]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-sff.c
ahci: always clear all bits in irq_stat
[net-next-2.6.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce
JG
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce
JG
35#include <linux/kernel.h>
36#include <linux/pci.h>
37#include <linux/libata.h>
624d5c51 38#include <linux/highmem.h>
1fdffbce
JG
39
40#include "libata.h"
41
624d5c51
TH
42const struct ata_port_operations ata_sff_port_ops = {
43 .inherits = &ata_base_port_ops,
44
9363c382
TH
45 .qc_prep = ata_sff_qc_prep,
46 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 47 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
48
49 .freeze = ata_sff_freeze,
50 .thaw = ata_sff_thaw,
0aa1113d 51 .prereset = ata_sff_prereset,
9363c382 52 .softreset = ata_sff_softreset,
57c9efdf 53 .hardreset = sata_sff_hardreset,
203c75b8 54 .postreset = ata_sff_postreset,
9363c382
TH
55 .error_handler = ata_sff_error_handler,
56 .post_internal_cmd = ata_sff_post_internal_cmd,
57
5682ed33
TH
58 .sff_dev_select = ata_sff_dev_select,
59 .sff_check_status = ata_sff_check_status,
60 .sff_tf_load = ata_sff_tf_load,
61 .sff_tf_read = ata_sff_tf_read,
62 .sff_exec_command = ata_sff_exec_command,
63 .sff_data_xfer = ata_sff_data_xfer,
64 .sff_irq_on = ata_sff_irq_on,
288623a0 65 .sff_irq_clear = ata_sff_irq_clear,
624d5c51
TH
66
67 .port_start = ata_sff_port_start,
68};
69
70const struct ata_port_operations ata_bmdma_port_ops = {
71 .inherits = &ata_sff_port_ops,
72
9363c382 73 .mode_filter = ata_bmdma_mode_filter,
624d5c51
TH
74
75 .bmdma_setup = ata_bmdma_setup,
76 .bmdma_start = ata_bmdma_start,
77 .bmdma_stop = ata_bmdma_stop,
78 .bmdma_status = ata_bmdma_status,
624d5c51
TH
79};
80
81/**
82 * ata_fill_sg - Fill PCI IDE PRD table
83 * @qc: Metadata associated with taskfile to be transferred
84 *
85 * Fill PCI IDE PRD (scatter-gather) table with segments
86 * associated with the current disk command.
87 *
88 * LOCKING:
89 * spin_lock_irqsave(host lock)
90 *
91 */
92static void ata_fill_sg(struct ata_queued_cmd *qc)
93{
94 struct ata_port *ap = qc->ap;
95 struct scatterlist *sg;
96 unsigned int si, pi;
97
98 pi = 0;
99 for_each_sg(qc->sg, sg, qc->n_elem, si) {
100 u32 addr, offset;
101 u32 sg_len, len;
102
103 /* determine if physical DMA addr spans 64K boundary.
104 * Note h/w doesn't support 64-bit, so we unconditionally
105 * truncate dma_addr_t to u32.
106 */
107 addr = (u32) sg_dma_address(sg);
108 sg_len = sg_dma_len(sg);
109
110 while (sg_len) {
111 offset = addr & 0xffff;
112 len = sg_len;
113 if ((offset + sg_len) > 0x10000)
114 len = 0x10000 - offset;
115
116 ap->prd[pi].addr = cpu_to_le32(addr);
117 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
118 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
119
120 pi++;
121 sg_len -= len;
122 addr += len;
123 }
124 }
125
126 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
127}
128
129/**
130 * ata_fill_sg_dumb - Fill PCI IDE PRD table
131 * @qc: Metadata associated with taskfile to be transferred
132 *
133 * Fill PCI IDE PRD (scatter-gather) table with segments
134 * associated with the current disk command. Perform the fill
135 * so that we avoid writing any length 64K records for
136 * controllers that don't follow the spec.
137 *
138 * LOCKING:
139 * spin_lock_irqsave(host lock)
140 *
141 */
142static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
143{
144 struct ata_port *ap = qc->ap;
145 struct scatterlist *sg;
146 unsigned int si, pi;
147
148 pi = 0;
149 for_each_sg(qc->sg, sg, qc->n_elem, si) {
150 u32 addr, offset;
151 u32 sg_len, len, blen;
152
153 /* determine if physical DMA addr spans 64K boundary.
154 * Note h/w doesn't support 64-bit, so we unconditionally
155 * truncate dma_addr_t to u32.
156 */
157 addr = (u32) sg_dma_address(sg);
158 sg_len = sg_dma_len(sg);
159
160 while (sg_len) {
161 offset = addr & 0xffff;
162 len = sg_len;
163 if ((offset + sg_len) > 0x10000)
164 len = 0x10000 - offset;
165
166 blen = len & 0xffff;
167 ap->prd[pi].addr = cpu_to_le32(addr);
168 if (blen == 0) {
169 /* Some PATA chipsets like the CS5530 can't
170 cope with 0x0000 meaning 64K as the spec says */
171 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
172 blen = 0x8000;
173 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
174 }
175 ap->prd[pi].flags_len = cpu_to_le32(blen);
176 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
177
178 pi++;
179 sg_len -= len;
180 addr += len;
181 }
182 }
183
184 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
185}
186
187/**
9363c382 188 * ata_sff_qc_prep - Prepare taskfile for submission
624d5c51
TH
189 * @qc: Metadata associated with taskfile to be prepared
190 *
191 * Prepare ATA taskfile for submission.
192 *
193 * LOCKING:
194 * spin_lock_irqsave(host lock)
195 */
9363c382 196void ata_sff_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
197{
198 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
199 return;
200
201 ata_fill_sg(qc);
202}
203
204/**
9363c382 205 * ata_sff_dumb_qc_prep - Prepare taskfile for submission
624d5c51
TH
206 * @qc: Metadata associated with taskfile to be prepared
207 *
208 * Prepare ATA taskfile for submission.
209 *
210 * LOCKING:
211 * spin_lock_irqsave(host lock)
212 */
9363c382 213void ata_sff_dumb_qc_prep(struct ata_queued_cmd *qc)
624d5c51
TH
214{
215 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
216 return;
217
218 ata_fill_sg_dumb(qc);
219}
220
272f7884 221/**
9363c382 222 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
223 * @ap: port where the device is
224 *
225 * Reads ATA taskfile status register for currently-selected device
226 * and return its value. This also clears pending interrupts
227 * from this device
228 *
229 * LOCKING:
230 * Inherited from caller.
231 */
9363c382 232u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
233{
234 return ioread8(ap->ioaddr.status_addr);
235}
236
237/**
9363c382 238 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
239 * @ap: port where the device is
240 *
241 * Reads ATA taskfile alternate status register for
242 * currently-selected device and return its value.
243 *
244 * Note: may NOT be used as the check_altstatus() entry in
245 * ata_port_operations.
246 *
247 * LOCKING:
248 * Inherited from caller.
249 */
a57c1bad 250static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 251{
5682ed33
TH
252 if (ap->ops->sff_check_altstatus)
253 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
254
255 return ioread8(ap->ioaddr.altstatus_addr);
256}
257
a57c1bad
AC
258/**
259 * ata_sff_irq_status - Check if the device is busy
260 * @ap: port where the device is
261 *
262 * Determine if the port is currently busy. Uses altstatus
263 * if available in order to avoid clearing shared IRQ status
264 * when finding an IRQ source. Non ctl capable devices don't
265 * share interrupt lines fortunately for us.
266 *
267 * LOCKING:
268 * Inherited from caller.
269 */
270static u8 ata_sff_irq_status(struct ata_port *ap)
271{
272 u8 status;
273
274 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
275 status = ata_sff_altstatus(ap);
276 /* Not us: We are busy */
277 if (status & ATA_BUSY)
278 return status;
279 }
280 /* Clear INTRQ latch */
6311c90a 281 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
282 return status;
283}
284
285/**
286 * ata_sff_sync - Flush writes
287 * @ap: Port to wait for.
288 *
289 * CAUTION:
290 * If we have an mmio device with no ctl and no altstatus
291 * method this will fail. No such devices are known to exist.
292 *
293 * LOCKING:
294 * Inherited from caller.
295 */
296
297static void ata_sff_sync(struct ata_port *ap)
298{
299 if (ap->ops->sff_check_altstatus)
300 ap->ops->sff_check_altstatus(ap);
301 else if (ap->ioaddr.altstatus_addr)
302 ioread8(ap->ioaddr.altstatus_addr);
303}
304
305/**
306 * ata_sff_pause - Flush writes and wait 400nS
307 * @ap: Port to pause for.
308 *
309 * CAUTION:
310 * If we have an mmio device with no ctl and no altstatus
311 * method this will fail. No such devices are known to exist.
312 *
313 * LOCKING:
314 * Inherited from caller.
315 */
316
317void ata_sff_pause(struct ata_port *ap)
318{
319 ata_sff_sync(ap);
320 ndelay(400);
321}
322
323/**
324 * ata_sff_dma_pause - Pause before commencing DMA
325 * @ap: Port to pause for.
326 *
327 * Perform I/O fencing and ensure sufficient cycle delays occur
328 * for the HDMA1:0 transition
329 */
330
331void ata_sff_dma_pause(struct ata_port *ap)
332{
333 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
334 /* An altstatus read will cause the needed delay without
335 messing up the IRQ status */
336 ata_sff_altstatus(ap);
337 return;
338 }
339 /* There are no DMA controllers without ctl. BUG here to ensure
340 we never violate the HDMA1:0 transition timing and risk
341 corruption. */
342 BUG();
343}
344
624d5c51 345/**
9363c382 346 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51
TH
347 * @ap: port containing status register to be polled
348 * @tmout_pat: impatience timeout
349 * @tmout: overall timeout
350 *
351 * Sleep until ATA Status register bit BSY clears,
352 * or a timeout occurs.
353 *
354 * LOCKING:
355 * Kernel thread context (may sleep).
356 *
357 * RETURNS:
358 * 0 on success, -errno otherwise.
359 */
9363c382
TH
360int ata_sff_busy_sleep(struct ata_port *ap,
361 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
362{
363 unsigned long timer_start, timeout;
364 u8 status;
365
9363c382 366 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51
TH
367 timer_start = jiffies;
368 timeout = timer_start + tmout_pat;
369 while (status != 0xff && (status & ATA_BUSY) &&
370 time_before(jiffies, timeout)) {
371 msleep(50);
9363c382 372 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
373 }
374
375 if (status != 0xff && (status & ATA_BUSY))
376 ata_port_printk(ap, KERN_WARNING,
377 "port is slow to respond, please be patient "
378 "(Status 0x%x)\n", status);
379
380 timeout = timer_start + tmout;
381 while (status != 0xff && (status & ATA_BUSY) &&
382 time_before(jiffies, timeout)) {
383 msleep(50);
5682ed33 384 status = ap->ops->sff_check_status(ap);
624d5c51
TH
385 }
386
387 if (status == 0xff)
388 return -ENODEV;
389
390 if (status & ATA_BUSY) {
391 ata_port_printk(ap, KERN_ERR, "port failed to respond "
392 "(%lu secs, Status 0x%x)\n",
393 tmout / HZ, status);
394 return -EBUSY;
395 }
396
397 return 0;
398}
399
aa2731ad
TH
400static int ata_sff_check_ready(struct ata_link *link)
401{
402 u8 status = link->ap->ops->sff_check_status(link->ap);
403
78ab88f0 404 return ata_check_ready(status);
aa2731ad
TH
405}
406
624d5c51 407/**
9363c382 408 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 409 * @link: SFF link to wait ready status for
624d5c51
TH
410 * @deadline: deadline jiffies for the operation
411 *
412 * Sleep until ATA Status register bit BSY clears, or timeout
413 * occurs.
414 *
415 * LOCKING:
416 * Kernel thread context (may sleep).
417 *
418 * RETURNS:
419 * 0 on success, -errno otherwise.
420 */
705e76be 421int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 422{
aa2731ad 423 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51
TH
424}
425
426/**
9363c382 427 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
428 * @ap: ATA channel to manipulate
429 * @device: ATA device (numbered from zero) to select
430 *
431 * Use the method defined in the ATA specification to
432 * make either device 0, or device 1, active on the
433 * ATA channel. Works with both PIO and MMIO.
434 *
435 * May be used as the dev_select() entry in ata_port_operations.
436 *
437 * LOCKING:
438 * caller.
439 */
9363c382 440void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
441{
442 u8 tmp;
443
444 if (device == 0)
445 tmp = ATA_DEVICE_OBS;
446 else
447 tmp = ATA_DEVICE_OBS | ATA_DEV1;
448
449 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 450 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51
TH
451}
452
453/**
454 * ata_dev_select - Select device 0/1 on ATA bus
455 * @ap: ATA channel to manipulate
456 * @device: ATA device (numbered from zero) to select
457 * @wait: non-zero to wait for Status register BSY bit to clear
458 * @can_sleep: non-zero if context allows sleeping
459 *
460 * Use the method defined in the ATA specification to
461 * make either device 0, or device 1, active on the
462 * ATA channel.
463 *
9363c382
TH
464 * This is a high-level version of ata_sff_dev_select(), which
465 * additionally provides the services of inserting the proper
466 * pauses and status polling, where needed.
624d5c51
TH
467 *
468 * LOCKING:
469 * caller.
470 */
471void ata_dev_select(struct ata_port *ap, unsigned int device,
472 unsigned int wait, unsigned int can_sleep)
473{
474 if (ata_msg_probe(ap))
475 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
476 "device %u, wait %u\n", device, wait);
477
478 if (wait)
479 ata_wait_idle(ap);
480
5682ed33 481 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
482
483 if (wait) {
484 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
485 msleep(150);
486 ata_wait_idle(ap);
487 }
488}
489
490/**
9363c382 491 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
492 * @ap: Port on which interrupts are enabled.
493 *
494 * Enable interrupts on a legacy IDE device using MMIO or PIO,
495 * wait for idle, clear any pending interrupts.
496 *
497 * LOCKING:
498 * Inherited from caller.
499 */
9363c382 500u8 ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
501{
502 struct ata_ioports *ioaddr = &ap->ioaddr;
503 u8 tmp;
504
505 ap->ctl &= ~ATA_NIEN;
506 ap->last_ctl = ap->ctl;
507
508 if (ioaddr->ctl_addr)
509 iowrite8(ap->ctl, ioaddr->ctl_addr);
510 tmp = ata_wait_idle(ap);
511
5682ed33 512 ap->ops->sff_irq_clear(ap);
624d5c51
TH
513
514 return tmp;
515}
516
517/**
9363c382 518 * ata_sff_irq_clear - Clear PCI IDE BMDMA interrupt.
624d5c51
TH
519 * @ap: Port associated with this ATA transaction.
520 *
521 * Clear interrupt and error flags in DMA status register.
522 *
523 * May be used as the irq_clear() entry in ata_port_operations.
524 *
525 * LOCKING:
526 * spin_lock_irqsave(host lock)
527 */
9363c382 528void ata_sff_irq_clear(struct ata_port *ap)
624d5c51
TH
529{
530 void __iomem *mmio = ap->ioaddr.bmdma_addr;
531
532 if (!mmio)
533 return;
534
535 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
536}
537
538/**
9363c382 539 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
540 * @ap: Port to which output is sent
541 * @tf: ATA taskfile register set
542 *
543 * Outputs ATA taskfile to standard ATA host controller.
544 *
545 * LOCKING:
546 * Inherited from caller.
547 */
9363c382 548void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
549{
550 struct ata_ioports *ioaddr = &ap->ioaddr;
551 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
552
553 if (tf->ctl != ap->last_ctl) {
554 if (ioaddr->ctl_addr)
555 iowrite8(tf->ctl, ioaddr->ctl_addr);
556 ap->last_ctl = tf->ctl;
557 ata_wait_idle(ap);
558 }
559
560 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
561 WARN_ON(!ioaddr->ctl_addr);
562 iowrite8(tf->hob_feature, ioaddr->feature_addr);
563 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
564 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
565 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
566 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
567 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
568 tf->hob_feature,
569 tf->hob_nsect,
570 tf->hob_lbal,
571 tf->hob_lbam,
572 tf->hob_lbah);
573 }
574
575 if (is_addr) {
576 iowrite8(tf->feature, ioaddr->feature_addr);
577 iowrite8(tf->nsect, ioaddr->nsect_addr);
578 iowrite8(tf->lbal, ioaddr->lbal_addr);
579 iowrite8(tf->lbam, ioaddr->lbam_addr);
580 iowrite8(tf->lbah, ioaddr->lbah_addr);
581 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
582 tf->feature,
583 tf->nsect,
584 tf->lbal,
585 tf->lbam,
586 tf->lbah);
587 }
588
589 if (tf->flags & ATA_TFLAG_DEVICE) {
590 iowrite8(tf->device, ioaddr->device_addr);
591 VPRINTK("device 0x%X\n", tf->device);
592 }
593
594 ata_wait_idle(ap);
595}
596
597/**
9363c382 598 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
599 * @ap: Port from which input is read
600 * @tf: ATA taskfile register set for storing input
601 *
602 * Reads ATA taskfile registers for currently-selected device
603 * into @tf. Assumes the device has a fully SFF compliant task file
604 * layout and behaviour. If you device does not (eg has a different
605 * status method) then you will need to provide a replacement tf_read
606 *
607 * LOCKING:
608 * Inherited from caller.
609 */
9363c382 610void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
611{
612 struct ata_ioports *ioaddr = &ap->ioaddr;
613
9363c382 614 tf->command = ata_sff_check_status(ap);
624d5c51
TH
615 tf->feature = ioread8(ioaddr->error_addr);
616 tf->nsect = ioread8(ioaddr->nsect_addr);
617 tf->lbal = ioread8(ioaddr->lbal_addr);
618 tf->lbam = ioread8(ioaddr->lbam_addr);
619 tf->lbah = ioread8(ioaddr->lbah_addr);
620 tf->device = ioread8(ioaddr->device_addr);
621
622 if (tf->flags & ATA_TFLAG_LBA48) {
623 if (likely(ioaddr->ctl_addr)) {
624 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
625 tf->hob_feature = ioread8(ioaddr->error_addr);
626 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
627 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
628 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
629 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
630 iowrite8(tf->ctl, ioaddr->ctl_addr);
631 ap->last_ctl = tf->ctl;
632 } else
633 WARN_ON(1);
634 }
635}
636
637/**
9363c382 638 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
639 * @ap: port to which command is being issued
640 * @tf: ATA taskfile register set
641 *
642 * Issues ATA command, with proper synchronization with interrupt
643 * handler / other threads.
644 *
645 * LOCKING:
646 * spin_lock_irqsave(host lock)
647 */
9363c382 648void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
649{
650 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
651
652 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 653 ata_sff_pause(ap);
624d5c51
TH
654}
655
656/**
657 * ata_tf_to_host - issue ATA taskfile to host controller
658 * @ap: port to which command is being issued
659 * @tf: ATA taskfile register set
660 *
661 * Issues ATA taskfile register set to ATA host controller,
662 * with proper synchronization with interrupt handler and
663 * other threads.
664 *
665 * LOCKING:
666 * spin_lock_irqsave(host lock)
667 */
668static inline void ata_tf_to_host(struct ata_port *ap,
669 const struct ata_taskfile *tf)
670{
5682ed33
TH
671 ap->ops->sff_tf_load(ap, tf);
672 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
673}
674
675/**
9363c382 676 * ata_sff_data_xfer - Transfer data by PIO
624d5c51
TH
677 * @dev: device to target
678 * @buf: data buffer
679 * @buflen: buffer length
680 * @rw: read/write
681 *
682 * Transfer data from/to the device data register by PIO.
683 *
684 * LOCKING:
685 * Inherited from caller.
686 *
687 * RETURNS:
688 * Bytes consumed.
689 */
9363c382
TH
690unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
691 unsigned int buflen, int rw)
624d5c51
TH
692{
693 struct ata_port *ap = dev->link->ap;
694 void __iomem *data_addr = ap->ioaddr.data_addr;
695 unsigned int words = buflen >> 1;
696
697 /* Transfer multiple of 2 bytes */
698 if (rw == READ)
699 ioread16_rep(data_addr, buf, words);
700 else
701 iowrite16_rep(data_addr, buf, words);
702
703 /* Transfer trailing 1 byte, if any. */
704 if (unlikely(buflen & 0x01)) {
705 __le16 align_buf[1] = { 0 };
706 unsigned char *trailing_buf = buf + buflen - 1;
707
708 if (rw == READ) {
709 align_buf[0] = cpu_to_le16(ioread16(data_addr));
710 memcpy(trailing_buf, align_buf, 1);
711 } else {
712 memcpy(align_buf, trailing_buf, 1);
713 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
714 }
715 words++;
716 }
717
718 return words << 1;
719}
720
721/**
9363c382 722 * ata_sff_data_xfer_noirq - Transfer data by PIO
624d5c51
TH
723 * @dev: device to target
724 * @buf: data buffer
725 * @buflen: buffer length
726 * @rw: read/write
727 *
728 * Transfer data from/to the device data register by PIO. Do the
729 * transfer with interrupts disabled.
730 *
731 * LOCKING:
732 * Inherited from caller.
733 *
734 * RETURNS:
735 * Bytes consumed.
736 */
9363c382
TH
737unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
738 unsigned int buflen, int rw)
624d5c51
TH
739{
740 unsigned long flags;
741 unsigned int consumed;
742
743 local_irq_save(flags);
9363c382 744 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
624d5c51
TH
745 local_irq_restore(flags);
746
747 return consumed;
748}
749
750/**
751 * ata_pio_sector - Transfer a sector of data.
752 * @qc: Command on going
753 *
754 * Transfer qc->sect_size bytes of data from/to the ATA device.
755 *
756 * LOCKING:
757 * Inherited from caller.
758 */
759static void ata_pio_sector(struct ata_queued_cmd *qc)
760{
761 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
762 struct ata_port *ap = qc->ap;
763 struct page *page;
764 unsigned int offset;
765 unsigned char *buf;
766
767 if (qc->curbytes == qc->nbytes - qc->sect_size)
768 ap->hsm_task_state = HSM_ST_LAST;
769
770 page = sg_page(qc->cursg);
771 offset = qc->cursg->offset + qc->cursg_ofs;
772
773 /* get the current page and offset */
774 page = nth_page(page, (offset >> PAGE_SHIFT));
775 offset %= PAGE_SIZE;
776
777 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
778
779 if (PageHighMem(page)) {
780 unsigned long flags;
781
782 /* FIXME: use a bounce buffer */
783 local_irq_save(flags);
784 buf = kmap_atomic(page, KM_IRQ0);
785
786 /* do the actual data transfer */
5682ed33
TH
787 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
788 do_write);
624d5c51
TH
789
790 kunmap_atomic(buf, KM_IRQ0);
791 local_irq_restore(flags);
792 } else {
793 buf = page_address(page);
5682ed33
TH
794 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
795 do_write);
624d5c51
TH
796 }
797
798 qc->curbytes += qc->sect_size;
799 qc->cursg_ofs += qc->sect_size;
800
801 if (qc->cursg_ofs == qc->cursg->length) {
802 qc->cursg = sg_next(qc->cursg);
803 qc->cursg_ofs = 0;
804 }
805}
806
807/**
808 * ata_pio_sectors - Transfer one or many sectors.
809 * @qc: Command on going
810 *
811 * Transfer one or many sectors of data from/to the
812 * ATA device for the DRQ request.
813 *
814 * LOCKING:
815 * Inherited from caller.
816 */
817static void ata_pio_sectors(struct ata_queued_cmd *qc)
818{
819 if (is_multi_taskfile(&qc->tf)) {
820 /* READ/WRITE MULTIPLE */
821 unsigned int nsect;
822
823 WARN_ON(qc->dev->multi_count == 0);
824
825 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
826 qc->dev->multi_count);
827 while (nsect--)
828 ata_pio_sector(qc);
829 } else
830 ata_pio_sector(qc);
831
a57c1bad 832 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
833}
834
835/**
836 * atapi_send_cdb - Write CDB bytes to hardware
837 * @ap: Port to which ATAPI device is attached.
838 * @qc: Taskfile currently active
839 *
840 * When device has indicated its readiness to accept
841 * a CDB, this function is called. Send the CDB.
842 *
843 * LOCKING:
844 * caller.
845 */
846static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
847{
848 /* send SCSI cdb */
849 DPRINTK("send cdb\n");
850 WARN_ON(qc->dev->cdb_len < 12);
851
5682ed33 852 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
853 ata_sff_sync(ap);
854 /* FIXME: If the CDB is for DMA do we need to do the transition delay
855 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
856 switch (qc->tf.protocol) {
857 case ATAPI_PROT_PIO:
858 ap->hsm_task_state = HSM_ST;
859 break;
860 case ATAPI_PROT_NODATA:
861 ap->hsm_task_state = HSM_ST_LAST;
862 break;
863 case ATAPI_PROT_DMA:
864 ap->hsm_task_state = HSM_ST_LAST;
865 /* initiate bmdma */
866 ap->ops->bmdma_start(qc);
867 break;
868 }
869}
870
871/**
872 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
873 * @qc: Command on going
874 * @bytes: number of bytes
875 *
876 * Transfer Transfer data from/to the ATAPI device.
877 *
878 * LOCKING:
879 * Inherited from caller.
880 *
881 */
882static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
883{
884 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
885 struct ata_port *ap = qc->ap;
886 struct ata_device *dev = qc->dev;
887 struct ata_eh_info *ehi = &dev->link->eh_info;
888 struct scatterlist *sg;
889 struct page *page;
890 unsigned char *buf;
891 unsigned int offset, count, consumed;
892
893next_sg:
894 sg = qc->cursg;
895 if (unlikely(!sg)) {
896 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
897 "buf=%u cur=%u bytes=%u",
898 qc->nbytes, qc->curbytes, bytes);
899 return -1;
900 }
901
902 page = sg_page(sg);
903 offset = sg->offset + qc->cursg_ofs;
904
905 /* get the current page and offset */
906 page = nth_page(page, (offset >> PAGE_SHIFT));
907 offset %= PAGE_SIZE;
908
909 /* don't overrun current sg */
910 count = min(sg->length - qc->cursg_ofs, bytes);
911
912 /* don't cross page boundaries */
913 count = min(count, (unsigned int)PAGE_SIZE - offset);
914
915 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
916
917 if (PageHighMem(page)) {
918 unsigned long flags;
919
920 /* FIXME: use bounce buffer */
921 local_irq_save(flags);
922 buf = kmap_atomic(page, KM_IRQ0);
923
924 /* do the actual data transfer */
5682ed33 925 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
624d5c51
TH
926
927 kunmap_atomic(buf, KM_IRQ0);
928 local_irq_restore(flags);
929 } else {
930 buf = page_address(page);
5682ed33 931 consumed = ap->ops->sff_data_xfer(dev, buf + offset, count, rw);
624d5c51
TH
932 }
933
934 bytes -= min(bytes, consumed);
935 qc->curbytes += count;
936 qc->cursg_ofs += count;
937
938 if (qc->cursg_ofs == sg->length) {
939 qc->cursg = sg_next(qc->cursg);
940 qc->cursg_ofs = 0;
941 }
942
943 /* consumed can be larger than count only for the last transfer */
944 WARN_ON(qc->cursg && count != consumed);
945
946 if (bytes)
947 goto next_sg;
948 return 0;
949}
950
951/**
952 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
953 * @qc: Command on going
954 *
955 * Transfer Transfer data from/to the ATAPI device.
956 *
957 * LOCKING:
958 * Inherited from caller.
959 */
960static void atapi_pio_bytes(struct ata_queued_cmd *qc)
961{
962 struct ata_port *ap = qc->ap;
963 struct ata_device *dev = qc->dev;
964 struct ata_eh_info *ehi = &dev->link->eh_info;
965 unsigned int ireason, bc_lo, bc_hi, bytes;
966 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
967
968 /* Abuse qc->result_tf for temp storage of intermediate TF
969 * here to save some kernel stack usage.
970 * For normal completion, qc->result_tf is not relevant. For
971 * error, qc->result_tf is later overwritten by ata_qc_complete().
972 * So, the correctness of qc->result_tf is not affected.
973 */
5682ed33 974 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
975 ireason = qc->result_tf.nsect;
976 bc_lo = qc->result_tf.lbam;
977 bc_hi = qc->result_tf.lbah;
978 bytes = (bc_hi << 8) | bc_lo;
979
980 /* shall be cleared to zero, indicating xfer of data */
981 if (unlikely(ireason & (1 << 0)))
982 goto atapi_check;
983
984 /* make sure transfer direction matches expected */
985 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
986 if (unlikely(do_write != i_write))
987 goto atapi_check;
988
989 if (unlikely(!bytes))
990 goto atapi_check;
991
992 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
993
994 if (unlikely(__atapi_pio_bytes(qc, bytes)))
995 goto err_out;
a57c1bad 996 ata_sff_sync(ap); /* flush */
624d5c51
TH
997
998 return;
999
1000 atapi_check:
1001 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
1002 ireason, bytes);
1003 err_out:
1004 qc->err_mask |= AC_ERR_HSM;
1005 ap->hsm_task_state = HSM_ST_ERR;
1006}
1007
1008/**
1009 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
1010 * @ap: the target ata_port
1011 * @qc: qc on going
1012 *
1013 * RETURNS:
1014 * 1 if ok in workqueue, 0 otherwise.
1015 */
1016static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1017{
1018 if (qc->tf.flags & ATA_TFLAG_POLLING)
1019 return 1;
1020
1021 if (ap->hsm_task_state == HSM_ST_FIRST) {
1022 if (qc->tf.protocol == ATA_PROT_PIO &&
1023 (qc->tf.flags & ATA_TFLAG_WRITE))
1024 return 1;
1025
1026 if (ata_is_atapi(qc->tf.protocol) &&
1027 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1028 return 1;
1029 }
1030
1031 return 0;
1032}
1033
1034/**
1035 * ata_hsm_qc_complete - finish a qc running on standard HSM
1036 * @qc: Command to complete
1037 * @in_wq: 1 if called from workqueue, 0 otherwise
1038 *
1039 * Finish @qc which is running on standard HSM.
1040 *
1041 * LOCKING:
1042 * If @in_wq is zero, spin_lock_irqsave(host lock).
1043 * Otherwise, none on entry and grabs host lock.
1044 */
1045static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
1046{
1047 struct ata_port *ap = qc->ap;
1048 unsigned long flags;
1049
1050 if (ap->ops->error_handler) {
1051 if (in_wq) {
1052 spin_lock_irqsave(ap->lock, flags);
1053
1054 /* EH might have kicked in while host lock is
1055 * released.
1056 */
1057 qc = ata_qc_from_tag(ap, qc->tag);
1058 if (qc) {
1059 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5682ed33 1060 ap->ops->sff_irq_on(ap);
624d5c51
TH
1061 ata_qc_complete(qc);
1062 } else
1063 ata_port_freeze(ap);
1064 }
1065
1066 spin_unlock_irqrestore(ap->lock, flags);
1067 } else {
1068 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1069 ata_qc_complete(qc);
1070 else
1071 ata_port_freeze(ap);
1072 }
1073 } else {
1074 if (in_wq) {
1075 spin_lock_irqsave(ap->lock, flags);
5682ed33 1076 ap->ops->sff_irq_on(ap);
624d5c51
TH
1077 ata_qc_complete(qc);
1078 spin_unlock_irqrestore(ap->lock, flags);
1079 } else
1080 ata_qc_complete(qc);
1081 }
1082}
1083
1084/**
9363c382 1085 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1086 * @ap: the target ata_port
1087 * @qc: qc on going
1088 * @status: current device status
1089 * @in_wq: 1 if called from workqueue, 0 otherwise
1090 *
1091 * RETURNS:
1092 * 1 when poll next status needed, 0 otherwise.
1093 */
9363c382
TH
1094int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1095 u8 status, int in_wq)
624d5c51
TH
1096{
1097 unsigned long flags = 0;
1098 int poll_next;
1099
1100 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1101
9363c382 1102 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1103 * like DMA polling into the workqueue. Notice that
1104 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1105 */
1106 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
1107
1108fsm_start:
1109 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1110 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1111
1112 switch (ap->hsm_task_state) {
1113 case HSM_ST_FIRST:
1114 /* Send first data block or PACKET CDB */
1115
1116 /* If polling, we will stay in the work queue after
1117 * sending the data. Otherwise, interrupt handler
1118 * takes over after sending the data.
1119 */
1120 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1121
1122 /* check device status */
1123 if (unlikely((status & ATA_DRQ) == 0)) {
1124 /* handle BSY=0, DRQ=0 as error */
1125 if (likely(status & (ATA_ERR | ATA_DF)))
1126 /* device stops HSM for abort/error */
1127 qc->err_mask |= AC_ERR_DEV;
1128 else
1129 /* HSM violation. Let EH handle this */
1130 qc->err_mask |= AC_ERR_HSM;
1131
1132 ap->hsm_task_state = HSM_ST_ERR;
1133 goto fsm_start;
1134 }
1135
1136 /* Device should not ask for data transfer (DRQ=1)
1137 * when it finds something wrong.
1138 * We ignore DRQ here and stop the HSM by
1139 * changing hsm_task_state to HSM_ST_ERR and
1140 * let the EH abort the command or reset the device.
1141 */
1142 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1143 /* Some ATAPI tape drives forget to clear the ERR bit
1144 * when doing the next command (mostly request sense).
1145 * We ignore ERR here to workaround and proceed sending
1146 * the CDB.
1147 */
1148 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1149 ata_port_printk(ap, KERN_WARNING,
1150 "DRQ=1 with device error, "
1151 "dev_stat 0x%X\n", status);
1152 qc->err_mask |= AC_ERR_HSM;
1153 ap->hsm_task_state = HSM_ST_ERR;
1154 goto fsm_start;
1155 }
1156 }
1157
1158 /* Send the CDB (atapi) or the first data block (ata pio out).
1159 * During the state transition, interrupt handler shouldn't
1160 * be invoked before the data transfer is complete and
1161 * hsm_task_state is changed. Hence, the following locking.
1162 */
1163 if (in_wq)
1164 spin_lock_irqsave(ap->lock, flags);
1165
1166 if (qc->tf.protocol == ATA_PROT_PIO) {
1167 /* PIO data out protocol.
1168 * send first data block.
1169 */
1170
1171 /* ata_pio_sectors() might change the state
1172 * to HSM_ST_LAST. so, the state is changed here
1173 * before ata_pio_sectors().
1174 */
1175 ap->hsm_task_state = HSM_ST;
1176 ata_pio_sectors(qc);
1177 } else
1178 /* send CDB */
1179 atapi_send_cdb(ap, qc);
1180
1181 if (in_wq)
1182 spin_unlock_irqrestore(ap->lock, flags);
1183
1184 /* if polling, ata_pio_task() handles the rest.
1185 * otherwise, interrupt handler takes over from here.
1186 */
1187 break;
1188
1189 case HSM_ST:
1190 /* complete command or read/write the data register */
1191 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1192 /* ATAPI PIO protocol */
1193 if ((status & ATA_DRQ) == 0) {
1194 /* No more data to transfer or device error.
1195 * Device error will be tagged in HSM_ST_LAST.
1196 */
1197 ap->hsm_task_state = HSM_ST_LAST;
1198 goto fsm_start;
1199 }
1200
1201 /* Device should not ask for data transfer (DRQ=1)
1202 * when it finds something wrong.
1203 * We ignore DRQ here and stop the HSM by
1204 * changing hsm_task_state to HSM_ST_ERR and
1205 * let the EH abort the command or reset the device.
1206 */
1207 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1208 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
1209 "device error, dev_stat 0x%X\n",
1210 status);
1211 qc->err_mask |= AC_ERR_HSM;
1212 ap->hsm_task_state = HSM_ST_ERR;
1213 goto fsm_start;
1214 }
1215
1216 atapi_pio_bytes(qc);
1217
1218 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1219 /* bad ireason reported by device */
1220 goto fsm_start;
1221
1222 } else {
1223 /* ATA PIO protocol */
1224 if (unlikely((status & ATA_DRQ) == 0)) {
1225 /* handle BSY=0, DRQ=0 as error */
1226 if (likely(status & (ATA_ERR | ATA_DF)))
1227 /* device stops HSM for abort/error */
1228 qc->err_mask |= AC_ERR_DEV;
1229 else
1230 /* HSM violation. Let EH handle this.
1231 * Phantom devices also trigger this
1232 * condition. Mark hint.
1233 */
1234 qc->err_mask |= AC_ERR_HSM |
1235 AC_ERR_NODEV_HINT;
1236
1237 ap->hsm_task_state = HSM_ST_ERR;
1238 goto fsm_start;
1239 }
1240
1241 /* For PIO reads, some devices may ask for
1242 * data transfer (DRQ=1) alone with ERR=1.
1243 * We respect DRQ here and transfer one
1244 * block of junk data before changing the
1245 * hsm_task_state to HSM_ST_ERR.
1246 *
1247 * For PIO writes, ERR=1 DRQ=1 doesn't make
1248 * sense since the data block has been
1249 * transferred to the device.
1250 */
1251 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1252 /* data might be corrputed */
1253 qc->err_mask |= AC_ERR_DEV;
1254
1255 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1256 ata_pio_sectors(qc);
1257 status = ata_wait_idle(ap);
1258 }
1259
1260 if (status & (ATA_BUSY | ATA_DRQ))
1261 qc->err_mask |= AC_ERR_HSM;
1262
1263 /* ata_pio_sectors() might change the
1264 * state to HSM_ST_LAST. so, the state
1265 * is changed after ata_pio_sectors().
1266 */
1267 ap->hsm_task_state = HSM_ST_ERR;
1268 goto fsm_start;
1269 }
1270
1271 ata_pio_sectors(qc);
1272
1273 if (ap->hsm_task_state == HSM_ST_LAST &&
1274 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1275 /* all data read */
1276 status = ata_wait_idle(ap);
1277 goto fsm_start;
1278 }
1279 }
1280
1281 poll_next = 1;
1282 break;
1283
1284 case HSM_ST_LAST:
1285 if (unlikely(!ata_ok(status))) {
1286 qc->err_mask |= __ac_err_mask(status);
1287 ap->hsm_task_state = HSM_ST_ERR;
1288 goto fsm_start;
1289 }
1290
1291 /* no more data to transfer */
1292 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1293 ap->print_id, qc->dev->devno, status);
1294
411cb386 1295 WARN_ON(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1296
1297 ap->hsm_task_state = HSM_ST_IDLE;
1298
1299 /* complete taskfile transaction */
1300 ata_hsm_qc_complete(qc, in_wq);
1301
1302 poll_next = 0;
1303 break;
1304
1305 case HSM_ST_ERR:
1306 /* make sure qc->err_mask is available to
1307 * know what's wrong and recover
1308 */
411cb386 1309 WARN_ON(!(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)));
624d5c51
TH
1310
1311 ap->hsm_task_state = HSM_ST_IDLE;
1312
1313 /* complete taskfile transaction */
1314 ata_hsm_qc_complete(qc, in_wq);
1315
1316 poll_next = 0;
1317 break;
1318 default:
1319 poll_next = 0;
1320 BUG();
1321 }
1322
1323 return poll_next;
1324}
1325
1326void ata_pio_task(struct work_struct *work)
1327{
1328 struct ata_port *ap =
1329 container_of(work, struct ata_port, port_task.work);
1330 struct ata_queued_cmd *qc = ap->port_task_data;
1331 u8 status;
1332 int poll_next;
1333
1334fsm_start:
1335 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
1336
1337 /*
1338 * This is purely heuristic. This is a fast path.
1339 * Sometimes when we enter, BSY will be cleared in
1340 * a chk-status or two. If not, the drive is probably seeking
1341 * or something. Snooze for a couple msecs, then
1342 * chk-status again. If still busy, queue delayed work.
1343 */
9363c382 1344 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51
TH
1345 if (status & ATA_BUSY) {
1346 msleep(2);
9363c382 1347 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51
TH
1348 if (status & ATA_BUSY) {
1349 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
1350 return;
1351 }
1352 }
1353
1354 /* move the HSM */
9363c382 1355 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1356
1357 /* another command or interrupt handler
1358 * may be running at this point.
1359 */
1360 if (poll_next)
1361 goto fsm_start;
1362}
1363
1364/**
9363c382 1365 * ata_sff_qc_issue - issue taskfile to device in proto-dependent manner
624d5c51
TH
1366 * @qc: command to issue to device
1367 *
1368 * Using various libata functions and hooks, this function
1369 * starts an ATA command. ATA commands are grouped into
1370 * classes called "protocols", and issuing each type of protocol
1371 * is slightly different.
1372 *
1373 * May be used as the qc_issue() entry in ata_port_operations.
1374 *
1375 * LOCKING:
1376 * spin_lock_irqsave(host lock)
1377 *
1378 * RETURNS:
1379 * Zero on success, AC_ERR_* mask on failure
1380 */
9363c382 1381unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1382{
1383 struct ata_port *ap = qc->ap;
1384
1385 /* Use polling pio if the LLD doesn't handle
1386 * interrupt driven pio and atapi CDB interrupt.
1387 */
1388 if (ap->flags & ATA_FLAG_PIO_POLLING) {
1389 switch (qc->tf.protocol) {
1390 case ATA_PROT_PIO:
1391 case ATA_PROT_NODATA:
1392 case ATAPI_PROT_PIO:
1393 case ATAPI_PROT_NODATA:
1394 qc->tf.flags |= ATA_TFLAG_POLLING;
1395 break;
1396 case ATAPI_PROT_DMA:
1397 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
1398 /* see ata_dma_blacklisted() */
1399 BUG();
1400 break;
1401 default:
1402 break;
1403 }
1404 }
1405
1406 /* select the device */
1407 ata_dev_select(ap, qc->dev->devno, 1, 0);
1408
1409 /* start the command */
1410 switch (qc->tf.protocol) {
1411 case ATA_PROT_NODATA:
1412 if (qc->tf.flags & ATA_TFLAG_POLLING)
1413 ata_qc_set_polling(qc);
1414
1415 ata_tf_to_host(ap, &qc->tf);
1416 ap->hsm_task_state = HSM_ST_LAST;
1417
1418 if (qc->tf.flags & ATA_TFLAG_POLLING)
1419 ata_pio_queue_task(ap, qc, 0);
1420
1421 break;
1422
1423 case ATA_PROT_DMA:
1424 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1425
5682ed33 1426 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1427 ap->ops->bmdma_setup(qc); /* set up bmdma */
1428 ap->ops->bmdma_start(qc); /* initiate bmdma */
1429 ap->hsm_task_state = HSM_ST_LAST;
1430 break;
1431
1432 case ATA_PROT_PIO:
1433 if (qc->tf.flags & ATA_TFLAG_POLLING)
1434 ata_qc_set_polling(qc);
1435
1436 ata_tf_to_host(ap, &qc->tf);
1437
1438 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1439 /* PIO data out protocol */
1440 ap->hsm_task_state = HSM_ST_FIRST;
1441 ata_pio_queue_task(ap, qc, 0);
1442
1443 /* always send first data block using
1444 * the ata_pio_task() codepath.
1445 */
1446 } else {
1447 /* PIO data in protocol */
1448 ap->hsm_task_state = HSM_ST;
1449
1450 if (qc->tf.flags & ATA_TFLAG_POLLING)
1451 ata_pio_queue_task(ap, qc, 0);
1452
1453 /* if polling, ata_pio_task() handles the rest.
1454 * otherwise, interrupt handler takes over from here.
1455 */
1456 }
1457
1458 break;
1459
1460 case ATAPI_PROT_PIO:
1461 case ATAPI_PROT_NODATA:
1462 if (qc->tf.flags & ATA_TFLAG_POLLING)
1463 ata_qc_set_polling(qc);
1464
1465 ata_tf_to_host(ap, &qc->tf);
1466
1467 ap->hsm_task_state = HSM_ST_FIRST;
1468
1469 /* send cdb by polling if no cdb interrupt */
1470 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1471 (qc->tf.flags & ATA_TFLAG_POLLING))
1472 ata_pio_queue_task(ap, qc, 0);
1473 break;
1474
1475 case ATAPI_PROT_DMA:
1476 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
1477
5682ed33 1478 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
624d5c51
TH
1479 ap->ops->bmdma_setup(qc); /* set up bmdma */
1480 ap->hsm_task_state = HSM_ST_FIRST;
1481
1482 /* send cdb by polling if no cdb interrupt */
1483 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1484 ata_pio_queue_task(ap, qc, 0);
1485 break;
1486
1487 default:
1488 WARN_ON(1);
1489 return AC_ERR_SYSTEM;
1490 }
1491
1492 return 0;
1493}
1494
22183bf5
TH
1495/**
1496 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1497 * @qc: qc to fill result TF for
1498 *
1499 * @qc is finished and result TF needs to be filled. Fill it
1500 * using ->sff_tf_read.
1501 *
1502 * LOCKING:
1503 * spin_lock_irqsave(host lock)
1504 *
1505 * RETURNS:
1506 * true indicating that result TF is successfully filled.
1507 */
1508bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1509{
1510 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1511 return true;
1512}
1513
624d5c51 1514/**
9363c382 1515 * ata_sff_host_intr - Handle host interrupt for given (port, task)
624d5c51
TH
1516 * @ap: Port on which interrupt arrived (possibly...)
1517 * @qc: Taskfile currently active in engine
1518 *
1519 * Handle host interrupt for given queued command. Currently,
1520 * only DMA interrupts are handled. All other commands are
1521 * handled via polling with interrupts disabled (nIEN bit).
1522 *
1523 * LOCKING:
1524 * spin_lock_irqsave(host lock)
1525 *
1526 * RETURNS:
1527 * One if interrupt was handled, zero if not (shared irq).
1528 */
9363c382
TH
1529inline unsigned int ata_sff_host_intr(struct ata_port *ap,
1530 struct ata_queued_cmd *qc)
624d5c51
TH
1531{
1532 struct ata_eh_info *ehi = &ap->link.eh_info;
1533 u8 status, host_stat = 0;
1534
1535 VPRINTK("ata%u: protocol %d task_state %d\n",
1536 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1537
1538 /* Check whether we are expecting interrupt in this state */
1539 switch (ap->hsm_task_state) {
1540 case HSM_ST_FIRST:
1541 /* Some pre-ATAPI-4 devices assert INTRQ
1542 * at this state when ready to receive CDB.
1543 */
1544
1545 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1546 * The flag was turned on only for atapi devices. No
1547 * need to check ata_is_atapi(qc->tf.protocol) again.
1548 */
1549 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1550 goto idle_irq;
1551 break;
1552 case HSM_ST_LAST:
1553 if (qc->tf.protocol == ATA_PROT_DMA ||
1554 qc->tf.protocol == ATAPI_PROT_DMA) {
1555 /* check status of DMA engine */
1556 host_stat = ap->ops->bmdma_status(ap);
1557 VPRINTK("ata%u: host_stat 0x%X\n",
1558 ap->print_id, host_stat);
1559
1560 /* if it's not our irq... */
1561 if (!(host_stat & ATA_DMA_INTR))
1562 goto idle_irq;
1563
1564 /* before we do anything else, clear DMA-Start bit */
1565 ap->ops->bmdma_stop(qc);
1566
1567 if (unlikely(host_stat & ATA_DMA_ERR)) {
1568 /* error when transfering data to/from memory */
1569 qc->err_mask |= AC_ERR_HOST_BUS;
1570 ap->hsm_task_state = HSM_ST_ERR;
1571 }
1572 }
1573 break;
1574 case HSM_ST:
1575 break;
1576 default:
1577 goto idle_irq;
1578 }
1579
624d5c51 1580
a57c1bad
AC
1581 /* check main status, clearing INTRQ if needed */
1582 status = ata_sff_irq_status(ap);
1583 if (status & ATA_BUSY)
624d5c51
TH
1584 goto idle_irq;
1585
1586 /* ack bmdma irq events */
5682ed33 1587 ap->ops->sff_irq_clear(ap);
624d5c51 1588
9363c382 1589 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51
TH
1590
1591 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
1592 qc->tf.protocol == ATAPI_PROT_DMA))
1593 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
1594
1595 return 1; /* irq handled */
1596
1597idle_irq:
1598 ap->stats.idle_irq++;
1599
1600#ifdef ATA_IRQ_TRAP
1601 if ((ap->stats.idle_irq % 1000) == 0) {
5682ed33
TH
1602 ap->ops->sff_check_status(ap);
1603 ap->ops->sff_irq_clear(ap);
624d5c51
TH
1604 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1605 return 1;
1606 }
1607#endif
1608 return 0; /* irq not handled */
1609}
1610
1611/**
9363c382 1612 * ata_sff_interrupt - Default ATA host interrupt handler
624d5c51
TH
1613 * @irq: irq line (unused)
1614 * @dev_instance: pointer to our ata_host information structure
1615 *
1616 * Default interrupt handler for PCI IDE devices. Calls
9363c382 1617 * ata_sff_host_intr() for each port that is not disabled.
624d5c51
TH
1618 *
1619 * LOCKING:
1620 * Obtains host lock during operation.
1621 *
1622 * RETURNS:
1623 * IRQ_NONE or IRQ_HANDLED.
1624 */
9363c382 1625irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
624d5c51
TH
1626{
1627 struct ata_host *host = dev_instance;
1628 unsigned int i;
1629 unsigned int handled = 0;
1630 unsigned long flags;
1631
1632 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1633 spin_lock_irqsave(&host->lock, flags);
1634
1635 for (i = 0; i < host->n_ports; i++) {
1636 struct ata_port *ap;
1637
1638 ap = host->ports[i];
1639 if (ap &&
1640 !(ap->flags & ATA_FLAG_DISABLED)) {
1641 struct ata_queued_cmd *qc;
1642
1643 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1644 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
1645 (qc->flags & ATA_QCFLAG_ACTIVE))
9363c382 1646 handled |= ata_sff_host_intr(ap, qc);
624d5c51
TH
1647 }
1648 }
1649
1650 spin_unlock_irqrestore(&host->lock, flags);
1651
1652 return IRQ_RETVAL(handled);
1653}
1654
1655/**
9363c382 1656 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1657 * @ap: port to freeze
1658 *
1659 * Freeze BMDMA controller port.
1660 *
1661 * LOCKING:
1662 * Inherited from caller.
1663 */
9363c382 1664void ata_sff_freeze(struct ata_port *ap)
624d5c51
TH
1665{
1666 struct ata_ioports *ioaddr = &ap->ioaddr;
1667
1668 ap->ctl |= ATA_NIEN;
1669 ap->last_ctl = ap->ctl;
1670
1671 if (ioaddr->ctl_addr)
1672 iowrite8(ap->ctl, ioaddr->ctl_addr);
1673
1674 /* Under certain circumstances, some controllers raise IRQ on
1675 * ATA_NIEN manipulation. Also, many controllers fail to mask
1676 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1677 */
5682ed33 1678 ap->ops->sff_check_status(ap);
624d5c51 1679
5682ed33 1680 ap->ops->sff_irq_clear(ap);
624d5c51
TH
1681}
1682
1683/**
9363c382 1684 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1685 * @ap: port to thaw
1686 *
9363c382 1687 * Thaw SFF controller port.
624d5c51
TH
1688 *
1689 * LOCKING:
1690 * Inherited from caller.
1691 */
9363c382 1692void ata_sff_thaw(struct ata_port *ap)
272f7884 1693{
624d5c51 1694 /* clear & re-enable interrupts */
5682ed33
TH
1695 ap->ops->sff_check_status(ap);
1696 ap->ops->sff_irq_clear(ap);
1697 ap->ops->sff_irq_on(ap);
272f7884
TH
1698}
1699
0aa1113d
TH
1700/**
1701 * ata_sff_prereset - prepare SFF link for reset
1702 * @link: SFF link to be reset
1703 * @deadline: deadline jiffies for the operation
1704 *
1705 * SFF link @link is about to be reset. Initialize it. It first
1706 * calls ata_std_prereset() and wait for !BSY if the port is
1707 * being softreset.
1708 *
1709 * LOCKING:
1710 * Kernel thread context (may sleep)
1711 *
1712 * RETURNS:
1713 * 0 on success, -errno otherwise.
1714 */
1715int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1716{
0aa1113d
TH
1717 struct ata_eh_context *ehc = &link->eh_context;
1718 int rc;
1719
1720 rc = ata_std_prereset(link, deadline);
1721 if (rc)
1722 return rc;
1723
1724 /* if we're about to do hardreset, nothing more to do */
1725 if (ehc->i.action & ATA_EH_HARDRESET)
1726 return 0;
1727
1728 /* wait for !BSY if we don't know that no device is attached */
1729 if (!ata_link_offline(link)) {
705e76be 1730 rc = ata_sff_wait_ready(link, deadline);
0aa1113d
TH
1731 if (rc && rc != -ENODEV) {
1732 ata_link_printk(link, KERN_WARNING, "device not ready "
1733 "(errno=%d), forcing hardreset\n", rc);
1734 ehc->i.action |= ATA_EH_HARDRESET;
1735 }
1736 }
1737
1738 return 0;
1739}
1740
90088bb4 1741/**
624d5c51
TH
1742 * ata_devchk - PATA device presence detection
1743 * @ap: ATA channel to examine
1744 * @device: Device to examine (starting at zero)
90088bb4 1745 *
624d5c51
TH
1746 * This technique was originally described in
1747 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1748 * later found its way into the ATA/ATAPI spec.
1749 *
1750 * Write a pattern to the ATA shadow registers,
1751 * and if a device is present, it will respond by
1752 * correctly storing and echoing back the
1753 * ATA shadow register contents.
90088bb4
TH
1754 *
1755 * LOCKING:
624d5c51 1756 * caller.
90088bb4 1757 */
624d5c51 1758static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
1759{
1760 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 1761 u8 nsect, lbal;
90088bb4 1762
5682ed33 1763 ap->ops->sff_dev_select(ap, device);
90088bb4 1764
624d5c51
TH
1765 iowrite8(0x55, ioaddr->nsect_addr);
1766 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 1767
624d5c51
TH
1768 iowrite8(0xaa, ioaddr->nsect_addr);
1769 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 1770
624d5c51
TH
1771 iowrite8(0x55, ioaddr->nsect_addr);
1772 iowrite8(0xaa, ioaddr->lbal_addr);
1773
1774 nsect = ioread8(ioaddr->nsect_addr);
1775 lbal = ioread8(ioaddr->lbal_addr);
1776
1777 if ((nsect == 0x55) && (lbal == 0xaa))
1778 return 1; /* we found a device */
1779
1780 return 0; /* nothing found */
90088bb4
TH
1781}
1782
272f7884 1783/**
9363c382 1784 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
1785 * @dev: ATA device to classify (starting at zero)
1786 * @present: device seems present
1787 * @r_err: Value of error register on completion
272f7884 1788 *
624d5c51
TH
1789 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1790 * an ATA/ATAPI-defined set of values is placed in the ATA
1791 * shadow registers, indicating the results of device detection
1792 * and diagnostics.
272f7884 1793 *
624d5c51
TH
1794 * Select the ATA device, and read the values from the ATA shadow
1795 * registers. Then parse according to the Error register value,
1796 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
1797 *
1798 * LOCKING:
624d5c51
TH
1799 * caller.
1800 *
1801 * RETURNS:
1802 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 1803 */
9363c382 1804unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 1805 u8 *r_err)
272f7884 1806{
624d5c51
TH
1807 struct ata_port *ap = dev->link->ap;
1808 struct ata_taskfile tf;
1809 unsigned int class;
1810 u8 err;
1811
5682ed33 1812 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
1813
1814 memset(&tf, 0, sizeof(tf));
1815
5682ed33 1816 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
1817 err = tf.feature;
1818 if (r_err)
1819 *r_err = err;
1820
1821 /* see if device passed diags: continue and warn later */
1822 if (err == 0)
1823 /* diagnostic fail : do nothing _YET_ */
1824 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1825 else if (err == 1)
1826 /* do nothing */ ;
1827 else if ((dev->devno == 0) && (err == 0x81))
1828 /* do nothing */ ;
1829 else
1830 return ATA_DEV_NONE;
272f7884 1831
624d5c51
TH
1832 /* determine if device is ATA or ATAPI */
1833 class = ata_dev_classify(&tf);
272f7884 1834
624d5c51
TH
1835 if (class == ATA_DEV_UNKNOWN) {
1836 /* If the device failed diagnostic, it's likely to
1837 * have reported incorrect device signature too.
1838 * Assume ATA device if the device seems present but
1839 * device signature is invalid with diagnostic
1840 * failure.
1841 */
1842 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1843 class = ATA_DEV_ATA;
1844 else
1845 class = ATA_DEV_NONE;
5682ed33
TH
1846 } else if ((class == ATA_DEV_ATA) &&
1847 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
1848 class = ATA_DEV_NONE;
1849
1850 return class;
272f7884
TH
1851}
1852
705e76be
TH
1853/**
1854 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1855 * @link: SFF link which is just reset
1856 * @devmask: mask of present devices
1857 * @deadline: deadline jiffies for the operation
1858 *
1859 * Wait devices attached to SFF @link to become ready after
1860 * reset. It contains preceding 150ms wait to avoid accessing TF
1861 * status register too early.
1862 *
1863 * LOCKING:
1864 * Kernel thread context (may sleep).
1865 *
1866 * RETURNS:
1867 * 0 on success, -ENODEV if some or all of devices in @devmask
1868 * don't seem to exist. -errno on other errors.
1869 */
1870int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1871 unsigned long deadline)
1fdffbce 1872{
705e76be 1873 struct ata_port *ap = link->ap;
1fdffbce 1874 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
1875 unsigned int dev0 = devmask & (1 << 0);
1876 unsigned int dev1 = devmask & (1 << 1);
1877 int rc, ret = 0;
1fdffbce 1878
705e76be
TH
1879 msleep(ATA_WAIT_AFTER_RESET_MSECS);
1880
1881 /* always check readiness of the master device */
1882 rc = ata_sff_wait_ready(link, deadline);
1883 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1884 * and TF status is 0xff, bail out on it too.
624d5c51 1885 */
705e76be
TH
1886 if (rc)
1887 return rc;
1fdffbce 1888
624d5c51
TH
1889 /* if device 1 was found in ata_devchk, wait for register
1890 * access briefly, then wait for BSY to clear.
1891 */
1892 if (dev1) {
1893 int i;
1fdffbce 1894
5682ed33 1895 ap->ops->sff_dev_select(ap, 1);
1fdffbce 1896
624d5c51
TH
1897 /* Wait for register access. Some ATAPI devices fail
1898 * to set nsect/lbal after reset, so don't waste too
1899 * much time on it. We're gonna wait for !BSY anyway.
1900 */
1901 for (i = 0; i < 2; i++) {
1902 u8 nsect, lbal;
1903
1904 nsect = ioread8(ioaddr->nsect_addr);
1905 lbal = ioread8(ioaddr->lbal_addr);
1906 if ((nsect == 1) && (lbal == 1))
1907 break;
1908 msleep(50); /* give drive a breather */
1909 }
1910
705e76be 1911 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
1912 if (rc) {
1913 if (rc != -ENODEV)
1914 return rc;
1915 ret = rc;
1916 }
1fdffbce
JG
1917 }
1918
624d5c51 1919 /* is all this really necessary? */
5682ed33 1920 ap->ops->sff_dev_select(ap, 0);
624d5c51 1921 if (dev1)
5682ed33 1922 ap->ops->sff_dev_select(ap, 1);
624d5c51 1923 if (dev0)
5682ed33 1924 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
1925
1926 return ret;
1fdffbce
JG
1927}
1928
624d5c51
TH
1929static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1930 unsigned long deadline)
2cc432ee 1931{
624d5c51 1932 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 1933
624d5c51
TH
1934 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1935
1936 /* software reset. causes dev0 to be selected */
1937 iowrite8(ap->ctl, ioaddr->ctl_addr);
1938 udelay(20); /* FIXME: flush */
1939 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1940 udelay(20); /* FIXME: flush */
1941 iowrite8(ap->ctl, ioaddr->ctl_addr);
1942
705e76be
TH
1943 /* wait the port to become ready */
1944 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
1945}
1946
6d97dbd7 1947/**
9363c382 1948 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
1949 * @link: ATA link to reset
1950 * @classes: resulting classes of attached devices
1951 * @deadline: deadline jiffies for the operation
6d97dbd7 1952 *
624d5c51 1953 * Reset host port using ATA SRST.
6d97dbd7
TH
1954 *
1955 * LOCKING:
624d5c51
TH
1956 * Kernel thread context (may sleep)
1957 *
1958 * RETURNS:
1959 * 0 on success, -errno otherwise.
6d97dbd7 1960 */
9363c382 1961int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 1962 unsigned long deadline)
6d97dbd7 1963{
624d5c51
TH
1964 struct ata_port *ap = link->ap;
1965 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1966 unsigned int devmask = 0;
1967 int rc;
1968 u8 err;
6d97dbd7 1969
624d5c51 1970 DPRINTK("ENTER\n");
6d97dbd7 1971
624d5c51
TH
1972 /* determine if device 0/1 are present */
1973 if (ata_devchk(ap, 0))
1974 devmask |= (1 << 0);
1975 if (slave_possible && ata_devchk(ap, 1))
1976 devmask |= (1 << 1);
1977
1978 /* select device 0 again */
5682ed33 1979 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
1980
1981 /* issue bus reset */
1982 DPRINTK("about to softreset, devmask=%x\n", devmask);
1983 rc = ata_bus_softreset(ap, devmask, deadline);
1984 /* if link is occupied, -ENODEV too is an error */
1985 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1986 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
1987 return rc;
1988 }
0f0a3ad3 1989
624d5c51 1990 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 1991 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
1992 devmask & (1 << 0), &err);
1993 if (slave_possible && err != 0x81)
9363c382 1994 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
1995 devmask & (1 << 1), &err);
1996
624d5c51
TH
1997 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
1998 return 0;
6d97dbd7
TH
1999}
2000
2001/**
9363c382 2002 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2003 * @link: link to reset
2004 * @class: resulting class of attached device
2005 * @deadline: deadline jiffies for the operation
6d97dbd7 2006 *
624d5c51
TH
2007 * SATA phy-reset host port using DET bits of SControl register,
2008 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2009 *
2010 * LOCKING:
624d5c51
TH
2011 * Kernel thread context (may sleep)
2012 *
2013 * RETURNS:
2014 * 0 on success, -errno otherwise.
6d97dbd7 2015 */
9363c382 2016int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2017 unsigned long deadline)
6d97dbd7 2018{
9dadd45b
TH
2019 struct ata_eh_context *ehc = &link->eh_context;
2020 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2021 bool online;
624d5c51
TH
2022 int rc;
2023
9dadd45b
TH
2024 rc = sata_link_hardreset(link, timing, deadline, &online,
2025 ata_sff_check_ready);
9dadd45b
TH
2026 if (online)
2027 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2028
2029 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2030 return rc;
6d97dbd7
TH
2031}
2032
203c75b8
TH
2033/**
2034 * ata_sff_postreset - SFF postreset callback
2035 * @link: the target SFF ata_link
2036 * @classes: classes of attached devices
2037 *
2038 * This function is invoked after a successful reset. It first
2039 * calls ata_std_postreset() and performs SFF specific postreset
2040 * processing.
2041 *
2042 * LOCKING:
2043 * Kernel thread context (may sleep)
2044 */
2045void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2046{
2047 struct ata_port *ap = link->ap;
2048
2049 ata_std_postreset(link, classes);
2050
2051 /* is double-select really necessary? */
2052 if (classes[0] != ATA_DEV_NONE)
2053 ap->ops->sff_dev_select(ap, 1);
2054 if (classes[1] != ATA_DEV_NONE)
2055 ap->ops->sff_dev_select(ap, 0);
2056
2057 /* bail out if no device is present */
2058 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2059 DPRINTK("EXIT, no device\n");
2060 return;
2061 }
2062
2063 /* set up device control */
2064 if (ap->ioaddr.ctl_addr)
2065 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
2066}
2067
6d97dbd7 2068/**
9363c382 2069 * ata_sff_error_handler - Stock error handler for BMDMA controller
6d97dbd7 2070 * @ap: port to handle error for
6d97dbd7 2071 *
9363c382 2072 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2073 * PATA and SATA controllers. Many controllers should be able to
2074 * use this EH as-is or with some added handling before and
2075 * after.
2076 *
6d97dbd7
TH
2077 * LOCKING:
2078 * Kernel thread context (may sleep)
2079 */
9363c382 2080void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2081{
a1efdaba
TH
2082 ata_reset_fn_t softreset = ap->ops->softreset;
2083 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2084 struct ata_queued_cmd *qc;
2085 unsigned long flags;
2086 int thaw = 0;
2087
9af5c9c9 2088 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2089 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2090 qc = NULL;
2091
2092 /* reset PIO HSM and stop DMA engine */
ba6a1308 2093 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2094
6d97dbd7
TH
2095 ap->hsm_task_state = HSM_ST_IDLE;
2096
ed82f964
TH
2097 if (ap->ioaddr.bmdma_addr &&
2098 qc && (qc->tf.protocol == ATA_PROT_DMA ||
0dc36888 2099 qc->tf.protocol == ATAPI_PROT_DMA)) {
6d97dbd7
TH
2100 u8 host_stat;
2101
fbbb262d 2102 host_stat = ap->ops->bmdma_status(ap);
6d97dbd7 2103
6d97dbd7
TH
2104 /* BMDMA controllers indicate host bus error by
2105 * setting DMA_ERR bit and timing out. As it wasn't
2106 * really a timeout event, adjust error mask and
2107 * cancel frozen state.
2108 */
18d90deb 2109 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
6d97dbd7
TH
2110 qc->err_mask = AC_ERR_HOST_BUS;
2111 thaw = 1;
2112 }
2113
2114 ap->ops->bmdma_stop(qc);
2115 }
2116
a57c1bad 2117 ata_sff_sync(ap); /* FIXME: We don't need this */
5682ed33
TH
2118 ap->ops->sff_check_status(ap);
2119 ap->ops->sff_irq_clear(ap);
6d97dbd7 2120
ba6a1308 2121 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7
TH
2122
2123 if (thaw)
2124 ata_eh_thaw_port(ap);
2125
2126 /* PIO and DMA engines have been stopped, perform recovery */
6d97dbd7 2127
57c9efdf
TH
2128 /* Ignore ata_sff_softreset if ctl isn't accessible and
2129 * built-in hardresets if SCR access isn't available.
a1efdaba 2130 */
9363c382 2131 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
a1efdaba 2132 softreset = NULL;
57c9efdf 2133 if (ata_is_builtin_hardreset(hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2134 hardreset = NULL;
6d97dbd7 2135
a1efdaba
TH
2136 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2137 ap->ops->postreset);
6d97dbd7
TH
2138}
2139
2140/**
9363c382 2141 * ata_sff_post_internal_cmd - Stock post_internal_cmd for SFF controller
6d97dbd7
TH
2142 * @qc: internal command to clean up
2143 *
2144 * LOCKING:
2145 * Kernel thread context (may sleep)
2146 */
9363c382 2147void ata_sff_post_internal_cmd(struct ata_queued_cmd *qc)
6d97dbd7 2148{
61dd08c6
AC
2149 if (qc->ap->ioaddr.bmdma_addr)
2150 ata_bmdma_stop(qc);
6d97dbd7
TH
2151}
2152
d92e74d3
AC
2153/**
2154 * ata_sff_port_start - Set port up for dma.
2155 * @ap: Port to initialize
2156 *
2157 * Called just after data structures for each port are
2158 * initialized. Allocates space for PRD table if the device
2159 * is DMA capable SFF.
2160 *
2161 * May be used as the port_start() entry in ata_port_operations.
2162 *
2163 * LOCKING:
2164 * Inherited from caller.
2165 */
d92e74d3
AC
2166int ata_sff_port_start(struct ata_port *ap)
2167{
2168 if (ap->ioaddr.bmdma_addr)
2169 return ata_port_start(ap);
2170 return 0;
2171}
2172
624d5c51 2173/**
9363c382 2174 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2175 * @ioaddr: IO address structure to be initialized
2176 *
2177 * Utility function which initializes data_addr, error_addr,
2178 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2179 * device_addr, status_addr, and command_addr to standard offsets
2180 * relative to cmd_addr.
2181 *
2182 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2183 */
9363c382 2184void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2185{
2186 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2187 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2188 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2189 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2190 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2191 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2192 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2193 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2194 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2195 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2196}
2197
9363c382
TH
2198unsigned long ata_bmdma_mode_filter(struct ata_device *adev,
2199 unsigned long xfer_mask)
071ce34d
TH
2200{
2201 /* Filter out DMA modes if the device has been configured by
2202 the BIOS as PIO only */
2203
2204 if (adev->link->ap->ioaddr.bmdma_addr == NULL)
2205 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2206 return xfer_mask;
2207}
2208
272f7884
TH
2209/**
2210 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2211 * @qc: Info associated with this ATA transaction.
2212 *
2213 * LOCKING:
2214 * spin_lock_irqsave(host lock)
2215 */
2216void ata_bmdma_setup(struct ata_queued_cmd *qc)
2217{
2218 struct ata_port *ap = qc->ap;
2219 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2220 u8 dmactl;
2221
2222 /* load PRD table addr. */
2223 mb(); /* make sure PRD table writes are visible to controller */
2224 iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2225
2226 /* specify data direction, triple-check start bit is clear */
2227 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2228 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2229 if (!rw)
2230 dmactl |= ATA_DMA_WR;
2231 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2232
2233 /* issue r/w command */
5682ed33 2234 ap->ops->sff_exec_command(ap, &qc->tf);
272f7884
TH
2235}
2236
2237/**
2238 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2239 * @qc: Info associated with this ATA transaction.
2240 *
2241 * LOCKING:
2242 * spin_lock_irqsave(host lock)
2243 */
2244void ata_bmdma_start(struct ata_queued_cmd *qc)
2245{
2246 struct ata_port *ap = qc->ap;
2247 u8 dmactl;
2248
2249 /* start host DMA transaction */
2250 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2251 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2252
2253 /* Strictly, one may wish to issue an ioread8() here, to
2254 * flush the mmio write. However, control also passes
2255 * to the hardware at this point, and it will interrupt
2256 * us when we are to resume control. So, in effect,
2257 * we don't care when the mmio write flushes.
2258 * Further, a read of the DMA status register _immediately_
2259 * following the write may not be what certain flaky hardware
2260 * is expected, so I think it is best to not add a readb()
2261 * without first all the MMIO ATA cards/mobos.
2262 * Or maybe I'm just being paranoid.
2263 *
2264 * FIXME: The posting of this write means I/O starts are
2265 * unneccessarily delayed for MMIO
2266 */
2267}
2268
2269/**
2270 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2271 * @qc: Command we are ending DMA for
2272 *
2273 * Clears the ATA_DMA_START flag in the dma control register
2274 *
2275 * May be used as the bmdma_stop() entry in ata_port_operations.
2276 *
2277 * LOCKING:
2278 * spin_lock_irqsave(host lock)
2279 */
2280void ata_bmdma_stop(struct ata_queued_cmd *qc)
2281{
2282 struct ata_port *ap = qc->ap;
2283 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2284
2285 /* clear start/stop bit */
2286 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2287 mmio + ATA_DMA_CMD);
2288
2289 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
a57c1bad 2290 ata_sff_dma_pause(ap);
272f7884
TH
2291}
2292
2293/**
2294 * ata_bmdma_status - Read PCI IDE BMDMA status
2295 * @ap: Port associated with this ATA transaction.
2296 *
2297 * Read and return BMDMA status register.
2298 *
2299 * May be used as the bmdma_status() entry in ata_port_operations.
2300 *
2301 * LOCKING:
2302 * spin_lock_irqsave(host lock)
2303 */
2304u8 ata_bmdma_status(struct ata_port *ap)
2305{
2306 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2307}
2308
2309/**
624d5c51
TH
2310 * ata_bus_reset - reset host port and associated ATA channel
2311 * @ap: port to reset
2312 *
2313 * This is typically the first time we actually start issuing
2314 * commands to the ATA channel. We wait for BSY to clear, then
2315 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2316 * result. Determine what devices, if any, are on the channel
2317 * by looking at the device 0/1 error register. Look at the signature
2318 * stored in each device's taskfile registers, to determine if
2319 * the device is ATA or ATAPI.
2320 *
2321 * LOCKING:
2322 * PCI/etc. bus probe sem.
2323 * Obtains host lock.
2324 *
2325 * SIDE EFFECTS:
2326 * Sets ATA_FLAG_DISABLED if bus reset fails.
2327 *
2328 * DEPRECATED:
2329 * This function is only for drivers which still use old EH and
2330 * will be removed soon.
272f7884 2331 */
624d5c51 2332void ata_bus_reset(struct ata_port *ap)
272f7884 2333{
624d5c51
TH
2334 struct ata_device *device = ap->link.device;
2335 struct ata_ioports *ioaddr = &ap->ioaddr;
2336 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2337 u8 err;
2338 unsigned int dev0, dev1 = 0, devmask = 0;
2339 int rc;
2340
2341 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
2342
2343 /* determine if device 0/1 are present */
2344 if (ap->flags & ATA_FLAG_SATA_RESET)
2345 dev0 = 1;
2346 else {
2347 dev0 = ata_devchk(ap, 0);
2348 if (slave_possible)
2349 dev1 = ata_devchk(ap, 1);
2350 }
2351
2352 if (dev0)
2353 devmask |= (1 << 0);
2354 if (dev1)
2355 devmask |= (1 << 1);
2356
2357 /* select device 0 again */
5682ed33 2358 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2359
2360 /* issue bus reset */
2361 if (ap->flags & ATA_FLAG_SRST) {
2362 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
2363 if (rc && rc != -ENODEV)
2364 goto err_out;
2365 }
2366
2367 /*
2368 * determine by signature whether we have ATA or ATAPI devices
2369 */
9363c382 2370 device[0].class = ata_sff_dev_classify(&device[0], dev0, &err);
624d5c51 2371 if ((slave_possible) && (err != 0x81))
9363c382 2372 device[1].class = ata_sff_dev_classify(&device[1], dev1, &err);
624d5c51
TH
2373
2374 /* is double-select really necessary? */
2375 if (device[1].class != ATA_DEV_NONE)
5682ed33 2376 ap->ops->sff_dev_select(ap, 1);
624d5c51 2377 if (device[0].class != ATA_DEV_NONE)
5682ed33 2378 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2379
2380 /* if no devices were detected, disable this port */
2381 if ((device[0].class == ATA_DEV_NONE) &&
2382 (device[1].class == ATA_DEV_NONE))
2383 goto err_out;
2384
2385 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2386 /* set up device control for ATA_FLAG_SATA_RESET */
2387 iowrite8(ap->ctl, ioaddr->ctl_addr);
2388 }
2389
2390 DPRINTK("EXIT\n");
2391 return;
2392
2393err_out:
2394 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2395 ata_port_disable(ap);
2396
2397 DPRINTK("EXIT\n");
272f7884
TH
2398}
2399
1fdffbce 2400#ifdef CONFIG_PCI
4112e16a 2401
272f7884 2402/**
9363c382 2403 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
272f7884
TH
2404 * @pdev: PCI device
2405 *
2406 * Some PCI ATA devices report simplex mode but in fact can be told to
2407 * enter non simplex mode. This implements the necessary logic to
2408 * perform the task on such devices. Calling it on other devices will
2409 * have -undefined- behaviour.
2410 */
9363c382 2411int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
4112e16a 2412{
272f7884
TH
2413 unsigned long bmdma = pci_resource_start(pdev, 4);
2414 u8 simplex;
a84471fe 2415
272f7884
TH
2416 if (bmdma == 0)
2417 return -ENOENT;
2418
2419 simplex = inb(bmdma + 0x02);
2420 outb(simplex & 0x60, bmdma + 0x02);
2421 simplex = inb(bmdma + 0x02);
2422 if (simplex & 0x80)
2423 return -EOPNOTSUPP;
2424 return 0;
2425}
2426
0f834de3 2427/**
9363c382 2428 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
0f834de3
TH
2429 * @host: target ATA host
2430 *
2431 * Acquire PCI BMDMA resources and initialize @host accordingly.
2432 *
2433 * LOCKING:
2434 * Inherited from calling layer (may sleep).
2435 *
2436 * RETURNS:
2437 * 0 on success, -errno otherwise.
2438 */
9363c382 2439int ata_pci_bmdma_init(struct ata_host *host)
1fdffbce 2440{
0f834de3
TH
2441 struct device *gdev = host->dev;
2442 struct pci_dev *pdev = to_pci_dev(gdev);
2443 int i, rc;
0d5ff566 2444
6fdc99a2
AC
2445 /* No BAR4 allocation: No DMA */
2446 if (pci_resource_start(pdev, 4) == 0)
2447 return 0;
2448
0f834de3
TH
2449 /* TODO: If we get no DMA mask we should fall back to PIO */
2450 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
2451 if (rc)
2452 return rc;
2453 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
2454 if (rc)
2455 return rc;
2456
2457 /* request and iomap DMA region */
35a10a80 2458 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
0f834de3
TH
2459 if (rc) {
2460 dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n");
2461 return -ENOMEM;
0d5ff566 2462 }
0f834de3 2463 host->iomap = pcim_iomap_table(pdev);
0d5ff566 2464
1626aeb8 2465 for (i = 0; i < 2; i++) {
0f834de3 2466 struct ata_port *ap = host->ports[i];
0f834de3
TH
2467 void __iomem *bmdma = host->iomap[4] + 8 * i;
2468
2469 if (ata_port_is_dummy(ap))
2470 continue;
2471
21b0ad4f 2472 ap->ioaddr.bmdma_addr = bmdma;
0f834de3
TH
2473 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
2474 (ioread8(bmdma + 2) & 0x80))
2475 host->flags |= ATA_HOST_SIMPLEX;
cbcdd875
TH
2476
2477 ata_port_desc(ap, "bmdma 0x%llx",
2478 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
0d5ff566
TH
2479 }
2480
0f834de3
TH
2481 return 0;
2482}
2ec7df04 2483
272f7884
TH
2484static int ata_resources_present(struct pci_dev *pdev, int port)
2485{
2486 int i;
2487
2488 /* Check the PCI resources for this channel are enabled */
2489 port = port * 2;
2490 for (i = 0; i < 2; i ++) {
2491 if (pci_resource_start(pdev, port + i) == 0 ||
2492 pci_resource_len(pdev, port + i) == 0)
2493 return 0;
2494 }
2495 return 1;
2496}
2497
d491b27b 2498/**
9363c382 2499 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2500 * @host: target ATA host
d491b27b 2501 *
1626aeb8
TH
2502 * Acquire native PCI ATA resources for @host and initialize the
2503 * first two ports of @host accordingly. Ports marked dummy are
2504 * skipped and allocation failure makes the port dummy.
d491b27b 2505 *
d583bc18
TH
2506 * Note that native PCI resources are valid even for legacy hosts
2507 * as we fix up pdev resources array early in boot, so this
2508 * function can be used for both native and legacy SFF hosts.
2509 *
d491b27b
TH
2510 * LOCKING:
2511 * Inherited from calling layer (may sleep).
2512 *
2513 * RETURNS:
1626aeb8
TH
2514 * 0 if at least one port is initialized, -ENODEV if no port is
2515 * available.
d491b27b 2516 */
9363c382 2517int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2518{
2519 struct device *gdev = host->dev;
2520 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2521 unsigned int mask = 0;
d491b27b
TH
2522 int i, rc;
2523
d491b27b
TH
2524 /* request, iomap BARs and init port addresses accordingly */
2525 for (i = 0; i < 2; i++) {
2526 struct ata_port *ap = host->ports[i];
2527 int base = i * 2;
2528 void __iomem * const *iomap;
2529
1626aeb8
TH
2530 if (ata_port_is_dummy(ap))
2531 continue;
2532
2533 /* Discard disabled ports. Some controllers show
2534 * their unused channels this way. Disabled ports are
2535 * made dummy.
2536 */
2537 if (!ata_resources_present(pdev, i)) {
2538 ap->ops = &ata_dummy_port_ops;
d491b27b 2539 continue;
1626aeb8 2540 }
d491b27b 2541
35a10a80
TH
2542 rc = pcim_iomap_regions(pdev, 0x3 << base,
2543 dev_driver_string(gdev));
d491b27b 2544 if (rc) {
1626aeb8
TH
2545 dev_printk(KERN_WARNING, gdev,
2546 "failed to request/iomap BARs for port %d "
2547 "(errno=%d)\n", i, rc);
d491b27b
TH
2548 if (rc == -EBUSY)
2549 pcim_pin_device(pdev);
1626aeb8
TH
2550 ap->ops = &ata_dummy_port_ops;
2551 continue;
d491b27b
TH
2552 }
2553 host->iomap = iomap = pcim_iomap_table(pdev);
2554
2555 ap->ioaddr.cmd_addr = iomap[base];
2556 ap->ioaddr.altstatus_addr =
2557 ap->ioaddr.ctl_addr = (void __iomem *)
2558 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2559 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2560
cbcdd875
TH
2561 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2562 (unsigned long long)pci_resource_start(pdev, base),
2563 (unsigned long long)pci_resource_start(pdev, base + 1));
2564
1626aeb8
TH
2565 mask |= 1 << i;
2566 }
2567
2568 if (!mask) {
2569 dev_printk(KERN_ERR, gdev, "no available native port\n");
2570 return -ENODEV;
d491b27b
TH
2571 }
2572
2573 return 0;
2574}
2575
21b0ad4f 2576/**
9363c382 2577 * ata_pci_sff_prepare_host - helper to prepare native PCI ATA host
21b0ad4f 2578 * @pdev: target PCI device
1626aeb8 2579 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2580 * @r_host: out argument for the initialized ATA host
2581 *
2582 * Helper to allocate ATA host for @pdev, acquire all native PCI
2583 * resources and initialize it accordingly in one go.
2584 *
2585 * LOCKING:
2586 * Inherited from calling layer (may sleep).
2587 *
2588 * RETURNS:
2589 * 0 on success, -errno otherwise.
2590 */
9363c382 2591int ata_pci_sff_prepare_host(struct pci_dev *pdev,
d583bc18
TH
2592 const struct ata_port_info * const * ppi,
2593 struct ata_host **r_host)
21b0ad4f
TH
2594{
2595 struct ata_host *host;
21b0ad4f
TH
2596 int rc;
2597
2598 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2599 return -ENOMEM;
2600
2601 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2602 if (!host) {
2603 dev_printk(KERN_ERR, &pdev->dev,
2604 "failed to allocate ATA host\n");
2605 rc = -ENOMEM;
2606 goto err_out;
2607 }
2608
9363c382 2609 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2610 if (rc)
2611 goto err_out;
2612
2613 /* init DMA related stuff */
9363c382 2614 rc = ata_pci_bmdma_init(host);
21b0ad4f
TH
2615 if (rc)
2616 goto err_bmdma;
2617
2618 devres_remove_group(&pdev->dev, NULL);
2619 *r_host = host;
2620 return 0;
2621
2622 err_bmdma:
2623 /* This is necessary because PCI and iomap resources are
2624 * merged and releasing the top group won't release the
2625 * acquired resources if some of those have been acquired
2626 * before entering this function.
2627 */
2628 pcim_iounmap_regions(pdev, 0xf);
2629 err_out:
2630 devres_release_group(&pdev->dev, NULL);
2631 return rc;
2632}
2633
4e6b79fa 2634/**
9363c382 2635 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2636 * @host: target SFF ATA host
2637 * @irq_handler: irq_handler used when requesting IRQ(s)
2638 * @sht: scsi_host_template to use when registering the host
2639 *
2640 * This is the counterpart of ata_host_activate() for SFF ATA
2641 * hosts. This separate helper is necessary because SFF hosts
2642 * use two separate interrupts in legacy mode.
2643 *
2644 * LOCKING:
2645 * Inherited from calling layer (may sleep).
2646 *
2647 * RETURNS:
2648 * 0 on success, -errno otherwise.
2649 */
9363c382 2650int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2651 irq_handler_t irq_handler,
2652 struct scsi_host_template *sht)
2653{
2654 struct device *dev = host->dev;
2655 struct pci_dev *pdev = to_pci_dev(dev);
2656 const char *drv_name = dev_driver_string(host->dev);
2657 int legacy_mode = 0, rc;
2658
2659 rc = ata_host_start(host);
2660 if (rc)
2661 return rc;
2662
2663 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2664 u8 tmp8, mask;
2665
2666 /* TODO: What if one channel is in native mode ... */
2667 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2668 mask = (1 << 2) | (1 << 0);
2669 if ((tmp8 & mask) != mask)
2670 legacy_mode = 1;
2671#if defined(CONFIG_NO_ATA_LEGACY)
2672 /* Some platforms with PCI limits cannot address compat
2673 port space. In that case we punt if their firmware has
2674 left a device in compatibility mode */
2675 if (legacy_mode) {
2676 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2677 return -EOPNOTSUPP;
2678 }
2679#endif
2680 }
2681
2682 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2683 return -ENOMEM;
2684
2685 if (!legacy_mode && pdev->irq) {
2686 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2687 IRQF_SHARED, drv_name, host);
2688 if (rc)
2689 goto out;
2690
2691 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2692 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2693 } else if (legacy_mode) {
2694 if (!ata_port_is_dummy(host->ports[0])) {
2695 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2696 irq_handler, IRQF_SHARED,
2697 drv_name, host);
2698 if (rc)
2699 goto out;
2700
2701 ata_port_desc(host->ports[0], "irq %d",
2702 ATA_PRIMARY_IRQ(pdev));
2703 }
2704
2705 if (!ata_port_is_dummy(host->ports[1])) {
2706 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2707 irq_handler, IRQF_SHARED,
2708 drv_name, host);
2709 if (rc)
2710 goto out;
2711
2712 ata_port_desc(host->ports[1], "irq %d",
2713 ATA_SECONDARY_IRQ(pdev));
2714 }
2715 }
2716
2717 rc = ata_host_register(host, sht);
2718 out:
2719 if (rc == 0)
2720 devres_remove_group(dev, NULL);
2721 else
2722 devres_release_group(dev, NULL);
2723
2724 return rc;
2725}
2726
1fdffbce 2727/**
9363c382 2728 * ata_pci_sff_init_one - Initialize/register PCI IDE host controller
1fdffbce 2729 * @pdev: Controller to be initialized
1626aeb8 2730 * @ppi: array of port_info, must be enough for two ports
1bd5b715 2731 * @sht: scsi_host_template to use when registering the host
887125e3 2732 * @host_priv: host private_data
1fdffbce
JG
2733 *
2734 * This is a helper function which can be called from a driver's
2735 * xxx_init_one() probe function if the hardware uses traditional
2736 * IDE taskfile registers.
2737 *
2738 * This function calls pci_enable_device(), reserves its register
2739 * regions, sets the dma mask, enables bus master mode, and calls
2740 * ata_device_add()
2741 *
2ec7df04
AC
2742 * ASSUMPTION:
2743 * Nobody makes a single channel controller that appears solely as
2744 * the secondary legacy port on PCI.
2745 *
1fdffbce
JG
2746 * LOCKING:
2747 * Inherited from PCI layer (may sleep).
2748 *
2749 * RETURNS:
2750 * Zero on success, negative on errno-based value on error.
2751 */
9363c382
TH
2752int ata_pci_sff_init_one(struct pci_dev *pdev,
2753 const struct ata_port_info * const * ppi,
2754 struct scsi_host_template *sht, void *host_priv)
1fdffbce 2755{
f0d36efd 2756 struct device *dev = &pdev->dev;
1626aeb8 2757 const struct ata_port_info *pi = NULL;
0f834de3 2758 struct ata_host *host = NULL;
1626aeb8 2759 int i, rc;
1fdffbce
JG
2760
2761 DPRINTK("ENTER\n");
2762
1626aeb8
TH
2763 /* look up the first valid port_info */
2764 for (i = 0; i < 2 && ppi[i]; i++) {
2765 if (ppi[i]->port_ops != &ata_dummy_port_ops) {
2766 pi = ppi[i];
2767 break;
2768 }
2769 }
f0d36efd 2770
1626aeb8
TH
2771 if (!pi) {
2772 dev_printk(KERN_ERR, &pdev->dev,
2773 "no valid port_info specified\n");
2774 return -EINVAL;
2775 }
c791c306 2776
1626aeb8
TH
2777 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2778 return -ENOMEM;
1fdffbce 2779
f0d36efd 2780 rc = pcim_enable_device(pdev);
1fdffbce 2781 if (rc)
4e6b79fa 2782 goto out;
1fdffbce 2783
4e6b79fa 2784 /* prepare and activate SFF host */
9363c382 2785 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2786 if (rc)
4e6b79fa 2787 goto out;
887125e3 2788 host->private_data = host_priv;
d491b27b 2789
d491b27b 2790 pci_set_master(pdev);
9363c382 2791 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
4e6b79fa
TH
2792 out:
2793 if (rc == 0)
2794 devres_remove_group(&pdev->dev, NULL);
2795 else
2796 devres_release_group(&pdev->dev, NULL);
d491b27b 2797
1fdffbce
JG
2798 return rc;
2799}
2800
2801#endif /* CONFIG_PCI */
2802
624d5c51
TH
2803EXPORT_SYMBOL_GPL(ata_sff_port_ops);
2804EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
9363c382
TH
2805EXPORT_SYMBOL_GPL(ata_sff_qc_prep);
2806EXPORT_SYMBOL_GPL(ata_sff_dumb_qc_prep);
2807EXPORT_SYMBOL_GPL(ata_sff_dev_select);
2808EXPORT_SYMBOL_GPL(ata_sff_check_status);
a57c1bad
AC
2809EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
2810EXPORT_SYMBOL_GPL(ata_sff_pause);
9363c382
TH
2811EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
2812EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
2813EXPORT_SYMBOL_GPL(ata_sff_tf_load);
2814EXPORT_SYMBOL_GPL(ata_sff_tf_read);
2815EXPORT_SYMBOL_GPL(ata_sff_exec_command);
2816EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
2817EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
2818EXPORT_SYMBOL_GPL(ata_sff_irq_on);
2819EXPORT_SYMBOL_GPL(ata_sff_irq_clear);
2820EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
2821EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
22183bf5 2822EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
9363c382
TH
2823EXPORT_SYMBOL_GPL(ata_sff_host_intr);
2824EXPORT_SYMBOL_GPL(ata_sff_interrupt);
2825EXPORT_SYMBOL_GPL(ata_sff_freeze);
2826EXPORT_SYMBOL_GPL(ata_sff_thaw);
2827EXPORT_SYMBOL_GPL(ata_sff_prereset);
2828EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
2829EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2830EXPORT_SYMBOL_GPL(ata_sff_softreset);
2831EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2832EXPORT_SYMBOL_GPL(ata_sff_postreset);
2833EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2834EXPORT_SYMBOL_GPL(ata_sff_post_internal_cmd);
624d5c51 2835EXPORT_SYMBOL_GPL(ata_sff_port_start);
9363c382
TH
2836EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2837EXPORT_SYMBOL_GPL(ata_bmdma_mode_filter);
624d5c51
TH
2838EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2839EXPORT_SYMBOL_GPL(ata_bmdma_start);
2840EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2841EXPORT_SYMBOL_GPL(ata_bmdma_status);
2842EXPORT_SYMBOL_GPL(ata_bus_reset);
2843#ifdef CONFIG_PCI
9363c382
TH
2844EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
2845EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
2846EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2847EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2848EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2849EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
624d5c51 2850#endif /* CONFIG_PCI */