]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata-link: implement ata_link_abort()
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
9af5c9c9 238 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0 606 if (ata_dev_enabled(dev)) {
9af5c9c9 607 if (ata_msg_drv(dev->link->ap))
09d7f9b0 608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
9af5c9c9 738 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
AC
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
9af5c9c9 1153 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
9af5c9c9
TH
1349 struct ata_link *link = dev->link;
1350 struct ata_port *ap = link->ap;
a2a7a662
TH
1351 u8 command = tf->command;
1352 struct ata_queued_cmd *qc;
2ab7db1f 1353 unsigned int tag, preempted_tag;
dedaf2b0 1354 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1355 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1356 unsigned long flags;
77853bf2 1357 unsigned int err_mask;
d95a717f 1358 int rc;
a2a7a662 1359
ba6a1308 1360 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1361
e3180499 1362 /* no internal command while frozen */
b51e9e5d 1363 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1364 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1365 return AC_ERR_SYSTEM;
1366 }
1367
2ab7db1f 1368 /* initialize internal qc */
a2a7a662 1369
2ab7db1f
TH
1370 /* XXX: Tag 0 is used for drivers with legacy EH as some
1371 * drivers choke if any other tag is given. This breaks
1372 * ata_tag_internal() test for those drivers. Don't use new
1373 * EH stuff without converting to it.
1374 */
1375 if (ap->ops->error_handler)
1376 tag = ATA_TAG_INTERNAL;
1377 else
1378 tag = 0;
1379
6cec4a39 1380 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1381 BUG();
f69499f4 1382 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1383
1384 qc->tag = tag;
1385 qc->scsicmd = NULL;
1386 qc->ap = ap;
1387 qc->dev = dev;
1388 ata_qc_reinit(qc);
1389
9af5c9c9
TH
1390 preempted_tag = link->active_tag;
1391 preempted_sactive = link->sactive;
dedaf2b0 1392 preempted_qc_active = ap->qc_active;
9af5c9c9
TH
1393 link->active_tag = ATA_TAG_POISON;
1394 link->sactive = 0;
dedaf2b0 1395 ap->qc_active = 0;
2ab7db1f
TH
1396
1397 /* prepare & issue qc */
a2a7a662 1398 qc->tf = *tf;
d69cf37d
TH
1399 if (cdb)
1400 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1401 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1402 qc->dma_dir = dma_dir;
1403 if (dma_dir != DMA_NONE) {
2432697b
TH
1404 unsigned int i, buflen = 0;
1405
1406 for (i = 0; i < n_elem; i++)
1407 buflen += sg[i].length;
1408
1409 ata_sg_init(qc, sg, n_elem);
49c80429 1410 qc->nbytes = buflen;
a2a7a662
TH
1411 }
1412
77853bf2 1413 qc->private_data = &wait;
a2a7a662
TH
1414 qc->complete_fn = ata_qc_complete_internal;
1415
8e0e694a 1416 ata_qc_issue(qc);
a2a7a662 1417
ba6a1308 1418 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1419
a8601e5f 1420 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1421
1422 ata_port_flush_task(ap);
41ade50c 1423
d95a717f 1424 if (!rc) {
ba6a1308 1425 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1426
1427 /* We're racing with irq here. If we lose, the
1428 * following test prevents us from completing the qc
d95a717f
TH
1429 * twice. If we win, the port is frozen and will be
1430 * cleaned up by ->post_internal_cmd().
a2a7a662 1431 */
77853bf2 1432 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1433 qc->err_mask |= AC_ERR_TIMEOUT;
1434
1435 if (ap->ops->error_handler)
1436 ata_port_freeze(ap);
1437 else
1438 ata_qc_complete(qc);
f15a1daf 1439
0dd4b21f
BP
1440 if (ata_msg_warn(ap))
1441 ata_dev_printk(dev, KERN_WARNING,
88574551 1442 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1443 }
1444
ba6a1308 1445 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1446 }
1447
d95a717f
TH
1448 /* do post_internal_cmd */
1449 if (ap->ops->post_internal_cmd)
1450 ap->ops->post_internal_cmd(qc);
1451
a51d644a
TH
1452 /* perform minimal error analysis */
1453 if (qc->flags & ATA_QCFLAG_FAILED) {
1454 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1455 qc->err_mask |= AC_ERR_DEV;
1456
1457 if (!qc->err_mask)
1458 qc->err_mask |= AC_ERR_OTHER;
1459
1460 if (qc->err_mask & ~AC_ERR_OTHER)
1461 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1462 }
1463
15869303 1464 /* finish up */
ba6a1308 1465 spin_lock_irqsave(ap->lock, flags);
15869303 1466
e61e0672 1467 *tf = qc->result_tf;
77853bf2
TH
1468 err_mask = qc->err_mask;
1469
1470 ata_qc_free(qc);
9af5c9c9
TH
1471 link->active_tag = preempted_tag;
1472 link->sactive = preempted_sactive;
dedaf2b0 1473 ap->qc_active = preempted_qc_active;
77853bf2 1474
1f7dd3e9
TH
1475 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1476 * Until those drivers are fixed, we detect the condition
1477 * here, fail the command with AC_ERR_SYSTEM and reenable the
1478 * port.
1479 *
1480 * Note that this doesn't change any behavior as internal
1481 * command failure results in disabling the device in the
1482 * higher layer for LLDDs without new reset/EH callbacks.
1483 *
1484 * Kill the following code as soon as those drivers are fixed.
1485 */
198e0fed 1486 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1487 err_mask |= AC_ERR_SYSTEM;
1488 ata_port_probe(ap);
1489 }
1490
ba6a1308 1491 spin_unlock_irqrestore(ap->lock, flags);
15869303 1492
77853bf2 1493 return err_mask;
a2a7a662
TH
1494}
1495
2432697b 1496/**
33480a0e 1497 * ata_exec_internal - execute libata internal command
2432697b
TH
1498 * @dev: Device to which the command is sent
1499 * @tf: Taskfile registers for the command and the result
1500 * @cdb: CDB for packet command
1501 * @dma_dir: Data tranfer direction of the command
1502 * @buf: Data buffer of the command
1503 * @buflen: Length of data buffer
1504 *
1505 * Wrapper around ata_exec_internal_sg() which takes simple
1506 * buffer instead of sg list.
1507 *
1508 * LOCKING:
1509 * None. Should be called with kernel context, might sleep.
1510 *
1511 * RETURNS:
1512 * Zero on success, AC_ERR_* mask on failure
1513 */
1514unsigned ata_exec_internal(struct ata_device *dev,
1515 struct ata_taskfile *tf, const u8 *cdb,
1516 int dma_dir, void *buf, unsigned int buflen)
1517{
33480a0e
TH
1518 struct scatterlist *psg = NULL, sg;
1519 unsigned int n_elem = 0;
2432697b 1520
33480a0e
TH
1521 if (dma_dir != DMA_NONE) {
1522 WARN_ON(!buf);
1523 sg_init_one(&sg, buf, buflen);
1524 psg = &sg;
1525 n_elem++;
1526 }
2432697b 1527
33480a0e 1528 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1529}
1530
977e6b9f
TH
1531/**
1532 * ata_do_simple_cmd - execute simple internal command
1533 * @dev: Device to which the command is sent
1534 * @cmd: Opcode to execute
1535 *
1536 * Execute a 'simple' command, that only consists of the opcode
1537 * 'cmd' itself, without filling any other registers
1538 *
1539 * LOCKING:
1540 * Kernel thread context (may sleep).
1541 *
1542 * RETURNS:
1543 * Zero on success, AC_ERR_* mask on failure
e58eb583 1544 */
77b08fb5 1545unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1546{
1547 struct ata_taskfile tf;
e58eb583
TH
1548
1549 ata_tf_init(dev, &tf);
1550
1551 tf.command = cmd;
1552 tf.flags |= ATA_TFLAG_DEVICE;
1553 tf.protocol = ATA_PROT_NODATA;
1554
977e6b9f 1555 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1556}
1557
1bc4ccff
AC
1558/**
1559 * ata_pio_need_iordy - check if iordy needed
1560 * @adev: ATA device
1561 *
1562 * Check if the current speed of the device requires IORDY. Used
1563 * by various controllers for chip configuration.
1564 */
a617c09f 1565
1bc4ccff
AC
1566unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1567{
432729f0
AC
1568 /* Controller doesn't support IORDY. Probably a pointless check
1569 as the caller should know this */
9af5c9c9 1570 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1571 return 0;
432729f0
AC
1572 /* PIO3 and higher it is mandatory */
1573 if (adev->pio_mode > XFER_PIO_2)
1574 return 1;
1575 /* We turn it on when possible */
1576 if (ata_id_has_iordy(adev->id))
1bc4ccff 1577 return 1;
432729f0
AC
1578 return 0;
1579}
2e9edbf8 1580
432729f0
AC
1581/**
1582 * ata_pio_mask_no_iordy - Return the non IORDY mask
1583 * @adev: ATA device
1584 *
1585 * Compute the highest mode possible if we are not using iordy. Return
1586 * -1 if no iordy mode is available.
1587 */
a617c09f 1588
432729f0
AC
1589static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1590{
1bc4ccff 1591 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1592 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1593 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1594 /* Is the speed faster than the drive allows non IORDY ? */
1595 if (pio) {
1596 /* This is cycle times not frequency - watch the logic! */
1597 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1598 return 3 << ATA_SHIFT_PIO;
1599 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1600 }
1601 }
432729f0 1602 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1603}
1604
1da177e4 1605/**
49016aca 1606 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1607 * @dev: target device
1608 * @p_class: pointer to class of the target device (may be changed)
bff04647 1609 * @flags: ATA_READID_* flags
fe635c7e 1610 * @id: buffer to read IDENTIFY data into
1da177e4 1611 *
49016aca
TH
1612 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1613 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1614 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1615 * for pre-ATA4 drives.
1da177e4
LT
1616 *
1617 * LOCKING:
49016aca
TH
1618 * Kernel thread context (may sleep)
1619 *
1620 * RETURNS:
1621 * 0 on success, -errno otherwise.
1da177e4 1622 */
a9beec95 1623int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1624 unsigned int flags, u16 *id)
1da177e4 1625{
9af5c9c9 1626 struct ata_port *ap = dev->link->ap;
49016aca 1627 unsigned int class = *p_class;
a0123703 1628 struct ata_taskfile tf;
49016aca
TH
1629 unsigned int err_mask = 0;
1630 const char *reason;
54936f8b 1631 int may_fallback = 1, tried_spinup = 0;
49016aca 1632 int rc;
1da177e4 1633
0dd4b21f 1634 if (ata_msg_ctl(ap))
44877b4e 1635 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1636
49016aca 1637 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1638 retry:
3373efd8 1639 ata_tf_init(dev, &tf);
a0123703 1640
49016aca
TH
1641 switch (class) {
1642 case ATA_DEV_ATA:
a0123703 1643 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1644 break;
1645 case ATA_DEV_ATAPI:
a0123703 1646 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1647 break;
1648 default:
1649 rc = -ENODEV;
1650 reason = "unsupported class";
1651 goto err_out;
1da177e4
LT
1652 }
1653
a0123703 1654 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1655
1656 /* Some devices choke if TF registers contain garbage. Make
1657 * sure those are properly initialized.
1658 */
1659 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1660
1661 /* Device presence detection is unreliable on some
1662 * controllers. Always poll IDENTIFY if available.
1663 */
1664 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1665
3373efd8 1666 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1667 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1668 if (err_mask) {
800b3996 1669 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1670 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1671 ap->print_id, dev->devno);
55a8e2c8
TH
1672 return -ENOENT;
1673 }
1674
54936f8b
TH
1675 /* Device or controller might have reported the wrong
1676 * device class. Give a shot at the other IDENTIFY if
1677 * the current one is aborted by the device.
1678 */
1679 if (may_fallback &&
1680 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1681 may_fallback = 0;
1682
1683 if (class == ATA_DEV_ATA)
1684 class = ATA_DEV_ATAPI;
1685 else
1686 class = ATA_DEV_ATA;
1687 goto retry;
1688 }
1689
49016aca
TH
1690 rc = -EIO;
1691 reason = "I/O error";
1da177e4
LT
1692 goto err_out;
1693 }
1694
54936f8b
TH
1695 /* Falling back doesn't make sense if ID data was read
1696 * successfully at least once.
1697 */
1698 may_fallback = 0;
1699
49016aca 1700 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1701
49016aca 1702 /* sanity check */
a4f5749b 1703 rc = -EINVAL;
6070068b 1704 reason = "device reports invalid type";
a4f5749b
TH
1705
1706 if (class == ATA_DEV_ATA) {
1707 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1708 goto err_out;
1709 } else {
1710 if (ata_id_is_ata(id))
1711 goto err_out;
49016aca
TH
1712 }
1713
169439c2
ML
1714 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1715 tried_spinup = 1;
1716 /*
1717 * Drive powered-up in standby mode, and requires a specific
1718 * SET_FEATURES spin-up subcommand before it will accept
1719 * anything other than the original IDENTIFY command.
1720 */
1721 ata_tf_init(dev, &tf);
1722 tf.command = ATA_CMD_SET_FEATURES;
1723 tf.feature = SETFEATURES_SPINUP;
1724 tf.protocol = ATA_PROT_NODATA;
1725 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1726 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1727 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1728 rc = -EIO;
1729 reason = "SPINUP failed";
1730 goto err_out;
1731 }
1732 /*
1733 * If the drive initially returned incomplete IDENTIFY info,
1734 * we now must reissue the IDENTIFY command.
1735 */
1736 if (id[2] == 0x37c8)
1737 goto retry;
1738 }
1739
bff04647 1740 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1741 /*
1742 * The exact sequence expected by certain pre-ATA4 drives is:
1743 * SRST RESET
1744 * IDENTIFY
1745 * INITIALIZE DEVICE PARAMETERS
1746 * anything else..
1747 * Some drives were very specific about that exact sequence.
1748 */
1749 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1750 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1751 if (err_mask) {
1752 rc = -EIO;
1753 reason = "INIT_DEV_PARAMS failed";
1754 goto err_out;
1755 }
1756
1757 /* current CHS translation info (id[53-58]) might be
1758 * changed. reread the identify device info.
1759 */
bff04647 1760 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1761 goto retry;
1762 }
1763 }
1764
1765 *p_class = class;
fe635c7e 1766
49016aca
TH
1767 return 0;
1768
1769 err_out:
88574551 1770 if (ata_msg_warn(ap))
0dd4b21f 1771 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1772 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1773 return rc;
1774}
1775
3373efd8 1776static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1777{
9af5c9c9
TH
1778 struct ata_port *ap = dev->link->ap;
1779 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1780}
1781
a6e6ce8e
TH
1782static void ata_dev_config_ncq(struct ata_device *dev,
1783 char *desc, size_t desc_sz)
1784{
9af5c9c9 1785 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1786 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1787
1788 if (!ata_id_has_ncq(dev->id)) {
1789 desc[0] = '\0';
1790 return;
1791 }
75683fe7 1792 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1793 snprintf(desc, desc_sz, "NCQ (not used)");
1794 return;
1795 }
a6e6ce8e 1796 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1797 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1798 dev->flags |= ATA_DFLAG_NCQ;
1799 }
1800
1801 if (hdepth >= ddepth)
1802 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1803 else
1804 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1805}
1806
49016aca 1807/**
ffeae418 1808 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1809 * @dev: Target device to configure
1810 *
1811 * Configure @dev according to @dev->id. Generic and low-level
1812 * driver specific fixups are also applied.
49016aca
TH
1813 *
1814 * LOCKING:
ffeae418
TH
1815 * Kernel thread context (may sleep)
1816 *
1817 * RETURNS:
1818 * 0 on success, -errno otherwise
49016aca 1819 */
efdaedc4 1820int ata_dev_configure(struct ata_device *dev)
49016aca 1821{
9af5c9c9
TH
1822 struct ata_port *ap = dev->link->ap;
1823 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1824 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1825 const u16 *id = dev->id;
ff8854b2 1826 unsigned int xfer_mask;
b352e57d 1827 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1828 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1829 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1830 int rc;
49016aca 1831
0dd4b21f 1832 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1833 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1834 __FUNCTION__);
ffeae418 1835 return 0;
49016aca
TH
1836 }
1837
0dd4b21f 1838 if (ata_msg_probe(ap))
44877b4e 1839 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1840
75683fe7
TH
1841 /* set horkage */
1842 dev->horkage |= ata_dev_blacklisted(dev);
1843
6746544c
TH
1844 /* let ACPI work its magic */
1845 rc = ata_acpi_on_devcfg(dev);
1846 if (rc)
1847 return rc;
08573a86 1848
c39f5ebe 1849 /* print device capabilities */
0dd4b21f 1850 if (ata_msg_probe(ap))
88574551
TH
1851 ata_dev_printk(dev, KERN_DEBUG,
1852 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1853 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1854 __FUNCTION__,
f15a1daf
TH
1855 id[49], id[82], id[83], id[84],
1856 id[85], id[86], id[87], id[88]);
c39f5ebe 1857
208a9933 1858 /* initialize to-be-configured parameters */
ea1dd4e1 1859 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1860 dev->max_sectors = 0;
1861 dev->cdb_len = 0;
1862 dev->n_sectors = 0;
1863 dev->cylinders = 0;
1864 dev->heads = 0;
1865 dev->sectors = 0;
1866
1da177e4
LT
1867 /*
1868 * common ATA, ATAPI feature tests
1869 */
1870
ff8854b2 1871 /* find max transfer mode; for printk only */
1148c3a7 1872 xfer_mask = ata_id_xfermask(id);
1da177e4 1873
0dd4b21f
BP
1874 if (ata_msg_probe(ap))
1875 ata_dump_id(id);
1da177e4 1876
ef143d57
AL
1877 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1878 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1879 sizeof(fwrevbuf));
1880
1881 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1882 sizeof(modelbuf));
1883
1da177e4
LT
1884 /* ATA-specific feature tests */
1885 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1886 if (ata_id_is_cfa(id)) {
1887 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1888 ata_dev_printk(dev, KERN_WARNING,
1889 "supports DRM functions and may "
1890 "not be fully accessable.\n");
b352e57d
AC
1891 snprintf(revbuf, 7, "CFA");
1892 }
1893 else
1894 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1895
1148c3a7 1896 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1897
3f64f565
EM
1898 if (dev->id[59] & 0x100)
1899 dev->multi_count = dev->id[59] & 0xff;
1900
1148c3a7 1901 if (ata_id_has_lba(id)) {
4c2d721a 1902 const char *lba_desc;
a6e6ce8e 1903 char ncq_desc[20];
8bf62ece 1904
4c2d721a
TH
1905 lba_desc = "LBA";
1906 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1907 if (ata_id_has_lba48(id)) {
8bf62ece 1908 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1909 lba_desc = "LBA48";
6fc49adb
TH
1910
1911 if (dev->n_sectors >= (1UL << 28) &&
1912 ata_id_has_flush_ext(id))
1913 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1914 }
8bf62ece 1915
16c55b03
TH
1916 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1917 ata_id_hpa_enabled(dev->id))
1918 dev->n_sectors = ata_hpa_resize(dev);
1e999736 1919
a6e6ce8e
TH
1920 /* config NCQ */
1921 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1922
8bf62ece 1923 /* print device info to dmesg */
3f64f565
EM
1924 if (ata_msg_drv(ap) && print_info) {
1925 ata_dev_printk(dev, KERN_INFO,
1926 "%s: %s, %s, max %s\n",
1927 revbuf, modelbuf, fwrevbuf,
1928 ata_mode_string(xfer_mask));
1929 ata_dev_printk(dev, KERN_INFO,
1930 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1931 (unsigned long long)dev->n_sectors,
3f64f565
EM
1932 dev->multi_count, lba_desc, ncq_desc);
1933 }
ffeae418 1934 } else {
8bf62ece
AL
1935 /* CHS */
1936
1937 /* Default translation */
1148c3a7
TH
1938 dev->cylinders = id[1];
1939 dev->heads = id[3];
1940 dev->sectors = id[6];
8bf62ece 1941
1148c3a7 1942 if (ata_id_current_chs_valid(id)) {
8bf62ece 1943 /* Current CHS translation is valid. */
1148c3a7
TH
1944 dev->cylinders = id[54];
1945 dev->heads = id[55];
1946 dev->sectors = id[56];
8bf62ece
AL
1947 }
1948
1949 /* print device info to dmesg */
3f64f565 1950 if (ata_msg_drv(ap) && print_info) {
88574551 1951 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1952 "%s: %s, %s, max %s\n",
1953 revbuf, modelbuf, fwrevbuf,
1954 ata_mode_string(xfer_mask));
a84471fe 1955 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1956 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1957 (unsigned long long)dev->n_sectors,
1958 dev->multi_count, dev->cylinders,
1959 dev->heads, dev->sectors);
1960 }
07f6f7d0
AL
1961 }
1962
6e7846e9 1963 dev->cdb_len = 16;
1da177e4
LT
1964 }
1965
1966 /* ATAPI-specific feature tests */
2c13b7ce 1967 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1968 char *cdb_intr_string = "";
1969
1148c3a7 1970 rc = atapi_cdb_len(id);
1da177e4 1971 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1972 if (ata_msg_warn(ap))
88574551
TH
1973 ata_dev_printk(dev, KERN_WARNING,
1974 "unsupported CDB len\n");
ffeae418 1975 rc = -EINVAL;
1da177e4
LT
1976 goto err_out_nosup;
1977 }
6e7846e9 1978 dev->cdb_len = (unsigned int) rc;
1da177e4 1979
08a556db 1980 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1981 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1982 cdb_intr_string = ", CDB intr";
1983 }
312f7da2 1984
1da177e4 1985 /* print device info to dmesg */
5afc8142 1986 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1987 ata_dev_printk(dev, KERN_INFO,
1988 "ATAPI: %s, %s, max %s%s\n",
1989 modelbuf, fwrevbuf,
12436c30
TH
1990 ata_mode_string(xfer_mask),
1991 cdb_intr_string);
1da177e4
LT
1992 }
1993
914ed354
TH
1994 /* determine max_sectors */
1995 dev->max_sectors = ATA_MAX_SECTORS;
1996 if (dev->flags & ATA_DFLAG_LBA48)
1997 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1998
93590859
AC
1999 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2000 /* Let the user know. We don't want to disallow opens for
2001 rescue purposes, or in case the vendor is just a blithering
2002 idiot */
2003 if (print_info) {
2004 ata_dev_printk(dev, KERN_WARNING,
2005"Drive reports diagnostics failure. This may indicate a drive\n");
2006 ata_dev_printk(dev, KERN_WARNING,
2007"fault or invalid emulation. Contact drive vendor for information.\n");
2008 }
2009 }
2010
4b2f3ede 2011 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2012 if (ata_dev_knobble(dev)) {
5afc8142 2013 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2014 ata_dev_printk(dev, KERN_INFO,
2015 "applying bridge limits\n");
5a529139 2016 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2017 dev->max_sectors = ATA_MAX_SECTORS;
2018 }
2019
75683fe7 2020 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2021 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2022 dev->max_sectors);
18d6e9d5 2023
4b2f3ede 2024 if (ap->ops->dev_config)
cd0d3bbc 2025 ap->ops->dev_config(dev);
4b2f3ede 2026
0dd4b21f
BP
2027 if (ata_msg_probe(ap))
2028 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2029 __FUNCTION__, ata_chk_status(ap));
ffeae418 2030 return 0;
1da177e4
LT
2031
2032err_out_nosup:
0dd4b21f 2033 if (ata_msg_probe(ap))
88574551
TH
2034 ata_dev_printk(dev, KERN_DEBUG,
2035 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2036 return rc;
1da177e4
LT
2037}
2038
be0d18df 2039/**
2e41e8e6 2040 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2041 * @ap: port
2042 *
2e41e8e6 2043 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2044 * detection.
2045 */
2046
2047int ata_cable_40wire(struct ata_port *ap)
2048{
2049 return ATA_CBL_PATA40;
2050}
2051
2052/**
2e41e8e6 2053 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2054 * @ap: port
2055 *
2e41e8e6 2056 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2057 * detection.
2058 */
2059
2060int ata_cable_80wire(struct ata_port *ap)
2061{
2062 return ATA_CBL_PATA80;
2063}
2064
2065/**
2066 * ata_cable_unknown - return unknown PATA cable.
2067 * @ap: port
2068 *
2069 * Helper method for drivers which have no PATA cable detection.
2070 */
2071
2072int ata_cable_unknown(struct ata_port *ap)
2073{
2074 return ATA_CBL_PATA_UNK;
2075}
2076
2077/**
2078 * ata_cable_sata - return SATA cable type
2079 * @ap: port
2080 *
2081 * Helper method for drivers which have SATA cables
2082 */
2083
2084int ata_cable_sata(struct ata_port *ap)
2085{
2086 return ATA_CBL_SATA;
2087}
2088
1da177e4
LT
2089/**
2090 * ata_bus_probe - Reset and probe ATA bus
2091 * @ap: Bus to probe
2092 *
0cba632b
JG
2093 * Master ATA bus probing function. Initiates a hardware-dependent
2094 * bus reset, then attempts to identify any devices found on
2095 * the bus.
2096 *
1da177e4 2097 * LOCKING:
0cba632b 2098 * PCI/etc. bus probe sem.
1da177e4
LT
2099 *
2100 * RETURNS:
96072e69 2101 * Zero on success, negative errno otherwise.
1da177e4
LT
2102 */
2103
80289167 2104int ata_bus_probe(struct ata_port *ap)
1da177e4 2105{
28ca5c57 2106 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2107 int tries[ATA_MAX_DEVICES];
f58229f8 2108 int rc;
e82cbdb9 2109 struct ata_device *dev;
1da177e4 2110
28ca5c57 2111 ata_port_probe(ap);
c19ba8af 2112
f58229f8
TH
2113 ata_link_for_each_dev(dev, &ap->link)
2114 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2115
2116 retry:
2044470c 2117 /* reset and determine device classes */
52783c5d 2118 ap->ops->phy_reset(ap);
2061a47a 2119
f58229f8 2120 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2126
52783c5d 2127 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2128 }
1da177e4 2129
52783c5d 2130 ata_port_probe(ap);
2044470c 2131
b6079ca4
AC
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2134
f58229f8
TH
2135 ata_link_for_each_dev(dev, &ap->link)
2136 dev->pio_mode = XFER_PIO_0;
b6079ca4 2137
f31f0cc2
JG
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2141
f58229f8
TH
2142 ata_link_for_each_dev(dev, &ap->link) {
2143 if (tries[dev->devno])
2144 dev->class = classes[dev->devno];
ffeae418 2145
14d2bac1 2146 if (!ata_dev_enabled(dev))
ffeae418 2147 continue;
ffeae418 2148
bff04647
TH
2149 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2150 dev->id);
14d2bac1
TH
2151 if (rc)
2152 goto fail;
f31f0cc2
JG
2153 }
2154
be0d18df
AC
2155 /* Now ask for the cable type as PDIAG- should have been released */
2156 if (ap->ops->cable_detect)
2157 ap->cbl = ap->ops->cable_detect(ap);
2158
f31f0cc2
JG
2159 /* After the identify sequence we can now set up the devices. We do
2160 this in the normal order so that the user doesn't get confused */
2161
f58229f8 2162 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2163 if (!ata_dev_enabled(dev))
2164 continue;
14d2bac1 2165
9af5c9c9 2166 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2167 rc = ata_dev_configure(dev);
9af5c9c9 2168 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2169 if (rc)
2170 goto fail;
1da177e4
LT
2171 }
2172
e82cbdb9 2173 /* configure transfer mode */
0260731f 2174 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2175 if (rc)
51713d35 2176 goto fail;
1da177e4 2177
f58229f8
TH
2178 ata_link_for_each_dev(dev, &ap->link)
2179 if (ata_dev_enabled(dev))
e82cbdb9 2180 return 0;
1da177e4 2181
e82cbdb9
TH
2182 /* no device present, disable port */
2183 ata_port_disable(ap);
1da177e4 2184 ap->ops->port_disable(ap);
96072e69 2185 return -ENODEV;
14d2bac1
TH
2186
2187 fail:
4ae72a1e
TH
2188 tries[dev->devno]--;
2189
14d2bac1
TH
2190 switch (rc) {
2191 case -EINVAL:
4ae72a1e 2192 /* eeek, something went very wrong, give up */
14d2bac1
TH
2193 tries[dev->devno] = 0;
2194 break;
4ae72a1e
TH
2195
2196 case -ENODEV:
2197 /* give it just one more chance */
2198 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2199 case -EIO:
4ae72a1e
TH
2200 if (tries[dev->devno] == 1) {
2201 /* This is the last chance, better to slow
2202 * down than lose it.
2203 */
936fd732 2204 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2205 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2206 }
14d2bac1
TH
2207 }
2208
4ae72a1e 2209 if (!tries[dev->devno])
3373efd8 2210 ata_dev_disable(dev);
ec573755 2211
14d2bac1 2212 goto retry;
1da177e4
LT
2213}
2214
2215/**
0cba632b
JG
2216 * ata_port_probe - Mark port as enabled
2217 * @ap: Port for which we indicate enablement
1da177e4 2218 *
0cba632b
JG
2219 * Modify @ap data structure such that the system
2220 * thinks that the entire port is enabled.
2221 *
cca3974e 2222 * LOCKING: host lock, or some other form of
0cba632b 2223 * serialization.
1da177e4
LT
2224 */
2225
2226void ata_port_probe(struct ata_port *ap)
2227{
198e0fed 2228 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2229}
2230
3be680b7
TH
2231/**
2232 * sata_print_link_status - Print SATA link status
936fd732 2233 * @link: SATA link to printk link status about
3be680b7
TH
2234 *
2235 * This function prints link speed and status of a SATA link.
2236 *
2237 * LOCKING:
2238 * None.
2239 */
936fd732 2240void sata_print_link_status(struct ata_link *link)
3be680b7 2241{
6d5f9732 2242 u32 sstatus, scontrol, tmp;
3be680b7 2243
936fd732 2244 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2245 return;
936fd732 2246 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2247
936fd732 2248 if (ata_link_online(link)) {
3be680b7 2249 tmp = (sstatus >> 4) & 0xf;
936fd732 2250 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2251 "SATA link up %s (SStatus %X SControl %X)\n",
2252 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2253 } else {
936fd732 2254 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2255 "SATA link down (SStatus %X SControl %X)\n",
2256 sstatus, scontrol);
3be680b7
TH
2257 }
2258}
2259
1da177e4 2260/**
780a87f7
JG
2261 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2262 * @ap: SATA port associated with target SATA PHY.
1da177e4 2263 *
780a87f7
JG
2264 * This function issues commands to standard SATA Sxxx
2265 * PHY registers, to wake up the phy (and device), and
2266 * clear any reset condition.
1da177e4
LT
2267 *
2268 * LOCKING:
0cba632b 2269 * PCI/etc. bus probe sem.
1da177e4
LT
2270 *
2271 */
2272void __sata_phy_reset(struct ata_port *ap)
2273{
936fd732 2274 struct ata_link *link = &ap->link;
1da177e4 2275 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2276 u32 sstatus;
1da177e4
LT
2277
2278 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2279 /* issue phy wake/reset */
936fd732 2280 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2281 /* Couldn't find anything in SATA I/II specs, but
2282 * AHCI-1.1 10.4.2 says at least 1 ms. */
2283 mdelay(1);
1da177e4 2284 }
81952c54 2285 /* phy wake/clear reset */
936fd732 2286 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2287
2288 /* wait for phy to become ready, if necessary */
2289 do {
2290 msleep(200);
936fd732 2291 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2292 if ((sstatus & 0xf) != 1)
2293 break;
2294 } while (time_before(jiffies, timeout));
2295
3be680b7 2296 /* print link status */
936fd732 2297 sata_print_link_status(link);
656563e3 2298
3be680b7 2299 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2300 if (!ata_link_offline(link))
1da177e4 2301 ata_port_probe(ap);
3be680b7 2302 else
1da177e4 2303 ata_port_disable(ap);
1da177e4 2304
198e0fed 2305 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2306 return;
2307
2308 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2309 ata_port_disable(ap);
2310 return;
2311 }
2312
2313 ap->cbl = ATA_CBL_SATA;
2314}
2315
2316/**
780a87f7
JG
2317 * sata_phy_reset - Reset SATA bus.
2318 * @ap: SATA port associated with target SATA PHY.
1da177e4 2319 *
780a87f7
JG
2320 * This function resets the SATA bus, and then probes
2321 * the bus for devices.
1da177e4
LT
2322 *
2323 * LOCKING:
0cba632b 2324 * PCI/etc. bus probe sem.
1da177e4
LT
2325 *
2326 */
2327void sata_phy_reset(struct ata_port *ap)
2328{
2329 __sata_phy_reset(ap);
198e0fed 2330 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2331 return;
2332 ata_bus_reset(ap);
2333}
2334
ebdfca6e
AC
2335/**
2336 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2337 * @adev: device
2338 *
2339 * Obtain the other device on the same cable, or if none is
2340 * present NULL is returned
2341 */
2e9edbf8 2342
3373efd8 2343struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2344{
9af5c9c9
TH
2345 struct ata_link *link = adev->link;
2346 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2347 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2348 return NULL;
2349 return pair;
2350}
2351
1da177e4 2352/**
780a87f7
JG
2353 * ata_port_disable - Disable port.
2354 * @ap: Port to be disabled.
1da177e4 2355 *
780a87f7
JG
2356 * Modify @ap data structure such that the system
2357 * thinks that the entire port is disabled, and should
2358 * never attempt to probe or communicate with devices
2359 * on this port.
2360 *
cca3974e 2361 * LOCKING: host lock, or some other form of
780a87f7 2362 * serialization.
1da177e4
LT
2363 */
2364
2365void ata_port_disable(struct ata_port *ap)
2366{
9af5c9c9
TH
2367 ap->link.device[0].class = ATA_DEV_NONE;
2368 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2369 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2370}
2371
1c3fae4d 2372/**
3c567b7d 2373 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2374 * @link: Link to adjust SATA spd limit for
1c3fae4d 2375 *
936fd732 2376 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2377 * function only adjusts the limit. The change must be applied
3c567b7d 2378 * using sata_set_spd().
1c3fae4d
TH
2379 *
2380 * LOCKING:
2381 * Inherited from caller.
2382 *
2383 * RETURNS:
2384 * 0 on success, negative errno on failure
2385 */
936fd732 2386int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2387{
81952c54
TH
2388 u32 sstatus, spd, mask;
2389 int rc, highbit;
1c3fae4d 2390
936fd732 2391 if (!sata_scr_valid(link))
008a7896
TH
2392 return -EOPNOTSUPP;
2393
2394 /* If SCR can be read, use it to determine the current SPD.
936fd732 2395 * If not, use cached value in link->sata_spd.
008a7896 2396 */
936fd732 2397 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2398 if (rc == 0)
2399 spd = (sstatus >> 4) & 0xf;
2400 else
936fd732 2401 spd = link->sata_spd;
1c3fae4d 2402
936fd732 2403 mask = link->sata_spd_limit;
1c3fae4d
TH
2404 if (mask <= 1)
2405 return -EINVAL;
008a7896
TH
2406
2407 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2408 highbit = fls(mask) - 1;
2409 mask &= ~(1 << highbit);
2410
008a7896
TH
2411 /* Mask off all speeds higher than or equal to the current
2412 * one. Force 1.5Gbps if current SPD is not available.
2413 */
2414 if (spd > 1)
2415 mask &= (1 << (spd - 1)) - 1;
2416 else
2417 mask &= 1;
2418
2419 /* were we already at the bottom? */
1c3fae4d
TH
2420 if (!mask)
2421 return -EINVAL;
2422
936fd732 2423 link->sata_spd_limit = mask;
1c3fae4d 2424
936fd732 2425 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2426 sata_spd_string(fls(mask)));
1c3fae4d
TH
2427
2428 return 0;
2429}
2430
936fd732 2431static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2432{
2433 u32 spd, limit;
2434
936fd732 2435 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2436 limit = 0;
2437 else
936fd732 2438 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2439
2440 spd = (*scontrol >> 4) & 0xf;
2441 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2442
2443 return spd != limit;
2444}
2445
2446/**
3c567b7d 2447 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2448 * @link: Link in question
1c3fae4d
TH
2449 *
2450 * Test whether the spd limit in SControl matches
936fd732 2451 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2452 * whether hardreset is necessary to apply SATA spd
2453 * configuration.
2454 *
2455 * LOCKING:
2456 * Inherited from caller.
2457 *
2458 * RETURNS:
2459 * 1 if SATA spd configuration is needed, 0 otherwise.
2460 */
936fd732 2461int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2462{
2463 u32 scontrol;
2464
936fd732 2465 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2466 return 0;
2467
936fd732 2468 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2469}
2470
2471/**
3c567b7d 2472 * sata_set_spd - set SATA spd according to spd limit
936fd732 2473 * @link: Link to set SATA spd for
1c3fae4d 2474 *
936fd732 2475 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2476 *
2477 * LOCKING:
2478 * Inherited from caller.
2479 *
2480 * RETURNS:
2481 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2482 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2483 */
936fd732 2484int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2485{
2486 u32 scontrol;
81952c54 2487 int rc;
1c3fae4d 2488
936fd732 2489 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2490 return rc;
1c3fae4d 2491
936fd732 2492 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2493 return 0;
2494
936fd732 2495 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2496 return rc;
2497
1c3fae4d
TH
2498 return 1;
2499}
2500
452503f9
AC
2501/*
2502 * This mode timing computation functionality is ported over from
2503 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2504 */
2505/*
b352e57d 2506 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2507 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2508 * for UDMA6, which is currently supported only by Maxtor drives.
2509 *
2510 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2511 */
2512
2513static const struct ata_timing ata_timing[] = {
2514
2515 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2516 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2517 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2518 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2519
b352e57d
AC
2520 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2521 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2522 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2523 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2524 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2525
2526/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2527
452503f9
AC
2528 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2529 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2530 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2531
452503f9
AC
2532 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2533 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2534 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2535
b352e57d
AC
2536 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2537 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2538 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2539 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2540
2541 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2542 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2543 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2544
2545/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2546
2547 { 0xFF }
2548};
2549
2550#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2551#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2552
2553static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2554{
2555 q->setup = EZ(t->setup * 1000, T);
2556 q->act8b = EZ(t->act8b * 1000, T);
2557 q->rec8b = EZ(t->rec8b * 1000, T);
2558 q->cyc8b = EZ(t->cyc8b * 1000, T);
2559 q->active = EZ(t->active * 1000, T);
2560 q->recover = EZ(t->recover * 1000, T);
2561 q->cycle = EZ(t->cycle * 1000, T);
2562 q->udma = EZ(t->udma * 1000, UT);
2563}
2564
2565void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2566 struct ata_timing *m, unsigned int what)
2567{
2568 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2569 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2570 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2571 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2572 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2573 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2574 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2575 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2576}
2577
2578static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2579{
2580 const struct ata_timing *t;
2581
2582 for (t = ata_timing; t->mode != speed; t++)
91190758 2583 if (t->mode == 0xFF)
452503f9 2584 return NULL;
2e9edbf8 2585 return t;
452503f9
AC
2586}
2587
2588int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2589 struct ata_timing *t, int T, int UT)
2590{
2591 const struct ata_timing *s;
2592 struct ata_timing p;
2593
2594 /*
2e9edbf8 2595 * Find the mode.
75b1f2f8 2596 */
452503f9
AC
2597
2598 if (!(s = ata_timing_find_mode(speed)))
2599 return -EINVAL;
2600
75b1f2f8
AL
2601 memcpy(t, s, sizeof(*s));
2602
452503f9
AC
2603 /*
2604 * If the drive is an EIDE drive, it can tell us it needs extended
2605 * PIO/MW_DMA cycle timing.
2606 */
2607
2608 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2609 memset(&p, 0, sizeof(p));
2610 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2611 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2612 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2613 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2614 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2615 }
2616 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2617 }
2618
2619 /*
2620 * Convert the timing to bus clock counts.
2621 */
2622
75b1f2f8 2623 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2624
2625 /*
c893a3ae
RD
2626 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2627 * S.M.A.R.T * and some other commands. We have to ensure that the
2628 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2629 */
2630
fd3367af 2631 if (speed > XFER_PIO_6) {
452503f9
AC
2632 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2633 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2634 }
2635
2636 /*
c893a3ae 2637 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2638 */
2639
2640 if (t->act8b + t->rec8b < t->cyc8b) {
2641 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2642 t->rec8b = t->cyc8b - t->act8b;
2643 }
2644
2645 if (t->active + t->recover < t->cycle) {
2646 t->active += (t->cycle - (t->active + t->recover)) / 2;
2647 t->recover = t->cycle - t->active;
2648 }
a617c09f 2649
4f701d1e
AC
2650 /* In a few cases quantisation may produce enough errors to
2651 leave t->cycle too low for the sum of active and recovery
2652 if so we must correct this */
2653 if (t->active + t->recover > t->cycle)
2654 t->cycle = t->active + t->recover;
452503f9
AC
2655
2656 return 0;
2657}
2658
cf176e1a
TH
2659/**
2660 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2661 * @dev: Device to adjust xfer masks
458337db 2662 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2663 *
2664 * Adjust xfer masks of @dev downward. Note that this function
2665 * does not apply the change. Invoking ata_set_mode() afterwards
2666 * will apply the limit.
2667 *
2668 * LOCKING:
2669 * Inherited from caller.
2670 *
2671 * RETURNS:
2672 * 0 on success, negative errno on failure
2673 */
458337db 2674int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2675{
458337db
TH
2676 char buf[32];
2677 unsigned int orig_mask, xfer_mask;
2678 unsigned int pio_mask, mwdma_mask, udma_mask;
2679 int quiet, highbit;
cf176e1a 2680
458337db
TH
2681 quiet = !!(sel & ATA_DNXFER_QUIET);
2682 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2683
458337db
TH
2684 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2685 dev->mwdma_mask,
2686 dev->udma_mask);
2687 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2688
458337db
TH
2689 switch (sel) {
2690 case ATA_DNXFER_PIO:
2691 highbit = fls(pio_mask) - 1;
2692 pio_mask &= ~(1 << highbit);
2693 break;
2694
2695 case ATA_DNXFER_DMA:
2696 if (udma_mask) {
2697 highbit = fls(udma_mask) - 1;
2698 udma_mask &= ~(1 << highbit);
2699 if (!udma_mask)
2700 return -ENOENT;
2701 } else if (mwdma_mask) {
2702 highbit = fls(mwdma_mask) - 1;
2703 mwdma_mask &= ~(1 << highbit);
2704 if (!mwdma_mask)
2705 return -ENOENT;
2706 }
2707 break;
2708
2709 case ATA_DNXFER_40C:
2710 udma_mask &= ATA_UDMA_MASK_40C;
2711 break;
2712
2713 case ATA_DNXFER_FORCE_PIO0:
2714 pio_mask &= 1;
2715 case ATA_DNXFER_FORCE_PIO:
2716 mwdma_mask = 0;
2717 udma_mask = 0;
2718 break;
2719
458337db
TH
2720 default:
2721 BUG();
2722 }
2723
2724 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2725
2726 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2727 return -ENOENT;
2728
2729 if (!quiet) {
2730 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2731 snprintf(buf, sizeof(buf), "%s:%s",
2732 ata_mode_string(xfer_mask),
2733 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2734 else
2735 snprintf(buf, sizeof(buf), "%s",
2736 ata_mode_string(xfer_mask));
2737
2738 ata_dev_printk(dev, KERN_WARNING,
2739 "limiting speed to %s\n", buf);
2740 }
cf176e1a
TH
2741
2742 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2743 &dev->udma_mask);
2744
cf176e1a 2745 return 0;
cf176e1a
TH
2746}
2747
3373efd8 2748static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2749{
9af5c9c9 2750 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2751 unsigned int err_mask;
2752 int rc;
1da177e4 2753
e8384607 2754 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2755 if (dev->xfer_shift == ATA_SHIFT_PIO)
2756 dev->flags |= ATA_DFLAG_PIO;
2757
3373efd8 2758 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2759 /* Old CFA may refuse this command, which is just fine */
2760 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2761 err_mask &= ~AC_ERR_DEV;
2762
83206a29 2763 if (err_mask) {
f15a1daf
TH
2764 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2765 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2766 return -EIO;
2767 }
1da177e4 2768
baa1e78a 2769 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2770 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2771 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2772 if (rc)
83206a29 2773 return rc;
48a8a14f 2774
23e71c3d
TH
2775 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2776 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2777
f15a1daf
TH
2778 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2779 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2780 return 0;
1da177e4
LT
2781}
2782
1da177e4 2783/**
04351821 2784 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2785 * @link: link on which timings will be programmed
e82cbdb9 2786 * @r_failed_dev: out paramter for failed device
1da177e4 2787 *
04351821
AC
2788 * Standard implementation of the function used to tune and set
2789 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2790 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2791 * returned in @r_failed_dev.
780a87f7 2792 *
1da177e4 2793 * LOCKING:
0cba632b 2794 * PCI/etc. bus probe sem.
e82cbdb9
TH
2795 *
2796 * RETURNS:
2797 * 0 on success, negative errno otherwise
1da177e4 2798 */
04351821 2799
0260731f 2800int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2801{
0260731f 2802 struct ata_port *ap = link->ap;
e8e0619f 2803 struct ata_device *dev;
f58229f8 2804 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2805
a6d5a51c 2806 /* step 1: calculate xfer_mask */
f58229f8 2807 ata_link_for_each_dev(dev, link) {
acf356b1 2808 unsigned int pio_mask, dma_mask;
a6d5a51c 2809
e1211e3f 2810 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2811 continue;
2812
3373efd8 2813 ata_dev_xfermask(dev);
1da177e4 2814
acf356b1
TH
2815 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2816 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2817 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2818 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2819
4f65977d 2820 found = 1;
5444a6f4
AC
2821 if (dev->dma_mode)
2822 used_dma = 1;
a6d5a51c 2823 }
4f65977d 2824 if (!found)
e82cbdb9 2825 goto out;
a6d5a51c
TH
2826
2827 /* step 2: always set host PIO timings */
f58229f8 2828 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2829 if (!ata_dev_enabled(dev))
2830 continue;
2831
2832 if (!dev->pio_mode) {
f15a1daf 2833 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2834 rc = -EINVAL;
e82cbdb9 2835 goto out;
e8e0619f
TH
2836 }
2837
2838 dev->xfer_mode = dev->pio_mode;
2839 dev->xfer_shift = ATA_SHIFT_PIO;
2840 if (ap->ops->set_piomode)
2841 ap->ops->set_piomode(ap, dev);
2842 }
1da177e4 2843
a6d5a51c 2844 /* step 3: set host DMA timings */
f58229f8 2845 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2846 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2847 continue;
2848
2849 dev->xfer_mode = dev->dma_mode;
2850 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2851 if (ap->ops->set_dmamode)
2852 ap->ops->set_dmamode(ap, dev);
2853 }
1da177e4
LT
2854
2855 /* step 4: update devices' xfer mode */
f58229f8 2856 ata_link_for_each_dev(dev, link) {
18d90deb 2857 /* don't update suspended devices' xfer mode */
9666f400 2858 if (!ata_dev_enabled(dev))
83206a29
TH
2859 continue;
2860
3373efd8 2861 rc = ata_dev_set_mode(dev);
5bbc53f4 2862 if (rc)
e82cbdb9 2863 goto out;
83206a29 2864 }
1da177e4 2865
e8e0619f
TH
2866 /* Record simplex status. If we selected DMA then the other
2867 * host channels are not permitted to do so.
5444a6f4 2868 */
cca3974e 2869 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2870 ap->host->simplex_claimed = ap;
5444a6f4 2871
e82cbdb9
TH
2872 out:
2873 if (rc)
2874 *r_failed_dev = dev;
2875 return rc;
1da177e4
LT
2876}
2877
04351821
AC
2878/**
2879 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2880 * @link: link on which timings will be programmed
04351821
AC
2881 * @r_failed_dev: out paramter for failed device
2882 *
2883 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2884 * ata_set_mode() fails, pointer to the failing device is
2885 * returned in @r_failed_dev.
2886 *
2887 * LOCKING:
2888 * PCI/etc. bus probe sem.
2889 *
2890 * RETURNS:
2891 * 0 on success, negative errno otherwise
2892 */
0260731f 2893int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 2894{
0260731f
TH
2895 struct ata_port *ap = link->ap;
2896
04351821
AC
2897 /* has private set_mode? */
2898 if (ap->ops->set_mode)
0260731f
TH
2899 return ap->ops->set_mode(link, r_failed_dev);
2900 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
2901}
2902
1fdffbce
JG
2903/**
2904 * ata_tf_to_host - issue ATA taskfile to host controller
2905 * @ap: port to which command is being issued
2906 * @tf: ATA taskfile register set
2907 *
2908 * Issues ATA taskfile register set to ATA host controller,
2909 * with proper synchronization with interrupt handler and
2910 * other threads.
2911 *
2912 * LOCKING:
cca3974e 2913 * spin_lock_irqsave(host lock)
1fdffbce
JG
2914 */
2915
2916static inline void ata_tf_to_host(struct ata_port *ap,
2917 const struct ata_taskfile *tf)
2918{
2919 ap->ops->tf_load(ap, tf);
2920 ap->ops->exec_command(ap, tf);
2921}
2922
1da177e4
LT
2923/**
2924 * ata_busy_sleep - sleep until BSY clears, or timeout
2925 * @ap: port containing status register to be polled
2926 * @tmout_pat: impatience timeout
2927 * @tmout: overall timeout
2928 *
780a87f7
JG
2929 * Sleep until ATA Status register bit BSY clears,
2930 * or a timeout occurs.
2931 *
d1adc1bb
TH
2932 * LOCKING:
2933 * Kernel thread context (may sleep).
2934 *
2935 * RETURNS:
2936 * 0 on success, -errno otherwise.
1da177e4 2937 */
d1adc1bb
TH
2938int ata_busy_sleep(struct ata_port *ap,
2939 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2940{
2941 unsigned long timer_start, timeout;
2942 u8 status;
2943
2944 status = ata_busy_wait(ap, ATA_BUSY, 300);
2945 timer_start = jiffies;
2946 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2947 while (status != 0xff && (status & ATA_BUSY) &&
2948 time_before(jiffies, timeout)) {
1da177e4
LT
2949 msleep(50);
2950 status = ata_busy_wait(ap, ATA_BUSY, 3);
2951 }
2952
d1adc1bb 2953 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2954 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2955 "port is slow to respond, please be patient "
2956 "(Status 0x%x)\n", status);
1da177e4
LT
2957
2958 timeout = timer_start + tmout;
d1adc1bb
TH
2959 while (status != 0xff && (status & ATA_BUSY) &&
2960 time_before(jiffies, timeout)) {
1da177e4
LT
2961 msleep(50);
2962 status = ata_chk_status(ap);
2963 }
2964
d1adc1bb
TH
2965 if (status == 0xff)
2966 return -ENODEV;
2967
1da177e4 2968 if (status & ATA_BUSY) {
f15a1daf 2969 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2970 "(%lu secs, Status 0x%x)\n",
2971 tmout / HZ, status);
d1adc1bb 2972 return -EBUSY;
1da177e4
LT
2973 }
2974
2975 return 0;
2976}
2977
d4b2bab4
TH
2978/**
2979 * ata_wait_ready - sleep until BSY clears, or timeout
2980 * @ap: port containing status register to be polled
2981 * @deadline: deadline jiffies for the operation
2982 *
2983 * Sleep until ATA Status register bit BSY clears, or timeout
2984 * occurs.
2985 *
2986 * LOCKING:
2987 * Kernel thread context (may sleep).
2988 *
2989 * RETURNS:
2990 * 0 on success, -errno otherwise.
2991 */
2992int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2993{
2994 unsigned long start = jiffies;
2995 int warned = 0;
2996
2997 while (1) {
2998 u8 status = ata_chk_status(ap);
2999 unsigned long now = jiffies;
3000
3001 if (!(status & ATA_BUSY))
3002 return 0;
936fd732 3003 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3004 return -ENODEV;
3005 if (time_after(now, deadline))
3006 return -EBUSY;
3007
3008 if (!warned && time_after(now, start + 5 * HZ) &&
3009 (deadline - now > 3 * HZ)) {
3010 ata_port_printk(ap, KERN_WARNING,
3011 "port is slow to respond, please be patient "
3012 "(Status 0x%x)\n", status);
3013 warned = 1;
3014 }
3015
3016 msleep(50);
3017 }
3018}
3019
3020static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3021 unsigned long deadline)
1da177e4
LT
3022{
3023 struct ata_ioports *ioaddr = &ap->ioaddr;
3024 unsigned int dev0 = devmask & (1 << 0);
3025 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3026 int rc, ret = 0;
1da177e4
LT
3027
3028 /* if device 0 was found in ata_devchk, wait for its
3029 * BSY bit to clear
3030 */
d4b2bab4
TH
3031 if (dev0) {
3032 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3033 if (rc) {
3034 if (rc != -ENODEV)
3035 return rc;
3036 ret = rc;
3037 }
d4b2bab4 3038 }
1da177e4 3039
e141d999
TH
3040 /* if device 1 was found in ata_devchk, wait for register
3041 * access briefly, then wait for BSY to clear.
1da177e4 3042 */
e141d999
TH
3043 if (dev1) {
3044 int i;
1da177e4
LT
3045
3046 ap->ops->dev_select(ap, 1);
e141d999
TH
3047
3048 /* Wait for register access. Some ATAPI devices fail
3049 * to set nsect/lbal after reset, so don't waste too
3050 * much time on it. We're gonna wait for !BSY anyway.
3051 */
3052 for (i = 0; i < 2; i++) {
3053 u8 nsect, lbal;
3054
3055 nsect = ioread8(ioaddr->nsect_addr);
3056 lbal = ioread8(ioaddr->lbal_addr);
3057 if ((nsect == 1) && (lbal == 1))
3058 break;
3059 msleep(50); /* give drive a breather */
3060 }
3061
d4b2bab4 3062 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3063 if (rc) {
3064 if (rc != -ENODEV)
3065 return rc;
3066 ret = rc;
3067 }
d4b2bab4 3068 }
1da177e4
LT
3069
3070 /* is all this really necessary? */
3071 ap->ops->dev_select(ap, 0);
3072 if (dev1)
3073 ap->ops->dev_select(ap, 1);
3074 if (dev0)
3075 ap->ops->dev_select(ap, 0);
d4b2bab4 3076
9b89391c 3077 return ret;
1da177e4
LT
3078}
3079
d4b2bab4
TH
3080static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3081 unsigned long deadline)
1da177e4
LT
3082{
3083 struct ata_ioports *ioaddr = &ap->ioaddr;
3084
44877b4e 3085 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3086
3087 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3088 iowrite8(ap->ctl, ioaddr->ctl_addr);
3089 udelay(20); /* FIXME: flush */
3090 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3091 udelay(20); /* FIXME: flush */
3092 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3093
3094 /* spec mandates ">= 2ms" before checking status.
3095 * We wait 150ms, because that was the magic delay used for
3096 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3097 * between when the ATA command register is written, and then
3098 * status is checked. Because waiting for "a while" before
3099 * checking status is fine, post SRST, we perform this magic
3100 * delay here as well.
09c7ad79
AC
3101 *
3102 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3103 */
3104 msleep(150);
3105
2e9edbf8 3106 /* Before we perform post reset processing we want to see if
298a41ca
TH
3107 * the bus shows 0xFF because the odd clown forgets the D7
3108 * pulldown resistor.
3109 */
d1adc1bb 3110 if (ata_check_status(ap) == 0xFF)
9b89391c 3111 return -ENODEV;
09c7ad79 3112
d4b2bab4 3113 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3114}
3115
3116/**
3117 * ata_bus_reset - reset host port and associated ATA channel
3118 * @ap: port to reset
3119 *
3120 * This is typically the first time we actually start issuing
3121 * commands to the ATA channel. We wait for BSY to clear, then
3122 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3123 * result. Determine what devices, if any, are on the channel
3124 * by looking at the device 0/1 error register. Look at the signature
3125 * stored in each device's taskfile registers, to determine if
3126 * the device is ATA or ATAPI.
3127 *
3128 * LOCKING:
0cba632b 3129 * PCI/etc. bus probe sem.
cca3974e 3130 * Obtains host lock.
1da177e4
LT
3131 *
3132 * SIDE EFFECTS:
198e0fed 3133 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3134 */
3135
3136void ata_bus_reset(struct ata_port *ap)
3137{
9af5c9c9 3138 struct ata_device *device = ap->link.device;
1da177e4
LT
3139 struct ata_ioports *ioaddr = &ap->ioaddr;
3140 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3141 u8 err;
aec5c3c1 3142 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3143 int rc;
1da177e4 3144
44877b4e 3145 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3146
3147 /* determine if device 0/1 are present */
3148 if (ap->flags & ATA_FLAG_SATA_RESET)
3149 dev0 = 1;
3150 else {
3151 dev0 = ata_devchk(ap, 0);
3152 if (slave_possible)
3153 dev1 = ata_devchk(ap, 1);
3154 }
3155
3156 if (dev0)
3157 devmask |= (1 << 0);
3158 if (dev1)
3159 devmask |= (1 << 1);
3160
3161 /* select device 0 again */
3162 ap->ops->dev_select(ap, 0);
3163
3164 /* issue bus reset */
9b89391c
TH
3165 if (ap->flags & ATA_FLAG_SRST) {
3166 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3167 if (rc && rc != -ENODEV)
aec5c3c1 3168 goto err_out;
9b89391c 3169 }
1da177e4
LT
3170
3171 /*
3172 * determine by signature whether we have ATA or ATAPI devices
3173 */
9af5c9c9 3174 device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3175 if ((slave_possible) && (err != 0x81))
9af5c9c9 3176 device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3177
1da177e4 3178 /* is double-select really necessary? */
9af5c9c9 3179 if (device[1].class != ATA_DEV_NONE)
1da177e4 3180 ap->ops->dev_select(ap, 1);
9af5c9c9 3181 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3182 ap->ops->dev_select(ap, 0);
3183
3184 /* if no devices were detected, disable this port */
9af5c9c9
TH
3185 if ((device[0].class == ATA_DEV_NONE) &&
3186 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3187 goto err_out;
3188
3189 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3190 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3191 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3192 }
3193
3194 DPRINTK("EXIT\n");
3195 return;
3196
3197err_out:
f15a1daf 3198 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3199 ap->ops->port_disable(ap);
3200
3201 DPRINTK("EXIT\n");
3202}
3203
d7bb4cc7 3204/**
936fd732
TH
3205 * sata_link_debounce - debounce SATA phy status
3206 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3207 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3208 * @deadline: deadline jiffies for the operation
d7bb4cc7 3209 *
936fd732 3210* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3211 * holding the same value where DET is not 1 for @duration polled
3212 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3213 * beginning of the stable state. Because DET gets stuck at 1 on
3214 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3215 * until timeout then returns 0 if DET is stable at 1.
3216 *
d4b2bab4
TH
3217 * @timeout is further limited by @deadline. The sooner of the
3218 * two is used.
3219 *
d7bb4cc7
TH
3220 * LOCKING:
3221 * Kernel thread context (may sleep)
3222 *
3223 * RETURNS:
3224 * 0 on success, -errno on failure.
3225 */
936fd732
TH
3226int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3227 unsigned long deadline)
7a7921e8 3228{
d7bb4cc7 3229 unsigned long interval_msec = params[0];
d4b2bab4
TH
3230 unsigned long duration = msecs_to_jiffies(params[1]);
3231 unsigned long last_jiffies, t;
d7bb4cc7
TH
3232 u32 last, cur;
3233 int rc;
3234
d4b2bab4
TH
3235 t = jiffies + msecs_to_jiffies(params[2]);
3236 if (time_before(t, deadline))
3237 deadline = t;
3238
936fd732 3239 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3240 return rc;
3241 cur &= 0xf;
3242
3243 last = cur;
3244 last_jiffies = jiffies;
3245
3246 while (1) {
3247 msleep(interval_msec);
936fd732 3248 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3249 return rc;
3250 cur &= 0xf;
3251
3252 /* DET stable? */
3253 if (cur == last) {
d4b2bab4 3254 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3255 continue;
3256 if (time_after(jiffies, last_jiffies + duration))
3257 return 0;
3258 continue;
3259 }
3260
3261 /* unstable, start over */
3262 last = cur;
3263 last_jiffies = jiffies;
3264
f1545154
TH
3265 /* Check deadline. If debouncing failed, return
3266 * -EPIPE to tell upper layer to lower link speed.
3267 */
d4b2bab4 3268 if (time_after(jiffies, deadline))
f1545154 3269 return -EPIPE;
d7bb4cc7
TH
3270 }
3271}
3272
3273/**
936fd732
TH
3274 * sata_link_resume - resume SATA link
3275 * @link: ATA link to resume SATA
d7bb4cc7 3276 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3277 * @deadline: deadline jiffies for the operation
d7bb4cc7 3278 *
936fd732 3279 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3280 *
3281 * LOCKING:
3282 * Kernel thread context (may sleep)
3283 *
3284 * RETURNS:
3285 * 0 on success, -errno on failure.
3286 */
936fd732
TH
3287int sata_link_resume(struct ata_link *link, const unsigned long *params,
3288 unsigned long deadline)
d7bb4cc7
TH
3289{
3290 u32 scontrol;
81952c54
TH
3291 int rc;
3292
936fd732 3293 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3294 return rc;
7a7921e8 3295
852ee16a 3296 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3297
936fd732 3298 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3299 return rc;
7a7921e8 3300
d7bb4cc7
TH
3301 /* Some PHYs react badly if SStatus is pounded immediately
3302 * after resuming. Delay 200ms before debouncing.
3303 */
3304 msleep(200);
7a7921e8 3305
936fd732 3306 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3307}
3308
f5914a46
TH
3309/**
3310 * ata_std_prereset - prepare for reset
cc0680a5 3311 * @link: ATA link to be reset
d4b2bab4 3312 * @deadline: deadline jiffies for the operation
f5914a46 3313 *
cc0680a5 3314 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3315 * prereset makes libata abort whole reset sequence and give up
3316 * that port, so prereset should be best-effort. It does its
3317 * best to prepare for reset sequence but if things go wrong, it
3318 * should just whine, not fail.
f5914a46
TH
3319 *
3320 * LOCKING:
3321 * Kernel thread context (may sleep)
3322 *
3323 * RETURNS:
3324 * 0 on success, -errno otherwise.
3325 */
cc0680a5 3326int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3327{
cc0680a5 3328 struct ata_port *ap = link->ap;
936fd732 3329 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3330 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3331 int rc;
3332
31daabda 3333 /* handle link resume */
28324304 3334 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3335 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3336 ehc->i.action |= ATA_EH_HARDRESET;
3337
f5914a46
TH
3338 /* if we're about to do hardreset, nothing more to do */
3339 if (ehc->i.action & ATA_EH_HARDRESET)
3340 return 0;
3341
936fd732 3342 /* if SATA, resume link */
a16abc0b 3343 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3344 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3345 /* whine about phy resume failure but proceed */
3346 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3347 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3348 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3349 }
3350
3351 /* Wait for !BSY if the controller can wait for the first D2H
3352 * Reg FIS and we don't know that no device is attached.
3353 */
0c88758b 3354 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3355 rc = ata_wait_ready(ap, deadline);
6dffaf61 3356 if (rc && rc != -ENODEV) {
cc0680a5 3357 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3358 "(errno=%d), forcing hardreset\n", rc);
3359 ehc->i.action |= ATA_EH_HARDRESET;
3360 }
3361 }
f5914a46
TH
3362
3363 return 0;
3364}
3365
c2bd5804
TH
3366/**
3367 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3368 * @link: ATA link to reset
c2bd5804 3369 * @classes: resulting classes of attached devices
d4b2bab4 3370 * @deadline: deadline jiffies for the operation
c2bd5804 3371 *
52783c5d 3372 * Reset host port using ATA SRST.
c2bd5804
TH
3373 *
3374 * LOCKING:
3375 * Kernel thread context (may sleep)
3376 *
3377 * RETURNS:
3378 * 0 on success, -errno otherwise.
3379 */
cc0680a5 3380int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3381 unsigned long deadline)
c2bd5804 3382{
cc0680a5 3383 struct ata_port *ap = link->ap;
c2bd5804 3384 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3385 unsigned int devmask = 0;
3386 int rc;
c2bd5804
TH
3387 u8 err;
3388
3389 DPRINTK("ENTER\n");
3390
936fd732 3391 if (ata_link_offline(link)) {
3a39746a
TH
3392 classes[0] = ATA_DEV_NONE;
3393 goto out;
3394 }
3395
c2bd5804
TH
3396 /* determine if device 0/1 are present */
3397 if (ata_devchk(ap, 0))
3398 devmask |= (1 << 0);
3399 if (slave_possible && ata_devchk(ap, 1))
3400 devmask |= (1 << 1);
3401
c2bd5804
TH
3402 /* select device 0 again */
3403 ap->ops->dev_select(ap, 0);
3404
3405 /* issue bus reset */
3406 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3407 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3408 /* if link is occupied, -ENODEV too is an error */
936fd732 3409 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3410 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3411 return rc;
c2bd5804
TH
3412 }
3413
3414 /* determine by signature whether we have ATA or ATAPI devices */
3415 classes[0] = ata_dev_try_classify(ap, 0, &err);
3416 if (slave_possible && err != 0x81)
3417 classes[1] = ata_dev_try_classify(ap, 1, &err);
3418
3a39746a 3419 out:
c2bd5804
TH
3420 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3421 return 0;
3422}
3423
3424/**
cc0680a5
TH
3425 * sata_link_hardreset - reset link via SATA phy reset
3426 * @link: link to reset
b6103f6d 3427 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3428 * @deadline: deadline jiffies for the operation
c2bd5804 3429 *
cc0680a5 3430 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3431 *
3432 * LOCKING:
3433 * Kernel thread context (may sleep)
3434 *
3435 * RETURNS:
3436 * 0 on success, -errno otherwise.
3437 */
cc0680a5 3438int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3439 unsigned long deadline)
c2bd5804 3440{
852ee16a 3441 u32 scontrol;
81952c54 3442 int rc;
852ee16a 3443
c2bd5804
TH
3444 DPRINTK("ENTER\n");
3445
936fd732 3446 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3447 /* SATA spec says nothing about how to reconfigure
3448 * spd. To be on the safe side, turn off phy during
3449 * reconfiguration. This works for at least ICH7 AHCI
3450 * and Sil3124.
3451 */
936fd732 3452 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3453 goto out;
81952c54 3454
a34b6fc0 3455 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3456
936fd732 3457 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3458 goto out;
1c3fae4d 3459
936fd732 3460 sata_set_spd(link);
1c3fae4d
TH
3461 }
3462
3463 /* issue phy wake/reset */
936fd732 3464 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3465 goto out;
81952c54 3466
852ee16a 3467 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3468
936fd732 3469 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3470 goto out;
c2bd5804 3471
1c3fae4d 3472 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3473 * 10.4.2 says at least 1 ms.
3474 */
3475 msleep(1);
3476
936fd732
TH
3477 /* bring link back */
3478 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3479 out:
3480 DPRINTK("EXIT, rc=%d\n", rc);
3481 return rc;
3482}
3483
3484/**
3485 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3486 * @link: link to reset
b6103f6d 3487 * @class: resulting class of attached device
d4b2bab4 3488 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3489 *
3490 * SATA phy-reset host port using DET bits of SControl register,
3491 * wait for !BSY and classify the attached device.
3492 *
3493 * LOCKING:
3494 * Kernel thread context (may sleep)
3495 *
3496 * RETURNS:
3497 * 0 on success, -errno otherwise.
3498 */
cc0680a5 3499int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3500 unsigned long deadline)
b6103f6d 3501{
cc0680a5 3502 struct ata_port *ap = link->ap;
936fd732 3503 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3504 int rc;
3505
3506 DPRINTK("ENTER\n");
3507
3508 /* do hardreset */
cc0680a5 3509 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3510 if (rc) {
cc0680a5 3511 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3512 "COMRESET failed (errno=%d)\n", rc);
3513 return rc;
3514 }
c2bd5804 3515
c2bd5804 3516 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3517 if (ata_link_offline(link)) {
c2bd5804
TH
3518 *class = ATA_DEV_NONE;
3519 DPRINTK("EXIT, link offline\n");
3520 return 0;
3521 }
3522
34fee227
TH
3523 /* wait a while before checking status, see SRST for more info */
3524 msleep(150);
3525
d4b2bab4 3526 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3527 /* link occupied, -ENODEV too is an error */
3528 if (rc) {
cc0680a5 3529 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3530 "COMRESET failed (errno=%d)\n", rc);
3531 return rc;
c2bd5804
TH
3532 }
3533
3a39746a
TH
3534 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3535
c2bd5804
TH
3536 *class = ata_dev_try_classify(ap, 0, NULL);
3537
3538 DPRINTK("EXIT, class=%u\n", *class);
3539 return 0;
3540}
3541
3542/**
3543 * ata_std_postreset - standard postreset callback
cc0680a5 3544 * @link: the target ata_link
c2bd5804
TH
3545 * @classes: classes of attached devices
3546 *
3547 * This function is invoked after a successful reset. Note that
3548 * the device might have been reset more than once using
3549 * different reset methods before postreset is invoked.
c2bd5804 3550 *
c2bd5804
TH
3551 * LOCKING:
3552 * Kernel thread context (may sleep)
3553 */
cc0680a5 3554void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3555{
cc0680a5 3556 struct ata_port *ap = link->ap;
dc2b3515
TH
3557 u32 serror;
3558
c2bd5804
TH
3559 DPRINTK("ENTER\n");
3560
c2bd5804 3561 /* print link status */
936fd732 3562 sata_print_link_status(link);
c2bd5804 3563
dc2b3515 3564 /* clear SError */
936fd732
TH
3565 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3566 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3567
c2bd5804
TH
3568 /* is double-select really necessary? */
3569 if (classes[0] != ATA_DEV_NONE)
3570 ap->ops->dev_select(ap, 1);
3571 if (classes[1] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 0);
3573
3a39746a
TH
3574 /* bail out if no device is present */
3575 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3576 DPRINTK("EXIT, no device\n");
3577 return;
3578 }
3579
3580 /* set up device control */
0d5ff566
TH
3581 if (ap->ioaddr.ctl_addr)
3582 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3583
3584 DPRINTK("EXIT\n");
3585}
3586
623a3128
TH
3587/**
3588 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3589 * @dev: device to compare against
3590 * @new_class: class of the new device
3591 * @new_id: IDENTIFY page of the new device
3592 *
3593 * Compare @new_class and @new_id against @dev and determine
3594 * whether @dev is the device indicated by @new_class and
3595 * @new_id.
3596 *
3597 * LOCKING:
3598 * None.
3599 *
3600 * RETURNS:
3601 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3602 */
3373efd8
TH
3603static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3604 const u16 *new_id)
623a3128
TH
3605{
3606 const u16 *old_id = dev->id;
a0cf733b
TH
3607 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3608 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3609
3610 if (dev->class != new_class) {
f15a1daf
TH
3611 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3612 dev->class, new_class);
623a3128
TH
3613 return 0;
3614 }
3615
a0cf733b
TH
3616 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3617 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3618 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3619 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3620
3621 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3622 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3623 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3624 return 0;
3625 }
3626
3627 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3628 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3629 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3630 return 0;
3631 }
3632
623a3128
TH
3633 return 1;
3634}
3635
3636/**
fe30911b 3637 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3638 * @dev: target ATA device
bff04647 3639 * @readid_flags: read ID flags
623a3128
TH
3640 *
3641 * Re-read IDENTIFY page and make sure @dev is still attached to
3642 * the port.
3643 *
3644 * LOCKING:
3645 * Kernel thread context (may sleep)
3646 *
3647 * RETURNS:
3648 * 0 on success, negative errno otherwise
3649 */
fe30911b 3650int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3651{
5eb45c02 3652 unsigned int class = dev->class;
9af5c9c9 3653 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3654 int rc;
3655
fe635c7e 3656 /* read ID data */
bff04647 3657 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3658 if (rc)
fe30911b 3659 return rc;
623a3128
TH
3660
3661 /* is the device still there? */
fe30911b
TH
3662 if (!ata_dev_same_device(dev, class, id))
3663 return -ENODEV;
623a3128 3664
fe635c7e 3665 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3666 return 0;
3667}
3668
3669/**
3670 * ata_dev_revalidate - Revalidate ATA device
3671 * @dev: device to revalidate
3672 * @readid_flags: read ID flags
3673 *
3674 * Re-read IDENTIFY page, make sure @dev is still attached to the
3675 * port and reconfigure it according to the new IDENTIFY page.
3676 *
3677 * LOCKING:
3678 * Kernel thread context (may sleep)
3679 *
3680 * RETURNS:
3681 * 0 on success, negative errno otherwise
3682 */
3683int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3684{
6ddcd3b0 3685 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3686 int rc;
3687
3688 if (!ata_dev_enabled(dev))
3689 return -ENODEV;
3690
3691 /* re-read ID */
3692 rc = ata_dev_reread_id(dev, readid_flags);
3693 if (rc)
3694 goto fail;
623a3128
TH
3695
3696 /* configure device according to the new ID */
efdaedc4 3697 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3698 if (rc)
3699 goto fail;
3700
3701 /* verify n_sectors hasn't changed */
b54eebd6
TH
3702 if (dev->class == ATA_DEV_ATA && n_sectors &&
3703 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3704 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3705 "%llu != %llu\n",
3706 (unsigned long long)n_sectors,
3707 (unsigned long long)dev->n_sectors);
8270bec4
TH
3708
3709 /* restore original n_sectors */
3710 dev->n_sectors = n_sectors;
3711
6ddcd3b0
TH
3712 rc = -ENODEV;
3713 goto fail;
3714 }
3715
3716 return 0;
623a3128
TH
3717
3718 fail:
f15a1daf 3719 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3720 return rc;
3721}
3722
6919a0a6
AC
3723struct ata_blacklist_entry {
3724 const char *model_num;
3725 const char *model_rev;
3726 unsigned long horkage;
3727};
3728
3729static const struct ata_blacklist_entry ata_device_blacklist [] = {
3730 /* Devices with DMA related problems under Linux */
3731 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3732 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3733 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3737 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3738 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3739 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3740 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3743 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3744 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3745 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3746 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3747 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3749 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3750 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3751 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3752 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3753 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3754 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3755 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3756 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3757 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3758 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3759 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3760 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3761 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3762 { "IOMEGA ZIP 250 ATAPI Floppy",
3763 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3764
18d6e9d5 3765 /* Weird ATAPI devices */
40a1d531 3766 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3767
6919a0a6
AC
3768 /* Devices we expect to fail diagnostics */
3769
3770 /* Devices where NCQ should be avoided */
3771 /* NCQ is slow */
3772 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3773 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3774 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3775 /* NCQ is broken */
3776 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3777 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3778 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
0e3dbc01
AC
3779 { "Maxtor 7B250S0", "BANC1B70", ATA_HORKAGE_NONCQ, },
3780 { "Maxtor 7B300S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3781 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3782 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3783 ATA_HORKAGE_NONCQ },
96442925
JA
3784 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3785 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3786 /* Blacklist entries taken from Silicon Image 3124/3132
3787 Windows driver .inf file - also several Linux problem reports */
3788 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3789 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3790 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3791 /* Drives which do spurious command completion */
3792 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3793 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3794 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3795 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3796 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3797 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
0e3dbc01 3798 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
5d6aca8d 3799 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3800
16c55b03
TH
3801 /* devices which puke on READ_NATIVE_MAX */
3802 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3803 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3804 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3805 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3806
3807 /* End Marker */
3808 { }
1da177e4 3809};
2e9edbf8 3810
75683fe7 3811static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3812{
8bfa79fc
TH
3813 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3814 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3815 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3816
8bfa79fc
TH
3817 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3818 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3819
6919a0a6 3820 while (ad->model_num) {
8bfa79fc 3821 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3822 if (ad->model_rev == NULL)
3823 return ad->horkage;
8bfa79fc 3824 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3825 return ad->horkage;
f4b15fef 3826 }
6919a0a6 3827 ad++;
f4b15fef 3828 }
1da177e4
LT
3829 return 0;
3830}
3831
6919a0a6
AC
3832static int ata_dma_blacklisted(const struct ata_device *dev)
3833{
3834 /* We don't support polling DMA.
3835 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3836 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3837 */
9af5c9c9 3838 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3839 (dev->flags & ATA_DFLAG_CDB_INTR))
3840 return 1;
75683fe7 3841 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3842}
3843
a6d5a51c
TH
3844/**
3845 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3846 * @dev: Device to compute xfermask for
3847 *
acf356b1
TH
3848 * Compute supported xfermask of @dev and store it in
3849 * dev->*_mask. This function is responsible for applying all
3850 * known limits including host controller limits, device
3851 * blacklist, etc...
a6d5a51c
TH
3852 *
3853 * LOCKING:
3854 * None.
a6d5a51c 3855 */
3373efd8 3856static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3857{
9af5c9c9
TH
3858 struct ata_link *link = dev->link;
3859 struct ata_port *ap = link->ap;
cca3974e 3860 struct ata_host *host = ap->host;
a6d5a51c 3861 unsigned long xfer_mask;
1da177e4 3862
37deecb5 3863 /* controller modes available */
565083e1
TH
3864 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3865 ap->mwdma_mask, ap->udma_mask);
3866
8343f889 3867 /* drive modes available */
37deecb5
TH
3868 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3869 dev->mwdma_mask, dev->udma_mask);
3870 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3871
b352e57d
AC
3872 /*
3873 * CFA Advanced TrueIDE timings are not allowed on a shared
3874 * cable
3875 */
3876 if (ata_dev_pair(dev)) {
3877 /* No PIO5 or PIO6 */
3878 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3879 /* No MWDMA3 or MWDMA 4 */
3880 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3881 }
3882
37deecb5
TH
3883 if (ata_dma_blacklisted(dev)) {
3884 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3885 ata_dev_printk(dev, KERN_WARNING,
3886 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3887 }
a6d5a51c 3888
14d66ab7
PV
3889 if ((host->flags & ATA_HOST_SIMPLEX) &&
3890 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3891 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3892 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3893 "other device, disabling DMA\n");
5444a6f4 3894 }
565083e1 3895
e424675f
JG
3896 if (ap->flags & ATA_FLAG_NO_IORDY)
3897 xfer_mask &= ata_pio_mask_no_iordy(dev);
3898
5444a6f4 3899 if (ap->ops->mode_filter)
a76b62ca 3900 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3901
8343f889
RH
3902 /* Apply cable rule here. Don't apply it early because when
3903 * we handle hot plug the cable type can itself change.
3904 * Check this last so that we know if the transfer rate was
3905 * solely limited by the cable.
3906 * Unknown or 80 wire cables reported host side are checked
3907 * drive side as well. Cases where we know a 40wire cable
3908 * is used safely for 80 are not checked here.
3909 */
3910 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3911 /* UDMA/44 or higher would be available */
3912 if((ap->cbl == ATA_CBL_PATA40) ||
3913 (ata_drive_40wire(dev->id) &&
3914 (ap->cbl == ATA_CBL_PATA_UNK ||
3915 ap->cbl == ATA_CBL_PATA80))) {
3916 ata_dev_printk(dev, KERN_WARNING,
3917 "limited to UDMA/33 due to 40-wire cable\n");
3918 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3919 }
3920
565083e1
TH
3921 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3922 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3923}
3924
1da177e4
LT
3925/**
3926 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3927 * @dev: Device to which command will be sent
3928 *
780a87f7
JG
3929 * Issue SET FEATURES - XFER MODE command to device @dev
3930 * on port @ap.
3931 *
1da177e4 3932 * LOCKING:
0cba632b 3933 * PCI/etc. bus probe sem.
83206a29
TH
3934 *
3935 * RETURNS:
3936 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3937 */
3938
3373efd8 3939static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3940{
a0123703 3941 struct ata_taskfile tf;
83206a29 3942 unsigned int err_mask;
1da177e4
LT
3943
3944 /* set up set-features taskfile */
3945 DPRINTK("set features - xfer mode\n");
3946
464cf177
TH
3947 /* Some controllers and ATAPI devices show flaky interrupt
3948 * behavior after setting xfer mode. Use polling instead.
3949 */
3373efd8 3950 ata_tf_init(dev, &tf);
a0123703
TH
3951 tf.command = ATA_CMD_SET_FEATURES;
3952 tf.feature = SETFEATURES_XFER;
464cf177 3953 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3954 tf.protocol = ATA_PROT_NODATA;
3955 tf.nsect = dev->xfer_mode;
1da177e4 3956
3373efd8 3957 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3958
83206a29
TH
3959 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3960 return err_mask;
1da177e4
LT
3961}
3962
8bf62ece
AL
3963/**
3964 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3965 * @dev: Device to which command will be sent
e2a7f77a
RD
3966 * @heads: Number of heads (taskfile parameter)
3967 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3968 *
3969 * LOCKING:
6aff8f1f
TH
3970 * Kernel thread context (may sleep)
3971 *
3972 * RETURNS:
3973 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3974 */
3373efd8
TH
3975static unsigned int ata_dev_init_params(struct ata_device *dev,
3976 u16 heads, u16 sectors)
8bf62ece 3977{
a0123703 3978 struct ata_taskfile tf;
6aff8f1f 3979 unsigned int err_mask;
8bf62ece
AL
3980
3981 /* Number of sectors per track 1-255. Number of heads 1-16 */
3982 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3983 return AC_ERR_INVALID;
8bf62ece
AL
3984
3985 /* set up init dev params taskfile */
3986 DPRINTK("init dev params \n");
3987
3373efd8 3988 ata_tf_init(dev, &tf);
a0123703
TH
3989 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3990 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3991 tf.protocol = ATA_PROT_NODATA;
3992 tf.nsect = sectors;
3993 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3994
3373efd8 3995 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
3996 /* A clean abort indicates an original or just out of spec drive
3997 and we should continue as we issue the setup based on the
3998 drive reported working geometry */
3999 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4000 err_mask = 0;
8bf62ece 4001
6aff8f1f
TH
4002 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4003 return err_mask;
8bf62ece
AL
4004}
4005
1da177e4 4006/**
0cba632b
JG
4007 * ata_sg_clean - Unmap DMA memory associated with command
4008 * @qc: Command containing DMA memory to be released
4009 *
4010 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4011 *
4012 * LOCKING:
cca3974e 4013 * spin_lock_irqsave(host lock)
1da177e4 4014 */
70e6ad0c 4015void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4016{
4017 struct ata_port *ap = qc->ap;
cedc9a47 4018 struct scatterlist *sg = qc->__sg;
1da177e4 4019 int dir = qc->dma_dir;
cedc9a47 4020 void *pad_buf = NULL;
1da177e4 4021
a4631474
TH
4022 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4023 WARN_ON(sg == NULL);
1da177e4
LT
4024
4025 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4026 WARN_ON(qc->n_elem > 1);
1da177e4 4027
2c13b7ce 4028 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4029
cedc9a47
JG
4030 /* if we padded the buffer out to 32-bit bound, and data
4031 * xfer direction is from-device, we must copy from the
4032 * pad buffer back into the supplied buffer
4033 */
4034 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4035 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4036
4037 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4038 if (qc->n_elem)
2f1f610b 4039 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4040 /* restore last sg */
4041 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4042 if (pad_buf) {
4043 struct scatterlist *psg = &qc->pad_sgent;
4044 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4045 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4046 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4047 }
4048 } else {
2e242fa9 4049 if (qc->n_elem)
2f1f610b 4050 dma_unmap_single(ap->dev,
e1410f2d
JG
4051 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4052 dir);
cedc9a47
JG
4053 /* restore sg */
4054 sg->length += qc->pad_len;
4055 if (pad_buf)
4056 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4057 pad_buf, qc->pad_len);
4058 }
1da177e4
LT
4059
4060 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4061 qc->__sg = NULL;
1da177e4
LT
4062}
4063
4064/**
4065 * ata_fill_sg - Fill PCI IDE PRD table
4066 * @qc: Metadata associated with taskfile to be transferred
4067 *
780a87f7
JG
4068 * Fill PCI IDE PRD (scatter-gather) table with segments
4069 * associated with the current disk command.
4070 *
1da177e4 4071 * LOCKING:
cca3974e 4072 * spin_lock_irqsave(host lock)
1da177e4
LT
4073 *
4074 */
4075static void ata_fill_sg(struct ata_queued_cmd *qc)
4076{
1da177e4 4077 struct ata_port *ap = qc->ap;
cedc9a47
JG
4078 struct scatterlist *sg;
4079 unsigned int idx;
1da177e4 4080
a4631474 4081 WARN_ON(qc->__sg == NULL);
f131883e 4082 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4083
4084 idx = 0;
cedc9a47 4085 ata_for_each_sg(sg, qc) {
1da177e4
LT
4086 u32 addr, offset;
4087 u32 sg_len, len;
4088
4089 /* determine if physical DMA addr spans 64K boundary.
4090 * Note h/w doesn't support 64-bit, so we unconditionally
4091 * truncate dma_addr_t to u32.
4092 */
4093 addr = (u32) sg_dma_address(sg);
4094 sg_len = sg_dma_len(sg);
4095
4096 while (sg_len) {
4097 offset = addr & 0xffff;
4098 len = sg_len;
4099 if ((offset + sg_len) > 0x10000)
4100 len = 0x10000 - offset;
4101
4102 ap->prd[idx].addr = cpu_to_le32(addr);
4103 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4104 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4105
4106 idx++;
4107 sg_len -= len;
4108 addr += len;
4109 }
4110 }
4111
4112 if (idx)
4113 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4114}
b9a4197e 4115
d26fc955
AC
4116/**
4117 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4118 * @qc: Metadata associated with taskfile to be transferred
4119 *
4120 * Fill PCI IDE PRD (scatter-gather) table with segments
4121 * associated with the current disk command. Perform the fill
4122 * so that we avoid writing any length 64K records for
4123 * controllers that don't follow the spec.
4124 *
4125 * LOCKING:
4126 * spin_lock_irqsave(host lock)
4127 *
4128 */
4129static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4130{
4131 struct ata_port *ap = qc->ap;
4132 struct scatterlist *sg;
4133 unsigned int idx;
4134
4135 WARN_ON(qc->__sg == NULL);
4136 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4137
4138 idx = 0;
4139 ata_for_each_sg(sg, qc) {
4140 u32 addr, offset;
4141 u32 sg_len, len, blen;
4142
4143 /* determine if physical DMA addr spans 64K boundary.
4144 * Note h/w doesn't support 64-bit, so we unconditionally
4145 * truncate dma_addr_t to u32.
4146 */
4147 addr = (u32) sg_dma_address(sg);
4148 sg_len = sg_dma_len(sg);
4149
4150 while (sg_len) {
4151 offset = addr & 0xffff;
4152 len = sg_len;
4153 if ((offset + sg_len) > 0x10000)
4154 len = 0x10000 - offset;
4155
4156 blen = len & 0xffff;
4157 ap->prd[idx].addr = cpu_to_le32(addr);
4158 if (blen == 0) {
4159 /* Some PATA chipsets like the CS5530 can't
4160 cope with 0x0000 meaning 64K as the spec says */
4161 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4162 blen = 0x8000;
4163 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4164 }
4165 ap->prd[idx].flags_len = cpu_to_le32(blen);
4166 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4167
4168 idx++;
4169 sg_len -= len;
4170 addr += len;
4171 }
4172 }
4173
4174 if (idx)
4175 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4176}
4177
1da177e4
LT
4178/**
4179 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4180 * @qc: Metadata associated with taskfile to check
4181 *
780a87f7
JG
4182 * Allow low-level driver to filter ATA PACKET commands, returning
4183 * a status indicating whether or not it is OK to use DMA for the
4184 * supplied PACKET command.
4185 *
1da177e4 4186 * LOCKING:
cca3974e 4187 * spin_lock_irqsave(host lock)
0cba632b 4188 *
1da177e4
LT
4189 * RETURNS: 0 when ATAPI DMA can be used
4190 * nonzero otherwise
4191 */
4192int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4193{
4194 struct ata_port *ap = qc->ap;
b9a4197e
TH
4195
4196 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4197 * few ATAPI devices choke on such DMA requests.
4198 */
4199 if (unlikely(qc->nbytes & 15))
4200 return 1;
6f23a31d 4201
1da177e4 4202 if (ap->ops->check_atapi_dma)
b9a4197e 4203 return ap->ops->check_atapi_dma(qc);
1da177e4 4204
b9a4197e 4205 return 0;
1da177e4 4206}
b9a4197e 4207
1da177e4
LT
4208/**
4209 * ata_qc_prep - Prepare taskfile for submission
4210 * @qc: Metadata associated with taskfile to be prepared
4211 *
780a87f7
JG
4212 * Prepare ATA taskfile for submission.
4213 *
1da177e4 4214 * LOCKING:
cca3974e 4215 * spin_lock_irqsave(host lock)
1da177e4
LT
4216 */
4217void ata_qc_prep(struct ata_queued_cmd *qc)
4218{
4219 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4220 return;
4221
4222 ata_fill_sg(qc);
4223}
4224
d26fc955
AC
4225/**
4226 * ata_dumb_qc_prep - Prepare taskfile for submission
4227 * @qc: Metadata associated with taskfile to be prepared
4228 *
4229 * Prepare ATA taskfile for submission.
4230 *
4231 * LOCKING:
4232 * spin_lock_irqsave(host lock)
4233 */
4234void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4235{
4236 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4237 return;
4238
4239 ata_fill_sg_dumb(qc);
4240}
4241
e46834cd
BK
4242void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4243
0cba632b
JG
4244/**
4245 * ata_sg_init_one - Associate command with memory buffer
4246 * @qc: Command to be associated
4247 * @buf: Memory buffer
4248 * @buflen: Length of memory buffer, in bytes.
4249 *
4250 * Initialize the data-related elements of queued_cmd @qc
4251 * to point to a single memory buffer, @buf of byte length @buflen.
4252 *
4253 * LOCKING:
cca3974e 4254 * spin_lock_irqsave(host lock)
0cba632b
JG
4255 */
4256
1da177e4
LT
4257void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4258{
1da177e4
LT
4259 qc->flags |= ATA_QCFLAG_SINGLE;
4260
cedc9a47 4261 qc->__sg = &qc->sgent;
1da177e4 4262 qc->n_elem = 1;
cedc9a47 4263 qc->orig_n_elem = 1;
1da177e4 4264 qc->buf_virt = buf;
233277ca 4265 qc->nbytes = buflen;
1da177e4 4266
61c0596c 4267 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4268}
4269
0cba632b
JG
4270/**
4271 * ata_sg_init - Associate command with scatter-gather table.
4272 * @qc: Command to be associated
4273 * @sg: Scatter-gather table.
4274 * @n_elem: Number of elements in s/g table.
4275 *
4276 * Initialize the data-related elements of queued_cmd @qc
4277 * to point to a scatter-gather table @sg, containing @n_elem
4278 * elements.
4279 *
4280 * LOCKING:
cca3974e 4281 * spin_lock_irqsave(host lock)
0cba632b
JG
4282 */
4283
1da177e4
LT
4284void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4285 unsigned int n_elem)
4286{
4287 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4288 qc->__sg = sg;
1da177e4 4289 qc->n_elem = n_elem;
cedc9a47 4290 qc->orig_n_elem = n_elem;
1da177e4
LT
4291}
4292
4293/**
0cba632b
JG
4294 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4295 * @qc: Command with memory buffer to be mapped.
4296 *
4297 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4298 *
4299 * LOCKING:
cca3974e 4300 * spin_lock_irqsave(host lock)
1da177e4
LT
4301 *
4302 * RETURNS:
0cba632b 4303 * Zero on success, negative on error.
1da177e4
LT
4304 */
4305
4306static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4307{
4308 struct ata_port *ap = qc->ap;
4309 int dir = qc->dma_dir;
cedc9a47 4310 struct scatterlist *sg = qc->__sg;
1da177e4 4311 dma_addr_t dma_address;
2e242fa9 4312 int trim_sg = 0;
1da177e4 4313
cedc9a47
JG
4314 /* we must lengthen transfers to end on a 32-bit boundary */
4315 qc->pad_len = sg->length & 3;
4316 if (qc->pad_len) {
4317 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4318 struct scatterlist *psg = &qc->pad_sgent;
4319
a4631474 4320 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4321
4322 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4323
4324 if (qc->tf.flags & ATA_TFLAG_WRITE)
4325 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4326 qc->pad_len);
4327
4328 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4329 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4330 /* trim sg */
4331 sg->length -= qc->pad_len;
2e242fa9
TH
4332 if (sg->length == 0)
4333 trim_sg = 1;
cedc9a47
JG
4334
4335 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4336 sg->length, qc->pad_len);
4337 }
4338
2e242fa9
TH
4339 if (trim_sg) {
4340 qc->n_elem--;
e1410f2d
JG
4341 goto skip_map;
4342 }
4343
2f1f610b 4344 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4345 sg->length, dir);
537a95d9
TH
4346 if (dma_mapping_error(dma_address)) {
4347 /* restore sg */
4348 sg->length += qc->pad_len;
1da177e4 4349 return -1;
537a95d9 4350 }
1da177e4
LT
4351
4352 sg_dma_address(sg) = dma_address;
32529e01 4353 sg_dma_len(sg) = sg->length;
1da177e4 4354
2e242fa9 4355skip_map:
1da177e4
LT
4356 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4357 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4358
4359 return 0;
4360}
4361
4362/**
0cba632b
JG
4363 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4364 * @qc: Command with scatter-gather table to be mapped.
4365 *
4366 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4367 *
4368 * LOCKING:
cca3974e 4369 * spin_lock_irqsave(host lock)
1da177e4
LT
4370 *
4371 * RETURNS:
0cba632b 4372 * Zero on success, negative on error.
1da177e4
LT
4373 *
4374 */
4375
4376static int ata_sg_setup(struct ata_queued_cmd *qc)
4377{
4378 struct ata_port *ap = qc->ap;
cedc9a47
JG
4379 struct scatterlist *sg = qc->__sg;
4380 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4381 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4382
44877b4e 4383 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4384 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4385
cedc9a47
JG
4386 /* we must lengthen transfers to end on a 32-bit boundary */
4387 qc->pad_len = lsg->length & 3;
4388 if (qc->pad_len) {
4389 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4390 struct scatterlist *psg = &qc->pad_sgent;
4391 unsigned int offset;
4392
a4631474 4393 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4394
4395 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4396
4397 /*
4398 * psg->page/offset are used to copy to-be-written
4399 * data in this function or read data in ata_sg_clean.
4400 */
4401 offset = lsg->offset + lsg->length - qc->pad_len;
4402 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4403 psg->offset = offset_in_page(offset);
4404
4405 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4406 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4407 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4408 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4409 }
4410
4411 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4412 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4413 /* trim last sg */
4414 lsg->length -= qc->pad_len;
e1410f2d
JG
4415 if (lsg->length == 0)
4416 trim_sg = 1;
cedc9a47
JG
4417
4418 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4419 qc->n_elem - 1, lsg->length, qc->pad_len);
4420 }
4421
e1410f2d
JG
4422 pre_n_elem = qc->n_elem;
4423 if (trim_sg && pre_n_elem)
4424 pre_n_elem--;
4425
4426 if (!pre_n_elem) {
4427 n_elem = 0;
4428 goto skip_map;
4429 }
4430
1da177e4 4431 dir = qc->dma_dir;
2f1f610b 4432 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4433 if (n_elem < 1) {
4434 /* restore last sg */
4435 lsg->length += qc->pad_len;
1da177e4 4436 return -1;
537a95d9 4437 }
1da177e4
LT
4438
4439 DPRINTK("%d sg elements mapped\n", n_elem);
4440
e1410f2d 4441skip_map:
1da177e4
LT
4442 qc->n_elem = n_elem;
4443
4444 return 0;
4445}
4446
0baab86b 4447/**
c893a3ae 4448 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4449 * @buf: Buffer to swap
4450 * @buf_words: Number of 16-bit words in buffer.
4451 *
4452 * Swap halves of 16-bit words if needed to convert from
4453 * little-endian byte order to native cpu byte order, or
4454 * vice-versa.
4455 *
4456 * LOCKING:
6f0ef4fa 4457 * Inherited from caller.
0baab86b 4458 */
1da177e4
LT
4459void swap_buf_le16(u16 *buf, unsigned int buf_words)
4460{
4461#ifdef __BIG_ENDIAN
4462 unsigned int i;
4463
4464 for (i = 0; i < buf_words; i++)
4465 buf[i] = le16_to_cpu(buf[i]);
4466#endif /* __BIG_ENDIAN */
4467}
4468
6ae4cfb5 4469/**
0d5ff566 4470 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4471 * @adev: device to target
6ae4cfb5
AL
4472 * @buf: data buffer
4473 * @buflen: buffer length
344babaa 4474 * @write_data: read/write
6ae4cfb5
AL
4475 *
4476 * Transfer data from/to the device data register by PIO.
4477 *
4478 * LOCKING:
4479 * Inherited from caller.
6ae4cfb5 4480 */
0d5ff566
TH
4481void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4482 unsigned int buflen, int write_data)
1da177e4 4483{
9af5c9c9 4484 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4485 unsigned int words = buflen >> 1;
1da177e4 4486
6ae4cfb5 4487 /* Transfer multiple of 2 bytes */
1da177e4 4488 if (write_data)
0d5ff566 4489 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4490 else
0d5ff566 4491 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4492
4493 /* Transfer trailing 1 byte, if any. */
4494 if (unlikely(buflen & 0x01)) {
4495 u16 align_buf[1] = { 0 };
4496 unsigned char *trailing_buf = buf + buflen - 1;
4497
4498 if (write_data) {
4499 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4500 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4501 } else {
0d5ff566 4502 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4503 memcpy(trailing_buf, align_buf, 1);
4504 }
4505 }
1da177e4
LT
4506}
4507
75e99585 4508/**
0d5ff566 4509 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4510 * @adev: device to target
4511 * @buf: data buffer
4512 * @buflen: buffer length
4513 * @write_data: read/write
4514 *
88574551 4515 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4516 * transfer with interrupts disabled.
4517 *
4518 * LOCKING:
4519 * Inherited from caller.
4520 */
0d5ff566
TH
4521void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4522 unsigned int buflen, int write_data)
75e99585
AC
4523{
4524 unsigned long flags;
4525 local_irq_save(flags);
0d5ff566 4526 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4527 local_irq_restore(flags);
4528}
4529
4530
6ae4cfb5 4531/**
5a5dbd18 4532 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4533 * @qc: Command on going
4534 *
5a5dbd18 4535 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4536 *
4537 * LOCKING:
4538 * Inherited from caller.
4539 */
4540
1da177e4
LT
4541static void ata_pio_sector(struct ata_queued_cmd *qc)
4542{
4543 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4544 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4545 struct ata_port *ap = qc->ap;
4546 struct page *page;
4547 unsigned int offset;
4548 unsigned char *buf;
4549
5a5dbd18 4550 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4551 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4552
4553 page = sg[qc->cursg].page;
726f0785 4554 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4555
4556 /* get the current page and offset */
4557 page = nth_page(page, (offset >> PAGE_SHIFT));
4558 offset %= PAGE_SIZE;
4559
1da177e4
LT
4560 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4561
91b8b313
AL
4562 if (PageHighMem(page)) {
4563 unsigned long flags;
4564
a6b2c5d4 4565 /* FIXME: use a bounce buffer */
91b8b313
AL
4566 local_irq_save(flags);
4567 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4568
91b8b313 4569 /* do the actual data transfer */
5a5dbd18 4570 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4571
91b8b313
AL
4572 kunmap_atomic(buf, KM_IRQ0);
4573 local_irq_restore(flags);
4574 } else {
4575 buf = page_address(page);
5a5dbd18 4576 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4577 }
1da177e4 4578
5a5dbd18
ML
4579 qc->curbytes += qc->sect_size;
4580 qc->cursg_ofs += qc->sect_size;
1da177e4 4581
726f0785 4582 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4583 qc->cursg++;
4584 qc->cursg_ofs = 0;
4585 }
1da177e4 4586}
1da177e4 4587
07f6f7d0 4588/**
5a5dbd18 4589 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4590 * @qc: Command on going
4591 *
5a5dbd18 4592 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4593 * ATA device for the DRQ request.
4594 *
4595 * LOCKING:
4596 * Inherited from caller.
4597 */
1da177e4 4598
07f6f7d0
AL
4599static void ata_pio_sectors(struct ata_queued_cmd *qc)
4600{
4601 if (is_multi_taskfile(&qc->tf)) {
4602 /* READ/WRITE MULTIPLE */
4603 unsigned int nsect;
4604
587005de 4605 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4606
5a5dbd18 4607 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4608 qc->dev->multi_count);
07f6f7d0
AL
4609 while (nsect--)
4610 ata_pio_sector(qc);
4611 } else
4612 ata_pio_sector(qc);
4613}
4614
c71c1857
AL
4615/**
4616 * atapi_send_cdb - Write CDB bytes to hardware
4617 * @ap: Port to which ATAPI device is attached.
4618 * @qc: Taskfile currently active
4619 *
4620 * When device has indicated its readiness to accept
4621 * a CDB, this function is called. Send the CDB.
4622 *
4623 * LOCKING:
4624 * caller.
4625 */
4626
4627static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4628{
4629 /* send SCSI cdb */
4630 DPRINTK("send cdb\n");
db024d53 4631 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4632
a6b2c5d4 4633 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4634 ata_altstatus(ap); /* flush */
4635
4636 switch (qc->tf.protocol) {
4637 case ATA_PROT_ATAPI:
4638 ap->hsm_task_state = HSM_ST;
4639 break;
4640 case ATA_PROT_ATAPI_NODATA:
4641 ap->hsm_task_state = HSM_ST_LAST;
4642 break;
4643 case ATA_PROT_ATAPI_DMA:
4644 ap->hsm_task_state = HSM_ST_LAST;
4645 /* initiate bmdma */
4646 ap->ops->bmdma_start(qc);
4647 break;
4648 }
1da177e4
LT
4649}
4650
6ae4cfb5
AL
4651/**
4652 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4653 * @qc: Command on going
4654 * @bytes: number of bytes
4655 *
4656 * Transfer Transfer data from/to the ATAPI device.
4657 *
4658 * LOCKING:
4659 * Inherited from caller.
4660 *
4661 */
4662
1da177e4
LT
4663static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4664{
4665 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4666 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4667 struct ata_port *ap = qc->ap;
4668 struct page *page;
4669 unsigned char *buf;
4670 unsigned int offset, count;
4671
563a6e1f 4672 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4673 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4674
4675next_sg:
563a6e1f 4676 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4677 /*
563a6e1f
AL
4678 * The end of qc->sg is reached and the device expects
4679 * more data to transfer. In order not to overrun qc->sg
4680 * and fulfill length specified in the byte count register,
4681 * - for read case, discard trailing data from the device
4682 * - for write case, padding zero data to the device
4683 */
4684 u16 pad_buf[1] = { 0 };
4685 unsigned int words = bytes >> 1;
4686 unsigned int i;
4687
4688 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4689 ata_dev_printk(qc->dev, KERN_WARNING,
4690 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4691
4692 for (i = 0; i < words; i++)
a6b2c5d4 4693 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4694
14be71f4 4695 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4696 return;
4697 }
4698
cedc9a47 4699 sg = &qc->__sg[qc->cursg];
1da177e4 4700
1da177e4
LT
4701 page = sg->page;
4702 offset = sg->offset + qc->cursg_ofs;
4703
4704 /* get the current page and offset */
4705 page = nth_page(page, (offset >> PAGE_SHIFT));
4706 offset %= PAGE_SIZE;
4707
6952df03 4708 /* don't overrun current sg */
32529e01 4709 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4710
4711 /* don't cross page boundaries */
4712 count = min(count, (unsigned int)PAGE_SIZE - offset);
4713
7282aa4b
AL
4714 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4715
91b8b313
AL
4716 if (PageHighMem(page)) {
4717 unsigned long flags;
4718
a6b2c5d4 4719 /* FIXME: use bounce buffer */
91b8b313
AL
4720 local_irq_save(flags);
4721 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4722
91b8b313 4723 /* do the actual data transfer */
a6b2c5d4 4724 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4725
91b8b313
AL
4726 kunmap_atomic(buf, KM_IRQ0);
4727 local_irq_restore(flags);
4728 } else {
4729 buf = page_address(page);
a6b2c5d4 4730 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4731 }
1da177e4
LT
4732
4733 bytes -= count;
4734 qc->curbytes += count;
4735 qc->cursg_ofs += count;
4736
32529e01 4737 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4738 qc->cursg++;
4739 qc->cursg_ofs = 0;
4740 }
4741
563a6e1f 4742 if (bytes)
1da177e4 4743 goto next_sg;
1da177e4
LT
4744}
4745
6ae4cfb5
AL
4746/**
4747 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4748 * @qc: Command on going
4749 *
4750 * Transfer Transfer data from/to the ATAPI device.
4751 *
4752 * LOCKING:
4753 * Inherited from caller.
6ae4cfb5
AL
4754 */
4755
1da177e4
LT
4756static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4757{
4758 struct ata_port *ap = qc->ap;
4759 struct ata_device *dev = qc->dev;
4760 unsigned int ireason, bc_lo, bc_hi, bytes;
4761 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4762
eec4c3f3
AL
4763 /* Abuse qc->result_tf for temp storage of intermediate TF
4764 * here to save some kernel stack usage.
4765 * For normal completion, qc->result_tf is not relevant. For
4766 * error, qc->result_tf is later overwritten by ata_qc_complete().
4767 * So, the correctness of qc->result_tf is not affected.
4768 */
4769 ap->ops->tf_read(ap, &qc->result_tf);
4770 ireason = qc->result_tf.nsect;
4771 bc_lo = qc->result_tf.lbam;
4772 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4773 bytes = (bc_hi << 8) | bc_lo;
4774
4775 /* shall be cleared to zero, indicating xfer of data */
4776 if (ireason & (1 << 0))
4777 goto err_out;
4778
4779 /* make sure transfer direction matches expected */
4780 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4781 if (do_write != i_write)
4782 goto err_out;
4783
44877b4e 4784 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4785
1da177e4
LT
4786 __atapi_pio_bytes(qc, bytes);
4787
4788 return;
4789
4790err_out:
f15a1daf 4791 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4792 qc->err_mask |= AC_ERR_HSM;
14be71f4 4793 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4794}
4795
4796/**
c234fb00
AL
4797 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4798 * @ap: the target ata_port
4799 * @qc: qc on going
1da177e4 4800 *
c234fb00
AL
4801 * RETURNS:
4802 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4803 */
c234fb00
AL
4804
4805static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4806{
c234fb00
AL
4807 if (qc->tf.flags & ATA_TFLAG_POLLING)
4808 return 1;
1da177e4 4809
c234fb00
AL
4810 if (ap->hsm_task_state == HSM_ST_FIRST) {
4811 if (qc->tf.protocol == ATA_PROT_PIO &&
4812 (qc->tf.flags & ATA_TFLAG_WRITE))
4813 return 1;
1da177e4 4814
c234fb00
AL
4815 if (is_atapi_taskfile(&qc->tf) &&
4816 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4817 return 1;
fe79e683
AL
4818 }
4819
c234fb00
AL
4820 return 0;
4821}
1da177e4 4822
c17ea20d
TH
4823/**
4824 * ata_hsm_qc_complete - finish a qc running on standard HSM
4825 * @qc: Command to complete
4826 * @in_wq: 1 if called from workqueue, 0 otherwise
4827 *
4828 * Finish @qc which is running on standard HSM.
4829 *
4830 * LOCKING:
cca3974e 4831 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4832 * Otherwise, none on entry and grabs host lock.
4833 */
4834static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4835{
4836 struct ata_port *ap = qc->ap;
4837 unsigned long flags;
4838
4839 if (ap->ops->error_handler) {
4840 if (in_wq) {
ba6a1308 4841 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4842
cca3974e
JG
4843 /* EH might have kicked in while host lock is
4844 * released.
c17ea20d
TH
4845 */
4846 qc = ata_qc_from_tag(ap, qc->tag);
4847 if (qc) {
4848 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4849 ap->ops->irq_on(ap);
c17ea20d
TH
4850 ata_qc_complete(qc);
4851 } else
4852 ata_port_freeze(ap);
4853 }
4854
ba6a1308 4855 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4856 } else {
4857 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4858 ata_qc_complete(qc);
4859 else
4860 ata_port_freeze(ap);
4861 }
4862 } else {
4863 if (in_wq) {
ba6a1308 4864 spin_lock_irqsave(ap->lock, flags);
83625006 4865 ap->ops->irq_on(ap);
c17ea20d 4866 ata_qc_complete(qc);
ba6a1308 4867 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4868 } else
4869 ata_qc_complete(qc);
4870 }
4871}
4872
bb5cb290
AL
4873/**
4874 * ata_hsm_move - move the HSM to the next state.
4875 * @ap: the target ata_port
4876 * @qc: qc on going
4877 * @status: current device status
4878 * @in_wq: 1 if called from workqueue, 0 otherwise
4879 *
4880 * RETURNS:
4881 * 1 when poll next status needed, 0 otherwise.
4882 */
9a1004d0
TH
4883int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4884 u8 status, int in_wq)
e2cec771 4885{
bb5cb290
AL
4886 unsigned long flags = 0;
4887 int poll_next;
4888
6912ccd5
AL
4889 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4890
bb5cb290
AL
4891 /* Make sure ata_qc_issue_prot() does not throw things
4892 * like DMA polling into the workqueue. Notice that
4893 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4894 */
c234fb00 4895 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4896
e2cec771 4897fsm_start:
999bb6f4 4898 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4899 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4900
e2cec771
AL
4901 switch (ap->hsm_task_state) {
4902 case HSM_ST_FIRST:
bb5cb290
AL
4903 /* Send first data block or PACKET CDB */
4904
4905 /* If polling, we will stay in the work queue after
4906 * sending the data. Otherwise, interrupt handler
4907 * takes over after sending the data.
4908 */
4909 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4910
e2cec771 4911 /* check device status */
3655d1d3
AL
4912 if (unlikely((status & ATA_DRQ) == 0)) {
4913 /* handle BSY=0, DRQ=0 as error */
4914 if (likely(status & (ATA_ERR | ATA_DF)))
4915 /* device stops HSM for abort/error */
4916 qc->err_mask |= AC_ERR_DEV;
4917 else
4918 /* HSM violation. Let EH handle this */
4919 qc->err_mask |= AC_ERR_HSM;
4920
14be71f4 4921 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4922 goto fsm_start;
1da177e4
LT
4923 }
4924
71601958
AL
4925 /* Device should not ask for data transfer (DRQ=1)
4926 * when it finds something wrong.
eee6c32f
AL
4927 * We ignore DRQ here and stop the HSM by
4928 * changing hsm_task_state to HSM_ST_ERR and
4929 * let the EH abort the command or reset the device.
71601958
AL
4930 */
4931 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4932 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4933 "error, dev_stat 0x%X\n", status);
3655d1d3 4934 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4935 ap->hsm_task_state = HSM_ST_ERR;
4936 goto fsm_start;
71601958 4937 }
1da177e4 4938
bb5cb290
AL
4939 /* Send the CDB (atapi) or the first data block (ata pio out).
4940 * During the state transition, interrupt handler shouldn't
4941 * be invoked before the data transfer is complete and
4942 * hsm_task_state is changed. Hence, the following locking.
4943 */
4944 if (in_wq)
ba6a1308 4945 spin_lock_irqsave(ap->lock, flags);
1da177e4 4946
bb5cb290
AL
4947 if (qc->tf.protocol == ATA_PROT_PIO) {
4948 /* PIO data out protocol.
4949 * send first data block.
4950 */
0565c26d 4951
bb5cb290
AL
4952 /* ata_pio_sectors() might change the state
4953 * to HSM_ST_LAST. so, the state is changed here
4954 * before ata_pio_sectors().
4955 */
4956 ap->hsm_task_state = HSM_ST;
4957 ata_pio_sectors(qc);
4958 ata_altstatus(ap); /* flush */
4959 } else
4960 /* send CDB */
4961 atapi_send_cdb(ap, qc);
4962
4963 if (in_wq)
ba6a1308 4964 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4965
4966 /* if polling, ata_pio_task() handles the rest.
4967 * otherwise, interrupt handler takes over from here.
4968 */
e2cec771 4969 break;
1c848984 4970
e2cec771
AL
4971 case HSM_ST:
4972 /* complete command or read/write the data register */
4973 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4974 /* ATAPI PIO protocol */
4975 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4976 /* No more data to transfer or device error.
4977 * Device error will be tagged in HSM_ST_LAST.
4978 */
e2cec771
AL
4979 ap->hsm_task_state = HSM_ST_LAST;
4980 goto fsm_start;
4981 }
1da177e4 4982
71601958
AL
4983 /* Device should not ask for data transfer (DRQ=1)
4984 * when it finds something wrong.
eee6c32f
AL
4985 * We ignore DRQ here and stop the HSM by
4986 * changing hsm_task_state to HSM_ST_ERR and
4987 * let the EH abort the command or reset the device.
71601958
AL
4988 */
4989 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4990 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4991 "device error, dev_stat 0x%X\n",
4992 status);
3655d1d3 4993 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4994 ap->hsm_task_state = HSM_ST_ERR;
4995 goto fsm_start;
71601958 4996 }
1da177e4 4997
e2cec771 4998 atapi_pio_bytes(qc);
7fb6ec28 4999
e2cec771
AL
5000 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5001 /* bad ireason reported by device */
5002 goto fsm_start;
1da177e4 5003
e2cec771
AL
5004 } else {
5005 /* ATA PIO protocol */
5006 if (unlikely((status & ATA_DRQ) == 0)) {
5007 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5008 if (likely(status & (ATA_ERR | ATA_DF)))
5009 /* device stops HSM for abort/error */
5010 qc->err_mask |= AC_ERR_DEV;
5011 else
55a8e2c8
TH
5012 /* HSM violation. Let EH handle this.
5013 * Phantom devices also trigger this
5014 * condition. Mark hint.
5015 */
5016 qc->err_mask |= AC_ERR_HSM |
5017 AC_ERR_NODEV_HINT;
3655d1d3 5018
e2cec771
AL
5019 ap->hsm_task_state = HSM_ST_ERR;
5020 goto fsm_start;
5021 }
1da177e4 5022
eee6c32f
AL
5023 /* For PIO reads, some devices may ask for
5024 * data transfer (DRQ=1) alone with ERR=1.
5025 * We respect DRQ here and transfer one
5026 * block of junk data before changing the
5027 * hsm_task_state to HSM_ST_ERR.
5028 *
5029 * For PIO writes, ERR=1 DRQ=1 doesn't make
5030 * sense since the data block has been
5031 * transferred to the device.
71601958
AL
5032 */
5033 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5034 /* data might be corrputed */
5035 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5036
5037 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5038 ata_pio_sectors(qc);
5039 ata_altstatus(ap);
5040 status = ata_wait_idle(ap);
5041 }
5042
3655d1d3
AL
5043 if (status & (ATA_BUSY | ATA_DRQ))
5044 qc->err_mask |= AC_ERR_HSM;
5045
eee6c32f
AL
5046 /* ata_pio_sectors() might change the
5047 * state to HSM_ST_LAST. so, the state
5048 * is changed after ata_pio_sectors().
5049 */
5050 ap->hsm_task_state = HSM_ST_ERR;
5051 goto fsm_start;
71601958
AL
5052 }
5053
e2cec771
AL
5054 ata_pio_sectors(qc);
5055
5056 if (ap->hsm_task_state == HSM_ST_LAST &&
5057 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5058 /* all data read */
5059 ata_altstatus(ap);
52a32205 5060 status = ata_wait_idle(ap);
e2cec771
AL
5061 goto fsm_start;
5062 }
5063 }
5064
5065 ata_altstatus(ap); /* flush */
bb5cb290 5066 poll_next = 1;
1da177e4
LT
5067 break;
5068
14be71f4 5069 case HSM_ST_LAST:
6912ccd5
AL
5070 if (unlikely(!ata_ok(status))) {
5071 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5072 ap->hsm_task_state = HSM_ST_ERR;
5073 goto fsm_start;
5074 }
5075
5076 /* no more data to transfer */
4332a771 5077 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5078 ap->print_id, qc->dev->devno, status);
e2cec771 5079
6912ccd5
AL
5080 WARN_ON(qc->err_mask);
5081
e2cec771 5082 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5083
e2cec771 5084 /* complete taskfile transaction */
c17ea20d 5085 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5086
5087 poll_next = 0;
1da177e4
LT
5088 break;
5089
14be71f4 5090 case HSM_ST_ERR:
e2cec771
AL
5091 /* make sure qc->err_mask is available to
5092 * know what's wrong and recover
5093 */
5094 WARN_ON(qc->err_mask == 0);
5095
5096 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5097
999bb6f4 5098 /* complete taskfile transaction */
c17ea20d 5099 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5100
5101 poll_next = 0;
e2cec771
AL
5102 break;
5103 default:
bb5cb290 5104 poll_next = 0;
6912ccd5 5105 BUG();
1da177e4
LT
5106 }
5107
bb5cb290 5108 return poll_next;
1da177e4
LT
5109}
5110
65f27f38 5111static void ata_pio_task(struct work_struct *work)
8061f5f0 5112{
65f27f38
DH
5113 struct ata_port *ap =
5114 container_of(work, struct ata_port, port_task.work);
5115 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5116 u8 status;
a1af3734 5117 int poll_next;
8061f5f0 5118
7fb6ec28 5119fsm_start:
a1af3734 5120 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5121
a1af3734
AL
5122 /*
5123 * This is purely heuristic. This is a fast path.
5124 * Sometimes when we enter, BSY will be cleared in
5125 * a chk-status or two. If not, the drive is probably seeking
5126 * or something. Snooze for a couple msecs, then
5127 * chk-status again. If still busy, queue delayed work.
5128 */
5129 status = ata_busy_wait(ap, ATA_BUSY, 5);
5130 if (status & ATA_BUSY) {
5131 msleep(2);
5132 status = ata_busy_wait(ap, ATA_BUSY, 10);
5133 if (status & ATA_BUSY) {
31ce6dae 5134 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5135 return;
5136 }
8061f5f0
TH
5137 }
5138
a1af3734
AL
5139 /* move the HSM */
5140 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5141
a1af3734
AL
5142 /* another command or interrupt handler
5143 * may be running at this point.
5144 */
5145 if (poll_next)
7fb6ec28 5146 goto fsm_start;
8061f5f0
TH
5147}
5148
1da177e4
LT
5149/**
5150 * ata_qc_new - Request an available ATA command, for queueing
5151 * @ap: Port associated with device @dev
5152 * @dev: Device from whom we request an available command structure
5153 *
5154 * LOCKING:
0cba632b 5155 * None.
1da177e4
LT
5156 */
5157
5158static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5159{
5160 struct ata_queued_cmd *qc = NULL;
5161 unsigned int i;
5162
e3180499 5163 /* no command while frozen */
b51e9e5d 5164 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5165 return NULL;
5166
2ab7db1f
TH
5167 /* the last tag is reserved for internal command. */
5168 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5169 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5170 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5171 break;
5172 }
5173
5174 if (qc)
5175 qc->tag = i;
5176
5177 return qc;
5178}
5179
5180/**
5181 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5182 * @dev: Device from whom we request an available command structure
5183 *
5184 * LOCKING:
0cba632b 5185 * None.
1da177e4
LT
5186 */
5187
3373efd8 5188struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5189{
9af5c9c9 5190 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5191 struct ata_queued_cmd *qc;
5192
5193 qc = ata_qc_new(ap);
5194 if (qc) {
1da177e4
LT
5195 qc->scsicmd = NULL;
5196 qc->ap = ap;
5197 qc->dev = dev;
1da177e4 5198
2c13b7ce 5199 ata_qc_reinit(qc);
1da177e4
LT
5200 }
5201
5202 return qc;
5203}
5204
1da177e4
LT
5205/**
5206 * ata_qc_free - free unused ata_queued_cmd
5207 * @qc: Command to complete
5208 *
5209 * Designed to free unused ata_queued_cmd object
5210 * in case something prevents using it.
5211 *
5212 * LOCKING:
cca3974e 5213 * spin_lock_irqsave(host lock)
1da177e4
LT
5214 */
5215void ata_qc_free(struct ata_queued_cmd *qc)
5216{
4ba946e9
TH
5217 struct ata_port *ap = qc->ap;
5218 unsigned int tag;
5219
a4631474 5220 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5221
4ba946e9
TH
5222 qc->flags = 0;
5223 tag = qc->tag;
5224 if (likely(ata_tag_valid(tag))) {
4ba946e9 5225 qc->tag = ATA_TAG_POISON;
6cec4a39 5226 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5227 }
1da177e4
LT
5228}
5229
76014427 5230void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5231{
dedaf2b0 5232 struct ata_port *ap = qc->ap;
9af5c9c9 5233 struct ata_link *link = qc->dev->link;
dedaf2b0 5234
a4631474
TH
5235 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5236 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5237
5238 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5239 ata_sg_clean(qc);
5240
7401abf2 5241 /* command should be marked inactive atomically with qc completion */
dedaf2b0 5242 if (qc->tf.protocol == ATA_PROT_NCQ)
9af5c9c9 5243 link->sactive &= ~(1 << qc->tag);
dedaf2b0 5244 else
9af5c9c9 5245 link->active_tag = ATA_TAG_POISON;
7401abf2 5246
3f3791d3
AL
5247 /* atapi: mark qc as inactive to prevent the interrupt handler
5248 * from completing the command twice later, before the error handler
5249 * is called. (when rc != 0 and atapi request sense is needed)
5250 */
5251 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5252 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5253
1da177e4 5254 /* call completion callback */
77853bf2 5255 qc->complete_fn(qc);
1da177e4
LT
5256}
5257
39599a53
TH
5258static void fill_result_tf(struct ata_queued_cmd *qc)
5259{
5260 struct ata_port *ap = qc->ap;
5261
39599a53 5262 qc->result_tf.flags = qc->tf.flags;
4742d54f 5263 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5264}
5265
f686bcb8
TH
5266/**
5267 * ata_qc_complete - Complete an active ATA command
5268 * @qc: Command to complete
5269 * @err_mask: ATA Status register contents
5270 *
5271 * Indicate to the mid and upper layers that an ATA
5272 * command has completed, with either an ok or not-ok status.
5273 *
5274 * LOCKING:
cca3974e 5275 * spin_lock_irqsave(host lock)
f686bcb8
TH
5276 */
5277void ata_qc_complete(struct ata_queued_cmd *qc)
5278{
5279 struct ata_port *ap = qc->ap;
5280
5281 /* XXX: New EH and old EH use different mechanisms to
5282 * synchronize EH with regular execution path.
5283 *
5284 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5285 * Normal execution path is responsible for not accessing a
5286 * failed qc. libata core enforces the rule by returning NULL
5287 * from ata_qc_from_tag() for failed qcs.
5288 *
5289 * Old EH depends on ata_qc_complete() nullifying completion
5290 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5291 * not synchronize with interrupt handler. Only PIO task is
5292 * taken care of.
5293 */
5294 if (ap->ops->error_handler) {
b51e9e5d 5295 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5296
5297 if (unlikely(qc->err_mask))
5298 qc->flags |= ATA_QCFLAG_FAILED;
5299
5300 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5301 if (!ata_tag_internal(qc->tag)) {
5302 /* always fill result TF for failed qc */
39599a53 5303 fill_result_tf(qc);
f686bcb8
TH
5304 ata_qc_schedule_eh(qc);
5305 return;
5306 }
5307 }
5308
5309 /* read result TF if requested */
5310 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5311 fill_result_tf(qc);
f686bcb8
TH
5312
5313 __ata_qc_complete(qc);
5314 } else {
5315 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5316 return;
5317
5318 /* read result TF if failed or requested */
5319 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5320 fill_result_tf(qc);
f686bcb8
TH
5321
5322 __ata_qc_complete(qc);
5323 }
5324}
5325
dedaf2b0
TH
5326/**
5327 * ata_qc_complete_multiple - Complete multiple qcs successfully
5328 * @ap: port in question
5329 * @qc_active: new qc_active mask
5330 * @finish_qc: LLDD callback invoked before completing a qc
5331 *
5332 * Complete in-flight commands. This functions is meant to be
5333 * called from low-level driver's interrupt routine to complete
5334 * requests normally. ap->qc_active and @qc_active is compared
5335 * and commands are completed accordingly.
5336 *
5337 * LOCKING:
cca3974e 5338 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5339 *
5340 * RETURNS:
5341 * Number of completed commands on success, -errno otherwise.
5342 */
5343int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5344 void (*finish_qc)(struct ata_queued_cmd *))
5345{
5346 int nr_done = 0;
5347 u32 done_mask;
5348 int i;
5349
5350 done_mask = ap->qc_active ^ qc_active;
5351
5352 if (unlikely(done_mask & qc_active)) {
5353 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5354 "(%08x->%08x)\n", ap->qc_active, qc_active);
5355 return -EINVAL;
5356 }
5357
5358 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5359 struct ata_queued_cmd *qc;
5360
5361 if (!(done_mask & (1 << i)))
5362 continue;
5363
5364 if ((qc = ata_qc_from_tag(ap, i))) {
5365 if (finish_qc)
5366 finish_qc(qc);
5367 ata_qc_complete(qc);
5368 nr_done++;
5369 }
5370 }
5371
5372 return nr_done;
5373}
5374
1da177e4
LT
5375static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5376{
5377 struct ata_port *ap = qc->ap;
5378
5379 switch (qc->tf.protocol) {
3dc1d881 5380 case ATA_PROT_NCQ:
1da177e4
LT
5381 case ATA_PROT_DMA:
5382 case ATA_PROT_ATAPI_DMA:
5383 return 1;
5384
5385 case ATA_PROT_ATAPI:
5386 case ATA_PROT_PIO:
1da177e4
LT
5387 if (ap->flags & ATA_FLAG_PIO_DMA)
5388 return 1;
5389
5390 /* fall through */
5391
5392 default:
5393 return 0;
5394 }
5395
5396 /* never reached */
5397}
5398
5399/**
5400 * ata_qc_issue - issue taskfile to device
5401 * @qc: command to issue to device
5402 *
5403 * Prepare an ATA command to submission to device.
5404 * This includes mapping the data into a DMA-able
5405 * area, filling in the S/G table, and finally
5406 * writing the taskfile to hardware, starting the command.
5407 *
5408 * LOCKING:
cca3974e 5409 * spin_lock_irqsave(host lock)
1da177e4 5410 */
8e0e694a 5411void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5412{
5413 struct ata_port *ap = qc->ap;
9af5c9c9 5414 struct ata_link *link = qc->dev->link;
1da177e4 5415
dedaf2b0
TH
5416 /* Make sure only one non-NCQ command is outstanding. The
5417 * check is skipped for old EH because it reuses active qc to
5418 * request ATAPI sense.
5419 */
9af5c9c9 5420 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5421
5422 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9
TH
5423 WARN_ON(link->sactive & (1 << qc->tag));
5424 link->sactive |= 1 << qc->tag;
dedaf2b0 5425 } else {
9af5c9c9
TH
5426 WARN_ON(link->sactive);
5427 link->active_tag = qc->tag;
dedaf2b0
TH
5428 }
5429
e4a70e76 5430 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5431 ap->qc_active |= 1 << qc->tag;
e4a70e76 5432
1da177e4
LT
5433 if (ata_should_dma_map(qc)) {
5434 if (qc->flags & ATA_QCFLAG_SG) {
5435 if (ata_sg_setup(qc))
8e436af9 5436 goto sg_err;
1da177e4
LT
5437 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5438 if (ata_sg_setup_one(qc))
8e436af9 5439 goto sg_err;
1da177e4
LT
5440 }
5441 } else {
5442 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5443 }
5444
5445 ap->ops->qc_prep(qc);
5446
8e0e694a
TH
5447 qc->err_mask |= ap->ops->qc_issue(qc);
5448 if (unlikely(qc->err_mask))
5449 goto err;
5450 return;
1da177e4 5451
8e436af9
TH
5452sg_err:
5453 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5454 qc->err_mask |= AC_ERR_SYSTEM;
5455err:
5456 ata_qc_complete(qc);
1da177e4
LT
5457}
5458
5459/**
5460 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5461 * @qc: command to issue to device
5462 *
5463 * Using various libata functions and hooks, this function
5464 * starts an ATA command. ATA commands are grouped into
5465 * classes called "protocols", and issuing each type of protocol
5466 * is slightly different.
5467 *
0baab86b
EF
5468 * May be used as the qc_issue() entry in ata_port_operations.
5469 *
1da177e4 5470 * LOCKING:
cca3974e 5471 * spin_lock_irqsave(host lock)
1da177e4
LT
5472 *
5473 * RETURNS:
9a3d9eb0 5474 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5475 */
5476
9a3d9eb0 5477unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5478{
5479 struct ata_port *ap = qc->ap;
5480
e50362ec
AL
5481 /* Use polling pio if the LLD doesn't handle
5482 * interrupt driven pio and atapi CDB interrupt.
5483 */
5484 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5485 switch (qc->tf.protocol) {
5486 case ATA_PROT_PIO:
e3472cbe 5487 case ATA_PROT_NODATA:
e50362ec
AL
5488 case ATA_PROT_ATAPI:
5489 case ATA_PROT_ATAPI_NODATA:
5490 qc->tf.flags |= ATA_TFLAG_POLLING;
5491 break;
5492 case ATA_PROT_ATAPI_DMA:
5493 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5494 /* see ata_dma_blacklisted() */
e50362ec
AL
5495 BUG();
5496 break;
5497 default:
5498 break;
5499 }
5500 }
5501
312f7da2 5502 /* select the device */
1da177e4
LT
5503 ata_dev_select(ap, qc->dev->devno, 1, 0);
5504
312f7da2 5505 /* start the command */
1da177e4
LT
5506 switch (qc->tf.protocol) {
5507 case ATA_PROT_NODATA:
312f7da2
AL
5508 if (qc->tf.flags & ATA_TFLAG_POLLING)
5509 ata_qc_set_polling(qc);
5510
e5338254 5511 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5512 ap->hsm_task_state = HSM_ST_LAST;
5513
5514 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5515 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5516
1da177e4
LT
5517 break;
5518
5519 case ATA_PROT_DMA:
587005de 5520 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5521
1da177e4
LT
5522 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5523 ap->ops->bmdma_setup(qc); /* set up bmdma */
5524 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5525 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5526 break;
5527
312f7da2
AL
5528 case ATA_PROT_PIO:
5529 if (qc->tf.flags & ATA_TFLAG_POLLING)
5530 ata_qc_set_polling(qc);
1da177e4 5531
e5338254 5532 ata_tf_to_host(ap, &qc->tf);
312f7da2 5533
54f00389
AL
5534 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5535 /* PIO data out protocol */
5536 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5537 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5538
5539 /* always send first data block using
e27486db 5540 * the ata_pio_task() codepath.
54f00389 5541 */
312f7da2 5542 } else {
54f00389
AL
5543 /* PIO data in protocol */
5544 ap->hsm_task_state = HSM_ST;
5545
5546 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5547 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5548
5549 /* if polling, ata_pio_task() handles the rest.
5550 * otherwise, interrupt handler takes over from here.
5551 */
312f7da2
AL
5552 }
5553
1da177e4
LT
5554 break;
5555
1da177e4 5556 case ATA_PROT_ATAPI:
1da177e4 5557 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5558 if (qc->tf.flags & ATA_TFLAG_POLLING)
5559 ata_qc_set_polling(qc);
5560
e5338254 5561 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5562
312f7da2
AL
5563 ap->hsm_task_state = HSM_ST_FIRST;
5564
5565 /* send cdb by polling if no cdb interrupt */
5566 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5567 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5568 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5569 break;
5570
5571 case ATA_PROT_ATAPI_DMA:
587005de 5572 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5573
1da177e4
LT
5574 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5575 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5576 ap->hsm_task_state = HSM_ST_FIRST;
5577
5578 /* send cdb by polling if no cdb interrupt */
5579 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5580 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5581 break;
5582
5583 default:
5584 WARN_ON(1);
9a3d9eb0 5585 return AC_ERR_SYSTEM;
1da177e4
LT
5586 }
5587
5588 return 0;
5589}
5590
1da177e4
LT
5591/**
5592 * ata_host_intr - Handle host interrupt for given (port, task)
5593 * @ap: Port on which interrupt arrived (possibly...)
5594 * @qc: Taskfile currently active in engine
5595 *
5596 * Handle host interrupt for given queued command. Currently,
5597 * only DMA interrupts are handled. All other commands are
5598 * handled via polling with interrupts disabled (nIEN bit).
5599 *
5600 * LOCKING:
cca3974e 5601 * spin_lock_irqsave(host lock)
1da177e4
LT
5602 *
5603 * RETURNS:
5604 * One if interrupt was handled, zero if not (shared irq).
5605 */
5606
5607inline unsigned int ata_host_intr (struct ata_port *ap,
5608 struct ata_queued_cmd *qc)
5609{
9af5c9c9 5610 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5611 u8 status, host_stat = 0;
1da177e4 5612
312f7da2 5613 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5614 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5615
312f7da2
AL
5616 /* Check whether we are expecting interrupt in this state */
5617 switch (ap->hsm_task_state) {
5618 case HSM_ST_FIRST:
6912ccd5
AL
5619 /* Some pre-ATAPI-4 devices assert INTRQ
5620 * at this state when ready to receive CDB.
5621 */
1da177e4 5622
312f7da2
AL
5623 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5624 * The flag was turned on only for atapi devices.
5625 * No need to check is_atapi_taskfile(&qc->tf) again.
5626 */
5627 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5628 goto idle_irq;
1da177e4 5629 break;
312f7da2
AL
5630 case HSM_ST_LAST:
5631 if (qc->tf.protocol == ATA_PROT_DMA ||
5632 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5633 /* check status of DMA engine */
5634 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5635 VPRINTK("ata%u: host_stat 0x%X\n",
5636 ap->print_id, host_stat);
312f7da2
AL
5637
5638 /* if it's not our irq... */
5639 if (!(host_stat & ATA_DMA_INTR))
5640 goto idle_irq;
5641
5642 /* before we do anything else, clear DMA-Start bit */
5643 ap->ops->bmdma_stop(qc);
a4f16610
AL
5644
5645 if (unlikely(host_stat & ATA_DMA_ERR)) {
5646 /* error when transfering data to/from memory */
5647 qc->err_mask |= AC_ERR_HOST_BUS;
5648 ap->hsm_task_state = HSM_ST_ERR;
5649 }
312f7da2
AL
5650 }
5651 break;
5652 case HSM_ST:
5653 break;
1da177e4
LT
5654 default:
5655 goto idle_irq;
5656 }
5657
312f7da2
AL
5658 /* check altstatus */
5659 status = ata_altstatus(ap);
5660 if (status & ATA_BUSY)
5661 goto idle_irq;
1da177e4 5662
312f7da2
AL
5663 /* check main status, clearing INTRQ */
5664 status = ata_chk_status(ap);
5665 if (unlikely(status & ATA_BUSY))
5666 goto idle_irq;
1da177e4 5667
312f7da2
AL
5668 /* ack bmdma irq events */
5669 ap->ops->irq_clear(ap);
1da177e4 5670
bb5cb290 5671 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5672
5673 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5674 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5675 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5676
1da177e4
LT
5677 return 1; /* irq handled */
5678
5679idle_irq:
5680 ap->stats.idle_irq++;
5681
5682#ifdef ATA_IRQ_TRAP
5683 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5684 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5685 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5686 return 1;
1da177e4
LT
5687 }
5688#endif
5689 return 0; /* irq not handled */
5690}
5691
5692/**
5693 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5694 * @irq: irq line (unused)
cca3974e 5695 * @dev_instance: pointer to our ata_host information structure
1da177e4 5696 *
0cba632b
JG
5697 * Default interrupt handler for PCI IDE devices. Calls
5698 * ata_host_intr() for each port that is not disabled.
5699 *
1da177e4 5700 * LOCKING:
cca3974e 5701 * Obtains host lock during operation.
1da177e4
LT
5702 *
5703 * RETURNS:
0cba632b 5704 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5705 */
5706
7d12e780 5707irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5708{
cca3974e 5709 struct ata_host *host = dev_instance;
1da177e4
LT
5710 unsigned int i;
5711 unsigned int handled = 0;
5712 unsigned long flags;
5713
5714 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5715 spin_lock_irqsave(&host->lock, flags);
1da177e4 5716
cca3974e 5717 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5718 struct ata_port *ap;
5719
cca3974e 5720 ap = host->ports[i];
c1389503 5721 if (ap &&
029f5468 5722 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5723 struct ata_queued_cmd *qc;
5724
9af5c9c9 5725 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 5726 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5727 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5728 handled |= ata_host_intr(ap, qc);
5729 }
5730 }
5731
cca3974e 5732 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5733
5734 return IRQ_RETVAL(handled);
5735}
5736
34bf2170
TH
5737/**
5738 * sata_scr_valid - test whether SCRs are accessible
936fd732 5739 * @link: ATA link to test SCR accessibility for
34bf2170 5740 *
936fd732 5741 * Test whether SCRs are accessible for @link.
34bf2170
TH
5742 *
5743 * LOCKING:
5744 * None.
5745 *
5746 * RETURNS:
5747 * 1 if SCRs are accessible, 0 otherwise.
5748 */
936fd732 5749int sata_scr_valid(struct ata_link *link)
34bf2170 5750{
936fd732
TH
5751 struct ata_port *ap = link->ap;
5752
a16abc0b 5753 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5754}
5755
5756/**
5757 * sata_scr_read - read SCR register of the specified port
936fd732 5758 * @link: ATA link to read SCR for
34bf2170
TH
5759 * @reg: SCR to read
5760 * @val: Place to store read value
5761 *
936fd732 5762 * Read SCR register @reg of @link into *@val. This function is
34bf2170
TH
5763 * guaranteed to succeed if the cable type of the port is SATA
5764 * and the port implements ->scr_read.
5765 *
5766 * LOCKING:
5767 * None.
5768 *
5769 * RETURNS:
5770 * 0 on success, negative errno on failure.
5771 */
936fd732 5772int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5773{
936fd732
TH
5774 struct ata_port *ap = link->ap;
5775
5776 if (sata_scr_valid(link))
da3dbb17 5777 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5778 return -EOPNOTSUPP;
5779}
5780
5781/**
5782 * sata_scr_write - write SCR register of the specified port
936fd732 5783 * @link: ATA link to write SCR for
34bf2170
TH
5784 * @reg: SCR to write
5785 * @val: value to write
5786 *
936fd732 5787 * Write @val to SCR register @reg of @link. This function is
34bf2170
TH
5788 * guaranteed to succeed if the cable type of the port is SATA
5789 * and the port implements ->scr_read.
5790 *
5791 * LOCKING:
5792 * None.
5793 *
5794 * RETURNS:
5795 * 0 on success, negative errno on failure.
5796 */
936fd732 5797int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5798{
936fd732
TH
5799 struct ata_port *ap = link->ap;
5800
5801 if (sata_scr_valid(link))
da3dbb17 5802 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5803 return -EOPNOTSUPP;
5804}
5805
5806/**
5807 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5808 * @link: ATA link to write SCR for
34bf2170
TH
5809 * @reg: SCR to write
5810 * @val: value to write
5811 *
5812 * This function is identical to sata_scr_write() except that this
5813 * function performs flush after writing to the register.
5814 *
5815 * LOCKING:
5816 * None.
5817 *
5818 * RETURNS:
5819 * 0 on success, negative errno on failure.
5820 */
936fd732 5821int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5822{
936fd732 5823 struct ata_port *ap = link->ap;
da3dbb17
TH
5824 int rc;
5825
936fd732 5826 if (sata_scr_valid(link)) {
da3dbb17
TH
5827 rc = ap->ops->scr_write(ap, reg, val);
5828 if (rc == 0)
5829 rc = ap->ops->scr_read(ap, reg, &val);
5830 return rc;
34bf2170
TH
5831 }
5832 return -EOPNOTSUPP;
5833}
5834
5835/**
936fd732
TH
5836 * ata_link_online - test whether the given link is online
5837 * @link: ATA link to test
34bf2170 5838 *
936fd732
TH
5839 * Test whether @link is online. Note that this function returns
5840 * 0 if online status of @link cannot be obtained, so
5841 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5842 *
5843 * LOCKING:
5844 * None.
5845 *
5846 * RETURNS:
5847 * 1 if the port online status is available and online.
5848 */
936fd732 5849int ata_link_online(struct ata_link *link)
34bf2170
TH
5850{
5851 u32 sstatus;
5852
936fd732
TH
5853 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5854 (sstatus & 0xf) == 0x3)
34bf2170
TH
5855 return 1;
5856 return 0;
5857}
5858
5859/**
936fd732
TH
5860 * ata_link_offline - test whether the given link is offline
5861 * @link: ATA link to test
34bf2170 5862 *
936fd732
TH
5863 * Test whether @link is offline. Note that this function
5864 * returns 0 if offline status of @link cannot be obtained, so
5865 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5866 *
5867 * LOCKING:
5868 * None.
5869 *
5870 * RETURNS:
5871 * 1 if the port offline status is available and offline.
5872 */
936fd732 5873int ata_link_offline(struct ata_link *link)
34bf2170
TH
5874{
5875 u32 sstatus;
5876
936fd732
TH
5877 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5878 (sstatus & 0xf) != 0x3)
34bf2170
TH
5879 return 1;
5880 return 0;
5881}
0baab86b 5882
77b08fb5 5883int ata_flush_cache(struct ata_device *dev)
9b847548 5884{
977e6b9f 5885 unsigned int err_mask;
9b847548
JA
5886 u8 cmd;
5887
5888 if (!ata_try_flush_cache(dev))
5889 return 0;
5890
6fc49adb 5891 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5892 cmd = ATA_CMD_FLUSH_EXT;
5893 else
5894 cmd = ATA_CMD_FLUSH;
5895
977e6b9f
TH
5896 err_mask = ata_do_simple_cmd(dev, cmd);
5897 if (err_mask) {
5898 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5899 return -EIO;
5900 }
5901
5902 return 0;
9b847548
JA
5903}
5904
6ffa01d8 5905#ifdef CONFIG_PM
cca3974e
JG
5906static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5907 unsigned int action, unsigned int ehi_flags,
5908 int wait)
500530f6
TH
5909{
5910 unsigned long flags;
5911 int i, rc;
5912
cca3974e
JG
5913 for (i = 0; i < host->n_ports; i++) {
5914 struct ata_port *ap = host->ports[i];
500530f6
TH
5915
5916 /* Previous resume operation might still be in
5917 * progress. Wait for PM_PENDING to clear.
5918 */
5919 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5920 ata_port_wait_eh(ap);
5921 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5922 }
5923
5924 /* request PM ops to EH */
5925 spin_lock_irqsave(ap->lock, flags);
5926
5927 ap->pm_mesg = mesg;
5928 if (wait) {
5929 rc = 0;
5930 ap->pm_result = &rc;
5931 }
5932
5933 ap->pflags |= ATA_PFLAG_PM_PENDING;
9af5c9c9
TH
5934 ap->link.eh_info.action |= action;
5935 ap->link.eh_info.flags |= ehi_flags;
500530f6
TH
5936
5937 ata_port_schedule_eh(ap);
5938
5939 spin_unlock_irqrestore(ap->lock, flags);
5940
5941 /* wait and check result */
5942 if (wait) {
5943 ata_port_wait_eh(ap);
5944 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5945 if (rc)
5946 return rc;
5947 }
5948 }
5949
5950 return 0;
5951}
5952
5953/**
cca3974e
JG
5954 * ata_host_suspend - suspend host
5955 * @host: host to suspend
500530f6
TH
5956 * @mesg: PM message
5957 *
cca3974e 5958 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5959 * function requests EH to perform PM operations and waits for EH
5960 * to finish.
5961 *
5962 * LOCKING:
5963 * Kernel thread context (may sleep).
5964 *
5965 * RETURNS:
5966 * 0 on success, -errno on failure.
5967 */
cca3974e 5968int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5969{
9666f400 5970 int rc;
500530f6 5971
cca3974e 5972 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5973 if (rc == 0)
5974 host->dev->power.power_state = mesg;
500530f6
TH
5975 return rc;
5976}
5977
5978/**
cca3974e
JG
5979 * ata_host_resume - resume host
5980 * @host: host to resume
500530f6 5981 *
cca3974e 5982 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5983 * function requests EH to perform PM operations and returns.
5984 * Note that all resume operations are performed parallely.
5985 *
5986 * LOCKING:
5987 * Kernel thread context (may sleep).
5988 */
cca3974e 5989void ata_host_resume(struct ata_host *host)
500530f6 5990{
cca3974e
JG
5991 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5992 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5993 host->dev->power.power_state = PMSG_ON;
500530f6 5994}
6ffa01d8 5995#endif
500530f6 5996
c893a3ae
RD
5997/**
5998 * ata_port_start - Set port up for dma.
5999 * @ap: Port to initialize
6000 *
6001 * Called just after data structures for each port are
6002 * initialized. Allocates space for PRD table.
6003 *
6004 * May be used as the port_start() entry in ata_port_operations.
6005 *
6006 * LOCKING:
6007 * Inherited from caller.
6008 */
f0d36efd 6009int ata_port_start(struct ata_port *ap)
1da177e4 6010{
2f1f610b 6011 struct device *dev = ap->dev;
6037d6bb 6012 int rc;
1da177e4 6013
f0d36efd
TH
6014 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6015 GFP_KERNEL);
1da177e4
LT
6016 if (!ap->prd)
6017 return -ENOMEM;
6018
6037d6bb 6019 rc = ata_pad_alloc(ap, dev);
f0d36efd 6020 if (rc)
6037d6bb 6021 return rc;
1da177e4 6022
f0d36efd
TH
6023 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6024 (unsigned long long)ap->prd_dma);
1da177e4
LT
6025 return 0;
6026}
6027
3ef3b43d
TH
6028/**
6029 * ata_dev_init - Initialize an ata_device structure
6030 * @dev: Device structure to initialize
6031 *
6032 * Initialize @dev in preparation for probing.
6033 *
6034 * LOCKING:
6035 * Inherited from caller.
6036 */
6037void ata_dev_init(struct ata_device *dev)
6038{
9af5c9c9
TH
6039 struct ata_link *link = dev->link;
6040 struct ata_port *ap = link->ap;
72fa4b74
TH
6041 unsigned long flags;
6042
5a04bf4b 6043 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6044 link->sata_spd_limit = link->hw_sata_spd_limit;
6045 link->sata_spd = 0;
5a04bf4b 6046
72fa4b74
TH
6047 /* High bits of dev->flags are used to record warm plug
6048 * requests which occur asynchronously. Synchronize using
cca3974e 6049 * host lock.
72fa4b74 6050 */
ba6a1308 6051 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6052 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6053 dev->horkage = 0;
ba6a1308 6054 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6055
72fa4b74
TH
6056 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6057 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6058 dev->pio_mask = UINT_MAX;
6059 dev->mwdma_mask = UINT_MAX;
6060 dev->udma_mask = UINT_MAX;
6061}
6062
4fb37a25
TH
6063/**
6064 * ata_link_init - Initialize an ata_link structure
6065 * @ap: ATA port link is attached to
6066 * @link: Link structure to initialize
6067 *
6068 * Initialize @link.
6069 *
6070 * LOCKING:
6071 * Kernel thread context (may sleep)
6072 */
6073static void ata_link_init(struct ata_port *ap, struct ata_link *link)
6074{
6075 int i;
6076
6077 /* clear everything except for devices */
6078 memset(link, 0, offsetof(struct ata_link, device[0]));
6079
6080 link->ap = ap;
6081 link->active_tag = ATA_TAG_POISON;
6082 link->hw_sata_spd_limit = UINT_MAX;
6083
6084 /* can't use iterator, ap isn't initialized yet */
6085 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6086 struct ata_device *dev = &link->device[i];
6087
6088 dev->link = link;
6089 dev->devno = dev - link->device;
6090 ata_dev_init(dev);
6091 }
6092}
6093
6094/**
6095 * sata_link_init_spd - Initialize link->sata_spd_limit
6096 * @link: Link to configure sata_spd_limit for
6097 *
6098 * Initialize @link->[hw_]sata_spd_limit to the currently
6099 * configured value.
6100 *
6101 * LOCKING:
6102 * Kernel thread context (may sleep).
6103 *
6104 * RETURNS:
6105 * 0 on success, -errno on failure.
6106 */
6107static int sata_link_init_spd(struct ata_link *link)
6108{
6109 u32 scontrol, spd;
6110 int rc;
6111
6112 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6113 if (rc)
6114 return rc;
6115
6116 spd = (scontrol >> 4) & 0xf;
6117 if (spd)
6118 link->hw_sata_spd_limit &= (1 << spd) - 1;
6119
6120 link->sata_spd_limit = link->hw_sata_spd_limit;
6121
6122 return 0;
6123}
6124
1da177e4 6125/**
f3187195
TH
6126 * ata_port_alloc - allocate and initialize basic ATA port resources
6127 * @host: ATA host this allocated port belongs to
1da177e4 6128 *
f3187195
TH
6129 * Allocate and initialize basic ATA port resources.
6130 *
6131 * RETURNS:
6132 * Allocate ATA port on success, NULL on failure.
0cba632b 6133 *
1da177e4 6134 * LOCKING:
f3187195 6135 * Inherited from calling layer (may sleep).
1da177e4 6136 */
f3187195 6137struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6138{
f3187195 6139 struct ata_port *ap;
1da177e4 6140
f3187195
TH
6141 DPRINTK("ENTER\n");
6142
6143 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6144 if (!ap)
6145 return NULL;
6146
f4d6d004 6147 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6148 ap->lock = &host->lock;
198e0fed 6149 ap->flags = ATA_FLAG_DISABLED;
f3187195 6150 ap->print_id = -1;
1da177e4 6151 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6152 ap->host = host;
f3187195 6153 ap->dev = host->dev;
1da177e4 6154 ap->last_ctl = 0xFF;
bd5d825c
BP
6155
6156#if defined(ATA_VERBOSE_DEBUG)
6157 /* turn on all debugging levels */
6158 ap->msg_enable = 0x00FF;
6159#elif defined(ATA_DEBUG)
6160 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6161#else
0dd4b21f 6162 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6163#endif
1da177e4 6164
65f27f38
DH
6165 INIT_DELAYED_WORK(&ap->port_task, NULL);
6166 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6167 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6168 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6169 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6170 init_timer_deferrable(&ap->fastdrain_timer);
6171 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6172 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6173
838df628 6174 ap->cbl = ATA_CBL_NONE;
838df628 6175
4fb37a25 6176 ata_link_init(ap, &ap->link);
1da177e4
LT
6177
6178#ifdef ATA_IRQ_TRAP
6179 ap->stats.unhandled_irq = 1;
6180 ap->stats.idle_irq = 1;
6181#endif
1da177e4 6182 return ap;
1da177e4
LT
6183}
6184
f0d36efd
TH
6185static void ata_host_release(struct device *gendev, void *res)
6186{
6187 struct ata_host *host = dev_get_drvdata(gendev);
6188 int i;
6189
6190 for (i = 0; i < host->n_ports; i++) {
6191 struct ata_port *ap = host->ports[i];
6192
ecef7253
TH
6193 if (!ap)
6194 continue;
6195
6196 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6197 ap->ops->port_stop(ap);
f0d36efd
TH
6198 }
6199
ecef7253 6200 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6201 host->ops->host_stop(host);
1aa56cca 6202
1aa506e4
TH
6203 for (i = 0; i < host->n_ports; i++) {
6204 struct ata_port *ap = host->ports[i];
6205
4911487a
TH
6206 if (!ap)
6207 continue;
6208
6209 if (ap->scsi_host)
1aa506e4
TH
6210 scsi_host_put(ap->scsi_host);
6211
4911487a 6212 kfree(ap);
1aa506e4
TH
6213 host->ports[i] = NULL;
6214 }
6215
1aa56cca 6216 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6217}
6218
f3187195
TH
6219/**
6220 * ata_host_alloc - allocate and init basic ATA host resources
6221 * @dev: generic device this host is associated with
6222 * @max_ports: maximum number of ATA ports associated with this host
6223 *
6224 * Allocate and initialize basic ATA host resources. LLD calls
6225 * this function to allocate a host, initializes it fully and
6226 * attaches it using ata_host_register().
6227 *
6228 * @max_ports ports are allocated and host->n_ports is
6229 * initialized to @max_ports. The caller is allowed to decrease
6230 * host->n_ports before calling ata_host_register(). The unused
6231 * ports will be automatically freed on registration.
6232 *
6233 * RETURNS:
6234 * Allocate ATA host on success, NULL on failure.
6235 *
6236 * LOCKING:
6237 * Inherited from calling layer (may sleep).
6238 */
6239struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6240{
6241 struct ata_host *host;
6242 size_t sz;
6243 int i;
6244
6245 DPRINTK("ENTER\n");
6246
6247 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6248 return NULL;
6249
6250 /* alloc a container for our list of ATA ports (buses) */
6251 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6252 /* alloc a container for our list of ATA ports (buses) */
6253 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6254 if (!host)
6255 goto err_out;
6256
6257 devres_add(dev, host);
6258 dev_set_drvdata(dev, host);
6259
6260 spin_lock_init(&host->lock);
6261 host->dev = dev;
6262 host->n_ports = max_ports;
6263
6264 /* allocate ports bound to this host */
6265 for (i = 0; i < max_ports; i++) {
6266 struct ata_port *ap;
6267
6268 ap = ata_port_alloc(host);
6269 if (!ap)
6270 goto err_out;
6271
6272 ap->port_no = i;
6273 host->ports[i] = ap;
6274 }
6275
6276 devres_remove_group(dev, NULL);
6277 return host;
6278
6279 err_out:
6280 devres_release_group(dev, NULL);
6281 return NULL;
6282}
6283
f5cda257
TH
6284/**
6285 * ata_host_alloc_pinfo - alloc host and init with port_info array
6286 * @dev: generic device this host is associated with
6287 * @ppi: array of ATA port_info to initialize host with
6288 * @n_ports: number of ATA ports attached to this host
6289 *
6290 * Allocate ATA host and initialize with info from @ppi. If NULL
6291 * terminated, @ppi may contain fewer entries than @n_ports. The
6292 * last entry will be used for the remaining ports.
6293 *
6294 * RETURNS:
6295 * Allocate ATA host on success, NULL on failure.
6296 *
6297 * LOCKING:
6298 * Inherited from calling layer (may sleep).
6299 */
6300struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6301 const struct ata_port_info * const * ppi,
6302 int n_ports)
6303{
6304 const struct ata_port_info *pi;
6305 struct ata_host *host;
6306 int i, j;
6307
6308 host = ata_host_alloc(dev, n_ports);
6309 if (!host)
6310 return NULL;
6311
6312 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6313 struct ata_port *ap = host->ports[i];
6314
6315 if (ppi[j])
6316 pi = ppi[j++];
6317
6318 ap->pio_mask = pi->pio_mask;
6319 ap->mwdma_mask = pi->mwdma_mask;
6320 ap->udma_mask = pi->udma_mask;
6321 ap->flags |= pi->flags;
0c88758b 6322 ap->link.flags |= pi->link_flags;
f5cda257
TH
6323 ap->ops = pi->port_ops;
6324
6325 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6326 host->ops = pi->port_ops;
6327 if (!host->private_data && pi->private_data)
6328 host->private_data = pi->private_data;
6329 }
6330
6331 return host;
6332}
6333
ecef7253
TH
6334/**
6335 * ata_host_start - start and freeze ports of an ATA host
6336 * @host: ATA host to start ports for
6337 *
6338 * Start and then freeze ports of @host. Started status is
6339 * recorded in host->flags, so this function can be called
6340 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6341 * once. If host->ops isn't initialized yet, its set to the
6342 * first non-dummy port ops.
ecef7253
TH
6343 *
6344 * LOCKING:
6345 * Inherited from calling layer (may sleep).
6346 *
6347 * RETURNS:
6348 * 0 if all ports are started successfully, -errno otherwise.
6349 */
6350int ata_host_start(struct ata_host *host)
6351{
6352 int i, rc;
6353
6354 if (host->flags & ATA_HOST_STARTED)
6355 return 0;
6356
6357 for (i = 0; i < host->n_ports; i++) {
6358 struct ata_port *ap = host->ports[i];
6359
f3187195
TH
6360 if (!host->ops && !ata_port_is_dummy(ap))
6361 host->ops = ap->ops;
6362
ecef7253
TH
6363 if (ap->ops->port_start) {
6364 rc = ap->ops->port_start(ap);
6365 if (rc) {
6366 ata_port_printk(ap, KERN_ERR, "failed to "
6367 "start port (errno=%d)\n", rc);
6368 goto err_out;
6369 }
6370 }
6371
6372 ata_eh_freeze_port(ap);
6373 }
6374
6375 host->flags |= ATA_HOST_STARTED;
6376 return 0;
6377
6378 err_out:
6379 while (--i >= 0) {
6380 struct ata_port *ap = host->ports[i];
6381
6382 if (ap->ops->port_stop)
6383 ap->ops->port_stop(ap);
6384 }
6385 return rc;
6386}
6387
b03732f0 6388/**
cca3974e
JG
6389 * ata_sas_host_init - Initialize a host struct
6390 * @host: host to initialize
6391 * @dev: device host is attached to
6392 * @flags: host flags
6393 * @ops: port_ops
b03732f0
BK
6394 *
6395 * LOCKING:
6396 * PCI/etc. bus probe sem.
6397 *
6398 */
f3187195 6399/* KILLME - the only user left is ipr */
cca3974e
JG
6400void ata_host_init(struct ata_host *host, struct device *dev,
6401 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6402{
cca3974e
JG
6403 spin_lock_init(&host->lock);
6404 host->dev = dev;
6405 host->flags = flags;
6406 host->ops = ops;
b03732f0
BK
6407}
6408
f3187195
TH
6409/**
6410 * ata_host_register - register initialized ATA host
6411 * @host: ATA host to register
6412 * @sht: template for SCSI host
6413 *
6414 * Register initialized ATA host. @host is allocated using
6415 * ata_host_alloc() and fully initialized by LLD. This function
6416 * starts ports, registers @host with ATA and SCSI layers and
6417 * probe registered devices.
6418 *
6419 * LOCKING:
6420 * Inherited from calling layer (may sleep).
6421 *
6422 * RETURNS:
6423 * 0 on success, -errno otherwise.
6424 */
6425int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6426{
6427 int i, rc;
6428
6429 /* host must have been started */
6430 if (!(host->flags & ATA_HOST_STARTED)) {
6431 dev_printk(KERN_ERR, host->dev,
6432 "BUG: trying to register unstarted host\n");
6433 WARN_ON(1);
6434 return -EINVAL;
6435 }
6436
6437 /* Blow away unused ports. This happens when LLD can't
6438 * determine the exact number of ports to allocate at
6439 * allocation time.
6440 */
6441 for (i = host->n_ports; host->ports[i]; i++)
6442 kfree(host->ports[i]);
6443
6444 /* give ports names and add SCSI hosts */
6445 for (i = 0; i < host->n_ports; i++)
6446 host->ports[i]->print_id = ata_print_id++;
6447
6448 rc = ata_scsi_add_hosts(host, sht);
6449 if (rc)
6450 return rc;
6451
fafbae87
TH
6452 /* associate with ACPI nodes */
6453 ata_acpi_associate(host);
6454
f3187195
TH
6455 /* set cable, sata_spd_limit and report */
6456 for (i = 0; i < host->n_ports; i++) {
6457 struct ata_port *ap = host->ports[i];
6458 int irq_line;
f3187195
TH
6459 unsigned long xfer_mask;
6460
6461 /* set SATA cable type if still unset */
6462 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6463 ap->cbl = ATA_CBL_SATA;
6464
6465 /* init sata_spd_limit to the current value */
4fb37a25 6466 sata_link_init_spd(&ap->link);
f3187195
TH
6467
6468 /* report the secondary IRQ for second channel legacy */
6469 irq_line = host->irq;
6470 if (i == 1 && host->irq2)
6471 irq_line = host->irq2;
6472
6473 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6474 ap->udma_mask);
6475
6476 /* print per-port info to dmesg */
6477 if (!ata_port_is_dummy(ap))
6478 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6479 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6480 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6481 ata_mode_string(xfer_mask),
6482 ap->ioaddr.cmd_addr,
6483 ap->ioaddr.ctl_addr,
6484 ap->ioaddr.bmdma_addr,
6485 irq_line);
6486 else
6487 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6488 }
6489
6490 /* perform each probe synchronously */
6491 DPRINTK("probe begin\n");
6492 for (i = 0; i < host->n_ports; i++) {
6493 struct ata_port *ap = host->ports[i];
6494 int rc;
6495
6496 /* probe */
6497 if (ap->ops->error_handler) {
9af5c9c9 6498 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6499 unsigned long flags;
6500
6501 ata_port_probe(ap);
6502
6503 /* kick EH for boot probing */
6504 spin_lock_irqsave(ap->lock, flags);
6505
f58229f8
TH
6506 ehi->probe_mask =
6507 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6508 ehi->action |= ATA_EH_SOFTRESET;
6509 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6510
f4d6d004 6511 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6512 ap->pflags |= ATA_PFLAG_LOADING;
6513 ata_port_schedule_eh(ap);
6514
6515 spin_unlock_irqrestore(ap->lock, flags);
6516
6517 /* wait for EH to finish */
6518 ata_port_wait_eh(ap);
6519 } else {
6520 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6521 rc = ata_bus_probe(ap);
6522 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6523
6524 if (rc) {
6525 /* FIXME: do something useful here?
6526 * Current libata behavior will
6527 * tear down everything when
6528 * the module is removed
6529 * or the h/w is unplugged.
6530 */
6531 }
6532 }
6533 }
6534
6535 /* probes are done, now scan each port's disk(s) */
6536 DPRINTK("host probe begin\n");
6537 for (i = 0; i < host->n_ports; i++) {
6538 struct ata_port *ap = host->ports[i];
6539
1ae46317 6540 ata_scsi_scan_host(ap, 1);
f3187195
TH
6541 }
6542
6543 return 0;
6544}
6545
f5cda257
TH
6546/**
6547 * ata_host_activate - start host, request IRQ and register it
6548 * @host: target ATA host
6549 * @irq: IRQ to request
6550 * @irq_handler: irq_handler used when requesting IRQ
6551 * @irq_flags: irq_flags used when requesting IRQ
6552 * @sht: scsi_host_template to use when registering the host
6553 *
6554 * After allocating an ATA host and initializing it, most libata
6555 * LLDs perform three steps to activate the host - start host,
6556 * request IRQ and register it. This helper takes necessasry
6557 * arguments and performs the three steps in one go.
6558 *
6559 * LOCKING:
6560 * Inherited from calling layer (may sleep).
6561 *
6562 * RETURNS:
6563 * 0 on success, -errno otherwise.
6564 */
6565int ata_host_activate(struct ata_host *host, int irq,
6566 irq_handler_t irq_handler, unsigned long irq_flags,
6567 struct scsi_host_template *sht)
6568{
6569 int rc;
6570
6571 rc = ata_host_start(host);
6572 if (rc)
6573 return rc;
6574
6575 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6576 dev_driver_string(host->dev), host);
6577 if (rc)
6578 return rc;
6579
4031826b
TH
6580 /* Used to print device info at probe */
6581 host->irq = irq;
6582
f5cda257
TH
6583 rc = ata_host_register(host, sht);
6584 /* if failed, just free the IRQ and leave ports alone */
6585 if (rc)
6586 devm_free_irq(host->dev, irq, host);
6587
6588 return rc;
6589}
6590
720ba126
TH
6591/**
6592 * ata_port_detach - Detach ATA port in prepration of device removal
6593 * @ap: ATA port to be detached
6594 *
6595 * Detach all ATA devices and the associated SCSI devices of @ap;
6596 * then, remove the associated SCSI host. @ap is guaranteed to
6597 * be quiescent on return from this function.
6598 *
6599 * LOCKING:
6600 * Kernel thread context (may sleep).
6601 */
6602void ata_port_detach(struct ata_port *ap)
6603{
6604 unsigned long flags;
f58229f8 6605 struct ata_device *dev;
720ba126
TH
6606
6607 if (!ap->ops->error_handler)
c3cf30a9 6608 goto skip_eh;
720ba126
TH
6609
6610 /* tell EH we're leaving & flush EH */
ba6a1308 6611 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6612 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6613 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6614
6615 ata_port_wait_eh(ap);
6616
6617 /* EH is now guaranteed to see UNLOADING, so no new device
6618 * will be attached. Disable all existing devices.
6619 */
ba6a1308 6620 spin_lock_irqsave(ap->lock, flags);
720ba126 6621
f58229f8
TH
6622 ata_link_for_each_dev(dev, &ap->link)
6623 ata_dev_disable(dev);
720ba126 6624
ba6a1308 6625 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6626
6627 /* Final freeze & EH. All in-flight commands are aborted. EH
6628 * will be skipped and retrials will be terminated with bad
6629 * target.
6630 */
ba6a1308 6631 spin_lock_irqsave(ap->lock, flags);
720ba126 6632 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6633 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6634
6635 ata_port_wait_eh(ap);
45a66c1c 6636 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6637
c3cf30a9 6638 skip_eh:
720ba126 6639 /* remove the associated SCSI host */
cca3974e 6640 scsi_remove_host(ap->scsi_host);
720ba126
TH
6641}
6642
0529c159
TH
6643/**
6644 * ata_host_detach - Detach all ports of an ATA host
6645 * @host: Host to detach
6646 *
6647 * Detach all ports of @host.
6648 *
6649 * LOCKING:
6650 * Kernel thread context (may sleep).
6651 */
6652void ata_host_detach(struct ata_host *host)
6653{
6654 int i;
6655
6656 for (i = 0; i < host->n_ports; i++)
6657 ata_port_detach(host->ports[i]);
6658}
6659
1da177e4
LT
6660/**
6661 * ata_std_ports - initialize ioaddr with standard port offsets.
6662 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6663 *
6664 * Utility function which initializes data_addr, error_addr,
6665 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6666 * device_addr, status_addr, and command_addr to standard offsets
6667 * relative to cmd_addr.
6668 *
6669 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6670 */
0baab86b 6671
1da177e4
LT
6672void ata_std_ports(struct ata_ioports *ioaddr)
6673{
6674 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6675 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6676 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6677 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6678 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6679 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6680 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6681 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6682 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6683 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6684}
6685
0baab86b 6686
374b1873
JG
6687#ifdef CONFIG_PCI
6688
1da177e4
LT
6689/**
6690 * ata_pci_remove_one - PCI layer callback for device removal
6691 * @pdev: PCI device that was removed
6692 *
b878ca5d
TH
6693 * PCI layer indicates to libata via this hook that hot-unplug or
6694 * module unload event has occurred. Detach all ports. Resource
6695 * release is handled via devres.
1da177e4
LT
6696 *
6697 * LOCKING:
6698 * Inherited from PCI layer (may sleep).
6699 */
f0d36efd 6700void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6701{
6702 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6703 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6704
b878ca5d 6705 ata_host_detach(host);
1da177e4
LT
6706}
6707
6708/* move to PCI subsystem */
057ace5e 6709int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6710{
6711 unsigned long tmp = 0;
6712
6713 switch (bits->width) {
6714 case 1: {
6715 u8 tmp8 = 0;
6716 pci_read_config_byte(pdev, bits->reg, &tmp8);
6717 tmp = tmp8;
6718 break;
6719 }
6720 case 2: {
6721 u16 tmp16 = 0;
6722 pci_read_config_word(pdev, bits->reg, &tmp16);
6723 tmp = tmp16;
6724 break;
6725 }
6726 case 4: {
6727 u32 tmp32 = 0;
6728 pci_read_config_dword(pdev, bits->reg, &tmp32);
6729 tmp = tmp32;
6730 break;
6731 }
6732
6733 default:
6734 return -EINVAL;
6735 }
6736
6737 tmp &= bits->mask;
6738
6739 return (tmp == bits->val) ? 1 : 0;
6740}
9b847548 6741
6ffa01d8 6742#ifdef CONFIG_PM
3c5100c1 6743void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6744{
6745 pci_save_state(pdev);
4c90d971 6746 pci_disable_device(pdev);
500530f6 6747
4c90d971 6748 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6749 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6750}
6751
553c4aa6 6752int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6753{
553c4aa6
TH
6754 int rc;
6755
9b847548
JA
6756 pci_set_power_state(pdev, PCI_D0);
6757 pci_restore_state(pdev);
553c4aa6 6758
b878ca5d 6759 rc = pcim_enable_device(pdev);
553c4aa6
TH
6760 if (rc) {
6761 dev_printk(KERN_ERR, &pdev->dev,
6762 "failed to enable device after resume (%d)\n", rc);
6763 return rc;
6764 }
6765
9b847548 6766 pci_set_master(pdev);
553c4aa6 6767 return 0;
500530f6
TH
6768}
6769
3c5100c1 6770int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6771{
cca3974e 6772 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6773 int rc = 0;
6774
cca3974e 6775 rc = ata_host_suspend(host, mesg);
500530f6
TH
6776 if (rc)
6777 return rc;
6778
3c5100c1 6779 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6780
6781 return 0;
6782}
6783
6784int ata_pci_device_resume(struct pci_dev *pdev)
6785{
cca3974e 6786 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6787 int rc;
500530f6 6788
553c4aa6
TH
6789 rc = ata_pci_device_do_resume(pdev);
6790 if (rc == 0)
6791 ata_host_resume(host);
6792 return rc;
9b847548 6793}
6ffa01d8
TH
6794#endif /* CONFIG_PM */
6795
1da177e4
LT
6796#endif /* CONFIG_PCI */
6797
6798
1da177e4
LT
6799static int __init ata_init(void)
6800{
a8601e5f 6801 ata_probe_timeout *= HZ;
1da177e4
LT
6802 ata_wq = create_workqueue("ata");
6803 if (!ata_wq)
6804 return -ENOMEM;
6805
453b07ac
TH
6806 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6807 if (!ata_aux_wq) {
6808 destroy_workqueue(ata_wq);
6809 return -ENOMEM;
6810 }
6811
1da177e4
LT
6812 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6813 return 0;
6814}
6815
6816static void __exit ata_exit(void)
6817{
6818 destroy_workqueue(ata_wq);
453b07ac 6819 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6820}
6821
a4625085 6822subsys_initcall(ata_init);
1da177e4
LT
6823module_exit(ata_exit);
6824
67846b30 6825static unsigned long ratelimit_time;
34af946a 6826static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6827
6828int ata_ratelimit(void)
6829{
6830 int rc;
6831 unsigned long flags;
6832
6833 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6834
6835 if (time_after(jiffies, ratelimit_time)) {
6836 rc = 1;
6837 ratelimit_time = jiffies + (HZ/5);
6838 } else
6839 rc = 0;
6840
6841 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6842
6843 return rc;
6844}
6845
c22daff4
TH
6846/**
6847 * ata_wait_register - wait until register value changes
6848 * @reg: IO-mapped register
6849 * @mask: Mask to apply to read register value
6850 * @val: Wait condition
6851 * @interval_msec: polling interval in milliseconds
6852 * @timeout_msec: timeout in milliseconds
6853 *
6854 * Waiting for some bits of register to change is a common
6855 * operation for ATA controllers. This function reads 32bit LE
6856 * IO-mapped register @reg and tests for the following condition.
6857 *
6858 * (*@reg & mask) != val
6859 *
6860 * If the condition is met, it returns; otherwise, the process is
6861 * repeated after @interval_msec until timeout.
6862 *
6863 * LOCKING:
6864 * Kernel thread context (may sleep)
6865 *
6866 * RETURNS:
6867 * The final register value.
6868 */
6869u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6870 unsigned long interval_msec,
6871 unsigned long timeout_msec)
6872{
6873 unsigned long timeout;
6874 u32 tmp;
6875
6876 tmp = ioread32(reg);
6877
6878 /* Calculate timeout _after_ the first read to make sure
6879 * preceding writes reach the controller before starting to
6880 * eat away the timeout.
6881 */
6882 timeout = jiffies + (timeout_msec * HZ) / 1000;
6883
6884 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6885 msleep(interval_msec);
6886 tmp = ioread32(reg);
6887 }
6888
6889 return tmp;
6890}
6891
dd5b06c4
TH
6892/*
6893 * Dummy port_ops
6894 */
6895static void ata_dummy_noret(struct ata_port *ap) { }
6896static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6897static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6898
6899static u8 ata_dummy_check_status(struct ata_port *ap)
6900{
6901 return ATA_DRDY;
6902}
6903
6904static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6905{
6906 return AC_ERR_SYSTEM;
6907}
6908
6909const struct ata_port_operations ata_dummy_port_ops = {
6910 .port_disable = ata_port_disable,
6911 .check_status = ata_dummy_check_status,
6912 .check_altstatus = ata_dummy_check_status,
6913 .dev_select = ata_noop_dev_select,
6914 .qc_prep = ata_noop_qc_prep,
6915 .qc_issue = ata_dummy_qc_issue,
6916 .freeze = ata_dummy_noret,
6917 .thaw = ata_dummy_noret,
6918 .error_handler = ata_dummy_noret,
6919 .post_internal_cmd = ata_dummy_qc_noret,
6920 .irq_clear = ata_dummy_noret,
6921 .port_start = ata_dummy_ret0,
6922 .port_stop = ata_dummy_noret,
6923};
6924
21b0ad4f
TH
6925const struct ata_port_info ata_dummy_port_info = {
6926 .port_ops = &ata_dummy_port_ops,
6927};
6928
1da177e4
LT
6929/*
6930 * libata is essentially a library of internal helper functions for
6931 * low-level ATA host controller drivers. As such, the API/ABI is
6932 * likely to change as new drivers are added and updated.
6933 * Do not depend on ABI/API stability.
6934 */
6935
e9c83914
TH
6936EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6937EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6938EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6939EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6940EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6941EXPORT_SYMBOL_GPL(ata_std_bios_param);
6942EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6943EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6944EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6945EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6946EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6947EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6948EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6949EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6950EXPORT_SYMBOL_GPL(ata_sg_init);
6951EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6952EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6953EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6954EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6955EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6956EXPORT_SYMBOL_GPL(ata_tf_load);
6957EXPORT_SYMBOL_GPL(ata_tf_read);
6958EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6959EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6960EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6961EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6962EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6963EXPORT_SYMBOL_GPL(ata_check_status);
6964EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6965EXPORT_SYMBOL_GPL(ata_exec_command);
6966EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6967EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6968EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6969EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6970EXPORT_SYMBOL_GPL(ata_data_xfer);
6971EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6972EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6973EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6974EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6975EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6976EXPORT_SYMBOL_GPL(ata_bmdma_start);
6977EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6978EXPORT_SYMBOL_GPL(ata_bmdma_status);
6979EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6980EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6981EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6982EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6983EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6984EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6985EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6986EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6987EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
6988EXPORT_SYMBOL_GPL(sata_link_debounce);
6989EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
6990EXPORT_SYMBOL_GPL(sata_phy_reset);
6991EXPORT_SYMBOL_GPL(__sata_phy_reset);
6992EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6993EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6994EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 6995EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
6996EXPORT_SYMBOL_GPL(sata_std_hardreset);
6997EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6998EXPORT_SYMBOL_GPL(ata_dev_classify);
6999EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7000EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7001EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7002EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7003EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7004EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7005EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7006EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7007EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7008EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7009EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7010EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7011EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7012EXPORT_SYMBOL_GPL(sata_scr_valid);
7013EXPORT_SYMBOL_GPL(sata_scr_read);
7014EXPORT_SYMBOL_GPL(sata_scr_write);
7015EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7016EXPORT_SYMBOL_GPL(ata_link_online);
7017EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7018#ifdef CONFIG_PM
cca3974e
JG
7019EXPORT_SYMBOL_GPL(ata_host_suspend);
7020EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7021#endif /* CONFIG_PM */
6a62a04d
TH
7022EXPORT_SYMBOL_GPL(ata_id_string);
7023EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7024EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7025EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7026
1bc4ccff 7027EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7028EXPORT_SYMBOL_GPL(ata_timing_compute);
7029EXPORT_SYMBOL_GPL(ata_timing_merge);
7030
1da177e4
LT
7031#ifdef CONFIG_PCI
7032EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7033EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7034EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7035EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7036EXPORT_SYMBOL_GPL(ata_pci_init_one);
7037EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7038#ifdef CONFIG_PM
500530f6
TH
7039EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7040EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7041EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7042EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7043#endif /* CONFIG_PM */
67951ade
AC
7044EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7045EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7046#endif /* CONFIG_PCI */
9b847548 7047
b64bbc39
TH
7048EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7049EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7050EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 7051EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7052EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7053EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7054EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
7055EXPORT_SYMBOL_GPL(ata_port_freeze);
7056EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7057EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7058EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7059EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7060EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
7061EXPORT_SYMBOL_GPL(ata_irq_on);
7062EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
7063EXPORT_SYMBOL_GPL(ata_irq_ack);
7064EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 7065EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7066
7067EXPORT_SYMBOL_GPL(ata_cable_40wire);
7068EXPORT_SYMBOL_GPL(ata_cable_80wire);
7069EXPORT_SYMBOL_GPL(ata_cable_unknown);
7070EXPORT_SYMBOL_GPL(ata_cable_sata);