7d697d 763static const struct pci_device_id mv_pci_tbl[] = {
2d2744fc
JG
764 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
765 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
766 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
767 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
46c5784c
ML
768 /* RocketRAID 1720/174x have different identifiers */
769 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
4462254a
ML
770 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
771 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
2d2744fc
JG
772
773 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
774 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
775 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
776 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
777 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
778
779 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
780
d9f9c6bc
FA
781 /* Adaptec 1430SA */
782 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
783
02a121da 784 /* Marvell 7042 support */
6a3d586d
MT
785 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
786
02a121da
ML
787 /* Highpoint RocketRAID PCIe series */
788 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
789 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
790
2d2744fc 791 { } /* terminate list */
20f733e7
BR
792};
793
47c2b677
JG
794static const struct mv_hw_ops mv5xxx_ops = {
795 .phy_errata = mv5_phy_errata,
796 .enable_leds = mv5_enable_leds,
797 .read_preamp = mv5_read_preamp,
798 .reset_hc = mv5_reset_hc,
522479fb
JG
799 .reset_flash = mv5_reset_flash,
800 .reset_bus = mv5_reset_bus,
47c2b677
JG
801};
802
803static const struct mv_hw_ops mv6xxx_ops = {
804 .phy_errata = mv6_phy_errata,
805 .enable_leds = mv6_enable_leds,
806 .read_preamp = mv6_read_preamp,
807 .reset_hc = mv6_reset_hc,
522479fb
JG
808 .reset_flash = mv6_reset_flash,
809 .reset_bus = mv_reset_pci_bus,
47c2b677
JG
810};
811
f351b2d6
SB
812static const struct mv_hw_ops mv_soc_ops = {
813 .phy_errata = mv6_phy_errata,
814 .enable_leds = mv_soc_enable_leds,
815 .read_preamp = mv_soc_read_preamp,
816 .reset_hc = mv_soc_reset_hc,
817 .reset_flash = mv_soc_reset_flash,
818 .reset_bus = mv_soc_reset_bus,
819};
820
29b7e43c
MM
821static const struct mv_hw_ops mv_soc_65n_ops = {
822 .phy_errata = mv_soc_65n_phy_errata,
823 .enable_leds = mv_soc_enable_leds,
824 .reset_hc = mv_soc_reset_hc,
825 .reset_flash = mv_soc_reset_flash,
826 .reset_bus = mv_soc_reset_bus,
827};
828
20f733e7
BR
829/*
830 * Functions
831 */
832
833static inline void writelfl(unsigned long data, void __iomem *addr)
834{
835 writel(data, addr);
836 (void) readl(addr); /* flush to avoid PCI posted write */
837}
838
c9d39130
JG
839static inline unsigned int mv_hc_from_port(unsigned int port)
840{
841 return port >> MV_PORT_HC_SHIFT;
842}
843
844static inline unsigned int mv_hardport_from_port(unsigned int port)
845{
846 return port & MV_PORT_MASK;
847}
848
1cfd19ae
ML
849/*
850 * Consolidate some rather tricky bit shift calculations.
851 * This is hot-path stuff, so not a function.
852 * Simple code, with two return values, so macro rather than inline.
853 *
854 * port is the sole input, in range 0..7.
7368f919
ML
855 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
856 * hardport is the other output, in range 0..3.
1cfd19ae
ML
857 *
858 * Note that port and hardport may be the same variable in some cases.
859 */
860#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
861{ \
862 shift = mv_hc_from_port(port) * HC_SHIFT; \
863 hardport = mv_hardport_from_port(port); \
864 shift += hardport * 2; \
865}
866
352fab70
ML
867static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
868{
cae5a29d 869 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
352fab70
ML
870}
871
c9d39130
JG
872static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
873 unsigned int port)
874{
875 return mv_hc_base(base, mv_hc_from_port(port));
876}
877
20f733e7
BR
878static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
879{
c9d39130 880 return mv_hc_base_from_port(base, port) +
8b260248 881 MV_SATAHC_ARBTR_REG_SZ +
c9d39130 882 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
20f733e7
BR
883}
884
e12bef50
ML
885static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
886{
887 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
888 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
889
890 return hc_mmio + ofs;
891}
892
f351b2d6
SB
893static inline void __iomem *mv_host_base(struct ata_host *host)
894{
895 struct mv_host_priv *hpriv = host->private_data;
896 return hpriv->base;
897}
898
20f733e7
BR
899static inline void __iomem *mv_ap_base(struct ata_port *ap)
900{
f351b2d6 901 return mv_port_base(mv_host_base(ap->host), ap->port_no);
20f733e7
BR
902}
903
cca3974e 904static inline int mv_get_hc_count(unsigned long port_flags)
31961943 905{
cca3974e 906 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
31961943
BR
907}
908
08da1759
ML
909/**
910 * mv_save_cached_regs - (re-)initialize cached port registers
911 * @ap: the port whose registers we are caching
912 *
913 * Initialize the local cache of port registers,
914 * so that reading them over and over again can
915 * be avoided on the hotter paths of this driver.
916 * This saves a few microseconds each time we switch
917 * to/from EDMA mode to perform (eg.) a drive cache flush.
918 */
919static void mv_save_cached_regs(struct ata_port *ap)
920{
921 void __iomem *port_mmio = mv_ap_base(ap);
922 struct mv_port_priv *pp = ap->private_data;
923
cae5a29d
ML
924 pp->cached.fiscfg = readl(port_mmio + FISCFG);
925 pp->cached.ltmode = readl(port_mmio + LTMODE);
926 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
927 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
08da1759
ML
928}
929
930/**
931 * mv_write_cached_reg - write to a cached port register
932 * @addr: hardware address of the register
933 * @old: pointer to cached value of the register
934 * @new: new value for the register
935 *
936 * Write a new value to a cached register,
937 * but only if the value is different from before.
938 */
939static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
940{
941 if (new != *old) {
12f3b6d7 942 unsigned long laddr;
08da1759 943 *old = new;
12f3b6d7
ML
944 /*
945 * Workaround for 88SX60x1-B2 FEr SATA#13:
946 * Read-after-write is needed to prevent generating 64-bit
947 * write cycles on the PCI bus for SATA interface registers
948 * at offsets ending in 0x4 or 0xc.
949 *
950 * Looks like a lot of fuss, but it avoids an unnecessary
951 * +1 usec read-after-write delay for unaffected registers.
952 */
953 laddr = (long)addr & 0xffff;
954 if (laddr >= 0x300 && laddr <= 0x33c) {
955 laddr &= 0x000f;
956 if (laddr == 0x4 || laddr == 0xc) {
957 writelfl(new, addr); /* read after write */
958 return;
959 }
960 }
961 writel(new, addr); /* unaffected by the errata */
08da1759
ML
962 }
963}
964
c5d3e45a
JG
965static void mv_set_edma_ptrs(void __iomem *port_mmio,
966 struct mv_host_priv *hpriv,
967 struct mv_port_priv *pp)
968{
bdd4ddde
JG
969 u32 index;
970
c5d3e45a
JG
971 /*
972 * initialize request queue
973 */
fcfb1f77
ML
974 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
975 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
bdd4ddde 976
c5d3e45a 977 WARN_ON(pp->crqb_dma & 0x3ff);
cae5a29d 978 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
bdd4ddde 979 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
cae5a29d
ML
980 port_mmio + EDMA_REQ_Q_IN_PTR);
981 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
c5d3e45a
JG
982
983 /*
984 * initialize response queue
985 */
fcfb1f77
ML
986 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
987 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
bdd4ddde 988
c5d3e45a 989 WARN_ON(pp->crpb_dma & 0xff);
cae5a29d
ML
990 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
991 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
bdd4ddde 992 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
cae5a29d 993 port_mmio + EDMA_RSP_Q_OUT_PTR);
c5d3e45a
JG
994}
995
2b748a0a
ML
996static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
997{
998 /*
999 * When writing to the main_irq_mask in hardware,
1000 * we must ensure exclusivity between the interrupt coalescing bits
1001 * and the corresponding individual port DONE_IRQ bits.
1002 *
1003 * Note that this register is really an "IRQ enable" register,
1004 * not an "IRQ mask" register as Marvell's naming might suggest.
1005 */
1006 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1007 mask &= ~DONE_IRQ_0_3;
1008 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1009 mask &= ~DONE_IRQ_4_7;
1010 writelfl(mask, hpriv->main_irq_mask_addr);
1011}
1012
c4de573b
ML
1013static void mv_set_main_irq_mask(struct ata_host *host,
1014 u32 disable_bits, u32 enable_bits)
1015{
1016 struct mv_host_priv *hpriv = host->private_data;
1017 u32 old_mask, new_mask;
1018
96e2c487 1019 old_mask = hpriv->main_irq_mask;
c4de573b 1020 new_mask = (old_mask & ~disable_bits) | enable_bits;
96e2c487
ML
1021 if (new_mask != old_mask) {
1022 hpriv->main_irq_mask = new_mask;
2b748a0a 1023 mv_write_main_irq_mask(new_mask, hpriv);
96e2c487 1024 }
c4de573b
ML
1025}
1026
1027static void mv_enable_port_irqs(struct ata_port *ap,
1028 unsigned int port_bits)
1029{
1030 unsigned int shift, hardport, port = ap->port_no;
1031 u32 disable_bits, enable_bits;
1032
1033 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1034
1035 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1036 enable_bits = port_bits << shift;
1037 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1038}
1039
00b81235
ML
1040static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1041 void __iomem *port_mmio,
1042 unsigned int port_irqs)
1043{
1044 struct mv_host_priv *hpriv = ap->host->private_data;
1045 int hardport = mv_hardport_from_port(ap->port_no);
1046 void __iomem *hc_mmio = mv_hc_base_from_port(
1047 mv_host_base(ap->host), ap->port_no);
1048 u32 hc_irq_cause;
1049
1050 /* clear EDMA event indicators, if any */
cae5a29d 1051 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
00b81235
ML
1052
1053 /* clear pending irq events */
1054 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 1055 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
00b81235
ML
1056
1057 /* clear FIS IRQ Cause */
1058 if (IS_GEN_IIE(hpriv))
cae5a29d 1059 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
00b81235
ML
1060
1061 mv_enable_port_irqs(ap, port_irqs);
1062}
1063
2b748a0a
ML
1064static void mv_set_irq_coalescing(struct ata_host *host,
1065 unsigned int count, unsigned int usecs)
1066{
1067 struct mv_host_priv *hpriv = host->private_data;
1068 void __iomem *mmio = hpriv->base, *hc_mmio;
1069 u32 coal_enable = 0;
1070 unsigned long flags;
6abf4678 1071 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
2b748a0a
ML
1072 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1073 ALL_PORTS_COAL_DONE;
1074
1075 /* Disable IRQ coalescing if either threshold is zero */
1076 if (!usecs || !count) {
1077 clks = count = 0;
1078 } else {
1079 /* Respect maximum limits of the hardware */
1080 clks = usecs * COAL_CLOCKS_PER_USEC;
1081 if (clks > MAX_COAL_TIME_THRESHOLD)
1082 clks = MAX_COAL_TIME_THRESHOLD;
1083 if (count > MAX_COAL_IO_COUNT)
1084 count = MAX_COAL_IO_COUNT;
1085 }
1086
1087 spin_lock_irqsave(&host->lock, flags);
6abf4678 1088 mv_set_main_irq_mask(host, coal_disable, 0);
2b748a0a 1089
6abf4678 1090 if (is_dual_hc && !IS_GEN_I(hpriv)) {
2b748a0a 1091 /*
6abf4678
ML
1092 * GEN_II/GEN_IIE with dual host controllers:
1093 * one set of global thresholds for the entire chip.
2b748a0a 1094 */
cae5a29d
ML
1095 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1096 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
2b748a0a 1097 /* clear leftover coal IRQ bit */
cae5a29d 1098 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
6abf4678
ML
1099 if (count)
1100 coal_enable = ALL_PORTS_COAL_DONE;
1101 clks = count = 0; /* force clearing of regular regs below */
2b748a0a 1102 }
6abf4678 1103
2b748a0a
ML
1104 /*
1105 * All chips: independent thresholds for each HC on the chip.
1106 */
1107 hc_mmio = mv_hc_base_from_port(mmio, 0);
cae5a29d
ML
1108 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1109 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1110 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1111 if (count)
1112 coal_enable |= PORTS_0_3_COAL_DONE;
1113 if (is_dual_hc) {
2b748a0a 1114 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
cae5a29d
ML
1115 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1116 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1117 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
6abf4678
ML
1118 if (count)
1119 coal_enable |= PORTS_4_7_COAL_DONE;
2b748a0a 1120 }
2b748a0a 1121
6abf4678 1122 mv_set_main_irq_mask(host, 0, coal_enable);
2b748a0a
ML
1123 spin_unlock_irqrestore(&host->lock, flags);
1124}
1125
05b308e1 1126/**
00b81235 1127 * mv_start_edma - Enable eDMA engine
05b308e1
BR
1128 * @base: port base address
1129 * @pp: port private data
1130 *
beec7dbc
TH
1131 * Verify the local cache of the eDMA state is accurate with a
1132 * WARN_ON.
05b308e1
BR
1133 *
1134 * LOCKING:
1135 * Inherited from caller.
1136 */
00b81235 1137static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
72109168 1138 struct mv_port_priv *pp, u8 protocol)
20f733e7 1139{
72109168
ML
1140 int want_ncq = (protocol == ATA_PROT_NCQ);
1141
1142 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1143 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1144 if (want_ncq != using_ncq)
b562468c 1145 mv_stop_edma(ap);
72109168 1146 }
c5d3e45a 1147 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
0c58912e 1148 struct mv_host_priv *hpriv = ap->host->private_data;
0c58912e 1149
00b81235 1150 mv_edma_cfg(ap, want_ncq, 1);
0c58912e 1151
f630d562 1152 mv_set_edma_ptrs(port_mmio, hpriv, pp);
00b81235 1153 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
bdd4ddde 1154
cae5a29d 1155 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
afb0edd9
BR
1156 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1157 }
20f733e7
BR
1158}
1159
9b2c4e0b
ML
1160static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1161{
1162 void __iomem *port_mmio = mv_ap_base(ap);
1163 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1164 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1165 int i;
1166
1167 /*
1168 * Wait for the EDMA engine to finish transactions in progress.
c46938cc
ML
1169 * No idea what a good "timeout" value might be, but measurements
1170 * indicate that it often requires hundreds of microseconds
1171 * with two drives in-use. So we use the 15msec value above
1172 * as a rough guess at what even more drives might require.
9b2c4e0b
ML
1173 */
1174 for (i = 0; i < timeout; ++i) {
cae5a29d 1175 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
9b2c4e0b
ML
1176 if ((edma_stat & empty_idle) == empty_idle)
1177 break;
1178 udelay(per_loop);
1179 }
1180 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1181}
1182
05b308e1 1183/**
e12bef50 1184 * mv_stop_edma_engine - Disable eDMA engine
b562468c 1185 * @port_mmio: io base address
05b308e1
BR
1186 *
1187 * LOCKING:
1188 * Inherited from caller.
1189 */
b562468c 1190static int mv_stop_edma_engine(void __iomem *port_mmio)
20f733e7 1191{
b562468c 1192 int i;
31961943 1193
b562468c 1194 /* Disable eDMA. The disable bit auto clears. */
cae5a29d 1195 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
8b260248 1196
b562468c
ML
1197 /* Wait for the chip to confirm eDMA is off. */
1198 for (i = 10000; i > 0; i--) {
cae5a29d 1199 u32 reg = readl(port_mmio + EDMA_CMD);
4537deb5 1200 if (!(reg & EDMA_EN))
b562468c
ML
1201 return 0;
1202 udelay(10);
31961943 1203 }
b562468c 1204 return -EIO;
20f733e7
BR
1205}
1206
e12bef50 1207static int mv_stop_edma(struct ata_port *ap)
0ea9e179 1208{
b562468c
ML
1209 void __iomem *port_mmio = mv_ap_base(ap);
1210 struct mv_port_priv *pp = ap->private_data;
66e57a2c 1211 int err = 0;
0ea9e179 1212
b562468c
ML
1213 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1214 return 0;
1215 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
9b2c4e0b 1216 mv_wait_for_edma_empty_idle(ap);
b562468c
ML
1217 if (mv_stop_edma_engine(port_mmio)) {
1218 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
66e57a2c 1219 err = -EIO;
b562468c 1220 }
66e57a2c
ML
1221 mv_edma_cfg(ap, 0, 0);
1222 return err;
0ea9e179
JG
1223}
1224
8a70f8dc 1225#ifdef ATA_DEBUG
31961943 1226static void mv_dump_mem(void __iomem *start, unsigned bytes)
20f733e7 1227{
31961943
BR
1228 int b, w;
1229 for (b = 0; b < bytes; ) {
1230 DPRINTK("%p: ", start + b);
1231 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e 1232 printk("%08x ", readl(start + b));
31961943
BR
1233 b += sizeof(u32);
1234 }
1235 printk("\n");
1236 }
31961943 1237}
8a70f8dc
JG
1238#endif
1239
31961943
BR
1240static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1241{
1242#ifdef ATA_DEBUG
1243 int b, w;
1244 u32 dw;
1245 for (b = 0; b < bytes; ) {
1246 DPRINTK("%02x: ", b);
1247 for (w = 0; b < bytes && w < 4; w++) {
2dcb407e
JG
1248 (void) pci_read_config_dword(pdev, b, &dw);
1249 printk("%08x ", dw);
31961943
BR
1250 b += sizeof(u32);
1251 }
1252 printk("\n");
1253 }
1254#endif
1255}
1256static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1257 struct pci_dev *pdev)
1258{
1259#ifdef ATA_DEBUG
8b260248 1260 void __iomem *hc_base = mv_hc_base(mmio_base,
31961943
BR
1261 port >> MV_PORT_HC_SHIFT);
1262 void __iomem *port_base;
1263 int start_port, num_ports, p, start_hc, num_hcs, hc;
1264
1265 if (0 > port) {
1266 start_hc = start_port = 0;
1267 num_ports = 8; /* shld be benign for 4 port devs */
1268 num_hcs = 2;
1269 } else {
1270 start_hc = port >> MV_PORT_HC_SHIFT;
1271 start_port = port;
1272 num_ports = num_hcs = 1;
1273 }
8b260248 1274 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
31961943
BR
1275 num_ports > 1 ? num_ports - 1 : start_port);
1276
1277 if (NULL != pdev) {
1278 DPRINTK("PCI config space regs:\n");
1279 mv_dump_pci_cfg(pdev, 0x68);
1280 }
1281 DPRINTK("PCI regs:\n");
1282 mv_dump_mem(mmio_base+0xc00, 0x3c);
1283 mv_dump_mem(mmio_base+0xd00, 0x34);
1284 mv_dump_mem(mmio_base+0xf00, 0x4);
1285 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1286 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
d220c37e 1287 hc_base = mv_hc_base(mmio_base, hc);
31961943
BR
1288 DPRINTK("HC regs (HC %i):\n", hc);
1289 mv_dump_mem(hc_base, 0x1c);
1290 }
1291 for (p = start_port; p < start_port + num_ports; p++) {
1292 port_base = mv_port_base(mmio_base, p);
2dcb407e 1293 DPRINTK("EDMA regs (port %i):\n", p);
31961943 1294 mv_dump_mem(port_base, 0x54);
2dcb407e 1295 DPRINTK("SATA regs (port %i):\n", p);
31961943
BR
1296 mv_dump_mem(port_base+0x300, 0x60);
1297 }
1298#endif
20f733e7
BR
1299}
1300
1301static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1302{
1303 unsigned int ofs;
1304
1305 switch (sc_reg_in) {
1306 case SCR_STATUS:
1307 case SCR_CONTROL:
1308 case SCR_ERROR:
cae5a29d 1309 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
20f733e7
BR
1310 break;
1311 case SCR_ACTIVE:
cae5a29d 1312 ofs = SATA_ACTIVE; /* active is not with the others */
20f733e7
BR
1313 break;
1314 default:
1315 ofs = 0xffffffffU;
1316 break;
1317 }
1318 return ofs;
1319}
1320
82ef04fb 1321static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
20f733e7
BR
1322{
1323 unsigned int ofs = mv_scr_offset(sc_reg_in);
1324
da3dbb17 1325 if (ofs != 0xffffffffU) {
82ef04fb 1326 *val = readl(mv_ap_base(link->ap) + ofs);
da3dbb17
TH
1327 return 0;
1328 } else
1329 return -EINVAL;
20f733e7
BR
1330}
1331
82ef04fb 1332static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
20f733e7
BR
1333{
1334 unsigned int ofs = mv_scr_offset(sc_reg_in);
1335
da3dbb17 1336 if (ofs != 0xffffffffU) {
20091773
ML
1337 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1338 if (sc_reg_in == SCR_CONTROL) {
1339 /*
1340 * Workaround for 88SX60x1 FEr SATA#26:
1341 *
1342 * COMRESETs have to take care not to accidently
1343 * put the drive to sleep when writing SCR_CONTROL.
1344 * Setting bits 12..15 prevents this problem.
1345 *
1346 * So if we see an outbound COMMRESET, set those bits.
1347 * Ditto for the followup write that clears the reset.
1348 *
1349 * The proprietary driver does this for
1350 * all chip versions, and so do we.
1351 */
1352 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1353 val |= 0xf000;
1354 }
1355 writelfl(val, addr);
da3dbb17
TH
1356 return 0;
1357 } else
1358 return -EINVAL;
20f733e7
BR
1359}
1360
f273827e
ML
1361static void mv6_dev_config(struct ata_device *adev)
1362{
1363 /*
e49856d8
ML
1364 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1365 *
1366 * Gen-II does not support NCQ over a port multiplier
1367 * (no FIS-based switching).
f273827e 1368 */
e49856d8 1369 if (adev->flags & ATA_DFLAG_NCQ) {
352fab70 1370 if (sata_pmp_attached(adev->link->ap)) {
e49856d8 1371 adev->flags &= ~ATA_DFLAG_NCQ;
352fab70
ML
1372 ata_dev_printk(adev, KERN_INFO,
1373 "NCQ disabled for command-based switching\n");
352fab70 1374 }
e49856d8 1375 }
f273827e
ML
1376}
1377
3e4a1391
ML
1378static int mv_qc_defer(struct ata_queued_cmd *qc)
1379{
1380 struct ata_link *link = qc->dev->link;
1381 struct ata_port *ap = link->ap;
1382 struct mv_port_priv *pp = ap->private_data;
1383
29d187bb
ML
1384 /*
1385 * Don't allow new commands if we're in a delayed EH state
1386 * for NCQ and/or FIS-based switching.
1387 */
1388 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1389 return ATA_DEFER_PORT;
159a7ff7
GG
1390
1391 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1392 * can run concurrently.
1393 * set excl_link when we want to send a PIO command in DMA mode
1394 * or a non-NCQ command in NCQ mode.
1395 * When we receive a command from that link, and there are no
1396 * outstanding commands, mark a flag to clear excl_link and let
1397 * the command go through.
1398 */
1399 if (unlikely(ap->excl_link)) {
1400 if (link == ap->excl_link) {
1401 if (ap->nr_active_links)
1402 return ATA_DEFER_PORT;
1403 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1404 return 0;
1405 } else
1406 return ATA_DEFER_PORT;
1407 }
1408
3e4a1391
ML
1409 /*
1410 * If the port is completely idle, then allow the new qc.
1411 */
1412 if (ap->nr_active_links == 0)
1413 return 0;
1414
4bdee6c5
TH
1415 /*
1416 * The port is operating in host queuing mode (EDMA) with NCQ
1417 * enabled, allow multiple NCQ commands. EDMA also allows
1418 * queueing multiple DMA commands but libata core currently
1419 * doesn't allow it.
1420 */
1421 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
159a7ff7
GG
1422 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1423 if (ata_is_ncq(qc->tf.protocol))
1424 return 0;
1425 else {
1426 ap->excl_link = link;
1427 return ATA_DEFER_PORT;
1428 }
1429 }
4bdee6c5 1430
3e4a1391
ML
1431 return ATA_DEFER_PORT;
1432}
1433
08da1759 1434static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
e49856d8 1435{
08da1759
ML
1436 struct mv_port_priv *pp = ap->private_data;
1437 void __iomem *port_mmio;
00f42eab 1438
08da1759
ML
1439 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1440 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1441 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
00f42eab 1442
08da1759
ML
1443 ltmode = *old_ltmode & ~LTMODE_BIT8;
1444 haltcond = *old_haltcond | EDMA_ERR_DEV;
00f42eab
ML
1445
1446 if (want_fbs) {
08da1759
ML
1447 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1448 ltmode = *old_ltmode | LTMODE_BIT8;
4c299ca3 1449 if (want_ncq)
08da1759 1450 haltcond &= ~EDMA_ERR_DEV;
4c299ca3 1451 else
08da1759
ML
1452 fiscfg |= FISCFG_WAIT_DEV_ERR;
1453 } else {
1454 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
e49856d8 1455 }
00f42eab 1456
08da1759 1457 port_mmio = mv_ap_base(ap);
cae5a29d
ML
1458 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1459 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1460 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
f273827e
ML
1461}
1462
dd2890f6
ML
1463static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1464{
1465 struct mv_host_priv *hpriv = ap->host->private_data;
1466 u32 old, new;
1467
1468 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
cae5a29d 1469 old = readl(hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1470 if (want_ncq)
1471 new = old | (1 << 22);
1472 else
1473 new = old & ~(1 << 22);
1474 if (new != old)
cae5a29d 1475 writel(new, hpriv->base + GPIO_PORT_CTL);
dd2890f6
ML
1476}
1477
c01e8a23 1478/**
40f21b11
ML
1479 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1480 * @ap: Port being initialized
c01e8a23
ML
1481 *
1482 * There are two DMA modes on these chips: basic DMA, and EDMA.
1483 *
1484 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1485 * of basic DMA on the GEN_IIE versions of the chips.
1486 *
1487 * This bit survives EDMA resets, and must be set for basic DMA
1488 * to function, and should be cleared when EDMA is active.
1489 */
1490static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1491{
1492 struct mv_port_priv *pp = ap->private_data;
1493 u32 new, *old = &pp->cached.unknown_rsvd;
1494
1495 if (enable_bmdma)
1496 new = *old | 1;
1497 else
1498 new = *old & ~1;
cae5a29d 1499 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
c01e8a23
ML
1500}
1501
000b344f
ML
1502/*
1503 * SOC chips have an issue whereby the HDD LEDs don't always blink
1504 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1505 * of the SOC takes care of it, generating a steady blink rate when
1506 * any drive on the chip is active.
1507 *
1508 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1509 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1510 *
1511 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1512 * LED operation works then, and provides better (more accurate) feedback.
1513 *
1514 * Note that this code assumes that an SOC never has more than one HC onboard.
1515 */
1516static void mv_soc_led_blink_enable(struct ata_port *ap)
1517{
1518 struct ata_host *host = ap->host;
1519 struct mv_host_priv *hpriv = host->private_data;
1520 void __iomem *hc_mmio;
1521 u32 led_ctrl;
1522
1523 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1524 return;
1525 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1526 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1527 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1528 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1529}
1530
1531static void mv_soc_led_blink_disable(struct ata_port *ap)
1532{
1533 struct ata_host *host = ap->host;
1534 struct mv_host_priv *hpriv = host->private_data;
1535 void __iomem *hc_mmio;
1536 u32 led_ctrl;
1537 unsigned int port;
1538
1539 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1540 return;
1541
1542 /* disable led-blink only if no ports are using NCQ */
1543 for (port = 0; port < hpriv->n_ports; port++) {
1544 struct ata_port *this_ap = host->ports[port];
1545 struct mv_port_priv *pp = this_ap->private_data;
1546
1547 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1548 return;
1549 }
1550
1551 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1552 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
cae5a29d
ML
1553 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1554 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
000b344f
ML
1555}
1556
00b81235 1557static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
e4e7b892 1558{
0c58912e 1559 u32 cfg;
e12bef50
ML
1560 struct mv_port_priv *pp = ap->private_data;
1561 struct mv_host_priv *hpriv = ap->host->private_data;
1562 void __iomem *port_mmio = mv_ap_base(ap);
e4e7b892
JG
1563
1564 /* set up non-NCQ EDMA configuration */
0c58912e 1565 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
d16ab3f6
ML
1566 pp->pp_flags &=
1567 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
e4e7b892 1568
0c58912e 1569 if (IS_GEN_I(hpriv))
e4e7b892
JG
1570 cfg |= (1 << 8); /* enab config burst size mask */
1571
dd2890f6 1572 else if (IS_GEN_II(hpriv)) {
e4e7b892 1573 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
dd2890f6 1574 mv_60x1_errata_sata25(ap, want_ncq);
e4e7b892 1575
dd2890f6 1576 } else if (IS_GEN_IIE(hpriv)) {
00f42eab
ML
1577 int want_fbs = sata_pmp_attached(ap);
1578 /*
1579 * Possible future enhancement:
1580 *
1581 * The chip can use FBS with non-NCQ, if we allow it,
1582 * But first we need to have the error handling in place
1583 * for this mode (datasheet section 7.3.15.4.2.3).
1584 * So disallow non-NCQ FBS for now.
1585 */
1586 want_fbs &= want_ncq;
1587
08da1759 1588 mv_config_fbs(ap, want_ncq, want_fbs);
00f42eab
ML
1589
1590 if (want_fbs) {
1591 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1592 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1593 }
1594
e728eabe 1595 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
00b81235
ML
1596 if (want_edma) {
1597 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1598 if (!IS_SOC(hpriv))
1599 cfg |= (1 << 18); /* enab early completion */
1600 }
616d4a98
ML
1601 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1602 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
c01e8a23 1603 mv_bmdma_enable_iie(ap, !want_edma);
000b344f
ML
1604
1605 if (IS_SOC(hpriv)) {
1606 if (want_ncq)
1607 mv_soc_led_blink_enable(ap);
1608 else
1609 mv_soc_led_blink_disable(ap);
1610 }
e4e7b892
JG
1611 }
1612
72109168
ML
1613 if (want_ncq) {
1614 cfg |= EDMA_CFG_NCQ;
1615 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
00b81235 1616 }
72109168 1617
cae5a29d 1618 writelfl(cfg, port_mmio + EDMA_CFG);
e4e7b892
JG
1619}
1620
da2fa9ba
ML
1621static void mv_port_free_dma_mem(struct ata_port *ap)
1622{
1623 struct mv_host_priv *hpriv = ap->host->private_data;
1624 struct mv_port_priv *pp = ap->private_data;
eb73d558 1625 int tag;
da2fa9ba
ML
1626
1627 if (pp->crqb) {
1628 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1629 pp->crqb = NULL;
1630 }
1631 if (pp->crpb) {
1632 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1633 pp->crpb = NULL;
1634 }
eb73d558
ML
1635 /*
1636 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1637 * For later hardware, we have one unique sg_tbl per NCQ tag.
1638 */
1639 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1640 if (pp->sg_tbl[tag]) {
1641 if (tag == 0 || !IS_GEN_I(hpriv))
1642 dma_pool_free(hpriv->sg_tbl_pool,
1643 pp->sg_tbl[tag],
1644 pp->sg_tbl_dma[tag]);
1645 pp->sg_tbl[tag] = NULL;
1646 }
da2fa9ba
ML
1647 }
1648}
1649
05b308e1
BR
1650/**
1651 * mv_port_start - Port specific init/start routine.
1652 * @ap: ATA channel to manipulate
1653 *
1654 * Allocate and point to DMA memory, init port private memory,
1655 * zero indices.
1656 *
1657 * LOCKING:
1658 * Inherited from caller.
1659 */
31961943
BR
1660static int mv_port_start(struct ata_port *ap)
1661{
cca3974e
JG
1662 struct device *dev = ap->host->dev;
1663 struct mv_host_priv *hpriv = ap->host->private_data;
31961943 1664 struct mv_port_priv *pp;
933cb8e5 1665 unsigned long flags;
dde20207 1666 int tag;
31961943 1667
24dc5f33 1668 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
6037d6bb 1669 if (!pp)
24dc5f33 1670 return -ENOMEM;
da2fa9ba 1671 ap->private_data = pp;
31961943 1672
da2fa9ba
ML
1673 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1674 if (!pp->crqb)
1675 return -ENOMEM;
1676 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
31961943 1677
da2fa9ba
ML
1678 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1679 if (!pp->crpb)
1680 goto out_port_free_dma_mem;
1681 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
31961943 1682
3bd0a70e
ML
1683 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1684 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1685 ap->flags |= ATA_FLAG_AN;
eb73d558
ML
1686 /*
1687 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1688 * For later hardware, we need one unique sg_tbl per NCQ tag.
1689 */
1690 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1691 if (tag == 0 || !IS_GEN_I(hpriv)) {
1692 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1693 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1694 if (!pp->sg_tbl[tag])
1695 goto out_port_free_dma_mem;
1696 } else {
1697 pp->sg_tbl[tag] = pp->sg_tbl[0];
1698 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1699 }
1700 }
933cb8e5
ML
1701
1702 spin_lock_irqsave(ap->lock, flags);
08da1759 1703 mv_save_cached_regs(ap);
66e57a2c 1704 mv_edma_cfg(ap, 0, 0);
933cb8e5
ML
1705 spin_unlock_irqrestore(ap->lock, flags);
1706
31961943 1707 return 0;
da2fa9ba
ML
1708
1709out_port_free_dma_mem:
1710 mv_port_free_dma_mem(ap);
1711 return -ENOMEM;
31961943
BR
1712}
1713
05b308e1
BR
1714/**
1715 * mv_port_stop - Port specific cleanup/stop routine.
1716 * @ap: ATA channel to manipulate
1717 *
1718 * Stop DMA, cleanup port memory.
1719 *
1720 * LOCKING:
cca3974e 1721 * This routine uses the host lock to protect the DMA stop.
05b308e1 1722 */
31961943
BR
1723static void mv_port_stop(struct ata_port *ap)
1724{
933cb8e5
ML
1725 unsigned long flags;
1726
1727 spin_lock_irqsave(ap->lock, flags);
e12bef50 1728 mv_stop_edma(ap);
88e675e1 1729 mv_enable_port_irqs(ap, 0);
933cb8e5 1730 spin_unlock_irqrestore(ap->lock, flags);
da2fa9ba 1731 mv_port_free_dma_mem(ap);
31961943
BR
1732}
1733
05b308e1
BR
1734/**
1735 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1736 * @qc: queued command whose SG list to source from
1737 *
1738 * Populate the SG list and mark the last entry.
1739 *
1740 * LOCKING:
1741 * Inherited from caller.
1742 */
6c08772e 1743static void mv_fill_sg(struct ata_queued_cmd *qc)
31961943
BR
1744{
1745 struct mv_port_priv *pp = qc->ap->private_data;
972c26bd 1746 struct scatterlist *sg;
3be6cbd7 1747 struct mv_sg *mv_sg, *last_sg = NULL;
ff2aeb1e 1748 unsigned int si;
31961943 1749
eb73d558 1750 mv_sg = pp->sg_tbl[qc->tag];
ff2aeb1e 1751 for_each_sg(qc->sg, sg, qc->n_elem, si) {
d88184fb
JG
1752 dma_addr_t addr = sg_dma_address(sg);
1753 u32 sg_len = sg_dma_len(sg);
22374677 1754
4007b493
OJ
1755 while (sg_len) {
1756 u32 offset = addr & 0xffff;
1757 u32 len = sg_len;
22374677 1758
32cd11a6 1759 if (offset + len > 0x10000)
4007b493
OJ
1760 len = 0x10000 - offset;
1761
1762 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1763 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
6c08772e 1764 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
32cd11a6 1765 mv_sg->reserved = 0;
4007b493
OJ
1766
1767 sg_len -= len;
1768 addr += len;
1769
3be6cbd7 1770 last_sg = mv_sg;
4007b493 1771 mv_sg++;
4007b493 1772 }
31961943 1773 }
3be6cbd7
JG
1774
1775 if (likely(last_sg))
1776 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
32cd11a6 1777 mb(); /* ensure data structure is visible to the chipset */
31961943
BR
1778}
1779
5796d1c4 1780static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
31961943 1781{
559eedad 1782 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
31961943 1783 (last ? CRQB_CMD_LAST : 0);
559eedad 1784 *cmdw = cpu_to_le16(tmp);
31961943
BR
1785}
1786
da14265e
ML
1787/**
1788 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1789 * @ap: Port associated with this ATA transaction.
1790 *
1791 * We need this only for ATAPI bmdma transactions,
1792 * as otherwise we experience spurious interrupts
1793 * after libata-sff handles the bmdma interrupts.
1794 */
1795static void mv_sff_irq_clear(struct ata_port *ap)
1796{
1797 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1798}
1799
1800/**
1801 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1802 * @qc: queued command to check for chipset/DMA compatibility.
1803 *
1804 * The bmdma engines cannot handle speculative data sizes
1805 * (bytecount under/over flow). So only allow DMA for
1806 * data transfer commands with known data sizes.
1807 *
1808 * LOCKING:
1809 * Inherited from caller.
1810 */
1811static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1812{
1813 struct scsi_cmnd *scmd = qc->scsicmd;
1814
1815 if (scmd) {
1816 switch (scmd->cmnd[0]) {
1817 case READ_6:
1818 case READ_10:
1819 case READ_12:
1820 case WRITE_6:
1821 case WRITE_10:
1822 case WRITE_12:
1823 case GPCMD_READ_CD:
1824 case GPCMD_SEND_DVD_STRUCTURE:
1825 case GPCMD_SEND_CUE_SHEET:
1826 return 0; /* DMA is safe */
1827 }
1828 }
1829 return -EOPNOTSUPP; /* use PIO instead */
1830}
1831
1832/**
1833 * mv_bmdma_setup - Set up BMDMA transaction
1834 * @qc: queued command to prepare DMA for.
1835 *
1836 * LOCKING:
1837 * Inherited from caller.
1838 */
1839static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1840{
1841 struct ata_port *ap = qc->ap;
1842 void __iomem *port_mmio = mv_ap_base(ap);
1843 struct mv_port_priv *pp = ap->private_data;
1844
1845 mv_fill_sg(qc);
1846
1847 /* clear all DMA cmd bits */
cae5a29d 1848 writel(0, port_mmio + BMDMA_CMD);
da14265e
ML
1849
1850 /* load PRD table addr. */
1851 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
cae5a29d 1852 port_mmio + BMDMA_PRD_HIGH);
da14265e 1853 writelfl(pp->sg_tbl_dma[qc->tag],
cae5a29d 1854 port_mmio + BMDMA_PRD_LOW);
da14265e
ML
1855
1856 /* issue r/w command */
1857 ap->ops->sff_exec_command(ap, &qc->tf);
1858}
1859
1860/**
1861 * mv_bmdma_start - Start a BMDMA transaction
1862 * @qc: queued command to start DMA on.
1863 *
1864 * LOCKING:
1865 * Inherited from caller.
1866 */
1867static void mv_bmdma_start(struct ata_queued_cmd *qc)
1868{
1869 struct ata_port *ap = qc->ap;
1870 void __iomem *port_mmio = mv_ap_base(ap);
1871 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1872 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1873
1874 /* start host DMA transaction */
cae5a29d 1875 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1876}
1877
1878/**
1879 * mv_bmdma_stop - Stop BMDMA transfer
1880 * @qc: queued command to stop DMA on.
1881 *
1882 * Clears the ATA_DMA_START flag in the bmdma control register
1883 *
1884 * LOCKING:
1885 * Inherited from caller.
1886 */
1887static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1888{
1889 struct ata_port *ap = qc->ap;
1890 void __iomem *port_mmio = mv_ap_base(ap);
1891 u32 cmd;
1892
1893 /* clear start/stop bit */
cae5a29d 1894 cmd = readl(port_mmio + BMDMA_CMD);
da14265e 1895 cmd &= ~ATA_DMA_START;
cae5a29d 1896 writelfl(cmd, port_mmio + BMDMA_CMD);
da14265e
ML
1897
1898 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1899 ata_sff_dma_pause(ap);
1900}
1901
1902/**
1903 * mv_bmdma_status - Read BMDMA status
1904 * @ap: port for which to retrieve DMA status.
1905 *
1906 * Read and return equivalent of the sff BMDMA status register.
1907 *
1908 * LOCKING:
1909 * Inherited from caller.
1910 */
1911static u8 mv_bmdma_status(struct ata_port *ap)
1912{
1913 void __iomem *port_mmio = mv_ap_base(ap);
1914 u32 reg, status;
1915
1916 /*
1917 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1918 * and the ATA_DMA_INTR bit doesn't exist.
1919 */
cae5a29d 1920 reg = readl(port_mmio + BMDMA_STATUS);
da14265e
ML
1921 if (reg & ATA_DMA_ACTIVE)
1922 status = ATA_DMA_ACTIVE;
1923 else
1924 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1925 return status;
1926}
1927
299b3f8d
ML
1928static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1929{
1930 struct ata_taskfile *tf = &qc->tf;
1931 /*
1932 * Workaround for 88SX60x1 FEr SATA#24.
1933 *
1934 * Chip may corrupt WRITEs if multi_count >= 4kB.
1935 * Note that READs are unaffected.
1936 *
1937 * It's not clear if this errata really means "4K bytes",
1938 * or if it always happens for multi_count > 7
1939 * regardless of device sector_size.
1940 *
1941 * So, for safety, any write with multi_count > 7
1942 * gets converted here into a regular PIO write instead:
1943 */
1944 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1945 if (qc->dev->multi_count > 7) {
1946 switch (tf->command) {
1947 case ATA_CMD_WRITE_MULTI:
1948 tf->command = ATA_CMD_PIO_WRITE;
1949 break;
1950 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1951 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1952 /* fall through */
1953 case ATA_CMD_WRITE_MULTI_EXT:
1954 tf->command = ATA_CMD_PIO_WRITE_EXT;
1955 break;
1956 }
1957 }
1958 }
1959}
1960
05b308e1
BR
1961/**
1962 * mv_qc_prep - Host specific command preparation.
1963 * @qc: queued command to prepare
1964 *
1965 * This routine simply redirects to the general purpose routine
1966 * if command is not DMA. Else, it handles prep of the CRQB
1967 * (command request block), does some sanity checking, and calls
1968 * the SG load routine.
1969 *
1970 * LOCKING:
1971 * Inherited from caller.
1972 */
31961943
BR
1973static void mv_qc_prep(struct ata_queued_cmd *qc)
1974{
1975 struct ata_port *ap = qc->ap;
1976 struct mv_port_priv *pp = ap->private_data;
e1469874 1977 __le16 *cw;
8d2b450d 1978 struct ata_taskfile *tf = &qc->tf;
31961943 1979 u16 flags = 0;
a6432436 1980 unsigned in_index;
31961943 1981
299b3f8d
ML
1982 switch (tf->protocol) {
1983 case ATA_PROT_DMA:
1984 case ATA_PROT_NCQ:
1985 break; /* continue below */
1986 case ATA_PROT_PIO:
1987 mv_rw_multi_errata_sata24(qc);
31961943 1988 return;
299b3f8d
ML
1989 default:
1990 return;
1991 }
20f733e7 1992
31961943
BR
1993 /* Fill in command request block
1994 */
8d2b450d 1995 if (!(tf->flags & ATA_TFLAG_WRITE))
31961943 1996 flags |= CRQB_FLAG_READ;
beec7dbc 1997 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
31961943 1998 flags |= qc->tag << CRQB_TAG_SHIFT;
e49856d8 1999 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
31961943 2000
bdd4ddde 2001 /* get current queue index from software */
fcfb1f77 2002 in_index = pp->req_idx;
a6432436
ML
2003
2004 pp->crqb[in_index].sg_addr =
eb73d558 2005 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
a6432436 2006 pp->crqb[in_index].sg_addr_hi =
eb73d558 2007 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
a6432436 2008 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
31961943 2009
a6432436 2010 cw = &pp->crqb[in_index].ata_cmd[0];
31961943
BR
2011
2012 /* Sadly, the CRQB cannot accomodate all registers--there are
2013 * only 11 bytes...so we must pick and choose required
2014 * registers based on the command. So, we drop feature and
2015 * hob_feature for [RW] DMA commands, but they are needed for
cd12e1f7
ML
2016 * NCQ. NCQ will drop hob_nsect, which is not needed there
2017 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
20f733e7 2018 */
31961943
BR
2019 switch (tf->command) {
2020 case ATA_CMD_READ:
2021 case ATA_CMD_READ_EXT:
2022 case ATA_CMD_WRITE:
2023 case ATA_CMD_WRITE_EXT:
c15d85c8 2024 case ATA_CMD_WRITE_FUA_EXT:
31961943
BR
2025 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2026 break;
31961943
BR
2027 case ATA_CMD_FPDMA_READ:
2028 case ATA_CMD_FPDMA_WRITE:
8b260248 2029 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
31961943
BR
2030 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2031 break;
31961943
BR
2032 default:
2033 /* The only other commands EDMA supports in non-queued and
2034 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2035 * of which are defined/used by Linux. If we get here, this
2036 * driver needs work.
2037 *
2038 * FIXME: modify libata to give qc_prep a return value and
2039 * return error here.
2040 */
2041 BUG_ON(tf->command);
2042 break;
2043 }
2044 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2045 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2046 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2047 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2048 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2049 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2050 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2051 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2052 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2053
e4e7b892
JG
2054 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2055 return;
2056 mv_fill_sg(qc);
2057}
2058
2059/**
2060 * mv_qc_prep_iie - Host specific command preparation.
2061 * @qc: queued command to prepare
2062 *
2063 * This routine simply redirects to the general purpose routine
2064 * if command is not DMA. Else, it handles prep of the CRQB
2065 * (command request block), does some sanity checking, and calls
2066 * the SG load routine.
2067 *
2068 * LOCKING:
2069 * Inherited from caller.
2070 */
2071static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2072{
2073 struct ata_port *ap = qc->ap;
2074 struct mv_port_priv *pp = ap->private_data;
2075 struct mv_crqb_iie *crqb;
8d2b450d 2076 struct ata_taskfile *tf = &qc->tf;
a6432436 2077 unsigned in_index;
e4e7b892
JG
2078 u32 flags = 0;
2079
8d2b450d
ML
2080 if ((tf->protocol != ATA_PROT_DMA) &&
2081 (tf->protocol != ATA_PROT_NCQ))
e4e7b892
JG
2082 return;
2083
e12bef50 2084 /* Fill in Gen IIE command request block */
8d2b450d 2085 if (!(tf->flags & ATA_TFLAG_WRITE))
e4e7b892
JG
2086 flags |= CRQB_FLAG_READ;
2087
beec7dbc 2088 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
e4e7b892 2089 flags |= qc->tag << CRQB_TAG_SHIFT;
8c0aeb4a 2090 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
e49856d8 2091 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
e4e7b892 2092
bdd4ddde 2093 /* get current queue index from software */
fcfb1f77 2094 in_index = pp->req_idx;
a6432436
ML
2095
2096 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
eb73d558
ML
2097 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2098 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
e4e7b892
JG
2099 crqb->flags = cpu_to_le32(flags);
2100
e4e7b892
JG
2101 crqb->ata_cmd[0] = cpu_to_le32(
2102 (tf->command << 16) |
2103 (tf->feature << 24)
2104 );
2105 crqb->ata_cmd[1] = cpu_to_le32(
2106 (tf->lbal << 0) |
2107 (tf->lbam << 8) |
2108 (tf->lbah << 16) |
2109 (tf->device << 24)
2110 );
2111 crqb->ata_cmd[2] = cpu_to_le32(
2112 (tf->hob_lbal << 0) |
2113 (tf->hob_lbam << 8) |
2114 (tf->hob_lbah << 16) |
2115 (tf->hob_feature << 24)
2116 );
2117 crqb->ata_cmd[3] = cpu_to_le32(
2118 (tf->nsect << 0) |
2119 (tf->hob_nsect << 8)
2120 );
2121
2122 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
31961943 2123 return;
31961943
BR
2124 mv_fill_sg(qc);
2125}
2126
d16ab3f6
ML
2127/**
2128 * mv_sff_check_status - fetch device status, if valid
2129 * @ap: ATA port to fetch status from
2130 *
2131 * When using command issue via mv_qc_issue_fis(),
2132 * the initial ATA_BUSY state does not show up in the
2133 * ATA status (shadow) register. This can confuse libata!
2134 *
2135 * So we have a hook here to fake ATA_BUSY for that situation,
2136 * until the first time a BUSY, DRQ, or ERR bit is seen.
2137 *
2138 * The rest of the time, it simply returns the ATA status register.
2139 */
2140static u8 mv_sff_check_status(struct ata_port *ap)
2141{
2142 u8 stat = ioread8(ap->ioaddr.status_addr);
2143 struct mv_port_priv *pp = ap->private_data;
2144
2145 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2146 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2147 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2148 else
2149 stat = ATA_BUSY;
2150 }
2151 return stat;
2152}
2153
70f8b79c
ML
2154/**
2155 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2156 * @fis: fis to be sent
2157 * @nwords: number of 32-bit words in the fis
2158 */
2159static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2160{
2161 void __iomem *port_mmio = mv_ap_base(ap);
2162 u32 ifctl, old_ifctl, ifstat;
2163 int i, timeout = 200, final_word = nwords - 1;
2164
2165 /* Initiate FIS transmission mode */
cae5a29d 2166 old_ifctl = readl(port_mmio + SATA_IFCTL);
70f8b79c 2167 ifctl = 0x100 | (old_ifctl & 0xf);
cae5a29d 2168 writelfl(ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2169
2170 /* Send all words of the FIS except for the final word */
2171 for (i = 0; i < final_word; ++i)
cae5a29d 2172 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2173
2174 /* Flag end-of-transmission, and then send the final word */
cae5a29d
ML
2175 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2176 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
70f8b79c
ML
2177
2178 /*
2179 * Wait for FIS transmission to complete.
2180 * This typically takes just a single iteration.
2181 */
2182 do {
cae5a29d 2183 ifstat = readl(port_mmio + SATA_IFSTAT);
70f8b79c
ML
2184 } while (!(ifstat & 0x1000) && --timeout);
2185
2186 /* Restore original port configuration */
cae5a29d 2187 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
70f8b79c
ML
2188
2189 /* See if it worked */
2190 if ((ifstat & 0x3000) != 0x1000) {
2191 ata_port_printk(ap, KERN_WARNING,
2192 "%s transmission error, ifstat=%08x\n",
2193 __func__, ifstat);
2194 return AC_ERR_OTHER;
2195 }
2196 return 0;
2197}
2198
2199/**
2200 * mv_qc_issue_fis - Issue a command directly as a FIS
2201 * @qc: queued command to start
2202 *
2203 * Note that the ATA shadow registers are not updated
2204 * after command issue, so the device will appear "READY"
2205 * if polled, even while it is BUSY processing the command.
2206 *
2207 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2208 *
2209 * Note: we don't get updated shadow regs on *completion*
2210 * of non-data commands. So avoid sending them via this function,
2211 * as they will appear to have completed immediately.
2212 *
2213 * GEN_IIE has special registers that we could get the result tf from,
2214 * but earlier chipsets do not. For now, we ignore those registers.
2215 */
2216static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2217{
2218 struct ata_port *ap = qc->ap;
2219 struct mv_port_priv *pp = ap->private_data;
2220 struct ata_link *link = qc->dev->link;
2221 u32 fis[5];
2222 int err = 0;
2223
2224 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
4c4a90fd 2225 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
70f8b79c
ML
2226 if (err)
2227 return err;
2228
2229 switch (qc->tf.protocol) {
2230 case ATAPI_PROT_PIO:
2231 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2232 /* fall through */
2233 case ATAPI_PROT_NODATA:
2234 ap->hsm_task_state = HSM_ST_FIRST;
2235 break;
2236 case ATA_PROT_PIO:
2237 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2238 if (qc->tf.flags & ATA_TFLAG_WRITE)
2239 ap->hsm_task_state = HSM_ST_FIRST;
2240 else
2241 ap->hsm_task_state = HSM_ST;
2242 break;
2243 default:
2244 ap->hsm_task_state = HSM_ST_LAST;
2245 break;
2246 }
2247
2248 if (qc->tf.flags & ATA_TFLAG_POLLING)
2249 ata_pio_queue_task(ap, qc, 0);
2250 return 0;
2251}
2252
05b308e1
BR
2253/**
2254 * mv_qc_issue - Initiate a command to the host
2255 * @qc: queued command to start
2256 *
2257 * This routine simply redirects to the general purpose routine
2258 * if command is not DMA. Else, it sanity checks our local
2259 * caches of the request producer/consumer indices then enables
2260 * DMA and bumps the request producer index.
2261 *
2262 * LOCKING:
2263 * Inherited from caller.
2264 */
9a3d9eb0 2265static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
31961943 2266{
f48765cc 2267 static int limit_warnings = 10;
c5d3e45a
JG
2268 struct ata_port *ap = qc->ap;
2269 void __iomem *port_mmio = mv_ap_base(ap);
2270 struct mv_port_priv *pp = ap->private_data;
bdd4ddde 2271 u32 in_index;
42ed893d 2272 unsigned int port_irqs;
f48765cc 2273
d16ab3f6
ML
2274 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2275
f48765cc
ML
2276 switch (qc->tf.protocol) {
2277 case ATA_PROT_DMA:
2278 case ATA_PROT_NCQ:
2279 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2280 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2281 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2282
2283 /* Write the request in pointer to kick the EDMA to life */
2284 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
cae5a29d 2285 port_mmio + EDMA_REQ_Q_IN_PTR);
f48765cc 2286 return 0;
31961943 2287
f48765cc 2288 case ATA_PROT_PIO:
c6112bd8
ML
2289 /*
2290 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2291 *
2292 * Someday, we might implement special polling workarounds
2293 * for these, but it all seems rather unnecessary since we
2294 * normally use only DMA for commands which transfer more
2295 * than a single block of data.
2296 *
2297 * Much of the time, this could just work regardless.
2298 * So for now, just log the incident, and allow the attempt.
2299 */
c7843e8f 2300 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
c6112bd8
ML
2301 --limit_warnings;
2302 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2303 ": attempting PIO w/multiple DRQ: "
2304 "this may fail due to h/w errata\n");
2305 }
f48765cc 2306 /* drop through */
42ed893d 2307 case ATA_PROT_NODATA:
f48765cc 2308 case ATAPI_PROT_PIO:
42ed893d
ML
2309 case ATAPI_PROT_NODATA:
2310 if (ap->flags & ATA_FLAG_PIO_POLLING)
2311 qc->tf.flags |= ATA_TFLAG_POLLING;
2312 break;
31961943 2313 }
42ed893d
ML
2314
2315 if (qc->tf.flags & ATA_TFLAG_POLLING)
2316 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2317 else
2318 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2319
2320 /*
2321 * We're about to send a non-EDMA capable command to the
2322 * port. Turn off EDMA so there won't be problems accessing
2323 * shadow block, etc registers.
2324 */
2325 mv_stop_edma(ap);
2326 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2327 mv_pmp_select(ap, qc->dev->link->pmp);
70f8b79c
ML
2328
2329 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2330 struct mv_host_priv *hpriv = ap->host->private_data;
2331 /*
2332 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
40f21b11 2333 *
70f8b79c
ML
2334 * After any NCQ error, the READ_LOG_EXT command
2335 * from libata-eh *must* use mv_qc_issue_fis().
2336 * Otherwise it might fail, due to chip errata.
2337 *
2338 * Rather than special-case it, we'll just *always*
2339 * use this method here for READ_LOG_EXT, making for
2340 * easier testing.
2341 */
2342 if (IS_GEN_II(hpriv))
2343 return mv_qc_issue_fis(qc);
2344 }
42ed893d 2345 return ata_sff_qc_issue(qc);
31961943
BR
2346}
2347
8f767f8a
ML
2348static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2349{
2350 struct mv_port_priv *pp = ap->private_data;
2351 struct ata_queued_cmd *qc;
2352
2353 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2354 return NULL;
2355 qc = ata_qc_from_tag(ap, ap->link.active_tag);
95db5051
ML
2356 if (qc) {
2357 if (qc->tf.flags & ATA_TFLAG_POLLING)
2358 qc = NULL;
2359 else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
2360 qc = NULL;
2361 }
8f767f8a
ML
2362 return qc;
2363}
2364
29d187bb
ML
2365static void mv_pmp_error_handler(struct ata_port *ap)
2366{
2367 unsigned int pmp, pmp_map;
2368 struct mv_port_priv *pp = ap->private_data;
2369
2370 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2371 /*
2372 * Perform NCQ error analysis on failed PMPs
2373 * before we freeze the port entirely.
2374 *
2375 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2376 */
2377 pmp_map = pp->delayed_eh_pmp_map;
2378 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2379 for (pmp = 0; pmp_map != 0; pmp++) {
2380 unsigned int this_pmp = (1 << pmp);
2381 if (pmp_map & this_pmp) {
2382 struct ata_link *link = &ap->pmp_link[pmp];
2383 pmp_map &= ~this_pmp;
2384 ata_eh_analyze_ncq_error(link);
2385 }
2386 }
2387 ata_port_freeze(ap);
2388 }
2389 sata_pmp_error_handler(ap);
2390}
2391
4c299ca3
ML
2392static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2393{
2394 void __iomem *port_mmio = mv_ap_base(ap);
2395
cae5a29d 2396 return readl(port_mmio + SATA_TESTCTL) >> 16;
4c299ca3
ML
2397}
2398
4c299ca3
ML
2399static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2400{
2401 struct ata_eh_info *ehi;
2402 unsigned int pmp;
2403
2404 /*
2405 * Initialize EH info for PMPs which saw device errors
2406 */
2407 ehi = &ap->link.eh_info;
2408 for (pmp = 0; pmp_map != 0; pmp++) {
2409 unsigned int this_pmp = (1 << pmp);
2410 if (pmp_map & this_pmp) {
2411 struct ata_link *link = &ap->pmp_link[pmp];
2412
2413 pmp_map &= ~this_pmp;
2414 ehi = &link->eh_info;
2415 ata_ehi_clear_desc(ehi);
2416 ata_ehi_push_desc(ehi, "dev err");
2417 ehi->err_mask |= AC_ERR_DEV;
2418 ehi->action |= ATA_EH_RESET;
2419 ata_link_abort(link);
2420 }
2421 }
2422}
2423
06aaca3f
ML
2424static int mv_req_q_empty(struct ata_port *ap)
2425{
2426 void __iomem *port_mmio = mv_ap_base(ap);
2427 u32 in_ptr, out_ptr;
2428
cae5a29d 2429 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
06aaca3f 2430 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
cae5a29d 2431 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
06aaca3f
ML
2432 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2433 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2434}
2435
4c299ca3
ML
2436static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2437{
2438 struct mv_port_priv *pp = ap->private_data;
2439 int failed_links;
2440 unsigned int old_map, new_map;
2441
2442 /*
2443 * Device error during FBS+NCQ operation:
2444 *
2445 * Set a port flag to prevent further I/O being enqueued.
2446 * Leave the EDMA running to drain outstanding commands from this port.
2447 * Perform the post-mortem/EH only when all responses are complete.
2448 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2449 */
2450 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2451 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2452 pp->delayed_eh_pmp_map = 0;
2453 }
2454 old_map = pp->delayed_eh_pmp_map;
2455 new_map = old_map | mv_get_err_pmp_map(ap);
2456
2457 if (old_map != new_map) {
2458 pp->delayed_eh_pmp_map = new_map;
2459 mv_pmp_eh_prep(ap, new_map & ~old_map);
2460 }
c46938cc 2461 failed_links = hweight16(new_map);
4c299ca3
ML
2462
2463 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2464 "failed_links=%d nr_active_links=%d\n",
2465 __func__, pp->delayed_eh_pmp_map,
2466 ap->qc_active, failed_links,
2467 ap->nr_active_links);
2468
06aaca3f 2469 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
4c299ca3
ML
2470 mv_process_crpb_entries(ap, pp);
2471 mv_stop_edma(ap);
2472 mv_eh_freeze(ap);
2473 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2474 return 1; /* handled */
2475 }
2476 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2477 return 1; /* handled */
2478}
2479
2480static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2481{
2482 /*
2483 * Possible future enhancement:
2484 *
2485 * FBS+non-NCQ operation is not yet implemented.
2486 * See related notes in mv_edma_cfg().
2487 *
2488 * Device error during FBS+non-NCQ operation:
2489 *
2490 * We need to snapshot the shadow registers for each failed command.
2491 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2492 */
2493 return 0; /* not handled */
2494}
2495
2496static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2497{
2498 struct mv_port_priv *pp = ap->private_data;
2499
2500 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2501 return 0; /* EDMA was not active: not handled */
2502 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2503 return 0; /* FBS was not active: not handled */
2504
2505 if (!(edma_err_cause & EDMA_ERR_DEV))
2506 return 0; /* non DEV error: not handled */
2507 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2508 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2509 return 0; /* other problems: not handled */
2510
2511 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2512 /*
2513 * EDMA should NOT have self-disabled for this case.
2514 * If it did, then something is wrong elsewhere,
2515 * and we cannot handle it here.
2516 */
2517 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2518 ata_port_printk(ap, KERN_WARNING,
2519 "%s: err_cause=0x%x pp_flags=0x%x\n",
2520 __func__, edma_err_cause, pp->pp_flags);
2521 return 0; /* not handled */
2522 }
2523 return mv_handle_fbs_ncq_dev_err(ap);
2524 } else {
2525 /*
2526 * EDMA should have self-disabled for this case.
2527 * If it did not, then something is wrong elsewhere,
2528 * and we cannot handle it here.
2529 */
2530 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2531 ata_port_printk(ap, KERN_WARNING,
2532 "%s: err_cause=0x%x pp_flags=0x%x\n",
2533 __func__, edma_err_cause, pp->pp_flags);
2534 return 0; /* not handled */
2535 }
2536 return mv_handle_fbs_non_ncq_dev_err(ap);
2537 }
2538 return 0; /* not handled */
2539}
2540
a9010329 2541static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
8f767f8a 2542{
8f767f8a 2543 struct ata_eh_info *ehi = &ap->link.eh_info;
a9010329 2544 char *when = "idle";
8f767f8a 2545
8f767f8a 2546 ata_ehi_clear_desc(ehi);
c9abde12 2547 if (ap->flags & ATA_FLAG_DISABLED) {
a9010329
ML
2548 when = "disabled";
2549 } else if (edma_was_enabled) {
2550 when = "EDMA enabled";
8f767f8a
ML
2551 } else {
2552 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2553 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
a9010329 2554 when = "polling";
8f767f8a 2555 }
a9010329 2556 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
8f767f8a
ML
2557 ehi->err_mask |= AC_ERR_OTHER;
2558 ehi->action |= ATA_EH_RESET;
2559 ata_port_freeze(ap);
2560}
2561
05b308e1
BR
2562/**
2563 * mv_err_intr - Handle error interrupts on the port
2564 * @ap: ATA channel to manipulate
2565 *
8d07379d
ML
2566 * Most cases require a full reset of the chip's state machine,
2567 * which also performs a COMRESET.
2568 * Also, if the port disabled DMA, update our cached copy to match.
05b308e1
BR
2569 *
2570 * LOCKING:
2571 * Inherited from caller.
2572 */
37b9046a 2573static void mv_err_intr(struct ata_port *ap)
31961943
BR
2574{
2575 void __iomem *port_mmio = mv_ap_base(ap);
bdd4ddde 2576 u32 edma_err_cause, eh_freeze_mask, serr = 0;
e4006077 2577 u32 fis_cause = 0;
bdd4ddde
JG
2578 struct mv_port_priv *pp = ap->private_data;
2579 struct mv_host_priv *hpriv = ap->host->private_data;
bdd4ddde 2580 unsigned int action = 0, err_mask = 0;
9af5c9c9 2581 struct ata_eh_info *ehi = &ap->link.eh_info;
37b9046a
ML
2582 struct ata_queued_cmd *qc;
2583 int abort = 0;
20f733e7 2584
8d07379d 2585 /*
37b9046a 2586 * Read and clear the SError and err_cause bits.
e4006077
ML
2587 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2588 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
8d07379d 2589 */
37b9046a
ML
2590 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2591 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2592
cae5a29d 2593 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
e4006077 2594 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
cae5a29d
ML
2595 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2596 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
e4006077 2597 }
cae5a29d 2598 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde 2599
4c299ca3
ML
2600 if (edma_err_cause & EDMA_ERR_DEV) {
2601 /*
2602 * Device errors during FIS-based switching operation
2603 * require special handling.
2604 */
2605 if (mv_handle_dev_err(ap, edma_err_cause))
2606 return;
2607 }
2608
37b9046a
ML
2609 qc = mv_get_active_qc(ap);
2610 ata_ehi_clear_desc(ehi);
2611 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2612 edma_err_cause, pp->pp_flags);
e4006077 2613
c443c500 2614 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
e4006077 2615 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
cae5a29d 2616 if (fis_cause & FIS_IRQ_CAUSE_AN) {
c443c500
ML
2617 u32 ec = edma_err_cause &
2618 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2619 sata_async_notification(ap);
2620 if (!ec)
2621 return; /* Just an AN; no need for the nukes */
2622 ata_ehi_push_desc(ehi, "SDB notify");
2623 }
2624 }
bdd4ddde 2625 /*
352fab70 2626 * All generations share these EDMA error cause bits:
bdd4ddde 2627 */
37b9046a 2628 if (edma_err_cause & EDMA_ERR_DEV) {
bdd4ddde 2629 err_mask |= AC_ERR_DEV;
37b9046a
ML
2630 action |= ATA_EH_RESET;
2631 ata_ehi_push_desc(ehi, "dev error");
2632 }
bdd4ddde 2633 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
6c1153e0 2634 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
bdd4ddde
JG
2635 EDMA_ERR_INTRL_PAR)) {
2636 err_mask |= AC_ERR_ATA_BUS;
cf480626 2637 action |= ATA_EH_RESET;
b64bbc39 2638 ata_ehi_push_desc(ehi, "parity error");
bdd4ddde
JG
2639 }
2640 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2641 ata_ehi_hotplugged(ehi);
2642 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
b64bbc39 2643 "dev disconnect" : "dev connect");
cf480626 2644 action |= ATA_EH_RESET;
bdd4ddde
JG
2645 }
2646
352fab70
ML
2647 /*
2648 * Gen-I has a different SELF_DIS bit,
2649 * different FREEZE bits, and no SERR bit:
2650 */
ee9ccdf7 2651 if (IS_GEN_I(hpriv)) {
bdd4ddde 2652 eh_freeze_mask = EDMA_EH_FREEZE_5;
bdd4ddde 2653 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
bdd4ddde 2654 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2655 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde
JG
2656 }
2657 } else {
2658 eh_freeze_mask = EDMA_EH_FREEZE;
bdd4ddde 2659 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
bdd4ddde 2660 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
b64bbc39 2661 ata_ehi_push_desc(ehi, "EDMA self-disable");
bdd4ddde 2662 }
bdd4ddde 2663 if (edma_err_cause & EDMA_ERR_SERR) {
8d07379d
ML
2664 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2665 err_mask |= AC_ERR_ATA_BUS;
cf480626 2666 action |= ATA_EH_RESET;
bdd4ddde 2667 }
afb0edd9 2668 }
20f733e7 2669
bdd4ddde
JG
2670 if (!err_mask) {
2671 err_mask = AC_ERR_OTHER;
cf480626 2672 action |= ATA_EH_RESET;
bdd4ddde
JG
2673 }
2674
2675 ehi->serror |= serr;
2676 ehi->action |= action;
2677
2678 if (qc)
2679 qc->err_mask |= err_mask;
2680 else
2681 ehi->err_mask |= err_mask;
2682
37b9046a
ML
2683 if (err_mask == AC_ERR_DEV) {
2684 /*
2685 * Cannot do ata_port_freeze() here,
2686 * because it would kill PIO access,
2687 * which is needed for further diagnosis.
2688 */
2689 mv_eh_freeze(ap);
2690 abort = 1;
2691 } else if (edma_err_cause & eh_freeze_mask) {
2692 /*
2693 * Note to self: ata_port_freeze() calls ata_port_abort()
2694 */
bdd4ddde 2695 ata_port_freeze(ap);
37b9046a
ML
2696 } else {
2697 abort = 1;
2698 }
2699
2700 if (abort) {
2701 if (qc)
2702 ata_link_abort(qc->dev->link);
2703 else
2704 ata_port_abort(ap);
2705 }
bdd4ddde
JG
2706}
2707
fcfb1f77
ML
2708static void mv_process_crpb_response(struct ata_port *ap,
2709 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2710{
2711 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2712
2713 if (qc) {
2714 u8 ata_status;
2715 u16 edma_status = le16_to_cpu(response->flags);
2716 /*
2717 * edma_status from a response queue entry:
cae5a29d 2718 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
fcfb1f77
ML
2719 * MSB is saved ATA status from command completion.
2720 */
2721 if (!ncq_enabled) {
2722 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2723 if (err_cause) {
2724 /*
2725 * Error will be seen/handled by mv_err_intr().
2726 * So do nothing at all here.
2727 */
2728 return;
2729 }
2730 }
2731 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
37b9046a
ML
2732 if (!ac_err_mask(ata_status))
2733 ata_qc_complete(qc);
2734 /* else: leave it for mv_err_intr() */
fcfb1f77
ML
2735 } else {
2736 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2737 __func__, tag);
2738 }
2739}
2740
2741static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
bdd4ddde
JG
2742{
2743 void __iomem *port_mmio = mv_ap_base(ap);
2744 struct mv_host_priv *hpriv = ap->host->private_data;
fcfb1f77 2745 u32 in_index;
bdd4ddde 2746 bool work_done = false;
fcfb1f77 2747 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
bdd4ddde 2748
fcfb1f77 2749 /* Get the hardware queue position index */
cae5a29d 2750 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
bdd4ddde
JG
2751 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2752
fcfb1f77
ML
2753 /* Process new responses from since the last time we looked */
2754 while (in_index != pp->resp_idx) {
6c1153e0 2755 unsigned int tag;
fcfb1f77 2756 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
bdd4ddde 2757
fcfb1f77 2758 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
bdd4ddde 2759
fcfb1f77
ML
2760 if (IS_GEN_I(hpriv)) {
2761 /* 50xx: no NCQ, only one command active at a time */
9af5c9c9 2762 tag = ap->link.active_tag;
fcfb1f77
ML
2763 } else {
2764 /* Gen II/IIE: get command tag from CRPB entry */
2765 tag = le16_to_cpu(response->id) & 0x1f;
bdd4ddde 2766 }
fcfb1f77 2767 mv_process_crpb_response(ap, response, tag, ncq_enabled);
bdd4ddde 2768 work_done = true;
bdd4ddde
JG
2769 }
2770
352fab70 2771 /* Update the software queue position index in hardware */
bdd4ddde
JG
2772 if (work_done)
2773 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
fcfb1f77 2774 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
cae5a29d 2775 port_mmio + EDMA_RSP_Q_OUT_PTR);
20f733e7
BR
2776}
2777
a9010329
ML
2778static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2779{
2780 struct mv_port_priv *pp;
2781 int edma_was_enabled;
2782
2783 if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
2784 mv_unexpected_intr(ap, 0);
2785 return;
2786 }
2787 /*
2788 * Grab a snapshot of the EDMA_EN flag setting,
2789 * so that we have a consistent view for this port,
2790 * even if something we call of our routines changes it.
2791 */
2792 pp = ap->private_data;
2793 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2794 /*
2795 * Process completed CRPB response(s) before other events.
2796 */
2797 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2798 mv_process_crpb_entries(ap, pp);
4c299ca3
ML
2799 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2800 mv_handle_fbs_ncq_dev_err(ap);
a9010329
ML
2801 }
2802 /*
2803 * Handle chip-reported errors, or continue on to handle PIO.
2804 */
2805 if (unlikely(port_cause & ERR_IRQ)) {
2806 mv_err_intr(ap);
2807 } else if (!edma_was_enabled) {
2808 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2809 if (qc)
2810 ata_sff_host_intr(ap, qc);
2811 else
2812 mv_unexpected_intr(ap, edma_was_enabled);
2813 }
2814}
2815
05b308e1
BR
2816/**
2817 * mv_host_intr - Handle all interrupts on the given host controller
cca3974e 2818 * @host: host specific structure
7368f919 2819 * @main_irq_cause: Main interrupt cause register for the chip.
05b308e1
BR
2820 *
2821 * LOCKING:
2822 * Inherited from caller.
2823 */
7368f919 2824static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
20f733e7 2825{
f351b2d6 2826 struct mv_host_priv *hpriv = host->private_data;
eabd5eb1 2827 void __iomem *mmio = hpriv->base, *hc_mmio;
a3718c1f 2828 unsigned int handled = 0, port;
20f733e7 2829
2b748a0a
ML
2830 /* If asserted, clear the "all ports" IRQ coalescing bit */
2831 if (main_irq_cause & ALL_PORTS_COAL_DONE)
cae5a29d 2832 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2b748a0a 2833
a3718c1f 2834 for (port = 0; port < hpriv->n_ports; port++) {
cca3974e 2835 struct ata_port *ap = host->ports[port];
eabd5eb1
ML
2836 unsigned int p, shift, hardport, port_cause;
2837
a3718c1f 2838 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
a3718c1f 2839 /*
eabd5eb1
ML
2840 * Each hc within the host has its own hc_irq_cause register,
2841 * where the interrupting ports bits get ack'd.
a3718c1f 2842 */
eabd5eb1
ML
2843 if (hardport == 0) { /* first port on this hc ? */
2844 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2845 u32 port_mask, ack_irqs;
2846 /*
2847 * Skip this entire hc if nothing pending for any ports
2848 */
2849 if (!hc_cause) {
2850 port += MV_PORTS_PER_HC - 1;
2851 continue;
2852 }
2853 /*
2854 * We don't need/want to read the hc_irq_cause register,
2855 * because doing so hurts performance, and
2856 * main_irq_cause already gives us everything we need.
2857 *
2858 * But we do have to *write* to the hc_irq_cause to ack
2859 * the ports that we are handling this time through.
2860 *
2861 * This requires that we create a bitmap for those
2862 * ports which interrupted us, and use that bitmap
2863 * to ack (only) those ports via hc_irq_cause.
2864 */
2865 ack_irqs = 0;
2b748a0a
ML
2866 if (hc_cause & PORTS_0_3_COAL_DONE)
2867 ack_irqs = HC_COAL_IRQ;
eabd5eb1
ML
2868 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2869 if ((port + p) >= hpriv->n_ports)
2870 break;
2871 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2872 if (hc_cause & port_mask)
2873 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2874 }
a3718c1f 2875 hc_mmio = mv_hc_base_from_port(mmio, port);
cae5a29d 2876 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
a3718c1f
ML
2877 handled = 1;
2878 }
8f767f8a 2879 /*
a9010329 2880 * Handle interrupts signalled for this port:
8f767f8a 2881 */
a9010329
ML
2882 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2883 if (port_cause)
2884 mv_port_intr(ap, port_cause);
20f733e7 2885 }
a3718c1f 2886 return handled;
20f733e7
BR
2887}
2888
a3718c1f 2889static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
bdd4ddde 2890{
02a121da 2891 struct mv_host_priv *hpriv = host->private_data;
bdd4ddde
JG
2892 struct ata_port *ap;
2893 struct ata_queued_cmd *qc;
2894 struct ata_eh_info *ehi;
2895 unsigned int i, err_mask, printed = 0;
2896 u32 err_cause;
2897
cae5a29d 2898 err_cause = readl(mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2899
2900 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2901 err_cause);
2902
2903 DPRINTK("All regs @ PCI error\n");
2904 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2905
cae5a29d 2906 writelfl(0, mmio + hpriv->irq_cause_offset);
bdd4ddde
JG
2907
2908 for (i = 0; i < host->n_ports; i++) {
2909 ap = host->ports[i];
936fd732 2910 if (!ata_link_offline(&ap->link)) {
9af5c9c9 2911 ehi = &ap->link.eh_info;
bdd4ddde
JG
2912 ata_ehi_clear_desc(ehi);
2913 if (!printed++)
2914 ata_ehi_push_desc(ehi,
2915 "PCI err cause 0x%08x", err_cause);
2916 err_mask = AC_ERR_HOST_BUS;
cf480626 2917 ehi->action = ATA_EH_RESET;
9af5c9c9 2918 qc = ata_qc_from_tag(ap, ap->link.active_tag);
bdd4ddde
JG
2919 if (qc)
2920 qc->err_mask |= err_mask;
2921 else
2922 ehi->err_mask |= err_mask;
2923
2924 ata_port_freeze(ap);
2925 }
2926 }
a3718c1f 2927 return 1; /* handled */
bdd4ddde
JG
2928}
2929
05b308e1 2930/**
c5d3e45a 2931 * mv_interrupt - Main interrupt event handler
05b308e1
BR
2932 * @irq: unused
2933 * @dev_instance: private data; in this case the host structure
05b308e1
BR
2934 *
2935 * Read the read only register to determine if any host
2936 * controllers have pending interrupts. If so, call lower level
2937 * routine to handle. Also check for PCI errors which are only
2938 * reported here.
2939 *
8b260248 2940 * LOCKING:
cca3974e 2941 * This routine holds the host lock while processing pending
05b308e1
BR
2942 * interrupts.
2943 */
7d12e780 2944static irqreturn_t mv_interrupt(int irq, void *dev_instance)
20f733e7 2945{
cca3974e 2946 struct ata_host *host = dev_instance;
f351b2d6 2947 struct mv_host_priv *hpriv = host->private_data;
a3718c1f 2948 unsigned int handled = 0;
6d3c30ef 2949 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
96e2c487 2950 u32 main_irq_cause, pending_irqs;
20f733e7 2951
646a4da5 2952 spin_lock(&host->lock);
6d3c30ef
ML
2953
2954 /* for MSI: block new interrupts while in here */
2955 if (using_msi)
2b748a0a 2956 mv_write_main_irq_mask(0, hpriv);
6d3c30ef 2957
7368f919 2958 main_irq_cause = readl(hpriv->main_irq_cause_addr);
96e2c487 2959 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
352fab70
ML
2960 /*
2961 * Deal with cases where we either have nothing pending, or have read
2962 * a bogus register value which can indicate HW removal or PCI fault.
20f733e7 2963 */
a44253d2 2964 if (pending_irqs && main_irq_cause != 0xffffffffU) {
1f398472 2965 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
a3718c1f
ML
2966 handled = mv_pci_error(host, hpriv->base);
2967 else
a44253d2 2968 handled = mv_host_intr(host, pending_irqs);
bdd4ddde 2969 }
6d3c30ef
ML
2970
2971 /* for MSI: unmask; interrupt cause bits will retrigger now */
2972 if (using_msi)
2b748a0a 2973 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
6d3c30ef 2974
9d51af7b
ML
2975 spin_unlock(&host->lock);
2976
20f733e7
BR
2977 return IRQ_RETVAL(handled);
2978}
2979
c9d39130
JG
2980static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2981{
2982 unsigned int ofs;
2983
2984 switch (sc_reg_in) {
2985 case SCR_STATUS:
2986 case SCR_ERROR:
2987 case SCR_CONTROL:
2988 ofs = sc_reg_in * sizeof(u32);
2989 break;
2990 default:
2991 ofs = 0xffffffffU;
2992 break;
2993 }
2994 return ofs;
2995}
2996
82ef04fb 2997static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
c9d39130 2998{
82ef04fb 2999 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3000 void __iomem *mmio = hpriv->base;
82ef04fb 3001 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3002 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3003
da3dbb17
TH
3004 if (ofs != 0xffffffffU) {
3005 *val = readl(addr + ofs);
3006 return 0;
3007 } else
3008 return -EINVAL;
c9d39130
JG
3009}
3010
82ef04fb 3011static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
c9d39130 3012{
82ef04fb 3013 struct mv_host_priv *hpriv = link->ap->host->private_data;
f351b2d6 3014 void __iomem *mmio = hpriv->base;
82ef04fb 3015 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
c9d39130
JG
3016 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3017
da3dbb17 3018 if (ofs != 0xffffffffU) {
0d5ff566 3019 writelfl(val, addr + ofs);
da3dbb17
TH
3020 return 0;
3021 } else
3022 return -EINVAL;
c9d39130
JG
3023}
3024
7bb3c529 3025static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
522479fb 3026{
7bb3c529 3027 struct pci_dev *pdev = to_pci_dev(host->dev);
522479fb
JG
3028 int early_5080;
3029
44c10138 3030 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
522479fb
JG
3031
3032 if (!early_5080) {
3033 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3034 tmp |= (1 << 0);
3035 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3036 }
3037
7bb3c529 3038 mv_reset_pci_bus(host, mmio);
522479fb
JG
3039}
3040
3041static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3042{
cae5a29d 3043 writel(0x0fcfffff, mmio + FLASH_CTL);
522479fb
JG
3044}
3045
47c2b677 3046static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3047 void __iomem *mmio)
3048{
c9d39130
JG
3049 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3050 u32 tmp;
3051
3052 tmp = readl(phy_mmio + MV5_PHY_MODE);
3053
3054 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3055 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
ba3fe8fb
JG
3056}
3057
47c2b677 3058static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3059{
522479fb
JG
3060 u32 tmp;
3061
cae5a29d 3062 writel(0, mmio + GPIO_PORT_CTL);
522479fb
JG
3063
3064 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3065
3066 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3067 tmp |= ~(1 << 0);
3068 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
ba3fe8fb
JG
3069}
3070
2a47ce06
JG
3071static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3072 unsigned int port)
bca1c4eb 3073{
c9d39130
JG
3074 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3075 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3076 u32 tmp;
3077 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3078
3079 if (fix_apm_sq) {
cae5a29d 3080 tmp = readl(phy_mmio + MV5_LTMODE);
c9d39130 3081 tmp |= (1 << 19);
cae5a29d 3082 writel(tmp, phy_mmio + MV5_LTMODE);
c9d39130 3083
cae5a29d 3084 tmp = readl(phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3085 tmp &= ~0x3;
3086 tmp |= 0x1;
cae5a29d 3087 writel(tmp, phy_mmio + MV5_PHY_CTL);
c9d39130
JG
3088 }
3089
3090 tmp = readl(phy_mmio + MV5_PHY_MODE);
3091 tmp &= ~mask;
3092 tmp |= hpriv->signal[port].pre;
3093 tmp |= hpriv->signal[port].amps;
3094 writel(tmp, phy_mmio + MV5_PHY_MODE);
bca1c4eb
JG
3095}
3096
c9d39130
JG
3097
3098#undef ZERO
3099#define ZERO(reg) writel(0, port_mmio + (reg))
3100static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3101 unsigned int port)
3102{
3103 void __iomem *port_mmio = mv_port_base(mmio, port);
3104
e12bef50 3105 mv_reset_channel(hpriv, mmio, port);
c9d39130
JG
3106
3107 ZERO(0x028); /* command */
cae5a29d 3108 writel(0x11f, port_mmio + EDMA_CFG);
c9d39130
JG
3109 ZERO(0x004); /* timer */
3110 ZERO(0x008); /* irq err cause */
3111 ZERO(0x00c); /* irq err mask */
3112 ZERO(0x010); /* rq bah */
3113 ZERO(0x014); /* rq inp */
3114 ZERO(0x018); /* rq outp */
3115 ZERO(0x01c); /* respq bah */
3116 ZERO(0x024); /* respq outp */
3117 ZERO(0x020); /* respq inp */
3118 ZERO(0x02c); /* test control */
cae5a29d 3119 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
c9d39130
JG
3120}
3121#undef ZERO
3122
3123#define ZERO(reg) writel(0, hc_mmio + (reg))
3124static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3125 unsigned int hc)
47c2b677 3126{
c9d39130
JG
3127 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3128 u32 tmp;
3129
3130 ZERO(0x00c);
3131 ZERO(0x010);
3132 ZERO(0x014);
3133 ZERO(0x018);
3134
3135 tmp = readl(hc_mmio + 0x20);
3136 tmp &= 0x1c1c1c1c;
3137 tmp |= 0x03030303;
3138 writel(tmp, hc_mmio + 0x20);
3139}
3140#undef ZERO
3141
3142static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3143 unsigned int n_hc)
3144{
3145 unsigned int hc, port;
3146
3147 for (hc = 0; hc < n_hc; hc++) {
3148 for (port = 0; port < MV_PORTS_PER_HC; port++)
3149 mv5_reset_hc_port(hpriv, mmio,
3150 (hc * MV_PORTS_PER_HC) + port);
3151
3152 mv5_reset_one_hc(hpriv, mmio, hc);
3153 }
3154
3155 return 0;
47c2b677
JG
3156}
3157
101ffae2
JG
3158#undef ZERO
3159#define ZERO(reg) writel(0, mmio + (reg))
7bb3c529 3160static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
101ffae2 3161{
02a121da 3162 struct mv_host_priv *hpriv = host->private_data;
101ffae2
JG
3163 u32 tmp;
3164
cae5a29d 3165 tmp = readl(mmio + MV_PCI_MODE);
101ffae2 3166 tmp &= 0xff00ffff;
cae5a29d 3167 writel(tmp, mmio + MV_PCI_MODE);
101ffae2
JG
3168
3169 ZERO(MV_PCI_DISC_TIMER);
3170 ZERO(MV_PCI_MSI_TRIGGER);
cae5a29d 3171 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
101ffae2 3172 ZERO(MV_PCI_SERR_MASK);
cae5a29d
ML
3173 ZERO(hpriv->irq_cause_offset);
3174 ZERO(hpriv->irq_mask_offset);
101ffae2
JG
3175 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3176 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3177 ZERO(MV_PCI_ERR_ATTRIBUTE);
3178 ZERO(MV_PCI_ERR_COMMAND);
3179}
3180#undef ZERO
3181
3182static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3183{
3184 u32 tmp;
3185
3186 mv5_reset_flash(hpriv, mmio);
3187
cae5a29d 3188 tmp = readl(mmio + GPIO_PORT_CTL);
101ffae2
JG
3189 tmp &= 0x3;
3190 tmp |= (1 << 5) | (1 << 6);
cae5a29d 3191 writel(tmp, mmio + GPIO_PORT_CTL);
101ffae2
JG
3192}
3193
3194/**
3195 * mv6_reset_hc - Perform the 6xxx global soft reset
3196 * @mmio: base address of the HBA
3197 *
3198 * This routine only applies to 6xxx parts.
3199 *
3200 * LOCKING:
3201 * Inherited from caller.
3202 */
c9d39130
JG
3203static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3204 unsigned int n_hc)
101ffae2 3205{
cae5a29d 3206 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
101ffae2
JG
3207 int i, rc = 0;
3208 u32 t;
3209
3210 /* Following procedure defined in PCI "main command and status
3211 * register" table.
3212 */
3213 t = readl(reg);
3214 writel(t | STOP_PCI_MASTER, reg);
3215
3216 for (i = 0; i < 1000; i++) {
3217 udelay(1);
3218 t = readl(reg);
2dcb407e 3219 if (PCI_MASTER_EMPTY & t)
101ffae2 3220 break;
101ffae2
JG
3221 }
3222 if (!(PCI_MASTER_EMPTY & t)) {
3223 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3224 rc = 1;
3225 goto done;
3226 }
3227
3228 /* set reset */
3229 i = 5;
3230 do {
3231 writel(t | GLOB_SFT_RST, reg);
3232 t = readl(reg);
3233 udelay(1);
3234 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3235
3236 if (!(GLOB_SFT_RST & t)) {
3237 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3238 rc = 1;
3239 goto done;
3240 }
3241
3242 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3243 i = 5;
3244 do {
3245 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3246 t = readl(reg);
3247 udelay(1);
3248 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3249
3250 if (GLOB_SFT_RST & t) {
3251 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3252 rc = 1;
3253 }
3254done:
3255 return rc;
3256}
3257
47c2b677 3258static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
ba3fe8fb
JG
3259 void __iomem *mmio)
3260{
3261 void __iomem *port_mmio;
3262 u32 tmp;
3263
cae5a29d 3264 tmp = readl(mmio + RESET_CFG);
ba3fe8fb 3265 if ((tmp & (1 << 0)) == 0) {
47c2b677 3266 hpriv->signal[idx].amps = 0x7 << 8;
ba3fe8fb
JG
3267 hpriv->signal[idx].pre = 0x1 << 5;
3268 return;
3269 }
3270
3271 port_mmio = mv_port_base(mmio, idx);
3272 tmp = readl(port_mmio + PHY_MODE2);
3273
3274 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3275 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3276}
3277
47c2b677 3278static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
ba3fe8fb 3279{
cae5a29d 3280 writel(0x00000060, mmio + GPIO_PORT_CTL);
ba3fe8fb
JG
3281}
3282
c9d39130 3283static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
2a47ce06 3284 unsigned int port)
bca1c4eb 3285{
c9d39130
JG
3286 void __iomem *port_mmio = mv_port_base(mmio, port);
3287
bca1c4eb 3288 u32 hp_flags = hpriv->hp_flags;
47c2b677
JG
3289 int fix_phy_mode2 =
3290 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
bca1c4eb 3291 int fix_phy_mode4 =
47c2b677 3292 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
8c30a8b9 3293 u32 m2, m3;
47c2b677
JG
3294
3295 if (fix_phy_mode2) {
3296 m2 = readl(port_mmio + PHY_MODE2);
3297 m2 &= ~(1 << 16);
3298 m2 |= (1 << 31);
3299 writel(m2, port_mmio + PHY_MODE2);
3300
3301 udelay(200);
3302
3303 m2 = readl(port_mmio + PHY_MODE2);
3304 m2 &= ~((1 << 16) | (1 << 31));
3305 writel(m2, port_mmio + PHY_MODE2);
3306
3307 udelay(200);
3308 }
3309
8c30a8b9
ML
3310 /*
3311 * Gen-II/IIe PHY_MODE3 errata RM#2:
3312 * Achieves better receiver noise performance than the h/w default:
3313 */
3314 m3 = readl(port_mmio + PHY_MODE3);
3315 m3 = (m3 & 0x1f) | (0x5555601 << 5);
bca1c4eb 3316
0388a8c0
ML
3317 /* Guideline 88F5182 (GL# SATA-S11) */
3318 if (IS_SOC(hpriv))
3319 m3 &= ~0x1c;
3320
bca1c4eb 3321 if (fix_phy_mode4) {
ba069e37
ML
3322 u32 m4 = readl(port_mmio + PHY_MODE4);
3323 /*
3324 * Enforce reserved-bit restrictions on GenIIe devices only.
3325 * For earlier chipsets, force only the internal config field
3326 * (workaround for errata FEr SATA#10 part 1).
3327 */
8c30a8b9 3328 if (IS_GEN_IIE(hpriv))
ba069e37
ML
3329 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3330 else
3331 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
8c30a8b9 3332 writel(m4, port_mmio + PHY_MODE4);
bca1c4eb 3333 }
b406c7a6
ML
3334 /*
3335 * Workaround for 60x1-B2 errata SATA#13:
3336 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3337 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
ba68460b 3338 * Or ensure we use writelfl() when writing PHY_MODE4.
b406c7a6
ML
3339 */
3340 writel(m3, port_mmio + PHY_MODE3);
bca1c4eb
JG
3341
3342 /* Revert values of pre-emphasis and signal amps to the saved ones */
3343 m2 = readl(port_mmio + PHY_MODE2);
3344
3345 m2 &= ~MV_M2_PREAMP_MASK;
2a47ce06
JG
3346 m2 |= hpriv->signal[port].amps;
3347 m2 |= hpriv->signal[port].pre;
47c2b677 3348 m2 &= ~(1 << 16);
bca1c4eb 3349
e4e7b892
JG
3350 /* according to mvSata 3.6.1, some IIE values are fixed */
3351 if (IS_GEN_IIE(hpriv)) {
3352 m2 &= ~0xC30FF01F;
3353 m2 |= 0x0000900F;
3354 }
3355
bca1c4eb
JG
3356 writel(m2, port_mmio + PHY_MODE2);
3357}
3358
f351b2d6
SB
3359/* TODO: use the generic LED interface to configure the SATA Presence */
3360/* & Acitivy LEDs on the board */
3361static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3362 void __iomem *mmio)
3363{
3364 return;
3365}
3366
3367static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3368 void __iomem *mmio)
3369{
3370 void __iomem *port_mmio;
3371 u32 tmp;
3372
3373 port_mmio = mv_port_base(mmio, idx);
3374 tmp = readl(port_mmio + PHY_MODE2);
3375
3376 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3377 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3378}
3379
3380#undef ZERO
3381#define ZERO(reg) writel(0, port_mmio + (reg))
3382static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3383 void __iomem *mmio, unsigned int port)
3384{
3385 void __iomem *port_mmio = mv_port_base(mmio, port);
3386
e12bef50 3387 mv_reset_channel(hpriv, mmio, port);
f351b2d6
SB
3388
3389 ZERO(0x028); /* command */
cae5a29d 3390 writel(0x101f, port_mmio + EDMA_CFG);
f351b2d6
SB
3391 ZERO(0x004); /* timer */
3392 ZERO(0x008); /* irq err cause */
3393 ZERO(0x00c); /* irq err mask */
3394 ZERO(0x010); /* rq bah */
3395 ZERO(0x014); /* rq inp */
3396 ZERO(0x018); /* rq outp */
3397 ZERO(0x01c); /* respq bah */
3398 ZERO(0x024); /* respq outp */
3399 ZERO(0x020); /* respq inp */
3400 ZERO(0x02c); /* test control */
d7b0c143 3401 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
f351b2d6
SB
3402}
3403
3404#undef ZERO
3405
3406#define ZERO(reg) writel(0, hc_mmio + (reg))
3407static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3408 void __iomem *mmio)
3409{
3410 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3411
3412 ZERO(0x00c);
3413 ZERO(0x010);
3414 ZERO(0x014);
3415
3416}
3417
3418#undef ZERO
3419
3420static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3421 void __iomem *mmio, unsigned int n_hc)
3422{
3423 unsigned int port;
3424
3425 for (port = 0; port < hpriv->n_ports; port++)
3426 mv_soc_reset_hc_port(hpriv, mmio, port);
3427
3428 mv_soc_reset_one_hc(hpriv, mmio);
3429
3430 return 0;
3431}
3432
3433static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3434 void __iomem *mmio)
3435{
3436 return;
3437}
3438
3439static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3440{
3441 return;
3442}
3443
29b7e43c
MM
3444static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3445 void __iomem *mmio, unsigned int port)
3446{
3447 void __iomem *port_mmio = mv_port_base(mmio, port);
3448 u32 reg;
3449
3450 reg = readl(port_mmio + PHY_MODE3);
3451 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3452 reg |= (0x1 << 27);
3453 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3454 reg |= (0x1 << 29);
3455 writel(reg, port_mmio + PHY_MODE3);
3456
3457 reg = readl(port_mmio + PHY_MODE4);
3458 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3459 reg |= (0x1 << 16);
3460 writel(reg, port_mmio + PHY_MODE4);
3461
3462 reg = readl(port_mmio + PHY_MODE9_GEN2);
3463 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3464 reg |= 0x8;
3465 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3466 writel(reg, port_mmio + PHY_MODE9_GEN2);
3467
3468 reg = readl(port_mmio + PHY_MODE9_GEN1);
3469 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3470 reg |= 0x8;
3471 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3472 writel(reg, port_mmio + PHY_MODE9_GEN1);
3473}
3474
3475/**
3476 * soc_is_65 - check if the soc is 65 nano device
3477 *
3478 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3479 * register, this register should contain non-zero value and it exists only
3480 * in the 65 nano devices, when reading it from older devices we get 0.
3481 */
3482static bool soc_is_65n(struct mv_host_priv *hpriv)
3483{
3484 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3485
3486 if (readl(port0_mmio + PHYCFG_OFS))
3487 return true;
3488 return false;
3489}
3490
8e7decdb 3491static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
b67a1064 3492{
cae5a29d 3493 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
b67a1064 3494
8e7decdb 3495 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
b67a1064 3496 if (want_gen2i)
8e7decdb 3497 ifcfg |= (1 << 7); /* enable gen2i speed */
cae5a29d 3498 writelfl(ifcfg, port_mmio + SATA_IFCFG);
b67a1064
ML
3499}
3500
e12bef50 3501static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
c9d39130
JG
3502 unsigned int port_no)
3503{
3504 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3505
8e7decdb
ML
3506 /*
3507 * The datasheet warns against setting EDMA_RESET when EDMA is active
3508 * (but doesn't say what the problem might be). So we first try
3509 * to disable the EDMA engine before doing the EDMA_RESET operation.
3510 */
0d8be5cb 3511 mv_stop_edma_engine(port_mmio);
cae5a29d 3512 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
c9d39130 3513
b67a1064 3514 if (!IS_GEN_I(hpriv)) {
8e7decdb
ML
3515 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3516 mv_setup_ifcfg(port_mmio, 1);
c9d39130 3517 }
b67a1064 3518 /*
8e7decdb 3519 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
b67a1064 3520 * link, and physical layers. It resets all SATA interface registers
cae5a29d 3521 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
c9d39130 3522 */
cae5a29d 3523 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
b67a1064 3524 udelay(25); /* allow reset propagation */
cae5a29d 3525 writelfl(0, port_mmio + EDMA_CMD);
c9d39130
JG
3526
3527 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3528
ee9ccdf7 3529 if (IS_GEN_I(hpriv))
c9d39130
JG
3530 mdelay(1);
3531}
3532
e49856d8 3533static void mv_pmp_select(struct ata_port *ap, int pmp)
20f733e7 3534{
e49856d8
ML
3535 if (sata_pmp_supported(ap)) {
3536 void __iomem *port_mmio = mv_ap_base(ap);
cae5a29d 3537 u32 reg = readl(port_mmio + SATA_IFCTL);
e49856d8 3538 int old = reg & 0xf;
22374677 3539
e49856d8
ML
3540 if (old != pmp) {
3541 reg = (reg & ~0xf) | pmp;
cae5a29d 3542 writelfl(reg, port_mmio + SATA_IFCTL);
e49856d8 3543 }
22374677 3544 }
20f733e7
BR
3545}
3546
e49856d8
ML
3547static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3548 unsigned long deadline)
22374677 3549{
e49856d8
ML
3550 mv_pmp_select(link->ap, sata_srst_pmp(link));
3551 return sata_std_hardreset(link, class, deadline);
3552}
bdd4ddde 3553
e49856d8
ML
3554static int mv_softreset(struct ata_link *link, unsigned int *class,
3555 unsigned long deadline)
3556{
3557 mv_pmp_select(link->ap, sata_srst_pmp(link));
3558 return ata_sff_softreset(link, class, deadline);
22374677
JG
3559}
3560
cc0680a5 3561static int mv_hardreset(struct ata_link *link, unsigned int *class,
bdd4ddde 3562 unsigned long deadline)
31961943 3563{
cc0680a5 3564 struct ata_port *ap = link->ap;
bdd4ddde 3565 struct mv_host_priv *hpriv = ap->host->private_data;
b562468c 3566 struct mv_port_priv *pp = ap->private_data;
f351b2d6 3567 void __iomem *mmio = hpriv->base;
0d8be5cb
ML
3568 int rc, attempts = 0, extra = 0;
3569 u32 sstatus;
3570 bool online;
31961943 3571
e12bef50 3572 mv_reset_channel(hpriv, mmio, ap->port_no);
b562468c 3573 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
d16ab3f6
ML
3574 pp->pp_flags &=
3575 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
bdd4ddde 3576
0d8be5cb
ML
3577 /* Workaround for errata FEr SATA#10 (part 2) */
3578 do {
17c5aab5
ML
3579 const unsigned long *timing =
3580 sata_ehc_deb_timing(&link->eh_context);
bdd4ddde 3581
17c5aab5
ML
3582 rc = sata_link_hardreset(link, timing, deadline + extra,
3583 &online, NULL);
9dcffd99 3584 rc = online ? -EAGAIN : rc;
17c5aab5 3585 if (rc)
0d8be5cb 3586 return rc;
0d8be5cb
ML
3587 sata_scr_read(link, SCR_STATUS, &sstatus);
3588 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3589 /* Force 1.5gb/s link speed and try again */
8e7decdb 3590 mv_setup_ifcfg(mv_ap_base(ap), 0);
0d8be5cb
ML
3591 if (time_after(jiffies + HZ, deadline))
3592 extra = HZ; /* only extend it once, max */
3593 }
3594 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
08da1759 3595 mv_save_cached_regs(ap);
66e57a2c 3596 mv_edma_cfg(ap, 0, 0);
bdd4ddde 3597
17c5aab5 3598 return rc;
bdd4ddde
JG
3599}
3600
bdd4ddde
JG
3601static void mv_eh_freeze(struct ata_port *ap)
3602{
1cfd19ae 3603 mv_stop_edma(ap);
c4de573b 3604 mv_enable_port_irqs(ap, 0);
bdd4ddde
JG
3605}
3606
3607static void mv_eh_thaw(struct ata_port *ap)
3608{
f351b2d6 3609 struct mv_host_priv *hpriv = ap->host->private_data;
c4de573b
ML
3610 unsigned int port = ap->port_no;
3611 unsigned int hardport = mv_hardport_from_port(port);
1cfd19ae 3612 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
bdd4ddde 3613 void __iomem *port_mmio = mv_ap_base(ap);
c4de573b 3614 u32 hc_irq_cause;
bdd4ddde 3615
bdd4ddde 3616 /* clear EDMA errors on this port */
cae5a29d 3617 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
bdd4ddde
JG
3618
3619 /* clear pending irq events */
cae6edc3 3620 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
cae5a29d 3621 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
bdd4ddde 3622
88e675e1 3623 mv_enable_port_irqs(ap, ERR_IRQ);
31961943
BR
3624}
3625
05b308e1
BR
3626/**
3627 * mv_port_init - Perform some early initialization on a single port.
3628 * @port: libata data structure storing shadow register addresses
3629 * @port_mmio: base address of the port
3630 *
3631 * Initialize shadow register mmio addresses, clear outstanding
3632 * interrupts on the port, and unmask interrupts for the future
3633 * start of the port.
3634 *
3635 * LOCKING:
3636 * Inherited from caller.
3637 */
31961943 3638static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
20f733e7 3639{
cae5a29d 3640 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
31961943 3641
8b260248 3642 /* PIO related setup
31961943
BR
3643 */
3644 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
8b260248 3645 port->error_addr =
31961943
BR
3646 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3647 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3648 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3649 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3650 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3651 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
8b260248 3652 port->status_addr =
31961943
BR
3653 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3654 /* special case: control/altstatus doesn't have ATA_REG_ address */
cae5a29d 3655 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
31961943
BR
3656
3657 /* unused: */
8d9db2d2 3658 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
20f733e7 3659
31961943 3660 /* Clear any currently outstanding port interrupt conditions */
cae5a29d
ML
3661 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3662 writelfl(readl(serr), serr);
3663 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
31961943 3664
646a4da5 3665 /* unmask all non-transient EDMA error interrupts */
cae5a29d 3666 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
20f733e7 3667
8b260248 3668 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
cae5a29d
ML
3669 readl(port_mmio + EDMA_CFG),
3670 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3671 readl(port_mmio + EDMA_ERR_IRQ_MASK));
20f733e7
BR
3672}
3673
616d4a98
ML
3674static unsigned int mv_in_pcix_mode(struct ata_host *host)
3675{
3676 struct mv_host_priv *hpriv = host->private_data;
3677 void __iomem *mmio = hpriv->base;
3678 u32 reg;
3679
1f398472 3680 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
616d4a98 3681 return 0; /* not PCI-X capable */
cae5a29d 3682 reg = readl(mmio + MV_PCI_MODE);
616d4a98
ML
3683 if ((reg & MV_PCI_MODE_MASK) == 0)
3684 return 0; /* conventional PCI mode */
3685 return 1; /* chip is in PCI-X mode */
3686}
3687
3688static int mv_pci_cut_through_okay(struct ata_host *host)
3689{
3690 struct mv_host_priv *hpriv = host->private_data;
3691 void __iomem *mmio = hpriv->base;
3692 u32 reg;
3693
3694 if (!mv_in_pcix_mode(host)) {
cae5a29d
ML
3695 reg = readl(mmio + MV_PCI_COMMAND);
3696 if (reg & MV_PCI_COMMAND_MRDTRIG)
616d4a98
ML
3697 return 0; /* not okay */
3698 }
3699 return 1; /* okay */
3700}
3701
65ad7fef
ML
3702static void mv_60x1b2_errata_pci7(struct ata_host *host)
3703{
3704 struct mv_host_priv *hpriv = host->private_data;
3705 void __iomem *mmio = hpriv->base;
3706
3707 /* workaround for 60x1-B2 errata PCI#7 */
3708 if (mv_in_pcix_mode(host)) {
cae5a29d
ML
3709 u32 reg = readl(mmio + MV_PCI_COMMAND);
3710 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
65ad7fef
ML
3711 }
3712}
3713
4447d351 3714static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
bca1c4eb 3715{
4447d351
TH
3716 struct pci_dev *pdev = to_pci_dev(host->dev);
3717 struct mv_host_priv *hpriv = host->private_data;
bca1c4eb
JG
3718 u32 hp_flags = hpriv->hp_flags;
3719
5796d1c4 3720 switch (board_idx) {
47c2b677
JG
3721 case chip_5080:
3722 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3723 hp_flags |= MV_HP_GEN_I;
47c2b677 3724
44c10138 3725 switch (pdev->revision) {
47c2b677
JG
3726 case 0x1:
3727 hp_flags |= MV_HP_ERRATA_50XXB0;
3728 break;
3729 case 0x3:
3730 hp_flags |= MV_HP_ERRATA_50XXB2;
3731 break;
3732 default:
3733 dev_printk(KERN_WARNING, &pdev->dev,
3734 "Applying 50XXB2 workarounds to unknown rev\n");
3735 hp_flags |= MV_HP_ERRATA_50XXB2;
3736 break;
3737 }
3738 break;
3739
bca1c4eb
JG
3740 case chip_504x:
3741 case chip_508x:
47c2b677 3742 hpriv->ops = &mv5xxx_ops;
ee9ccdf7 3743 hp_flags |= MV_HP_GEN_I;
bca1c4eb 3744
44c10138 3745 switch (pdev->revision) {
47c2b677
JG
3746 case 0x0:
3747 hp_flags |= MV_HP_ERRATA_50XXB0;
3748 break;
3749 case 0x3:
3750 hp_flags |= MV_HP_ERRATA_50XXB2;
3751 break;
3752 default:
3753 dev_printk(KERN_WARNING, &pdev->dev,
3754 "Applying B2 workarounds to unknown rev\n");
3755 hp_flags |= MV_HP_ERRATA_50XXB2;
3756 break;
bca1c4eb
JG
3757 }
3758 break;
3759
3760 case chip_604x:
3761 case chip_608x:
47c2b677 3762 hpriv->ops = &mv6xxx_ops;
ee9ccdf7 3763 hp_flags |= MV_HP_GEN_II;
47c2b677 3764
44c10138 3765 switch (pdev->revision) {
47c2b677 3766 case 0x7:
65ad7fef 3767 mv_60x1b2_errata_pci7(host);
47c2b677
JG
3768 hp_flags |= MV_HP_ERRATA_60X1B2;
3769 break;
3770 case 0x9:
3771 hp_flags |= MV_HP_ERRATA_60X1C0;
bca1c4eb
JG
3772 break;
3773 default:
3774 dev_printk(KERN_WARNING, &pdev->dev,
47c2b677
JG
3775 "Applying B2 workarounds to unknown rev\n");
3776 hp_flags |= MV_HP_ERRATA_60X1B2;
bca1c4eb
JG
3777 break;
3778 }
3779 break;
3780
e4e7b892 3781 case chip_7042:
616d4a98 3782 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
306b30f7
ML
3783 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3784 (pdev->device == 0x2300 || pdev->device == 0x2310))
3785 {
4e520033
ML
3786 /*
3787 * Highpoint RocketRAID PCIe 23xx series cards:
3788 *
3789 * Unconfigured drives are treated as "Legacy"
3790 * by the BIOS, and it overwrites sector 8 with
3791 * a "Lgcy" metadata block prior to Linux boot.
3792 *
3793 * Configured drives (RAID or JBOD) leave sector 8
3794 * alone, but instead overwrite a high numbered
3795 * sector for the RAID metadata. This sector can
3796 * be determined exactly, by truncating the physical
3797 * drive capacity to a nice even GB value.
3798 *
3799 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3800 *
3801 * Warn the user, lest they think we're just buggy.
3802 */
3803 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3804 " BIOS CORRUPTS DATA on all attached drives,"
3805 " regardless of if/how they are configured."
3806 " BEWARE!\n");
3807 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3808 " use sectors 8-9 on \"Legacy\" drives,"
3809 " and avoid the final two gigabytes on"
3810 " all RocketRAID BIOS initialized drives.\n");
306b30f7 3811 }
8e7decdb 3812 /* drop through */
e4e7b892
JG
3813 case chip_6042:
3814 hpriv->ops = &mv6xxx_ops;
e4e7b892 3815 hp_flags |= MV_HP_GEN_IIE;
616d4a98
ML
3816 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3817 hp_flags |= MV_HP_CUT_THROUGH;
e4e7b892 3818
44c10138 3819 switch (pdev->revision) {
5cf73bfb 3820 case 0x2: /* Rev.B0: the first/only public release */
e4e7b892
JG
3821 hp_flags |= MV_HP_ERRATA_60X1C0;
3822 break;
3823 default:
3824 dev_printk(KERN_WARNING, &pdev->dev,
3825 "Applying 60X1C0 workarounds to unknown rev\n");
3826 hp_flags |= MV_HP_ERRATA_60X1C0;
3827 break;
3828 }
3829 break;
f351b2d6 3830 case chip_soc:
29b7e43c
MM
3831 if (soc_is_65n(hpriv))
3832 hpriv->ops = &mv_soc_65n_ops;
3833 else
3834 hpriv->ops = &mv_soc_ops;
eb3a55a9
SB
3835 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3836 MV_HP_ERRATA_60X1C0;
f351b2d6 3837 break;
e4e7b892 3838
bca1c4eb 3839 default:
f351b2d6 3840 dev_printk(KERN_ERR, host->dev,
5796d1c4 3841 "BUG: invalid board index %u\n", board_idx);
bca1c4eb
JG
3842 return 1;
3843 }
3844
3845 hpriv->hp_flags = hp_flags;
02a121da 3846 if (hp_flags & MV_HP_PCIE) {
cae5a29d
ML
3847 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3848 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
02a121da
ML
3849 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3850 } else {
cae5a29d
ML
3851 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3852 hpriv->irq_mask_offset = PCI_IRQ_MASK;
02a121da
ML
3853 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3854 }
bca1c4eb
JG
3855
3856 return 0;
3857}
3858
05b308e1 3859/**
47c2b677 3860 * mv_init_host - Perform some early initialization of the host.
4447d351
TH
3861 * @host: ATA host to initialize
3862 * @board_idx: controller index
05b308e1
BR
3863 *
3864 * If possible, do an early global reset of the host. Then do
3865 * our port init and clear/unmask all/relevant host interrupts.
3866 *
3867 * LOCKING:
3868 * Inherited from caller.
3869 */
4447d351 3870static int mv_init_host(struct ata_host *host, unsigned int board_idx)
20f733e7
BR
3871{
3872 int rc = 0, n_hc, port, hc;
4447d351 3873 struct mv_host_priv *hpriv = host->private_data;
f351b2d6 3874 void __iomem *mmio = hpriv->base;
47c2b677 3875
4447d351 3876 rc = mv_chip_id(host, board_idx);
bca1c4eb 3877 if (rc)
352fab70 3878 goto done;
f351b2d6 3879
1f398472 3880 if (IS_SOC(hpriv)) {
cae5a29d
ML
3881 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3882 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
1f398472 3883 } else {
cae5a29d
ML
3884 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3885 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
f351b2d6 3886 }
352fab70 3887
5d0fb2e7
TR
3888 /* initialize shadow irq mask with register's value */
3889 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3890
352fab70 3891 /* global interrupt mask: 0 == mask everything */
c4de573b 3892 mv_set_main_irq_mask(host, ~0, 0);
bca1c4eb 3893
4447d351 3894 n_hc = mv_get_hc_count(host->ports[0]->flags);
bca1c4eb 3895
4447d351 3896 for (port = 0; port < host->n_ports; port++)
29b7e43c
MM
3897 if (hpriv->ops->read_preamp)
3898 hpriv->ops->read_preamp(hpriv, port, mmio);
20f733e7 3899
c9d39130 3900 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
47c2b677 3901 if (rc)
20f733e7 3902 goto done;
20f733e7 3903
522479fb 3904 hpriv->ops->reset_flash(hpriv, mmio);
7bb3c529 3905 hpriv->ops->reset_bus(host, mmio);
47c2b677 3906 hpriv->ops->enable_leds(hpriv, mmio);
20f733e7 3907
4447d351 3908 for (port = 0; port < host->n_ports; port++) {
cbcdd875 3909 struct ata_port *ap = host->ports[port];
2a47ce06 3910 void __iomem *port_mmio = mv_port_base(mmio, port);
cbcdd875
TH
3911
3912 mv_port_init(&ap->ioaddr, port_mmio);
3913
7bb3c529 3914#ifdef CONFIG_PCI
1f398472 3915 if (!IS_SOC(hpriv)) {
f351b2d6
SB
3916 unsigned int offset = port_mmio - mmio;
3917 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
3918 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
3919 }
7bb3c529 3920#endif
20f733e7
BR
3921 }
3922
3923 for (hc = 0; hc < n_hc; hc++) {
31961943
BR
3924 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3925
3926 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3927 "(before clear)=0x%08x\n", hc,
cae5a29d
ML
3928 readl(hc_mmio + HC_CFG),
3929 readl(hc_mmio + HC_IRQ_CAUSE));
31961943
BR
3930
3931 /* Clear any currently outstanding hc interrupt conditions */
cae5a29d 3932 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
20f733e7
BR
3933 }
3934
44c65d16
ML
3935 if (!IS_SOC(hpriv)) {
3936 /* Clear any currently outstanding host interrupt conditions */
cae5a29d 3937 writelfl(0, mmio + hpriv->irq_cause_offset);
31961943 3938
44c65d16 3939 /* and unmask interrupt generation for host regs */
cae5a29d 3940 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
44c65d16 3941 }
51de32d2 3942
6be96ac1
ML
3943 /*
3944 * enable only global host interrupts for now.
3945 * The per-port interrupts get done later as ports are set up.
3946 */
3947 mv_set_main_irq_mask(host, 0, PCI_ERR);
2b748a0a
ML
3948 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3949 irq_coalescing_usecs);
f351b2d6
SB
3950done:
3951 return rc;
3952}
fb621e2f 3953
fbf14e2f
BB
3954static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3955{
3956 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3957 MV_CRQB_Q_SZ, 0);
3958 if (!hpriv->crqb_pool)
3959 return -ENOMEM;
3960
3961 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3962 MV_CRPB_Q_SZ, 0);
3963 if (!hpriv->crpb_pool)
3964 return -ENOMEM;
3965
3966 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3967 MV_SG_TBL_SZ, 0);
3968 if (!hpriv->sg_tbl_pool)
3969 return -ENOMEM;
3970
3971 return 0;
3972}
3973
15a32632
LB
3974static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3975 struct mbus_dram_target_info *dram)
3976{
3977 int i;
3978
3979 for (i = 0; i < 4; i++) {
3980 writel(0, hpriv->base + WINDOW_CTRL(i));
3981 writel(0, hpriv->base + WINDOW_BASE(i));
3982 }
3983
3984 for (i = 0; i < dram->num_cs; i++) {
3985 struct mbus_dram_window *cs = dram->cs + i;
3986
3987 writel(((cs->size - 1) & 0xffff0000) |
3988 (cs->mbus_attr << 8) |
3989 (dram->mbus_dram_target_id << 4) | 1,
3990 hpriv->base + WINDOW_CTRL(i));
3991 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3992 }
3993}
3994
f351b2d6
SB
3995/**
3996 * mv_platform_probe - handle a positive probe of an soc Marvell
3997 * host
3998 * @pdev: platform device found
3999 *
4000 * LOCKING:
4001 * Inherited from caller.
4002 */
4003static int mv_platform_probe(struct platform_device *pdev)
4004{
4005 static int printed_version;
4006 const struct mv_sata_platform_data *mv_platform_data;
4007 const struct ata_port_info *ppi[] =
4008 { &mv_port_info[chip_soc], NULL };
4009 struct ata_host *host;
4010 struct mv_host_priv *hpriv;
4011 struct resource *res;
4012 int n_ports, rc;
20f733e7 4013
f351b2d6
SB
4014 if (!printed_version++)
4015 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
bca1c4eb 4016
f351b2d6
SB
4017 /*
4018 * Simple resource validation ..
4019 */
4020 if (unlikely(pdev->num_resources != 2)) {
4021 dev_err(&pdev->dev, "invalid number of resources\n");
4022 return -EINVAL;
4023 }
4024
4025 /*
4026 * Get the register base first
4027 */
4028 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4029 if (res == NULL)
4030 return -EINVAL;
4031
4032 /* allocate host */
4033 mv_platform_data = pdev->dev.platform_data;
4034 n_ports = mv_platform_data->n_ports;
4035
4036 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4037 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4038
4039 if (!host || !hpriv)
4040 return -ENOMEM;
4041 host->private_data = hpriv;
4042 hpriv->n_ports = n_ports;
4043
4044 host->iomap = NULL;
f1cb0ea1 4045 hpriv->base = devm_ioremap(&pdev->dev, res->start,
041b5eac 4046 resource_size(res));
cae5a29d 4047 hpriv->base -= SATAHC0_REG_BASE;
f351b2d6 4048
c77a2f4e
SB
4049#if defined(CONFIG_HAVE_CLK)
4050 hpriv->clk = clk_get(&pdev->dev, NULL);
4051 if (IS_ERR(hpriv->clk))
4052 dev_notice(&pdev->dev, "cannot get clkdev\n");
4053 else
4054 clk_enable(hpriv->clk);
4055#endif
4056
15a32632
LB
4057 /*
4058 * (Re-)program MBUS remapping windows if we are asked to.
4059 */
4060 if (mv_platform_data->dram != NULL)
4061 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4062
fbf14e2f
BB
4063 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4064 if (rc)
c77a2f4e 4065 goto err;
fbf14e2f 4066
f351b2d6
SB
4067 /* initialize adapter */
4068 rc = mv_init_host(host, chip_soc);
4069 if (rc)
c77a2f4e 4070 goto err;
f351b2d6
SB
4071
4072 dev_printk(KERN_INFO, &pdev->dev,
4073 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4074 host->n_ports);
4075
4076 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4077 IRQF_SHARED, &mv6_sht);
c77a2f4e
SB
4078err:
4079#if defined(CONFIG_HAVE_CLK)
4080 if (!IS_ERR(hpriv->clk)) {
4081 clk_disable(hpriv->clk);
4082 clk_put(hpriv->clk);
4083 }
4084#endif
4085
4086 return rc;
f351b2d6
SB
4087}
4088
4089/*
4090 *
4091 * mv_platform_remove - unplug a platform interface
4092 * @pdev: platform device
4093 *
4094 * A platform bus SATA device has been unplugged. Perform the needed
4095 * cleanup. Also called on module unload for any active devices.
4096 */
4097static int __devexit mv_platform_remove(struct platform_device *pdev)
4098{
4099 struct device *dev = &pdev->dev;
4100 struct ata_host *host = dev_get_drvdata(dev);
c77a2f4e
SB
4101#if defined(CONFIG_HAVE_CLK)
4102 struct mv_host_priv *hpriv = host->private_data;
4103#endif
f351b2d6 4104 ata_host_detach(host);
c77a2f4e
SB
4105
4106#if defined(CONFIG_HAVE_CLK)
4107 if (!IS_ERR(hpriv->clk)) {
4108 clk_disable(hpriv->clk);
4109 clk_put(hpriv->clk);
4110 }
4111#endif
f351b2d6 4112 return 0;
20f733e7
BR
4113}
4114
6481f2b5
SB
4115#ifdef CONFIG_PM
4116static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4117{
4118 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4119 if (host)
4120 return ata_host_suspend(host, state);
4121 else
4122 return 0;
4123}
4124
4125static int mv_platform_resume(struct platform_device *pdev)
4126{
4127 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4128 int ret;
4129
4130 if (host) {
4131 struct mv_host_priv *hpriv = host->private_data;
4132 const struct mv_sata_platform_data *mv_platform_data = \
4133 pdev->dev.platform_data;
4134 /*
4135 * (Re-)program MBUS remapping windows if we are asked to.
4136 */
4137 if (mv_platform_data->dram != NULL)
4138 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4139
4140 /* initialize adapter */
4141 ret = mv_init_host(host, chip_soc);
4142 if (ret) {
4143 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4144 return ret;
4145 }
4146 ata_host_resume(host);
4147 }
4148
4149 return 0;
4150}
4151#else
4152#define mv_platform_suspend NULL
4153#define mv_platform_resume NULL
4154#endif
4155
f351b2d6
SB
4156static struct platform_driver mv_platform_driver = {
4157 .probe = mv_platform_probe,
4158 .remove = __devexit_p(mv_platform_remove),
6481f2b5
SB
4159 .suspend = mv_platform_suspend,
4160 .resume = mv_platform_resume,
f351b2d6
SB
4161 .driver = {
4162 .name = DRV_NAME,
4163 .owner = THIS_MODULE,
4164 },
4165};
4166
4167
7bb3c529 4168#ifdef CONFIG_PCI
f351b2d6
SB
4169static int mv_pci_init_one(struct pci_dev *pdev,
4170 const struct pci_device_id *ent);
4171
7bb3c529
SB
4172
4173static struct pci_driver mv_pci_driver = {
4174 .name = DRV_NAME,
4175 .id_table = mv_pci_tbl,
f351b2d6 4176 .probe = mv_pci_init_one,
7bb3c529
SB
4177 .remove = ata_pci_remove_one,
4178};
4179
7bb3c529
SB
4180/* move to PCI layer or libata core? */
4181static int pci_go_64(struct pci_dev *pdev)
4182{
4183 int rc;
4184
6a35528a
YH
4185 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4186 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
7bb3c529 4187 if (rc) {
284901a9 4188 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4189 if (rc) {
4190 dev_printk(KERN_ERR, &pdev->dev,
4191 "64-bit DMA enable failed\n");
4192 return rc;
4193 }
4194 }
4195 } else {
284901a9 4196 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4197 if (rc) {
4198 dev_printk(KERN_ERR, &pdev->dev,
4199 "32-bit DMA enable failed\n");
4200 return rc;
4201 }
284901a9 4202 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7bb3c529
SB
4203 if (rc) {
4204 dev_printk(KERN_ERR, &pdev->dev,
4205 "32-bit consistent DMA enable failed\n");
4206 return rc;
4207 }
4208 }
4209
4210 return rc;
4211}
4212
05b308e1
BR
4213/**
4214 * mv_print_info - Dump key info to kernel log for perusal.
4447d351 4215 * @host: ATA host to print info about
05b308e1
BR
4216 *
4217 * FIXME: complete this.
4218 *
4219 * LOCKING:
4220 * Inherited from caller.
4221 */
4447d351 4222static void mv_print_info(struct ata_host *host)
31961943 4223{
4447d351
TH
4224 struct pci_dev *pdev = to_pci_dev(host->dev);
4225 struct mv_host_priv *hpriv = host->private_data;
44c10138 4226 u8 scc;
c1e4fe71 4227 const char *scc_s, *gen;
31961943
BR
4228
4229 /* Use this to determine the HW stepping of the chip so we know
4230 * what errata to workaround
4231 */
31961943
BR
4232 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4233 if (scc == 0)
4234 scc_s = "SCSI";
4235 else if (scc == 0x01)
4236 scc_s = "RAID";
4237 else
c1e4fe71
JG
4238 scc_s = "?";
4239
4240 if (IS_GEN_I(hpriv))
4241 gen = "I";
4242 else if (IS_GEN_II(hpriv))
4243 gen = "II";
4244 else if (IS_GEN_IIE(hpriv))
4245 gen = "IIE";
4246 else
4247 gen = "?";
31961943 4248
a9524a76 4249 dev_printk(KERN_INFO, &pdev->dev,
c1e4fe71
JG
4250 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4251 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
31961943
BR
4252 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4253}
4254
05b308e1 4255/**
f351b2d6 4256 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
05b308e1
BR
4257 * @pdev: PCI device found
4258 * @ent: PCI device ID entry for the matched host
4259 *
4260 * LOCKING:
4261 * Inherited from caller.
4262 */
f351b2d6
SB
4263static int mv_pci_init_one(struct pci_dev *pdev,
4264 const struct pci_device_id *ent)
20f733e7 4265{
2dcb407e 4266 static int printed_version;
20f733e7 4267 unsigned int board_idx = (unsigned int)ent->driver_data;
4447d351
TH
4268 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4269 struct ata_host *host;
4270 struct mv_host_priv *hpriv;
4271 int n_ports, rc;
20f733e7 4272
a9524a76
JG
4273 if (!printed_version++)
4274 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
20f733e7 4275
4447d351
TH
4276 /* allocate host */
4277 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4278
4279 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4280 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4281 if (!host || !hpriv)
4282 return -ENOMEM;
4283 host->private_data = hpriv;
f351b2d6 4284 hpriv->n_ports = n_ports;
4447d351
TH
4285
4286 /* acquire resources */
24dc5f33
TH
4287 rc = pcim_enable_device(pdev);
4288 if (rc)
20f733e7 4289 return rc;
20f733e7 4290
0d5ff566
TH
4291 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4292 if (rc == -EBUSY)
24dc5f33 4293 pcim_pin_device(pdev);
0d5ff566 4294 if (rc)
24dc5f33 4295 return rc;
4447d351 4296 host->iomap = pcim_iomap_table(pdev);
f351b2d6 4297 hpriv->base = host->iomap[MV_PRIMARY_BAR];
20f733e7 4298
d88184fb
JG
4299 rc = pci_go_64(pdev);
4300 if (rc)
4301 return rc;
4302
da2fa9ba
ML
4303 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4304 if (rc)
4305 return rc;
4306
20f733e7 4307 /* initialize adapter */
4447d351 4308 rc = mv_init_host(host, board_idx);
24dc5f33
TH
4309 if (rc)
4310 return rc;
20f733e7 4311
6d3c30ef
ML
4312 /* Enable message-switched interrupts, if requested */
4313 if (msi && pci_enable_msi(pdev) == 0)
4314 hpriv->hp_flags |= MV_HP_FLAG_MSI;
20f733e7 4315
31961943 4316 mv_dump_pci_cfg(pdev, 0x68);
4447d351 4317 mv_print_info(host);
20f733e7 4318
4447d351 4319 pci_set_master(pdev);
ea8b4db9 4320 pci_try_set_mwi(pdev);
4447d351 4321 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
c5d3e45a 4322 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
20f733e7 4323}
7bb3c529 4324#endif
20f733e7 4325
f351b2d6
SB
4326static int mv_platform_probe(struct platform_device *pdev);
4327static int __devexit mv_platform_remove(struct platform_device *pdev);
4328
20f733e7
BR
4329static int __init mv_init(void)
4330{
7bb3c529
SB
4331 int rc = -ENODEV;
4332#ifdef CONFIG_PCI
4333 rc = pci_register_driver(&mv_pci_driver);
f351b2d6
SB
4334 if (rc < 0)
4335 return rc;
4336#endif
4337 rc = platform_driver_register(&mv_platform_driver);
4338
4339#ifdef CONFIG_PCI
4340 if (rc < 0)
4341 pci_unregister_driver(&mv_pci_driver);
7bb3c529
SB
4342#endif
4343 return rc;
20f733e7
BR
4344}
4345
4346static void __exit mv_exit(void)
4347{
7bb3c529 4348#ifdef CONFIG_PCI
20f733e7 4349 pci_unregister_driver(&mv_pci_driver);
7bb3c529 4350#endif
f351b2d6 4351 platform_driver_unregister(&mv_platform_driver);
20f733e7
BR
4352}
4353
4354MODULE_AUTHOR("Brett Russ");
4355MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4356MODULE_LICENSE("GPL");
4357MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4358MODULE_VERSION(DRV_VERSION);
17c5aab5 4359MODULE_ALIAS("platform:" DRV_NAME);
20f733e7
BR
4360
4361module_init(mv_init);
4362module_exit(mv_exit);