]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-sff.c
libata-sff: separate out BMDMA init
[net-next-2.6.git] / drivers / ata / libata-sff.c
CommitLineData
1fdffbce 1/*
f3a03b09 2 * libata-sff.c - helper library for PCI IDE BMDMA
1fdffbce
JG
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
1fdffbce 35#include <linux/kernel.h>
5a0e3ad6 36#include <linux/gfp.h>
1fdffbce
JG
37#include <linux/pci.h>
38#include <linux/libata.h>
624d5c51 39#include <linux/highmem.h>
1fdffbce
JG
40
41#include "libata.h"
42
c429137a
TH
43static struct workqueue_struct *ata_sff_wq;
44
624d5c51
TH
45const struct ata_port_operations ata_sff_port_ops = {
46 .inherits = &ata_base_port_ops,
47
f47451c4 48 .qc_prep = ata_noop_qc_prep,
9363c382 49 .qc_issue = ata_sff_qc_issue,
4c9bf4e7 50 .qc_fill_rtf = ata_sff_qc_fill_rtf,
9363c382
TH
51
52 .freeze = ata_sff_freeze,
53 .thaw = ata_sff_thaw,
0aa1113d 54 .prereset = ata_sff_prereset,
9363c382 55 .softreset = ata_sff_softreset,
57c9efdf 56 .hardreset = sata_sff_hardreset,
203c75b8 57 .postreset = ata_sff_postreset,
9363c382 58 .error_handler = ata_sff_error_handler,
9363c382 59
5682ed33
TH
60 .sff_dev_select = ata_sff_dev_select,
61 .sff_check_status = ata_sff_check_status,
62 .sff_tf_load = ata_sff_tf_load,
63 .sff_tf_read = ata_sff_tf_read,
64 .sff_exec_command = ata_sff_exec_command,
65 .sff_data_xfer = ata_sff_data_xfer,
8244cd05 66 .sff_drain_fifo = ata_sff_drain_fifo,
624d5c51 67
c96f1732 68 .lost_interrupt = ata_sff_lost_interrupt,
624d5c51 69};
0fe40ff8 70EXPORT_SYMBOL_GPL(ata_sff_port_ops);
624d5c51 71
272f7884 72/**
9363c382 73 * ata_sff_check_status - Read device status reg & clear interrupt
272f7884
TH
74 * @ap: port where the device is
75 *
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
78 * from this device
79 *
80 * LOCKING:
81 * Inherited from caller.
82 */
9363c382 83u8 ata_sff_check_status(struct ata_port *ap)
272f7884
TH
84{
85 return ioread8(ap->ioaddr.status_addr);
86}
0fe40ff8 87EXPORT_SYMBOL_GPL(ata_sff_check_status);
272f7884
TH
88
89/**
9363c382 90 * ata_sff_altstatus - Read device alternate status reg
272f7884
TH
91 * @ap: port where the device is
92 *
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
95 *
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
a57c1bad 102static u8 ata_sff_altstatus(struct ata_port *ap)
624d5c51 103{
5682ed33
TH
104 if (ap->ops->sff_check_altstatus)
105 return ap->ops->sff_check_altstatus(ap);
624d5c51
TH
106
107 return ioread8(ap->ioaddr.altstatus_addr);
108}
109
a57c1bad
AC
110/**
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
113 *
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122static u8 ata_sff_irq_status(struct ata_port *ap)
123{
124 u8 status;
125
126 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
127 status = ata_sff_altstatus(ap);
128 /* Not us: We are busy */
129 if (status & ATA_BUSY)
0fe40ff8 130 return status;
a57c1bad
AC
131 }
132 /* Clear INTRQ latch */
6311c90a 133 status = ap->ops->sff_check_status(ap);
a57c1bad
AC
134 return status;
135}
136
137/**
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
140 *
141 * CAUTION:
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
144 *
145 * LOCKING:
146 * Inherited from caller.
147 */
148
149static void ata_sff_sync(struct ata_port *ap)
150{
151 if (ap->ops->sff_check_altstatus)
152 ap->ops->sff_check_altstatus(ap);
153 else if (ap->ioaddr.altstatus_addr)
154 ioread8(ap->ioaddr.altstatus_addr);
155}
156
157/**
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
160 *
161 * CAUTION:
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
169void ata_sff_pause(struct ata_port *ap)
170{
171 ata_sff_sync(ap);
172 ndelay(400);
173}
0fe40ff8 174EXPORT_SYMBOL_GPL(ata_sff_pause);
a57c1bad
AC
175
176/**
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
179 *
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
182 */
0fe40ff8 183
a57c1bad
AC
184void ata_sff_dma_pause(struct ata_port *ap)
185{
186 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap);
190 return;
191 }
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
194 corruption. */
195 BUG();
196}
0fe40ff8 197EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
a57c1bad 198
624d5c51 199/**
9363c382 200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
624d5c51 201 * @ap: port containing status register to be polled
341c2c95
TH
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
624d5c51
TH
204 *
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
207 *
208 * LOCKING:
209 * Kernel thread context (may sleep).
210 *
211 * RETURNS:
212 * 0 on success, -errno otherwise.
213 */
9363c382
TH
214int ata_sff_busy_sleep(struct ata_port *ap,
215 unsigned long tmout_pat, unsigned long tmout)
624d5c51
TH
216{
217 unsigned long timer_start, timeout;
218 u8 status;
219
9363c382 220 status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
624d5c51 221 timer_start = jiffies;
341c2c95 222 timeout = ata_deadline(timer_start, tmout_pat);
624d5c51
TH
223 while (status != 0xff && (status & ATA_BUSY) &&
224 time_before(jiffies, timeout)) {
225 msleep(50);
9363c382 226 status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
624d5c51
TH
227 }
228
229 if (status != 0xff && (status & ATA_BUSY))
230 ata_port_printk(ap, KERN_WARNING,
231 "port is slow to respond, please be patient "
232 "(Status 0x%x)\n", status);
233
341c2c95 234 timeout = ata_deadline(timer_start, tmout);
624d5c51
TH
235 while (status != 0xff && (status & ATA_BUSY) &&
236 time_before(jiffies, timeout)) {
237 msleep(50);
5682ed33 238 status = ap->ops->sff_check_status(ap);
624d5c51
TH
239 }
240
241 if (status == 0xff)
242 return -ENODEV;
243
244 if (status & ATA_BUSY) {
245 ata_port_printk(ap, KERN_ERR, "port failed to respond "
246 "(%lu secs, Status 0x%x)\n",
341c2c95 247 DIV_ROUND_UP(tmout, 1000), status);
624d5c51
TH
248 return -EBUSY;
249 }
250
251 return 0;
252}
0fe40ff8 253EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
624d5c51 254
aa2731ad
TH
255static int ata_sff_check_ready(struct ata_link *link)
256{
257 u8 status = link->ap->ops->sff_check_status(link->ap);
258
78ab88f0 259 return ata_check_ready(status);
aa2731ad
TH
260}
261
624d5c51 262/**
9363c382 263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
705e76be 264 * @link: SFF link to wait ready status for
624d5c51
TH
265 * @deadline: deadline jiffies for the operation
266 *
267 * Sleep until ATA Status register bit BSY clears, or timeout
268 * occurs.
269 *
270 * LOCKING:
271 * Kernel thread context (may sleep).
272 *
273 * RETURNS:
274 * 0 on success, -errno otherwise.
275 */
705e76be 276int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
624d5c51 277{
aa2731ad 278 return ata_wait_ready(link, deadline, ata_sff_check_ready);
624d5c51 279}
0fe40ff8 280EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
624d5c51 281
41dec29b
SS
282/**
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
286 *
287 * Writes ATA taskfile device control register.
288 *
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
291 *
292 * LOCKING:
293 * Inherited from caller.
294 */
295static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
296{
297 if (ap->ops->sff_set_devctl)
298 ap->ops->sff_set_devctl(ap, ctl);
299 else
300 iowrite8(ctl, ap->ioaddr.ctl_addr);
301}
302
624d5c51 303/**
9363c382 304 * ata_sff_dev_select - Select device 0/1 on ATA bus
624d5c51
TH
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
307 *
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
311 *
312 * May be used as the dev_select() entry in ata_port_operations.
313 *
314 * LOCKING:
315 * caller.
316 */
9363c382 317void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
624d5c51
TH
318{
319 u8 tmp;
320
321 if (device == 0)
322 tmp = ATA_DEVICE_OBS;
323 else
324 tmp = ATA_DEVICE_OBS | ATA_DEV1;
325
326 iowrite8(tmp, ap->ioaddr.device_addr);
9363c382 327 ata_sff_pause(ap); /* needed; also flushes, for mmio */
624d5c51 328}
0fe40ff8 329EXPORT_SYMBOL_GPL(ata_sff_dev_select);
624d5c51
TH
330
331/**
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
337 *
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
340 * ATA channel.
341 *
9363c382
TH
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
624d5c51
TH
345 *
346 * LOCKING:
347 * caller.
348 */
c7a8209f 349static void ata_dev_select(struct ata_port *ap, unsigned int device,
624d5c51
TH
350 unsigned int wait, unsigned int can_sleep)
351{
352 if (ata_msg_probe(ap))
353 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
354 "device %u, wait %u\n", device, wait);
355
356 if (wait)
357 ata_wait_idle(ap);
358
5682ed33 359 ap->ops->sff_dev_select(ap, device);
624d5c51
TH
360
361 if (wait) {
362 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
363 msleep(150);
364 ata_wait_idle(ap);
365 }
366}
367
368/**
9363c382 369 * ata_sff_irq_on - Enable interrupts on a port.
624d5c51
TH
370 * @ap: Port on which interrupts are enabled.
371 *
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
374 *
e42a542b
SS
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
377 *
624d5c51
TH
378 * LOCKING:
379 * Inherited from caller.
380 */
e42a542b 381void ata_sff_irq_on(struct ata_port *ap)
624d5c51
TH
382{
383 struct ata_ioports *ioaddr = &ap->ioaddr;
e42a542b
SS
384
385 if (ap->ops->sff_irq_on) {
386 ap->ops->sff_irq_on(ap);
387 return;
388 }
624d5c51
TH
389
390 ap->ctl &= ~ATA_NIEN;
391 ap->last_ctl = ap->ctl;
392
e42a542b
SS
393 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
394 ata_sff_set_devctl(ap, ap->ctl);
395 ata_wait_idle(ap);
624d5c51 396
37f65b8b
TH
397 if (ap->ops->sff_irq_clear)
398 ap->ops->sff_irq_clear(ap);
624d5c51 399}
0fe40ff8 400EXPORT_SYMBOL_GPL(ata_sff_irq_on);
624d5c51 401
624d5c51 402/**
9363c382 403 * ata_sff_tf_load - send taskfile registers to host controller
624d5c51
TH
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
406 *
407 * Outputs ATA taskfile to standard ATA host controller.
408 *
409 * LOCKING:
410 * Inherited from caller.
411 */
9363c382 412void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
413{
414 struct ata_ioports *ioaddr = &ap->ioaddr;
415 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
416
417 if (tf->ctl != ap->last_ctl) {
418 if (ioaddr->ctl_addr)
419 iowrite8(tf->ctl, ioaddr->ctl_addr);
420 ap->last_ctl = tf->ctl;
624d5c51
TH
421 }
422
423 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
efcb3cf7 424 WARN_ON_ONCE(!ioaddr->ctl_addr);
624d5c51
TH
425 iowrite8(tf->hob_feature, ioaddr->feature_addr);
426 iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
427 iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
428 iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
429 iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
430 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
431 tf->hob_feature,
432 tf->hob_nsect,
433 tf->hob_lbal,
434 tf->hob_lbam,
435 tf->hob_lbah);
436 }
437
438 if (is_addr) {
439 iowrite8(tf->feature, ioaddr->feature_addr);
440 iowrite8(tf->nsect, ioaddr->nsect_addr);
441 iowrite8(tf->lbal, ioaddr->lbal_addr);
442 iowrite8(tf->lbam, ioaddr->lbam_addr);
443 iowrite8(tf->lbah, ioaddr->lbah_addr);
444 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
445 tf->feature,
446 tf->nsect,
447 tf->lbal,
448 tf->lbam,
449 tf->lbah);
450 }
451
452 if (tf->flags & ATA_TFLAG_DEVICE) {
453 iowrite8(tf->device, ioaddr->device_addr);
454 VPRINTK("device 0x%X\n", tf->device);
455 }
624d5c51 456}
0fe40ff8 457EXPORT_SYMBOL_GPL(ata_sff_tf_load);
624d5c51
TH
458
459/**
9363c382 460 * ata_sff_tf_read - input device's ATA taskfile shadow registers
624d5c51
TH
461 * @ap: Port from which input is read
462 * @tf: ATA taskfile register set for storing input
463 *
464 * Reads ATA taskfile registers for currently-selected device
465 * into @tf. Assumes the device has a fully SFF compliant task file
466 * layout and behaviour. If you device does not (eg has a different
467 * status method) then you will need to provide a replacement tf_read
468 *
469 * LOCKING:
470 * Inherited from caller.
471 */
9363c382 472void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
624d5c51
TH
473{
474 struct ata_ioports *ioaddr = &ap->ioaddr;
475
9363c382 476 tf->command = ata_sff_check_status(ap);
624d5c51
TH
477 tf->feature = ioread8(ioaddr->error_addr);
478 tf->nsect = ioread8(ioaddr->nsect_addr);
479 tf->lbal = ioread8(ioaddr->lbal_addr);
480 tf->lbam = ioread8(ioaddr->lbam_addr);
481 tf->lbah = ioread8(ioaddr->lbah_addr);
482 tf->device = ioread8(ioaddr->device_addr);
483
484 if (tf->flags & ATA_TFLAG_LBA48) {
485 if (likely(ioaddr->ctl_addr)) {
486 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
487 tf->hob_feature = ioread8(ioaddr->error_addr);
488 tf->hob_nsect = ioread8(ioaddr->nsect_addr);
489 tf->hob_lbal = ioread8(ioaddr->lbal_addr);
490 tf->hob_lbam = ioread8(ioaddr->lbam_addr);
491 tf->hob_lbah = ioread8(ioaddr->lbah_addr);
492 iowrite8(tf->ctl, ioaddr->ctl_addr);
493 ap->last_ctl = tf->ctl;
494 } else
efcb3cf7 495 WARN_ON_ONCE(1);
624d5c51
TH
496 }
497}
0fe40ff8 498EXPORT_SYMBOL_GPL(ata_sff_tf_read);
624d5c51
TH
499
500/**
9363c382 501 * ata_sff_exec_command - issue ATA command to host controller
624d5c51
TH
502 * @ap: port to which command is being issued
503 * @tf: ATA taskfile register set
504 *
505 * Issues ATA command, with proper synchronization with interrupt
506 * handler / other threads.
507 *
508 * LOCKING:
509 * spin_lock_irqsave(host lock)
510 */
9363c382 511void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
624d5c51
TH
512{
513 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
514
515 iowrite8(tf->command, ap->ioaddr.command_addr);
9363c382 516 ata_sff_pause(ap);
624d5c51 517}
0fe40ff8 518EXPORT_SYMBOL_GPL(ata_sff_exec_command);
624d5c51
TH
519
520/**
521 * ata_tf_to_host - issue ATA taskfile to host controller
522 * @ap: port to which command is being issued
523 * @tf: ATA taskfile register set
524 *
525 * Issues ATA taskfile register set to ATA host controller,
526 * with proper synchronization with interrupt handler and
527 * other threads.
528 *
529 * LOCKING:
530 * spin_lock_irqsave(host lock)
531 */
532static inline void ata_tf_to_host(struct ata_port *ap,
533 const struct ata_taskfile *tf)
534{
5682ed33
TH
535 ap->ops->sff_tf_load(ap, tf);
536 ap->ops->sff_exec_command(ap, tf);
624d5c51
TH
537}
538
539/**
9363c382 540 * ata_sff_data_xfer - Transfer data by PIO
624d5c51
TH
541 * @dev: device to target
542 * @buf: data buffer
543 * @buflen: buffer length
544 * @rw: read/write
545 *
546 * Transfer data from/to the device data register by PIO.
547 *
548 * LOCKING:
549 * Inherited from caller.
550 *
551 * RETURNS:
552 * Bytes consumed.
553 */
9363c382
TH
554unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
555 unsigned int buflen, int rw)
624d5c51
TH
556{
557 struct ata_port *ap = dev->link->ap;
558 void __iomem *data_addr = ap->ioaddr.data_addr;
559 unsigned int words = buflen >> 1;
560
561 /* Transfer multiple of 2 bytes */
562 if (rw == READ)
563 ioread16_rep(data_addr, buf, words);
564 else
565 iowrite16_rep(data_addr, buf, words);
566
2102d749 567 /* Transfer trailing byte, if any. */
624d5c51 568 if (unlikely(buflen & 0x01)) {
2102d749 569 unsigned char pad[2];
624d5c51 570
2102d749
SS
571 /* Point buf to the tail of buffer */
572 buf += buflen - 1;
573
574 /*
575 * Use io*16_rep() accessors here as well to avoid pointlessly
972b94ff 576 * swapping bytes to and from on the big endian machines...
2102d749 577 */
624d5c51 578 if (rw == READ) {
2102d749
SS
579 ioread16_rep(data_addr, pad, 1);
580 *buf = pad[0];
624d5c51 581 } else {
2102d749
SS
582 pad[0] = *buf;
583 iowrite16_rep(data_addr, pad, 1);
624d5c51
TH
584 }
585 words++;
586 }
587
588 return words << 1;
589}
0fe40ff8 590EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
624d5c51 591
871af121
AC
592/**
593 * ata_sff_data_xfer32 - Transfer data by PIO
594 * @dev: device to target
595 * @buf: data buffer
596 * @buflen: buffer length
597 * @rw: read/write
598 *
599 * Transfer data from/to the device data register by PIO using 32bit
600 * I/O operations.
601 *
602 * LOCKING:
603 * Inherited from caller.
604 *
605 * RETURNS:
606 * Bytes consumed.
607 */
608
609unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
610 unsigned int buflen, int rw)
611{
612 struct ata_port *ap = dev->link->ap;
613 void __iomem *data_addr = ap->ioaddr.data_addr;
614 unsigned int words = buflen >> 2;
615 int slop = buflen & 3;
972b94ff 616
e3cf95dd
AC
617 if (!(ap->pflags & ATA_PFLAG_PIO32))
618 return ata_sff_data_xfer(dev, buf, buflen, rw);
871af121
AC
619
620 /* Transfer multiple of 4 bytes */
621 if (rw == READ)
622 ioread32_rep(data_addr, buf, words);
623 else
624 iowrite32_rep(data_addr, buf, words);
625
d1b3525b 626 /* Transfer trailing bytes, if any */
871af121 627 if (unlikely(slop)) {
d1b3525b
SS
628 unsigned char pad[4];
629
630 /* Point buf to the tail of buffer */
631 buf += buflen - slop;
632
633 /*
634 * Use io*_rep() accessors here as well to avoid pointlessly
972b94ff 635 * swapping bytes to and from on the big endian machines...
d1b3525b 636 */
871af121 637 if (rw == READ) {
d1b3525b
SS
638 if (slop < 3)
639 ioread16_rep(data_addr, pad, 1);
640 else
641 ioread32_rep(data_addr, pad, 1);
642 memcpy(buf, pad, slop);
871af121 643 } else {
d1b3525b
SS
644 memcpy(pad, buf, slop);
645 if (slop < 3)
646 iowrite16_rep(data_addr, pad, 1);
647 else
648 iowrite32_rep(data_addr, pad, 1);
871af121 649 }
871af121 650 }
d1b3525b 651 return (buflen + 1) & ~1;
871af121
AC
652}
653EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
654
624d5c51 655/**
9363c382 656 * ata_sff_data_xfer_noirq - Transfer data by PIO
624d5c51
TH
657 * @dev: device to target
658 * @buf: data buffer
659 * @buflen: buffer length
660 * @rw: read/write
661 *
662 * Transfer data from/to the device data register by PIO. Do the
663 * transfer with interrupts disabled.
664 *
665 * LOCKING:
666 * Inherited from caller.
667 *
668 * RETURNS:
669 * Bytes consumed.
670 */
9363c382
TH
671unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
672 unsigned int buflen, int rw)
624d5c51
TH
673{
674 unsigned long flags;
675 unsigned int consumed;
676
677 local_irq_save(flags);
9363c382 678 consumed = ata_sff_data_xfer(dev, buf, buflen, rw);
624d5c51
TH
679 local_irq_restore(flags);
680
681 return consumed;
682}
0fe40ff8 683EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
624d5c51
TH
684
685/**
686 * ata_pio_sector - Transfer a sector of data.
687 * @qc: Command on going
688 *
689 * Transfer qc->sect_size bytes of data from/to the ATA device.
690 *
691 * LOCKING:
692 * Inherited from caller.
693 */
694static void ata_pio_sector(struct ata_queued_cmd *qc)
695{
696 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
697 struct ata_port *ap = qc->ap;
698 struct page *page;
699 unsigned int offset;
700 unsigned char *buf;
701
702 if (qc->curbytes == qc->nbytes - qc->sect_size)
703 ap->hsm_task_state = HSM_ST_LAST;
704
705 page = sg_page(qc->cursg);
706 offset = qc->cursg->offset + qc->cursg_ofs;
707
708 /* get the current page and offset */
709 page = nth_page(page, (offset >> PAGE_SHIFT));
710 offset %= PAGE_SIZE;
711
712 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
713
714 if (PageHighMem(page)) {
715 unsigned long flags;
716
717 /* FIXME: use a bounce buffer */
718 local_irq_save(flags);
719 buf = kmap_atomic(page, KM_IRQ0);
720
721 /* do the actual data transfer */
5682ed33
TH
722 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
723 do_write);
624d5c51
TH
724
725 kunmap_atomic(buf, KM_IRQ0);
726 local_irq_restore(flags);
727 } else {
728 buf = page_address(page);
5682ed33
TH
729 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
730 do_write);
624d5c51
TH
731 }
732
3842e835 733 if (!do_write && !PageSlab(page))
2d68b7fe
CM
734 flush_dcache_page(page);
735
624d5c51
TH
736 qc->curbytes += qc->sect_size;
737 qc->cursg_ofs += qc->sect_size;
738
739 if (qc->cursg_ofs == qc->cursg->length) {
740 qc->cursg = sg_next(qc->cursg);
741 qc->cursg_ofs = 0;
742 }
743}
744
745/**
746 * ata_pio_sectors - Transfer one or many sectors.
747 * @qc: Command on going
748 *
749 * Transfer one or many sectors of data from/to the
750 * ATA device for the DRQ request.
751 *
752 * LOCKING:
753 * Inherited from caller.
754 */
755static void ata_pio_sectors(struct ata_queued_cmd *qc)
756{
757 if (is_multi_taskfile(&qc->tf)) {
758 /* READ/WRITE MULTIPLE */
759 unsigned int nsect;
760
efcb3cf7 761 WARN_ON_ONCE(qc->dev->multi_count == 0);
624d5c51
TH
762
763 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
764 qc->dev->multi_count);
765 while (nsect--)
766 ata_pio_sector(qc);
767 } else
768 ata_pio_sector(qc);
769
a57c1bad 770 ata_sff_sync(qc->ap); /* flush */
624d5c51
TH
771}
772
773/**
774 * atapi_send_cdb - Write CDB bytes to hardware
775 * @ap: Port to which ATAPI device is attached.
776 * @qc: Taskfile currently active
777 *
778 * When device has indicated its readiness to accept
779 * a CDB, this function is called. Send the CDB.
780 *
781 * LOCKING:
782 * caller.
783 */
784static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
785{
786 /* send SCSI cdb */
787 DPRINTK("send cdb\n");
efcb3cf7 788 WARN_ON_ONCE(qc->dev->cdb_len < 12);
624d5c51 789
5682ed33 790 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
a57c1bad
AC
791 ata_sff_sync(ap);
792 /* FIXME: If the CDB is for DMA do we need to do the transition delay
793 or is bmdma_start guaranteed to do it ? */
624d5c51
TH
794 switch (qc->tf.protocol) {
795 case ATAPI_PROT_PIO:
796 ap->hsm_task_state = HSM_ST;
797 break;
798 case ATAPI_PROT_NODATA:
799 ap->hsm_task_state = HSM_ST_LAST;
800 break;
801 case ATAPI_PROT_DMA:
802 ap->hsm_task_state = HSM_ST_LAST;
803 /* initiate bmdma */
804 ap->ops->bmdma_start(qc);
805 break;
806 }
807}
808
809/**
810 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
811 * @qc: Command on going
812 * @bytes: number of bytes
813 *
814 * Transfer Transfer data from/to the ATAPI device.
815 *
816 * LOCKING:
817 * Inherited from caller.
818 *
819 */
820static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
821{
822 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
823 struct ata_port *ap = qc->ap;
824 struct ata_device *dev = qc->dev;
825 struct ata_eh_info *ehi = &dev->link->eh_info;
826 struct scatterlist *sg;
827 struct page *page;
828 unsigned char *buf;
829 unsigned int offset, count, consumed;
830
831next_sg:
832 sg = qc->cursg;
833 if (unlikely(!sg)) {
834 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
835 "buf=%u cur=%u bytes=%u",
836 qc->nbytes, qc->curbytes, bytes);
837 return -1;
838 }
839
840 page = sg_page(sg);
841 offset = sg->offset + qc->cursg_ofs;
842
843 /* get the current page and offset */
844 page = nth_page(page, (offset >> PAGE_SHIFT));
845 offset %= PAGE_SIZE;
846
847 /* don't overrun current sg */
848 count = min(sg->length - qc->cursg_ofs, bytes);
849
850 /* don't cross page boundaries */
851 count = min(count, (unsigned int)PAGE_SIZE - offset);
852
853 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
854
855 if (PageHighMem(page)) {
856 unsigned long flags;
857
858 /* FIXME: use bounce buffer */
859 local_irq_save(flags);
860 buf = kmap_atomic(page, KM_IRQ0);
861
862 /* do the actual data transfer */
0fe40ff8
AC
863 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
864 count, rw);
624d5c51
TH
865
866 kunmap_atomic(buf, KM_IRQ0);
867 local_irq_restore(flags);
868 } else {
869 buf = page_address(page);
0fe40ff8
AC
870 consumed = ap->ops->sff_data_xfer(dev, buf + offset,
871 count, rw);
624d5c51
TH
872 }
873
874 bytes -= min(bytes, consumed);
875 qc->curbytes += count;
876 qc->cursg_ofs += count;
877
878 if (qc->cursg_ofs == sg->length) {
879 qc->cursg = sg_next(qc->cursg);
880 qc->cursg_ofs = 0;
881 }
882
a0f79f7a
CB
883 /*
884 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
885 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
886 * check correctly as it doesn't know if it is the last request being
887 * made. Somebody should implement a proper sanity check.
888 */
624d5c51
TH
889 if (bytes)
890 goto next_sg;
891 return 0;
892}
893
894/**
895 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
896 * @qc: Command on going
897 *
898 * Transfer Transfer data from/to the ATAPI device.
899 *
900 * LOCKING:
901 * Inherited from caller.
902 */
903static void atapi_pio_bytes(struct ata_queued_cmd *qc)
904{
905 struct ata_port *ap = qc->ap;
906 struct ata_device *dev = qc->dev;
907 struct ata_eh_info *ehi = &dev->link->eh_info;
908 unsigned int ireason, bc_lo, bc_hi, bytes;
909 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
910
911 /* Abuse qc->result_tf for temp storage of intermediate TF
912 * here to save some kernel stack usage.
913 * For normal completion, qc->result_tf is not relevant. For
914 * error, qc->result_tf is later overwritten by ata_qc_complete().
915 * So, the correctness of qc->result_tf is not affected.
916 */
5682ed33 917 ap->ops->sff_tf_read(ap, &qc->result_tf);
624d5c51
TH
918 ireason = qc->result_tf.nsect;
919 bc_lo = qc->result_tf.lbam;
920 bc_hi = qc->result_tf.lbah;
921 bytes = (bc_hi << 8) | bc_lo;
922
923 /* shall be cleared to zero, indicating xfer of data */
924 if (unlikely(ireason & (1 << 0)))
925 goto atapi_check;
926
927 /* make sure transfer direction matches expected */
928 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
929 if (unlikely(do_write != i_write))
930 goto atapi_check;
931
932 if (unlikely(!bytes))
933 goto atapi_check;
934
935 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
936
937 if (unlikely(__atapi_pio_bytes(qc, bytes)))
938 goto err_out;
a57c1bad 939 ata_sff_sync(ap); /* flush */
624d5c51
TH
940
941 return;
942
943 atapi_check:
944 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
945 ireason, bytes);
946 err_out:
947 qc->err_mask |= AC_ERR_HSM;
948 ap->hsm_task_state = HSM_ST_ERR;
949}
950
951/**
952 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
953 * @ap: the target ata_port
954 * @qc: qc on going
955 *
956 * RETURNS:
957 * 1 if ok in workqueue, 0 otherwise.
958 */
0fe40ff8
AC
959static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
960 struct ata_queued_cmd *qc)
624d5c51
TH
961{
962 if (qc->tf.flags & ATA_TFLAG_POLLING)
963 return 1;
964
965 if (ap->hsm_task_state == HSM_ST_FIRST) {
966 if (qc->tf.protocol == ATA_PROT_PIO &&
0fe40ff8 967 (qc->tf.flags & ATA_TFLAG_WRITE))
624d5c51
TH
968 return 1;
969
970 if (ata_is_atapi(qc->tf.protocol) &&
0fe40ff8 971 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
624d5c51
TH
972 return 1;
973 }
974
975 return 0;
976}
977
978/**
979 * ata_hsm_qc_complete - finish a qc running on standard HSM
980 * @qc: Command to complete
981 * @in_wq: 1 if called from workqueue, 0 otherwise
982 *
983 * Finish @qc which is running on standard HSM.
984 *
985 * LOCKING:
986 * If @in_wq is zero, spin_lock_irqsave(host lock).
987 * Otherwise, none on entry and grabs host lock.
988 */
989static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
990{
991 struct ata_port *ap = qc->ap;
992 unsigned long flags;
993
994 if (ap->ops->error_handler) {
995 if (in_wq) {
996 spin_lock_irqsave(ap->lock, flags);
997
998 /* EH might have kicked in while host lock is
999 * released.
1000 */
1001 qc = ata_qc_from_tag(ap, qc->tag);
1002 if (qc) {
1003 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
e42a542b 1004 ata_sff_irq_on(ap);
624d5c51
TH
1005 ata_qc_complete(qc);
1006 } else
1007 ata_port_freeze(ap);
1008 }
1009
1010 spin_unlock_irqrestore(ap->lock, flags);
1011 } else {
1012 if (likely(!(qc->err_mask & AC_ERR_HSM)))
1013 ata_qc_complete(qc);
1014 else
1015 ata_port_freeze(ap);
1016 }
1017 } else {
1018 if (in_wq) {
1019 spin_lock_irqsave(ap->lock, flags);
e42a542b 1020 ata_sff_irq_on(ap);
624d5c51
TH
1021 ata_qc_complete(qc);
1022 spin_unlock_irqrestore(ap->lock, flags);
1023 } else
1024 ata_qc_complete(qc);
1025 }
1026}
1027
1028/**
9363c382 1029 * ata_sff_hsm_move - move the HSM to the next state.
624d5c51
TH
1030 * @ap: the target ata_port
1031 * @qc: qc on going
1032 * @status: current device status
1033 * @in_wq: 1 if called from workqueue, 0 otherwise
1034 *
1035 * RETURNS:
1036 * 1 when poll next status needed, 0 otherwise.
1037 */
9363c382
TH
1038int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1039 u8 status, int in_wq)
624d5c51 1040{
a836d3e8 1041 struct ata_eh_info *ehi = &ap->link.eh_info;
624d5c51
TH
1042 unsigned long flags = 0;
1043 int poll_next;
1044
efcb3cf7 1045 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
624d5c51 1046
9363c382 1047 /* Make sure ata_sff_qc_issue() does not throw things
624d5c51
TH
1048 * like DMA polling into the workqueue. Notice that
1049 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1050 */
efcb3cf7 1051 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
624d5c51
TH
1052
1053fsm_start:
1054 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1055 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1056
1057 switch (ap->hsm_task_state) {
1058 case HSM_ST_FIRST:
1059 /* Send first data block or PACKET CDB */
1060
1061 /* If polling, we will stay in the work queue after
1062 * sending the data. Otherwise, interrupt handler
1063 * takes over after sending the data.
1064 */
1065 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1066
1067 /* check device status */
1068 if (unlikely((status & ATA_DRQ) == 0)) {
1069 /* handle BSY=0, DRQ=0 as error */
1070 if (likely(status & (ATA_ERR | ATA_DF)))
1071 /* device stops HSM for abort/error */
1072 qc->err_mask |= AC_ERR_DEV;
a836d3e8 1073 else {
624d5c51 1074 /* HSM violation. Let EH handle this */
a836d3e8
TH
1075 ata_ehi_push_desc(ehi,
1076 "ST_FIRST: !(DRQ|ERR|DF)");
624d5c51 1077 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1078 }
624d5c51
TH
1079
1080 ap->hsm_task_state = HSM_ST_ERR;
1081 goto fsm_start;
1082 }
1083
1084 /* Device should not ask for data transfer (DRQ=1)
1085 * when it finds something wrong.
1086 * We ignore DRQ here and stop the HSM by
1087 * changing hsm_task_state to HSM_ST_ERR and
1088 * let the EH abort the command or reset the device.
1089 */
1090 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1091 /* Some ATAPI tape drives forget to clear the ERR bit
1092 * when doing the next command (mostly request sense).
1093 * We ignore ERR here to workaround and proceed sending
1094 * the CDB.
1095 */
1096 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
a836d3e8
TH
1097 ata_ehi_push_desc(ehi, "ST_FIRST: "
1098 "DRQ=1 with device error, "
1099 "dev_stat 0x%X", status);
624d5c51
TH
1100 qc->err_mask |= AC_ERR_HSM;
1101 ap->hsm_task_state = HSM_ST_ERR;
1102 goto fsm_start;
1103 }
1104 }
1105
1106 /* Send the CDB (atapi) or the first data block (ata pio out).
1107 * During the state transition, interrupt handler shouldn't
1108 * be invoked before the data transfer is complete and
1109 * hsm_task_state is changed. Hence, the following locking.
1110 */
1111 if (in_wq)
1112 spin_lock_irqsave(ap->lock, flags);
1113
1114 if (qc->tf.protocol == ATA_PROT_PIO) {
1115 /* PIO data out protocol.
1116 * send first data block.
1117 */
1118
1119 /* ata_pio_sectors() might change the state
1120 * to HSM_ST_LAST. so, the state is changed here
1121 * before ata_pio_sectors().
1122 */
1123 ap->hsm_task_state = HSM_ST;
1124 ata_pio_sectors(qc);
1125 } else
1126 /* send CDB */
1127 atapi_send_cdb(ap, qc);
1128
1129 if (in_wq)
1130 spin_unlock_irqrestore(ap->lock, flags);
1131
c429137a 1132 /* if polling, ata_sff_pio_task() handles the rest.
624d5c51
TH
1133 * otherwise, interrupt handler takes over from here.
1134 */
1135 break;
1136
1137 case HSM_ST:
1138 /* complete command or read/write the data register */
1139 if (qc->tf.protocol == ATAPI_PROT_PIO) {
1140 /* ATAPI PIO protocol */
1141 if ((status & ATA_DRQ) == 0) {
1142 /* No more data to transfer or device error.
1143 * Device error will be tagged in HSM_ST_LAST.
1144 */
1145 ap->hsm_task_state = HSM_ST_LAST;
1146 goto fsm_start;
1147 }
1148
1149 /* Device should not ask for data transfer (DRQ=1)
1150 * when it finds something wrong.
1151 * We ignore DRQ here and stop the HSM by
1152 * changing hsm_task_state to HSM_ST_ERR and
1153 * let the EH abort the command or reset the device.
1154 */
1155 if (unlikely(status & (ATA_ERR | ATA_DF))) {
a836d3e8
TH
1156 ata_ehi_push_desc(ehi, "ST-ATAPI: "
1157 "DRQ=1 with device error, "
1158 "dev_stat 0x%X", status);
624d5c51
TH
1159 qc->err_mask |= AC_ERR_HSM;
1160 ap->hsm_task_state = HSM_ST_ERR;
1161 goto fsm_start;
1162 }
1163
1164 atapi_pio_bytes(qc);
1165
1166 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1167 /* bad ireason reported by device */
1168 goto fsm_start;
1169
1170 } else {
1171 /* ATA PIO protocol */
1172 if (unlikely((status & ATA_DRQ) == 0)) {
1173 /* handle BSY=0, DRQ=0 as error */
6a6b97d3 1174 if (likely(status & (ATA_ERR | ATA_DF))) {
624d5c51
TH
1175 /* device stops HSM for abort/error */
1176 qc->err_mask |= AC_ERR_DEV;
6a6b97d3
TH
1177
1178 /* If diagnostic failed and this is
1179 * IDENTIFY, it's likely a phantom
1180 * device. Mark hint.
1181 */
1182 if (qc->dev->horkage &
1183 ATA_HORKAGE_DIAGNOSTIC)
1184 qc->err_mask |=
1185 AC_ERR_NODEV_HINT;
1186 } else {
624d5c51
TH
1187 /* HSM violation. Let EH handle this.
1188 * Phantom devices also trigger this
1189 * condition. Mark hint.
1190 */
a836d3e8 1191 ata_ehi_push_desc(ehi, "ST-ATA: "
80ee6f54 1192 "DRQ=0 without device error, "
a836d3e8 1193 "dev_stat 0x%X", status);
624d5c51
TH
1194 qc->err_mask |= AC_ERR_HSM |
1195 AC_ERR_NODEV_HINT;
a836d3e8 1196 }
624d5c51
TH
1197
1198 ap->hsm_task_state = HSM_ST_ERR;
1199 goto fsm_start;
1200 }
1201
1202 /* For PIO reads, some devices may ask for
1203 * data transfer (DRQ=1) alone with ERR=1.
1204 * We respect DRQ here and transfer one
1205 * block of junk data before changing the
1206 * hsm_task_state to HSM_ST_ERR.
1207 *
1208 * For PIO writes, ERR=1 DRQ=1 doesn't make
1209 * sense since the data block has been
1210 * transferred to the device.
1211 */
1212 if (unlikely(status & (ATA_ERR | ATA_DF))) {
1213 /* data might be corrputed */
1214 qc->err_mask |= AC_ERR_DEV;
1215
1216 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1217 ata_pio_sectors(qc);
1218 status = ata_wait_idle(ap);
1219 }
1220
a836d3e8
TH
1221 if (status & (ATA_BUSY | ATA_DRQ)) {
1222 ata_ehi_push_desc(ehi, "ST-ATA: "
1223 "BUSY|DRQ persists on ERR|DF, "
1224 "dev_stat 0x%X", status);
624d5c51 1225 qc->err_mask |= AC_ERR_HSM;
a836d3e8 1226 }
624d5c51 1227
b919930c
TH
1228 /* There are oddball controllers with
1229 * status register stuck at 0x7f and
1230 * lbal/m/h at zero which makes it
1231 * pass all other presence detection
1232 * mechanisms we have. Set NODEV_HINT
1233 * for it. Kernel bz#7241.
1234 */
1235 if (status == 0x7f)
1236 qc->err_mask |= AC_ERR_NODEV_HINT;
1237
624d5c51
TH
1238 /* ata_pio_sectors() might change the
1239 * state to HSM_ST_LAST. so, the state
1240 * is changed after ata_pio_sectors().
1241 */
1242 ap->hsm_task_state = HSM_ST_ERR;
1243 goto fsm_start;
1244 }
1245
1246 ata_pio_sectors(qc);
1247
1248 if (ap->hsm_task_state == HSM_ST_LAST &&
1249 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1250 /* all data read */
1251 status = ata_wait_idle(ap);
1252 goto fsm_start;
1253 }
1254 }
1255
1256 poll_next = 1;
1257 break;
1258
1259 case HSM_ST_LAST:
1260 if (unlikely(!ata_ok(status))) {
1261 qc->err_mask |= __ac_err_mask(status);
1262 ap->hsm_task_state = HSM_ST_ERR;
1263 goto fsm_start;
1264 }
1265
1266 /* no more data to transfer */
1267 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1268 ap->print_id, qc->dev->devno, status);
1269
efcb3cf7 1270 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
624d5c51
TH
1271
1272 ap->hsm_task_state = HSM_ST_IDLE;
1273
1274 /* complete taskfile transaction */
1275 ata_hsm_qc_complete(qc, in_wq);
1276
1277 poll_next = 0;
1278 break;
1279
1280 case HSM_ST_ERR:
624d5c51
TH
1281 ap->hsm_task_state = HSM_ST_IDLE;
1282
1283 /* complete taskfile transaction */
1284 ata_hsm_qc_complete(qc, in_wq);
1285
1286 poll_next = 0;
1287 break;
1288 default:
1289 poll_next = 0;
1290 BUG();
1291 }
1292
1293 return poll_next;
1294}
0fe40ff8 1295EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
624d5c51 1296
c429137a
TH
1297void ata_sff_queue_pio_task(struct ata_port *ap, unsigned long delay)
1298{
1299 /* may fail if ata_sff_flush_pio_task() in progress */
1300 queue_delayed_work(ata_sff_wq, &ap->sff_pio_task,
1301 msecs_to_jiffies(delay));
1302}
1303EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1304
1305void ata_sff_flush_pio_task(struct ata_port *ap)
1306{
1307 DPRINTK("ENTER\n");
1308
1309 cancel_rearming_delayed_work(&ap->sff_pio_task);
1310 ap->hsm_task_state = HSM_ST_IDLE;
1311
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1314}
1315
1316static void ata_sff_pio_task(struct work_struct *work)
624d5c51
TH
1317{
1318 struct ata_port *ap =
c429137a
TH
1319 container_of(work, struct ata_port, sff_pio_task.work);
1320 struct ata_queued_cmd *qc;
624d5c51
TH
1321 u8 status;
1322 int poll_next;
1323
c429137a
TH
1324 /* qc can be NULL if timeout occurred */
1325 qc = ata_qc_from_tag(ap, ap->link.active_tag);
1326 if (!qc)
1327 return;
1328
624d5c51 1329fsm_start:
efcb3cf7 1330 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
624d5c51
TH
1331
1332 /*
1333 * This is purely heuristic. This is a fast path.
1334 * Sometimes when we enter, BSY will be cleared in
1335 * a chk-status or two. If not, the drive is probably seeking
1336 * or something. Snooze for a couple msecs, then
1337 * chk-status again. If still busy, queue delayed work.
1338 */
9363c382 1339 status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
624d5c51
TH
1340 if (status & ATA_BUSY) {
1341 msleep(2);
9363c382 1342 status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
624d5c51 1343 if (status & ATA_BUSY) {
c429137a 1344 ata_sff_queue_pio_task(ap, ATA_SHORT_PAUSE);
624d5c51
TH
1345 return;
1346 }
1347 }
1348
1349 /* move the HSM */
9363c382 1350 poll_next = ata_sff_hsm_move(ap, qc, status, 1);
624d5c51
TH
1351
1352 /* another command or interrupt handler
1353 * may be running at this point.
1354 */
1355 if (poll_next)
1356 goto fsm_start;
1357}
1358
1359/**
360ff783 1360 * ata_sff_qc_issue - issue taskfile to a SFF controller
624d5c51
TH
1361 * @qc: command to issue to device
1362 *
360ff783
TH
1363 * This function issues a PIO or NODATA command to a SFF
1364 * controller.
624d5c51
TH
1365 *
1366 * LOCKING:
1367 * spin_lock_irqsave(host lock)
1368 *
1369 * RETURNS:
1370 * Zero on success, AC_ERR_* mask on failure
1371 */
9363c382 1372unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
624d5c51
TH
1373{
1374 struct ata_port *ap = qc->ap;
1375
1376 /* Use polling pio if the LLD doesn't handle
1377 * interrupt driven pio and atapi CDB interrupt.
1378 */
360ff783
TH
1379 if (ap->flags & ATA_FLAG_PIO_POLLING)
1380 qc->tf.flags |= ATA_TFLAG_POLLING;
624d5c51
TH
1381
1382 /* select the device */
1383 ata_dev_select(ap, qc->dev->devno, 1, 0);
1384
1385 /* start the command */
1386 switch (qc->tf.protocol) {
1387 case ATA_PROT_NODATA:
1388 if (qc->tf.flags & ATA_TFLAG_POLLING)
1389 ata_qc_set_polling(qc);
1390
1391 ata_tf_to_host(ap, &qc->tf);
1392 ap->hsm_task_state = HSM_ST_LAST;
1393
1394 if (qc->tf.flags & ATA_TFLAG_POLLING)
c429137a 1395 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1396
1397 break;
1398
624d5c51
TH
1399 case ATA_PROT_PIO:
1400 if (qc->tf.flags & ATA_TFLAG_POLLING)
1401 ata_qc_set_polling(qc);
1402
1403 ata_tf_to_host(ap, &qc->tf);
1404
1405 if (qc->tf.flags & ATA_TFLAG_WRITE) {
1406 /* PIO data out protocol */
1407 ap->hsm_task_state = HSM_ST_FIRST;
c429137a 1408 ata_sff_queue_pio_task(ap, 0);
624d5c51 1409
c429137a
TH
1410 /* always send first data block using the
1411 * ata_sff_pio_task() codepath.
624d5c51
TH
1412 */
1413 } else {
1414 /* PIO data in protocol */
1415 ap->hsm_task_state = HSM_ST;
1416
1417 if (qc->tf.flags & ATA_TFLAG_POLLING)
c429137a 1418 ata_sff_queue_pio_task(ap, 0);
624d5c51 1419
c429137a
TH
1420 /* if polling, ata_sff_pio_task() handles the
1421 * rest. otherwise, interrupt handler takes
1422 * over from here.
624d5c51
TH
1423 */
1424 }
1425
1426 break;
1427
1428 case ATAPI_PROT_PIO:
1429 case ATAPI_PROT_NODATA:
1430 if (qc->tf.flags & ATA_TFLAG_POLLING)
1431 ata_qc_set_polling(qc);
1432
1433 ata_tf_to_host(ap, &qc->tf);
1434
1435 ap->hsm_task_state = HSM_ST_FIRST;
1436
1437 /* send cdb by polling if no cdb interrupt */
1438 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1439 (qc->tf.flags & ATA_TFLAG_POLLING))
c429137a 1440 ata_sff_queue_pio_task(ap, 0);
624d5c51
TH
1441 break;
1442
624d5c51 1443 default:
efcb3cf7 1444 WARN_ON_ONCE(1);
624d5c51
TH
1445 return AC_ERR_SYSTEM;
1446 }
1447
1448 return 0;
1449}
0fe40ff8 1450EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
624d5c51 1451
22183bf5
TH
1452/**
1453 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1454 * @qc: qc to fill result TF for
1455 *
1456 * @qc is finished and result TF needs to be filled. Fill it
1457 * using ->sff_tf_read.
1458 *
1459 * LOCKING:
1460 * spin_lock_irqsave(host lock)
1461 *
1462 * RETURNS:
1463 * true indicating that result TF is successfully filled.
1464 */
1465bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1466{
1467 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1468 return true;
1469}
0fe40ff8 1470EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
22183bf5 1471
c3b28894 1472static unsigned int ata_sff_idle_irq(struct ata_port *ap)
624d5c51 1473{
c3b28894
TH
1474 ap->stats.idle_irq++;
1475
1476#ifdef ATA_IRQ_TRAP
1477 if ((ap->stats.idle_irq % 1000) == 0) {
1478 ap->ops->sff_check_status(ap);
1479 if (ap->ops->sff_irq_clear)
1480 ap->ops->sff_irq_clear(ap);
1481 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
1482 return 1;
1483 }
1484#endif
1485 return 0; /* irq not handled */
1486}
1487
1488static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1489 struct ata_queued_cmd *qc,
1490 bool hsmv_on_idle)
1491{
1492 u8 status;
624d5c51
TH
1493
1494 VPRINTK("ata%u: protocol %d task_state %d\n",
1495 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1496
1497 /* Check whether we are expecting interrupt in this state */
1498 switch (ap->hsm_task_state) {
1499 case HSM_ST_FIRST:
1500 /* Some pre-ATAPI-4 devices assert INTRQ
1501 * at this state when ready to receive CDB.
1502 */
1503
1504 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1505 * The flag was turned on only for atapi devices. No
1506 * need to check ata_is_atapi(qc->tf.protocol) again.
1507 */
1508 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
c3b28894 1509 return ata_sff_idle_irq(ap);
624d5c51
TH
1510 break;
1511 case HSM_ST:
c3b28894 1512 case HSM_ST_LAST:
624d5c51
TH
1513 break;
1514 default:
c3b28894 1515 return ata_sff_idle_irq(ap);
624d5c51
TH
1516 }
1517
a57c1bad
AC
1518 /* check main status, clearing INTRQ if needed */
1519 status = ata_sff_irq_status(ap);
332ac7ff 1520 if (status & ATA_BUSY) {
c3b28894 1521 if (hsmv_on_idle) {
332ac7ff
TH
1522 /* BMDMA engine is already stopped, we're screwed */
1523 qc->err_mask |= AC_ERR_HSM;
1524 ap->hsm_task_state = HSM_ST_ERR;
1525 } else
c3b28894 1526 return ata_sff_idle_irq(ap);
332ac7ff 1527 }
624d5c51 1528
9f2f7210 1529 /* clear irq events */
37f65b8b
TH
1530 if (ap->ops->sff_irq_clear)
1531 ap->ops->sff_irq_clear(ap);
624d5c51 1532
9363c382 1533 ata_sff_hsm_move(ap, qc, status, 0);
624d5c51 1534
624d5c51 1535 return 1; /* irq handled */
624d5c51
TH
1536}
1537
1538/**
c3b28894
TH
1539 * ata_sff_port_intr - Handle SFF port interrupt
1540 * @ap: Port on which interrupt arrived (possibly...)
1541 * @qc: Taskfile currently active in engine
624d5c51 1542 *
c3b28894 1543 * Handle port interrupt for given queued command.
624d5c51
TH
1544 *
1545 * LOCKING:
c3b28894 1546 * spin_lock_irqsave(host lock)
624d5c51
TH
1547 *
1548 * RETURNS:
c3b28894 1549 * One if interrupt was handled, zero if not (shared irq).
624d5c51 1550 */
c3b28894
TH
1551unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1552{
1553 return __ata_sff_port_intr(ap, qc, false);
1554}
1555EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1556
1557static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1558 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
624d5c51
TH
1559{
1560 struct ata_host *host = dev_instance;
332ac7ff 1561 bool retried = false;
624d5c51 1562 unsigned int i;
332ac7ff 1563 unsigned int handled, idle, polling;
624d5c51
TH
1564 unsigned long flags;
1565
1566 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1567 spin_lock_irqsave(&host->lock, flags);
1568
332ac7ff
TH
1569retry:
1570 handled = idle = polling = 0;
624d5c51 1571 for (i = 0; i < host->n_ports; i++) {
d88ec2e5
TH
1572 struct ata_port *ap = host->ports[i];
1573 struct ata_queued_cmd *qc;
624d5c51 1574
d88ec2e5 1575 qc = ata_qc_from_tag(ap, ap->link.active_tag);
27943620
TH
1576 if (qc) {
1577 if (!(qc->tf.flags & ATA_TFLAG_POLLING))
c3b28894 1578 handled |= port_intr(ap, qc);
27943620
TH
1579 else
1580 polling |= 1 << i;
332ac7ff
TH
1581 } else
1582 idle |= 1 << i;
27943620
TH
1583 }
1584
1585 /*
1586 * If no port was expecting IRQ but the controller is actually
1587 * asserting IRQ line, nobody cared will ensue. Check IRQ
1588 * pending status if available and clear spurious IRQ.
1589 */
332ac7ff
TH
1590 if (!handled && !retried) {
1591 bool retry = false;
1592
27943620
TH
1593 for (i = 0; i < host->n_ports; i++) {
1594 struct ata_port *ap = host->ports[i];
1595
1596 if (polling & (1 << i))
1597 continue;
1598
1599 if (!ap->ops->sff_irq_check ||
1600 !ap->ops->sff_irq_check(ap))
1601 continue;
1602
332ac7ff
TH
1603 if (idle & (1 << i)) {
1604 ap->ops->sff_check_status(ap);
37f65b8b
TH
1605 if (ap->ops->sff_irq_clear)
1606 ap->ops->sff_irq_clear(ap);
332ac7ff
TH
1607 } else {
1608 /* clear INTRQ and check if BUSY cleared */
1609 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1610 retry |= true;
1611 /*
1612 * With command in flight, we can't do
1613 * sff_irq_clear() w/o racing with completion.
1614 */
1615 }
1616 }
1617
1618 if (retry) {
1619 retried = true;
1620 goto retry;
27943620 1621 }
624d5c51
TH
1622 }
1623
1624 spin_unlock_irqrestore(&host->lock, flags);
1625
1626 return IRQ_RETVAL(handled);
1627}
c3b28894
TH
1628
1629/**
1630 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1631 * @irq: irq line (unused)
1632 * @dev_instance: pointer to our ata_host information structure
1633 *
1634 * Default interrupt handler for PCI IDE devices. Calls
1635 * ata_sff_port_intr() for each port that is not disabled.
1636 *
1637 * LOCKING:
1638 * Obtains host lock during operation.
1639 *
1640 * RETURNS:
1641 * IRQ_NONE or IRQ_HANDLED.
1642 */
1643irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1644{
1645 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1646}
0fe40ff8 1647EXPORT_SYMBOL_GPL(ata_sff_interrupt);
624d5c51 1648
c96f1732
AC
1649/**
1650 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1651 * @ap: port that appears to have timed out
1652 *
1653 * Called from the libata error handlers when the core code suspects
1654 * an interrupt has been lost. If it has complete anything we can and
1655 * then return. Interface must support altstatus for this faster
1656 * recovery to occur.
1657 *
1658 * Locking:
1659 * Caller holds host lock
1660 */
1661
1662void ata_sff_lost_interrupt(struct ata_port *ap)
1663{
1664 u8 status;
1665 struct ata_queued_cmd *qc;
1666
1667 /* Only one outstanding command per SFF channel */
1668 qc = ata_qc_from_tag(ap, ap->link.active_tag);
3e4ec344
TH
1669 /* We cannot lose an interrupt on a non-existent or polled command */
1670 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
c96f1732
AC
1671 return;
1672 /* See if the controller thinks it is still busy - if so the command
1673 isn't a lost IRQ but is still in progress */
1674 status = ata_sff_altstatus(ap);
1675 if (status & ATA_BUSY)
1676 return;
1677
1678 /* There was a command running, we are no longer busy and we have
1679 no interrupt. */
1680 ata_port_printk(ap, KERN_WARNING, "lost interrupt (Status 0x%x)\n",
1681 status);
1682 /* Run the host interrupt logic as if the interrupt had not been
1683 lost */
c3b28894 1684 ata_sff_port_intr(ap, qc);
c96f1732
AC
1685}
1686EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1687
624d5c51 1688/**
9363c382 1689 * ata_sff_freeze - Freeze SFF controller port
624d5c51
TH
1690 * @ap: port to freeze
1691 *
9f2f7210 1692 * Freeze SFF controller port.
624d5c51
TH
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
9363c382 1697void ata_sff_freeze(struct ata_port *ap)
624d5c51 1698{
624d5c51
TH
1699 ap->ctl |= ATA_NIEN;
1700 ap->last_ctl = ap->ctl;
1701
41dec29b
SS
1702 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1703 ata_sff_set_devctl(ap, ap->ctl);
624d5c51
TH
1704
1705 /* Under certain circumstances, some controllers raise IRQ on
1706 * ATA_NIEN manipulation. Also, many controllers fail to mask
1707 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1708 */
5682ed33 1709 ap->ops->sff_check_status(ap);
624d5c51 1710
37f65b8b
TH
1711 if (ap->ops->sff_irq_clear)
1712 ap->ops->sff_irq_clear(ap);
624d5c51 1713}
0fe40ff8 1714EXPORT_SYMBOL_GPL(ata_sff_freeze);
624d5c51
TH
1715
1716/**
9363c382 1717 * ata_sff_thaw - Thaw SFF controller port
624d5c51
TH
1718 * @ap: port to thaw
1719 *
9363c382 1720 * Thaw SFF controller port.
624d5c51
TH
1721 *
1722 * LOCKING:
1723 * Inherited from caller.
1724 */
9363c382 1725void ata_sff_thaw(struct ata_port *ap)
272f7884 1726{
624d5c51 1727 /* clear & re-enable interrupts */
5682ed33 1728 ap->ops->sff_check_status(ap);
37f65b8b
TH
1729 if (ap->ops->sff_irq_clear)
1730 ap->ops->sff_irq_clear(ap);
e42a542b 1731 ata_sff_irq_on(ap);
272f7884 1732}
0fe40ff8 1733EXPORT_SYMBOL_GPL(ata_sff_thaw);
272f7884 1734
0aa1113d
TH
1735/**
1736 * ata_sff_prereset - prepare SFF link for reset
1737 * @link: SFF link to be reset
1738 * @deadline: deadline jiffies for the operation
1739 *
1740 * SFF link @link is about to be reset. Initialize it. It first
1741 * calls ata_std_prereset() and wait for !BSY if the port is
1742 * being softreset.
1743 *
1744 * LOCKING:
1745 * Kernel thread context (may sleep)
1746 *
1747 * RETURNS:
1748 * 0 on success, -errno otherwise.
1749 */
1750int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1751{
0aa1113d
TH
1752 struct ata_eh_context *ehc = &link->eh_context;
1753 int rc;
1754
1755 rc = ata_std_prereset(link, deadline);
1756 if (rc)
1757 return rc;
1758
1759 /* if we're about to do hardreset, nothing more to do */
1760 if (ehc->i.action & ATA_EH_HARDRESET)
1761 return 0;
1762
1763 /* wait for !BSY if we don't know that no device is attached */
1764 if (!ata_link_offline(link)) {
705e76be 1765 rc = ata_sff_wait_ready(link, deadline);
0aa1113d
TH
1766 if (rc && rc != -ENODEV) {
1767 ata_link_printk(link, KERN_WARNING, "device not ready "
1768 "(errno=%d), forcing hardreset\n", rc);
1769 ehc->i.action |= ATA_EH_HARDRESET;
1770 }
1771 }
1772
1773 return 0;
1774}
0fe40ff8 1775EXPORT_SYMBOL_GPL(ata_sff_prereset);
0aa1113d 1776
90088bb4 1777/**
624d5c51
TH
1778 * ata_devchk - PATA device presence detection
1779 * @ap: ATA channel to examine
1780 * @device: Device to examine (starting at zero)
90088bb4 1781 *
624d5c51
TH
1782 * This technique was originally described in
1783 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1784 * later found its way into the ATA/ATAPI spec.
1785 *
1786 * Write a pattern to the ATA shadow registers,
1787 * and if a device is present, it will respond by
1788 * correctly storing and echoing back the
1789 * ATA shadow register contents.
90088bb4
TH
1790 *
1791 * LOCKING:
624d5c51 1792 * caller.
90088bb4 1793 */
624d5c51 1794static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
90088bb4
TH
1795{
1796 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51 1797 u8 nsect, lbal;
90088bb4 1798
5682ed33 1799 ap->ops->sff_dev_select(ap, device);
90088bb4 1800
624d5c51
TH
1801 iowrite8(0x55, ioaddr->nsect_addr);
1802 iowrite8(0xaa, ioaddr->lbal_addr);
90088bb4 1803
624d5c51
TH
1804 iowrite8(0xaa, ioaddr->nsect_addr);
1805 iowrite8(0x55, ioaddr->lbal_addr);
90088bb4 1806
624d5c51
TH
1807 iowrite8(0x55, ioaddr->nsect_addr);
1808 iowrite8(0xaa, ioaddr->lbal_addr);
1809
1810 nsect = ioread8(ioaddr->nsect_addr);
1811 lbal = ioread8(ioaddr->lbal_addr);
1812
1813 if ((nsect == 0x55) && (lbal == 0xaa))
1814 return 1; /* we found a device */
1815
1816 return 0; /* nothing found */
90088bb4
TH
1817}
1818
272f7884 1819/**
9363c382 1820 * ata_sff_dev_classify - Parse returned ATA device signature
624d5c51
TH
1821 * @dev: ATA device to classify (starting at zero)
1822 * @present: device seems present
1823 * @r_err: Value of error register on completion
272f7884 1824 *
624d5c51
TH
1825 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1826 * an ATA/ATAPI-defined set of values is placed in the ATA
1827 * shadow registers, indicating the results of device detection
1828 * and diagnostics.
272f7884 1829 *
624d5c51
TH
1830 * Select the ATA device, and read the values from the ATA shadow
1831 * registers. Then parse according to the Error register value,
1832 * and the spec-defined values examined by ata_dev_classify().
272f7884
TH
1833 *
1834 * LOCKING:
624d5c51
TH
1835 * caller.
1836 *
1837 * RETURNS:
1838 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
272f7884 1839 */
9363c382 1840unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
624d5c51 1841 u8 *r_err)
272f7884 1842{
624d5c51
TH
1843 struct ata_port *ap = dev->link->ap;
1844 struct ata_taskfile tf;
1845 unsigned int class;
1846 u8 err;
1847
5682ed33 1848 ap->ops->sff_dev_select(ap, dev->devno);
624d5c51
TH
1849
1850 memset(&tf, 0, sizeof(tf));
1851
5682ed33 1852 ap->ops->sff_tf_read(ap, &tf);
624d5c51
TH
1853 err = tf.feature;
1854 if (r_err)
1855 *r_err = err;
1856
1857 /* see if device passed diags: continue and warn later */
1858 if (err == 0)
1859 /* diagnostic fail : do nothing _YET_ */
1860 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1861 else if (err == 1)
1862 /* do nothing */ ;
1863 else if ((dev->devno == 0) && (err == 0x81))
1864 /* do nothing */ ;
1865 else
1866 return ATA_DEV_NONE;
272f7884 1867
624d5c51
TH
1868 /* determine if device is ATA or ATAPI */
1869 class = ata_dev_classify(&tf);
272f7884 1870
624d5c51
TH
1871 if (class == ATA_DEV_UNKNOWN) {
1872 /* If the device failed diagnostic, it's likely to
1873 * have reported incorrect device signature too.
1874 * Assume ATA device if the device seems present but
1875 * device signature is invalid with diagnostic
1876 * failure.
1877 */
1878 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1879 class = ATA_DEV_ATA;
1880 else
1881 class = ATA_DEV_NONE;
5682ed33
TH
1882 } else if ((class == ATA_DEV_ATA) &&
1883 (ap->ops->sff_check_status(ap) == 0))
624d5c51
TH
1884 class = ATA_DEV_NONE;
1885
1886 return class;
272f7884 1887}
0fe40ff8 1888EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
272f7884 1889
705e76be
TH
1890/**
1891 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1892 * @link: SFF link which is just reset
1893 * @devmask: mask of present devices
1894 * @deadline: deadline jiffies for the operation
1895 *
1896 * Wait devices attached to SFF @link to become ready after
1897 * reset. It contains preceding 150ms wait to avoid accessing TF
1898 * status register too early.
1899 *
1900 * LOCKING:
1901 * Kernel thread context (may sleep).
1902 *
1903 * RETURNS:
1904 * 0 on success, -ENODEV if some or all of devices in @devmask
1905 * don't seem to exist. -errno on other errors.
1906 */
1907int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1908 unsigned long deadline)
1fdffbce 1909{
705e76be 1910 struct ata_port *ap = link->ap;
1fdffbce 1911 struct ata_ioports *ioaddr = &ap->ioaddr;
624d5c51
TH
1912 unsigned int dev0 = devmask & (1 << 0);
1913 unsigned int dev1 = devmask & (1 << 1);
1914 int rc, ret = 0;
1fdffbce 1915
341c2c95 1916 msleep(ATA_WAIT_AFTER_RESET);
705e76be
TH
1917
1918 /* always check readiness of the master device */
1919 rc = ata_sff_wait_ready(link, deadline);
1920 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1921 * and TF status is 0xff, bail out on it too.
624d5c51 1922 */
705e76be
TH
1923 if (rc)
1924 return rc;
1fdffbce 1925
624d5c51
TH
1926 /* if device 1 was found in ata_devchk, wait for register
1927 * access briefly, then wait for BSY to clear.
1928 */
1929 if (dev1) {
1930 int i;
1fdffbce 1931
5682ed33 1932 ap->ops->sff_dev_select(ap, 1);
1fdffbce 1933
624d5c51
TH
1934 /* Wait for register access. Some ATAPI devices fail
1935 * to set nsect/lbal after reset, so don't waste too
1936 * much time on it. We're gonna wait for !BSY anyway.
1937 */
1938 for (i = 0; i < 2; i++) {
1939 u8 nsect, lbal;
1940
1941 nsect = ioread8(ioaddr->nsect_addr);
1942 lbal = ioread8(ioaddr->lbal_addr);
1943 if ((nsect == 1) && (lbal == 1))
1944 break;
1945 msleep(50); /* give drive a breather */
1946 }
1947
705e76be 1948 rc = ata_sff_wait_ready(link, deadline);
624d5c51
TH
1949 if (rc) {
1950 if (rc != -ENODEV)
1951 return rc;
1952 ret = rc;
1953 }
1fdffbce
JG
1954 }
1955
624d5c51 1956 /* is all this really necessary? */
5682ed33 1957 ap->ops->sff_dev_select(ap, 0);
624d5c51 1958 if (dev1)
5682ed33 1959 ap->ops->sff_dev_select(ap, 1);
624d5c51 1960 if (dev0)
5682ed33 1961 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
1962
1963 return ret;
1fdffbce 1964}
0fe40ff8 1965EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1fdffbce 1966
624d5c51
TH
1967static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1968 unsigned long deadline)
2cc432ee 1969{
624d5c51 1970 struct ata_ioports *ioaddr = &ap->ioaddr;
2cc432ee 1971
624d5c51
TH
1972 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1973
1974 /* software reset. causes dev0 to be selected */
1975 iowrite8(ap->ctl, ioaddr->ctl_addr);
1976 udelay(20); /* FIXME: flush */
1977 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1978 udelay(20); /* FIXME: flush */
1979 iowrite8(ap->ctl, ioaddr->ctl_addr);
e3e4385f 1980 ap->last_ctl = ap->ctl;
624d5c51 1981
705e76be
TH
1982 /* wait the port to become ready */
1983 return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2cc432ee
JG
1984}
1985
6d97dbd7 1986/**
9363c382 1987 * ata_sff_softreset - reset host port via ATA SRST
624d5c51
TH
1988 * @link: ATA link to reset
1989 * @classes: resulting classes of attached devices
1990 * @deadline: deadline jiffies for the operation
6d97dbd7 1991 *
624d5c51 1992 * Reset host port using ATA SRST.
6d97dbd7
TH
1993 *
1994 * LOCKING:
624d5c51
TH
1995 * Kernel thread context (may sleep)
1996 *
1997 * RETURNS:
1998 * 0 on success, -errno otherwise.
6d97dbd7 1999 */
9363c382 2000int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
624d5c51 2001 unsigned long deadline)
6d97dbd7 2002{
624d5c51
TH
2003 struct ata_port *ap = link->ap;
2004 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2005 unsigned int devmask = 0;
2006 int rc;
2007 u8 err;
6d97dbd7 2008
624d5c51 2009 DPRINTK("ENTER\n");
6d97dbd7 2010
624d5c51
TH
2011 /* determine if device 0/1 are present */
2012 if (ata_devchk(ap, 0))
2013 devmask |= (1 << 0);
2014 if (slave_possible && ata_devchk(ap, 1))
2015 devmask |= (1 << 1);
2016
2017 /* select device 0 again */
5682ed33 2018 ap->ops->sff_dev_select(ap, 0);
624d5c51
TH
2019
2020 /* issue bus reset */
2021 DPRINTK("about to softreset, devmask=%x\n", devmask);
2022 rc = ata_bus_softreset(ap, devmask, deadline);
2023 /* if link is occupied, -ENODEV too is an error */
2024 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2025 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
2026 return rc;
2027 }
0f0a3ad3 2028
624d5c51 2029 /* determine by signature whether we have ATA or ATAPI devices */
9363c382 2030 classes[0] = ata_sff_dev_classify(&link->device[0],
624d5c51
TH
2031 devmask & (1 << 0), &err);
2032 if (slave_possible && err != 0x81)
9363c382 2033 classes[1] = ata_sff_dev_classify(&link->device[1],
624d5c51
TH
2034 devmask & (1 << 1), &err);
2035
624d5c51
TH
2036 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2037 return 0;
6d97dbd7 2038}
0fe40ff8 2039EXPORT_SYMBOL_GPL(ata_sff_softreset);
6d97dbd7
TH
2040
2041/**
9363c382 2042 * sata_sff_hardreset - reset host port via SATA phy reset
624d5c51
TH
2043 * @link: link to reset
2044 * @class: resulting class of attached device
2045 * @deadline: deadline jiffies for the operation
6d97dbd7 2046 *
624d5c51
TH
2047 * SATA phy-reset host port using DET bits of SControl register,
2048 * wait for !BSY and classify the attached device.
6d97dbd7
TH
2049 *
2050 * LOCKING:
624d5c51
TH
2051 * Kernel thread context (may sleep)
2052 *
2053 * RETURNS:
2054 * 0 on success, -errno otherwise.
6d97dbd7 2055 */
9363c382 2056int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
624d5c51 2057 unsigned long deadline)
6d97dbd7 2058{
9dadd45b
TH
2059 struct ata_eh_context *ehc = &link->eh_context;
2060 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2061 bool online;
624d5c51
TH
2062 int rc;
2063
9dadd45b
TH
2064 rc = sata_link_hardreset(link, timing, deadline, &online,
2065 ata_sff_check_ready);
9dadd45b
TH
2066 if (online)
2067 *class = ata_sff_dev_classify(link->device, 1, NULL);
624d5c51
TH
2068
2069 DPRINTK("EXIT, class=%u\n", *class);
9dadd45b 2070 return rc;
6d97dbd7 2071}
0fe40ff8 2072EXPORT_SYMBOL_GPL(sata_sff_hardreset);
6d97dbd7 2073
203c75b8
TH
2074/**
2075 * ata_sff_postreset - SFF postreset callback
2076 * @link: the target SFF ata_link
2077 * @classes: classes of attached devices
2078 *
2079 * This function is invoked after a successful reset. It first
2080 * calls ata_std_postreset() and performs SFF specific postreset
2081 * processing.
2082 *
2083 * LOCKING:
2084 * Kernel thread context (may sleep)
2085 */
2086void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2087{
2088 struct ata_port *ap = link->ap;
2089
2090 ata_std_postreset(link, classes);
2091
2092 /* is double-select really necessary? */
2093 if (classes[0] != ATA_DEV_NONE)
2094 ap->ops->sff_dev_select(ap, 1);
2095 if (classes[1] != ATA_DEV_NONE)
2096 ap->ops->sff_dev_select(ap, 0);
2097
2098 /* bail out if no device is present */
2099 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2100 DPRINTK("EXIT, no device\n");
2101 return;
2102 }
2103
2104 /* set up device control */
41dec29b
SS
2105 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2106 ata_sff_set_devctl(ap, ap->ctl);
e3e4385f
SM
2107 ap->last_ctl = ap->ctl;
2108 }
203c75b8 2109}
0fe40ff8 2110EXPORT_SYMBOL_GPL(ata_sff_postreset);
203c75b8 2111
3d47aa8e
AC
2112/**
2113 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2114 * @qc: command
2115 *
2116 * Drain the FIFO and device of any stuck data following a command
3ad2f3fb 2117 * failing to complete. In some cases this is necessary before a
3d47aa8e
AC
2118 * reset will recover the device.
2119 *
2120 */
2121
2122void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2123{
2124 int count;
2125 struct ata_port *ap;
2126
2127 /* We only need to flush incoming data when a command was running */
2128 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2129 return;
2130
2131 ap = qc->ap;
2132 /* Drain up to 64K of data before we give up this recovery method */
2133 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
9a8fd68b 2134 && count < 65536; count += 2)
3d47aa8e
AC
2135 ioread16(ap->ioaddr.data_addr);
2136
2137 /* Can become DEBUG later */
2138 if (count)
2139 ata_port_printk(ap, KERN_DEBUG,
2140 "drained %d bytes to clear DRQ.\n", count);
2141
2142}
2143EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2144
6d97dbd7 2145/**
fe06e5f9 2146 * ata_sff_error_handler - Stock error handler for SFF controller
6d97dbd7 2147 * @ap: port to handle error for
6d97dbd7 2148 *
9363c382 2149 * Stock error handler for SFF controller. It can handle both
6d97dbd7
TH
2150 * PATA and SATA controllers. Many controllers should be able to
2151 * use this EH as-is or with some added handling before and
2152 * after.
2153 *
6d97dbd7
TH
2154 * LOCKING:
2155 * Kernel thread context (may sleep)
2156 */
9363c382 2157void ata_sff_error_handler(struct ata_port *ap)
6d97dbd7 2158{
a1efdaba
TH
2159 ata_reset_fn_t softreset = ap->ops->softreset;
2160 ata_reset_fn_t hardreset = ap->ops->hardreset;
6d97dbd7
TH
2161 struct ata_queued_cmd *qc;
2162 unsigned long flags;
6d97dbd7 2163
9af5c9c9 2164 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
6d97dbd7
TH
2165 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2166 qc = NULL;
2167
ba6a1308 2168 spin_lock_irqsave(ap->lock, flags);
6d97dbd7 2169
fe06e5f9
TH
2170 /*
2171 * We *MUST* do FIFO draining before we issue a reset as
2172 * several devices helpfully clear their internal state and
2173 * will lock solid if we touch the data port post reset. Pass
2174 * qc in case anyone wants to do different PIO/DMA recovery or
2175 * has per command fixups
3d47aa8e 2176 */
8244cd05
TH
2177 if (ap->ops->sff_drain_fifo)
2178 ap->ops->sff_drain_fifo(qc);
6d97dbd7 2179
ba6a1308 2180 spin_unlock_irqrestore(ap->lock, flags);
6d97dbd7 2181
fe06e5f9 2182 /* ignore ata_sff_softreset if ctl isn't accessible */
9363c382 2183 if (softreset == ata_sff_softreset && !ap->ioaddr.ctl_addr)
a1efdaba 2184 softreset = NULL;
fe06e5f9
TH
2185
2186 /* ignore built-in hardresets if SCR access is not available */
2187 if ((hardreset == sata_std_hardreset ||
2188 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
a1efdaba 2189 hardreset = NULL;
6d97dbd7 2190
a1efdaba
TH
2191 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2192 ap->ops->postreset);
6d97dbd7 2193}
0fe40ff8 2194EXPORT_SYMBOL_GPL(ata_sff_error_handler);
6d97dbd7 2195
624d5c51 2196/**
9363c382 2197 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
624d5c51
TH
2198 * @ioaddr: IO address structure to be initialized
2199 *
2200 * Utility function which initializes data_addr, error_addr,
2201 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2202 * device_addr, status_addr, and command_addr to standard offsets
2203 * relative to cmd_addr.
2204 *
2205 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2206 */
9363c382 2207void ata_sff_std_ports(struct ata_ioports *ioaddr)
624d5c51
TH
2208{
2209 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2210 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2211 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2212 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2213 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2214 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2215 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2216 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2217 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2218 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2219}
0fe40ff8 2220EXPORT_SYMBOL_GPL(ata_sff_std_ports);
624d5c51 2221
1fdffbce 2222#ifdef CONFIG_PCI
4112e16a 2223
272f7884
TH
2224static int ata_resources_present(struct pci_dev *pdev, int port)
2225{
2226 int i;
2227
2228 /* Check the PCI resources for this channel are enabled */
2229 port = port * 2;
0fe40ff8 2230 for (i = 0; i < 2; i++) {
272f7884
TH
2231 if (pci_resource_start(pdev, port + i) == 0 ||
2232 pci_resource_len(pdev, port + i) == 0)
2233 return 0;
2234 }
2235 return 1;
2236}
2237
d491b27b 2238/**
9363c382 2239 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
d491b27b 2240 * @host: target ATA host
d491b27b 2241 *
1626aeb8
TH
2242 * Acquire native PCI ATA resources for @host and initialize the
2243 * first two ports of @host accordingly. Ports marked dummy are
2244 * skipped and allocation failure makes the port dummy.
d491b27b 2245 *
d583bc18
TH
2246 * Note that native PCI resources are valid even for legacy hosts
2247 * as we fix up pdev resources array early in boot, so this
2248 * function can be used for both native and legacy SFF hosts.
2249 *
d491b27b
TH
2250 * LOCKING:
2251 * Inherited from calling layer (may sleep).
2252 *
2253 * RETURNS:
1626aeb8
TH
2254 * 0 if at least one port is initialized, -ENODEV if no port is
2255 * available.
d491b27b 2256 */
9363c382 2257int ata_pci_sff_init_host(struct ata_host *host)
d491b27b
TH
2258{
2259 struct device *gdev = host->dev;
2260 struct pci_dev *pdev = to_pci_dev(gdev);
1626aeb8 2261 unsigned int mask = 0;
d491b27b
TH
2262 int i, rc;
2263
d491b27b
TH
2264 /* request, iomap BARs and init port addresses accordingly */
2265 for (i = 0; i < 2; i++) {
2266 struct ata_port *ap = host->ports[i];
2267 int base = i * 2;
2268 void __iomem * const *iomap;
2269
1626aeb8
TH
2270 if (ata_port_is_dummy(ap))
2271 continue;
2272
2273 /* Discard disabled ports. Some controllers show
2274 * their unused channels this way. Disabled ports are
2275 * made dummy.
2276 */
2277 if (!ata_resources_present(pdev, i)) {
2278 ap->ops = &ata_dummy_port_ops;
d491b27b 2279 continue;
1626aeb8 2280 }
d491b27b 2281
35a10a80
TH
2282 rc = pcim_iomap_regions(pdev, 0x3 << base,
2283 dev_driver_string(gdev));
d491b27b 2284 if (rc) {
1626aeb8
TH
2285 dev_printk(KERN_WARNING, gdev,
2286 "failed to request/iomap BARs for port %d "
2287 "(errno=%d)\n", i, rc);
d491b27b
TH
2288 if (rc == -EBUSY)
2289 pcim_pin_device(pdev);
1626aeb8
TH
2290 ap->ops = &ata_dummy_port_ops;
2291 continue;
d491b27b
TH
2292 }
2293 host->iomap = iomap = pcim_iomap_table(pdev);
2294
2295 ap->ioaddr.cmd_addr = iomap[base];
2296 ap->ioaddr.altstatus_addr =
2297 ap->ioaddr.ctl_addr = (void __iomem *)
2298 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
9363c382 2299 ata_sff_std_ports(&ap->ioaddr);
1626aeb8 2300
cbcdd875
TH
2301 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2302 (unsigned long long)pci_resource_start(pdev, base),
2303 (unsigned long long)pci_resource_start(pdev, base + 1));
2304
1626aeb8
TH
2305 mask |= 1 << i;
2306 }
2307
2308 if (!mask) {
2309 dev_printk(KERN_ERR, gdev, "no available native port\n");
2310 return -ENODEV;
d491b27b
TH
2311 }
2312
2313 return 0;
2314}
0fe40ff8 2315EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
d491b27b 2316
21b0ad4f 2317/**
1c5afdf7 2318 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
21b0ad4f 2319 * @pdev: target PCI device
1626aeb8 2320 * @ppi: array of port_info, must be enough for two ports
21b0ad4f
TH
2321 * @r_host: out argument for the initialized ATA host
2322 *
1c5afdf7
TH
2323 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2324 * all PCI resources and initialize it accordingly in one go.
21b0ad4f
TH
2325 *
2326 * LOCKING:
2327 * Inherited from calling layer (may sleep).
2328 *
2329 * RETURNS:
2330 * 0 on success, -errno otherwise.
2331 */
9363c382 2332int ata_pci_sff_prepare_host(struct pci_dev *pdev,
0fe40ff8 2333 const struct ata_port_info * const *ppi,
d583bc18 2334 struct ata_host **r_host)
21b0ad4f
TH
2335{
2336 struct ata_host *host;
21b0ad4f
TH
2337 int rc;
2338
2339 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2340 return -ENOMEM;
2341
2342 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2343 if (!host) {
2344 dev_printk(KERN_ERR, &pdev->dev,
2345 "failed to allocate ATA host\n");
2346 rc = -ENOMEM;
2347 goto err_out;
2348 }
2349
9363c382 2350 rc = ata_pci_sff_init_host(host);
21b0ad4f
TH
2351 if (rc)
2352 goto err_out;
2353
21b0ad4f
TH
2354 devres_remove_group(&pdev->dev, NULL);
2355 *r_host = host;
2356 return 0;
2357
0fe40ff8 2358err_out:
21b0ad4f
TH
2359 devres_release_group(&pdev->dev, NULL);
2360 return rc;
2361}
0fe40ff8 2362EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
21b0ad4f 2363
4e6b79fa 2364/**
9363c382 2365 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
4e6b79fa
TH
2366 * @host: target SFF ATA host
2367 * @irq_handler: irq_handler used when requesting IRQ(s)
2368 * @sht: scsi_host_template to use when registering the host
2369 *
2370 * This is the counterpart of ata_host_activate() for SFF ATA
2371 * hosts. This separate helper is necessary because SFF hosts
2372 * use two separate interrupts in legacy mode.
2373 *
2374 * LOCKING:
2375 * Inherited from calling layer (may sleep).
2376 *
2377 * RETURNS:
2378 * 0 on success, -errno otherwise.
2379 */
9363c382 2380int ata_pci_sff_activate_host(struct ata_host *host,
4e6b79fa
TH
2381 irq_handler_t irq_handler,
2382 struct scsi_host_template *sht)
2383{
2384 struct device *dev = host->dev;
2385 struct pci_dev *pdev = to_pci_dev(dev);
2386 const char *drv_name = dev_driver_string(host->dev);
2387 int legacy_mode = 0, rc;
2388
2389 rc = ata_host_start(host);
2390 if (rc)
2391 return rc;
2392
2393 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2394 u8 tmp8, mask;
2395
2396 /* TODO: What if one channel is in native mode ... */
2397 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2398 mask = (1 << 2) | (1 << 0);
2399 if ((tmp8 & mask) != mask)
2400 legacy_mode = 1;
2401#if defined(CONFIG_NO_ATA_LEGACY)
2402 /* Some platforms with PCI limits cannot address compat
2403 port space. In that case we punt if their firmware has
2404 left a device in compatibility mode */
2405 if (legacy_mode) {
2406 printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2407 return -EOPNOTSUPP;
2408 }
2409#endif
2410 }
2411
2412 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2413 return -ENOMEM;
2414
2415 if (!legacy_mode && pdev->irq) {
2416 rc = devm_request_irq(dev, pdev->irq, irq_handler,
2417 IRQF_SHARED, drv_name, host);
2418 if (rc)
2419 goto out;
2420
2421 ata_port_desc(host->ports[0], "irq %d", pdev->irq);
2422 ata_port_desc(host->ports[1], "irq %d", pdev->irq);
2423 } else if (legacy_mode) {
2424 if (!ata_port_is_dummy(host->ports[0])) {
2425 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2426 irq_handler, IRQF_SHARED,
2427 drv_name, host);
2428 if (rc)
2429 goto out;
2430
2431 ata_port_desc(host->ports[0], "irq %d",
2432 ATA_PRIMARY_IRQ(pdev));
2433 }
2434
2435 if (!ata_port_is_dummy(host->ports[1])) {
2436 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2437 irq_handler, IRQF_SHARED,
2438 drv_name, host);
2439 if (rc)
2440 goto out;
2441
2442 ata_port_desc(host->ports[1], "irq %d",
2443 ATA_SECONDARY_IRQ(pdev));
2444 }
2445 }
2446
2447 rc = ata_host_register(host, sht);
0fe40ff8 2448out:
4e6b79fa
TH
2449 if (rc == 0)
2450 devres_remove_group(dev, NULL);
2451 else
2452 devres_release_group(dev, NULL);
2453
2454 return rc;
2455}
0fe40ff8 2456EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
4e6b79fa 2457
1c5afdf7
TH
2458static const struct ata_port_info *ata_sff_find_valid_pi(
2459 const struct ata_port_info * const *ppi)
2460{
2461 int i;
2462
2463 /* look up the first valid port_info */
2464 for (i = 0; i < 2 && ppi[i]; i++)
2465 if (ppi[i]->port_ops != &ata_dummy_port_ops)
2466 return ppi[i];
2467
2468 return NULL;
2469}
2470
1fdffbce 2471/**
1c5afdf7 2472 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
1fdffbce 2473 * @pdev: Controller to be initialized
1626aeb8 2474 * @ppi: array of port_info, must be enough for two ports
1bd5b715 2475 * @sht: scsi_host_template to use when registering the host
887125e3 2476 * @host_priv: host private_data
16ea0fc9 2477 * @hflag: host flags
1fdffbce
JG
2478 *
2479 * This is a helper function which can be called from a driver's
2480 * xxx_init_one() probe function if the hardware uses traditional
1c5afdf7 2481 * IDE taskfile registers and is PIO only.
1fdffbce 2482 *
2ec7df04
AC
2483 * ASSUMPTION:
2484 * Nobody makes a single channel controller that appears solely as
2485 * the secondary legacy port on PCI.
2486 *
1fdffbce
JG
2487 * LOCKING:
2488 * Inherited from PCI layer (may sleep).
2489 *
2490 * RETURNS:
2491 * Zero on success, negative on errno-based value on error.
2492 */
9363c382 2493int ata_pci_sff_init_one(struct pci_dev *pdev,
16ea0fc9
AC
2494 const struct ata_port_info * const *ppi,
2495 struct scsi_host_template *sht, void *host_priv, int hflag)
1fdffbce 2496{
f0d36efd 2497 struct device *dev = &pdev->dev;
1c5afdf7 2498 const struct ata_port_info *pi;
0f834de3 2499 struct ata_host *host = NULL;
1c5afdf7 2500 int rc;
1fdffbce
JG
2501
2502 DPRINTK("ENTER\n");
2503
1c5afdf7 2504 pi = ata_sff_find_valid_pi(ppi);
1626aeb8
TH
2505 if (!pi) {
2506 dev_printk(KERN_ERR, &pdev->dev,
2507 "no valid port_info specified\n");
2508 return -EINVAL;
2509 }
c791c306 2510
1626aeb8
TH
2511 if (!devres_open_group(dev, NULL, GFP_KERNEL))
2512 return -ENOMEM;
1fdffbce 2513
f0d36efd 2514 rc = pcim_enable_device(pdev);
1fdffbce 2515 if (rc)
4e6b79fa 2516 goto out;
1fdffbce 2517
4e6b79fa 2518 /* prepare and activate SFF host */
9363c382 2519 rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
d583bc18 2520 if (rc)
4e6b79fa 2521 goto out;
887125e3 2522 host->private_data = host_priv;
16ea0fc9 2523 host->flags |= hflag;
d491b27b 2524
1c5afdf7 2525 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
0fe40ff8 2526out:
4e6b79fa
TH
2527 if (rc == 0)
2528 devres_remove_group(&pdev->dev, NULL);
2529 else
2530 devres_release_group(&pdev->dev, NULL);
d491b27b 2531
1fdffbce
JG
2532 return rc;
2533}
0fe40ff8 2534EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
1fdffbce
JG
2535
2536#endif /* CONFIG_PCI */
9f2f7210
TH
2537
2538const struct ata_port_operations ata_bmdma_port_ops = {
2539 .inherits = &ata_sff_port_ops,
2540
fe06e5f9
TH
2541 .error_handler = ata_bmdma_error_handler,
2542 .post_internal_cmd = ata_bmdma_post_internal_cmd,
2543
f47451c4 2544 .qc_prep = ata_bmdma_qc_prep,
360ff783 2545 .qc_issue = ata_bmdma_qc_issue,
f47451c4 2546
37f65b8b 2547 .sff_irq_clear = ata_bmdma_irq_clear,
9f2f7210
TH
2548 .bmdma_setup = ata_bmdma_setup,
2549 .bmdma_start = ata_bmdma_start,
2550 .bmdma_stop = ata_bmdma_stop,
2551 .bmdma_status = ata_bmdma_status,
c7087652
TH
2552
2553 .port_start = ata_bmdma_port_start,
9f2f7210
TH
2554};
2555EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2556
2557const struct ata_port_operations ata_bmdma32_port_ops = {
2558 .inherits = &ata_bmdma_port_ops,
2559
2560 .sff_data_xfer = ata_sff_data_xfer32,
c7087652 2561 .port_start = ata_bmdma_port_start32,
9f2f7210
TH
2562};
2563EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2564
f47451c4
TH
2565/**
2566 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2567 * @qc: Metadata associated with taskfile to be transferred
2568 *
2569 * Fill PCI IDE PRD (scatter-gather) table with segments
2570 * associated with the current disk command.
2571 *
2572 * LOCKING:
2573 * spin_lock_irqsave(host lock)
2574 *
2575 */
2576static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2577{
2578 struct ata_port *ap = qc->ap;
f60d7011 2579 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2580 struct scatterlist *sg;
2581 unsigned int si, pi;
2582
2583 pi = 0;
2584 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2585 u32 addr, offset;
2586 u32 sg_len, len;
2587
2588 /* determine if physical DMA addr spans 64K boundary.
2589 * Note h/w doesn't support 64-bit, so we unconditionally
2590 * truncate dma_addr_t to u32.
2591 */
2592 addr = (u32) sg_dma_address(sg);
2593 sg_len = sg_dma_len(sg);
2594
2595 while (sg_len) {
2596 offset = addr & 0xffff;
2597 len = sg_len;
2598 if ((offset + sg_len) > 0x10000)
2599 len = 0x10000 - offset;
2600
f60d7011
TH
2601 prd[pi].addr = cpu_to_le32(addr);
2602 prd[pi].flags_len = cpu_to_le32(len & 0xffff);
f47451c4
TH
2603 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2604
2605 pi++;
2606 sg_len -= len;
2607 addr += len;
2608 }
2609 }
2610
f60d7011 2611 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2612}
2613
2614/**
2615 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2616 * @qc: Metadata associated with taskfile to be transferred
2617 *
2618 * Fill PCI IDE PRD (scatter-gather) table with segments
2619 * associated with the current disk command. Perform the fill
2620 * so that we avoid writing any length 64K records for
2621 * controllers that don't follow the spec.
2622 *
2623 * LOCKING:
2624 * spin_lock_irqsave(host lock)
2625 *
2626 */
2627static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2628{
2629 struct ata_port *ap = qc->ap;
f60d7011 2630 struct ata_bmdma_prd *prd = ap->bmdma_prd;
f47451c4
TH
2631 struct scatterlist *sg;
2632 unsigned int si, pi;
2633
2634 pi = 0;
2635 for_each_sg(qc->sg, sg, qc->n_elem, si) {
2636 u32 addr, offset;
2637 u32 sg_len, len, blen;
2638
2639 /* determine if physical DMA addr spans 64K boundary.
2640 * Note h/w doesn't support 64-bit, so we unconditionally
2641 * truncate dma_addr_t to u32.
2642 */
2643 addr = (u32) sg_dma_address(sg);
2644 sg_len = sg_dma_len(sg);
2645
2646 while (sg_len) {
2647 offset = addr & 0xffff;
2648 len = sg_len;
2649 if ((offset + sg_len) > 0x10000)
2650 len = 0x10000 - offset;
2651
2652 blen = len & 0xffff;
f60d7011 2653 prd[pi].addr = cpu_to_le32(addr);
f47451c4
TH
2654 if (blen == 0) {
2655 /* Some PATA chipsets like the CS5530 can't
2656 cope with 0x0000 meaning 64K as the spec
2657 says */
f60d7011 2658 prd[pi].flags_len = cpu_to_le32(0x8000);
f47451c4 2659 blen = 0x8000;
f60d7011 2660 prd[++pi].addr = cpu_to_le32(addr + 0x8000);
f47451c4 2661 }
f60d7011 2662 prd[pi].flags_len = cpu_to_le32(blen);
f47451c4
TH
2663 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2664
2665 pi++;
2666 sg_len -= len;
2667 addr += len;
2668 }
2669 }
2670
f60d7011 2671 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
f47451c4
TH
2672}
2673
2674/**
2675 * ata_bmdma_qc_prep - Prepare taskfile for submission
2676 * @qc: Metadata associated with taskfile to be prepared
2677 *
2678 * Prepare ATA taskfile for submission.
2679 *
2680 * LOCKING:
2681 * spin_lock_irqsave(host lock)
2682 */
2683void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2684{
2685 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2686 return;
2687
2688 ata_bmdma_fill_sg(qc);
2689}
2690EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2691
2692/**
2693 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2694 * @qc: Metadata associated with taskfile to be prepared
2695 *
2696 * Prepare ATA taskfile for submission.
2697 *
2698 * LOCKING:
2699 * spin_lock_irqsave(host lock)
2700 */
2701void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2702{
2703 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2704 return;
2705
2706 ata_bmdma_fill_sg_dumb(qc);
2707}
2708EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2709
360ff783
TH
2710/**
2711 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2712 * @qc: command to issue to device
2713 *
2714 * This function issues a PIO, NODATA or DMA command to a
2715 * SFF/BMDMA controller. PIO and NODATA are handled by
2716 * ata_sff_qc_issue().
2717 *
2718 * LOCKING:
2719 * spin_lock_irqsave(host lock)
2720 *
2721 * RETURNS:
2722 * Zero on success, AC_ERR_* mask on failure
2723 */
2724unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2725{
2726 struct ata_port *ap = qc->ap;
2727
2728 /* see ata_dma_blacklisted() */
2729 BUG_ON((ap->flags & ATA_FLAG_PIO_POLLING) &&
2730 qc->tf.protocol == ATAPI_PROT_DMA);
2731
2732 /* defer PIO handling to sff_qc_issue */
2733 if (!ata_is_dma(qc->tf.protocol))
2734 return ata_sff_qc_issue(qc);
2735
2736 /* select the device */
2737 ata_dev_select(ap, qc->dev->devno, 1, 0);
2738
2739 /* start the command */
2740 switch (qc->tf.protocol) {
2741 case ATA_PROT_DMA:
2742 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2743
2744 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2745 ap->ops->bmdma_setup(qc); /* set up bmdma */
2746 ap->ops->bmdma_start(qc); /* initiate bmdma */
2747 ap->hsm_task_state = HSM_ST_LAST;
2748 break;
2749
2750 case ATAPI_PROT_DMA:
2751 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2752
2753 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
2754 ap->ops->bmdma_setup(qc); /* set up bmdma */
2755 ap->hsm_task_state = HSM_ST_FIRST;
2756
2757 /* send cdb by polling if no cdb interrupt */
2758 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2759 ata_sff_queue_pio_task(ap, 0);
2760 break;
2761
2762 default:
2763 WARN_ON(1);
2764 return AC_ERR_SYSTEM;
2765 }
2766
2767 return 0;
2768}
2769EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2770
c3b28894
TH
2771/**
2772 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2773 * @ap: Port on which interrupt arrived (possibly...)
2774 * @qc: Taskfile currently active in engine
2775 *
2776 * Handle port interrupt for given queued command.
2777 *
2778 * LOCKING:
2779 * spin_lock_irqsave(host lock)
2780 *
2781 * RETURNS:
2782 * One if interrupt was handled, zero if not (shared irq).
2783 */
2784unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2785{
2786 struct ata_eh_info *ehi = &ap->link.eh_info;
2787 u8 host_stat = 0;
2788 bool bmdma_stopped = false;
2789 unsigned int handled;
2790
2791 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2792 /* check status of DMA engine */
2793 host_stat = ap->ops->bmdma_status(ap);
2794 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2795
2796 /* if it's not our irq... */
2797 if (!(host_stat & ATA_DMA_INTR))
2798 return ata_sff_idle_irq(ap);
2799
2800 /* before we do anything else, clear DMA-Start bit */
2801 ap->ops->bmdma_stop(qc);
2802 bmdma_stopped = true;
2803
2804 if (unlikely(host_stat & ATA_DMA_ERR)) {
2805 /* error when transfering data to/from memory */
2806 qc->err_mask |= AC_ERR_HOST_BUS;
2807 ap->hsm_task_state = HSM_ST_ERR;
2808 }
2809 }
2810
2811 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2812
2813 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2814 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2815
2816 return handled;
2817}
2818EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2819
2820/**
2821 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2822 * @irq: irq line (unused)
2823 * @dev_instance: pointer to our ata_host information structure
2824 *
2825 * Default interrupt handler for PCI IDE devices. Calls
2826 * ata_bmdma_port_intr() for each port that is not disabled.
2827 *
2828 * LOCKING:
2829 * Obtains host lock during operation.
2830 *
2831 * RETURNS:
2832 * IRQ_NONE or IRQ_HANDLED.
2833 */
2834irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2835{
2836 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2837}
2838EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2839
fe06e5f9
TH
2840/**
2841 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2842 * @ap: port to handle error for
2843 *
2844 * Stock error handler for BMDMA controller. It can handle both
2845 * PATA and SATA controllers. Most BMDMA controllers should be
2846 * able to use this EH as-is or with some added handling before
2847 * and after.
2848 *
2849 * LOCKING:
2850 * Kernel thread context (may sleep)
2851 */
2852void ata_bmdma_error_handler(struct ata_port *ap)
2853{
2854 struct ata_queued_cmd *qc;
2855 unsigned long flags;
2856 bool thaw = false;
2857
2858 qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2859 if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2860 qc = NULL;
2861
2862 /* reset PIO HSM and stop DMA engine */
2863 spin_lock_irqsave(ap->lock, flags);
2864
2865 if (qc && ata_is_dma(qc->tf.protocol)) {
2866 u8 host_stat;
2867
2868 host_stat = ap->ops->bmdma_status(ap);
2869
2870 /* BMDMA controllers indicate host bus error by
2871 * setting DMA_ERR bit and timing out. As it wasn't
2872 * really a timeout event, adjust error mask and
2873 * cancel frozen state.
2874 */
2875 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2876 qc->err_mask = AC_ERR_HOST_BUS;
2877 thaw = true;
2878 }
2879
2880 ap->ops->bmdma_stop(qc);
2881
2882 /* if we're gonna thaw, make sure IRQ is clear */
2883 if (thaw) {
2884 ap->ops->sff_check_status(ap);
37f65b8b
TH
2885 if (ap->ops->sff_irq_clear)
2886 ap->ops->sff_irq_clear(ap);
fe06e5f9
TH
2887 }
2888 }
2889
2890 spin_unlock_irqrestore(ap->lock, flags);
2891
2892 if (thaw)
2893 ata_eh_thaw_port(ap);
2894
2895 ata_sff_error_handler(ap);
2896}
2897EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2898
2899/**
2900 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2901 * @qc: internal command to clean up
2902 *
2903 * LOCKING:
2904 * Kernel thread context (may sleep)
2905 */
2906void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2907{
2908 struct ata_port *ap = qc->ap;
2909 unsigned long flags;
2910
2911 if (ata_is_dma(qc->tf.protocol)) {
2912 spin_lock_irqsave(ap->lock, flags);
2913 ap->ops->bmdma_stop(qc);
2914 spin_unlock_irqrestore(ap->lock, flags);
2915 }
2916}
2917EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2918
37f65b8b
TH
2919/**
2920 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2921 * @ap: Port associated with this ATA transaction.
2922 *
2923 * Clear interrupt and error flags in DMA status register.
2924 *
2925 * May be used as the irq_clear() entry in ata_port_operations.
2926 *
2927 * LOCKING:
2928 * spin_lock_irqsave(host lock)
2929 */
2930void ata_bmdma_irq_clear(struct ata_port *ap)
2931{
2932 void __iomem *mmio = ap->ioaddr.bmdma_addr;
2933
2934 if (!mmio)
2935 return;
2936
2937 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2938}
2939EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2940
9f2f7210
TH
2941/**
2942 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2943 * @qc: Info associated with this ATA transaction.
2944 *
2945 * LOCKING:
2946 * spin_lock_irqsave(host lock)
2947 */
2948void ata_bmdma_setup(struct ata_queued_cmd *qc)
2949{
2950 struct ata_port *ap = qc->ap;
2951 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2952 u8 dmactl;
2953
2954 /* load PRD table addr. */
2955 mb(); /* make sure PRD table writes are visible to controller */
f60d7011 2956 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
9f2f7210
TH
2957
2958 /* specify data direction, triple-check start bit is clear */
2959 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2960 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2961 if (!rw)
2962 dmactl |= ATA_DMA_WR;
2963 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2964
2965 /* issue r/w command */
2966 ap->ops->sff_exec_command(ap, &qc->tf);
2967}
2968EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2969
2970/**
2971 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
2972 * @qc: Info associated with this ATA transaction.
2973 *
2974 * LOCKING:
2975 * spin_lock_irqsave(host lock)
2976 */
2977void ata_bmdma_start(struct ata_queued_cmd *qc)
2978{
2979 struct ata_port *ap = qc->ap;
2980 u8 dmactl;
2981
2982 /* start host DMA transaction */
2983 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2984 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2985
2986 /* Strictly, one may wish to issue an ioread8() here, to
2987 * flush the mmio write. However, control also passes
2988 * to the hardware at this point, and it will interrupt
2989 * us when we are to resume control. So, in effect,
2990 * we don't care when the mmio write flushes.
2991 * Further, a read of the DMA status register _immediately_
2992 * following the write may not be what certain flaky hardware
2993 * is expected, so I think it is best to not add a readb()
2994 * without first all the MMIO ATA cards/mobos.
2995 * Or maybe I'm just being paranoid.
2996 *
2997 * FIXME: The posting of this write means I/O starts are
2998 * unneccessarily delayed for MMIO
2999 */
3000}
3001EXPORT_SYMBOL_GPL(ata_bmdma_start);
3002
3003/**
3004 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3005 * @qc: Command we are ending DMA for
3006 *
3007 * Clears the ATA_DMA_START flag in the dma control register
3008 *
3009 * May be used as the bmdma_stop() entry in ata_port_operations.
3010 *
3011 * LOCKING:
3012 * spin_lock_irqsave(host lock)
3013 */
3014void ata_bmdma_stop(struct ata_queued_cmd *qc)
3015{
3016 struct ata_port *ap = qc->ap;
3017 void __iomem *mmio = ap->ioaddr.bmdma_addr;
3018
3019 /* clear start/stop bit */
3020 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3021 mmio + ATA_DMA_CMD);
3022
3023 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3024 ata_sff_dma_pause(ap);
3025}
3026EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3027
3028/**
3029 * ata_bmdma_status - Read PCI IDE BMDMA status
3030 * @ap: Port associated with this ATA transaction.
3031 *
3032 * Read and return BMDMA status register.
3033 *
3034 * May be used as the bmdma_status() entry in ata_port_operations.
3035 *
3036 * LOCKING:
3037 * spin_lock_irqsave(host lock)
3038 */
3039u8 ata_bmdma_status(struct ata_port *ap)
3040{
3041 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3042}
3043EXPORT_SYMBOL_GPL(ata_bmdma_status);
3044
c7087652
TH
3045
3046/**
3047 * ata_bmdma_port_start - Set port up for bmdma.
3048 * @ap: Port to initialize
3049 *
3050 * Called just after data structures for each port are
3051 * initialized. Allocates space for PRD table.
3052 *
3053 * May be used as the port_start() entry in ata_port_operations.
3054 *
3055 * LOCKING:
3056 * Inherited from caller.
3057 */
3058int ata_bmdma_port_start(struct ata_port *ap)
3059{
3060 if (ap->mwdma_mask || ap->udma_mask) {
f60d7011
TH
3061 ap->bmdma_prd =
3062 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3063 &ap->bmdma_prd_dma, GFP_KERNEL);
3064 if (!ap->bmdma_prd)
c7087652
TH
3065 return -ENOMEM;
3066 }
3067
3068 return 0;
3069}
3070EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3071
3072/**
3073 * ata_bmdma_port_start32 - Set port up for dma.
3074 * @ap: Port to initialize
3075 *
3076 * Called just after data structures for each port are
3077 * initialized. Enables 32bit PIO and allocates space for PRD
3078 * table.
3079 *
3080 * May be used as the port_start() entry in ata_port_operations for
3081 * devices that are capable of 32bit PIO.
3082 *
3083 * LOCKING:
3084 * Inherited from caller.
3085 */
3086int ata_bmdma_port_start32(struct ata_port *ap)
3087{
3088 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3089 return ata_bmdma_port_start(ap);
3090}
3091EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3092
9f2f7210
TH
3093#ifdef CONFIG_PCI
3094
3095/**
3096 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3097 * @pdev: PCI device
3098 *
3099 * Some PCI ATA devices report simplex mode but in fact can be told to
3100 * enter non simplex mode. This implements the necessary logic to
3101 * perform the task on such devices. Calling it on other devices will
3102 * have -undefined- behaviour.
3103 */
3104int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3105{
3106 unsigned long bmdma = pci_resource_start(pdev, 4);
3107 u8 simplex;
3108
3109 if (bmdma == 0)
3110 return -ENOENT;
3111
3112 simplex = inb(bmdma + 0x02);
3113 outb(simplex & 0x60, bmdma + 0x02);
3114 simplex = inb(bmdma + 0x02);
3115 if (simplex & 0x80)
3116 return -EOPNOTSUPP;
3117 return 0;
3118}
3119EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3120
c7087652
TH
3121static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3122{
3123 int i;
3124
3125 dev_printk(KERN_ERR, host->dev, "BMDMA: %s, falling back to PIO\n",
3126 reason);
3127
3128 for (i = 0; i < 2; i++) {
3129 host->ports[i]->mwdma_mask = 0;
3130 host->ports[i]->udma_mask = 0;
3131 }
3132}
3133
9f2f7210
TH
3134/**
3135 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3136 * @host: target ATA host
3137 *
3138 * Acquire PCI BMDMA resources and initialize @host accordingly.
3139 *
3140 * LOCKING:
3141 * Inherited from calling layer (may sleep).
9f2f7210 3142 */
c7087652 3143void ata_pci_bmdma_init(struct ata_host *host)
9f2f7210
TH
3144{
3145 struct device *gdev = host->dev;
3146 struct pci_dev *pdev = to_pci_dev(gdev);
3147 int i, rc;
3148
3149 /* No BAR4 allocation: No DMA */
c7087652
TH
3150 if (pci_resource_start(pdev, 4) == 0) {
3151 ata_bmdma_nodma(host, "BAR4 is zero");
3152 return;
3153 }
9f2f7210 3154
c7087652
TH
3155 /*
3156 * Some controllers require BMDMA region to be initialized
3157 * even if DMA is not in use to clear IRQ status via
3158 * ->sff_irq_clear method. Try to initialize bmdma_addr
3159 * regardless of dma masks.
3160 */
9f2f7210
TH
3161 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
3162 if (rc)
c7087652
TH
3163 ata_bmdma_nodma(host, "failed to set dma mask");
3164 if (!rc) {
3165 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
3166 if (rc)
3167 ata_bmdma_nodma(host,
3168 "failed to set consistent dma mask");
3169 }
9f2f7210
TH
3170
3171 /* request and iomap DMA region */
3172 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3173 if (rc) {
c7087652
TH
3174 ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3175 return;
9f2f7210
TH
3176 }
3177 host->iomap = pcim_iomap_table(pdev);
3178
3179 for (i = 0; i < 2; i++) {
3180 struct ata_port *ap = host->ports[i];
3181 void __iomem *bmdma = host->iomap[4] + 8 * i;
3182
3183 if (ata_port_is_dummy(ap))
3184 continue;
3185
3186 ap->ioaddr.bmdma_addr = bmdma;
3187 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3188 (ioread8(bmdma + 2) & 0x80))
3189 host->flags |= ATA_HOST_SIMPLEX;
3190
3191 ata_port_desc(ap, "bmdma 0x%llx",
3192 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3193 }
9f2f7210
TH
3194}
3195EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3196
1c5afdf7
TH
3197/**
3198 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3199 * @pdev: target PCI device
3200 * @ppi: array of port_info, must be enough for two ports
3201 * @r_host: out argument for the initialized ATA host
3202 *
3203 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3204 * resources and initialize it accordingly in one go.
3205 *
3206 * LOCKING:
3207 * Inherited from calling layer (may sleep).
3208 *
3209 * RETURNS:
3210 * 0 on success, -errno otherwise.
3211 */
3212int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3213 const struct ata_port_info * const * ppi,
3214 struct ata_host **r_host)
3215{
3216 int rc;
3217
3218 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3219 if (rc)
3220 return rc;
3221
3222 ata_pci_bmdma_init(*r_host);
3223 return 0;
3224}
3225EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3226
3227/**
3228 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3229 * @pdev: Controller to be initialized
3230 * @ppi: array of port_info, must be enough for two ports
3231 * @sht: scsi_host_template to use when registering the host
3232 * @host_priv: host private_data
3233 * @hflags: host flags
3234 *
3235 * This function is similar to ata_pci_sff_init_one() but also
3236 * takes care of BMDMA initialization.
3237 *
3238 * LOCKING:
3239 * Inherited from PCI layer (may sleep).
3240 *
3241 * RETURNS:
3242 * Zero on success, negative on errno-based value on error.
3243 */
3244int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3245 const struct ata_port_info * const * ppi,
3246 struct scsi_host_template *sht, void *host_priv,
3247 int hflags)
3248{
3249 struct device *dev = &pdev->dev;
3250 const struct ata_port_info *pi;
3251 struct ata_host *host = NULL;
3252 int rc;
3253
3254 DPRINTK("ENTER\n");
3255
3256 pi = ata_sff_find_valid_pi(ppi);
3257 if (!pi) {
3258 dev_printk(KERN_ERR, &pdev->dev,
3259 "no valid port_info specified\n");
3260 return -EINVAL;
3261 }
3262
3263 if (!devres_open_group(dev, NULL, GFP_KERNEL))
3264 return -ENOMEM;
3265
3266 rc = pcim_enable_device(pdev);
3267 if (rc)
3268 goto out;
3269
3270 /* prepare and activate BMDMA host */
3271 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
3272 if (rc)
3273 goto out;
3274 host->private_data = host_priv;
3275 host->flags |= hflags;
3276
3277 pci_set_master(pdev);
3278 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
3279 out:
3280 if (rc == 0)
3281 devres_remove_group(&pdev->dev, NULL);
3282 else
3283 devres_release_group(&pdev->dev, NULL);
3284
3285 return rc;
3286}
3287EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3288
9f2f7210 3289#endif /* CONFIG_PCI */
270390e1
TH
3290
3291/**
3292 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3293 * @ap: Port to initialize
3294 *
3295 * Called on port allocation to initialize SFF/BMDMA specific
3296 * fields.
3297 *
3298 * LOCKING:
3299 * None.
3300 */
3301void ata_sff_port_init(struct ata_port *ap)
3302{
c429137a 3303 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
5fe7454a
TH
3304 ap->ctl = ATA_DEVCTL_OBS;
3305 ap->last_ctl = 0xFF;
270390e1
TH
3306}
3307
3308int __init ata_sff_init(void)
3309{
c429137a
TH
3310 /*
3311 * FIXME: In UP case, there is only one workqueue thread and if you
3312 * have more than one PIO device, latency is bloody awful, with
3313 * occasional multi-second "hiccups" as one PIO device waits for
3314 * another. It's an ugly wart that users DO occasionally complain
3315 * about; luckily most users have at most one PIO polled device.
3316 */
3317 ata_sff_wq = create_workqueue("ata_sff");
3318 if (!ata_sff_wq)
3319 return -ENOMEM;
3320
270390e1
TH
3321 return 0;
3322}
3323
3324void __exit ata_sff_exit(void)
3325{
c429137a 3326 destroy_workqueue(ata_sff_wq);
270390e1 3327}