]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
ata_generic: unindent loop in generic_set_mode()
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
1da177e4
LT
68
69#include "libata.h"
70
fda0efc5 71
d7bb4cc7 72/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
73const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 76
3373efd8
TH
77static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
80static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
3373efd8 82static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 83static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 84
f3187195 85unsigned int ata_print_id = 1;
1da177e4
LT
86static struct workqueue_struct *ata_wq;
87
453b07ac
TH
88struct workqueue_struct *ata_aux_wq;
89
418dc1f5 90int atapi_enabled = 1;
1623c81e
JG
91module_param(atapi_enabled, int, 0444);
92MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
95de719a
AL
94int atapi_dmadir = 0;
95module_param(atapi_dmadir, int, 0444);
96MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
baf4fdfa
ML
98int atapi_passthru16 = 1;
99module_param(atapi_passthru16, int, 0444);
100MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
c3c013a2
JG
102int libata_fua = 0;
103module_param_named(fua, libata_fua, int, 0444);
104MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
2dcb407e 106static int ata_ignore_hpa;
1e999736
AC
107module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
b3a70601
AC
110static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111module_param_named(dma, libata_dma_mask, int, 0444);
112MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
a8601e5f
AM
114static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115module_param(ata_probe_timeout, int, 0444);
116MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
6ebe9d86 118int libata_noacpi = 0;
d7d0dad6 119module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 120MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 121
ae8d4ee7
AC
122int libata_allow_tpm = 0;
123module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
124MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
125
1da177e4
LT
126MODULE_AUTHOR("Jeff Garzik");
127MODULE_DESCRIPTION("Library module for ATA devices");
128MODULE_LICENSE("GPL");
129MODULE_VERSION(DRV_VERSION);
130
0baab86b 131
1da177e4
LT
132/**
133 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
134 * @tf: Taskfile to convert
1da177e4 135 * @pmp: Port multiplier port
9977126c
TH
136 * @is_cmd: This FIS is for command
137 * @fis: Buffer into which data will output
1da177e4
LT
138 *
139 * Converts a standard ATA taskfile to a Serial ATA
140 * FIS structure (Register - Host to Device).
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
9977126c 145void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 146{
9977126c
TH
147 fis[0] = 0x27; /* Register - Host to Device FIS */
148 fis[1] = pmp & 0xf; /* Port multiplier number*/
149 if (is_cmd)
150 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
151
1da177e4
LT
152 fis[2] = tf->command;
153 fis[3] = tf->feature;
154
155 fis[4] = tf->lbal;
156 fis[5] = tf->lbam;
157 fis[6] = tf->lbah;
158 fis[7] = tf->device;
159
160 fis[8] = tf->hob_lbal;
161 fis[9] = tf->hob_lbam;
162 fis[10] = tf->hob_lbah;
163 fis[11] = tf->hob_feature;
164
165 fis[12] = tf->nsect;
166 fis[13] = tf->hob_nsect;
167 fis[14] = 0;
168 fis[15] = tf->ctl;
169
170 fis[16] = 0;
171 fis[17] = 0;
172 fis[18] = 0;
173 fis[19] = 0;
174}
175
176/**
177 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
178 * @fis: Buffer from which data will be input
179 * @tf: Taskfile to output
180 *
e12a1be6 181 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
182 *
183 * LOCKING:
184 * Inherited from caller.
185 */
186
057ace5e 187void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
188{
189 tf->command = fis[2]; /* status */
190 tf->feature = fis[3]; /* error */
191
192 tf->lbal = fis[4];
193 tf->lbam = fis[5];
194 tf->lbah = fis[6];
195 tf->device = fis[7];
196
197 tf->hob_lbal = fis[8];
198 tf->hob_lbam = fis[9];
199 tf->hob_lbah = fis[10];
200
201 tf->nsect = fis[12];
202 tf->hob_nsect = fis[13];
203}
204
8cbd6df1
AL
205static const u8 ata_rw_cmds[] = {
206 /* pio multi */
207 ATA_CMD_READ_MULTI,
208 ATA_CMD_WRITE_MULTI,
209 ATA_CMD_READ_MULTI_EXT,
210 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
215 /* pio */
216 ATA_CMD_PIO_READ,
217 ATA_CMD_PIO_WRITE,
218 ATA_CMD_PIO_READ_EXT,
219 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
220 0,
221 0,
222 0,
223 0,
8cbd6df1
AL
224 /* dma */
225 ATA_CMD_READ,
226 ATA_CMD_WRITE,
227 ATA_CMD_READ_EXT,
9a3dccc4
TH
228 ATA_CMD_WRITE_EXT,
229 0,
230 0,
231 0,
232 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 233};
1da177e4
LT
234
235/**
8cbd6df1 236 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
237 * @tf: command to examine and configure
238 * @dev: device tf belongs to
1da177e4 239 *
2e9edbf8 240 * Examine the device configuration and tf->flags to calculate
8cbd6df1 241 * the proper read/write commands and protocol to use.
1da177e4
LT
242 *
243 * LOCKING:
244 * caller.
245 */
bd056d7e 246static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 247{
9a3dccc4 248 u8 cmd;
1da177e4 249
9a3dccc4 250 int index, fua, lba48, write;
2e9edbf8 251
9a3dccc4 252 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
253 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
254 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 255
8cbd6df1
AL
256 if (dev->flags & ATA_DFLAG_PIO) {
257 tf->protocol = ATA_PROT_PIO;
9a3dccc4 258 index = dev->multi_count ? 0 : 8;
9af5c9c9 259 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
260 /* Unable to use DMA due to host limitation */
261 tf->protocol = ATA_PROT_PIO;
0565c26d 262 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
263 } else {
264 tf->protocol = ATA_PROT_DMA;
9a3dccc4 265 index = 16;
8cbd6df1 266 }
1da177e4 267
9a3dccc4
TH
268 cmd = ata_rw_cmds[index + fua + lba48 + write];
269 if (cmd) {
270 tf->command = cmd;
271 return 0;
272 }
273 return -1;
1da177e4
LT
274}
275
35b649fe
TH
276/**
277 * ata_tf_read_block - Read block address from ATA taskfile
278 * @tf: ATA taskfile of interest
279 * @dev: ATA device @tf belongs to
280 *
281 * LOCKING:
282 * None.
283 *
284 * Read block address from @tf. This function can handle all
285 * three address formats - LBA, LBA48 and CHS. tf->protocol and
286 * flags select the address format to use.
287 *
288 * RETURNS:
289 * Block address read from @tf.
290 */
291u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
292{
293 u64 block = 0;
294
295 if (tf->flags & ATA_TFLAG_LBA) {
296 if (tf->flags & ATA_TFLAG_LBA48) {
297 block |= (u64)tf->hob_lbah << 40;
298 block |= (u64)tf->hob_lbam << 32;
299 block |= tf->hob_lbal << 24;
300 } else
301 block |= (tf->device & 0xf) << 24;
302
303 block |= tf->lbah << 16;
304 block |= tf->lbam << 8;
305 block |= tf->lbal;
306 } else {
307 u32 cyl, head, sect;
308
309 cyl = tf->lbam | (tf->lbah << 8);
310 head = tf->device & 0xf;
311 sect = tf->lbal;
312
313 block = (cyl * dev->heads + head) * dev->sectors + sect;
314 }
315
316 return block;
317}
318
bd056d7e
TH
319/**
320 * ata_build_rw_tf - Build ATA taskfile for given read/write request
321 * @tf: Target ATA taskfile
322 * @dev: ATA device @tf belongs to
323 * @block: Block address
324 * @n_block: Number of blocks
325 * @tf_flags: RW/FUA etc...
326 * @tag: tag
327 *
328 * LOCKING:
329 * None.
330 *
331 * Build ATA taskfile @tf for read/write request described by
332 * @block, @n_block, @tf_flags and @tag on @dev.
333 *
334 * RETURNS:
335 *
336 * 0 on success, -ERANGE if the request is too large for @dev,
337 * -EINVAL if the request is invalid.
338 */
339int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
340 u64 block, u32 n_block, unsigned int tf_flags,
341 unsigned int tag)
342{
343 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
344 tf->flags |= tf_flags;
345
6d1245bf 346 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
347 /* yay, NCQ */
348 if (!lba_48_ok(block, n_block))
349 return -ERANGE;
350
351 tf->protocol = ATA_PROT_NCQ;
352 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
353
354 if (tf->flags & ATA_TFLAG_WRITE)
355 tf->command = ATA_CMD_FPDMA_WRITE;
356 else
357 tf->command = ATA_CMD_FPDMA_READ;
358
359 tf->nsect = tag << 3;
360 tf->hob_feature = (n_block >> 8) & 0xff;
361 tf->feature = n_block & 0xff;
362
363 tf->hob_lbah = (block >> 40) & 0xff;
364 tf->hob_lbam = (block >> 32) & 0xff;
365 tf->hob_lbal = (block >> 24) & 0xff;
366 tf->lbah = (block >> 16) & 0xff;
367 tf->lbam = (block >> 8) & 0xff;
368 tf->lbal = block & 0xff;
369
370 tf->device = 1 << 6;
371 if (tf->flags & ATA_TFLAG_FUA)
372 tf->device |= 1 << 7;
373 } else if (dev->flags & ATA_DFLAG_LBA) {
374 tf->flags |= ATA_TFLAG_LBA;
375
376 if (lba_28_ok(block, n_block)) {
377 /* use LBA28 */
378 tf->device |= (block >> 24) & 0xf;
379 } else if (lba_48_ok(block, n_block)) {
380 if (!(dev->flags & ATA_DFLAG_LBA48))
381 return -ERANGE;
382
383 /* use LBA48 */
384 tf->flags |= ATA_TFLAG_LBA48;
385
386 tf->hob_nsect = (n_block >> 8) & 0xff;
387
388 tf->hob_lbah = (block >> 40) & 0xff;
389 tf->hob_lbam = (block >> 32) & 0xff;
390 tf->hob_lbal = (block >> 24) & 0xff;
391 } else
392 /* request too large even for LBA48 */
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 tf->nsect = n_block & 0xff;
399
400 tf->lbah = (block >> 16) & 0xff;
401 tf->lbam = (block >> 8) & 0xff;
402 tf->lbal = block & 0xff;
403
404 tf->device |= ATA_LBA;
405 } else {
406 /* CHS */
407 u32 sect, head, cyl, track;
408
409 /* The request -may- be too large for CHS addressing. */
410 if (!lba_28_ok(block, n_block))
411 return -ERANGE;
412
413 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
414 return -EINVAL;
415
416 /* Convert LBA to CHS */
417 track = (u32)block / dev->sectors;
418 cyl = track / dev->heads;
419 head = track % dev->heads;
420 sect = (u32)block % dev->sectors + 1;
421
422 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
423 (u32)block, track, cyl, head, sect);
424
425 /* Check whether the converted CHS can fit.
426 Cylinder: 0-65535
427 Head: 0-15
428 Sector: 1-255*/
429 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
430 return -ERANGE;
431
432 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
433 tf->lbal = sect;
434 tf->lbam = cyl;
435 tf->lbah = cyl >> 8;
436 tf->device |= head;
437 }
438
439 return 0;
440}
441
cb95d562
TH
442/**
443 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
444 * @pio_mask: pio_mask
445 * @mwdma_mask: mwdma_mask
446 * @udma_mask: udma_mask
447 *
448 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
449 * unsigned int xfer_mask.
450 *
451 * LOCKING:
452 * None.
453 *
454 * RETURNS:
455 * Packed xfer_mask.
456 */
457static unsigned int ata_pack_xfermask(unsigned int pio_mask,
458 unsigned int mwdma_mask,
459 unsigned int udma_mask)
460{
461 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
462 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
463 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
464}
465
c0489e4e
TH
466/**
467 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
468 * @xfer_mask: xfer_mask to unpack
469 * @pio_mask: resulting pio_mask
470 * @mwdma_mask: resulting mwdma_mask
471 * @udma_mask: resulting udma_mask
472 *
473 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
474 * Any NULL distination masks will be ignored.
475 */
476static void ata_unpack_xfermask(unsigned int xfer_mask,
477 unsigned int *pio_mask,
478 unsigned int *mwdma_mask,
479 unsigned int *udma_mask)
480{
481 if (pio_mask)
482 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
483 if (mwdma_mask)
484 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
485 if (udma_mask)
486 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
487}
488
cb95d562 489static const struct ata_xfer_ent {
be9a50c8 490 int shift, bits;
cb95d562
TH
491 u8 base;
492} ata_xfer_tbl[] = {
493 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
494 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
495 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
496 { -1, },
497};
498
499/**
500 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
501 * @xfer_mask: xfer_mask of interest
502 *
503 * Return matching XFER_* value for @xfer_mask. Only the highest
504 * bit of @xfer_mask is considered.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * Matching XFER_* value, 0 if no match found.
511 */
512static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
513{
514 int highbit = fls(xfer_mask) - 1;
515 const struct ata_xfer_ent *ent;
516
517 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
518 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
519 return ent->base + highbit - ent->shift;
520 return 0;
521}
522
523/**
524 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
525 * @xfer_mode: XFER_* of interest
526 *
527 * Return matching xfer_mask for @xfer_mode.
528 *
529 * LOCKING:
530 * None.
531 *
532 * RETURNS:
533 * Matching xfer_mask, 0 if no match found.
534 */
535static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
536{
537 const struct ata_xfer_ent *ent;
538
539 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
540 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
541 return 1 << (ent->shift + xfer_mode - ent->base);
542 return 0;
543}
544
545/**
546 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
547 * @xfer_mode: XFER_* of interest
548 *
549 * Return matching xfer_shift for @xfer_mode.
550 *
551 * LOCKING:
552 * None.
553 *
554 * RETURNS:
555 * Matching xfer_shift, -1 if no match found.
556 */
557static int ata_xfer_mode2shift(unsigned int xfer_mode)
558{
559 const struct ata_xfer_ent *ent;
560
561 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
562 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
563 return ent->shift;
564 return -1;
565}
566
1da177e4 567/**
1da7b0d0
TH
568 * ata_mode_string - convert xfer_mask to string
569 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
570 *
571 * Determine string which represents the highest speed
1da7b0d0 572 * (highest bit in @modemask).
1da177e4
LT
573 *
574 * LOCKING:
575 * None.
576 *
577 * RETURNS:
578 * Constant C string representing highest speed listed in
1da7b0d0 579 * @mode_mask, or the constant C string "<n/a>".
1da177e4 580 */
1da7b0d0 581static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 582{
75f554bc
TH
583 static const char * const xfer_mode_str[] = {
584 "PIO0",
585 "PIO1",
586 "PIO2",
587 "PIO3",
588 "PIO4",
b352e57d
AC
589 "PIO5",
590 "PIO6",
75f554bc
TH
591 "MWDMA0",
592 "MWDMA1",
593 "MWDMA2",
b352e57d
AC
594 "MWDMA3",
595 "MWDMA4",
75f554bc
TH
596 "UDMA/16",
597 "UDMA/25",
598 "UDMA/33",
599 "UDMA/44",
600 "UDMA/66",
601 "UDMA/100",
602 "UDMA/133",
603 "UDMA7",
604 };
1da7b0d0 605 int highbit;
1da177e4 606
1da7b0d0
TH
607 highbit = fls(xfer_mask) - 1;
608 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
609 return xfer_mode_str[highbit];
1da177e4 610 return "<n/a>";
1da177e4
LT
611}
612
4c360c81
TH
613static const char *sata_spd_string(unsigned int spd)
614{
615 static const char * const spd_str[] = {
616 "1.5 Gbps",
617 "3.0 Gbps",
618 };
619
620 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
621 return "<unknown>";
622 return spd_str[spd - 1];
623}
624
3373efd8 625void ata_dev_disable(struct ata_device *dev)
0b8efb0a 626{
09d7f9b0 627 if (ata_dev_enabled(dev)) {
9af5c9c9 628 if (ata_msg_drv(dev->link->ap))
09d7f9b0 629 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
562f0c2d 630 ata_acpi_on_disable(dev);
4ae72a1e
TH
631 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
632 ATA_DNXFER_QUIET);
0b8efb0a
TH
633 dev->class++;
634 }
635}
636
ca77329f
KCA
637static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
638{
639 struct ata_link *link = dev->link;
640 struct ata_port *ap = link->ap;
641 u32 scontrol;
642 unsigned int err_mask;
643 int rc;
644
645 /*
646 * disallow DIPM for drivers which haven't set
647 * ATA_FLAG_IPM. This is because when DIPM is enabled,
648 * phy ready will be set in the interrupt status on
649 * state changes, which will cause some drivers to
650 * think there are errors - additionally drivers will
651 * need to disable hot plug.
652 */
653 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
654 ap->pm_policy = NOT_AVAILABLE;
655 return -EINVAL;
656 }
657
658 /*
659 * For DIPM, we will only enable it for the
660 * min_power setting.
661 *
662 * Why? Because Disks are too stupid to know that
663 * If the host rejects a request to go to SLUMBER
664 * they should retry at PARTIAL, and instead it
665 * just would give up. So, for medium_power to
666 * work at all, we need to only allow HIPM.
667 */
668 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
669 if (rc)
670 return rc;
671
672 switch (policy) {
673 case MIN_POWER:
674 /* no restrictions on IPM transitions */
675 scontrol &= ~(0x3 << 8);
676 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
677 if (rc)
678 return rc;
679
680 /* enable DIPM */
681 if (dev->flags & ATA_DFLAG_DIPM)
682 err_mask = ata_dev_set_feature(dev,
683 SETFEATURES_SATA_ENABLE, SATA_DIPM);
684 break;
685 case MEDIUM_POWER:
686 /* allow IPM to PARTIAL */
687 scontrol &= ~(0x1 << 8);
688 scontrol |= (0x2 << 8);
689 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
690 if (rc)
691 return rc;
692
f5456b63
KCA
693 /*
694 * we don't have to disable DIPM since IPM flags
695 * disallow transitions to SLUMBER, which effectively
696 * disable DIPM if it does not support PARTIAL
697 */
ca77329f
KCA
698 break;
699 case NOT_AVAILABLE:
700 case MAX_PERFORMANCE:
701 /* disable all IPM transitions */
702 scontrol |= (0x3 << 8);
703 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
704 if (rc)
705 return rc;
706
f5456b63
KCA
707 /*
708 * we don't have to disable DIPM since IPM flags
709 * disallow all transitions which effectively
710 * disable DIPM anyway.
711 */
ca77329f
KCA
712 break;
713 }
714
715 /* FIXME: handle SET FEATURES failure */
716 (void) err_mask;
717
718 return 0;
719}
720
721/**
722 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
723 * @dev: device to enable power management
724 * @policy: the link power management policy
ca77329f
KCA
725 *
726 * Enable SATA Interface power management. This will enable
727 * Device Interface Power Management (DIPM) for min_power
728 * policy, and then call driver specific callbacks for
729 * enabling Host Initiated Power management.
730 *
731 * Locking: Caller.
732 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
733 */
734void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
735{
736 int rc = 0;
737 struct ata_port *ap = dev->link->ap;
738
739 /* set HIPM first, then DIPM */
740 if (ap->ops->enable_pm)
741 rc = ap->ops->enable_pm(ap, policy);
742 if (rc)
743 goto enable_pm_out;
744 rc = ata_dev_set_dipm(dev, policy);
745
746enable_pm_out:
747 if (rc)
748 ap->pm_policy = MAX_PERFORMANCE;
749 else
750 ap->pm_policy = policy;
751 return /* rc */; /* hopefully we can use 'rc' eventually */
752}
753
1992a5ed 754#ifdef CONFIG_PM
ca77329f
KCA
755/**
756 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 757 * @dev: device to disable power management
ca77329f
KCA
758 *
759 * Disable SATA Interface power management. This will disable
760 * Device Interface Power Management (DIPM) without changing
761 * policy, call driver specific callbacks for disabling Host
762 * Initiated Power management.
763 *
764 * Locking: Caller.
765 * Returns: void
766 */
767static void ata_dev_disable_pm(struct ata_device *dev)
768{
769 struct ata_port *ap = dev->link->ap;
770
771 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
772 if (ap->ops->disable_pm)
773 ap->ops->disable_pm(ap);
774}
1992a5ed 775#endif /* CONFIG_PM */
ca77329f
KCA
776
777void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
778{
779 ap->pm_policy = policy;
780 ap->link.eh_info.action |= ATA_EHI_LPM;
781 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
782 ata_port_schedule_eh(ap);
783}
784
1992a5ed 785#ifdef CONFIG_PM
ca77329f
KCA
786static void ata_lpm_enable(struct ata_host *host)
787{
788 struct ata_link *link;
789 struct ata_port *ap;
790 struct ata_device *dev;
791 int i;
792
793 for (i = 0; i < host->n_ports; i++) {
794 ap = host->ports[i];
795 ata_port_for_each_link(link, ap) {
796 ata_link_for_each_dev(dev, link)
797 ata_dev_disable_pm(dev);
798 }
799 }
800}
801
802static void ata_lpm_disable(struct ata_host *host)
803{
804 int i;
805
806 for (i = 0; i < host->n_ports; i++) {
807 struct ata_port *ap = host->ports[i];
808 ata_lpm_schedule(ap, ap->pm_policy);
809 }
810}
1992a5ed 811#endif /* CONFIG_PM */
ca77329f
KCA
812
813
1da177e4 814/**
0d5ff566 815 * ata_devchk - PATA device presence detection
1da177e4
LT
816 * @ap: ATA channel to examine
817 * @device: Device to examine (starting at zero)
818 *
819 * This technique was originally described in
820 * Hale Landis's ATADRVR (www.ata-atapi.com), and
821 * later found its way into the ATA/ATAPI spec.
822 *
823 * Write a pattern to the ATA shadow registers,
824 * and if a device is present, it will respond by
825 * correctly storing and echoing back the
826 * ATA shadow register contents.
827 *
828 * LOCKING:
829 * caller.
830 */
831
0d5ff566 832static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
833{
834 struct ata_ioports *ioaddr = &ap->ioaddr;
835 u8 nsect, lbal;
836
837 ap->ops->dev_select(ap, device);
838
0d5ff566
TH
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 841
0d5ff566
TH
842 iowrite8(0xaa, ioaddr->nsect_addr);
843 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 844
0d5ff566
TH
845 iowrite8(0x55, ioaddr->nsect_addr);
846 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 847
0d5ff566
TH
848 nsect = ioread8(ioaddr->nsect_addr);
849 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
850
851 if ((nsect == 0x55) && (lbal == 0xaa))
852 return 1; /* we found a device */
853
854 return 0; /* nothing found */
855}
856
1da177e4
LT
857/**
858 * ata_dev_classify - determine device type based on ATA-spec signature
859 * @tf: ATA taskfile register set for device to be identified
860 *
861 * Determine from taskfile register contents whether a device is
862 * ATA or ATAPI, as per "Signature and persistence" section
863 * of ATA/PI spec (volume 1, sect 5.14).
864 *
865 * LOCKING:
866 * None.
867 *
868 * RETURNS:
633273a3
TH
869 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
870 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 871 */
057ace5e 872unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
873{
874 /* Apple's open source Darwin code hints that some devices only
875 * put a proper signature into the LBA mid/high registers,
876 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
877 *
878 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
879 * signatures for ATA and ATAPI devices attached on SerialATA,
880 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
881 * spec has never mentioned about using different signatures
882 * for ATA/ATAPI devices. Then, Serial ATA II: Port
883 * Multiplier specification began to use 0x69/0x96 to identify
884 * port multpliers and 0x3c/0xc3 to identify SEMB device.
885 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
886 * 0x69/0x96 shortly and described them as reserved for
887 * SerialATA.
888 *
889 * We follow the current spec and consider that 0x69/0x96
890 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 891 */
633273a3 892 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
893 DPRINTK("found ATA device by sig\n");
894 return ATA_DEV_ATA;
895 }
896
633273a3 897 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
898 DPRINTK("found ATAPI device by sig\n");
899 return ATA_DEV_ATAPI;
900 }
901
633273a3
TH
902 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
903 DPRINTK("found PMP device by sig\n");
904 return ATA_DEV_PMP;
905 }
906
907 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 908 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
909 return ATA_DEV_SEMB_UNSUP; /* not yet */
910 }
911
1da177e4
LT
912 DPRINTK("unknown device\n");
913 return ATA_DEV_UNKNOWN;
914}
915
916/**
917 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
918 * @dev: ATA device to classify (starting at zero)
919 * @present: device seems present
b4dc7623 920 * @r_err: Value of error register on completion
1da177e4
LT
921 *
922 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
923 * an ATA/ATAPI-defined set of values is placed in the ATA
924 * shadow registers, indicating the results of device detection
925 * and diagnostics.
926 *
927 * Select the ATA device, and read the values from the ATA shadow
928 * registers. Then parse according to the Error register value,
929 * and the spec-defined values examined by ata_dev_classify().
930 *
931 * LOCKING:
932 * caller.
b4dc7623
TH
933 *
934 * RETURNS:
935 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 936 */
3f19859e
TH
937unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
938 u8 *r_err)
1da177e4 939{
3f19859e 940 struct ata_port *ap = dev->link->ap;
1da177e4
LT
941 struct ata_taskfile tf;
942 unsigned int class;
943 u8 err;
944
3f19859e 945 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
946
947 memset(&tf, 0, sizeof(tf));
948
1da177e4 949 ap->ops->tf_read(ap, &tf);
0169e284 950 err = tf.feature;
b4dc7623
TH
951 if (r_err)
952 *r_err = err;
1da177e4 953
93590859 954 /* see if device passed diags: if master then continue and warn later */
3f19859e 955 if (err == 0 && dev->devno == 0)
93590859 956 /* diagnostic fail : do nothing _YET_ */
3f19859e 957 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 958 else if (err == 1)
1da177e4 959 /* do nothing */ ;
3f19859e 960 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
961 /* do nothing */ ;
962 else
b4dc7623 963 return ATA_DEV_NONE;
1da177e4 964
b4dc7623 965 /* determine if device is ATA or ATAPI */
1da177e4 966 class = ata_dev_classify(&tf);
b4dc7623 967
d7fbee05
TH
968 if (class == ATA_DEV_UNKNOWN) {
969 /* If the device failed diagnostic, it's likely to
970 * have reported incorrect device signature too.
971 * Assume ATA device if the device seems present but
972 * device signature is invalid with diagnostic
973 * failure.
974 */
975 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
976 class = ATA_DEV_ATA;
977 else
978 class = ATA_DEV_NONE;
979 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
980 class = ATA_DEV_NONE;
981
b4dc7623 982 return class;
1da177e4
LT
983}
984
985/**
6a62a04d 986 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
987 * @id: IDENTIFY DEVICE results we will examine
988 * @s: string into which data is output
989 * @ofs: offset into identify device page
990 * @len: length of string to return. must be an even number.
991 *
992 * The strings in the IDENTIFY DEVICE page are broken up into
993 * 16-bit chunks. Run through the string, and output each
994 * 8-bit chunk linearly, regardless of platform.
995 *
996 * LOCKING:
997 * caller.
998 */
999
6a62a04d
TH
1000void ata_id_string(const u16 *id, unsigned char *s,
1001 unsigned int ofs, unsigned int len)
1da177e4
LT
1002{
1003 unsigned int c;
1004
1005 while (len > 0) {
1006 c = id[ofs] >> 8;
1007 *s = c;
1008 s++;
1009
1010 c = id[ofs] & 0xff;
1011 *s = c;
1012 s++;
1013
1014 ofs++;
1015 len -= 2;
1016 }
1017}
1018
0e949ff3 1019/**
6a62a04d 1020 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1021 * @id: IDENTIFY DEVICE results we will examine
1022 * @s: string into which data is output
1023 * @ofs: offset into identify device page
1024 * @len: length of string to return. must be an odd number.
1025 *
6a62a04d 1026 * This function is identical to ata_id_string except that it
0e949ff3
TH
1027 * trims trailing spaces and terminates the resulting string with
1028 * null. @len must be actual maximum length (even number) + 1.
1029 *
1030 * LOCKING:
1031 * caller.
1032 */
6a62a04d
TH
1033void ata_id_c_string(const u16 *id, unsigned char *s,
1034 unsigned int ofs, unsigned int len)
0e949ff3
TH
1035{
1036 unsigned char *p;
1037
1038 WARN_ON(!(len & 1));
1039
6a62a04d 1040 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1041
1042 p = s + strnlen(s, len - 1);
1043 while (p > s && p[-1] == ' ')
1044 p--;
1045 *p = '\0';
1046}
0baab86b 1047
db6f8759
TH
1048static u64 ata_id_n_sectors(const u16 *id)
1049{
1050 if (ata_id_has_lba(id)) {
1051 if (ata_id_has_lba48(id))
1052 return ata_id_u64(id, 100);
1053 else
1054 return ata_id_u32(id, 60);
1055 } else {
1056 if (ata_id_current_chs_valid(id))
1057 return ata_id_u32(id, 57);
1058 else
1059 return id[1] * id[3] * id[6];
1060 }
1061}
1062
1e999736
AC
1063static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1064{
1065 u64 sectors = 0;
1066
1067 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1068 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1069 sectors |= (tf->hob_lbal & 0xff) << 24;
1070 sectors |= (tf->lbah & 0xff) << 16;
1071 sectors |= (tf->lbam & 0xff) << 8;
1072 sectors |= (tf->lbal & 0xff);
1073
1074 return ++sectors;
1075}
1076
1077static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1078{
1079 u64 sectors = 0;
1080
1081 sectors |= (tf->device & 0x0f) << 24;
1082 sectors |= (tf->lbah & 0xff) << 16;
1083 sectors |= (tf->lbam & 0xff) << 8;
1084 sectors |= (tf->lbal & 0xff);
1085
1086 return ++sectors;
1087}
1088
1089/**
c728a914
TH
1090 * ata_read_native_max_address - Read native max address
1091 * @dev: target device
1092 * @max_sectors: out parameter for the result native max address
1e999736 1093 *
c728a914
TH
1094 * Perform an LBA48 or LBA28 native size query upon the device in
1095 * question.
1e999736 1096 *
c728a914
TH
1097 * RETURNS:
1098 * 0 on success, -EACCES if command is aborted by the drive.
1099 * -EIO on other errors.
1e999736 1100 */
c728a914 1101static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1102{
c728a914 1103 unsigned int err_mask;
1e999736 1104 struct ata_taskfile tf;
c728a914 1105 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1106
1107 ata_tf_init(dev, &tf);
1108
c728a914 1109 /* always clear all address registers */
1e999736 1110 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1111
c728a914
TH
1112 if (lba48) {
1113 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1114 tf.flags |= ATA_TFLAG_LBA48;
1115 } else
1116 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1117
1e999736 1118 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1119 tf.device |= ATA_LBA;
1120
2b789108 1121 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1122 if (err_mask) {
1123 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1124 "max address (err_mask=0x%x)\n", err_mask);
1125 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1126 return -EACCES;
1127 return -EIO;
1128 }
1e999736 1129
c728a914
TH
1130 if (lba48)
1131 *max_sectors = ata_tf_to_lba48(&tf);
1132 else
1133 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1134 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1135 (*max_sectors)--;
c728a914 1136 return 0;
1e999736
AC
1137}
1138
1139/**
c728a914
TH
1140 * ata_set_max_sectors - Set max sectors
1141 * @dev: target device
6b38d1d1 1142 * @new_sectors: new max sectors value to set for the device
1e999736 1143 *
c728a914
TH
1144 * Set max sectors of @dev to @new_sectors.
1145 *
1146 * RETURNS:
1147 * 0 on success, -EACCES if command is aborted or denied (due to
1148 * previous non-volatile SET_MAX) by the drive. -EIO on other
1149 * errors.
1e999736 1150 */
05027adc 1151static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1152{
c728a914 1153 unsigned int err_mask;
1e999736 1154 struct ata_taskfile tf;
c728a914 1155 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1156
1157 new_sectors--;
1158
1159 ata_tf_init(dev, &tf);
1160
1e999736 1161 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1162
1163 if (lba48) {
1164 tf.command = ATA_CMD_SET_MAX_EXT;
1165 tf.flags |= ATA_TFLAG_LBA48;
1166
1167 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1168 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1169 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1170 } else {
c728a914
TH
1171 tf.command = ATA_CMD_SET_MAX;
1172
1e582ba4
TH
1173 tf.device |= (new_sectors >> 24) & 0xf;
1174 }
1175
1e999736 1176 tf.protocol |= ATA_PROT_NODATA;
c728a914 1177 tf.device |= ATA_LBA;
1e999736
AC
1178
1179 tf.lbal = (new_sectors >> 0) & 0xff;
1180 tf.lbam = (new_sectors >> 8) & 0xff;
1181 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1182
2b789108 1183 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1184 if (err_mask) {
1185 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1186 "max address (err_mask=0x%x)\n", err_mask);
1187 if (err_mask == AC_ERR_DEV &&
1188 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1189 return -EACCES;
1190 return -EIO;
1191 }
1192
c728a914 1193 return 0;
1e999736
AC
1194}
1195
1196/**
1197 * ata_hpa_resize - Resize a device with an HPA set
1198 * @dev: Device to resize
1199 *
1200 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1201 * it if required to the full size of the media. The caller must check
1202 * the drive has the HPA feature set enabled.
05027adc
TH
1203 *
1204 * RETURNS:
1205 * 0 on success, -errno on failure.
1e999736 1206 */
05027adc 1207static int ata_hpa_resize(struct ata_device *dev)
1e999736 1208{
05027adc
TH
1209 struct ata_eh_context *ehc = &dev->link->eh_context;
1210 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1211 u64 sectors = ata_id_n_sectors(dev->id);
1212 u64 native_sectors;
c728a914 1213 int rc;
a617c09f 1214
05027adc
TH
1215 /* do we need to do it? */
1216 if (dev->class != ATA_DEV_ATA ||
1217 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1218 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1219 return 0;
1e999736 1220
05027adc
TH
1221 /* read native max address */
1222 rc = ata_read_native_max_address(dev, &native_sectors);
1223 if (rc) {
1224 /* If HPA isn't going to be unlocked, skip HPA
1225 * resizing from the next try.
1226 */
1227 if (!ata_ignore_hpa) {
1228 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1229 "broken, will skip HPA handling\n");
1230 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1231
1232 /* we can continue if device aborted the command */
1233 if (rc == -EACCES)
1234 rc = 0;
1e999736 1235 }
37301a55 1236
05027adc
TH
1237 return rc;
1238 }
1239
1240 /* nothing to do? */
1241 if (native_sectors <= sectors || !ata_ignore_hpa) {
1242 if (!print_info || native_sectors == sectors)
1243 return 0;
1244
1245 if (native_sectors > sectors)
1246 ata_dev_printk(dev, KERN_INFO,
1247 "HPA detected: current %llu, native %llu\n",
1248 (unsigned long long)sectors,
1249 (unsigned long long)native_sectors);
1250 else if (native_sectors < sectors)
1251 ata_dev_printk(dev, KERN_WARNING,
1252 "native sectors (%llu) is smaller than "
1253 "sectors (%llu)\n",
1254 (unsigned long long)native_sectors,
1255 (unsigned long long)sectors);
1256 return 0;
1257 }
1258
1259 /* let's unlock HPA */
1260 rc = ata_set_max_sectors(dev, native_sectors);
1261 if (rc == -EACCES) {
1262 /* if device aborted the command, skip HPA resizing */
1263 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1264 "(%llu -> %llu), skipping HPA handling\n",
1265 (unsigned long long)sectors,
1266 (unsigned long long)native_sectors);
1267 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1268 return 0;
1269 } else if (rc)
1270 return rc;
1271
1272 /* re-read IDENTIFY data */
1273 rc = ata_dev_reread_id(dev, 0);
1274 if (rc) {
1275 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1276 "data after HPA resizing\n");
1277 return rc;
1278 }
1279
1280 if (print_info) {
1281 u64 new_sectors = ata_id_n_sectors(dev->id);
1282 ata_dev_printk(dev, KERN_INFO,
1283 "HPA unlocked: %llu -> %llu, native %llu\n",
1284 (unsigned long long)sectors,
1285 (unsigned long long)new_sectors,
1286 (unsigned long long)native_sectors);
1287 }
1288
1289 return 0;
1e999736
AC
1290}
1291
10305f0f
AC
1292/**
1293 * ata_id_to_dma_mode - Identify DMA mode from id block
1294 * @dev: device to identify
cc261267 1295 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1296 *
1297 * Set up the timing values for the device based upon the identify
1298 * reported values for the DMA mode. This function is used by drivers
1299 * which rely upon firmware configured modes, but wish to report the
1300 * mode correctly when possible.
1301 *
1302 * In addition we emit similarly formatted messages to the default
1303 * ata_dev_set_mode handler, in order to provide consistency of
1304 * presentation.
1305 */
1306
1307void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1308{
1309 unsigned int mask;
1310 u8 mode;
1311
1312 /* Pack the DMA modes */
1313 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1314 if (dev->id[53] & 0x04)
1315 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1316
1317 /* Select the mode in use */
1318 mode = ata_xfer_mask2mode(mask);
1319
1320 if (mode != 0) {
1321 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1322 ata_mode_string(mask));
1323 } else {
1324 /* SWDMA perhaps ? */
1325 mode = unknown;
1326 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1327 }
1328
1329 /* Configure the device reporting */
1330 dev->xfer_mode = mode;
1331 dev->xfer_shift = ata_xfer_mode2shift(mode);
1332}
1333
0baab86b
EF
1334/**
1335 * ata_noop_dev_select - Select device 0/1 on ATA bus
1336 * @ap: ATA channel to manipulate
1337 * @device: ATA device (numbered from zero) to select
1338 *
1339 * This function performs no actual function.
1340 *
1341 * May be used as the dev_select() entry in ata_port_operations.
1342 *
1343 * LOCKING:
1344 * caller.
1345 */
2dcb407e 1346void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1347{
1348}
1349
0baab86b 1350
1da177e4
LT
1351/**
1352 * ata_std_dev_select - Select device 0/1 on ATA bus
1353 * @ap: ATA channel to manipulate
1354 * @device: ATA device (numbered from zero) to select
1355 *
1356 * Use the method defined in the ATA specification to
1357 * make either device 0, or device 1, active on the
0baab86b
EF
1358 * ATA channel. Works with both PIO and MMIO.
1359 *
1360 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1361 *
1362 * LOCKING:
1363 * caller.
1364 */
1365
2dcb407e 1366void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1367{
1368 u8 tmp;
1369
1370 if (device == 0)
1371 tmp = ATA_DEVICE_OBS;
1372 else
1373 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1374
0d5ff566 1375 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1376 ata_pause(ap); /* needed; also flushes, for mmio */
1377}
1378
1379/**
1380 * ata_dev_select - Select device 0/1 on ATA bus
1381 * @ap: ATA channel to manipulate
1382 * @device: ATA device (numbered from zero) to select
1383 * @wait: non-zero to wait for Status register BSY bit to clear
1384 * @can_sleep: non-zero if context allows sleeping
1385 *
1386 * Use the method defined in the ATA specification to
1387 * make either device 0, or device 1, active on the
1388 * ATA channel.
1389 *
1390 * This is a high-level version of ata_std_dev_select(),
1391 * which additionally provides the services of inserting
1392 * the proper pauses and status polling, where needed.
1393 *
1394 * LOCKING:
1395 * caller.
1396 */
1397
1398void ata_dev_select(struct ata_port *ap, unsigned int device,
1399 unsigned int wait, unsigned int can_sleep)
1400{
88574551 1401 if (ata_msg_probe(ap))
44877b4e
TH
1402 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1403 "device %u, wait %u\n", device, wait);
1da177e4
LT
1404
1405 if (wait)
1406 ata_wait_idle(ap);
1407
1408 ap->ops->dev_select(ap, device);
1409
1410 if (wait) {
9af5c9c9 1411 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1412 msleep(150);
1413 ata_wait_idle(ap);
1414 }
1415}
1416
1417/**
1418 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1419 * @id: IDENTIFY DEVICE page to dump
1da177e4 1420 *
0bd3300a
TH
1421 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 * page.
1da177e4
LT
1423 *
1424 * LOCKING:
1425 * caller.
1426 */
1427
0bd3300a 1428static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1429{
1430 DPRINTK("49==0x%04x "
1431 "53==0x%04x "
1432 "63==0x%04x "
1433 "64==0x%04x "
1434 "75==0x%04x \n",
0bd3300a
TH
1435 id[49],
1436 id[53],
1437 id[63],
1438 id[64],
1439 id[75]);
1da177e4
LT
1440 DPRINTK("80==0x%04x "
1441 "81==0x%04x "
1442 "82==0x%04x "
1443 "83==0x%04x "
1444 "84==0x%04x \n",
0bd3300a
TH
1445 id[80],
1446 id[81],
1447 id[82],
1448 id[83],
1449 id[84]);
1da177e4
LT
1450 DPRINTK("88==0x%04x "
1451 "93==0x%04x\n",
0bd3300a
TH
1452 id[88],
1453 id[93]);
1da177e4
LT
1454}
1455
cb95d562
TH
1456/**
1457 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 * @id: IDENTIFY data to compute xfer mask from
1459 *
1460 * Compute the xfermask for this device. This is not as trivial
1461 * as it seems if we must consider early devices correctly.
1462 *
1463 * FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 * LOCKING:
1466 * None.
1467 *
1468 * RETURNS:
1469 * Computed xfermask
1470 */
1471static unsigned int ata_id_xfermask(const u16 *id)
1472{
1473 unsigned int pio_mask, mwdma_mask, udma_mask;
1474
1475 /* Usual case. Word 53 indicates word 64 is valid */
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478 pio_mask <<= 3;
1479 pio_mask |= 0x7;
1480 } else {
1481 /* If word 64 isn't valid then Word 51 high byte holds
1482 * the PIO timing number for the maximum. Turn it into
1483 * a mask.
1484 */
7a0f1c8a 1485 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1486 if (mode < 5) /* Valid PIO range */
2dcb407e 1487 pio_mask = (2 << mode) - 1;
46767aeb
AC
1488 else
1489 pio_mask = 1;
cb95d562
TH
1490
1491 /* But wait.. there's more. Design your standards by
1492 * committee and you too can get a free iordy field to
1493 * process. However its the speeds not the modes that
1494 * are supported... Note drivers using the timing API
1495 * will get this right anyway
1496 */
1497 }
1498
1499 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1500
b352e57d
AC
1501 if (ata_id_is_cfa(id)) {
1502 /*
1503 * Process compact flash extended modes
1504 */
1505 int pio = id[163] & 0x7;
1506 int dma = (id[163] >> 3) & 7;
1507
1508 if (pio)
1509 pio_mask |= (1 << 5);
1510 if (pio > 1)
1511 pio_mask |= (1 << 6);
1512 if (dma)
1513 mwdma_mask |= (1 << 3);
1514 if (dma > 1)
1515 mwdma_mask |= (1 << 4);
1516 }
1517
fb21f0d0
TH
1518 udma_mask = 0;
1519 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1521
1522 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523}
1524
86e45b6b
TH
1525/**
1526 * ata_port_queue_task - Queue port_task
1527 * @ap: The ata_port to queue port_task for
e2a7f77a 1528 * @fn: workqueue function to be scheduled
65f27f38 1529 * @data: data for @fn to use
e2a7f77a 1530 * @delay: delay time for workqueue function
86e45b6b
TH
1531 *
1532 * Schedule @fn(@data) for execution after @delay jiffies using
1533 * port_task. There is one port_task per port and it's the
1534 * user(low level driver)'s responsibility to make sure that only
1535 * one task is active at any given time.
1536 *
1537 * libata core layer takes care of synchronization between
1538 * port_task and EH. ata_port_queue_task() may be ignored for EH
1539 * synchronization.
1540 *
1541 * LOCKING:
1542 * Inherited from caller.
1543 */
65f27f38 1544void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1545 unsigned long delay)
1546{
65f27f38
DH
1547 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1548 ap->port_task_data = data;
86e45b6b 1549
45a66c1c
ON
1550 /* may fail if ata_port_flush_task() in progress */
1551 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1552}
1553
1554/**
1555 * ata_port_flush_task - Flush port_task
1556 * @ap: The ata_port to flush port_task for
1557 *
1558 * After this function completes, port_task is guranteed not to
1559 * be running or scheduled.
1560 *
1561 * LOCKING:
1562 * Kernel thread context (may sleep)
1563 */
1564void ata_port_flush_task(struct ata_port *ap)
1565{
86e45b6b
TH
1566 DPRINTK("ENTER\n");
1567
45a66c1c 1568 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1569
0dd4b21f
BP
1570 if (ata_msg_ctl(ap))
1571 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1572}
1573
7102d230 1574static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1575{
77853bf2 1576 struct completion *waiting = qc->private_data;
a2a7a662 1577
a2a7a662 1578 complete(waiting);
a2a7a662
TH
1579}
1580
1581/**
2432697b 1582 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1583 * @dev: Device to which the command is sent
1584 * @tf: Taskfile registers for the command and the result
d69cf37d 1585 * @cdb: CDB for packet command
a2a7a662 1586 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1587 * @sgl: sg list for the data buffer of the command
2432697b 1588 * @n_elem: Number of sg entries
2b789108 1589 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1590 *
1591 * Executes libata internal command with timeout. @tf contains
1592 * command on entry and result on return. Timeout and error
1593 * conditions are reported via return value. No recovery action
1594 * is taken after a command times out. It's caller's duty to
1595 * clean up after timeout.
1596 *
1597 * LOCKING:
1598 * None. Should be called with kernel context, might sleep.
551e8889
TH
1599 *
1600 * RETURNS:
1601 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1602 */
2432697b
TH
1603unsigned ata_exec_internal_sg(struct ata_device *dev,
1604 struct ata_taskfile *tf, const u8 *cdb,
87260216 1605 int dma_dir, struct scatterlist *sgl,
2b789108 1606 unsigned int n_elem, unsigned long timeout)
a2a7a662 1607{
9af5c9c9
TH
1608 struct ata_link *link = dev->link;
1609 struct ata_port *ap = link->ap;
a2a7a662
TH
1610 u8 command = tf->command;
1611 struct ata_queued_cmd *qc;
2ab7db1f 1612 unsigned int tag, preempted_tag;
dedaf2b0 1613 u32 preempted_sactive, preempted_qc_active;
da917d69 1614 int preempted_nr_active_links;
60be6b9a 1615 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1616 unsigned long flags;
77853bf2 1617 unsigned int err_mask;
d95a717f 1618 int rc;
a2a7a662 1619
ba6a1308 1620 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1621
e3180499 1622 /* no internal command while frozen */
b51e9e5d 1623 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1624 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1625 return AC_ERR_SYSTEM;
1626 }
1627
2ab7db1f 1628 /* initialize internal qc */
a2a7a662 1629
2ab7db1f
TH
1630 /* XXX: Tag 0 is used for drivers with legacy EH as some
1631 * drivers choke if any other tag is given. This breaks
1632 * ata_tag_internal() test for those drivers. Don't use new
1633 * EH stuff without converting to it.
1634 */
1635 if (ap->ops->error_handler)
1636 tag = ATA_TAG_INTERNAL;
1637 else
1638 tag = 0;
1639
6cec4a39 1640 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1641 BUG();
f69499f4 1642 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1643
1644 qc->tag = tag;
1645 qc->scsicmd = NULL;
1646 qc->ap = ap;
1647 qc->dev = dev;
1648 ata_qc_reinit(qc);
1649
9af5c9c9
TH
1650 preempted_tag = link->active_tag;
1651 preempted_sactive = link->sactive;
dedaf2b0 1652 preempted_qc_active = ap->qc_active;
da917d69 1653 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1654 link->active_tag = ATA_TAG_POISON;
1655 link->sactive = 0;
dedaf2b0 1656 ap->qc_active = 0;
da917d69 1657 ap->nr_active_links = 0;
2ab7db1f
TH
1658
1659 /* prepare & issue qc */
a2a7a662 1660 qc->tf = *tf;
d69cf37d
TH
1661 if (cdb)
1662 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1663 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1664 qc->dma_dir = dma_dir;
1665 if (dma_dir != DMA_NONE) {
2432697b 1666 unsigned int i, buflen = 0;
87260216 1667 struct scatterlist *sg;
2432697b 1668
87260216
JA
1669 for_each_sg(sgl, sg, n_elem, i)
1670 buflen += sg->length;
2432697b 1671
87260216 1672 ata_sg_init(qc, sgl, n_elem);
49c80429 1673 qc->nbytes = buflen;
a2a7a662
TH
1674 }
1675
77853bf2 1676 qc->private_data = &wait;
a2a7a662
TH
1677 qc->complete_fn = ata_qc_complete_internal;
1678
8e0e694a 1679 ata_qc_issue(qc);
a2a7a662 1680
ba6a1308 1681 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1682
2b789108
TH
1683 if (!timeout)
1684 timeout = ata_probe_timeout * 1000 / HZ;
1685
1686 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1687
1688 ata_port_flush_task(ap);
41ade50c 1689
d95a717f 1690 if (!rc) {
ba6a1308 1691 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1692
1693 /* We're racing with irq here. If we lose, the
1694 * following test prevents us from completing the qc
d95a717f
TH
1695 * twice. If we win, the port is frozen and will be
1696 * cleaned up by ->post_internal_cmd().
a2a7a662 1697 */
77853bf2 1698 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1699 qc->err_mask |= AC_ERR_TIMEOUT;
1700
1701 if (ap->ops->error_handler)
1702 ata_port_freeze(ap);
1703 else
1704 ata_qc_complete(qc);
f15a1daf 1705
0dd4b21f
BP
1706 if (ata_msg_warn(ap))
1707 ata_dev_printk(dev, KERN_WARNING,
88574551 1708 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1709 }
1710
ba6a1308 1711 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1712 }
1713
d95a717f
TH
1714 /* do post_internal_cmd */
1715 if (ap->ops->post_internal_cmd)
1716 ap->ops->post_internal_cmd(qc);
1717
a51d644a
TH
1718 /* perform minimal error analysis */
1719 if (qc->flags & ATA_QCFLAG_FAILED) {
1720 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1721 qc->err_mask |= AC_ERR_DEV;
1722
1723 if (!qc->err_mask)
1724 qc->err_mask |= AC_ERR_OTHER;
1725
1726 if (qc->err_mask & ~AC_ERR_OTHER)
1727 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1728 }
1729
15869303 1730 /* finish up */
ba6a1308 1731 spin_lock_irqsave(ap->lock, flags);
15869303 1732
e61e0672 1733 *tf = qc->result_tf;
77853bf2
TH
1734 err_mask = qc->err_mask;
1735
1736 ata_qc_free(qc);
9af5c9c9
TH
1737 link->active_tag = preempted_tag;
1738 link->sactive = preempted_sactive;
dedaf2b0 1739 ap->qc_active = preempted_qc_active;
da917d69 1740 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1741
1f7dd3e9
TH
1742 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1743 * Until those drivers are fixed, we detect the condition
1744 * here, fail the command with AC_ERR_SYSTEM and reenable the
1745 * port.
1746 *
1747 * Note that this doesn't change any behavior as internal
1748 * command failure results in disabling the device in the
1749 * higher layer for LLDDs without new reset/EH callbacks.
1750 *
1751 * Kill the following code as soon as those drivers are fixed.
1752 */
198e0fed 1753 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1754 err_mask |= AC_ERR_SYSTEM;
1755 ata_port_probe(ap);
1756 }
1757
ba6a1308 1758 spin_unlock_irqrestore(ap->lock, flags);
15869303 1759
77853bf2 1760 return err_mask;
a2a7a662
TH
1761}
1762
2432697b 1763/**
33480a0e 1764 * ata_exec_internal - execute libata internal command
2432697b
TH
1765 * @dev: Device to which the command is sent
1766 * @tf: Taskfile registers for the command and the result
1767 * @cdb: CDB for packet command
1768 * @dma_dir: Data tranfer direction of the command
1769 * @buf: Data buffer of the command
1770 * @buflen: Length of data buffer
2b789108 1771 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1772 *
1773 * Wrapper around ata_exec_internal_sg() which takes simple
1774 * buffer instead of sg list.
1775 *
1776 * LOCKING:
1777 * None. Should be called with kernel context, might sleep.
1778 *
1779 * RETURNS:
1780 * Zero on success, AC_ERR_* mask on failure
1781 */
1782unsigned ata_exec_internal(struct ata_device *dev,
1783 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1784 int dma_dir, void *buf, unsigned int buflen,
1785 unsigned long timeout)
2432697b 1786{
33480a0e
TH
1787 struct scatterlist *psg = NULL, sg;
1788 unsigned int n_elem = 0;
2432697b 1789
33480a0e
TH
1790 if (dma_dir != DMA_NONE) {
1791 WARN_ON(!buf);
1792 sg_init_one(&sg, buf, buflen);
1793 psg = &sg;
1794 n_elem++;
1795 }
2432697b 1796
2b789108
TH
1797 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1798 timeout);
2432697b
TH
1799}
1800
977e6b9f
TH
1801/**
1802 * ata_do_simple_cmd - execute simple internal command
1803 * @dev: Device to which the command is sent
1804 * @cmd: Opcode to execute
1805 *
1806 * Execute a 'simple' command, that only consists of the opcode
1807 * 'cmd' itself, without filling any other registers
1808 *
1809 * LOCKING:
1810 * Kernel thread context (may sleep).
1811 *
1812 * RETURNS:
1813 * Zero on success, AC_ERR_* mask on failure
e58eb583 1814 */
77b08fb5 1815unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1816{
1817 struct ata_taskfile tf;
e58eb583
TH
1818
1819 ata_tf_init(dev, &tf);
1820
1821 tf.command = cmd;
1822 tf.flags |= ATA_TFLAG_DEVICE;
1823 tf.protocol = ATA_PROT_NODATA;
1824
2b789108 1825 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1826}
1827
1bc4ccff
AC
1828/**
1829 * ata_pio_need_iordy - check if iordy needed
1830 * @adev: ATA device
1831 *
1832 * Check if the current speed of the device requires IORDY. Used
1833 * by various controllers for chip configuration.
1834 */
a617c09f 1835
1bc4ccff
AC
1836unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1837{
432729f0
AC
1838 /* Controller doesn't support IORDY. Probably a pointless check
1839 as the caller should know this */
9af5c9c9 1840 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1841 return 0;
432729f0
AC
1842 /* PIO3 and higher it is mandatory */
1843 if (adev->pio_mode > XFER_PIO_2)
1844 return 1;
1845 /* We turn it on when possible */
1846 if (ata_id_has_iordy(adev->id))
1bc4ccff 1847 return 1;
432729f0
AC
1848 return 0;
1849}
2e9edbf8 1850
432729f0
AC
1851/**
1852 * ata_pio_mask_no_iordy - Return the non IORDY mask
1853 * @adev: ATA device
1854 *
1855 * Compute the highest mode possible if we are not using iordy. Return
1856 * -1 if no iordy mode is available.
1857 */
a617c09f 1858
432729f0
AC
1859static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1860{
1bc4ccff 1861 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1862 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1863 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1864 /* Is the speed faster than the drive allows non IORDY ? */
1865 if (pio) {
1866 /* This is cycle times not frequency - watch the logic! */
1867 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1868 return 3 << ATA_SHIFT_PIO;
1869 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1870 }
1871 }
432729f0 1872 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1873}
1874
1da177e4 1875/**
49016aca 1876 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1877 * @dev: target device
1878 * @p_class: pointer to class of the target device (may be changed)
bff04647 1879 * @flags: ATA_READID_* flags
fe635c7e 1880 * @id: buffer to read IDENTIFY data into
1da177e4 1881 *
49016aca
TH
1882 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1883 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1884 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1885 * for pre-ATA4 drives.
1da177e4 1886 *
50a99018 1887 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1888 * now we abort if we hit that case.
50a99018 1889 *
1da177e4 1890 * LOCKING:
49016aca
TH
1891 * Kernel thread context (may sleep)
1892 *
1893 * RETURNS:
1894 * 0 on success, -errno otherwise.
1da177e4 1895 */
a9beec95 1896int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1897 unsigned int flags, u16 *id)
1da177e4 1898{
9af5c9c9 1899 struct ata_port *ap = dev->link->ap;
49016aca 1900 unsigned int class = *p_class;
a0123703 1901 struct ata_taskfile tf;
49016aca
TH
1902 unsigned int err_mask = 0;
1903 const char *reason;
54936f8b 1904 int may_fallback = 1, tried_spinup = 0;
49016aca 1905 int rc;
1da177e4 1906
0dd4b21f 1907 if (ata_msg_ctl(ap))
44877b4e 1908 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1909
49016aca 1910 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1911 retry:
3373efd8 1912 ata_tf_init(dev, &tf);
a0123703 1913
49016aca
TH
1914 switch (class) {
1915 case ATA_DEV_ATA:
a0123703 1916 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1917 break;
1918 case ATA_DEV_ATAPI:
a0123703 1919 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1920 break;
1921 default:
1922 rc = -ENODEV;
1923 reason = "unsupported class";
1924 goto err_out;
1da177e4
LT
1925 }
1926
a0123703 1927 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1928
1929 /* Some devices choke if TF registers contain garbage. Make
1930 * sure those are properly initialized.
1931 */
1932 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1933
1934 /* Device presence detection is unreliable on some
1935 * controllers. Always poll IDENTIFY if available.
1936 */
1937 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1938
3373efd8 1939 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1940 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1941 if (err_mask) {
800b3996 1942 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1943 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1944 ap->print_id, dev->devno);
55a8e2c8
TH
1945 return -ENOENT;
1946 }
1947
54936f8b
TH
1948 /* Device or controller might have reported the wrong
1949 * device class. Give a shot at the other IDENTIFY if
1950 * the current one is aborted by the device.
1951 */
1952 if (may_fallback &&
1953 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1954 may_fallback = 0;
1955
1956 if (class == ATA_DEV_ATA)
1957 class = ATA_DEV_ATAPI;
1958 else
1959 class = ATA_DEV_ATA;
1960 goto retry;
1961 }
1962
49016aca
TH
1963 rc = -EIO;
1964 reason = "I/O error";
1da177e4
LT
1965 goto err_out;
1966 }
1967
54936f8b
TH
1968 /* Falling back doesn't make sense if ID data was read
1969 * successfully at least once.
1970 */
1971 may_fallback = 0;
1972
49016aca 1973 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1974
49016aca 1975 /* sanity check */
a4f5749b 1976 rc = -EINVAL;
6070068b 1977 reason = "device reports invalid type";
a4f5749b
TH
1978
1979 if (class == ATA_DEV_ATA) {
1980 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1981 goto err_out;
1982 } else {
1983 if (ata_id_is_ata(id))
1984 goto err_out;
49016aca
TH
1985 }
1986
169439c2
ML
1987 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1988 tried_spinup = 1;
1989 /*
1990 * Drive powered-up in standby mode, and requires a specific
1991 * SET_FEATURES spin-up subcommand before it will accept
1992 * anything other than the original IDENTIFY command.
1993 */
218f3d30 1994 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1995 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1996 rc = -EIO;
1997 reason = "SPINUP failed";
1998 goto err_out;
1999 }
2000 /*
2001 * If the drive initially returned incomplete IDENTIFY info,
2002 * we now must reissue the IDENTIFY command.
2003 */
2004 if (id[2] == 0x37c8)
2005 goto retry;
2006 }
2007
bff04647 2008 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2009 /*
2010 * The exact sequence expected by certain pre-ATA4 drives is:
2011 * SRST RESET
50a99018
AC
2012 * IDENTIFY (optional in early ATA)
2013 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2014 * anything else..
2015 * Some drives were very specific about that exact sequence.
50a99018
AC
2016 *
2017 * Note that ATA4 says lba is mandatory so the second check
2018 * shoud never trigger.
49016aca
TH
2019 */
2020 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2021 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2022 if (err_mask) {
2023 rc = -EIO;
2024 reason = "INIT_DEV_PARAMS failed";
2025 goto err_out;
2026 }
2027
2028 /* current CHS translation info (id[53-58]) might be
2029 * changed. reread the identify device info.
2030 */
bff04647 2031 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2032 goto retry;
2033 }
2034 }
2035
2036 *p_class = class;
fe635c7e 2037
49016aca
TH
2038 return 0;
2039
2040 err_out:
88574551 2041 if (ata_msg_warn(ap))
0dd4b21f 2042 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2043 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2044 return rc;
2045}
2046
3373efd8 2047static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2048{
9af5c9c9
TH
2049 struct ata_port *ap = dev->link->ap;
2050 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2051}
2052
a6e6ce8e
TH
2053static void ata_dev_config_ncq(struct ata_device *dev,
2054 char *desc, size_t desc_sz)
2055{
9af5c9c9 2056 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2057 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2058
2059 if (!ata_id_has_ncq(dev->id)) {
2060 desc[0] = '\0';
2061 return;
2062 }
75683fe7 2063 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2064 snprintf(desc, desc_sz, "NCQ (not used)");
2065 return;
2066 }
a6e6ce8e 2067 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2068 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2069 dev->flags |= ATA_DFLAG_NCQ;
2070 }
2071
2072 if (hdepth >= ddepth)
2073 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2074 else
2075 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2076}
2077
49016aca 2078/**
ffeae418 2079 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2080 * @dev: Target device to configure
2081 *
2082 * Configure @dev according to @dev->id. Generic and low-level
2083 * driver specific fixups are also applied.
49016aca
TH
2084 *
2085 * LOCKING:
ffeae418
TH
2086 * Kernel thread context (may sleep)
2087 *
2088 * RETURNS:
2089 * 0 on success, -errno otherwise
49016aca 2090 */
efdaedc4 2091int ata_dev_configure(struct ata_device *dev)
49016aca 2092{
9af5c9c9
TH
2093 struct ata_port *ap = dev->link->ap;
2094 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2095 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2096 const u16 *id = dev->id;
ff8854b2 2097 unsigned int xfer_mask;
b352e57d 2098 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2099 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2100 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2101 int rc;
49016aca 2102
0dd4b21f 2103 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2104 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2105 __FUNCTION__);
ffeae418 2106 return 0;
49016aca
TH
2107 }
2108
0dd4b21f 2109 if (ata_msg_probe(ap))
44877b4e 2110 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2111
75683fe7
TH
2112 /* set horkage */
2113 dev->horkage |= ata_dev_blacklisted(dev);
2114
6746544c
TH
2115 /* let ACPI work its magic */
2116 rc = ata_acpi_on_devcfg(dev);
2117 if (rc)
2118 return rc;
08573a86 2119
05027adc
TH
2120 /* massage HPA, do it early as it might change IDENTIFY data */
2121 rc = ata_hpa_resize(dev);
2122 if (rc)
2123 return rc;
2124
c39f5ebe 2125 /* print device capabilities */
0dd4b21f 2126 if (ata_msg_probe(ap))
88574551
TH
2127 ata_dev_printk(dev, KERN_DEBUG,
2128 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2129 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2130 __FUNCTION__,
f15a1daf
TH
2131 id[49], id[82], id[83], id[84],
2132 id[85], id[86], id[87], id[88]);
c39f5ebe 2133
208a9933 2134 /* initialize to-be-configured parameters */
ea1dd4e1 2135 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2136 dev->max_sectors = 0;
2137 dev->cdb_len = 0;
2138 dev->n_sectors = 0;
2139 dev->cylinders = 0;
2140 dev->heads = 0;
2141 dev->sectors = 0;
2142
1da177e4
LT
2143 /*
2144 * common ATA, ATAPI feature tests
2145 */
2146
ff8854b2 2147 /* find max transfer mode; for printk only */
1148c3a7 2148 xfer_mask = ata_id_xfermask(id);
1da177e4 2149
0dd4b21f
BP
2150 if (ata_msg_probe(ap))
2151 ata_dump_id(id);
1da177e4 2152
ef143d57
AL
2153 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2154 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2155 sizeof(fwrevbuf));
2156
2157 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2158 sizeof(modelbuf));
2159
1da177e4
LT
2160 /* ATA-specific feature tests */
2161 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2162 if (ata_id_is_cfa(id)) {
2163 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2164 ata_dev_printk(dev, KERN_WARNING,
2165 "supports DRM functions and may "
2166 "not be fully accessable.\n");
b352e57d 2167 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2168 } else {
2dcb407e 2169 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2170 /* Warn the user if the device has TPM extensions */
2171 if (ata_id_has_tpm(id))
2172 ata_dev_printk(dev, KERN_WARNING,
2173 "supports DRM functions and may "
2174 "not be fully accessable.\n");
2175 }
b352e57d 2176
1148c3a7 2177 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2178
3f64f565
EM
2179 if (dev->id[59] & 0x100)
2180 dev->multi_count = dev->id[59] & 0xff;
2181
1148c3a7 2182 if (ata_id_has_lba(id)) {
4c2d721a 2183 const char *lba_desc;
a6e6ce8e 2184 char ncq_desc[20];
8bf62ece 2185
4c2d721a
TH
2186 lba_desc = "LBA";
2187 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2188 if (ata_id_has_lba48(id)) {
8bf62ece 2189 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2190 lba_desc = "LBA48";
6fc49adb
TH
2191
2192 if (dev->n_sectors >= (1UL << 28) &&
2193 ata_id_has_flush_ext(id))
2194 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2195 }
8bf62ece 2196
a6e6ce8e
TH
2197 /* config NCQ */
2198 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2199
8bf62ece 2200 /* print device info to dmesg */
3f64f565
EM
2201 if (ata_msg_drv(ap) && print_info) {
2202 ata_dev_printk(dev, KERN_INFO,
2203 "%s: %s, %s, max %s\n",
2204 revbuf, modelbuf, fwrevbuf,
2205 ata_mode_string(xfer_mask));
2206 ata_dev_printk(dev, KERN_INFO,
2207 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2208 (unsigned long long)dev->n_sectors,
3f64f565
EM
2209 dev->multi_count, lba_desc, ncq_desc);
2210 }
ffeae418 2211 } else {
8bf62ece
AL
2212 /* CHS */
2213
2214 /* Default translation */
1148c3a7
TH
2215 dev->cylinders = id[1];
2216 dev->heads = id[3];
2217 dev->sectors = id[6];
8bf62ece 2218
1148c3a7 2219 if (ata_id_current_chs_valid(id)) {
8bf62ece 2220 /* Current CHS translation is valid. */
1148c3a7
TH
2221 dev->cylinders = id[54];
2222 dev->heads = id[55];
2223 dev->sectors = id[56];
8bf62ece
AL
2224 }
2225
2226 /* print device info to dmesg */
3f64f565 2227 if (ata_msg_drv(ap) && print_info) {
88574551 2228 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2229 "%s: %s, %s, max %s\n",
2230 revbuf, modelbuf, fwrevbuf,
2231 ata_mode_string(xfer_mask));
a84471fe 2232 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2233 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2234 (unsigned long long)dev->n_sectors,
2235 dev->multi_count, dev->cylinders,
2236 dev->heads, dev->sectors);
2237 }
07f6f7d0
AL
2238 }
2239
6e7846e9 2240 dev->cdb_len = 16;
1da177e4
LT
2241 }
2242
2243 /* ATAPI-specific feature tests */
2c13b7ce 2244 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2245 const char *cdb_intr_string = "";
2246 const char *atapi_an_string = "";
7d77b247 2247 u32 sntf;
08a556db 2248
1148c3a7 2249 rc = atapi_cdb_len(id);
1da177e4 2250 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2251 if (ata_msg_warn(ap))
88574551
TH
2252 ata_dev_printk(dev, KERN_WARNING,
2253 "unsupported CDB len\n");
ffeae418 2254 rc = -EINVAL;
1da177e4
LT
2255 goto err_out_nosup;
2256 }
6e7846e9 2257 dev->cdb_len = (unsigned int) rc;
1da177e4 2258
7d77b247
TH
2259 /* Enable ATAPI AN if both the host and device have
2260 * the support. If PMP is attached, SNTF is required
2261 * to enable ATAPI AN to discern between PHY status
2262 * changed notifications and ATAPI ANs.
9f45cbd3 2263 */
7d77b247
TH
2264 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2265 (!ap->nr_pmp_links ||
2266 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2267 unsigned int err_mask;
2268
9f45cbd3 2269 /* issue SET feature command to turn this on */
218f3d30
JG
2270 err_mask = ata_dev_set_feature(dev,
2271 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2272 if (err_mask)
9f45cbd3 2273 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2274 "failed to enable ATAPI AN "
2275 "(err_mask=0x%x)\n", err_mask);
2276 else {
9f45cbd3 2277 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2278 atapi_an_string = ", ATAPI AN";
2279 }
9f45cbd3
KCA
2280 }
2281
08a556db 2282 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2283 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2284 cdb_intr_string = ", CDB intr";
2285 }
312f7da2 2286
1da177e4 2287 /* print device info to dmesg */
5afc8142 2288 if (ata_msg_drv(ap) && print_info)
ef143d57 2289 ata_dev_printk(dev, KERN_INFO,
854c73a2 2290 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2291 modelbuf, fwrevbuf,
12436c30 2292 ata_mode_string(xfer_mask),
854c73a2 2293 cdb_intr_string, atapi_an_string);
1da177e4
LT
2294 }
2295
914ed354
TH
2296 /* determine max_sectors */
2297 dev->max_sectors = ATA_MAX_SECTORS;
2298 if (dev->flags & ATA_DFLAG_LBA48)
2299 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2300
ca77329f
KCA
2301 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2302 if (ata_id_has_hipm(dev->id))
2303 dev->flags |= ATA_DFLAG_HIPM;
2304 if (ata_id_has_dipm(dev->id))
2305 dev->flags |= ATA_DFLAG_DIPM;
2306 }
2307
93590859
AC
2308 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2309 /* Let the user know. We don't want to disallow opens for
2310 rescue purposes, or in case the vendor is just a blithering
2311 idiot */
2dcb407e 2312 if (print_info) {
93590859
AC
2313 ata_dev_printk(dev, KERN_WARNING,
2314"Drive reports diagnostics failure. This may indicate a drive\n");
2315 ata_dev_printk(dev, KERN_WARNING,
2316"fault or invalid emulation. Contact drive vendor for information.\n");
2317 }
2318 }
2319
4b2f3ede 2320 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2321 if (ata_dev_knobble(dev)) {
5afc8142 2322 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2323 ata_dev_printk(dev, KERN_INFO,
2324 "applying bridge limits\n");
5a529139 2325 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2326 dev->max_sectors = ATA_MAX_SECTORS;
2327 }
2328
f8d8e579 2329 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2330 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2331 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2332 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2333 }
f8d8e579 2334
75683fe7 2335 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2336 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2337 dev->max_sectors);
18d6e9d5 2338
ca77329f
KCA
2339 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2340 dev->horkage |= ATA_HORKAGE_IPM;
2341
2342 /* reset link pm_policy for this port to no pm */
2343 ap->pm_policy = MAX_PERFORMANCE;
2344 }
2345
4b2f3ede 2346 if (ap->ops->dev_config)
cd0d3bbc 2347 ap->ops->dev_config(dev);
4b2f3ede 2348
0dd4b21f
BP
2349 if (ata_msg_probe(ap))
2350 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2351 __FUNCTION__, ata_chk_status(ap));
ffeae418 2352 return 0;
1da177e4
LT
2353
2354err_out_nosup:
0dd4b21f 2355 if (ata_msg_probe(ap))
88574551
TH
2356 ata_dev_printk(dev, KERN_DEBUG,
2357 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2358 return rc;
1da177e4
LT
2359}
2360
be0d18df 2361/**
2e41e8e6 2362 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2363 * @ap: port
2364 *
2e41e8e6 2365 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2366 * detection.
2367 */
2368
2369int ata_cable_40wire(struct ata_port *ap)
2370{
2371 return ATA_CBL_PATA40;
2372}
2373
2374/**
2e41e8e6 2375 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2376 * @ap: port
2377 *
2e41e8e6 2378 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2379 * detection.
2380 */
2381
2382int ata_cable_80wire(struct ata_port *ap)
2383{
2384 return ATA_CBL_PATA80;
2385}
2386
2387/**
2388 * ata_cable_unknown - return unknown PATA cable.
2389 * @ap: port
2390 *
2391 * Helper method for drivers which have no PATA cable detection.
2392 */
2393
2394int ata_cable_unknown(struct ata_port *ap)
2395{
2396 return ATA_CBL_PATA_UNK;
2397}
2398
2399/**
2400 * ata_cable_sata - return SATA cable type
2401 * @ap: port
2402 *
2403 * Helper method for drivers which have SATA cables
2404 */
2405
2406int ata_cable_sata(struct ata_port *ap)
2407{
2408 return ATA_CBL_SATA;
2409}
2410
1da177e4
LT
2411/**
2412 * ata_bus_probe - Reset and probe ATA bus
2413 * @ap: Bus to probe
2414 *
0cba632b
JG
2415 * Master ATA bus probing function. Initiates a hardware-dependent
2416 * bus reset, then attempts to identify any devices found on
2417 * the bus.
2418 *
1da177e4 2419 * LOCKING:
0cba632b 2420 * PCI/etc. bus probe sem.
1da177e4
LT
2421 *
2422 * RETURNS:
96072e69 2423 * Zero on success, negative errno otherwise.
1da177e4
LT
2424 */
2425
80289167 2426int ata_bus_probe(struct ata_port *ap)
1da177e4 2427{
28ca5c57 2428 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2429 int tries[ATA_MAX_DEVICES];
f58229f8 2430 int rc;
e82cbdb9 2431 struct ata_device *dev;
1da177e4 2432
28ca5c57 2433 ata_port_probe(ap);
c19ba8af 2434
f58229f8
TH
2435 ata_link_for_each_dev(dev, &ap->link)
2436 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2437
2438 retry:
cdeab114
TH
2439 ata_link_for_each_dev(dev, &ap->link) {
2440 /* If we issue an SRST then an ATA drive (not ATAPI)
2441 * may change configuration and be in PIO0 timing. If
2442 * we do a hard reset (or are coming from power on)
2443 * this is true for ATA or ATAPI. Until we've set a
2444 * suitable controller mode we should not touch the
2445 * bus as we may be talking too fast.
2446 */
2447 dev->pio_mode = XFER_PIO_0;
2448
2449 /* If the controller has a pio mode setup function
2450 * then use it to set the chipset to rights. Don't
2451 * touch the DMA setup as that will be dealt with when
2452 * configuring devices.
2453 */
2454 if (ap->ops->set_piomode)
2455 ap->ops->set_piomode(ap, dev);
2456 }
2457
2044470c 2458 /* reset and determine device classes */
52783c5d 2459 ap->ops->phy_reset(ap);
2061a47a 2460
f58229f8 2461 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2462 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2463 dev->class != ATA_DEV_UNKNOWN)
2464 classes[dev->devno] = dev->class;
2465 else
2466 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2467
52783c5d 2468 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2469 }
1da177e4 2470
52783c5d 2471 ata_port_probe(ap);
2044470c 2472
f31f0cc2
JG
2473 /* read IDENTIFY page and configure devices. We have to do the identify
2474 specific sequence bass-ackwards so that PDIAG- is released by
2475 the slave device */
2476
f58229f8
TH
2477 ata_link_for_each_dev(dev, &ap->link) {
2478 if (tries[dev->devno])
2479 dev->class = classes[dev->devno];
ffeae418 2480
14d2bac1 2481 if (!ata_dev_enabled(dev))
ffeae418 2482 continue;
ffeae418 2483
bff04647
TH
2484 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2485 dev->id);
14d2bac1
TH
2486 if (rc)
2487 goto fail;
f31f0cc2
JG
2488 }
2489
be0d18df
AC
2490 /* Now ask for the cable type as PDIAG- should have been released */
2491 if (ap->ops->cable_detect)
2492 ap->cbl = ap->ops->cable_detect(ap);
2493
614fe29b
AC
2494 /* We may have SATA bridge glue hiding here irrespective of the
2495 reported cable types and sensed types */
2496 ata_link_for_each_dev(dev, &ap->link) {
2497 if (!ata_dev_enabled(dev))
2498 continue;
2499 /* SATA drives indicate we have a bridge. We don't know which
2500 end of the link the bridge is which is a problem */
2501 if (ata_id_is_sata(dev->id))
2502 ap->cbl = ATA_CBL_SATA;
2503 }
2504
f31f0cc2
JG
2505 /* After the identify sequence we can now set up the devices. We do
2506 this in the normal order so that the user doesn't get confused */
2507
f58229f8 2508 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2509 if (!ata_dev_enabled(dev))
2510 continue;
14d2bac1 2511
9af5c9c9 2512 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2513 rc = ata_dev_configure(dev);
9af5c9c9 2514 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2515 if (rc)
2516 goto fail;
1da177e4
LT
2517 }
2518
e82cbdb9 2519 /* configure transfer mode */
0260731f 2520 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2521 if (rc)
51713d35 2522 goto fail;
1da177e4 2523
f58229f8
TH
2524 ata_link_for_each_dev(dev, &ap->link)
2525 if (ata_dev_enabled(dev))
e82cbdb9 2526 return 0;
1da177e4 2527
e82cbdb9
TH
2528 /* no device present, disable port */
2529 ata_port_disable(ap);
96072e69 2530 return -ENODEV;
14d2bac1
TH
2531
2532 fail:
4ae72a1e
TH
2533 tries[dev->devno]--;
2534
14d2bac1
TH
2535 switch (rc) {
2536 case -EINVAL:
4ae72a1e 2537 /* eeek, something went very wrong, give up */
14d2bac1
TH
2538 tries[dev->devno] = 0;
2539 break;
4ae72a1e
TH
2540
2541 case -ENODEV:
2542 /* give it just one more chance */
2543 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2544 case -EIO:
4ae72a1e
TH
2545 if (tries[dev->devno] == 1) {
2546 /* This is the last chance, better to slow
2547 * down than lose it.
2548 */
936fd732 2549 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2550 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2551 }
14d2bac1
TH
2552 }
2553
4ae72a1e 2554 if (!tries[dev->devno])
3373efd8 2555 ata_dev_disable(dev);
ec573755 2556
14d2bac1 2557 goto retry;
1da177e4
LT
2558}
2559
2560/**
0cba632b
JG
2561 * ata_port_probe - Mark port as enabled
2562 * @ap: Port for which we indicate enablement
1da177e4 2563 *
0cba632b
JG
2564 * Modify @ap data structure such that the system
2565 * thinks that the entire port is enabled.
2566 *
cca3974e 2567 * LOCKING: host lock, or some other form of
0cba632b 2568 * serialization.
1da177e4
LT
2569 */
2570
2571void ata_port_probe(struct ata_port *ap)
2572{
198e0fed 2573 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2574}
2575
3be680b7
TH
2576/**
2577 * sata_print_link_status - Print SATA link status
936fd732 2578 * @link: SATA link to printk link status about
3be680b7
TH
2579 *
2580 * This function prints link speed and status of a SATA link.
2581 *
2582 * LOCKING:
2583 * None.
2584 */
936fd732 2585void sata_print_link_status(struct ata_link *link)
3be680b7 2586{
6d5f9732 2587 u32 sstatus, scontrol, tmp;
3be680b7 2588
936fd732 2589 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2590 return;
936fd732 2591 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2592
936fd732 2593 if (ata_link_online(link)) {
3be680b7 2594 tmp = (sstatus >> 4) & 0xf;
936fd732 2595 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2596 "SATA link up %s (SStatus %X SControl %X)\n",
2597 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2598 } else {
936fd732 2599 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2600 "SATA link down (SStatus %X SControl %X)\n",
2601 sstatus, scontrol);
3be680b7
TH
2602 }
2603}
2604
ebdfca6e
AC
2605/**
2606 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2607 * @adev: device
2608 *
2609 * Obtain the other device on the same cable, or if none is
2610 * present NULL is returned
2611 */
2e9edbf8 2612
3373efd8 2613struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2614{
9af5c9c9
TH
2615 struct ata_link *link = adev->link;
2616 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2617 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2618 return NULL;
2619 return pair;
2620}
2621
1da177e4 2622/**
780a87f7
JG
2623 * ata_port_disable - Disable port.
2624 * @ap: Port to be disabled.
1da177e4 2625 *
780a87f7
JG
2626 * Modify @ap data structure such that the system
2627 * thinks that the entire port is disabled, and should
2628 * never attempt to probe or communicate with devices
2629 * on this port.
2630 *
cca3974e 2631 * LOCKING: host lock, or some other form of
780a87f7 2632 * serialization.
1da177e4
LT
2633 */
2634
2635void ata_port_disable(struct ata_port *ap)
2636{
9af5c9c9
TH
2637 ap->link.device[0].class = ATA_DEV_NONE;
2638 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2639 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2640}
2641
1c3fae4d 2642/**
3c567b7d 2643 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2644 * @link: Link to adjust SATA spd limit for
1c3fae4d 2645 *
936fd732 2646 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2647 * function only adjusts the limit. The change must be applied
3c567b7d 2648 * using sata_set_spd().
1c3fae4d
TH
2649 *
2650 * LOCKING:
2651 * Inherited from caller.
2652 *
2653 * RETURNS:
2654 * 0 on success, negative errno on failure
2655 */
936fd732 2656int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2657{
81952c54
TH
2658 u32 sstatus, spd, mask;
2659 int rc, highbit;
1c3fae4d 2660
936fd732 2661 if (!sata_scr_valid(link))
008a7896
TH
2662 return -EOPNOTSUPP;
2663
2664 /* If SCR can be read, use it to determine the current SPD.
936fd732 2665 * If not, use cached value in link->sata_spd.
008a7896 2666 */
936fd732 2667 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2668 if (rc == 0)
2669 spd = (sstatus >> 4) & 0xf;
2670 else
936fd732 2671 spd = link->sata_spd;
1c3fae4d 2672
936fd732 2673 mask = link->sata_spd_limit;
1c3fae4d
TH
2674 if (mask <= 1)
2675 return -EINVAL;
008a7896
TH
2676
2677 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2678 highbit = fls(mask) - 1;
2679 mask &= ~(1 << highbit);
2680
008a7896
TH
2681 /* Mask off all speeds higher than or equal to the current
2682 * one. Force 1.5Gbps if current SPD is not available.
2683 */
2684 if (spd > 1)
2685 mask &= (1 << (spd - 1)) - 1;
2686 else
2687 mask &= 1;
2688
2689 /* were we already at the bottom? */
1c3fae4d
TH
2690 if (!mask)
2691 return -EINVAL;
2692
936fd732 2693 link->sata_spd_limit = mask;
1c3fae4d 2694
936fd732 2695 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2696 sata_spd_string(fls(mask)));
1c3fae4d
TH
2697
2698 return 0;
2699}
2700
936fd732 2701static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2702{
5270222f
TH
2703 struct ata_link *host_link = &link->ap->link;
2704 u32 limit, target, spd;
1c3fae4d 2705
5270222f
TH
2706 limit = link->sata_spd_limit;
2707
2708 /* Don't configure downstream link faster than upstream link.
2709 * It doesn't speed up anything and some PMPs choke on such
2710 * configuration.
2711 */
2712 if (!ata_is_host_link(link) && host_link->sata_spd)
2713 limit &= (1 << host_link->sata_spd) - 1;
2714
2715 if (limit == UINT_MAX)
2716 target = 0;
1c3fae4d 2717 else
5270222f 2718 target = fls(limit);
1c3fae4d
TH
2719
2720 spd = (*scontrol >> 4) & 0xf;
5270222f 2721 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2722
5270222f 2723 return spd != target;
1c3fae4d
TH
2724}
2725
2726/**
3c567b7d 2727 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2728 * @link: Link in question
1c3fae4d
TH
2729 *
2730 * Test whether the spd limit in SControl matches
936fd732 2731 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2732 * whether hardreset is necessary to apply SATA spd
2733 * configuration.
2734 *
2735 * LOCKING:
2736 * Inherited from caller.
2737 *
2738 * RETURNS:
2739 * 1 if SATA spd configuration is needed, 0 otherwise.
2740 */
936fd732 2741int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2742{
2743 u32 scontrol;
2744
936fd732 2745 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2746 return 1;
1c3fae4d 2747
936fd732 2748 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2749}
2750
2751/**
3c567b7d 2752 * sata_set_spd - set SATA spd according to spd limit
936fd732 2753 * @link: Link to set SATA spd for
1c3fae4d 2754 *
936fd732 2755 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2756 *
2757 * LOCKING:
2758 * Inherited from caller.
2759 *
2760 * RETURNS:
2761 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2762 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2763 */
936fd732 2764int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2765{
2766 u32 scontrol;
81952c54 2767 int rc;
1c3fae4d 2768
936fd732 2769 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2770 return rc;
1c3fae4d 2771
936fd732 2772 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2773 return 0;
2774
936fd732 2775 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2776 return rc;
2777
1c3fae4d
TH
2778 return 1;
2779}
2780
452503f9
AC
2781/*
2782 * This mode timing computation functionality is ported over from
2783 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2784 */
2785/*
b352e57d 2786 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2787 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2788 * for UDMA6, which is currently supported only by Maxtor drives.
2789 *
2790 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2791 */
2792
2793static const struct ata_timing ata_timing[] = {
2794
2795 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2796 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2797 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2798 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2799
b352e57d
AC
2800 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2801 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2802 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2803 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2804 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2805
2806/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2807
452503f9
AC
2808 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2809 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2810 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2811
452503f9
AC
2812 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2813 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2814 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2815
b352e57d
AC
2816 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2817 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2818 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2819 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2820
2821 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2822 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2823 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2824
2825/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2826
2827 { 0xFF }
2828};
2829
2dcb407e
JG
2830#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2831#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2832
2833static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2834{
2835 q->setup = EZ(t->setup * 1000, T);
2836 q->act8b = EZ(t->act8b * 1000, T);
2837 q->rec8b = EZ(t->rec8b * 1000, T);
2838 q->cyc8b = EZ(t->cyc8b * 1000, T);
2839 q->active = EZ(t->active * 1000, T);
2840 q->recover = EZ(t->recover * 1000, T);
2841 q->cycle = EZ(t->cycle * 1000, T);
2842 q->udma = EZ(t->udma * 1000, UT);
2843}
2844
2845void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2846 struct ata_timing *m, unsigned int what)
2847{
2848 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2849 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2850 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2851 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2852 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2853 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2854 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2855 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2856}
2857
2dcb407e 2858static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2859{
2860 const struct ata_timing *t;
2861
2862 for (t = ata_timing; t->mode != speed; t++)
91190758 2863 if (t->mode == 0xFF)
452503f9 2864 return NULL;
2e9edbf8 2865 return t;
452503f9
AC
2866}
2867
2868int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2869 struct ata_timing *t, int T, int UT)
2870{
2871 const struct ata_timing *s;
2872 struct ata_timing p;
2873
2874 /*
2e9edbf8 2875 * Find the mode.
75b1f2f8 2876 */
452503f9
AC
2877
2878 if (!(s = ata_timing_find_mode(speed)))
2879 return -EINVAL;
2880
75b1f2f8
AL
2881 memcpy(t, s, sizeof(*s));
2882
452503f9
AC
2883 /*
2884 * If the drive is an EIDE drive, it can tell us it needs extended
2885 * PIO/MW_DMA cycle timing.
2886 */
2887
2888 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2889 memset(&p, 0, sizeof(p));
2dcb407e 2890 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2891 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2892 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2893 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2894 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2895 }
2896 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2897 }
2898
2899 /*
2900 * Convert the timing to bus clock counts.
2901 */
2902
75b1f2f8 2903 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2904
2905 /*
c893a3ae
RD
2906 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2907 * S.M.A.R.T * and some other commands. We have to ensure that the
2908 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2909 */
2910
fd3367af 2911 if (speed > XFER_PIO_6) {
452503f9
AC
2912 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2913 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2914 }
2915
2916 /*
c893a3ae 2917 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2918 */
2919
2920 if (t->act8b + t->rec8b < t->cyc8b) {
2921 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2922 t->rec8b = t->cyc8b - t->act8b;
2923 }
2924
2925 if (t->active + t->recover < t->cycle) {
2926 t->active += (t->cycle - (t->active + t->recover)) / 2;
2927 t->recover = t->cycle - t->active;
2928 }
a617c09f 2929
4f701d1e
AC
2930 /* In a few cases quantisation may produce enough errors to
2931 leave t->cycle too low for the sum of active and recovery
2932 if so we must correct this */
2933 if (t->active + t->recover > t->cycle)
2934 t->cycle = t->active + t->recover;
452503f9
AC
2935
2936 return 0;
2937}
2938
cf176e1a
TH
2939/**
2940 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2941 * @dev: Device to adjust xfer masks
458337db 2942 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2943 *
2944 * Adjust xfer masks of @dev downward. Note that this function
2945 * does not apply the change. Invoking ata_set_mode() afterwards
2946 * will apply the limit.
2947 *
2948 * LOCKING:
2949 * Inherited from caller.
2950 *
2951 * RETURNS:
2952 * 0 on success, negative errno on failure
2953 */
458337db 2954int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2955{
458337db
TH
2956 char buf[32];
2957 unsigned int orig_mask, xfer_mask;
2958 unsigned int pio_mask, mwdma_mask, udma_mask;
2959 int quiet, highbit;
cf176e1a 2960
458337db
TH
2961 quiet = !!(sel & ATA_DNXFER_QUIET);
2962 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2963
458337db
TH
2964 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2965 dev->mwdma_mask,
2966 dev->udma_mask);
2967 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2968
458337db
TH
2969 switch (sel) {
2970 case ATA_DNXFER_PIO:
2971 highbit = fls(pio_mask) - 1;
2972 pio_mask &= ~(1 << highbit);
2973 break;
2974
2975 case ATA_DNXFER_DMA:
2976 if (udma_mask) {
2977 highbit = fls(udma_mask) - 1;
2978 udma_mask &= ~(1 << highbit);
2979 if (!udma_mask)
2980 return -ENOENT;
2981 } else if (mwdma_mask) {
2982 highbit = fls(mwdma_mask) - 1;
2983 mwdma_mask &= ~(1 << highbit);
2984 if (!mwdma_mask)
2985 return -ENOENT;
2986 }
2987 break;
2988
2989 case ATA_DNXFER_40C:
2990 udma_mask &= ATA_UDMA_MASK_40C;
2991 break;
2992
2993 case ATA_DNXFER_FORCE_PIO0:
2994 pio_mask &= 1;
2995 case ATA_DNXFER_FORCE_PIO:
2996 mwdma_mask = 0;
2997 udma_mask = 0;
2998 break;
2999
458337db
TH
3000 default:
3001 BUG();
3002 }
3003
3004 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3005
3006 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3007 return -ENOENT;
3008
3009 if (!quiet) {
3010 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3011 snprintf(buf, sizeof(buf), "%s:%s",
3012 ata_mode_string(xfer_mask),
3013 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3014 else
3015 snprintf(buf, sizeof(buf), "%s",
3016 ata_mode_string(xfer_mask));
3017
3018 ata_dev_printk(dev, KERN_WARNING,
3019 "limiting speed to %s\n", buf);
3020 }
cf176e1a
TH
3021
3022 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3023 &dev->udma_mask);
3024
cf176e1a 3025 return 0;
cf176e1a
TH
3026}
3027
3373efd8 3028static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3029{
9af5c9c9 3030 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3031 unsigned int err_mask;
3032 int rc;
1da177e4 3033
e8384607 3034 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3035 if (dev->xfer_shift == ATA_SHIFT_PIO)
3036 dev->flags |= ATA_DFLAG_PIO;
3037
3373efd8 3038 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3039
11750a40
AC
3040 /* Old CFA may refuse this command, which is just fine */
3041 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3042 err_mask &= ~AC_ERR_DEV;
3043
0bc2a79a
AC
3044 /* Some very old devices and some bad newer ones fail any kind of
3045 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3046 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3047 dev->pio_mode <= XFER_PIO_2)
3048 err_mask &= ~AC_ERR_DEV;
2dcb407e 3049
3acaf94b
AC
3050 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3051 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3052 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3053 dev->dma_mode == XFER_MW_DMA_0 &&
3054 (dev->id[63] >> 8) & 1)
3055 err_mask &= ~AC_ERR_DEV;
3056
83206a29 3057 if (err_mask) {
f15a1daf
TH
3058 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3059 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3060 return -EIO;
3061 }
1da177e4 3062
baa1e78a 3063 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3064 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3065 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3066 if (rc)
83206a29 3067 return rc;
48a8a14f 3068
23e71c3d
TH
3069 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3070 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3071
f15a1daf
TH
3072 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3073 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3074 return 0;
1da177e4
LT
3075}
3076
1da177e4 3077/**
04351821 3078 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3079 * @link: link on which timings will be programmed
e82cbdb9 3080 * @r_failed_dev: out paramter for failed device
1da177e4 3081 *
04351821
AC
3082 * Standard implementation of the function used to tune and set
3083 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3084 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3085 * returned in @r_failed_dev.
780a87f7 3086 *
1da177e4 3087 * LOCKING:
0cba632b 3088 * PCI/etc. bus probe sem.
e82cbdb9
TH
3089 *
3090 * RETURNS:
3091 * 0 on success, negative errno otherwise
1da177e4 3092 */
04351821 3093
0260731f 3094int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3095{
0260731f 3096 struct ata_port *ap = link->ap;
e8e0619f 3097 struct ata_device *dev;
f58229f8 3098 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3099
a6d5a51c 3100 /* step 1: calculate xfer_mask */
f58229f8 3101 ata_link_for_each_dev(dev, link) {
acf356b1 3102 unsigned int pio_mask, dma_mask;
b3a70601 3103 unsigned int mode_mask;
a6d5a51c 3104
e1211e3f 3105 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3106 continue;
3107
b3a70601
AC
3108 mode_mask = ATA_DMA_MASK_ATA;
3109 if (dev->class == ATA_DEV_ATAPI)
3110 mode_mask = ATA_DMA_MASK_ATAPI;
3111 else if (ata_id_is_cfa(dev->id))
3112 mode_mask = ATA_DMA_MASK_CFA;
3113
3373efd8 3114 ata_dev_xfermask(dev);
1da177e4 3115
acf356b1
TH
3116 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3117 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3118
3119 if (libata_dma_mask & mode_mask)
3120 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3121 else
3122 dma_mask = 0;
3123
acf356b1
TH
3124 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3125 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3126
4f65977d 3127 found = 1;
5444a6f4
AC
3128 if (dev->dma_mode)
3129 used_dma = 1;
a6d5a51c 3130 }
4f65977d 3131 if (!found)
e82cbdb9 3132 goto out;
a6d5a51c
TH
3133
3134 /* step 2: always set host PIO timings */
f58229f8 3135 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3136 if (!ata_dev_enabled(dev))
3137 continue;
3138
3139 if (!dev->pio_mode) {
f15a1daf 3140 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3141 rc = -EINVAL;
e82cbdb9 3142 goto out;
e8e0619f
TH
3143 }
3144
3145 dev->xfer_mode = dev->pio_mode;
3146 dev->xfer_shift = ATA_SHIFT_PIO;
3147 if (ap->ops->set_piomode)
3148 ap->ops->set_piomode(ap, dev);
3149 }
1da177e4 3150
a6d5a51c 3151 /* step 3: set host DMA timings */
f58229f8 3152 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3153 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3154 continue;
3155
3156 dev->xfer_mode = dev->dma_mode;
3157 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3158 if (ap->ops->set_dmamode)
3159 ap->ops->set_dmamode(ap, dev);
3160 }
1da177e4
LT
3161
3162 /* step 4: update devices' xfer mode */
f58229f8 3163 ata_link_for_each_dev(dev, link) {
18d90deb 3164 /* don't update suspended devices' xfer mode */
9666f400 3165 if (!ata_dev_enabled(dev))
83206a29
TH
3166 continue;
3167
3373efd8 3168 rc = ata_dev_set_mode(dev);
5bbc53f4 3169 if (rc)
e82cbdb9 3170 goto out;
83206a29 3171 }
1da177e4 3172
e8e0619f
TH
3173 /* Record simplex status. If we selected DMA then the other
3174 * host channels are not permitted to do so.
5444a6f4 3175 */
cca3974e 3176 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3177 ap->host->simplex_claimed = ap;
5444a6f4 3178
e82cbdb9
TH
3179 out:
3180 if (rc)
3181 *r_failed_dev = dev;
3182 return rc;
1da177e4
LT
3183}
3184
1fdffbce
JG
3185/**
3186 * ata_tf_to_host - issue ATA taskfile to host controller
3187 * @ap: port to which command is being issued
3188 * @tf: ATA taskfile register set
3189 *
3190 * Issues ATA taskfile register set to ATA host controller,
3191 * with proper synchronization with interrupt handler and
3192 * other threads.
3193 *
3194 * LOCKING:
cca3974e 3195 * spin_lock_irqsave(host lock)
1fdffbce
JG
3196 */
3197
3198static inline void ata_tf_to_host(struct ata_port *ap,
3199 const struct ata_taskfile *tf)
3200{
3201 ap->ops->tf_load(ap, tf);
3202 ap->ops->exec_command(ap, tf);
3203}
3204
1da177e4
LT
3205/**
3206 * ata_busy_sleep - sleep until BSY clears, or timeout
3207 * @ap: port containing status register to be polled
3208 * @tmout_pat: impatience timeout
3209 * @tmout: overall timeout
3210 *
780a87f7
JG
3211 * Sleep until ATA Status register bit BSY clears,
3212 * or a timeout occurs.
3213 *
d1adc1bb
TH
3214 * LOCKING:
3215 * Kernel thread context (may sleep).
3216 *
3217 * RETURNS:
3218 * 0 on success, -errno otherwise.
1da177e4 3219 */
d1adc1bb
TH
3220int ata_busy_sleep(struct ata_port *ap,
3221 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3222{
3223 unsigned long timer_start, timeout;
3224 u8 status;
3225
3226 status = ata_busy_wait(ap, ATA_BUSY, 300);
3227 timer_start = jiffies;
3228 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3229 while (status != 0xff && (status & ATA_BUSY) &&
3230 time_before(jiffies, timeout)) {
1da177e4
LT
3231 msleep(50);
3232 status = ata_busy_wait(ap, ATA_BUSY, 3);
3233 }
3234
d1adc1bb 3235 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3236 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3237 "port is slow to respond, please be patient "
3238 "(Status 0x%x)\n", status);
1da177e4
LT
3239
3240 timeout = timer_start + tmout;
d1adc1bb
TH
3241 while (status != 0xff && (status & ATA_BUSY) &&
3242 time_before(jiffies, timeout)) {
1da177e4
LT
3243 msleep(50);
3244 status = ata_chk_status(ap);
3245 }
3246
d1adc1bb
TH
3247 if (status == 0xff)
3248 return -ENODEV;
3249
1da177e4 3250 if (status & ATA_BUSY) {
f15a1daf 3251 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3252 "(%lu secs, Status 0x%x)\n",
3253 tmout / HZ, status);
d1adc1bb 3254 return -EBUSY;
1da177e4
LT
3255 }
3256
3257 return 0;
3258}
3259
88ff6eaf
TH
3260/**
3261 * ata_wait_after_reset - wait before checking status after reset
3262 * @ap: port containing status register to be polled
3263 * @deadline: deadline jiffies for the operation
3264 *
3265 * After reset, we need to pause a while before reading status.
3266 * Also, certain combination of controller and device report 0xff
3267 * for some duration (e.g. until SATA PHY is up and running)
3268 * which is interpreted as empty port in ATA world. This
3269 * function also waits for such devices to get out of 0xff
3270 * status.
3271 *
3272 * LOCKING:
3273 * Kernel thread context (may sleep).
3274 */
3275void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3276{
3277 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3278
3279 if (time_before(until, deadline))
3280 deadline = until;
3281
3282 /* Spec mandates ">= 2ms" before checking status. We wait
3283 * 150ms, because that was the magic delay used for ATAPI
3284 * devices in Hale Landis's ATADRVR, for the period of time
3285 * between when the ATA command register is written, and then
3286 * status is checked. Because waiting for "a while" before
3287 * checking status is fine, post SRST, we perform this magic
3288 * delay here as well.
3289 *
3290 * Old drivers/ide uses the 2mS rule and then waits for ready.
3291 */
3292 msleep(150);
3293
3294 /* Wait for 0xff to clear. Some SATA devices take a long time
3295 * to clear 0xff after reset. For example, HHD424020F7SV00
3296 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3297 * than that.
1974e201
TH
3298 *
3299 * Note that some PATA controllers (pata_ali) explode if
3300 * status register is read more than once when there's no
3301 * device attached.
88ff6eaf 3302 */
1974e201
TH
3303 if (ap->flags & ATA_FLAG_SATA) {
3304 while (1) {
3305 u8 status = ata_chk_status(ap);
88ff6eaf 3306
1974e201
TH
3307 if (status != 0xff || time_after(jiffies, deadline))
3308 return;
88ff6eaf 3309
1974e201
TH
3310 msleep(50);
3311 }
88ff6eaf
TH
3312 }
3313}
3314
d4b2bab4
TH
3315/**
3316 * ata_wait_ready - sleep until BSY clears, or timeout
3317 * @ap: port containing status register to be polled
3318 * @deadline: deadline jiffies for the operation
3319 *
3320 * Sleep until ATA Status register bit BSY clears, or timeout
3321 * occurs.
3322 *
3323 * LOCKING:
3324 * Kernel thread context (may sleep).
3325 *
3326 * RETURNS:
3327 * 0 on success, -errno otherwise.
3328 */
3329int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3330{
3331 unsigned long start = jiffies;
3332 int warned = 0;
3333
3334 while (1) {
3335 u8 status = ata_chk_status(ap);
3336 unsigned long now = jiffies;
3337
3338 if (!(status & ATA_BUSY))
3339 return 0;
936fd732 3340 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3341 return -ENODEV;
3342 if (time_after(now, deadline))
3343 return -EBUSY;
3344
3345 if (!warned && time_after(now, start + 5 * HZ) &&
3346 (deadline - now > 3 * HZ)) {
3347 ata_port_printk(ap, KERN_WARNING,
3348 "port is slow to respond, please be patient "
3349 "(Status 0x%x)\n", status);
3350 warned = 1;
3351 }
3352
3353 msleep(50);
3354 }
3355}
3356
3357static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3358 unsigned long deadline)
1da177e4
LT
3359{
3360 struct ata_ioports *ioaddr = &ap->ioaddr;
3361 unsigned int dev0 = devmask & (1 << 0);
3362 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3363 int rc, ret = 0;
1da177e4
LT
3364
3365 /* if device 0 was found in ata_devchk, wait for its
3366 * BSY bit to clear
3367 */
d4b2bab4
TH
3368 if (dev0) {
3369 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3370 if (rc) {
3371 if (rc != -ENODEV)
3372 return rc;
3373 ret = rc;
3374 }
d4b2bab4 3375 }
1da177e4 3376
e141d999
TH
3377 /* if device 1 was found in ata_devchk, wait for register
3378 * access briefly, then wait for BSY to clear.
1da177e4 3379 */
e141d999
TH
3380 if (dev1) {
3381 int i;
1da177e4
LT
3382
3383 ap->ops->dev_select(ap, 1);
e141d999
TH
3384
3385 /* Wait for register access. Some ATAPI devices fail
3386 * to set nsect/lbal after reset, so don't waste too
3387 * much time on it. We're gonna wait for !BSY anyway.
3388 */
3389 for (i = 0; i < 2; i++) {
3390 u8 nsect, lbal;
3391
3392 nsect = ioread8(ioaddr->nsect_addr);
3393 lbal = ioread8(ioaddr->lbal_addr);
3394 if ((nsect == 1) && (lbal == 1))
3395 break;
3396 msleep(50); /* give drive a breather */
3397 }
3398
d4b2bab4 3399 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3400 if (rc) {
3401 if (rc != -ENODEV)
3402 return rc;
3403 ret = rc;
3404 }
d4b2bab4 3405 }
1da177e4
LT
3406
3407 /* is all this really necessary? */
3408 ap->ops->dev_select(ap, 0);
3409 if (dev1)
3410 ap->ops->dev_select(ap, 1);
3411 if (dev0)
3412 ap->ops->dev_select(ap, 0);
d4b2bab4 3413
9b89391c 3414 return ret;
1da177e4
LT
3415}
3416
d4b2bab4
TH
3417static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3418 unsigned long deadline)
1da177e4
LT
3419{
3420 struct ata_ioports *ioaddr = &ap->ioaddr;
3421
44877b4e 3422 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3423
3424 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3425 iowrite8(ap->ctl, ioaddr->ctl_addr);
3426 udelay(20); /* FIXME: flush */
3427 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3428 udelay(20); /* FIXME: flush */
3429 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3430
88ff6eaf
TH
3431 /* wait a while before checking status */
3432 ata_wait_after_reset(ap, deadline);
1da177e4 3433
2e9edbf8 3434 /* Before we perform post reset processing we want to see if
298a41ca
TH
3435 * the bus shows 0xFF because the odd clown forgets the D7
3436 * pulldown resistor.
3437 */
150981b0 3438 if (ata_chk_status(ap) == 0xFF)
9b89391c 3439 return -ENODEV;
09c7ad79 3440
d4b2bab4 3441 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3442}
3443
3444/**
3445 * ata_bus_reset - reset host port and associated ATA channel
3446 * @ap: port to reset
3447 *
3448 * This is typically the first time we actually start issuing
3449 * commands to the ATA channel. We wait for BSY to clear, then
3450 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3451 * result. Determine what devices, if any, are on the channel
3452 * by looking at the device 0/1 error register. Look at the signature
3453 * stored in each device's taskfile registers, to determine if
3454 * the device is ATA or ATAPI.
3455 *
3456 * LOCKING:
0cba632b 3457 * PCI/etc. bus probe sem.
cca3974e 3458 * Obtains host lock.
1da177e4
LT
3459 *
3460 * SIDE EFFECTS:
198e0fed 3461 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3462 */
3463
3464void ata_bus_reset(struct ata_port *ap)
3465{
9af5c9c9 3466 struct ata_device *device = ap->link.device;
1da177e4
LT
3467 struct ata_ioports *ioaddr = &ap->ioaddr;
3468 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3469 u8 err;
aec5c3c1 3470 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3471 int rc;
1da177e4 3472
44877b4e 3473 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3474
3475 /* determine if device 0/1 are present */
3476 if (ap->flags & ATA_FLAG_SATA_RESET)
3477 dev0 = 1;
3478 else {
3479 dev0 = ata_devchk(ap, 0);
3480 if (slave_possible)
3481 dev1 = ata_devchk(ap, 1);
3482 }
3483
3484 if (dev0)
3485 devmask |= (1 << 0);
3486 if (dev1)
3487 devmask |= (1 << 1);
3488
3489 /* select device 0 again */
3490 ap->ops->dev_select(ap, 0);
3491
3492 /* issue bus reset */
9b89391c
TH
3493 if (ap->flags & ATA_FLAG_SRST) {
3494 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3495 if (rc && rc != -ENODEV)
aec5c3c1 3496 goto err_out;
9b89391c 3497 }
1da177e4
LT
3498
3499 /*
3500 * determine by signature whether we have ATA or ATAPI devices
3501 */
3f19859e 3502 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3503 if ((slave_possible) && (err != 0x81))
3f19859e 3504 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3505
1da177e4 3506 /* is double-select really necessary? */
9af5c9c9 3507 if (device[1].class != ATA_DEV_NONE)
1da177e4 3508 ap->ops->dev_select(ap, 1);
9af5c9c9 3509 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3510 ap->ops->dev_select(ap, 0);
3511
3512 /* if no devices were detected, disable this port */
9af5c9c9
TH
3513 if ((device[0].class == ATA_DEV_NONE) &&
3514 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3515 goto err_out;
3516
3517 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3518 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3519 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3520 }
3521
3522 DPRINTK("EXIT\n");
3523 return;
3524
3525err_out:
f15a1daf 3526 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3527 ata_port_disable(ap);
1da177e4
LT
3528
3529 DPRINTK("EXIT\n");
3530}
3531
d7bb4cc7 3532/**
936fd732
TH
3533 * sata_link_debounce - debounce SATA phy status
3534 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3535 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3536 * @deadline: deadline jiffies for the operation
d7bb4cc7 3537 *
936fd732 3538* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3539 * holding the same value where DET is not 1 for @duration polled
3540 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3541 * beginning of the stable state. Because DET gets stuck at 1 on
3542 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3543 * until timeout then returns 0 if DET is stable at 1.
3544 *
d4b2bab4
TH
3545 * @timeout is further limited by @deadline. The sooner of the
3546 * two is used.
3547 *
d7bb4cc7
TH
3548 * LOCKING:
3549 * Kernel thread context (may sleep)
3550 *
3551 * RETURNS:
3552 * 0 on success, -errno on failure.
3553 */
936fd732
TH
3554int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3555 unsigned long deadline)
7a7921e8 3556{
d7bb4cc7 3557 unsigned long interval_msec = params[0];
d4b2bab4
TH
3558 unsigned long duration = msecs_to_jiffies(params[1]);
3559 unsigned long last_jiffies, t;
d7bb4cc7
TH
3560 u32 last, cur;
3561 int rc;
3562
d4b2bab4
TH
3563 t = jiffies + msecs_to_jiffies(params[2]);
3564 if (time_before(t, deadline))
3565 deadline = t;
3566
936fd732 3567 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3568 return rc;
3569 cur &= 0xf;
3570
3571 last = cur;
3572 last_jiffies = jiffies;
3573
3574 while (1) {
3575 msleep(interval_msec);
936fd732 3576 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3577 return rc;
3578 cur &= 0xf;
3579
3580 /* DET stable? */
3581 if (cur == last) {
d4b2bab4 3582 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3583 continue;
3584 if (time_after(jiffies, last_jiffies + duration))
3585 return 0;
3586 continue;
3587 }
3588
3589 /* unstable, start over */
3590 last = cur;
3591 last_jiffies = jiffies;
3592
f1545154
TH
3593 /* Check deadline. If debouncing failed, return
3594 * -EPIPE to tell upper layer to lower link speed.
3595 */
d4b2bab4 3596 if (time_after(jiffies, deadline))
f1545154 3597 return -EPIPE;
d7bb4cc7
TH
3598 }
3599}
3600
3601/**
936fd732
TH
3602 * sata_link_resume - resume SATA link
3603 * @link: ATA link to resume SATA
d7bb4cc7 3604 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3605 * @deadline: deadline jiffies for the operation
d7bb4cc7 3606 *
936fd732 3607 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3608 *
3609 * LOCKING:
3610 * Kernel thread context (may sleep)
3611 *
3612 * RETURNS:
3613 * 0 on success, -errno on failure.
3614 */
936fd732
TH
3615int sata_link_resume(struct ata_link *link, const unsigned long *params,
3616 unsigned long deadline)
d7bb4cc7
TH
3617{
3618 u32 scontrol;
81952c54
TH
3619 int rc;
3620
936fd732 3621 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3622 return rc;
7a7921e8 3623
852ee16a 3624 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3625
936fd732 3626 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3627 return rc;
7a7921e8 3628
d7bb4cc7
TH
3629 /* Some PHYs react badly if SStatus is pounded immediately
3630 * after resuming. Delay 200ms before debouncing.
3631 */
3632 msleep(200);
7a7921e8 3633
936fd732 3634 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3635}
3636
f5914a46
TH
3637/**
3638 * ata_std_prereset - prepare for reset
cc0680a5 3639 * @link: ATA link to be reset
d4b2bab4 3640 * @deadline: deadline jiffies for the operation
f5914a46 3641 *
cc0680a5 3642 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3643 * prereset makes libata abort whole reset sequence and give up
3644 * that port, so prereset should be best-effort. It does its
3645 * best to prepare for reset sequence but if things go wrong, it
3646 * should just whine, not fail.
f5914a46
TH
3647 *
3648 * LOCKING:
3649 * Kernel thread context (may sleep)
3650 *
3651 * RETURNS:
3652 * 0 on success, -errno otherwise.
3653 */
cc0680a5 3654int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3655{
cc0680a5 3656 struct ata_port *ap = link->ap;
936fd732 3657 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3658 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3659 int rc;
3660
31daabda 3661 /* handle link resume */
28324304 3662 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3663 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3664 ehc->i.action |= ATA_EH_HARDRESET;
3665
633273a3
TH
3666 /* Some PMPs don't work with only SRST, force hardreset if PMP
3667 * is supported.
3668 */
3669 if (ap->flags & ATA_FLAG_PMP)
3670 ehc->i.action |= ATA_EH_HARDRESET;
3671
f5914a46
TH
3672 /* if we're about to do hardreset, nothing more to do */
3673 if (ehc->i.action & ATA_EH_HARDRESET)
3674 return 0;
3675
936fd732 3676 /* if SATA, resume link */
a16abc0b 3677 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3678 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3679 /* whine about phy resume failure but proceed */
3680 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3681 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3682 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3683 }
3684
3685 /* Wait for !BSY if the controller can wait for the first D2H
3686 * Reg FIS and we don't know that no device is attached.
3687 */
0c88758b 3688 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3689 rc = ata_wait_ready(ap, deadline);
6dffaf61 3690 if (rc && rc != -ENODEV) {
cc0680a5 3691 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3692 "(errno=%d), forcing hardreset\n", rc);
3693 ehc->i.action |= ATA_EH_HARDRESET;
3694 }
3695 }
f5914a46
TH
3696
3697 return 0;
3698}
3699
c2bd5804
TH
3700/**
3701 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3702 * @link: ATA link to reset
c2bd5804 3703 * @classes: resulting classes of attached devices
d4b2bab4 3704 * @deadline: deadline jiffies for the operation
c2bd5804 3705 *
52783c5d 3706 * Reset host port using ATA SRST.
c2bd5804
TH
3707 *
3708 * LOCKING:
3709 * Kernel thread context (may sleep)
3710 *
3711 * RETURNS:
3712 * 0 on success, -errno otherwise.
3713 */
cc0680a5 3714int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3715 unsigned long deadline)
c2bd5804 3716{
cc0680a5 3717 struct ata_port *ap = link->ap;
c2bd5804 3718 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3719 unsigned int devmask = 0;
3720 int rc;
c2bd5804
TH
3721 u8 err;
3722
3723 DPRINTK("ENTER\n");
3724
936fd732 3725 if (ata_link_offline(link)) {
3a39746a
TH
3726 classes[0] = ATA_DEV_NONE;
3727 goto out;
3728 }
3729
c2bd5804
TH
3730 /* determine if device 0/1 are present */
3731 if (ata_devchk(ap, 0))
3732 devmask |= (1 << 0);
3733 if (slave_possible && ata_devchk(ap, 1))
3734 devmask |= (1 << 1);
3735
c2bd5804
TH
3736 /* select device 0 again */
3737 ap->ops->dev_select(ap, 0);
3738
3739 /* issue bus reset */
3740 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3741 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3742 /* if link is occupied, -ENODEV too is an error */
936fd732 3743 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3744 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3745 return rc;
c2bd5804
TH
3746 }
3747
3748 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3749 classes[0] = ata_dev_try_classify(&link->device[0],
3750 devmask & (1 << 0), &err);
c2bd5804 3751 if (slave_possible && err != 0x81)
3f19859e
TH
3752 classes[1] = ata_dev_try_classify(&link->device[1],
3753 devmask & (1 << 1), &err);
c2bd5804 3754
3a39746a 3755 out:
c2bd5804
TH
3756 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3757 return 0;
3758}
3759
3760/**
cc0680a5
TH
3761 * sata_link_hardreset - reset link via SATA phy reset
3762 * @link: link to reset
b6103f6d 3763 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3764 * @deadline: deadline jiffies for the operation
c2bd5804 3765 *
cc0680a5 3766 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3767 *
3768 * LOCKING:
3769 * Kernel thread context (may sleep)
3770 *
3771 * RETURNS:
3772 * 0 on success, -errno otherwise.
3773 */
cc0680a5 3774int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3775 unsigned long deadline)
c2bd5804 3776{
852ee16a 3777 u32 scontrol;
81952c54 3778 int rc;
852ee16a 3779
c2bd5804
TH
3780 DPRINTK("ENTER\n");
3781
936fd732 3782 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3783 /* SATA spec says nothing about how to reconfigure
3784 * spd. To be on the safe side, turn off phy during
3785 * reconfiguration. This works for at least ICH7 AHCI
3786 * and Sil3124.
3787 */
936fd732 3788 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3789 goto out;
81952c54 3790
a34b6fc0 3791 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3792
936fd732 3793 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3794 goto out;
1c3fae4d 3795
936fd732 3796 sata_set_spd(link);
1c3fae4d
TH
3797 }
3798
3799 /* issue phy wake/reset */
936fd732 3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3801 goto out;
81952c54 3802
852ee16a 3803 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3804
936fd732 3805 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3806 goto out;
c2bd5804 3807
1c3fae4d 3808 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3809 * 10.4.2 says at least 1 ms.
3810 */
3811 msleep(1);
3812
936fd732
TH
3813 /* bring link back */
3814 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3815 out:
3816 DPRINTK("EXIT, rc=%d\n", rc);
3817 return rc;
3818}
3819
3820/**
3821 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3822 * @link: link to reset
b6103f6d 3823 * @class: resulting class of attached device
d4b2bab4 3824 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3825 *
3826 * SATA phy-reset host port using DET bits of SControl register,
3827 * wait for !BSY and classify the attached device.
3828 *
3829 * LOCKING:
3830 * Kernel thread context (may sleep)
3831 *
3832 * RETURNS:
3833 * 0 on success, -errno otherwise.
3834 */
cc0680a5 3835int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3836 unsigned long deadline)
b6103f6d 3837{
cc0680a5 3838 struct ata_port *ap = link->ap;
936fd732 3839 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3840 int rc;
3841
3842 DPRINTK("ENTER\n");
3843
3844 /* do hardreset */
cc0680a5 3845 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3846 if (rc) {
cc0680a5 3847 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3848 "COMRESET failed (errno=%d)\n", rc);
3849 return rc;
3850 }
c2bd5804 3851
c2bd5804 3852 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3853 if (ata_link_offline(link)) {
c2bd5804
TH
3854 *class = ATA_DEV_NONE;
3855 DPRINTK("EXIT, link offline\n");
3856 return 0;
3857 }
3858
88ff6eaf
TH
3859 /* wait a while before checking status */
3860 ata_wait_after_reset(ap, deadline);
34fee227 3861
633273a3
TH
3862 /* If PMP is supported, we have to do follow-up SRST. Note
3863 * that some PMPs don't send D2H Reg FIS after hardreset at
3864 * all if the first port is empty. Wait for it just for a
3865 * second and request follow-up SRST.
3866 */
3867 if (ap->flags & ATA_FLAG_PMP) {
3868 ata_wait_ready(ap, jiffies + HZ);
3869 return -EAGAIN;
3870 }
3871
d4b2bab4 3872 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3873 /* link occupied, -ENODEV too is an error */
3874 if (rc) {
cc0680a5 3875 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3876 "COMRESET failed (errno=%d)\n", rc);
3877 return rc;
c2bd5804
TH
3878 }
3879
3a39746a
TH
3880 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3881
3f19859e 3882 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3883
3884 DPRINTK("EXIT, class=%u\n", *class);
3885 return 0;
3886}
3887
3888/**
3889 * ata_std_postreset - standard postreset callback
cc0680a5 3890 * @link: the target ata_link
c2bd5804
TH
3891 * @classes: classes of attached devices
3892 *
3893 * This function is invoked after a successful reset. Note that
3894 * the device might have been reset more than once using
3895 * different reset methods before postreset is invoked.
c2bd5804 3896 *
c2bd5804
TH
3897 * LOCKING:
3898 * Kernel thread context (may sleep)
3899 */
cc0680a5 3900void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3901{
cc0680a5 3902 struct ata_port *ap = link->ap;
dc2b3515
TH
3903 u32 serror;
3904
c2bd5804
TH
3905 DPRINTK("ENTER\n");
3906
c2bd5804 3907 /* print link status */
936fd732 3908 sata_print_link_status(link);
c2bd5804 3909
dc2b3515 3910 /* clear SError */
936fd732
TH
3911 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3912 sata_scr_write(link, SCR_ERROR, serror);
f7fe7ad4 3913 link->eh_info.serror = 0;
dc2b3515 3914
c2bd5804
TH
3915 /* is double-select really necessary? */
3916 if (classes[0] != ATA_DEV_NONE)
3917 ap->ops->dev_select(ap, 1);
3918 if (classes[1] != ATA_DEV_NONE)
3919 ap->ops->dev_select(ap, 0);
3920
3a39746a
TH
3921 /* bail out if no device is present */
3922 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3923 DPRINTK("EXIT, no device\n");
3924 return;
3925 }
3926
3927 /* set up device control */
0d5ff566
TH
3928 if (ap->ioaddr.ctl_addr)
3929 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3930
3931 DPRINTK("EXIT\n");
3932}
3933
623a3128
TH
3934/**
3935 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3936 * @dev: device to compare against
3937 * @new_class: class of the new device
3938 * @new_id: IDENTIFY page of the new device
3939 *
3940 * Compare @new_class and @new_id against @dev and determine
3941 * whether @dev is the device indicated by @new_class and
3942 * @new_id.
3943 *
3944 * LOCKING:
3945 * None.
3946 *
3947 * RETURNS:
3948 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3949 */
3373efd8
TH
3950static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3951 const u16 *new_id)
623a3128
TH
3952{
3953 const u16 *old_id = dev->id;
a0cf733b
TH
3954 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3955 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3956
3957 if (dev->class != new_class) {
f15a1daf
TH
3958 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3959 dev->class, new_class);
623a3128
TH
3960 return 0;
3961 }
3962
a0cf733b
TH
3963 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3964 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3965 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3966 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3967
3968 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3969 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3970 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3971 return 0;
3972 }
3973
3974 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3975 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3976 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3977 return 0;
3978 }
3979
623a3128
TH
3980 return 1;
3981}
3982
3983/**
fe30911b 3984 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3985 * @dev: target ATA device
bff04647 3986 * @readid_flags: read ID flags
623a3128
TH
3987 *
3988 * Re-read IDENTIFY page and make sure @dev is still attached to
3989 * the port.
3990 *
3991 * LOCKING:
3992 * Kernel thread context (may sleep)
3993 *
3994 * RETURNS:
3995 * 0 on success, negative errno otherwise
3996 */
fe30911b 3997int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3998{
5eb45c02 3999 unsigned int class = dev->class;
9af5c9c9 4000 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4001 int rc;
4002
fe635c7e 4003 /* read ID data */
bff04647 4004 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4005 if (rc)
fe30911b 4006 return rc;
623a3128
TH
4007
4008 /* is the device still there? */
fe30911b
TH
4009 if (!ata_dev_same_device(dev, class, id))
4010 return -ENODEV;
623a3128 4011
fe635c7e 4012 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4013 return 0;
4014}
4015
4016/**
4017 * ata_dev_revalidate - Revalidate ATA device
4018 * @dev: device to revalidate
422c9daa 4019 * @new_class: new class code
fe30911b
TH
4020 * @readid_flags: read ID flags
4021 *
4022 * Re-read IDENTIFY page, make sure @dev is still attached to the
4023 * port and reconfigure it according to the new IDENTIFY page.
4024 *
4025 * LOCKING:
4026 * Kernel thread context (may sleep)
4027 *
4028 * RETURNS:
4029 * 0 on success, negative errno otherwise
4030 */
422c9daa
TH
4031int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4032 unsigned int readid_flags)
fe30911b 4033{
6ddcd3b0 4034 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4035 int rc;
4036
4037 if (!ata_dev_enabled(dev))
4038 return -ENODEV;
4039
422c9daa
TH
4040 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4041 if (ata_class_enabled(new_class) &&
4042 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4043 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4044 dev->class, new_class);
4045 rc = -ENODEV;
4046 goto fail;
4047 }
4048
fe30911b
TH
4049 /* re-read ID */
4050 rc = ata_dev_reread_id(dev, readid_flags);
4051 if (rc)
4052 goto fail;
623a3128
TH
4053
4054 /* configure device according to the new ID */
efdaedc4 4055 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4056 if (rc)
4057 goto fail;
4058
4059 /* verify n_sectors hasn't changed */
b54eebd6
TH
4060 if (dev->class == ATA_DEV_ATA && n_sectors &&
4061 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4062 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4063 "%llu != %llu\n",
4064 (unsigned long long)n_sectors,
4065 (unsigned long long)dev->n_sectors);
8270bec4
TH
4066
4067 /* restore original n_sectors */
4068 dev->n_sectors = n_sectors;
4069
6ddcd3b0
TH
4070 rc = -ENODEV;
4071 goto fail;
4072 }
4073
4074 return 0;
623a3128
TH
4075
4076 fail:
f15a1daf 4077 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4078 return rc;
4079}
4080
6919a0a6
AC
4081struct ata_blacklist_entry {
4082 const char *model_num;
4083 const char *model_rev;
4084 unsigned long horkage;
4085};
4086
4087static const struct ata_blacklist_entry ata_device_blacklist [] = {
4088 /* Devices with DMA related problems under Linux */
4089 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4090 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4091 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4092 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4093 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4094 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4095 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4096 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4097 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4098 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4099 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4100 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4101 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4102 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4103 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4104 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4105 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4106 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4107 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4108 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4109 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4110 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4111 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4112 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4113 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4114 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4115 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4116 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4117 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4118 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4119 /* Odd clown on sil3726/4726 PMPs */
4120 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4121 ATA_HORKAGE_SKIP_PM },
6919a0a6 4122
18d6e9d5 4123 /* Weird ATAPI devices */
40a1d531 4124 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4125
6919a0a6
AC
4126 /* Devices we expect to fail diagnostics */
4127
4128 /* Devices where NCQ should be avoided */
4129 /* NCQ is slow */
2dcb407e 4130 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4131 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4132 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4133 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4134 /* NCQ is broken */
539cc7c7 4135 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4136 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4137 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4138 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4139 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4140 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4141
36e337d0
RH
4142 /* Blacklist entries taken from Silicon Image 3124/3132
4143 Windows driver .inf file - also several Linux problem reports */
4144 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4145 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4146 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4147
16c55b03
TH
4148 /* devices which puke on READ_NATIVE_MAX */
4149 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4150 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4151 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4152 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4153
93328e11
AC
4154 /* Devices which report 1 sector over size HPA */
4155 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4156 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4157
6bbfd53d
AC
4158 /* Devices which get the IVB wrong */
4159 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4160 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4161 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4162 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4163 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4164
6919a0a6
AC
4165 /* End Marker */
4166 { }
1da177e4 4167};
2e9edbf8 4168
741b7763 4169static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4170{
4171 const char *p;
4172 int len;
4173
4174 /*
4175 * check for trailing wildcard: *\0
4176 */
4177 p = strchr(patt, wildchar);
4178 if (p && ((*(p + 1)) == 0))
4179 len = p - patt;
317b50b8 4180 else {
539cc7c7 4181 len = strlen(name);
317b50b8
AP
4182 if (!len) {
4183 if (!*patt)
4184 return 0;
4185 return -1;
4186 }
4187 }
539cc7c7
JG
4188
4189 return strncmp(patt, name, len);
4190}
4191
75683fe7 4192static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4193{
8bfa79fc
TH
4194 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4195 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4196 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4197
8bfa79fc
TH
4198 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4199 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4200
6919a0a6 4201 while (ad->model_num) {
539cc7c7 4202 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4203 if (ad->model_rev == NULL)
4204 return ad->horkage;
539cc7c7 4205 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4206 return ad->horkage;
f4b15fef 4207 }
6919a0a6 4208 ad++;
f4b15fef 4209 }
1da177e4
LT
4210 return 0;
4211}
4212
6919a0a6
AC
4213static int ata_dma_blacklisted(const struct ata_device *dev)
4214{
4215 /* We don't support polling DMA.
4216 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4217 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4218 */
9af5c9c9 4219 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4220 (dev->flags & ATA_DFLAG_CDB_INTR))
4221 return 1;
75683fe7 4222 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4223}
4224
6bbfd53d
AC
4225/**
4226 * ata_is_40wire - check drive side detection
4227 * @dev: device
4228 *
4229 * Perform drive side detection decoding, allowing for device vendors
4230 * who can't follow the documentation.
4231 */
4232
4233static int ata_is_40wire(struct ata_device *dev)
4234{
4235 if (dev->horkage & ATA_HORKAGE_IVB)
4236 return ata_drive_40wire_relaxed(dev->id);
4237 return ata_drive_40wire(dev->id);
4238}
4239
a6d5a51c
TH
4240/**
4241 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4242 * @dev: Device to compute xfermask for
4243 *
acf356b1
TH
4244 * Compute supported xfermask of @dev and store it in
4245 * dev->*_mask. This function is responsible for applying all
4246 * known limits including host controller limits, device
4247 * blacklist, etc...
a6d5a51c
TH
4248 *
4249 * LOCKING:
4250 * None.
a6d5a51c 4251 */
3373efd8 4252static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4253{
9af5c9c9
TH
4254 struct ata_link *link = dev->link;
4255 struct ata_port *ap = link->ap;
cca3974e 4256 struct ata_host *host = ap->host;
a6d5a51c 4257 unsigned long xfer_mask;
1da177e4 4258
37deecb5 4259 /* controller modes available */
565083e1
TH
4260 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4261 ap->mwdma_mask, ap->udma_mask);
4262
8343f889 4263 /* drive modes available */
37deecb5
TH
4264 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4265 dev->mwdma_mask, dev->udma_mask);
4266 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4267
b352e57d
AC
4268 /*
4269 * CFA Advanced TrueIDE timings are not allowed on a shared
4270 * cable
4271 */
4272 if (ata_dev_pair(dev)) {
4273 /* No PIO5 or PIO6 */
4274 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4275 /* No MWDMA3 or MWDMA 4 */
4276 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4277 }
4278
37deecb5
TH
4279 if (ata_dma_blacklisted(dev)) {
4280 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4281 ata_dev_printk(dev, KERN_WARNING,
4282 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4283 }
a6d5a51c 4284
14d66ab7 4285 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4286 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4287 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4288 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4289 "other device, disabling DMA\n");
5444a6f4 4290 }
565083e1 4291
e424675f
JG
4292 if (ap->flags & ATA_FLAG_NO_IORDY)
4293 xfer_mask &= ata_pio_mask_no_iordy(dev);
4294
5444a6f4 4295 if (ap->ops->mode_filter)
a76b62ca 4296 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4297
8343f889
RH
4298 /* Apply cable rule here. Don't apply it early because when
4299 * we handle hot plug the cable type can itself change.
4300 * Check this last so that we know if the transfer rate was
4301 * solely limited by the cable.
4302 * Unknown or 80 wire cables reported host side are checked
4303 * drive side as well. Cases where we know a 40wire cable
4304 * is used safely for 80 are not checked here.
4305 */
4306 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4307 /* UDMA/44 or higher would be available */
2dcb407e 4308 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4309 (ata_is_40wire(dev) &&
2dcb407e
JG
4310 (ap->cbl == ATA_CBL_PATA_UNK ||
4311 ap->cbl == ATA_CBL_PATA80))) {
4312 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4313 "limited to UDMA/33 due to 40-wire cable\n");
4314 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4315 }
4316
565083e1
TH
4317 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4318 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4319}
4320
1da177e4
LT
4321/**
4322 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4323 * @dev: Device to which command will be sent
4324 *
780a87f7
JG
4325 * Issue SET FEATURES - XFER MODE command to device @dev
4326 * on port @ap.
4327 *
1da177e4 4328 * LOCKING:
0cba632b 4329 * PCI/etc. bus probe sem.
83206a29
TH
4330 *
4331 * RETURNS:
4332 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4333 */
4334
3373efd8 4335static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4336{
a0123703 4337 struct ata_taskfile tf;
83206a29 4338 unsigned int err_mask;
1da177e4
LT
4339
4340 /* set up set-features taskfile */
4341 DPRINTK("set features - xfer mode\n");
4342
464cf177
TH
4343 /* Some controllers and ATAPI devices show flaky interrupt
4344 * behavior after setting xfer mode. Use polling instead.
4345 */
3373efd8 4346 ata_tf_init(dev, &tf);
a0123703
TH
4347 tf.command = ATA_CMD_SET_FEATURES;
4348 tf.feature = SETFEATURES_XFER;
464cf177 4349 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4350 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4351 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4352 if (ata_pio_need_iordy(dev))
4353 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4354 /* If the device has IORDY and the controller does not - turn it off */
4355 else if (ata_id_has_iordy(dev->id))
11b7becc 4356 tf.nsect = 0x01;
b9f8ab2d
AC
4357 else /* In the ancient relic department - skip all of this */
4358 return 0;
1da177e4 4359
2b789108 4360 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4361
4362 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4363 return err_mask;
4364}
9f45cbd3 4365/**
218f3d30 4366 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4367 * @dev: Device to which command will be sent
4368 * @enable: Whether to enable or disable the feature
218f3d30 4369 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4370 *
4371 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4372 * on port @ap with sector count
9f45cbd3
KCA
4373 *
4374 * LOCKING:
4375 * PCI/etc. bus probe sem.
4376 *
4377 * RETURNS:
4378 * 0 on success, AC_ERR_* mask otherwise.
4379 */
218f3d30
JG
4380static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4381 u8 feature)
9f45cbd3
KCA
4382{
4383 struct ata_taskfile tf;
4384 unsigned int err_mask;
4385
4386 /* set up set-features taskfile */
4387 DPRINTK("set features - SATA features\n");
4388
4389 ata_tf_init(dev, &tf);
4390 tf.command = ATA_CMD_SET_FEATURES;
4391 tf.feature = enable;
4392 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4393 tf.protocol = ATA_PROT_NODATA;
218f3d30 4394 tf.nsect = feature;
9f45cbd3 4395
2b789108 4396 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4397
83206a29
TH
4398 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4399 return err_mask;
1da177e4
LT
4400}
4401
8bf62ece
AL
4402/**
4403 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4404 * @dev: Device to which command will be sent
e2a7f77a
RD
4405 * @heads: Number of heads (taskfile parameter)
4406 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4407 *
4408 * LOCKING:
6aff8f1f
TH
4409 * Kernel thread context (may sleep)
4410 *
4411 * RETURNS:
4412 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4413 */
3373efd8
TH
4414static unsigned int ata_dev_init_params(struct ata_device *dev,
4415 u16 heads, u16 sectors)
8bf62ece 4416{
a0123703 4417 struct ata_taskfile tf;
6aff8f1f 4418 unsigned int err_mask;
8bf62ece
AL
4419
4420 /* Number of sectors per track 1-255. Number of heads 1-16 */
4421 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4422 return AC_ERR_INVALID;
8bf62ece
AL
4423
4424 /* set up init dev params taskfile */
4425 DPRINTK("init dev params \n");
4426
3373efd8 4427 ata_tf_init(dev, &tf);
a0123703
TH
4428 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4429 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4430 tf.protocol = ATA_PROT_NODATA;
4431 tf.nsect = sectors;
4432 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4433
2b789108 4434 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4435 /* A clean abort indicates an original or just out of spec drive
4436 and we should continue as we issue the setup based on the
4437 drive reported working geometry */
4438 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4439 err_mask = 0;
8bf62ece 4440
6aff8f1f
TH
4441 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4442 return err_mask;
8bf62ece
AL
4443}
4444
1da177e4 4445/**
0cba632b
JG
4446 * ata_sg_clean - Unmap DMA memory associated with command
4447 * @qc: Command containing DMA memory to be released
4448 *
4449 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4450 *
4451 * LOCKING:
cca3974e 4452 * spin_lock_irqsave(host lock)
1da177e4 4453 */
70e6ad0c 4454void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4455{
4456 struct ata_port *ap = qc->ap;
cedc9a47 4457 struct scatterlist *sg = qc->__sg;
1da177e4 4458 int dir = qc->dma_dir;
cedc9a47 4459 void *pad_buf = NULL;
1da177e4 4460
a4631474
TH
4461 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4462 WARN_ON(sg == NULL);
1da177e4
LT
4463
4464 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4465 WARN_ON(qc->n_elem > 1);
1da177e4 4466
2c13b7ce 4467 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4468
cedc9a47
JG
4469 /* if we padded the buffer out to 32-bit bound, and data
4470 * xfer direction is from-device, we must copy from the
4471 * pad buffer back into the supplied buffer
4472 */
4473 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4474 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4475
4476 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4477 if (qc->n_elem)
2f1f610b 4478 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4479 /* restore last sg */
87260216 4480 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4481 if (pad_buf) {
4482 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4483 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4484 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4485 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4486 }
4487 } else {
2e242fa9 4488 if (qc->n_elem)
2f1f610b 4489 dma_unmap_single(ap->dev,
e1410f2d
JG
4490 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4491 dir);
cedc9a47
JG
4492 /* restore sg */
4493 sg->length += qc->pad_len;
4494 if (pad_buf)
4495 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4496 pad_buf, qc->pad_len);
4497 }
1da177e4
LT
4498
4499 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4500 qc->__sg = NULL;
1da177e4
LT
4501}
4502
4503/**
4504 * ata_fill_sg - Fill PCI IDE PRD table
4505 * @qc: Metadata associated with taskfile to be transferred
4506 *
780a87f7
JG
4507 * Fill PCI IDE PRD (scatter-gather) table with segments
4508 * associated with the current disk command.
4509 *
1da177e4 4510 * LOCKING:
cca3974e 4511 * spin_lock_irqsave(host lock)
1da177e4
LT
4512 *
4513 */
4514static void ata_fill_sg(struct ata_queued_cmd *qc)
4515{
1da177e4 4516 struct ata_port *ap = qc->ap;
cedc9a47
JG
4517 struct scatterlist *sg;
4518 unsigned int idx;
1da177e4 4519
a4631474 4520 WARN_ON(qc->__sg == NULL);
f131883e 4521 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4522
4523 idx = 0;
cedc9a47 4524 ata_for_each_sg(sg, qc) {
1da177e4
LT
4525 u32 addr, offset;
4526 u32 sg_len, len;
4527
4528 /* determine if physical DMA addr spans 64K boundary.
4529 * Note h/w doesn't support 64-bit, so we unconditionally
4530 * truncate dma_addr_t to u32.
4531 */
4532 addr = (u32) sg_dma_address(sg);
4533 sg_len = sg_dma_len(sg);
4534
4535 while (sg_len) {
4536 offset = addr & 0xffff;
4537 len = sg_len;
4538 if ((offset + sg_len) > 0x10000)
4539 len = 0x10000 - offset;
4540
4541 ap->prd[idx].addr = cpu_to_le32(addr);
4542 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4543 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4544
4545 idx++;
4546 sg_len -= len;
4547 addr += len;
4548 }
4549 }
4550
4551 if (idx)
4552 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4553}
b9a4197e 4554
d26fc955
AC
4555/**
4556 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4557 * @qc: Metadata associated with taskfile to be transferred
4558 *
4559 * Fill PCI IDE PRD (scatter-gather) table with segments
4560 * associated with the current disk command. Perform the fill
4561 * so that we avoid writing any length 64K records for
4562 * controllers that don't follow the spec.
4563 *
4564 * LOCKING:
4565 * spin_lock_irqsave(host lock)
4566 *
4567 */
4568static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4569{
4570 struct ata_port *ap = qc->ap;
4571 struct scatterlist *sg;
4572 unsigned int idx;
4573
4574 WARN_ON(qc->__sg == NULL);
4575 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4576
4577 idx = 0;
4578 ata_for_each_sg(sg, qc) {
4579 u32 addr, offset;
4580 u32 sg_len, len, blen;
4581
2dcb407e 4582 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4583 * Note h/w doesn't support 64-bit, so we unconditionally
4584 * truncate dma_addr_t to u32.
4585 */
4586 addr = (u32) sg_dma_address(sg);
4587 sg_len = sg_dma_len(sg);
4588
4589 while (sg_len) {
4590 offset = addr & 0xffff;
4591 len = sg_len;
4592 if ((offset + sg_len) > 0x10000)
4593 len = 0x10000 - offset;
4594
4595 blen = len & 0xffff;
4596 ap->prd[idx].addr = cpu_to_le32(addr);
4597 if (blen == 0) {
4598 /* Some PATA chipsets like the CS5530 can't
4599 cope with 0x0000 meaning 64K as the spec says */
4600 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4601 blen = 0x8000;
4602 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4603 }
4604 ap->prd[idx].flags_len = cpu_to_le32(blen);
4605 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4606
4607 idx++;
4608 sg_len -= len;
4609 addr += len;
4610 }
4611 }
4612
4613 if (idx)
4614 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4615}
4616
1da177e4
LT
4617/**
4618 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4619 * @qc: Metadata associated with taskfile to check
4620 *
780a87f7
JG
4621 * Allow low-level driver to filter ATA PACKET commands, returning
4622 * a status indicating whether or not it is OK to use DMA for the
4623 * supplied PACKET command.
4624 *
1da177e4 4625 * LOCKING:
cca3974e 4626 * spin_lock_irqsave(host lock)
0cba632b 4627 *
1da177e4
LT
4628 * RETURNS: 0 when ATAPI DMA can be used
4629 * nonzero otherwise
4630 */
4631int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4632{
4633 struct ata_port *ap = qc->ap;
b9a4197e
TH
4634
4635 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4636 * few ATAPI devices choke on such DMA requests.
4637 */
4638 if (unlikely(qc->nbytes & 15))
4639 return 1;
6f23a31d 4640
1da177e4 4641 if (ap->ops->check_atapi_dma)
b9a4197e 4642 return ap->ops->check_atapi_dma(qc);
1da177e4 4643
b9a4197e 4644 return 0;
1da177e4 4645}
b9a4197e 4646
140b5e59
TH
4647/**
4648 * atapi_qc_may_overflow - Check whether data transfer may overflow
4649 * @qc: ATA command in question
4650 *
4651 * ATAPI commands which transfer variable length data to host
4652 * might overflow due to application error or hardare bug. This
4653 * function checks whether overflow should be drained and ignored
4654 * for @qc.
4655 *
4656 * LOCKING:
4657 * None.
4658 *
4659 * RETURNS:
4660 * 1 if @qc may overflow; otherwise, 0.
4661 */
4662static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4663{
4664 if (qc->tf.protocol != ATA_PROT_ATAPI &&
4665 qc->tf.protocol != ATA_PROT_ATAPI_DMA)
4666 return 0;
4667
4668 if (qc->tf.flags & ATA_TFLAG_WRITE)
4669 return 0;
4670
4671 switch (qc->cdb[0]) {
4672 case READ_10:
4673 case READ_12:
4674 case WRITE_10:
4675 case WRITE_12:
4676 case GPCMD_READ_CD:
4677 case GPCMD_READ_CD_MSF:
4678 return 0;
4679 }
4680
4681 return 1;
4682}
4683
31cc23b3
TH
4684/**
4685 * ata_std_qc_defer - Check whether a qc needs to be deferred
4686 * @qc: ATA command in question
4687 *
4688 * Non-NCQ commands cannot run with any other command, NCQ or
4689 * not. As upper layer only knows the queue depth, we are
4690 * responsible for maintaining exclusion. This function checks
4691 * whether a new command @qc can be issued.
4692 *
4693 * LOCKING:
4694 * spin_lock_irqsave(host lock)
4695 *
4696 * RETURNS:
4697 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4698 */
4699int ata_std_qc_defer(struct ata_queued_cmd *qc)
4700{
4701 struct ata_link *link = qc->dev->link;
4702
4703 if (qc->tf.protocol == ATA_PROT_NCQ) {
4704 if (!ata_tag_valid(link->active_tag))
4705 return 0;
4706 } else {
4707 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4708 return 0;
4709 }
4710
4711 return ATA_DEFER_LINK;
4712}
4713
1da177e4
LT
4714/**
4715 * ata_qc_prep - Prepare taskfile for submission
4716 * @qc: Metadata associated with taskfile to be prepared
4717 *
780a87f7
JG
4718 * Prepare ATA taskfile for submission.
4719 *
1da177e4 4720 * LOCKING:
cca3974e 4721 * spin_lock_irqsave(host lock)
1da177e4
LT
4722 */
4723void ata_qc_prep(struct ata_queued_cmd *qc)
4724{
4725 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4726 return;
4727
4728 ata_fill_sg(qc);
4729}
4730
d26fc955
AC
4731/**
4732 * ata_dumb_qc_prep - Prepare taskfile for submission
4733 * @qc: Metadata associated with taskfile to be prepared
4734 *
4735 * Prepare ATA taskfile for submission.
4736 *
4737 * LOCKING:
4738 * spin_lock_irqsave(host lock)
4739 */
4740void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4741{
4742 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4743 return;
4744
4745 ata_fill_sg_dumb(qc);
4746}
4747
e46834cd
BK
4748void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4749
0cba632b
JG
4750/**
4751 * ata_sg_init_one - Associate command with memory buffer
4752 * @qc: Command to be associated
4753 * @buf: Memory buffer
4754 * @buflen: Length of memory buffer, in bytes.
4755 *
4756 * Initialize the data-related elements of queued_cmd @qc
4757 * to point to a single memory buffer, @buf of byte length @buflen.
4758 *
4759 * LOCKING:
cca3974e 4760 * spin_lock_irqsave(host lock)
0cba632b
JG
4761 */
4762
1da177e4
LT
4763void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4764{
1da177e4
LT
4765 qc->flags |= ATA_QCFLAG_SINGLE;
4766
cedc9a47 4767 qc->__sg = &qc->sgent;
1da177e4 4768 qc->n_elem = 1;
cedc9a47 4769 qc->orig_n_elem = 1;
1da177e4 4770 qc->buf_virt = buf;
233277ca 4771 qc->nbytes = buflen;
87260216 4772 qc->cursg = qc->__sg;
1da177e4 4773
61c0596c 4774 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4775}
4776
0cba632b
JG
4777/**
4778 * ata_sg_init - Associate command with scatter-gather table.
4779 * @qc: Command to be associated
4780 * @sg: Scatter-gather table.
4781 * @n_elem: Number of elements in s/g table.
4782 *
4783 * Initialize the data-related elements of queued_cmd @qc
4784 * to point to a scatter-gather table @sg, containing @n_elem
4785 * elements.
4786 *
4787 * LOCKING:
cca3974e 4788 * spin_lock_irqsave(host lock)
0cba632b
JG
4789 */
4790
1da177e4
LT
4791void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4792 unsigned int n_elem)
4793{
4794 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4795 qc->__sg = sg;
1da177e4 4796 qc->n_elem = n_elem;
cedc9a47 4797 qc->orig_n_elem = n_elem;
87260216 4798 qc->cursg = qc->__sg;
1da177e4
LT
4799}
4800
4801/**
0cba632b
JG
4802 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4803 * @qc: Command with memory buffer to be mapped.
4804 *
4805 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4806 *
4807 * LOCKING:
cca3974e 4808 * spin_lock_irqsave(host lock)
1da177e4
LT
4809 *
4810 * RETURNS:
0cba632b 4811 * Zero on success, negative on error.
1da177e4
LT
4812 */
4813
4814static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4815{
4816 struct ata_port *ap = qc->ap;
4817 int dir = qc->dma_dir;
cedc9a47 4818 struct scatterlist *sg = qc->__sg;
1da177e4 4819 dma_addr_t dma_address;
2e242fa9 4820 int trim_sg = 0;
1da177e4 4821
cedc9a47
JG
4822 /* we must lengthen transfers to end on a 32-bit boundary */
4823 qc->pad_len = sg->length & 3;
4824 if (qc->pad_len) {
4825 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4826 struct scatterlist *psg = &qc->pad_sgent;
4827
a4631474 4828 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4829
4830 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4831
4832 if (qc->tf.flags & ATA_TFLAG_WRITE)
4833 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4834 qc->pad_len);
4835
4836 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4837 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4838 /* trim sg */
4839 sg->length -= qc->pad_len;
2e242fa9
TH
4840 if (sg->length == 0)
4841 trim_sg = 1;
cedc9a47
JG
4842
4843 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4844 sg->length, qc->pad_len);
4845 }
4846
2e242fa9
TH
4847 if (trim_sg) {
4848 qc->n_elem--;
e1410f2d
JG
4849 goto skip_map;
4850 }
4851
2f1f610b 4852 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4853 sg->length, dir);
537a95d9
TH
4854 if (dma_mapping_error(dma_address)) {
4855 /* restore sg */
4856 sg->length += qc->pad_len;
1da177e4 4857 return -1;
537a95d9 4858 }
1da177e4
LT
4859
4860 sg_dma_address(sg) = dma_address;
32529e01 4861 sg_dma_len(sg) = sg->length;
1da177e4 4862
2e242fa9 4863skip_map:
1da177e4
LT
4864 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4865 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4866
4867 return 0;
4868}
4869
4870/**
0cba632b
JG
4871 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4872 * @qc: Command with scatter-gather table to be mapped.
4873 *
4874 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4875 *
4876 * LOCKING:
cca3974e 4877 * spin_lock_irqsave(host lock)
1da177e4
LT
4878 *
4879 * RETURNS:
0cba632b 4880 * Zero on success, negative on error.
1da177e4
LT
4881 *
4882 */
4883
4884static int ata_sg_setup(struct ata_queued_cmd *qc)
4885{
4886 struct ata_port *ap = qc->ap;
cedc9a47 4887 struct scatterlist *sg = qc->__sg;
87260216 4888 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4889 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4890
44877b4e 4891 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4892 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4893
cedc9a47
JG
4894 /* we must lengthen transfers to end on a 32-bit boundary */
4895 qc->pad_len = lsg->length & 3;
4896 if (qc->pad_len) {
4897 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4898 struct scatterlist *psg = &qc->pad_sgent;
4899 unsigned int offset;
4900
a4631474 4901 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4902
4903 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4904
4905 /*
4906 * psg->page/offset are used to copy to-be-written
4907 * data in this function or read data in ata_sg_clean.
4908 */
4909 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4910 sg_init_table(psg, 1);
642f1490
JA
4911 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4912 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4913
4914 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4915 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4916 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4917 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4918 }
4919
4920 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4921 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4922 /* trim last sg */
4923 lsg->length -= qc->pad_len;
e1410f2d
JG
4924 if (lsg->length == 0)
4925 trim_sg = 1;
cedc9a47
JG
4926
4927 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4928 qc->n_elem - 1, lsg->length, qc->pad_len);
4929 }
4930
e1410f2d
JG
4931 pre_n_elem = qc->n_elem;
4932 if (trim_sg && pre_n_elem)
4933 pre_n_elem--;
4934
4935 if (!pre_n_elem) {
4936 n_elem = 0;
4937 goto skip_map;
4938 }
4939
1da177e4 4940 dir = qc->dma_dir;
2f1f610b 4941 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4942 if (n_elem < 1) {
4943 /* restore last sg */
4944 lsg->length += qc->pad_len;
1da177e4 4945 return -1;
537a95d9 4946 }
1da177e4
LT
4947
4948 DPRINTK("%d sg elements mapped\n", n_elem);
4949
e1410f2d 4950skip_map:
1da177e4
LT
4951 qc->n_elem = n_elem;
4952
4953 return 0;
4954}
4955
0baab86b 4956/**
c893a3ae 4957 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4958 * @buf: Buffer to swap
4959 * @buf_words: Number of 16-bit words in buffer.
4960 *
4961 * Swap halves of 16-bit words if needed to convert from
4962 * little-endian byte order to native cpu byte order, or
4963 * vice-versa.
4964 *
4965 * LOCKING:
6f0ef4fa 4966 * Inherited from caller.
0baab86b 4967 */
1da177e4
LT
4968void swap_buf_le16(u16 *buf, unsigned int buf_words)
4969{
4970#ifdef __BIG_ENDIAN
4971 unsigned int i;
4972
4973 for (i = 0; i < buf_words; i++)
4974 buf[i] = le16_to_cpu(buf[i]);
4975#endif /* __BIG_ENDIAN */
4976}
4977
6ae4cfb5 4978/**
0d5ff566 4979 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4980 * @adev: device to target
6ae4cfb5
AL
4981 * @buf: data buffer
4982 * @buflen: buffer length
344babaa 4983 * @write_data: read/write
6ae4cfb5
AL
4984 *
4985 * Transfer data from/to the device data register by PIO.
4986 *
4987 * LOCKING:
4988 * Inherited from caller.
6ae4cfb5 4989 */
0d5ff566
TH
4990void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4991 unsigned int buflen, int write_data)
1da177e4 4992{
9af5c9c9 4993 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4994 unsigned int words = buflen >> 1;
1da177e4 4995
6ae4cfb5 4996 /* Transfer multiple of 2 bytes */
1da177e4 4997 if (write_data)
0d5ff566 4998 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4999 else
0d5ff566 5000 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
5001
5002 /* Transfer trailing 1 byte, if any. */
5003 if (unlikely(buflen & 0x01)) {
5004 u16 align_buf[1] = { 0 };
5005 unsigned char *trailing_buf = buf + buflen - 1;
5006
5007 if (write_data) {
5008 memcpy(align_buf, trailing_buf, 1);
0d5ff566 5009 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 5010 } else {
0d5ff566 5011 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
5012 memcpy(trailing_buf, align_buf, 1);
5013 }
5014 }
1da177e4
LT
5015}
5016
75e99585 5017/**
0d5ff566 5018 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5019 * @adev: device to target
5020 * @buf: data buffer
5021 * @buflen: buffer length
5022 * @write_data: read/write
5023 *
88574551 5024 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5025 * transfer with interrupts disabled.
5026 *
5027 * LOCKING:
5028 * Inherited from caller.
5029 */
0d5ff566
TH
5030void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5031 unsigned int buflen, int write_data)
75e99585
AC
5032{
5033 unsigned long flags;
5034 local_irq_save(flags);
0d5ff566 5035 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5036 local_irq_restore(flags);
5037}
5038
5039
6ae4cfb5 5040/**
5a5dbd18 5041 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5042 * @qc: Command on going
5043 *
5a5dbd18 5044 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5045 *
5046 * LOCKING:
5047 * Inherited from caller.
5048 */
5049
1da177e4
LT
5050static void ata_pio_sector(struct ata_queued_cmd *qc)
5051{
5052 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5053 struct ata_port *ap = qc->ap;
5054 struct page *page;
5055 unsigned int offset;
5056 unsigned char *buf;
5057
5a5dbd18 5058 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5059 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5060
45711f1a 5061 page = sg_page(qc->cursg);
87260216 5062 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5063
5064 /* get the current page and offset */
5065 page = nth_page(page, (offset >> PAGE_SHIFT));
5066 offset %= PAGE_SIZE;
5067
1da177e4
LT
5068 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5069
91b8b313
AL
5070 if (PageHighMem(page)) {
5071 unsigned long flags;
5072
a6b2c5d4 5073 /* FIXME: use a bounce buffer */
91b8b313
AL
5074 local_irq_save(flags);
5075 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5076
91b8b313 5077 /* do the actual data transfer */
5a5dbd18 5078 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5079
91b8b313
AL
5080 kunmap_atomic(buf, KM_IRQ0);
5081 local_irq_restore(flags);
5082 } else {
5083 buf = page_address(page);
5a5dbd18 5084 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5085 }
1da177e4 5086
5a5dbd18
ML
5087 qc->curbytes += qc->sect_size;
5088 qc->cursg_ofs += qc->sect_size;
1da177e4 5089
87260216
JA
5090 if (qc->cursg_ofs == qc->cursg->length) {
5091 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5092 qc->cursg_ofs = 0;
5093 }
1da177e4 5094}
1da177e4 5095
07f6f7d0 5096/**
5a5dbd18 5097 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5098 * @qc: Command on going
5099 *
5a5dbd18 5100 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5101 * ATA device for the DRQ request.
5102 *
5103 * LOCKING:
5104 * Inherited from caller.
5105 */
1da177e4 5106
07f6f7d0
AL
5107static void ata_pio_sectors(struct ata_queued_cmd *qc)
5108{
5109 if (is_multi_taskfile(&qc->tf)) {
5110 /* READ/WRITE MULTIPLE */
5111 unsigned int nsect;
5112
587005de 5113 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5114
5a5dbd18 5115 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5116 qc->dev->multi_count);
07f6f7d0
AL
5117 while (nsect--)
5118 ata_pio_sector(qc);
5119 } else
5120 ata_pio_sector(qc);
4cc980b3
AL
5121
5122 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5123}
5124
c71c1857
AL
5125/**
5126 * atapi_send_cdb - Write CDB bytes to hardware
5127 * @ap: Port to which ATAPI device is attached.
5128 * @qc: Taskfile currently active
5129 *
5130 * When device has indicated its readiness to accept
5131 * a CDB, this function is called. Send the CDB.
5132 *
5133 * LOCKING:
5134 * caller.
5135 */
5136
5137static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5138{
5139 /* send SCSI cdb */
5140 DPRINTK("send cdb\n");
db024d53 5141 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5142
a6b2c5d4 5143 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5144 ata_altstatus(ap); /* flush */
5145
5146 switch (qc->tf.protocol) {
5147 case ATA_PROT_ATAPI:
5148 ap->hsm_task_state = HSM_ST;
5149 break;
5150 case ATA_PROT_ATAPI_NODATA:
5151 ap->hsm_task_state = HSM_ST_LAST;
5152 break;
5153 case ATA_PROT_ATAPI_DMA:
5154 ap->hsm_task_state = HSM_ST_LAST;
5155 /* initiate bmdma */
5156 ap->ops->bmdma_start(qc);
5157 break;
5158 }
1da177e4
LT
5159}
5160
6ae4cfb5
AL
5161/**
5162 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5163 * @qc: Command on going
5164 * @bytes: number of bytes
5165 *
5166 * Transfer Transfer data from/to the ATAPI device.
5167 *
5168 * LOCKING:
5169 * Inherited from caller.
5170 *
5171 */
140b5e59 5172static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
1da177e4
LT
5173{
5174 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4 5175 struct ata_port *ap = qc->ap;
140b5e59
TH
5176 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5177 struct scatterlist *sg;
1da177e4
LT
5178 struct page *page;
5179 unsigned char *buf;
5180 unsigned int offset, count;
1da177e4
LT
5181
5182next_sg:
140b5e59
TH
5183 sg = qc->cursg;
5184 if (unlikely(!sg)) {
7fb6ec28 5185 /*
563a6e1f
AL
5186 * The end of qc->sg is reached and the device expects
5187 * more data to transfer. In order not to overrun qc->sg
5188 * and fulfill length specified in the byte count register,
5189 * - for read case, discard trailing data from the device
5190 * - for write case, padding zero data to the device
5191 */
5192 u16 pad_buf[1] = { 0 };
563a6e1f
AL
5193 unsigned int i;
5194
140b5e59
TH
5195 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5196 ata_ehi_push_desc(ehi, "too much trailing data "
5197 "buf=%u cur=%u bytes=%u",
5198 qc->nbytes, qc->curbytes, bytes);
5199 return -1;
5200 }
5201
5202 /* overflow is exptected for misc ATAPI commands */
5203 if (bytes && !atapi_qc_may_overflow(qc))
5204 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5205 "trailing data (cdb=%02x nbytes=%u)\n",
5206 bytes, qc->cdb[0], qc->nbytes);
563a6e1f 5207
140b5e59 5208 for (i = 0; i < (bytes + 1) / 2; i++)
2dcb407e 5209 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5210
140b5e59 5211 qc->curbytes += bytes;
563a6e1f 5212
140b5e59
TH
5213 return 0;
5214 }
1da177e4 5215
45711f1a 5216 page = sg_page(sg);
1da177e4
LT
5217 offset = sg->offset + qc->cursg_ofs;
5218
5219 /* get the current page and offset */
5220 page = nth_page(page, (offset >> PAGE_SHIFT));
5221 offset %= PAGE_SIZE;
5222
6952df03 5223 /* don't overrun current sg */
32529e01 5224 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5225
5226 /* don't cross page boundaries */
5227 count = min(count, (unsigned int)PAGE_SIZE - offset);
5228
7282aa4b
AL
5229 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5230
91b8b313
AL
5231 if (PageHighMem(page)) {
5232 unsigned long flags;
5233
a6b2c5d4 5234 /* FIXME: use bounce buffer */
91b8b313
AL
5235 local_irq_save(flags);
5236 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5237
91b8b313 5238 /* do the actual data transfer */
a6b2c5d4 5239 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5240
91b8b313
AL
5241 kunmap_atomic(buf, KM_IRQ0);
5242 local_irq_restore(flags);
5243 } else {
5244 buf = page_address(page);
a6b2c5d4 5245 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5246 }
1da177e4
LT
5247
5248 bytes -= count;
140b5e59
TH
5249 if ((count & 1) && bytes)
5250 bytes--;
1da177e4
LT
5251 qc->curbytes += count;
5252 qc->cursg_ofs += count;
5253
32529e01 5254 if (qc->cursg_ofs == sg->length) {
87260216 5255 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5256 qc->cursg_ofs = 0;
5257 }
5258
563a6e1f 5259 if (bytes)
1da177e4 5260 goto next_sg;
140b5e59
TH
5261
5262 return 0;
1da177e4
LT
5263}
5264
6ae4cfb5
AL
5265/**
5266 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5267 * @qc: Command on going
5268 *
5269 * Transfer Transfer data from/to the ATAPI device.
5270 *
5271 * LOCKING:
5272 * Inherited from caller.
6ae4cfb5
AL
5273 */
5274
1da177e4
LT
5275static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5276{
5277 struct ata_port *ap = qc->ap;
5278 struct ata_device *dev = qc->dev;
5279 unsigned int ireason, bc_lo, bc_hi, bytes;
5280 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5281
eec4c3f3
AL
5282 /* Abuse qc->result_tf for temp storage of intermediate TF
5283 * here to save some kernel stack usage.
5284 * For normal completion, qc->result_tf is not relevant. For
5285 * error, qc->result_tf is later overwritten by ata_qc_complete().
5286 * So, the correctness of qc->result_tf is not affected.
5287 */
5288 ap->ops->tf_read(ap, &qc->result_tf);
5289 ireason = qc->result_tf.nsect;
5290 bc_lo = qc->result_tf.lbam;
5291 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5292 bytes = (bc_hi << 8) | bc_lo;
5293
5294 /* shall be cleared to zero, indicating xfer of data */
5295 if (ireason & (1 << 0))
5296 goto err_out;
5297
5298 /* make sure transfer direction matches expected */
5299 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5300 if (do_write != i_write)
5301 goto err_out;
5302
44877b4e 5303 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5304
140b5e59
TH
5305 if (__atapi_pio_bytes(qc, bytes))
5306 goto err_out;
4cc980b3 5307 ata_altstatus(ap); /* flush */
1da177e4
LT
5308
5309 return;
5310
5311err_out:
f15a1daf 5312 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5313 qc->err_mask |= AC_ERR_HSM;
14be71f4 5314 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5315}
5316
5317/**
c234fb00
AL
5318 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5319 * @ap: the target ata_port
5320 * @qc: qc on going
1da177e4 5321 *
c234fb00
AL
5322 * RETURNS:
5323 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5324 */
c234fb00
AL
5325
5326static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5327{
c234fb00
AL
5328 if (qc->tf.flags & ATA_TFLAG_POLLING)
5329 return 1;
1da177e4 5330
c234fb00
AL
5331 if (ap->hsm_task_state == HSM_ST_FIRST) {
5332 if (qc->tf.protocol == ATA_PROT_PIO &&
5333 (qc->tf.flags & ATA_TFLAG_WRITE))
5334 return 1;
1da177e4 5335
405e66b3 5336 if (ata_is_atapi(qc->tf.protocol) &&
c234fb00
AL
5337 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5338 return 1;
fe79e683
AL
5339 }
5340
c234fb00
AL
5341 return 0;
5342}
1da177e4 5343
c17ea20d
TH
5344/**
5345 * ata_hsm_qc_complete - finish a qc running on standard HSM
5346 * @qc: Command to complete
5347 * @in_wq: 1 if called from workqueue, 0 otherwise
5348 *
5349 * Finish @qc which is running on standard HSM.
5350 *
5351 * LOCKING:
cca3974e 5352 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5353 * Otherwise, none on entry and grabs host lock.
5354 */
5355static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5356{
5357 struct ata_port *ap = qc->ap;
5358 unsigned long flags;
5359
5360 if (ap->ops->error_handler) {
5361 if (in_wq) {
ba6a1308 5362 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5363
cca3974e
JG
5364 /* EH might have kicked in while host lock is
5365 * released.
c17ea20d
TH
5366 */
5367 qc = ata_qc_from_tag(ap, qc->tag);
5368 if (qc) {
5369 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5370 ap->ops->irq_on(ap);
c17ea20d
TH
5371 ata_qc_complete(qc);
5372 } else
5373 ata_port_freeze(ap);
5374 }
5375
ba6a1308 5376 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5377 } else {
5378 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5379 ata_qc_complete(qc);
5380 else
5381 ata_port_freeze(ap);
5382 }
5383 } else {
5384 if (in_wq) {
ba6a1308 5385 spin_lock_irqsave(ap->lock, flags);
83625006 5386 ap->ops->irq_on(ap);
c17ea20d 5387 ata_qc_complete(qc);
ba6a1308 5388 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5389 } else
5390 ata_qc_complete(qc);
5391 }
5392}
5393
bb5cb290
AL
5394/**
5395 * ata_hsm_move - move the HSM to the next state.
5396 * @ap: the target ata_port
5397 * @qc: qc on going
5398 * @status: current device status
5399 * @in_wq: 1 if called from workqueue, 0 otherwise
5400 *
5401 * RETURNS:
5402 * 1 when poll next status needed, 0 otherwise.
5403 */
9a1004d0
TH
5404int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5405 u8 status, int in_wq)
e2cec771 5406{
bb5cb290
AL
5407 unsigned long flags = 0;
5408 int poll_next;
5409
6912ccd5
AL
5410 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5411
bb5cb290
AL
5412 /* Make sure ata_qc_issue_prot() does not throw things
5413 * like DMA polling into the workqueue. Notice that
5414 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5415 */
c234fb00 5416 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5417
e2cec771 5418fsm_start:
999bb6f4 5419 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5420 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5421
e2cec771
AL
5422 switch (ap->hsm_task_state) {
5423 case HSM_ST_FIRST:
bb5cb290
AL
5424 /* Send first data block or PACKET CDB */
5425
5426 /* If polling, we will stay in the work queue after
5427 * sending the data. Otherwise, interrupt handler
5428 * takes over after sending the data.
5429 */
5430 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5431
e2cec771 5432 /* check device status */
3655d1d3
AL
5433 if (unlikely((status & ATA_DRQ) == 0)) {
5434 /* handle BSY=0, DRQ=0 as error */
5435 if (likely(status & (ATA_ERR | ATA_DF)))
5436 /* device stops HSM for abort/error */
5437 qc->err_mask |= AC_ERR_DEV;
5438 else
5439 /* HSM violation. Let EH handle this */
5440 qc->err_mask |= AC_ERR_HSM;
5441
14be71f4 5442 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5443 goto fsm_start;
1da177e4
LT
5444 }
5445
71601958
AL
5446 /* Device should not ask for data transfer (DRQ=1)
5447 * when it finds something wrong.
eee6c32f
AL
5448 * We ignore DRQ here and stop the HSM by
5449 * changing hsm_task_state to HSM_ST_ERR and
5450 * let the EH abort the command or reset the device.
71601958
AL
5451 */
5452 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5453 /* Some ATAPI tape drives forget to clear the ERR bit
5454 * when doing the next command (mostly request sense).
5455 * We ignore ERR here to workaround and proceed sending
5456 * the CDB.
5457 */
5458 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5459 ata_port_printk(ap, KERN_WARNING,
5460 "DRQ=1 with device error, "
5461 "dev_stat 0x%X\n", status);
5462 qc->err_mask |= AC_ERR_HSM;
5463 ap->hsm_task_state = HSM_ST_ERR;
5464 goto fsm_start;
5465 }
71601958 5466 }
1da177e4 5467
bb5cb290
AL
5468 /* Send the CDB (atapi) or the first data block (ata pio out).
5469 * During the state transition, interrupt handler shouldn't
5470 * be invoked before the data transfer is complete and
5471 * hsm_task_state is changed. Hence, the following locking.
5472 */
5473 if (in_wq)
ba6a1308 5474 spin_lock_irqsave(ap->lock, flags);
1da177e4 5475
bb5cb290
AL
5476 if (qc->tf.protocol == ATA_PROT_PIO) {
5477 /* PIO data out protocol.
5478 * send first data block.
5479 */
0565c26d 5480
bb5cb290
AL
5481 /* ata_pio_sectors() might change the state
5482 * to HSM_ST_LAST. so, the state is changed here
5483 * before ata_pio_sectors().
5484 */
5485 ap->hsm_task_state = HSM_ST;
5486 ata_pio_sectors(qc);
bb5cb290
AL
5487 } else
5488 /* send CDB */
5489 atapi_send_cdb(ap, qc);
5490
5491 if (in_wq)
ba6a1308 5492 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5493
5494 /* if polling, ata_pio_task() handles the rest.
5495 * otherwise, interrupt handler takes over from here.
5496 */
e2cec771 5497 break;
1c848984 5498
e2cec771
AL
5499 case HSM_ST:
5500 /* complete command or read/write the data register */
5501 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5502 /* ATAPI PIO protocol */
5503 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5504 /* No more data to transfer or device error.
5505 * Device error will be tagged in HSM_ST_LAST.
5506 */
e2cec771
AL
5507 ap->hsm_task_state = HSM_ST_LAST;
5508 goto fsm_start;
5509 }
1da177e4 5510
71601958
AL
5511 /* Device should not ask for data transfer (DRQ=1)
5512 * when it finds something wrong.
eee6c32f
AL
5513 * We ignore DRQ here and stop the HSM by
5514 * changing hsm_task_state to HSM_ST_ERR and
5515 * let the EH abort the command or reset the device.
71601958
AL
5516 */
5517 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5518 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5519 "device error, dev_stat 0x%X\n",
5520 status);
3655d1d3 5521 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5522 ap->hsm_task_state = HSM_ST_ERR;
5523 goto fsm_start;
71601958 5524 }
1da177e4 5525
e2cec771 5526 atapi_pio_bytes(qc);
7fb6ec28 5527
e2cec771
AL
5528 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5529 /* bad ireason reported by device */
5530 goto fsm_start;
1da177e4 5531
e2cec771
AL
5532 } else {
5533 /* ATA PIO protocol */
5534 if (unlikely((status & ATA_DRQ) == 0)) {
5535 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5536 if (likely(status & (ATA_ERR | ATA_DF)))
5537 /* device stops HSM for abort/error */
5538 qc->err_mask |= AC_ERR_DEV;
5539 else
55a8e2c8
TH
5540 /* HSM violation. Let EH handle this.
5541 * Phantom devices also trigger this
5542 * condition. Mark hint.
5543 */
5544 qc->err_mask |= AC_ERR_HSM |
5545 AC_ERR_NODEV_HINT;
3655d1d3 5546
e2cec771
AL
5547 ap->hsm_task_state = HSM_ST_ERR;
5548 goto fsm_start;
5549 }
1da177e4 5550
eee6c32f
AL
5551 /* For PIO reads, some devices may ask for
5552 * data transfer (DRQ=1) alone with ERR=1.
5553 * We respect DRQ here and transfer one
5554 * block of junk data before changing the
5555 * hsm_task_state to HSM_ST_ERR.
5556 *
5557 * For PIO writes, ERR=1 DRQ=1 doesn't make
5558 * sense since the data block has been
5559 * transferred to the device.
71601958
AL
5560 */
5561 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5562 /* data might be corrputed */
5563 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5564
5565 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5566 ata_pio_sectors(qc);
eee6c32f
AL
5567 status = ata_wait_idle(ap);
5568 }
5569
3655d1d3
AL
5570 if (status & (ATA_BUSY | ATA_DRQ))
5571 qc->err_mask |= AC_ERR_HSM;
5572
eee6c32f
AL
5573 /* ata_pio_sectors() might change the
5574 * state to HSM_ST_LAST. so, the state
5575 * is changed after ata_pio_sectors().
5576 */
5577 ap->hsm_task_state = HSM_ST_ERR;
5578 goto fsm_start;
71601958
AL
5579 }
5580
e2cec771
AL
5581 ata_pio_sectors(qc);
5582
5583 if (ap->hsm_task_state == HSM_ST_LAST &&
5584 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5585 /* all data read */
52a32205 5586 status = ata_wait_idle(ap);
e2cec771
AL
5587 goto fsm_start;
5588 }
5589 }
5590
bb5cb290 5591 poll_next = 1;
1da177e4
LT
5592 break;
5593
14be71f4 5594 case HSM_ST_LAST:
6912ccd5
AL
5595 if (unlikely(!ata_ok(status))) {
5596 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5597 ap->hsm_task_state = HSM_ST_ERR;
5598 goto fsm_start;
5599 }
5600
5601 /* no more data to transfer */
4332a771 5602 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5603 ap->print_id, qc->dev->devno, status);
e2cec771 5604
6912ccd5
AL
5605 WARN_ON(qc->err_mask);
5606
e2cec771 5607 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5608
e2cec771 5609 /* complete taskfile transaction */
c17ea20d 5610 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5611
5612 poll_next = 0;
1da177e4
LT
5613 break;
5614
14be71f4 5615 case HSM_ST_ERR:
e2cec771
AL
5616 /* make sure qc->err_mask is available to
5617 * know what's wrong and recover
5618 */
5619 WARN_ON(qc->err_mask == 0);
5620
5621 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5622
999bb6f4 5623 /* complete taskfile transaction */
c17ea20d 5624 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5625
5626 poll_next = 0;
e2cec771
AL
5627 break;
5628 default:
bb5cb290 5629 poll_next = 0;
6912ccd5 5630 BUG();
1da177e4
LT
5631 }
5632
bb5cb290 5633 return poll_next;
1da177e4
LT
5634}
5635
65f27f38 5636static void ata_pio_task(struct work_struct *work)
8061f5f0 5637{
65f27f38
DH
5638 struct ata_port *ap =
5639 container_of(work, struct ata_port, port_task.work);
5640 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5641 u8 status;
a1af3734 5642 int poll_next;
8061f5f0 5643
7fb6ec28 5644fsm_start:
a1af3734 5645 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5646
a1af3734
AL
5647 /*
5648 * This is purely heuristic. This is a fast path.
5649 * Sometimes when we enter, BSY will be cleared in
5650 * a chk-status or two. If not, the drive is probably seeking
5651 * or something. Snooze for a couple msecs, then
5652 * chk-status again. If still busy, queue delayed work.
5653 */
5654 status = ata_busy_wait(ap, ATA_BUSY, 5);
5655 if (status & ATA_BUSY) {
5656 msleep(2);
5657 status = ata_busy_wait(ap, ATA_BUSY, 10);
5658 if (status & ATA_BUSY) {
31ce6dae 5659 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5660 return;
5661 }
8061f5f0
TH
5662 }
5663
a1af3734
AL
5664 /* move the HSM */
5665 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5666
a1af3734
AL
5667 /* another command or interrupt handler
5668 * may be running at this point.
5669 */
5670 if (poll_next)
7fb6ec28 5671 goto fsm_start;
8061f5f0
TH
5672}
5673
1da177e4
LT
5674/**
5675 * ata_qc_new - Request an available ATA command, for queueing
5676 * @ap: Port associated with device @dev
5677 * @dev: Device from whom we request an available command structure
5678 *
5679 * LOCKING:
0cba632b 5680 * None.
1da177e4
LT
5681 */
5682
5683static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5684{
5685 struct ata_queued_cmd *qc = NULL;
5686 unsigned int i;
5687
e3180499 5688 /* no command while frozen */
b51e9e5d 5689 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5690 return NULL;
5691
2ab7db1f
TH
5692 /* the last tag is reserved for internal command. */
5693 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5694 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5695 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5696 break;
5697 }
5698
5699 if (qc)
5700 qc->tag = i;
5701
5702 return qc;
5703}
5704
5705/**
5706 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5707 * @dev: Device from whom we request an available command structure
5708 *
5709 * LOCKING:
0cba632b 5710 * None.
1da177e4
LT
5711 */
5712
3373efd8 5713struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5714{
9af5c9c9 5715 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5716 struct ata_queued_cmd *qc;
5717
5718 qc = ata_qc_new(ap);
5719 if (qc) {
1da177e4
LT
5720 qc->scsicmd = NULL;
5721 qc->ap = ap;
5722 qc->dev = dev;
1da177e4 5723
2c13b7ce 5724 ata_qc_reinit(qc);
1da177e4
LT
5725 }
5726
5727 return qc;
5728}
5729
1da177e4
LT
5730/**
5731 * ata_qc_free - free unused ata_queued_cmd
5732 * @qc: Command to complete
5733 *
5734 * Designed to free unused ata_queued_cmd object
5735 * in case something prevents using it.
5736 *
5737 * LOCKING:
cca3974e 5738 * spin_lock_irqsave(host lock)
1da177e4
LT
5739 */
5740void ata_qc_free(struct ata_queued_cmd *qc)
5741{
4ba946e9
TH
5742 struct ata_port *ap = qc->ap;
5743 unsigned int tag;
5744
a4631474 5745 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5746
4ba946e9
TH
5747 qc->flags = 0;
5748 tag = qc->tag;
5749 if (likely(ata_tag_valid(tag))) {
4ba946e9 5750 qc->tag = ATA_TAG_POISON;
6cec4a39 5751 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5752 }
1da177e4
LT
5753}
5754
76014427 5755void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5756{
dedaf2b0 5757 struct ata_port *ap = qc->ap;
9af5c9c9 5758 struct ata_link *link = qc->dev->link;
dedaf2b0 5759
a4631474
TH
5760 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5761 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5762
5763 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5764 ata_sg_clean(qc);
5765
7401abf2 5766 /* command should be marked inactive atomically with qc completion */
da917d69 5767 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5768 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5769 if (!link->sactive)
5770 ap->nr_active_links--;
5771 } else {
9af5c9c9 5772 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5773 ap->nr_active_links--;
5774 }
5775
5776 /* clear exclusive status */
5777 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5778 ap->excl_link == link))
5779 ap->excl_link = NULL;
7401abf2 5780
3f3791d3
AL
5781 /* atapi: mark qc as inactive to prevent the interrupt handler
5782 * from completing the command twice later, before the error handler
5783 * is called. (when rc != 0 and atapi request sense is needed)
5784 */
5785 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5786 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5787
1da177e4 5788 /* call completion callback */
77853bf2 5789 qc->complete_fn(qc);
1da177e4
LT
5790}
5791
39599a53
TH
5792static void fill_result_tf(struct ata_queued_cmd *qc)
5793{
5794 struct ata_port *ap = qc->ap;
5795
39599a53 5796 qc->result_tf.flags = qc->tf.flags;
4742d54f 5797 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5798}
5799
00115e0f
TH
5800static void ata_verify_xfer(struct ata_queued_cmd *qc)
5801{
5802 struct ata_device *dev = qc->dev;
5803
5804 if (ata_tag_internal(qc->tag))
5805 return;
5806
5807 if (ata_is_nodata(qc->tf.protocol))
5808 return;
5809
5810 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5811 return;
5812
5813 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5814}
5815
f686bcb8
TH
5816/**
5817 * ata_qc_complete - Complete an active ATA command
5818 * @qc: Command to complete
5819 * @err_mask: ATA Status register contents
5820 *
5821 * Indicate to the mid and upper layers that an ATA
5822 * command has completed, with either an ok or not-ok status.
5823 *
5824 * LOCKING:
cca3974e 5825 * spin_lock_irqsave(host lock)
f686bcb8
TH
5826 */
5827void ata_qc_complete(struct ata_queued_cmd *qc)
5828{
5829 struct ata_port *ap = qc->ap;
5830
5831 /* XXX: New EH and old EH use different mechanisms to
5832 * synchronize EH with regular execution path.
5833 *
5834 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5835 * Normal execution path is responsible for not accessing a
5836 * failed qc. libata core enforces the rule by returning NULL
5837 * from ata_qc_from_tag() for failed qcs.
5838 *
5839 * Old EH depends on ata_qc_complete() nullifying completion
5840 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5841 * not synchronize with interrupt handler. Only PIO task is
5842 * taken care of.
5843 */
5844 if (ap->ops->error_handler) {
4dbfa39b
TH
5845 struct ata_device *dev = qc->dev;
5846 struct ata_eh_info *ehi = &dev->link->eh_info;
5847
b51e9e5d 5848 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5849
5850 if (unlikely(qc->err_mask))
5851 qc->flags |= ATA_QCFLAG_FAILED;
5852
5853 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5854 if (!ata_tag_internal(qc->tag)) {
5855 /* always fill result TF for failed qc */
39599a53 5856 fill_result_tf(qc);
f686bcb8
TH
5857 ata_qc_schedule_eh(qc);
5858 return;
5859 }
5860 }
5861
5862 /* read result TF if requested */
5863 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5864 fill_result_tf(qc);
f686bcb8 5865
4dbfa39b
TH
5866 /* Some commands need post-processing after successful
5867 * completion.
5868 */
5869 switch (qc->tf.command) {
5870 case ATA_CMD_SET_FEATURES:
5871 if (qc->tf.feature != SETFEATURES_WC_ON &&
5872 qc->tf.feature != SETFEATURES_WC_OFF)
5873 break;
5874 /* fall through */
5875 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5876 case ATA_CMD_SET_MULTI: /* multi_count changed */
5877 /* revalidate device */
5878 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5879 ata_port_schedule_eh(ap);
5880 break;
054a5fba
TH
5881
5882 case ATA_CMD_SLEEP:
5883 dev->flags |= ATA_DFLAG_SLEEPING;
5884 break;
4dbfa39b
TH
5885 }
5886
00115e0f
TH
5887 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5888 ata_verify_xfer(qc);
5889
f686bcb8
TH
5890 __ata_qc_complete(qc);
5891 } else {
5892 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5893 return;
5894
5895 /* read result TF if failed or requested */
5896 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5897 fill_result_tf(qc);
f686bcb8
TH
5898
5899 __ata_qc_complete(qc);
5900 }
5901}
5902
dedaf2b0
TH
5903/**
5904 * ata_qc_complete_multiple - Complete multiple qcs successfully
5905 * @ap: port in question
5906 * @qc_active: new qc_active mask
5907 * @finish_qc: LLDD callback invoked before completing a qc
5908 *
5909 * Complete in-flight commands. This functions is meant to be
5910 * called from low-level driver's interrupt routine to complete
5911 * requests normally. ap->qc_active and @qc_active is compared
5912 * and commands are completed accordingly.
5913 *
5914 * LOCKING:
cca3974e 5915 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5916 *
5917 * RETURNS:
5918 * Number of completed commands on success, -errno otherwise.
5919 */
5920int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5921 void (*finish_qc)(struct ata_queued_cmd *))
5922{
5923 int nr_done = 0;
5924 u32 done_mask;
5925 int i;
5926
5927 done_mask = ap->qc_active ^ qc_active;
5928
5929 if (unlikely(done_mask & qc_active)) {
5930 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5931 "(%08x->%08x)\n", ap->qc_active, qc_active);
5932 return -EINVAL;
5933 }
5934
5935 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5936 struct ata_queued_cmd *qc;
5937
5938 if (!(done_mask & (1 << i)))
5939 continue;
5940
5941 if ((qc = ata_qc_from_tag(ap, i))) {
5942 if (finish_qc)
5943 finish_qc(qc);
5944 ata_qc_complete(qc);
5945 nr_done++;
5946 }
5947 }
5948
5949 return nr_done;
5950}
5951
1da177e4
LT
5952/**
5953 * ata_qc_issue - issue taskfile to device
5954 * @qc: command to issue to device
5955 *
5956 * Prepare an ATA command to submission to device.
5957 * This includes mapping the data into a DMA-able
5958 * area, filling in the S/G table, and finally
5959 * writing the taskfile to hardware, starting the command.
5960 *
5961 * LOCKING:
cca3974e 5962 * spin_lock_irqsave(host lock)
1da177e4 5963 */
8e0e694a 5964void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5965{
5966 struct ata_port *ap = qc->ap;
9af5c9c9 5967 struct ata_link *link = qc->dev->link;
405e66b3 5968 u8 prot = qc->tf.protocol;
1da177e4 5969
dedaf2b0
TH
5970 /* Make sure only one non-NCQ command is outstanding. The
5971 * check is skipped for old EH because it reuses active qc to
5972 * request ATAPI sense.
5973 */
9af5c9c9 5974 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5975
405e66b3 5976 if (prot == ATA_PROT_NCQ) {
9af5c9c9 5977 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5978
5979 if (!link->sactive)
5980 ap->nr_active_links++;
9af5c9c9 5981 link->sactive |= 1 << qc->tag;
dedaf2b0 5982 } else {
9af5c9c9 5983 WARN_ON(link->sactive);
da917d69
TH
5984
5985 ap->nr_active_links++;
9af5c9c9 5986 link->active_tag = qc->tag;
dedaf2b0
TH
5987 }
5988
e4a70e76 5989 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5990 ap->qc_active |= 1 << qc->tag;
e4a70e76 5991
405e66b3
TH
5992 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5993 (ap->flags & ATA_FLAG_PIO_DMA))) {
1da177e4
LT
5994 if (qc->flags & ATA_QCFLAG_SG) {
5995 if (ata_sg_setup(qc))
8e436af9 5996 goto sg_err;
1da177e4
LT
5997 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5998 if (ata_sg_setup_one(qc))
8e436af9 5999 goto sg_err;
1da177e4
LT
6000 }
6001 } else {
6002 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6003 }
6004
054a5fba
TH
6005 /* if device is sleeping, schedule softreset and abort the link */
6006 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6007 link->eh_info.action |= ATA_EH_SOFTRESET;
6008 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6009 ata_link_abort(link);
6010 return;
6011 }
6012
1da177e4
LT
6013 ap->ops->qc_prep(qc);
6014
8e0e694a
TH
6015 qc->err_mask |= ap->ops->qc_issue(qc);
6016 if (unlikely(qc->err_mask))
6017 goto err;
6018 return;
1da177e4 6019
8e436af9
TH
6020sg_err:
6021 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6022 qc->err_mask |= AC_ERR_SYSTEM;
6023err:
6024 ata_qc_complete(qc);
1da177e4
LT
6025}
6026
6027/**
6028 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6029 * @qc: command to issue to device
6030 *
6031 * Using various libata functions and hooks, this function
6032 * starts an ATA command. ATA commands are grouped into
6033 * classes called "protocols", and issuing each type of protocol
6034 * is slightly different.
6035 *
0baab86b
EF
6036 * May be used as the qc_issue() entry in ata_port_operations.
6037 *
1da177e4 6038 * LOCKING:
cca3974e 6039 * spin_lock_irqsave(host lock)
1da177e4
LT
6040 *
6041 * RETURNS:
9a3d9eb0 6042 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6043 */
6044
9a3d9eb0 6045unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6046{
6047 struct ata_port *ap = qc->ap;
6048
e50362ec
AL
6049 /* Use polling pio if the LLD doesn't handle
6050 * interrupt driven pio and atapi CDB interrupt.
6051 */
6052 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6053 switch (qc->tf.protocol) {
6054 case ATA_PROT_PIO:
e3472cbe 6055 case ATA_PROT_NODATA:
e50362ec
AL
6056 case ATA_PROT_ATAPI:
6057 case ATA_PROT_ATAPI_NODATA:
6058 qc->tf.flags |= ATA_TFLAG_POLLING;
6059 break;
6060 case ATA_PROT_ATAPI_DMA:
6061 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6062 /* see ata_dma_blacklisted() */
e50362ec
AL
6063 BUG();
6064 break;
6065 default:
6066 break;
6067 }
6068 }
6069
312f7da2 6070 /* select the device */
1da177e4
LT
6071 ata_dev_select(ap, qc->dev->devno, 1, 0);
6072
312f7da2 6073 /* start the command */
1da177e4
LT
6074 switch (qc->tf.protocol) {
6075 case ATA_PROT_NODATA:
312f7da2
AL
6076 if (qc->tf.flags & ATA_TFLAG_POLLING)
6077 ata_qc_set_polling(qc);
6078
e5338254 6079 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6080 ap->hsm_task_state = HSM_ST_LAST;
6081
6082 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6083 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6084
1da177e4
LT
6085 break;
6086
6087 case ATA_PROT_DMA:
587005de 6088 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6089
1da177e4
LT
6090 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6091 ap->ops->bmdma_setup(qc); /* set up bmdma */
6092 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6093 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6094 break;
6095
312f7da2
AL
6096 case ATA_PROT_PIO:
6097 if (qc->tf.flags & ATA_TFLAG_POLLING)
6098 ata_qc_set_polling(qc);
1da177e4 6099
e5338254 6100 ata_tf_to_host(ap, &qc->tf);
312f7da2 6101
54f00389
AL
6102 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6103 /* PIO data out protocol */
6104 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6105 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6106
6107 /* always send first data block using
e27486db 6108 * the ata_pio_task() codepath.
54f00389 6109 */
312f7da2 6110 } else {
54f00389
AL
6111 /* PIO data in protocol */
6112 ap->hsm_task_state = HSM_ST;
6113
6114 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6115 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6116
6117 /* if polling, ata_pio_task() handles the rest.
6118 * otherwise, interrupt handler takes over from here.
6119 */
312f7da2
AL
6120 }
6121
1da177e4
LT
6122 break;
6123
1da177e4 6124 case ATA_PROT_ATAPI:
1da177e4 6125 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6126 if (qc->tf.flags & ATA_TFLAG_POLLING)
6127 ata_qc_set_polling(qc);
6128
e5338254 6129 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6130
312f7da2
AL
6131 ap->hsm_task_state = HSM_ST_FIRST;
6132
6133 /* send cdb by polling if no cdb interrupt */
6134 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6135 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6136 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6137 break;
6138
6139 case ATA_PROT_ATAPI_DMA:
587005de 6140 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6141
1da177e4
LT
6142 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6143 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6144 ap->hsm_task_state = HSM_ST_FIRST;
6145
6146 /* send cdb by polling if no cdb interrupt */
6147 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6148 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6149 break;
6150
6151 default:
6152 WARN_ON(1);
9a3d9eb0 6153 return AC_ERR_SYSTEM;
1da177e4
LT
6154 }
6155
6156 return 0;
6157}
6158
1da177e4
LT
6159/**
6160 * ata_host_intr - Handle host interrupt for given (port, task)
6161 * @ap: Port on which interrupt arrived (possibly...)
6162 * @qc: Taskfile currently active in engine
6163 *
6164 * Handle host interrupt for given queued command. Currently,
6165 * only DMA interrupts are handled. All other commands are
6166 * handled via polling with interrupts disabled (nIEN bit).
6167 *
6168 * LOCKING:
cca3974e 6169 * spin_lock_irqsave(host lock)
1da177e4
LT
6170 *
6171 * RETURNS:
6172 * One if interrupt was handled, zero if not (shared irq).
6173 */
6174
2dcb407e
JG
6175inline unsigned int ata_host_intr(struct ata_port *ap,
6176 struct ata_queued_cmd *qc)
1da177e4 6177{
9af5c9c9 6178 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6179 u8 status, host_stat = 0;
1da177e4 6180
312f7da2 6181 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6182 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6183
312f7da2
AL
6184 /* Check whether we are expecting interrupt in this state */
6185 switch (ap->hsm_task_state) {
6186 case HSM_ST_FIRST:
6912ccd5
AL
6187 /* Some pre-ATAPI-4 devices assert INTRQ
6188 * at this state when ready to receive CDB.
6189 */
1da177e4 6190
312f7da2 6191 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
405e66b3
TH
6192 * The flag was turned on only for atapi devices. No
6193 * need to check ata_is_atapi(qc->tf.protocol) again.
312f7da2
AL
6194 */
6195 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6196 goto idle_irq;
1da177e4 6197 break;
312f7da2
AL
6198 case HSM_ST_LAST:
6199 if (qc->tf.protocol == ATA_PROT_DMA ||
6200 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6201 /* check status of DMA engine */
6202 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6203 VPRINTK("ata%u: host_stat 0x%X\n",
6204 ap->print_id, host_stat);
312f7da2
AL
6205
6206 /* if it's not our irq... */
6207 if (!(host_stat & ATA_DMA_INTR))
6208 goto idle_irq;
6209
6210 /* before we do anything else, clear DMA-Start bit */
6211 ap->ops->bmdma_stop(qc);
a4f16610
AL
6212
6213 if (unlikely(host_stat & ATA_DMA_ERR)) {
6214 /* error when transfering data to/from memory */
6215 qc->err_mask |= AC_ERR_HOST_BUS;
6216 ap->hsm_task_state = HSM_ST_ERR;
6217 }
312f7da2
AL
6218 }
6219 break;
6220 case HSM_ST:
6221 break;
1da177e4
LT
6222 default:
6223 goto idle_irq;
6224 }
6225
312f7da2
AL
6226 /* check altstatus */
6227 status = ata_altstatus(ap);
6228 if (status & ATA_BUSY)
6229 goto idle_irq;
1da177e4 6230
312f7da2
AL
6231 /* check main status, clearing INTRQ */
6232 status = ata_chk_status(ap);
6233 if (unlikely(status & ATA_BUSY))
6234 goto idle_irq;
1da177e4 6235
312f7da2
AL
6236 /* ack bmdma irq events */
6237 ap->ops->irq_clear(ap);
1da177e4 6238
bb5cb290 6239 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6240
6241 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6242 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6243 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6244
1da177e4
LT
6245 return 1; /* irq handled */
6246
6247idle_irq:
6248 ap->stats.idle_irq++;
6249
6250#ifdef ATA_IRQ_TRAP
6251 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6252 ata_chk_status(ap);
6253 ap->ops->irq_clear(ap);
f15a1daf 6254 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6255 return 1;
1da177e4
LT
6256 }
6257#endif
6258 return 0; /* irq not handled */
6259}
6260
6261/**
6262 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6263 * @irq: irq line (unused)
cca3974e 6264 * @dev_instance: pointer to our ata_host information structure
1da177e4 6265 *
0cba632b
JG
6266 * Default interrupt handler for PCI IDE devices. Calls
6267 * ata_host_intr() for each port that is not disabled.
6268 *
1da177e4 6269 * LOCKING:
cca3974e 6270 * Obtains host lock during operation.
1da177e4
LT
6271 *
6272 * RETURNS:
0cba632b 6273 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6274 */
6275
2dcb407e 6276irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6277{
cca3974e 6278 struct ata_host *host = dev_instance;
1da177e4
LT
6279 unsigned int i;
6280 unsigned int handled = 0;
6281 unsigned long flags;
6282
6283 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6284 spin_lock_irqsave(&host->lock, flags);
1da177e4 6285
cca3974e 6286 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6287 struct ata_port *ap;
6288
cca3974e 6289 ap = host->ports[i];
c1389503 6290 if (ap &&
029f5468 6291 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6292 struct ata_queued_cmd *qc;
6293
9af5c9c9 6294 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6295 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6296 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6297 handled |= ata_host_intr(ap, qc);
6298 }
6299 }
6300
cca3974e 6301 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6302
6303 return IRQ_RETVAL(handled);
6304}
6305
34bf2170
TH
6306/**
6307 * sata_scr_valid - test whether SCRs are accessible
936fd732 6308 * @link: ATA link to test SCR accessibility for
34bf2170 6309 *
936fd732 6310 * Test whether SCRs are accessible for @link.
34bf2170
TH
6311 *
6312 * LOCKING:
6313 * None.
6314 *
6315 * RETURNS:
6316 * 1 if SCRs are accessible, 0 otherwise.
6317 */
936fd732 6318int sata_scr_valid(struct ata_link *link)
34bf2170 6319{
936fd732
TH
6320 struct ata_port *ap = link->ap;
6321
a16abc0b 6322 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6323}
6324
6325/**
6326 * sata_scr_read - read SCR register of the specified port
936fd732 6327 * @link: ATA link to read SCR for
34bf2170
TH
6328 * @reg: SCR to read
6329 * @val: Place to store read value
6330 *
936fd732 6331 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6332 * guaranteed to succeed if @link is ap->link, the cable type of
6333 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6334 *
6335 * LOCKING:
633273a3 6336 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6337 *
6338 * RETURNS:
6339 * 0 on success, negative errno on failure.
6340 */
936fd732 6341int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6342{
633273a3
TH
6343 if (ata_is_host_link(link)) {
6344 struct ata_port *ap = link->ap;
936fd732 6345
633273a3
TH
6346 if (sata_scr_valid(link))
6347 return ap->ops->scr_read(ap, reg, val);
6348 return -EOPNOTSUPP;
6349 }
6350
6351 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6352}
6353
6354/**
6355 * sata_scr_write - write SCR register of the specified port
936fd732 6356 * @link: ATA link to write SCR for
34bf2170
TH
6357 * @reg: SCR to write
6358 * @val: value to write
6359 *
936fd732 6360 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6361 * guaranteed to succeed if @link is ap->link, the cable type of
6362 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6363 *
6364 * LOCKING:
633273a3 6365 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6366 *
6367 * RETURNS:
6368 * 0 on success, negative errno on failure.
6369 */
936fd732 6370int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6371{
633273a3
TH
6372 if (ata_is_host_link(link)) {
6373 struct ata_port *ap = link->ap;
6374
6375 if (sata_scr_valid(link))
6376 return ap->ops->scr_write(ap, reg, val);
6377 return -EOPNOTSUPP;
6378 }
936fd732 6379
633273a3 6380 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6381}
6382
6383/**
6384 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6385 * @link: ATA link to write SCR for
34bf2170
TH
6386 * @reg: SCR to write
6387 * @val: value to write
6388 *
6389 * This function is identical to sata_scr_write() except that this
6390 * function performs flush after writing to the register.
6391 *
6392 * LOCKING:
633273a3 6393 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6394 *
6395 * RETURNS:
6396 * 0 on success, negative errno on failure.
6397 */
936fd732 6398int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6399{
633273a3
TH
6400 if (ata_is_host_link(link)) {
6401 struct ata_port *ap = link->ap;
6402 int rc;
da3dbb17 6403
633273a3
TH
6404 if (sata_scr_valid(link)) {
6405 rc = ap->ops->scr_write(ap, reg, val);
6406 if (rc == 0)
6407 rc = ap->ops->scr_read(ap, reg, &val);
6408 return rc;
6409 }
6410 return -EOPNOTSUPP;
34bf2170 6411 }
633273a3
TH
6412
6413 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6414}
6415
6416/**
936fd732
TH
6417 * ata_link_online - test whether the given link is online
6418 * @link: ATA link to test
34bf2170 6419 *
936fd732
TH
6420 * Test whether @link is online. Note that this function returns
6421 * 0 if online status of @link cannot be obtained, so
6422 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6423 *
6424 * LOCKING:
6425 * None.
6426 *
6427 * RETURNS:
6428 * 1 if the port online status is available and online.
6429 */
936fd732 6430int ata_link_online(struct ata_link *link)
34bf2170
TH
6431{
6432 u32 sstatus;
6433
936fd732
TH
6434 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6435 (sstatus & 0xf) == 0x3)
34bf2170
TH
6436 return 1;
6437 return 0;
6438}
6439
6440/**
936fd732
TH
6441 * ata_link_offline - test whether the given link is offline
6442 * @link: ATA link to test
34bf2170 6443 *
936fd732
TH
6444 * Test whether @link is offline. Note that this function
6445 * returns 0 if offline status of @link cannot be obtained, so
6446 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6447 *
6448 * LOCKING:
6449 * None.
6450 *
6451 * RETURNS:
6452 * 1 if the port offline status is available and offline.
6453 */
936fd732 6454int ata_link_offline(struct ata_link *link)
34bf2170
TH
6455{
6456 u32 sstatus;
6457
936fd732
TH
6458 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6459 (sstatus & 0xf) != 0x3)
34bf2170
TH
6460 return 1;
6461 return 0;
6462}
0baab86b 6463
77b08fb5 6464int ata_flush_cache(struct ata_device *dev)
9b847548 6465{
977e6b9f 6466 unsigned int err_mask;
9b847548
JA
6467 u8 cmd;
6468
6469 if (!ata_try_flush_cache(dev))
6470 return 0;
6471
6fc49adb 6472 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6473 cmd = ATA_CMD_FLUSH_EXT;
6474 else
6475 cmd = ATA_CMD_FLUSH;
6476
4f34337b
AC
6477 /* This is wrong. On a failed flush we get back the LBA of the lost
6478 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6479 a further flush command to continue the writeback until it
4f34337b 6480 does not error */
977e6b9f
TH
6481 err_mask = ata_do_simple_cmd(dev, cmd);
6482 if (err_mask) {
6483 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6484 return -EIO;
6485 }
6486
6487 return 0;
9b847548
JA
6488}
6489
6ffa01d8 6490#ifdef CONFIG_PM
cca3974e
JG
6491static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6492 unsigned int action, unsigned int ehi_flags,
6493 int wait)
500530f6
TH
6494{
6495 unsigned long flags;
6496 int i, rc;
6497
cca3974e
JG
6498 for (i = 0; i < host->n_ports; i++) {
6499 struct ata_port *ap = host->ports[i];
e3667ebf 6500 struct ata_link *link;
500530f6
TH
6501
6502 /* Previous resume operation might still be in
6503 * progress. Wait for PM_PENDING to clear.
6504 */
6505 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6506 ata_port_wait_eh(ap);
6507 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6508 }
6509
6510 /* request PM ops to EH */
6511 spin_lock_irqsave(ap->lock, flags);
6512
6513 ap->pm_mesg = mesg;
6514 if (wait) {
6515 rc = 0;
6516 ap->pm_result = &rc;
6517 }
6518
6519 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6520 __ata_port_for_each_link(link, ap) {
6521 link->eh_info.action |= action;
6522 link->eh_info.flags |= ehi_flags;
6523 }
500530f6
TH
6524
6525 ata_port_schedule_eh(ap);
6526
6527 spin_unlock_irqrestore(ap->lock, flags);
6528
6529 /* wait and check result */
6530 if (wait) {
6531 ata_port_wait_eh(ap);
6532 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6533 if (rc)
6534 return rc;
6535 }
6536 }
6537
6538 return 0;
6539}
6540
6541/**
cca3974e
JG
6542 * ata_host_suspend - suspend host
6543 * @host: host to suspend
500530f6
TH
6544 * @mesg: PM message
6545 *
cca3974e 6546 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6547 * function requests EH to perform PM operations and waits for EH
6548 * to finish.
6549 *
6550 * LOCKING:
6551 * Kernel thread context (may sleep).
6552 *
6553 * RETURNS:
6554 * 0 on success, -errno on failure.
6555 */
cca3974e 6556int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6557{
9666f400 6558 int rc;
500530f6 6559
ca77329f
KCA
6560 /*
6561 * disable link pm on all ports before requesting
6562 * any pm activity
6563 */
6564 ata_lpm_enable(host);
6565
cca3974e 6566 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6567 if (rc == 0)
6568 host->dev->power.power_state = mesg;
500530f6
TH
6569 return rc;
6570}
6571
6572/**
cca3974e
JG
6573 * ata_host_resume - resume host
6574 * @host: host to resume
500530f6 6575 *
cca3974e 6576 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6577 * function requests EH to perform PM operations and returns.
6578 * Note that all resume operations are performed parallely.
6579 *
6580 * LOCKING:
6581 * Kernel thread context (may sleep).
6582 */
cca3974e 6583void ata_host_resume(struct ata_host *host)
500530f6 6584{
cca3974e
JG
6585 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6586 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6587 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6588
6589 /* reenable link pm */
6590 ata_lpm_disable(host);
500530f6 6591}
6ffa01d8 6592#endif
500530f6 6593
c893a3ae
RD
6594/**
6595 * ata_port_start - Set port up for dma.
6596 * @ap: Port to initialize
6597 *
6598 * Called just after data structures for each port are
6599 * initialized. Allocates space for PRD table.
6600 *
6601 * May be used as the port_start() entry in ata_port_operations.
6602 *
6603 * LOCKING:
6604 * Inherited from caller.
6605 */
f0d36efd 6606int ata_port_start(struct ata_port *ap)
1da177e4 6607{
2f1f610b 6608 struct device *dev = ap->dev;
6037d6bb 6609 int rc;
1da177e4 6610
f0d36efd
TH
6611 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6612 GFP_KERNEL);
1da177e4
LT
6613 if (!ap->prd)
6614 return -ENOMEM;
6615
6037d6bb 6616 rc = ata_pad_alloc(ap, dev);
f0d36efd 6617 if (rc)
6037d6bb 6618 return rc;
1da177e4 6619
f0d36efd
TH
6620 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6621 (unsigned long long)ap->prd_dma);
1da177e4
LT
6622 return 0;
6623}
6624
3ef3b43d
TH
6625/**
6626 * ata_dev_init - Initialize an ata_device structure
6627 * @dev: Device structure to initialize
6628 *
6629 * Initialize @dev in preparation for probing.
6630 *
6631 * LOCKING:
6632 * Inherited from caller.
6633 */
6634void ata_dev_init(struct ata_device *dev)
6635{
9af5c9c9
TH
6636 struct ata_link *link = dev->link;
6637 struct ata_port *ap = link->ap;
72fa4b74
TH
6638 unsigned long flags;
6639
5a04bf4b 6640 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6641 link->sata_spd_limit = link->hw_sata_spd_limit;
6642 link->sata_spd = 0;
5a04bf4b 6643
72fa4b74
TH
6644 /* High bits of dev->flags are used to record warm plug
6645 * requests which occur asynchronously. Synchronize using
cca3974e 6646 * host lock.
72fa4b74 6647 */
ba6a1308 6648 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6649 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6650 dev->horkage = 0;
ba6a1308 6651 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6652
72fa4b74
TH
6653 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6654 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6655 dev->pio_mask = UINT_MAX;
6656 dev->mwdma_mask = UINT_MAX;
6657 dev->udma_mask = UINT_MAX;
6658}
6659
4fb37a25
TH
6660/**
6661 * ata_link_init - Initialize an ata_link structure
6662 * @ap: ATA port link is attached to
6663 * @link: Link structure to initialize
8989805d 6664 * @pmp: Port multiplier port number
4fb37a25
TH
6665 *
6666 * Initialize @link.
6667 *
6668 * LOCKING:
6669 * Kernel thread context (may sleep)
6670 */
fb7fd614 6671void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6672{
6673 int i;
6674
6675 /* clear everything except for devices */
6676 memset(link, 0, offsetof(struct ata_link, device[0]));
6677
6678 link->ap = ap;
8989805d 6679 link->pmp = pmp;
4fb37a25
TH
6680 link->active_tag = ATA_TAG_POISON;
6681 link->hw_sata_spd_limit = UINT_MAX;
6682
6683 /* can't use iterator, ap isn't initialized yet */
6684 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6685 struct ata_device *dev = &link->device[i];
6686
6687 dev->link = link;
6688 dev->devno = dev - link->device;
6689 ata_dev_init(dev);
6690 }
6691}
6692
6693/**
6694 * sata_link_init_spd - Initialize link->sata_spd_limit
6695 * @link: Link to configure sata_spd_limit for
6696 *
6697 * Initialize @link->[hw_]sata_spd_limit to the currently
6698 * configured value.
6699 *
6700 * LOCKING:
6701 * Kernel thread context (may sleep).
6702 *
6703 * RETURNS:
6704 * 0 on success, -errno on failure.
6705 */
fb7fd614 6706int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6707{
6708 u32 scontrol, spd;
6709 int rc;
6710
6711 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6712 if (rc)
6713 return rc;
6714
6715 spd = (scontrol >> 4) & 0xf;
6716 if (spd)
6717 link->hw_sata_spd_limit &= (1 << spd) - 1;
6718
6719 link->sata_spd_limit = link->hw_sata_spd_limit;
6720
6721 return 0;
6722}
6723
1da177e4 6724/**
f3187195
TH
6725 * ata_port_alloc - allocate and initialize basic ATA port resources
6726 * @host: ATA host this allocated port belongs to
1da177e4 6727 *
f3187195
TH
6728 * Allocate and initialize basic ATA port resources.
6729 *
6730 * RETURNS:
6731 * Allocate ATA port on success, NULL on failure.
0cba632b 6732 *
1da177e4 6733 * LOCKING:
f3187195 6734 * Inherited from calling layer (may sleep).
1da177e4 6735 */
f3187195 6736struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6737{
f3187195 6738 struct ata_port *ap;
1da177e4 6739
f3187195
TH
6740 DPRINTK("ENTER\n");
6741
6742 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6743 if (!ap)
6744 return NULL;
6745
f4d6d004 6746 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6747 ap->lock = &host->lock;
198e0fed 6748 ap->flags = ATA_FLAG_DISABLED;
f3187195 6749 ap->print_id = -1;
1da177e4 6750 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6751 ap->host = host;
f3187195 6752 ap->dev = host->dev;
1da177e4 6753 ap->last_ctl = 0xFF;
bd5d825c
BP
6754
6755#if defined(ATA_VERBOSE_DEBUG)
6756 /* turn on all debugging levels */
6757 ap->msg_enable = 0x00FF;
6758#elif defined(ATA_DEBUG)
6759 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6760#else
0dd4b21f 6761 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6762#endif
1da177e4 6763
65f27f38
DH
6764 INIT_DELAYED_WORK(&ap->port_task, NULL);
6765 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6766 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6767 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6768 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6769 init_timer_deferrable(&ap->fastdrain_timer);
6770 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6771 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6772
838df628 6773 ap->cbl = ATA_CBL_NONE;
838df628 6774
8989805d 6775 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6776
6777#ifdef ATA_IRQ_TRAP
6778 ap->stats.unhandled_irq = 1;
6779 ap->stats.idle_irq = 1;
6780#endif
1da177e4 6781 return ap;
1da177e4
LT
6782}
6783
f0d36efd
TH
6784static void ata_host_release(struct device *gendev, void *res)
6785{
6786 struct ata_host *host = dev_get_drvdata(gendev);
6787 int i;
6788
1aa506e4
TH
6789 for (i = 0; i < host->n_ports; i++) {
6790 struct ata_port *ap = host->ports[i];
6791
4911487a
TH
6792 if (!ap)
6793 continue;
6794
6795 if (ap->scsi_host)
1aa506e4
TH
6796 scsi_host_put(ap->scsi_host);
6797
633273a3 6798 kfree(ap->pmp_link);
4911487a 6799 kfree(ap);
1aa506e4
TH
6800 host->ports[i] = NULL;
6801 }
6802
1aa56cca 6803 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6804}
6805
f3187195
TH
6806/**
6807 * ata_host_alloc - allocate and init basic ATA host resources
6808 * @dev: generic device this host is associated with
6809 * @max_ports: maximum number of ATA ports associated with this host
6810 *
6811 * Allocate and initialize basic ATA host resources. LLD calls
6812 * this function to allocate a host, initializes it fully and
6813 * attaches it using ata_host_register().
6814 *
6815 * @max_ports ports are allocated and host->n_ports is
6816 * initialized to @max_ports. The caller is allowed to decrease
6817 * host->n_ports before calling ata_host_register(). The unused
6818 * ports will be automatically freed on registration.
6819 *
6820 * RETURNS:
6821 * Allocate ATA host on success, NULL on failure.
6822 *
6823 * LOCKING:
6824 * Inherited from calling layer (may sleep).
6825 */
6826struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6827{
6828 struct ata_host *host;
6829 size_t sz;
6830 int i;
6831
6832 DPRINTK("ENTER\n");
6833
6834 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6835 return NULL;
6836
6837 /* alloc a container for our list of ATA ports (buses) */
6838 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6839 /* alloc a container for our list of ATA ports (buses) */
6840 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6841 if (!host)
6842 goto err_out;
6843
6844 devres_add(dev, host);
6845 dev_set_drvdata(dev, host);
6846
6847 spin_lock_init(&host->lock);
6848 host->dev = dev;
6849 host->n_ports = max_ports;
6850
6851 /* allocate ports bound to this host */
6852 for (i = 0; i < max_ports; i++) {
6853 struct ata_port *ap;
6854
6855 ap = ata_port_alloc(host);
6856 if (!ap)
6857 goto err_out;
6858
6859 ap->port_no = i;
6860 host->ports[i] = ap;
6861 }
6862
6863 devres_remove_group(dev, NULL);
6864 return host;
6865
6866 err_out:
6867 devres_release_group(dev, NULL);
6868 return NULL;
6869}
6870
f5cda257
TH
6871/**
6872 * ata_host_alloc_pinfo - alloc host and init with port_info array
6873 * @dev: generic device this host is associated with
6874 * @ppi: array of ATA port_info to initialize host with
6875 * @n_ports: number of ATA ports attached to this host
6876 *
6877 * Allocate ATA host and initialize with info from @ppi. If NULL
6878 * terminated, @ppi may contain fewer entries than @n_ports. The
6879 * last entry will be used for the remaining ports.
6880 *
6881 * RETURNS:
6882 * Allocate ATA host on success, NULL on failure.
6883 *
6884 * LOCKING:
6885 * Inherited from calling layer (may sleep).
6886 */
6887struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6888 const struct ata_port_info * const * ppi,
6889 int n_ports)
6890{
6891 const struct ata_port_info *pi;
6892 struct ata_host *host;
6893 int i, j;
6894
6895 host = ata_host_alloc(dev, n_ports);
6896 if (!host)
6897 return NULL;
6898
6899 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6900 struct ata_port *ap = host->ports[i];
6901
6902 if (ppi[j])
6903 pi = ppi[j++];
6904
6905 ap->pio_mask = pi->pio_mask;
6906 ap->mwdma_mask = pi->mwdma_mask;
6907 ap->udma_mask = pi->udma_mask;
6908 ap->flags |= pi->flags;
0c88758b 6909 ap->link.flags |= pi->link_flags;
f5cda257
TH
6910 ap->ops = pi->port_ops;
6911
6912 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6913 host->ops = pi->port_ops;
6914 if (!host->private_data && pi->private_data)
6915 host->private_data = pi->private_data;
6916 }
6917
6918 return host;
6919}
6920
32ebbc0c
TH
6921static void ata_host_stop(struct device *gendev, void *res)
6922{
6923 struct ata_host *host = dev_get_drvdata(gendev);
6924 int i;
6925
6926 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6927
6928 for (i = 0; i < host->n_ports; i++) {
6929 struct ata_port *ap = host->ports[i];
6930
6931 if (ap->ops->port_stop)
6932 ap->ops->port_stop(ap);
6933 }
6934
6935 if (host->ops->host_stop)
6936 host->ops->host_stop(host);
6937}
6938
ecef7253
TH
6939/**
6940 * ata_host_start - start and freeze ports of an ATA host
6941 * @host: ATA host to start ports for
6942 *
6943 * Start and then freeze ports of @host. Started status is
6944 * recorded in host->flags, so this function can be called
6945 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6946 * once. If host->ops isn't initialized yet, its set to the
6947 * first non-dummy port ops.
ecef7253
TH
6948 *
6949 * LOCKING:
6950 * Inherited from calling layer (may sleep).
6951 *
6952 * RETURNS:
6953 * 0 if all ports are started successfully, -errno otherwise.
6954 */
6955int ata_host_start(struct ata_host *host)
6956{
32ebbc0c
TH
6957 int have_stop = 0;
6958 void *start_dr = NULL;
ecef7253
TH
6959 int i, rc;
6960
6961 if (host->flags & ATA_HOST_STARTED)
6962 return 0;
6963
6964 for (i = 0; i < host->n_ports; i++) {
6965 struct ata_port *ap = host->ports[i];
6966
f3187195
TH
6967 if (!host->ops && !ata_port_is_dummy(ap))
6968 host->ops = ap->ops;
6969
32ebbc0c
TH
6970 if (ap->ops->port_stop)
6971 have_stop = 1;
6972 }
6973
6974 if (host->ops->host_stop)
6975 have_stop = 1;
6976
6977 if (have_stop) {
6978 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6979 if (!start_dr)
6980 return -ENOMEM;
6981 }
6982
6983 for (i = 0; i < host->n_ports; i++) {
6984 struct ata_port *ap = host->ports[i];
6985
ecef7253
TH
6986 if (ap->ops->port_start) {
6987 rc = ap->ops->port_start(ap);
6988 if (rc) {
0f9fe9b7 6989 if (rc != -ENODEV)
0f757743
AM
6990 dev_printk(KERN_ERR, host->dev,
6991 "failed to start port %d "
6992 "(errno=%d)\n", i, rc);
ecef7253
TH
6993 goto err_out;
6994 }
6995 }
ecef7253
TH
6996 ata_eh_freeze_port(ap);
6997 }
6998
32ebbc0c
TH
6999 if (start_dr)
7000 devres_add(host->dev, start_dr);
ecef7253
TH
7001 host->flags |= ATA_HOST_STARTED;
7002 return 0;
7003
7004 err_out:
7005 while (--i >= 0) {
7006 struct ata_port *ap = host->ports[i];
7007
7008 if (ap->ops->port_stop)
7009 ap->ops->port_stop(ap);
7010 }
32ebbc0c 7011 devres_free(start_dr);
ecef7253
TH
7012 return rc;
7013}
7014
b03732f0 7015/**
cca3974e
JG
7016 * ata_sas_host_init - Initialize a host struct
7017 * @host: host to initialize
7018 * @dev: device host is attached to
7019 * @flags: host flags
7020 * @ops: port_ops
b03732f0
BK
7021 *
7022 * LOCKING:
7023 * PCI/etc. bus probe sem.
7024 *
7025 */
f3187195 7026/* KILLME - the only user left is ipr */
cca3974e
JG
7027void ata_host_init(struct ata_host *host, struct device *dev,
7028 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7029{
cca3974e
JG
7030 spin_lock_init(&host->lock);
7031 host->dev = dev;
7032 host->flags = flags;
7033 host->ops = ops;
b03732f0
BK
7034}
7035
f3187195
TH
7036/**
7037 * ata_host_register - register initialized ATA host
7038 * @host: ATA host to register
7039 * @sht: template for SCSI host
7040 *
7041 * Register initialized ATA host. @host is allocated using
7042 * ata_host_alloc() and fully initialized by LLD. This function
7043 * starts ports, registers @host with ATA and SCSI layers and
7044 * probe registered devices.
7045 *
7046 * LOCKING:
7047 * Inherited from calling layer (may sleep).
7048 *
7049 * RETURNS:
7050 * 0 on success, -errno otherwise.
7051 */
7052int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7053{
7054 int i, rc;
7055
7056 /* host must have been started */
7057 if (!(host->flags & ATA_HOST_STARTED)) {
7058 dev_printk(KERN_ERR, host->dev,
7059 "BUG: trying to register unstarted host\n");
7060 WARN_ON(1);
7061 return -EINVAL;
7062 }
7063
7064 /* Blow away unused ports. This happens when LLD can't
7065 * determine the exact number of ports to allocate at
7066 * allocation time.
7067 */
7068 for (i = host->n_ports; host->ports[i]; i++)
7069 kfree(host->ports[i]);
7070
7071 /* give ports names and add SCSI hosts */
7072 for (i = 0; i < host->n_ports; i++)
7073 host->ports[i]->print_id = ata_print_id++;
7074
7075 rc = ata_scsi_add_hosts(host, sht);
7076 if (rc)
7077 return rc;
7078
fafbae87
TH
7079 /* associate with ACPI nodes */
7080 ata_acpi_associate(host);
7081
f3187195
TH
7082 /* set cable, sata_spd_limit and report */
7083 for (i = 0; i < host->n_ports; i++) {
7084 struct ata_port *ap = host->ports[i];
f3187195
TH
7085 unsigned long xfer_mask;
7086
7087 /* set SATA cable type if still unset */
7088 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7089 ap->cbl = ATA_CBL_SATA;
7090
7091 /* init sata_spd_limit to the current value */
4fb37a25 7092 sata_link_init_spd(&ap->link);
f3187195 7093
cbcdd875 7094 /* print per-port info to dmesg */
f3187195
TH
7095 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7096 ap->udma_mask);
7097
abf6e8ed 7098 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7099 ata_port_printk(ap, KERN_INFO,
7100 "%cATA max %s %s\n",
a16abc0b 7101 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7102 ata_mode_string(xfer_mask),
cbcdd875 7103 ap->link.eh_info.desc);
abf6e8ed
TH
7104 ata_ehi_clear_desc(&ap->link.eh_info);
7105 } else
f3187195
TH
7106 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7107 }
7108
7109 /* perform each probe synchronously */
7110 DPRINTK("probe begin\n");
7111 for (i = 0; i < host->n_ports; i++) {
7112 struct ata_port *ap = host->ports[i];
7113 int rc;
7114
7115 /* probe */
7116 if (ap->ops->error_handler) {
9af5c9c9 7117 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7118 unsigned long flags;
7119
7120 ata_port_probe(ap);
7121
7122 /* kick EH for boot probing */
7123 spin_lock_irqsave(ap->lock, flags);
7124
f58229f8
TH
7125 ehi->probe_mask =
7126 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7127 ehi->action |= ATA_EH_SOFTRESET;
7128 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7129
f4d6d004 7130 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7131 ap->pflags |= ATA_PFLAG_LOADING;
7132 ata_port_schedule_eh(ap);
7133
7134 spin_unlock_irqrestore(ap->lock, flags);
7135
7136 /* wait for EH to finish */
7137 ata_port_wait_eh(ap);
7138 } else {
7139 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7140 rc = ata_bus_probe(ap);
7141 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7142
7143 if (rc) {
7144 /* FIXME: do something useful here?
7145 * Current libata behavior will
7146 * tear down everything when
7147 * the module is removed
7148 * or the h/w is unplugged.
7149 */
7150 }
7151 }
7152 }
7153
7154 /* probes are done, now scan each port's disk(s) */
7155 DPRINTK("host probe begin\n");
7156 for (i = 0; i < host->n_ports; i++) {
7157 struct ata_port *ap = host->ports[i];
7158
1ae46317 7159 ata_scsi_scan_host(ap, 1);
ca77329f 7160 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7161 }
7162
7163 return 0;
7164}
7165
f5cda257
TH
7166/**
7167 * ata_host_activate - start host, request IRQ and register it
7168 * @host: target ATA host
7169 * @irq: IRQ to request
7170 * @irq_handler: irq_handler used when requesting IRQ
7171 * @irq_flags: irq_flags used when requesting IRQ
7172 * @sht: scsi_host_template to use when registering the host
7173 *
7174 * After allocating an ATA host and initializing it, most libata
7175 * LLDs perform three steps to activate the host - start host,
7176 * request IRQ and register it. This helper takes necessasry
7177 * arguments and performs the three steps in one go.
7178 *
3d46b2e2
PM
7179 * An invalid IRQ skips the IRQ registration and expects the host to
7180 * have set polling mode on the port. In this case, @irq_handler
7181 * should be NULL.
7182 *
f5cda257
TH
7183 * LOCKING:
7184 * Inherited from calling layer (may sleep).
7185 *
7186 * RETURNS:
7187 * 0 on success, -errno otherwise.
7188 */
7189int ata_host_activate(struct ata_host *host, int irq,
7190 irq_handler_t irq_handler, unsigned long irq_flags,
7191 struct scsi_host_template *sht)
7192{
cbcdd875 7193 int i, rc;
f5cda257
TH
7194
7195 rc = ata_host_start(host);
7196 if (rc)
7197 return rc;
7198
3d46b2e2
PM
7199 /* Special case for polling mode */
7200 if (!irq) {
7201 WARN_ON(irq_handler);
7202 return ata_host_register(host, sht);
7203 }
7204
f5cda257
TH
7205 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7206 dev_driver_string(host->dev), host);
7207 if (rc)
7208 return rc;
7209
cbcdd875
TH
7210 for (i = 0; i < host->n_ports; i++)
7211 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7212
f5cda257
TH
7213 rc = ata_host_register(host, sht);
7214 /* if failed, just free the IRQ and leave ports alone */
7215 if (rc)
7216 devm_free_irq(host->dev, irq, host);
7217
7218 return rc;
7219}
7220
720ba126
TH
7221/**
7222 * ata_port_detach - Detach ATA port in prepration of device removal
7223 * @ap: ATA port to be detached
7224 *
7225 * Detach all ATA devices and the associated SCSI devices of @ap;
7226 * then, remove the associated SCSI host. @ap is guaranteed to
7227 * be quiescent on return from this function.
7228 *
7229 * LOCKING:
7230 * Kernel thread context (may sleep).
7231 */
741b7763 7232static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7233{
7234 unsigned long flags;
41bda9c9 7235 struct ata_link *link;
f58229f8 7236 struct ata_device *dev;
720ba126
TH
7237
7238 if (!ap->ops->error_handler)
c3cf30a9 7239 goto skip_eh;
720ba126
TH
7240
7241 /* tell EH we're leaving & flush EH */
ba6a1308 7242 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7243 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7244 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7245
7246 ata_port_wait_eh(ap);
7247
7f9ad9b8
TH
7248 /* EH is now guaranteed to see UNLOADING - EH context belongs
7249 * to us. Disable all existing devices.
720ba126 7250 */
41bda9c9
TH
7251 ata_port_for_each_link(link, ap) {
7252 ata_link_for_each_dev(dev, link)
7253 ata_dev_disable(dev);
7254 }
720ba126 7255
720ba126
TH
7256 /* Final freeze & EH. All in-flight commands are aborted. EH
7257 * will be skipped and retrials will be terminated with bad
7258 * target.
7259 */
ba6a1308 7260 spin_lock_irqsave(ap->lock, flags);
720ba126 7261 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7262 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7263
7264 ata_port_wait_eh(ap);
45a66c1c 7265 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7266
c3cf30a9 7267 skip_eh:
720ba126 7268 /* remove the associated SCSI host */
cca3974e 7269 scsi_remove_host(ap->scsi_host);
720ba126
TH
7270}
7271
0529c159
TH
7272/**
7273 * ata_host_detach - Detach all ports of an ATA host
7274 * @host: Host to detach
7275 *
7276 * Detach all ports of @host.
7277 *
7278 * LOCKING:
7279 * Kernel thread context (may sleep).
7280 */
7281void ata_host_detach(struct ata_host *host)
7282{
7283 int i;
7284
7285 for (i = 0; i < host->n_ports; i++)
7286 ata_port_detach(host->ports[i]);
562f0c2d
TH
7287
7288 /* the host is dead now, dissociate ACPI */
7289 ata_acpi_dissociate(host);
0529c159
TH
7290}
7291
1da177e4
LT
7292/**
7293 * ata_std_ports - initialize ioaddr with standard port offsets.
7294 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7295 *
7296 * Utility function which initializes data_addr, error_addr,
7297 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7298 * device_addr, status_addr, and command_addr to standard offsets
7299 * relative to cmd_addr.
7300 *
7301 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7302 */
0baab86b 7303
1da177e4
LT
7304void ata_std_ports(struct ata_ioports *ioaddr)
7305{
7306 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7307 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7308 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7309 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7310 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7311 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7312 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7313 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7314 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7315 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7316}
7317
0baab86b 7318
374b1873
JG
7319#ifdef CONFIG_PCI
7320
1da177e4
LT
7321/**
7322 * ata_pci_remove_one - PCI layer callback for device removal
7323 * @pdev: PCI device that was removed
7324 *
b878ca5d
TH
7325 * PCI layer indicates to libata via this hook that hot-unplug or
7326 * module unload event has occurred. Detach all ports. Resource
7327 * release is handled via devres.
1da177e4
LT
7328 *
7329 * LOCKING:
7330 * Inherited from PCI layer (may sleep).
7331 */
f0d36efd 7332void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7333{
2855568b 7334 struct device *dev = &pdev->dev;
cca3974e 7335 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7336
b878ca5d 7337 ata_host_detach(host);
1da177e4
LT
7338}
7339
7340/* move to PCI subsystem */
057ace5e 7341int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7342{
7343 unsigned long tmp = 0;
7344
7345 switch (bits->width) {
7346 case 1: {
7347 u8 tmp8 = 0;
7348 pci_read_config_byte(pdev, bits->reg, &tmp8);
7349 tmp = tmp8;
7350 break;
7351 }
7352 case 2: {
7353 u16 tmp16 = 0;
7354 pci_read_config_word(pdev, bits->reg, &tmp16);
7355 tmp = tmp16;
7356 break;
7357 }
7358 case 4: {
7359 u32 tmp32 = 0;
7360 pci_read_config_dword(pdev, bits->reg, &tmp32);
7361 tmp = tmp32;
7362 break;
7363 }
7364
7365 default:
7366 return -EINVAL;
7367 }
7368
7369 tmp &= bits->mask;
7370
7371 return (tmp == bits->val) ? 1 : 0;
7372}
9b847548 7373
6ffa01d8 7374#ifdef CONFIG_PM
3c5100c1 7375void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7376{
7377 pci_save_state(pdev);
4c90d971 7378 pci_disable_device(pdev);
500530f6 7379
4c90d971 7380 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7381 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7382}
7383
553c4aa6 7384int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7385{
553c4aa6
TH
7386 int rc;
7387
9b847548
JA
7388 pci_set_power_state(pdev, PCI_D0);
7389 pci_restore_state(pdev);
553c4aa6 7390
b878ca5d 7391 rc = pcim_enable_device(pdev);
553c4aa6
TH
7392 if (rc) {
7393 dev_printk(KERN_ERR, &pdev->dev,
7394 "failed to enable device after resume (%d)\n", rc);
7395 return rc;
7396 }
7397
9b847548 7398 pci_set_master(pdev);
553c4aa6 7399 return 0;
500530f6
TH
7400}
7401
3c5100c1 7402int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7403{
cca3974e 7404 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7405 int rc = 0;
7406
cca3974e 7407 rc = ata_host_suspend(host, mesg);
500530f6
TH
7408 if (rc)
7409 return rc;
7410
3c5100c1 7411 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7412
7413 return 0;
7414}
7415
7416int ata_pci_device_resume(struct pci_dev *pdev)
7417{
cca3974e 7418 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7419 int rc;
500530f6 7420
553c4aa6
TH
7421 rc = ata_pci_device_do_resume(pdev);
7422 if (rc == 0)
7423 ata_host_resume(host);
7424 return rc;
9b847548 7425}
6ffa01d8
TH
7426#endif /* CONFIG_PM */
7427
1da177e4
LT
7428#endif /* CONFIG_PCI */
7429
7430
1da177e4
LT
7431static int __init ata_init(void)
7432{
a8601e5f 7433 ata_probe_timeout *= HZ;
1da177e4
LT
7434 ata_wq = create_workqueue("ata");
7435 if (!ata_wq)
7436 return -ENOMEM;
7437
453b07ac
TH
7438 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7439 if (!ata_aux_wq) {
7440 destroy_workqueue(ata_wq);
7441 return -ENOMEM;
7442 }
7443
1da177e4
LT
7444 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7445 return 0;
7446}
7447
7448static void __exit ata_exit(void)
7449{
7450 destroy_workqueue(ata_wq);
453b07ac 7451 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7452}
7453
a4625085 7454subsys_initcall(ata_init);
1da177e4
LT
7455module_exit(ata_exit);
7456
67846b30 7457static unsigned long ratelimit_time;
34af946a 7458static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7459
7460int ata_ratelimit(void)
7461{
7462 int rc;
7463 unsigned long flags;
7464
7465 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7466
7467 if (time_after(jiffies, ratelimit_time)) {
7468 rc = 1;
7469 ratelimit_time = jiffies + (HZ/5);
7470 } else
7471 rc = 0;
7472
7473 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7474
7475 return rc;
7476}
7477
c22daff4
TH
7478/**
7479 * ata_wait_register - wait until register value changes
7480 * @reg: IO-mapped register
7481 * @mask: Mask to apply to read register value
7482 * @val: Wait condition
7483 * @interval_msec: polling interval in milliseconds
7484 * @timeout_msec: timeout in milliseconds
7485 *
7486 * Waiting for some bits of register to change is a common
7487 * operation for ATA controllers. This function reads 32bit LE
7488 * IO-mapped register @reg and tests for the following condition.
7489 *
7490 * (*@reg & mask) != val
7491 *
7492 * If the condition is met, it returns; otherwise, the process is
7493 * repeated after @interval_msec until timeout.
7494 *
7495 * LOCKING:
7496 * Kernel thread context (may sleep)
7497 *
7498 * RETURNS:
7499 * The final register value.
7500 */
7501u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7502 unsigned long interval_msec,
7503 unsigned long timeout_msec)
7504{
7505 unsigned long timeout;
7506 u32 tmp;
7507
7508 tmp = ioread32(reg);
7509
7510 /* Calculate timeout _after_ the first read to make sure
7511 * preceding writes reach the controller before starting to
7512 * eat away the timeout.
7513 */
7514 timeout = jiffies + (timeout_msec * HZ) / 1000;
7515
7516 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7517 msleep(interval_msec);
7518 tmp = ioread32(reg);
7519 }
7520
7521 return tmp;
7522}
7523
dd5b06c4
TH
7524/*
7525 * Dummy port_ops
7526 */
7527static void ata_dummy_noret(struct ata_port *ap) { }
7528static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7529static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7530
7531static u8 ata_dummy_check_status(struct ata_port *ap)
7532{
7533 return ATA_DRDY;
7534}
7535
7536static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7537{
7538 return AC_ERR_SYSTEM;
7539}
7540
7541const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7542 .check_status = ata_dummy_check_status,
7543 .check_altstatus = ata_dummy_check_status,
7544 .dev_select = ata_noop_dev_select,
7545 .qc_prep = ata_noop_qc_prep,
7546 .qc_issue = ata_dummy_qc_issue,
7547 .freeze = ata_dummy_noret,
7548 .thaw = ata_dummy_noret,
7549 .error_handler = ata_dummy_noret,
7550 .post_internal_cmd = ata_dummy_qc_noret,
7551 .irq_clear = ata_dummy_noret,
7552 .port_start = ata_dummy_ret0,
7553 .port_stop = ata_dummy_noret,
7554};
7555
21b0ad4f
TH
7556const struct ata_port_info ata_dummy_port_info = {
7557 .port_ops = &ata_dummy_port_ops,
7558};
7559
1da177e4
LT
7560/*
7561 * libata is essentially a library of internal helper functions for
7562 * low-level ATA host controller drivers. As such, the API/ABI is
7563 * likely to change as new drivers are added and updated.
7564 * Do not depend on ABI/API stability.
7565 */
e9c83914
TH
7566EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7567EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7568EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7569EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7570EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7571EXPORT_SYMBOL_GPL(ata_std_bios_param);
7572EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7573EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7574EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7575EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7576EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7577EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7578EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7579EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7580EXPORT_SYMBOL_GPL(ata_sg_init);
7581EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7582EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7583EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7584EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7585EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7586EXPORT_SYMBOL_GPL(ata_tf_load);
7587EXPORT_SYMBOL_GPL(ata_tf_read);
7588EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7589EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7590EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7591EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7592EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7593EXPORT_SYMBOL_GPL(ata_check_status);
7594EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7595EXPORT_SYMBOL_GPL(ata_exec_command);
7596EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7597EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7598EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7599EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7600EXPORT_SYMBOL_GPL(ata_data_xfer);
7601EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7602EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7603EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7604EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7605EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7606EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7607EXPORT_SYMBOL_GPL(ata_bmdma_start);
7608EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7609EXPORT_SYMBOL_GPL(ata_bmdma_status);
7610EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7611EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7612EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7613EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7614EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7615EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7616EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7617EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7618EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7619EXPORT_SYMBOL_GPL(sata_link_debounce);
7620EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7621EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7622EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7623EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7624EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7625EXPORT_SYMBOL_GPL(sata_std_hardreset);
7626EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7627EXPORT_SYMBOL_GPL(ata_dev_classify);
7628EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7629EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7630EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7631EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7632EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7633EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7634EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7635EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7636EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7637EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7638EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7639EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7640EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7641EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7642EXPORT_SYMBOL_GPL(sata_scr_valid);
7643EXPORT_SYMBOL_GPL(sata_scr_read);
7644EXPORT_SYMBOL_GPL(sata_scr_write);
7645EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7646EXPORT_SYMBOL_GPL(ata_link_online);
7647EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7648#ifdef CONFIG_PM
cca3974e
JG
7649EXPORT_SYMBOL_GPL(ata_host_suspend);
7650EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7651#endif /* CONFIG_PM */
6a62a04d
TH
7652EXPORT_SYMBOL_GPL(ata_id_string);
7653EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7654EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7655EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7656
1bc4ccff 7657EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7658EXPORT_SYMBOL_GPL(ata_timing_compute);
7659EXPORT_SYMBOL_GPL(ata_timing_merge);
7660
1da177e4
LT
7661#ifdef CONFIG_PCI
7662EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7663EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7664EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7665EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7666EXPORT_SYMBOL_GPL(ata_pci_init_one);
7667EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7668#ifdef CONFIG_PM
500530f6
TH
7669EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7670EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7671EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7672EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7673#endif /* CONFIG_PM */
67951ade
AC
7674EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7675EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7676#endif /* CONFIG_PCI */
9b847548 7677
31f88384 7678EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7679EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7680EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7681EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7682EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7683
b64bbc39
TH
7684EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7685EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7686EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7687EXPORT_SYMBOL_GPL(ata_port_desc);
7688#ifdef CONFIG_PCI
7689EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7690#endif /* CONFIG_PCI */
7b70fc03 7691EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7692EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7693EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7694EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7695EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7696EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7697EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7698EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7699EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7700EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7701EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7702EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7703
7704EXPORT_SYMBOL_GPL(ata_cable_40wire);
7705EXPORT_SYMBOL_GPL(ata_cable_80wire);
7706EXPORT_SYMBOL_GPL(ata_cable_unknown);
7707EXPORT_SYMBOL_GPL(ata_cable_sata);