]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: move ata_id_n_sectors() upward
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
9f45cbd3 73static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
3373efd8 74static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 75static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 76
f3187195 77unsigned int ata_print_id = 1;
1da177e4
LT
78static struct workqueue_struct *ata_wq;
79
453b07ac
TH
80struct workqueue_struct *ata_aux_wq;
81
418dc1f5 82int atapi_enabled = 1;
1623c81e
JG
83module_param(atapi_enabled, int, 0444);
84MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
85
95de719a
AL
86int atapi_dmadir = 0;
87module_param(atapi_dmadir, int, 0444);
88MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
89
baf4fdfa
ML
90int atapi_passthru16 = 1;
91module_param(atapi_passthru16, int, 0444);
92MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
93
c3c013a2
JG
94int libata_fua = 0;
95module_param_named(fua, libata_fua, int, 0444);
96MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
97
1e999736
AC
98static int ata_ignore_hpa = 0;
99module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
100MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
101
a8601e5f
AM
102static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
103module_param(ata_probe_timeout, int, 0444);
104MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
105
d7d0dad6
JG
106int libata_noacpi = 1;
107module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
108MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
109
1da177e4
LT
110MODULE_AUTHOR("Jeff Garzik");
111MODULE_DESCRIPTION("Library module for ATA devices");
112MODULE_LICENSE("GPL");
113MODULE_VERSION(DRV_VERSION);
114
0baab86b 115
1da177e4
LT
116/**
117 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
118 * @tf: Taskfile to convert
1da177e4 119 * @pmp: Port multiplier port
9977126c
TH
120 * @is_cmd: This FIS is for command
121 * @fis: Buffer into which data will output
1da177e4
LT
122 *
123 * Converts a standard ATA taskfile to a Serial ATA
124 * FIS structure (Register - Host to Device).
125 *
126 * LOCKING:
127 * Inherited from caller.
128 */
9977126c 129void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 130{
9977126c
TH
131 fis[0] = 0x27; /* Register - Host to Device FIS */
132 fis[1] = pmp & 0xf; /* Port multiplier number*/
133 if (is_cmd)
134 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
135
1da177e4
LT
136 fis[2] = tf->command;
137 fis[3] = tf->feature;
138
139 fis[4] = tf->lbal;
140 fis[5] = tf->lbam;
141 fis[6] = tf->lbah;
142 fis[7] = tf->device;
143
144 fis[8] = tf->hob_lbal;
145 fis[9] = tf->hob_lbam;
146 fis[10] = tf->hob_lbah;
147 fis[11] = tf->hob_feature;
148
149 fis[12] = tf->nsect;
150 fis[13] = tf->hob_nsect;
151 fis[14] = 0;
152 fis[15] = tf->ctl;
153
154 fis[16] = 0;
155 fis[17] = 0;
156 fis[18] = 0;
157 fis[19] = 0;
158}
159
160/**
161 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
162 * @fis: Buffer from which data will be input
163 * @tf: Taskfile to output
164 *
e12a1be6 165 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
166 *
167 * LOCKING:
168 * Inherited from caller.
169 */
170
057ace5e 171void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
172{
173 tf->command = fis[2]; /* status */
174 tf->feature = fis[3]; /* error */
175
176 tf->lbal = fis[4];
177 tf->lbam = fis[5];
178 tf->lbah = fis[6];
179 tf->device = fis[7];
180
181 tf->hob_lbal = fis[8];
182 tf->hob_lbam = fis[9];
183 tf->hob_lbah = fis[10];
184
185 tf->nsect = fis[12];
186 tf->hob_nsect = fis[13];
187}
188
8cbd6df1
AL
189static const u8 ata_rw_cmds[] = {
190 /* pio multi */
191 ATA_CMD_READ_MULTI,
192 ATA_CMD_WRITE_MULTI,
193 ATA_CMD_READ_MULTI_EXT,
194 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
199 /* pio */
200 ATA_CMD_PIO_READ,
201 ATA_CMD_PIO_WRITE,
202 ATA_CMD_PIO_READ_EXT,
203 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
204 0,
205 0,
206 0,
207 0,
8cbd6df1
AL
208 /* dma */
209 ATA_CMD_READ,
210 ATA_CMD_WRITE,
211 ATA_CMD_READ_EXT,
9a3dccc4
TH
212 ATA_CMD_WRITE_EXT,
213 0,
214 0,
215 0,
216 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 217};
1da177e4
LT
218
219/**
8cbd6df1 220 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
221 * @tf: command to examine and configure
222 * @dev: device tf belongs to
1da177e4 223 *
2e9edbf8 224 * Examine the device configuration and tf->flags to calculate
8cbd6df1 225 * the proper read/write commands and protocol to use.
1da177e4
LT
226 *
227 * LOCKING:
228 * caller.
229 */
bd056d7e 230static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 231{
9a3dccc4 232 u8 cmd;
1da177e4 233
9a3dccc4 234 int index, fua, lba48, write;
2e9edbf8 235
9a3dccc4 236 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
237 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
238 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 239
8cbd6df1
AL
240 if (dev->flags & ATA_DFLAG_PIO) {
241 tf->protocol = ATA_PROT_PIO;
9a3dccc4 242 index = dev->multi_count ? 0 : 8;
9af5c9c9 243 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
244 /* Unable to use DMA due to host limitation */
245 tf->protocol = ATA_PROT_PIO;
0565c26d 246 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
247 } else {
248 tf->protocol = ATA_PROT_DMA;
9a3dccc4 249 index = 16;
8cbd6df1 250 }
1da177e4 251
9a3dccc4
TH
252 cmd = ata_rw_cmds[index + fua + lba48 + write];
253 if (cmd) {
254 tf->command = cmd;
255 return 0;
256 }
257 return -1;
1da177e4
LT
258}
259
35b649fe
TH
260/**
261 * ata_tf_read_block - Read block address from ATA taskfile
262 * @tf: ATA taskfile of interest
263 * @dev: ATA device @tf belongs to
264 *
265 * LOCKING:
266 * None.
267 *
268 * Read block address from @tf. This function can handle all
269 * three address formats - LBA, LBA48 and CHS. tf->protocol and
270 * flags select the address format to use.
271 *
272 * RETURNS:
273 * Block address read from @tf.
274 */
275u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
276{
277 u64 block = 0;
278
279 if (tf->flags & ATA_TFLAG_LBA) {
280 if (tf->flags & ATA_TFLAG_LBA48) {
281 block |= (u64)tf->hob_lbah << 40;
282 block |= (u64)tf->hob_lbam << 32;
283 block |= tf->hob_lbal << 24;
284 } else
285 block |= (tf->device & 0xf) << 24;
286
287 block |= tf->lbah << 16;
288 block |= tf->lbam << 8;
289 block |= tf->lbal;
290 } else {
291 u32 cyl, head, sect;
292
293 cyl = tf->lbam | (tf->lbah << 8);
294 head = tf->device & 0xf;
295 sect = tf->lbal;
296
297 block = (cyl * dev->heads + head) * dev->sectors + sect;
298 }
299
300 return block;
301}
302
bd056d7e
TH
303/**
304 * ata_build_rw_tf - Build ATA taskfile for given read/write request
305 * @tf: Target ATA taskfile
306 * @dev: ATA device @tf belongs to
307 * @block: Block address
308 * @n_block: Number of blocks
309 * @tf_flags: RW/FUA etc...
310 * @tag: tag
311 *
312 * LOCKING:
313 * None.
314 *
315 * Build ATA taskfile @tf for read/write request described by
316 * @block, @n_block, @tf_flags and @tag on @dev.
317 *
318 * RETURNS:
319 *
320 * 0 on success, -ERANGE if the request is too large for @dev,
321 * -EINVAL if the request is invalid.
322 */
323int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
324 u64 block, u32 n_block, unsigned int tf_flags,
325 unsigned int tag)
326{
327 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
328 tf->flags |= tf_flags;
329
6d1245bf 330 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
331 /* yay, NCQ */
332 if (!lba_48_ok(block, n_block))
333 return -ERANGE;
334
335 tf->protocol = ATA_PROT_NCQ;
336 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
337
338 if (tf->flags & ATA_TFLAG_WRITE)
339 tf->command = ATA_CMD_FPDMA_WRITE;
340 else
341 tf->command = ATA_CMD_FPDMA_READ;
342
343 tf->nsect = tag << 3;
344 tf->hob_feature = (n_block >> 8) & 0xff;
345 tf->feature = n_block & 0xff;
346
347 tf->hob_lbah = (block >> 40) & 0xff;
348 tf->hob_lbam = (block >> 32) & 0xff;
349 tf->hob_lbal = (block >> 24) & 0xff;
350 tf->lbah = (block >> 16) & 0xff;
351 tf->lbam = (block >> 8) & 0xff;
352 tf->lbal = block & 0xff;
353
354 tf->device = 1 << 6;
355 if (tf->flags & ATA_TFLAG_FUA)
356 tf->device |= 1 << 7;
357 } else if (dev->flags & ATA_DFLAG_LBA) {
358 tf->flags |= ATA_TFLAG_LBA;
359
360 if (lba_28_ok(block, n_block)) {
361 /* use LBA28 */
362 tf->device |= (block >> 24) & 0xf;
363 } else if (lba_48_ok(block, n_block)) {
364 if (!(dev->flags & ATA_DFLAG_LBA48))
365 return -ERANGE;
366
367 /* use LBA48 */
368 tf->flags |= ATA_TFLAG_LBA48;
369
370 tf->hob_nsect = (n_block >> 8) & 0xff;
371
372 tf->hob_lbah = (block >> 40) & 0xff;
373 tf->hob_lbam = (block >> 32) & 0xff;
374 tf->hob_lbal = (block >> 24) & 0xff;
375 } else
376 /* request too large even for LBA48 */
377 return -ERANGE;
378
379 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
380 return -EINVAL;
381
382 tf->nsect = n_block & 0xff;
383
384 tf->lbah = (block >> 16) & 0xff;
385 tf->lbam = (block >> 8) & 0xff;
386 tf->lbal = block & 0xff;
387
388 tf->device |= ATA_LBA;
389 } else {
390 /* CHS */
391 u32 sect, head, cyl, track;
392
393 /* The request -may- be too large for CHS addressing. */
394 if (!lba_28_ok(block, n_block))
395 return -ERANGE;
396
397 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
398 return -EINVAL;
399
400 /* Convert LBA to CHS */
401 track = (u32)block / dev->sectors;
402 cyl = track / dev->heads;
403 head = track % dev->heads;
404 sect = (u32)block % dev->sectors + 1;
405
406 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
407 (u32)block, track, cyl, head, sect);
408
409 /* Check whether the converted CHS can fit.
410 Cylinder: 0-65535
411 Head: 0-15
412 Sector: 1-255*/
413 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
414 return -ERANGE;
415
416 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
417 tf->lbal = sect;
418 tf->lbam = cyl;
419 tf->lbah = cyl >> 8;
420 tf->device |= head;
421 }
422
423 return 0;
424}
425
cb95d562
TH
426/**
427 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
428 * @pio_mask: pio_mask
429 * @mwdma_mask: mwdma_mask
430 * @udma_mask: udma_mask
431 *
432 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
433 * unsigned int xfer_mask.
434 *
435 * LOCKING:
436 * None.
437 *
438 * RETURNS:
439 * Packed xfer_mask.
440 */
441static unsigned int ata_pack_xfermask(unsigned int pio_mask,
442 unsigned int mwdma_mask,
443 unsigned int udma_mask)
444{
445 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
446 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
447 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
448}
449
c0489e4e
TH
450/**
451 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
452 * @xfer_mask: xfer_mask to unpack
453 * @pio_mask: resulting pio_mask
454 * @mwdma_mask: resulting mwdma_mask
455 * @udma_mask: resulting udma_mask
456 *
457 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
458 * Any NULL distination masks will be ignored.
459 */
460static void ata_unpack_xfermask(unsigned int xfer_mask,
461 unsigned int *pio_mask,
462 unsigned int *mwdma_mask,
463 unsigned int *udma_mask)
464{
465 if (pio_mask)
466 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
467 if (mwdma_mask)
468 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
469 if (udma_mask)
470 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
471}
472
cb95d562 473static const struct ata_xfer_ent {
be9a50c8 474 int shift, bits;
cb95d562
TH
475 u8 base;
476} ata_xfer_tbl[] = {
477 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
478 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
479 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
480 { -1, },
481};
482
483/**
484 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
485 * @xfer_mask: xfer_mask of interest
486 *
487 * Return matching XFER_* value for @xfer_mask. Only the highest
488 * bit of @xfer_mask is considered.
489 *
490 * LOCKING:
491 * None.
492 *
493 * RETURNS:
494 * Matching XFER_* value, 0 if no match found.
495 */
496static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
497{
498 int highbit = fls(xfer_mask) - 1;
499 const struct ata_xfer_ent *ent;
500
501 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
502 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
503 return ent->base + highbit - ent->shift;
504 return 0;
505}
506
507/**
508 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
509 * @xfer_mode: XFER_* of interest
510 *
511 * Return matching xfer_mask for @xfer_mode.
512 *
513 * LOCKING:
514 * None.
515 *
516 * RETURNS:
517 * Matching xfer_mask, 0 if no match found.
518 */
519static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
520{
521 const struct ata_xfer_ent *ent;
522
523 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
524 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
525 return 1 << (ent->shift + xfer_mode - ent->base);
526 return 0;
527}
528
529/**
530 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
531 * @xfer_mode: XFER_* of interest
532 *
533 * Return matching xfer_shift for @xfer_mode.
534 *
535 * LOCKING:
536 * None.
537 *
538 * RETURNS:
539 * Matching xfer_shift, -1 if no match found.
540 */
541static int ata_xfer_mode2shift(unsigned int xfer_mode)
542{
543 const struct ata_xfer_ent *ent;
544
545 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
546 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
547 return ent->shift;
548 return -1;
549}
550
1da177e4 551/**
1da7b0d0
TH
552 * ata_mode_string - convert xfer_mask to string
553 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
554 *
555 * Determine string which represents the highest speed
1da7b0d0 556 * (highest bit in @modemask).
1da177e4
LT
557 *
558 * LOCKING:
559 * None.
560 *
561 * RETURNS:
562 * Constant C string representing highest speed listed in
1da7b0d0 563 * @mode_mask, or the constant C string "<n/a>".
1da177e4 564 */
1da7b0d0 565static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 566{
75f554bc
TH
567 static const char * const xfer_mode_str[] = {
568 "PIO0",
569 "PIO1",
570 "PIO2",
571 "PIO3",
572 "PIO4",
b352e57d
AC
573 "PIO5",
574 "PIO6",
75f554bc
TH
575 "MWDMA0",
576 "MWDMA1",
577 "MWDMA2",
b352e57d
AC
578 "MWDMA3",
579 "MWDMA4",
75f554bc
TH
580 "UDMA/16",
581 "UDMA/25",
582 "UDMA/33",
583 "UDMA/44",
584 "UDMA/66",
585 "UDMA/100",
586 "UDMA/133",
587 "UDMA7",
588 };
1da7b0d0 589 int highbit;
1da177e4 590
1da7b0d0
TH
591 highbit = fls(xfer_mask) - 1;
592 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
593 return xfer_mode_str[highbit];
1da177e4 594 return "<n/a>";
1da177e4
LT
595}
596
4c360c81
TH
597static const char *sata_spd_string(unsigned int spd)
598{
599 static const char * const spd_str[] = {
600 "1.5 Gbps",
601 "3.0 Gbps",
602 };
603
604 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
605 return "<unknown>";
606 return spd_str[spd - 1];
607}
608
3373efd8 609void ata_dev_disable(struct ata_device *dev)
0b8efb0a 610{
09d7f9b0 611 if (ata_dev_enabled(dev)) {
9af5c9c9 612 if (ata_msg_drv(dev->link->ap))
09d7f9b0 613 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
614 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
615 ATA_DNXFER_QUIET);
0b8efb0a
TH
616 dev->class++;
617 }
618}
619
1da177e4 620/**
0d5ff566 621 * ata_devchk - PATA device presence detection
1da177e4
LT
622 * @ap: ATA channel to examine
623 * @device: Device to examine (starting at zero)
624 *
625 * This technique was originally described in
626 * Hale Landis's ATADRVR (www.ata-atapi.com), and
627 * later found its way into the ATA/ATAPI spec.
628 *
629 * Write a pattern to the ATA shadow registers,
630 * and if a device is present, it will respond by
631 * correctly storing and echoing back the
632 * ATA shadow register contents.
633 *
634 * LOCKING:
635 * caller.
636 */
637
0d5ff566 638static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
639{
640 struct ata_ioports *ioaddr = &ap->ioaddr;
641 u8 nsect, lbal;
642
643 ap->ops->dev_select(ap, device);
644
0d5ff566
TH
645 iowrite8(0x55, ioaddr->nsect_addr);
646 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 647
0d5ff566
TH
648 iowrite8(0xaa, ioaddr->nsect_addr);
649 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 650
0d5ff566
TH
651 iowrite8(0x55, ioaddr->nsect_addr);
652 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 653
0d5ff566
TH
654 nsect = ioread8(ioaddr->nsect_addr);
655 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
656
657 if ((nsect == 0x55) && (lbal == 0xaa))
658 return 1; /* we found a device */
659
660 return 0; /* nothing found */
661}
662
1da177e4
LT
663/**
664 * ata_dev_classify - determine device type based on ATA-spec signature
665 * @tf: ATA taskfile register set for device to be identified
666 *
667 * Determine from taskfile register contents whether a device is
668 * ATA or ATAPI, as per "Signature and persistence" section
669 * of ATA/PI spec (volume 1, sect 5.14).
670 *
671 * LOCKING:
672 * None.
673 *
674 * RETURNS:
675 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
676 * the event of failure.
677 */
678
057ace5e 679unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
680{
681 /* Apple's open source Darwin code hints that some devices only
682 * put a proper signature into the LBA mid/high registers,
683 * So, we only check those. It's sufficient for uniqueness.
684 */
685
686 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
687 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
688 DPRINTK("found ATA device by sig\n");
689 return ATA_DEV_ATA;
690 }
691
692 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
693 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
694 DPRINTK("found ATAPI device by sig\n");
695 return ATA_DEV_ATAPI;
696 }
697
698 DPRINTK("unknown device\n");
699 return ATA_DEV_UNKNOWN;
700}
701
702/**
703 * ata_dev_try_classify - Parse returned ATA device signature
704 * @ap: ATA channel to examine
705 * @device: Device to examine (starting at zero)
b4dc7623 706 * @r_err: Value of error register on completion
1da177e4
LT
707 *
708 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
709 * an ATA/ATAPI-defined set of values is placed in the ATA
710 * shadow registers, indicating the results of device detection
711 * and diagnostics.
712 *
713 * Select the ATA device, and read the values from the ATA shadow
714 * registers. Then parse according to the Error register value,
715 * and the spec-defined values examined by ata_dev_classify().
716 *
717 * LOCKING:
718 * caller.
b4dc7623
TH
719 *
720 * RETURNS:
721 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
722 */
723
a619f981 724unsigned int
b4dc7623 725ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 726{
1da177e4
LT
727 struct ata_taskfile tf;
728 unsigned int class;
729 u8 err;
730
731 ap->ops->dev_select(ap, device);
732
733 memset(&tf, 0, sizeof(tf));
734
1da177e4 735 ap->ops->tf_read(ap, &tf);
0169e284 736 err = tf.feature;
b4dc7623
TH
737 if (r_err)
738 *r_err = err;
1da177e4 739
93590859
AC
740 /* see if device passed diags: if master then continue and warn later */
741 if (err == 0 && device == 0)
742 /* diagnostic fail : do nothing _YET_ */
9af5c9c9 743 ap->link.device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 744 else if (err == 1)
1da177e4
LT
745 /* do nothing */ ;
746 else if ((device == 0) && (err == 0x81))
747 /* do nothing */ ;
748 else
b4dc7623 749 return ATA_DEV_NONE;
1da177e4 750
b4dc7623 751 /* determine if device is ATA or ATAPI */
1da177e4 752 class = ata_dev_classify(&tf);
b4dc7623 753
1da177e4 754 if (class == ATA_DEV_UNKNOWN)
b4dc7623 755 return ATA_DEV_NONE;
1da177e4 756 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
757 return ATA_DEV_NONE;
758 return class;
1da177e4
LT
759}
760
761/**
6a62a04d 762 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
763 * @id: IDENTIFY DEVICE results we will examine
764 * @s: string into which data is output
765 * @ofs: offset into identify device page
766 * @len: length of string to return. must be an even number.
767 *
768 * The strings in the IDENTIFY DEVICE page are broken up into
769 * 16-bit chunks. Run through the string, and output each
770 * 8-bit chunk linearly, regardless of platform.
771 *
772 * LOCKING:
773 * caller.
774 */
775
6a62a04d
TH
776void ata_id_string(const u16 *id, unsigned char *s,
777 unsigned int ofs, unsigned int len)
1da177e4
LT
778{
779 unsigned int c;
780
781 while (len > 0) {
782 c = id[ofs] >> 8;
783 *s = c;
784 s++;
785
786 c = id[ofs] & 0xff;
787 *s = c;
788 s++;
789
790 ofs++;
791 len -= 2;
792 }
793}
794
0e949ff3 795/**
6a62a04d 796 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
797 * @id: IDENTIFY DEVICE results we will examine
798 * @s: string into which data is output
799 * @ofs: offset into identify device page
800 * @len: length of string to return. must be an odd number.
801 *
6a62a04d 802 * This function is identical to ata_id_string except that it
0e949ff3
TH
803 * trims trailing spaces and terminates the resulting string with
804 * null. @len must be actual maximum length (even number) + 1.
805 *
806 * LOCKING:
807 * caller.
808 */
6a62a04d
TH
809void ata_id_c_string(const u16 *id, unsigned char *s,
810 unsigned int ofs, unsigned int len)
0e949ff3
TH
811{
812 unsigned char *p;
813
814 WARN_ON(!(len & 1));
815
6a62a04d 816 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
817
818 p = s + strnlen(s, len - 1);
819 while (p > s && p[-1] == ' ')
820 p--;
821 *p = '\0';
822}
0baab86b 823
db6f8759
TH
824static u64 ata_id_n_sectors(const u16 *id)
825{
826 if (ata_id_has_lba(id)) {
827 if (ata_id_has_lba48(id))
828 return ata_id_u64(id, 100);
829 else
830 return ata_id_u32(id, 60);
831 } else {
832 if (ata_id_current_chs_valid(id))
833 return ata_id_u32(id, 57);
834 else
835 return id[1] * id[3] * id[6];
836 }
837}
838
1e999736
AC
839static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
840{
841 u64 sectors = 0;
842
843 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
844 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
845 sectors |= (tf->hob_lbal & 0xff) << 24;
846 sectors |= (tf->lbah & 0xff) << 16;
847 sectors |= (tf->lbam & 0xff) << 8;
848 sectors |= (tf->lbal & 0xff);
849
850 return ++sectors;
851}
852
853static u64 ata_tf_to_lba(struct ata_taskfile *tf)
854{
855 u64 sectors = 0;
856
857 sectors |= (tf->device & 0x0f) << 24;
858 sectors |= (tf->lbah & 0xff) << 16;
859 sectors |= (tf->lbam & 0xff) << 8;
860 sectors |= (tf->lbal & 0xff);
861
862 return ++sectors;
863}
864
865/**
866 * ata_read_native_max_address_ext - LBA48 native max query
867 * @dev: Device to query
868 *
869 * Perform an LBA48 size query upon the device in question. Return the
870 * actual LBA48 size or zero if the command fails.
871 */
872
873static u64 ata_read_native_max_address_ext(struct ata_device *dev)
874{
875 unsigned int err;
876 struct ata_taskfile tf;
877
878 ata_tf_init(dev, &tf);
879
880 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
881 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
882 tf.protocol |= ATA_PROT_NODATA;
883 tf.device |= 0x40;
884
885 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
886 if (err)
887 return 0;
888
889 return ata_tf_to_lba48(&tf);
890}
891
892/**
893 * ata_read_native_max_address - LBA28 native max query
894 * @dev: Device to query
895 *
896 * Performa an LBA28 size query upon the device in question. Return the
897 * actual LBA28 size or zero if the command fails.
898 */
899
900static u64 ata_read_native_max_address(struct ata_device *dev)
901{
902 unsigned int err;
903 struct ata_taskfile tf;
904
905 ata_tf_init(dev, &tf);
906
907 tf.command = ATA_CMD_READ_NATIVE_MAX;
908 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
909 tf.protocol |= ATA_PROT_NODATA;
910 tf.device |= 0x40;
911
912 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
913 if (err)
914 return 0;
915
916 return ata_tf_to_lba(&tf);
917}
918
919/**
920 * ata_set_native_max_address_ext - LBA48 native max set
921 * @dev: Device to query
6b38d1d1 922 * @new_sectors: new max sectors value to set for the device
1e999736
AC
923 *
924 * Perform an LBA48 size set max upon the device in question. Return the
925 * actual LBA48 size or zero if the command fails.
926 */
927
928static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
929{
930 unsigned int err;
931 struct ata_taskfile tf;
932
933 new_sectors--;
934
935 ata_tf_init(dev, &tf);
936
937 tf.command = ATA_CMD_SET_MAX_EXT;
938 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
939 tf.protocol |= ATA_PROT_NODATA;
940 tf.device |= 0x40;
941
942 tf.lbal = (new_sectors >> 0) & 0xff;
943 tf.lbam = (new_sectors >> 8) & 0xff;
944 tf.lbah = (new_sectors >> 16) & 0xff;
945
946 tf.hob_lbal = (new_sectors >> 24) & 0xff;
947 tf.hob_lbam = (new_sectors >> 32) & 0xff;
948 tf.hob_lbah = (new_sectors >> 40) & 0xff;
949
950 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
951 if (err)
952 return 0;
953
954 return ata_tf_to_lba48(&tf);
955}
956
957/**
958 * ata_set_native_max_address - LBA28 native max set
959 * @dev: Device to query
6b38d1d1 960 * @new_sectors: new max sectors value to set for the device
1e999736
AC
961 *
962 * Perform an LBA28 size set max upon the device in question. Return the
963 * actual LBA28 size or zero if the command fails.
964 */
965
966static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
967{
968 unsigned int err;
969 struct ata_taskfile tf;
970
971 new_sectors--;
972
973 ata_tf_init(dev, &tf);
974
975 tf.command = ATA_CMD_SET_MAX;
976 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
977 tf.protocol |= ATA_PROT_NODATA;
978
979 tf.lbal = (new_sectors >> 0) & 0xff;
980 tf.lbam = (new_sectors >> 8) & 0xff;
981 tf.lbah = (new_sectors >> 16) & 0xff;
982 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
983
984 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
985 if (err)
986 return 0;
987
988 return ata_tf_to_lba(&tf);
989}
990
991/**
992 * ata_hpa_resize - Resize a device with an HPA set
993 * @dev: Device to resize
994 *
995 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
996 * it if required to the full size of the media. The caller must check
997 * the drive has the HPA feature set enabled.
998 */
999
1000static u64 ata_hpa_resize(struct ata_device *dev)
1001{
1002 u64 sectors = dev->n_sectors;
1003 u64 hpa_sectors;
a617c09f 1004
1e999736
AC
1005 if (ata_id_has_lba48(dev->id))
1006 hpa_sectors = ata_read_native_max_address_ext(dev);
1007 else
1008 hpa_sectors = ata_read_native_max_address(dev);
1009
1e999736
AC
1010 if (hpa_sectors > sectors) {
1011 ata_dev_printk(dev, KERN_INFO,
1012 "Host Protected Area detected:\n"
1013 "\tcurrent size: %lld sectors\n"
1014 "\tnative size: %lld sectors\n",
bd1d5ec6 1015 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
1016
1017 if (ata_ignore_hpa) {
1018 if (ata_id_has_lba48(dev->id))
1019 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1020 else
bd1d5ec6
AM
1021 hpa_sectors = ata_set_native_max_address(dev,
1022 hpa_sectors);
1e999736
AC
1023
1024 if (hpa_sectors) {
bd1d5ec6
AM
1025 ata_dev_printk(dev, KERN_INFO, "native size "
1026 "increased to %lld sectors\n",
1027 (long long)hpa_sectors);
1e999736
AC
1028 return hpa_sectors;
1029 }
1030 }
37301a55
TH
1031 } else if (hpa_sectors < sectors)
1032 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1033 "is smaller than sectors (%lld)\n", __FUNCTION__,
1034 (long long)hpa_sectors, (long long)sectors);
1035
1e999736
AC
1036 return sectors;
1037}
1038
10305f0f
AC
1039/**
1040 * ata_id_to_dma_mode - Identify DMA mode from id block
1041 * @dev: device to identify
cc261267 1042 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1043 *
1044 * Set up the timing values for the device based upon the identify
1045 * reported values for the DMA mode. This function is used by drivers
1046 * which rely upon firmware configured modes, but wish to report the
1047 * mode correctly when possible.
1048 *
1049 * In addition we emit similarly formatted messages to the default
1050 * ata_dev_set_mode handler, in order to provide consistency of
1051 * presentation.
1052 */
1053
1054void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1055{
1056 unsigned int mask;
1057 u8 mode;
1058
1059 /* Pack the DMA modes */
1060 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1061 if (dev->id[53] & 0x04)
1062 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1063
1064 /* Select the mode in use */
1065 mode = ata_xfer_mask2mode(mask);
1066
1067 if (mode != 0) {
1068 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1069 ata_mode_string(mask));
1070 } else {
1071 /* SWDMA perhaps ? */
1072 mode = unknown;
1073 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1074 }
1075
1076 /* Configure the device reporting */
1077 dev->xfer_mode = mode;
1078 dev->xfer_shift = ata_xfer_mode2shift(mode);
1079}
1080
0baab86b
EF
1081/**
1082 * ata_noop_dev_select - Select device 0/1 on ATA bus
1083 * @ap: ATA channel to manipulate
1084 * @device: ATA device (numbered from zero) to select
1085 *
1086 * This function performs no actual function.
1087 *
1088 * May be used as the dev_select() entry in ata_port_operations.
1089 *
1090 * LOCKING:
1091 * caller.
1092 */
1da177e4
LT
1093void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1094{
1095}
1096
0baab86b 1097
1da177e4
LT
1098/**
1099 * ata_std_dev_select - Select device 0/1 on ATA bus
1100 * @ap: ATA channel to manipulate
1101 * @device: ATA device (numbered from zero) to select
1102 *
1103 * Use the method defined in the ATA specification to
1104 * make either device 0, or device 1, active on the
0baab86b
EF
1105 * ATA channel. Works with both PIO and MMIO.
1106 *
1107 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1108 *
1109 * LOCKING:
1110 * caller.
1111 */
1112
1113void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1114{
1115 u8 tmp;
1116
1117 if (device == 0)
1118 tmp = ATA_DEVICE_OBS;
1119 else
1120 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1121
0d5ff566 1122 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1123 ata_pause(ap); /* needed; also flushes, for mmio */
1124}
1125
1126/**
1127 * ata_dev_select - Select device 0/1 on ATA bus
1128 * @ap: ATA channel to manipulate
1129 * @device: ATA device (numbered from zero) to select
1130 * @wait: non-zero to wait for Status register BSY bit to clear
1131 * @can_sleep: non-zero if context allows sleeping
1132 *
1133 * Use the method defined in the ATA specification to
1134 * make either device 0, or device 1, active on the
1135 * ATA channel.
1136 *
1137 * This is a high-level version of ata_std_dev_select(),
1138 * which additionally provides the services of inserting
1139 * the proper pauses and status polling, where needed.
1140 *
1141 * LOCKING:
1142 * caller.
1143 */
1144
1145void ata_dev_select(struct ata_port *ap, unsigned int device,
1146 unsigned int wait, unsigned int can_sleep)
1147{
88574551 1148 if (ata_msg_probe(ap))
44877b4e
TH
1149 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1150 "device %u, wait %u\n", device, wait);
1da177e4
LT
1151
1152 if (wait)
1153 ata_wait_idle(ap);
1154
1155 ap->ops->dev_select(ap, device);
1156
1157 if (wait) {
9af5c9c9 1158 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1159 msleep(150);
1160 ata_wait_idle(ap);
1161 }
1162}
1163
1164/**
1165 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1166 * @id: IDENTIFY DEVICE page to dump
1da177e4 1167 *
0bd3300a
TH
1168 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1169 * page.
1da177e4
LT
1170 *
1171 * LOCKING:
1172 * caller.
1173 */
1174
0bd3300a 1175static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1176{
1177 DPRINTK("49==0x%04x "
1178 "53==0x%04x "
1179 "63==0x%04x "
1180 "64==0x%04x "
1181 "75==0x%04x \n",
0bd3300a
TH
1182 id[49],
1183 id[53],
1184 id[63],
1185 id[64],
1186 id[75]);
1da177e4
LT
1187 DPRINTK("80==0x%04x "
1188 "81==0x%04x "
1189 "82==0x%04x "
1190 "83==0x%04x "
1191 "84==0x%04x \n",
0bd3300a
TH
1192 id[80],
1193 id[81],
1194 id[82],
1195 id[83],
1196 id[84]);
1da177e4
LT
1197 DPRINTK("88==0x%04x "
1198 "93==0x%04x\n",
0bd3300a
TH
1199 id[88],
1200 id[93]);
1da177e4
LT
1201}
1202
cb95d562
TH
1203/**
1204 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1205 * @id: IDENTIFY data to compute xfer mask from
1206 *
1207 * Compute the xfermask for this device. This is not as trivial
1208 * as it seems if we must consider early devices correctly.
1209 *
1210 * FIXME: pre IDE drive timing (do we care ?).
1211 *
1212 * LOCKING:
1213 * None.
1214 *
1215 * RETURNS:
1216 * Computed xfermask
1217 */
1218static unsigned int ata_id_xfermask(const u16 *id)
1219{
1220 unsigned int pio_mask, mwdma_mask, udma_mask;
1221
1222 /* Usual case. Word 53 indicates word 64 is valid */
1223 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1224 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1225 pio_mask <<= 3;
1226 pio_mask |= 0x7;
1227 } else {
1228 /* If word 64 isn't valid then Word 51 high byte holds
1229 * the PIO timing number for the maximum. Turn it into
1230 * a mask.
1231 */
7a0f1c8a 1232 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1233 if (mode < 5) /* Valid PIO range */
1234 pio_mask = (2 << mode) - 1;
1235 else
1236 pio_mask = 1;
cb95d562
TH
1237
1238 /* But wait.. there's more. Design your standards by
1239 * committee and you too can get a free iordy field to
1240 * process. However its the speeds not the modes that
1241 * are supported... Note drivers using the timing API
1242 * will get this right anyway
1243 */
1244 }
1245
1246 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1247
b352e57d
AC
1248 if (ata_id_is_cfa(id)) {
1249 /*
1250 * Process compact flash extended modes
1251 */
1252 int pio = id[163] & 0x7;
1253 int dma = (id[163] >> 3) & 7;
1254
1255 if (pio)
1256 pio_mask |= (1 << 5);
1257 if (pio > 1)
1258 pio_mask |= (1 << 6);
1259 if (dma)
1260 mwdma_mask |= (1 << 3);
1261 if (dma > 1)
1262 mwdma_mask |= (1 << 4);
1263 }
1264
fb21f0d0
TH
1265 udma_mask = 0;
1266 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1267 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1268
1269 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1270}
1271
86e45b6b
TH
1272/**
1273 * ata_port_queue_task - Queue port_task
1274 * @ap: The ata_port to queue port_task for
e2a7f77a 1275 * @fn: workqueue function to be scheduled
65f27f38 1276 * @data: data for @fn to use
e2a7f77a 1277 * @delay: delay time for workqueue function
86e45b6b
TH
1278 *
1279 * Schedule @fn(@data) for execution after @delay jiffies using
1280 * port_task. There is one port_task per port and it's the
1281 * user(low level driver)'s responsibility to make sure that only
1282 * one task is active at any given time.
1283 *
1284 * libata core layer takes care of synchronization between
1285 * port_task and EH. ata_port_queue_task() may be ignored for EH
1286 * synchronization.
1287 *
1288 * LOCKING:
1289 * Inherited from caller.
1290 */
65f27f38 1291void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1292 unsigned long delay)
1293{
65f27f38
DH
1294 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1295 ap->port_task_data = data;
86e45b6b 1296
45a66c1c
ON
1297 /* may fail if ata_port_flush_task() in progress */
1298 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1299}
1300
1301/**
1302 * ata_port_flush_task - Flush port_task
1303 * @ap: The ata_port to flush port_task for
1304 *
1305 * After this function completes, port_task is guranteed not to
1306 * be running or scheduled.
1307 *
1308 * LOCKING:
1309 * Kernel thread context (may sleep)
1310 */
1311void ata_port_flush_task(struct ata_port *ap)
1312{
86e45b6b
TH
1313 DPRINTK("ENTER\n");
1314
45a66c1c 1315 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1316
0dd4b21f
BP
1317 if (ata_msg_ctl(ap))
1318 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1319}
1320
7102d230 1321static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1322{
77853bf2 1323 struct completion *waiting = qc->private_data;
a2a7a662 1324
a2a7a662 1325 complete(waiting);
a2a7a662
TH
1326}
1327
1328/**
2432697b 1329 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1330 * @dev: Device to which the command is sent
1331 * @tf: Taskfile registers for the command and the result
d69cf37d 1332 * @cdb: CDB for packet command
a2a7a662 1333 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1334 * @sg: sg list for the data buffer of the command
1335 * @n_elem: Number of sg entries
a2a7a662
TH
1336 *
1337 * Executes libata internal command with timeout. @tf contains
1338 * command on entry and result on return. Timeout and error
1339 * conditions are reported via return value. No recovery action
1340 * is taken after a command times out. It's caller's duty to
1341 * clean up after timeout.
1342 *
1343 * LOCKING:
1344 * None. Should be called with kernel context, might sleep.
551e8889
TH
1345 *
1346 * RETURNS:
1347 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1348 */
2432697b
TH
1349unsigned ata_exec_internal_sg(struct ata_device *dev,
1350 struct ata_taskfile *tf, const u8 *cdb,
1351 int dma_dir, struct scatterlist *sg,
1352 unsigned int n_elem)
a2a7a662 1353{
9af5c9c9
TH
1354 struct ata_link *link = dev->link;
1355 struct ata_port *ap = link->ap;
a2a7a662
TH
1356 u8 command = tf->command;
1357 struct ata_queued_cmd *qc;
2ab7db1f 1358 unsigned int tag, preempted_tag;
dedaf2b0 1359 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1360 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1361 unsigned long flags;
77853bf2 1362 unsigned int err_mask;
d95a717f 1363 int rc;
a2a7a662 1364
ba6a1308 1365 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1366
e3180499 1367 /* no internal command while frozen */
b51e9e5d 1368 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1369 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1370 return AC_ERR_SYSTEM;
1371 }
1372
2ab7db1f 1373 /* initialize internal qc */
a2a7a662 1374
2ab7db1f
TH
1375 /* XXX: Tag 0 is used for drivers with legacy EH as some
1376 * drivers choke if any other tag is given. This breaks
1377 * ata_tag_internal() test for those drivers. Don't use new
1378 * EH stuff without converting to it.
1379 */
1380 if (ap->ops->error_handler)
1381 tag = ATA_TAG_INTERNAL;
1382 else
1383 tag = 0;
1384
6cec4a39 1385 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1386 BUG();
f69499f4 1387 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1388
1389 qc->tag = tag;
1390 qc->scsicmd = NULL;
1391 qc->ap = ap;
1392 qc->dev = dev;
1393 ata_qc_reinit(qc);
1394
9af5c9c9
TH
1395 preempted_tag = link->active_tag;
1396 preempted_sactive = link->sactive;
dedaf2b0 1397 preempted_qc_active = ap->qc_active;
9af5c9c9
TH
1398 link->active_tag = ATA_TAG_POISON;
1399 link->sactive = 0;
dedaf2b0 1400 ap->qc_active = 0;
2ab7db1f
TH
1401
1402 /* prepare & issue qc */
a2a7a662 1403 qc->tf = *tf;
d69cf37d
TH
1404 if (cdb)
1405 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1406 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1407 qc->dma_dir = dma_dir;
1408 if (dma_dir != DMA_NONE) {
2432697b
TH
1409 unsigned int i, buflen = 0;
1410
1411 for (i = 0; i < n_elem; i++)
1412 buflen += sg[i].length;
1413
1414 ata_sg_init(qc, sg, n_elem);
49c80429 1415 qc->nbytes = buflen;
a2a7a662
TH
1416 }
1417
77853bf2 1418 qc->private_data = &wait;
a2a7a662
TH
1419 qc->complete_fn = ata_qc_complete_internal;
1420
8e0e694a 1421 ata_qc_issue(qc);
a2a7a662 1422
ba6a1308 1423 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1424
a8601e5f 1425 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1426
1427 ata_port_flush_task(ap);
41ade50c 1428
d95a717f 1429 if (!rc) {
ba6a1308 1430 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1431
1432 /* We're racing with irq here. If we lose, the
1433 * following test prevents us from completing the qc
d95a717f
TH
1434 * twice. If we win, the port is frozen and will be
1435 * cleaned up by ->post_internal_cmd().
a2a7a662 1436 */
77853bf2 1437 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1438 qc->err_mask |= AC_ERR_TIMEOUT;
1439
1440 if (ap->ops->error_handler)
1441 ata_port_freeze(ap);
1442 else
1443 ata_qc_complete(qc);
f15a1daf 1444
0dd4b21f
BP
1445 if (ata_msg_warn(ap))
1446 ata_dev_printk(dev, KERN_WARNING,
88574551 1447 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1448 }
1449
ba6a1308 1450 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1451 }
1452
d95a717f
TH
1453 /* do post_internal_cmd */
1454 if (ap->ops->post_internal_cmd)
1455 ap->ops->post_internal_cmd(qc);
1456
a51d644a
TH
1457 /* perform minimal error analysis */
1458 if (qc->flags & ATA_QCFLAG_FAILED) {
1459 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1460 qc->err_mask |= AC_ERR_DEV;
1461
1462 if (!qc->err_mask)
1463 qc->err_mask |= AC_ERR_OTHER;
1464
1465 if (qc->err_mask & ~AC_ERR_OTHER)
1466 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1467 }
1468
15869303 1469 /* finish up */
ba6a1308 1470 spin_lock_irqsave(ap->lock, flags);
15869303 1471
e61e0672 1472 *tf = qc->result_tf;
77853bf2
TH
1473 err_mask = qc->err_mask;
1474
1475 ata_qc_free(qc);
9af5c9c9
TH
1476 link->active_tag = preempted_tag;
1477 link->sactive = preempted_sactive;
dedaf2b0 1478 ap->qc_active = preempted_qc_active;
77853bf2 1479
1f7dd3e9
TH
1480 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1481 * Until those drivers are fixed, we detect the condition
1482 * here, fail the command with AC_ERR_SYSTEM and reenable the
1483 * port.
1484 *
1485 * Note that this doesn't change any behavior as internal
1486 * command failure results in disabling the device in the
1487 * higher layer for LLDDs without new reset/EH callbacks.
1488 *
1489 * Kill the following code as soon as those drivers are fixed.
1490 */
198e0fed 1491 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1492 err_mask |= AC_ERR_SYSTEM;
1493 ata_port_probe(ap);
1494 }
1495
ba6a1308 1496 spin_unlock_irqrestore(ap->lock, flags);
15869303 1497
77853bf2 1498 return err_mask;
a2a7a662
TH
1499}
1500
2432697b 1501/**
33480a0e 1502 * ata_exec_internal - execute libata internal command
2432697b
TH
1503 * @dev: Device to which the command is sent
1504 * @tf: Taskfile registers for the command and the result
1505 * @cdb: CDB for packet command
1506 * @dma_dir: Data tranfer direction of the command
1507 * @buf: Data buffer of the command
1508 * @buflen: Length of data buffer
1509 *
1510 * Wrapper around ata_exec_internal_sg() which takes simple
1511 * buffer instead of sg list.
1512 *
1513 * LOCKING:
1514 * None. Should be called with kernel context, might sleep.
1515 *
1516 * RETURNS:
1517 * Zero on success, AC_ERR_* mask on failure
1518 */
1519unsigned ata_exec_internal(struct ata_device *dev,
1520 struct ata_taskfile *tf, const u8 *cdb,
1521 int dma_dir, void *buf, unsigned int buflen)
1522{
33480a0e
TH
1523 struct scatterlist *psg = NULL, sg;
1524 unsigned int n_elem = 0;
2432697b 1525
33480a0e
TH
1526 if (dma_dir != DMA_NONE) {
1527 WARN_ON(!buf);
1528 sg_init_one(&sg, buf, buflen);
1529 psg = &sg;
1530 n_elem++;
1531 }
2432697b 1532
33480a0e 1533 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1534}
1535
977e6b9f
TH
1536/**
1537 * ata_do_simple_cmd - execute simple internal command
1538 * @dev: Device to which the command is sent
1539 * @cmd: Opcode to execute
1540 *
1541 * Execute a 'simple' command, that only consists of the opcode
1542 * 'cmd' itself, without filling any other registers
1543 *
1544 * LOCKING:
1545 * Kernel thread context (may sleep).
1546 *
1547 * RETURNS:
1548 * Zero on success, AC_ERR_* mask on failure
e58eb583 1549 */
77b08fb5 1550unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1551{
1552 struct ata_taskfile tf;
e58eb583
TH
1553
1554 ata_tf_init(dev, &tf);
1555
1556 tf.command = cmd;
1557 tf.flags |= ATA_TFLAG_DEVICE;
1558 tf.protocol = ATA_PROT_NODATA;
1559
977e6b9f 1560 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1561}
1562
1bc4ccff
AC
1563/**
1564 * ata_pio_need_iordy - check if iordy needed
1565 * @adev: ATA device
1566 *
1567 * Check if the current speed of the device requires IORDY. Used
1568 * by various controllers for chip configuration.
1569 */
a617c09f 1570
1bc4ccff
AC
1571unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1572{
432729f0
AC
1573 /* Controller doesn't support IORDY. Probably a pointless check
1574 as the caller should know this */
9af5c9c9 1575 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1576 return 0;
432729f0
AC
1577 /* PIO3 and higher it is mandatory */
1578 if (adev->pio_mode > XFER_PIO_2)
1579 return 1;
1580 /* We turn it on when possible */
1581 if (ata_id_has_iordy(adev->id))
1bc4ccff 1582 return 1;
432729f0
AC
1583 return 0;
1584}
2e9edbf8 1585
432729f0
AC
1586/**
1587 * ata_pio_mask_no_iordy - Return the non IORDY mask
1588 * @adev: ATA device
1589 *
1590 * Compute the highest mode possible if we are not using iordy. Return
1591 * -1 if no iordy mode is available.
1592 */
a617c09f 1593
432729f0
AC
1594static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1595{
1bc4ccff 1596 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1597 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1598 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1599 /* Is the speed faster than the drive allows non IORDY ? */
1600 if (pio) {
1601 /* This is cycle times not frequency - watch the logic! */
1602 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1603 return 3 << ATA_SHIFT_PIO;
1604 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1605 }
1606 }
432729f0 1607 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1608}
1609
1da177e4 1610/**
49016aca 1611 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1612 * @dev: target device
1613 * @p_class: pointer to class of the target device (may be changed)
bff04647 1614 * @flags: ATA_READID_* flags
fe635c7e 1615 * @id: buffer to read IDENTIFY data into
1da177e4 1616 *
49016aca
TH
1617 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1618 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1619 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1620 * for pre-ATA4 drives.
1da177e4 1621 *
50a99018
AC
1622 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1623 * now we abort if we hit that case.
1624 *
1da177e4 1625 * LOCKING:
49016aca
TH
1626 * Kernel thread context (may sleep)
1627 *
1628 * RETURNS:
1629 * 0 on success, -errno otherwise.
1da177e4 1630 */
a9beec95 1631int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1632 unsigned int flags, u16 *id)
1da177e4 1633{
9af5c9c9 1634 struct ata_port *ap = dev->link->ap;
49016aca 1635 unsigned int class = *p_class;
a0123703 1636 struct ata_taskfile tf;
49016aca
TH
1637 unsigned int err_mask = 0;
1638 const char *reason;
54936f8b 1639 int may_fallback = 1, tried_spinup = 0;
49016aca 1640 int rc;
1da177e4 1641
0dd4b21f 1642 if (ata_msg_ctl(ap))
44877b4e 1643 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1644
49016aca 1645 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1646 retry:
3373efd8 1647 ata_tf_init(dev, &tf);
a0123703 1648
49016aca
TH
1649 switch (class) {
1650 case ATA_DEV_ATA:
a0123703 1651 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1652 break;
1653 case ATA_DEV_ATAPI:
a0123703 1654 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1655 break;
1656 default:
1657 rc = -ENODEV;
1658 reason = "unsupported class";
1659 goto err_out;
1da177e4
LT
1660 }
1661
a0123703 1662 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1663
1664 /* Some devices choke if TF registers contain garbage. Make
1665 * sure those are properly initialized.
1666 */
1667 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1668
1669 /* Device presence detection is unreliable on some
1670 * controllers. Always poll IDENTIFY if available.
1671 */
1672 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1673
3373efd8 1674 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1675 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1676 if (err_mask) {
800b3996 1677 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1678 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1679 ap->print_id, dev->devno);
55a8e2c8
TH
1680 return -ENOENT;
1681 }
1682
54936f8b
TH
1683 /* Device or controller might have reported the wrong
1684 * device class. Give a shot at the other IDENTIFY if
1685 * the current one is aborted by the device.
1686 */
1687 if (may_fallback &&
1688 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1689 may_fallback = 0;
1690
1691 if (class == ATA_DEV_ATA)
1692 class = ATA_DEV_ATAPI;
1693 else
1694 class = ATA_DEV_ATA;
1695 goto retry;
1696 }
1697
49016aca
TH
1698 rc = -EIO;
1699 reason = "I/O error";
1da177e4
LT
1700 goto err_out;
1701 }
1702
54936f8b
TH
1703 /* Falling back doesn't make sense if ID data was read
1704 * successfully at least once.
1705 */
1706 may_fallback = 0;
1707
49016aca 1708 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1709
49016aca 1710 /* sanity check */
a4f5749b 1711 rc = -EINVAL;
6070068b 1712 reason = "device reports invalid type";
a4f5749b
TH
1713
1714 if (class == ATA_DEV_ATA) {
1715 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1716 goto err_out;
1717 } else {
1718 if (ata_id_is_ata(id))
1719 goto err_out;
49016aca
TH
1720 }
1721
169439c2
ML
1722 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1723 tried_spinup = 1;
1724 /*
1725 * Drive powered-up in standby mode, and requires a specific
1726 * SET_FEATURES spin-up subcommand before it will accept
1727 * anything other than the original IDENTIFY command.
1728 */
1729 ata_tf_init(dev, &tf);
1730 tf.command = ATA_CMD_SET_FEATURES;
1731 tf.feature = SETFEATURES_SPINUP;
1732 tf.protocol = ATA_PROT_NODATA;
1733 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1734 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1735 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1736 rc = -EIO;
1737 reason = "SPINUP failed";
1738 goto err_out;
1739 }
1740 /*
1741 * If the drive initially returned incomplete IDENTIFY info,
1742 * we now must reissue the IDENTIFY command.
1743 */
1744 if (id[2] == 0x37c8)
1745 goto retry;
1746 }
1747
bff04647 1748 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1749 /*
1750 * The exact sequence expected by certain pre-ATA4 drives is:
1751 * SRST RESET
50a99018
AC
1752 * IDENTIFY (optional in early ATA)
1753 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1754 * anything else..
1755 * Some drives were very specific about that exact sequence.
50a99018
AC
1756 *
1757 * Note that ATA4 says lba is mandatory so the second check
1758 * shoud never trigger.
49016aca
TH
1759 */
1760 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1761 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1762 if (err_mask) {
1763 rc = -EIO;
1764 reason = "INIT_DEV_PARAMS failed";
1765 goto err_out;
1766 }
1767
1768 /* current CHS translation info (id[53-58]) might be
1769 * changed. reread the identify device info.
1770 */
bff04647 1771 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1772 goto retry;
1773 }
1774 }
1775
1776 *p_class = class;
fe635c7e 1777
49016aca
TH
1778 return 0;
1779
1780 err_out:
88574551 1781 if (ata_msg_warn(ap))
0dd4b21f 1782 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1783 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1784 return rc;
1785}
1786
3373efd8 1787static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1788{
9af5c9c9
TH
1789 struct ata_port *ap = dev->link->ap;
1790 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1791}
1792
a6e6ce8e
TH
1793static void ata_dev_config_ncq(struct ata_device *dev,
1794 char *desc, size_t desc_sz)
1795{
9af5c9c9 1796 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1797 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1798
1799 if (!ata_id_has_ncq(dev->id)) {
1800 desc[0] = '\0';
1801 return;
1802 }
75683fe7 1803 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1804 snprintf(desc, desc_sz, "NCQ (not used)");
1805 return;
1806 }
a6e6ce8e 1807 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1808 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1809 dev->flags |= ATA_DFLAG_NCQ;
1810 }
1811
1812 if (hdepth >= ddepth)
1813 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1814 else
1815 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1816}
1817
49016aca 1818/**
ffeae418 1819 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1820 * @dev: Target device to configure
1821 *
1822 * Configure @dev according to @dev->id. Generic and low-level
1823 * driver specific fixups are also applied.
49016aca
TH
1824 *
1825 * LOCKING:
ffeae418
TH
1826 * Kernel thread context (may sleep)
1827 *
1828 * RETURNS:
1829 * 0 on success, -errno otherwise
49016aca 1830 */
efdaedc4 1831int ata_dev_configure(struct ata_device *dev)
49016aca 1832{
9af5c9c9
TH
1833 struct ata_port *ap = dev->link->ap;
1834 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1835 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1836 const u16 *id = dev->id;
ff8854b2 1837 unsigned int xfer_mask;
b352e57d 1838 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1839 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1840 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1841 int rc;
49016aca 1842
0dd4b21f 1843 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1844 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1845 __FUNCTION__);
ffeae418 1846 return 0;
49016aca
TH
1847 }
1848
0dd4b21f 1849 if (ata_msg_probe(ap))
44877b4e 1850 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1851
75683fe7
TH
1852 /* set horkage */
1853 dev->horkage |= ata_dev_blacklisted(dev);
1854
6746544c
TH
1855 /* let ACPI work its magic */
1856 rc = ata_acpi_on_devcfg(dev);
1857 if (rc)
1858 return rc;
08573a86 1859
c39f5ebe 1860 /* print device capabilities */
0dd4b21f 1861 if (ata_msg_probe(ap))
88574551
TH
1862 ata_dev_printk(dev, KERN_DEBUG,
1863 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1864 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1865 __FUNCTION__,
f15a1daf
TH
1866 id[49], id[82], id[83], id[84],
1867 id[85], id[86], id[87], id[88]);
c39f5ebe 1868
208a9933 1869 /* initialize to-be-configured parameters */
ea1dd4e1 1870 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1871 dev->max_sectors = 0;
1872 dev->cdb_len = 0;
1873 dev->n_sectors = 0;
1874 dev->cylinders = 0;
1875 dev->heads = 0;
1876 dev->sectors = 0;
1877
1da177e4
LT
1878 /*
1879 * common ATA, ATAPI feature tests
1880 */
1881
ff8854b2 1882 /* find max transfer mode; for printk only */
1148c3a7 1883 xfer_mask = ata_id_xfermask(id);
1da177e4 1884
0dd4b21f
BP
1885 if (ata_msg_probe(ap))
1886 ata_dump_id(id);
1da177e4 1887
ef143d57
AL
1888 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1889 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1890 sizeof(fwrevbuf));
1891
1892 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1893 sizeof(modelbuf));
1894
1da177e4
LT
1895 /* ATA-specific feature tests */
1896 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1897 if (ata_id_is_cfa(id)) {
1898 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1899 ata_dev_printk(dev, KERN_WARNING,
1900 "supports DRM functions and may "
1901 "not be fully accessable.\n");
b352e57d
AC
1902 snprintf(revbuf, 7, "CFA");
1903 }
1904 else
1905 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1906
1148c3a7 1907 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1908
3f64f565
EM
1909 if (dev->id[59] & 0x100)
1910 dev->multi_count = dev->id[59] & 0xff;
1911
1148c3a7 1912 if (ata_id_has_lba(id)) {
4c2d721a 1913 const char *lba_desc;
a6e6ce8e 1914 char ncq_desc[20];
8bf62ece 1915
4c2d721a
TH
1916 lba_desc = "LBA";
1917 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1918 if (ata_id_has_lba48(id)) {
8bf62ece 1919 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1920 lba_desc = "LBA48";
6fc49adb
TH
1921
1922 if (dev->n_sectors >= (1UL << 28) &&
1923 ata_id_has_flush_ext(id))
1924 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1925 }
8bf62ece 1926
16c55b03
TH
1927 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1928 ata_id_hpa_enabled(dev->id))
1929 dev->n_sectors = ata_hpa_resize(dev);
1e999736 1930
a6e6ce8e
TH
1931 /* config NCQ */
1932 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1933
8bf62ece 1934 /* print device info to dmesg */
3f64f565
EM
1935 if (ata_msg_drv(ap) && print_info) {
1936 ata_dev_printk(dev, KERN_INFO,
1937 "%s: %s, %s, max %s\n",
1938 revbuf, modelbuf, fwrevbuf,
1939 ata_mode_string(xfer_mask));
1940 ata_dev_printk(dev, KERN_INFO,
1941 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1942 (unsigned long long)dev->n_sectors,
3f64f565
EM
1943 dev->multi_count, lba_desc, ncq_desc);
1944 }
ffeae418 1945 } else {
8bf62ece
AL
1946 /* CHS */
1947
1948 /* Default translation */
1148c3a7
TH
1949 dev->cylinders = id[1];
1950 dev->heads = id[3];
1951 dev->sectors = id[6];
8bf62ece 1952
1148c3a7 1953 if (ata_id_current_chs_valid(id)) {
8bf62ece 1954 /* Current CHS translation is valid. */
1148c3a7
TH
1955 dev->cylinders = id[54];
1956 dev->heads = id[55];
1957 dev->sectors = id[56];
8bf62ece
AL
1958 }
1959
1960 /* print device info to dmesg */
3f64f565 1961 if (ata_msg_drv(ap) && print_info) {
88574551 1962 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1963 "%s: %s, %s, max %s\n",
1964 revbuf, modelbuf, fwrevbuf,
1965 ata_mode_string(xfer_mask));
a84471fe 1966 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1967 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1968 (unsigned long long)dev->n_sectors,
1969 dev->multi_count, dev->cylinders,
1970 dev->heads, dev->sectors);
1971 }
07f6f7d0
AL
1972 }
1973
6e7846e9 1974 dev->cdb_len = 16;
1da177e4
LT
1975 }
1976
1977 /* ATAPI-specific feature tests */
2c13b7ce 1978 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1979 char *cdb_intr_string = "";
1980
1148c3a7 1981 rc = atapi_cdb_len(id);
1da177e4 1982 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1983 if (ata_msg_warn(ap))
88574551
TH
1984 ata_dev_printk(dev, KERN_WARNING,
1985 "unsupported CDB len\n");
ffeae418 1986 rc = -EINVAL;
1da177e4
LT
1987 goto err_out_nosup;
1988 }
6e7846e9 1989 dev->cdb_len = (unsigned int) rc;
1da177e4 1990
9f45cbd3
KCA
1991 /*
1992 * check to see if this ATAPI device supports
1993 * Asynchronous Notification
1994 */
1995 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_AN(id)) {
1996 int err;
1997 /* issue SET feature command to turn this on */
1998 err = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
1999 if (err)
2000 ata_dev_printk(dev, KERN_ERR,
2001 "unable to set AN, err %x\n",
2002 err);
2003 else
2004 dev->flags |= ATA_DFLAG_AN;
2005 }
2006
08a556db 2007 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2008 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2009 cdb_intr_string = ", CDB intr";
2010 }
312f7da2 2011
1da177e4 2012 /* print device info to dmesg */
5afc8142 2013 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
2014 ata_dev_printk(dev, KERN_INFO,
2015 "ATAPI: %s, %s, max %s%s\n",
2016 modelbuf, fwrevbuf,
12436c30
TH
2017 ata_mode_string(xfer_mask),
2018 cdb_intr_string);
1da177e4
LT
2019 }
2020
914ed354
TH
2021 /* determine max_sectors */
2022 dev->max_sectors = ATA_MAX_SECTORS;
2023 if (dev->flags & ATA_DFLAG_LBA48)
2024 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2025
93590859
AC
2026 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2027 /* Let the user know. We don't want to disallow opens for
2028 rescue purposes, or in case the vendor is just a blithering
2029 idiot */
2030 if (print_info) {
2031 ata_dev_printk(dev, KERN_WARNING,
2032"Drive reports diagnostics failure. This may indicate a drive\n");
2033 ata_dev_printk(dev, KERN_WARNING,
2034"fault or invalid emulation. Contact drive vendor for information.\n");
2035 }
2036 }
2037
4b2f3ede 2038 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2039 if (ata_dev_knobble(dev)) {
5afc8142 2040 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2041 ata_dev_printk(dev, KERN_INFO,
2042 "applying bridge limits\n");
5a529139 2043 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2044 dev->max_sectors = ATA_MAX_SECTORS;
2045 }
2046
75683fe7 2047 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2048 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2049 dev->max_sectors);
18d6e9d5 2050
4b2f3ede 2051 if (ap->ops->dev_config)
cd0d3bbc 2052 ap->ops->dev_config(dev);
4b2f3ede 2053
0dd4b21f
BP
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2056 __FUNCTION__, ata_chk_status(ap));
ffeae418 2057 return 0;
1da177e4
LT
2058
2059err_out_nosup:
0dd4b21f 2060 if (ata_msg_probe(ap))
88574551
TH
2061 ata_dev_printk(dev, KERN_DEBUG,
2062 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2063 return rc;
1da177e4
LT
2064}
2065
be0d18df 2066/**
2e41e8e6 2067 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2068 * @ap: port
2069 *
2e41e8e6 2070 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2071 * detection.
2072 */
2073
2074int ata_cable_40wire(struct ata_port *ap)
2075{
2076 return ATA_CBL_PATA40;
2077}
2078
2079/**
2e41e8e6 2080 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2081 * @ap: port
2082 *
2e41e8e6 2083 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2084 * detection.
2085 */
2086
2087int ata_cable_80wire(struct ata_port *ap)
2088{
2089 return ATA_CBL_PATA80;
2090}
2091
2092/**
2093 * ata_cable_unknown - return unknown PATA cable.
2094 * @ap: port
2095 *
2096 * Helper method for drivers which have no PATA cable detection.
2097 */
2098
2099int ata_cable_unknown(struct ata_port *ap)
2100{
2101 return ATA_CBL_PATA_UNK;
2102}
2103
2104/**
2105 * ata_cable_sata - return SATA cable type
2106 * @ap: port
2107 *
2108 * Helper method for drivers which have SATA cables
2109 */
2110
2111int ata_cable_sata(struct ata_port *ap)
2112{
2113 return ATA_CBL_SATA;
2114}
2115
1da177e4
LT
2116/**
2117 * ata_bus_probe - Reset and probe ATA bus
2118 * @ap: Bus to probe
2119 *
0cba632b
JG
2120 * Master ATA bus probing function. Initiates a hardware-dependent
2121 * bus reset, then attempts to identify any devices found on
2122 * the bus.
2123 *
1da177e4 2124 * LOCKING:
0cba632b 2125 * PCI/etc. bus probe sem.
1da177e4
LT
2126 *
2127 * RETURNS:
96072e69 2128 * Zero on success, negative errno otherwise.
1da177e4
LT
2129 */
2130
80289167 2131int ata_bus_probe(struct ata_port *ap)
1da177e4 2132{
28ca5c57 2133 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2134 int tries[ATA_MAX_DEVICES];
f58229f8 2135 int rc;
e82cbdb9 2136 struct ata_device *dev;
1da177e4 2137
28ca5c57 2138 ata_port_probe(ap);
c19ba8af 2139
f58229f8
TH
2140 ata_link_for_each_dev(dev, &ap->link)
2141 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2142
2143 retry:
2044470c 2144 /* reset and determine device classes */
52783c5d 2145 ap->ops->phy_reset(ap);
2061a47a 2146
f58229f8 2147 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2148 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2149 dev->class != ATA_DEV_UNKNOWN)
2150 classes[dev->devno] = dev->class;
2151 else
2152 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2153
52783c5d 2154 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2155 }
1da177e4 2156
52783c5d 2157 ata_port_probe(ap);
2044470c 2158
b6079ca4
AC
2159 /* after the reset the device state is PIO 0 and the controller
2160 state is undefined. Record the mode */
2161
f58229f8
TH
2162 ata_link_for_each_dev(dev, &ap->link)
2163 dev->pio_mode = XFER_PIO_0;
b6079ca4 2164
f31f0cc2
JG
2165 /* read IDENTIFY page and configure devices. We have to do the identify
2166 specific sequence bass-ackwards so that PDIAG- is released by
2167 the slave device */
2168
f58229f8
TH
2169 ata_link_for_each_dev(dev, &ap->link) {
2170 if (tries[dev->devno])
2171 dev->class = classes[dev->devno];
ffeae418 2172
14d2bac1 2173 if (!ata_dev_enabled(dev))
ffeae418 2174 continue;
ffeae418 2175
bff04647
TH
2176 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2177 dev->id);
14d2bac1
TH
2178 if (rc)
2179 goto fail;
f31f0cc2
JG
2180 }
2181
be0d18df
AC
2182 /* Now ask for the cable type as PDIAG- should have been released */
2183 if (ap->ops->cable_detect)
2184 ap->cbl = ap->ops->cable_detect(ap);
2185
614fe29b
AC
2186 /* We may have SATA bridge glue hiding here irrespective of the
2187 reported cable types and sensed types */
2188 ata_link_for_each_dev(dev, &ap->link) {
2189 if (!ata_dev_enabled(dev))
2190 continue;
2191 /* SATA drives indicate we have a bridge. We don't know which
2192 end of the link the bridge is which is a problem */
2193 if (ata_id_is_sata(dev->id))
2194 ap->cbl = ATA_CBL_SATA;
2195 }
2196
f31f0cc2
JG
2197 /* After the identify sequence we can now set up the devices. We do
2198 this in the normal order so that the user doesn't get confused */
2199
f58229f8 2200 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2201 if (!ata_dev_enabled(dev))
2202 continue;
14d2bac1 2203
9af5c9c9 2204 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2205 rc = ata_dev_configure(dev);
9af5c9c9 2206 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2207 if (rc)
2208 goto fail;
1da177e4
LT
2209 }
2210
e82cbdb9 2211 /* configure transfer mode */
0260731f 2212 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2213 if (rc)
51713d35 2214 goto fail;
1da177e4 2215
f58229f8
TH
2216 ata_link_for_each_dev(dev, &ap->link)
2217 if (ata_dev_enabled(dev))
e82cbdb9 2218 return 0;
1da177e4 2219
e82cbdb9
TH
2220 /* no device present, disable port */
2221 ata_port_disable(ap);
96072e69 2222 return -ENODEV;
14d2bac1
TH
2223
2224 fail:
4ae72a1e
TH
2225 tries[dev->devno]--;
2226
14d2bac1
TH
2227 switch (rc) {
2228 case -EINVAL:
4ae72a1e 2229 /* eeek, something went very wrong, give up */
14d2bac1
TH
2230 tries[dev->devno] = 0;
2231 break;
4ae72a1e
TH
2232
2233 case -ENODEV:
2234 /* give it just one more chance */
2235 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2236 case -EIO:
4ae72a1e
TH
2237 if (tries[dev->devno] == 1) {
2238 /* This is the last chance, better to slow
2239 * down than lose it.
2240 */
936fd732 2241 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2242 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2243 }
14d2bac1
TH
2244 }
2245
4ae72a1e 2246 if (!tries[dev->devno])
3373efd8 2247 ata_dev_disable(dev);
ec573755 2248
14d2bac1 2249 goto retry;
1da177e4
LT
2250}
2251
2252/**
0cba632b
JG
2253 * ata_port_probe - Mark port as enabled
2254 * @ap: Port for which we indicate enablement
1da177e4 2255 *
0cba632b
JG
2256 * Modify @ap data structure such that the system
2257 * thinks that the entire port is enabled.
2258 *
cca3974e 2259 * LOCKING: host lock, or some other form of
0cba632b 2260 * serialization.
1da177e4
LT
2261 */
2262
2263void ata_port_probe(struct ata_port *ap)
2264{
198e0fed 2265 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2266}
2267
3be680b7
TH
2268/**
2269 * sata_print_link_status - Print SATA link status
936fd732 2270 * @link: SATA link to printk link status about
3be680b7
TH
2271 *
2272 * This function prints link speed and status of a SATA link.
2273 *
2274 * LOCKING:
2275 * None.
2276 */
936fd732 2277void sata_print_link_status(struct ata_link *link)
3be680b7 2278{
6d5f9732 2279 u32 sstatus, scontrol, tmp;
3be680b7 2280
936fd732 2281 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2282 return;
936fd732 2283 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2284
936fd732 2285 if (ata_link_online(link)) {
3be680b7 2286 tmp = (sstatus >> 4) & 0xf;
936fd732 2287 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2288 "SATA link up %s (SStatus %X SControl %X)\n",
2289 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2290 } else {
936fd732 2291 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2292 "SATA link down (SStatus %X SControl %X)\n",
2293 sstatus, scontrol);
3be680b7
TH
2294 }
2295}
2296
1da177e4 2297/**
780a87f7
JG
2298 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2299 * @ap: SATA port associated with target SATA PHY.
1da177e4 2300 *
780a87f7
JG
2301 * This function issues commands to standard SATA Sxxx
2302 * PHY registers, to wake up the phy (and device), and
2303 * clear any reset condition.
1da177e4
LT
2304 *
2305 * LOCKING:
0cba632b 2306 * PCI/etc. bus probe sem.
1da177e4
LT
2307 *
2308 */
2309void __sata_phy_reset(struct ata_port *ap)
2310{
936fd732 2311 struct ata_link *link = &ap->link;
1da177e4 2312 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2313 u32 sstatus;
1da177e4
LT
2314
2315 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2316 /* issue phy wake/reset */
936fd732 2317 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2318 /* Couldn't find anything in SATA I/II specs, but
2319 * AHCI-1.1 10.4.2 says at least 1 ms. */
2320 mdelay(1);
1da177e4 2321 }
81952c54 2322 /* phy wake/clear reset */
936fd732 2323 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2324
2325 /* wait for phy to become ready, if necessary */
2326 do {
2327 msleep(200);
936fd732 2328 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2329 if ((sstatus & 0xf) != 1)
2330 break;
2331 } while (time_before(jiffies, timeout));
2332
3be680b7 2333 /* print link status */
936fd732 2334 sata_print_link_status(link);
656563e3 2335
3be680b7 2336 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2337 if (!ata_link_offline(link))
1da177e4 2338 ata_port_probe(ap);
3be680b7 2339 else
1da177e4 2340 ata_port_disable(ap);
1da177e4 2341
198e0fed 2342 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2343 return;
2344
2345 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2346 ata_port_disable(ap);
2347 return;
2348 }
2349
2350 ap->cbl = ATA_CBL_SATA;
2351}
2352
2353/**
780a87f7
JG
2354 * sata_phy_reset - Reset SATA bus.
2355 * @ap: SATA port associated with target SATA PHY.
1da177e4 2356 *
780a87f7
JG
2357 * This function resets the SATA bus, and then probes
2358 * the bus for devices.
1da177e4
LT
2359 *
2360 * LOCKING:
0cba632b 2361 * PCI/etc. bus probe sem.
1da177e4
LT
2362 *
2363 */
2364void sata_phy_reset(struct ata_port *ap)
2365{
2366 __sata_phy_reset(ap);
198e0fed 2367 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2368 return;
2369 ata_bus_reset(ap);
2370}
2371
ebdfca6e
AC
2372/**
2373 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2374 * @adev: device
2375 *
2376 * Obtain the other device on the same cable, or if none is
2377 * present NULL is returned
2378 */
2e9edbf8 2379
3373efd8 2380struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2381{
9af5c9c9
TH
2382 struct ata_link *link = adev->link;
2383 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2384 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2385 return NULL;
2386 return pair;
2387}
2388
1da177e4 2389/**
780a87f7
JG
2390 * ata_port_disable - Disable port.
2391 * @ap: Port to be disabled.
1da177e4 2392 *
780a87f7
JG
2393 * Modify @ap data structure such that the system
2394 * thinks that the entire port is disabled, and should
2395 * never attempt to probe or communicate with devices
2396 * on this port.
2397 *
cca3974e 2398 * LOCKING: host lock, or some other form of
780a87f7 2399 * serialization.
1da177e4
LT
2400 */
2401
2402void ata_port_disable(struct ata_port *ap)
2403{
9af5c9c9
TH
2404 ap->link.device[0].class = ATA_DEV_NONE;
2405 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2406 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2407}
2408
1c3fae4d 2409/**
3c567b7d 2410 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2411 * @link: Link to adjust SATA spd limit for
1c3fae4d 2412 *
936fd732 2413 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2414 * function only adjusts the limit. The change must be applied
3c567b7d 2415 * using sata_set_spd().
1c3fae4d
TH
2416 *
2417 * LOCKING:
2418 * Inherited from caller.
2419 *
2420 * RETURNS:
2421 * 0 on success, negative errno on failure
2422 */
936fd732 2423int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2424{
81952c54
TH
2425 u32 sstatus, spd, mask;
2426 int rc, highbit;
1c3fae4d 2427
936fd732 2428 if (!sata_scr_valid(link))
008a7896
TH
2429 return -EOPNOTSUPP;
2430
2431 /* If SCR can be read, use it to determine the current SPD.
936fd732 2432 * If not, use cached value in link->sata_spd.
008a7896 2433 */
936fd732 2434 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2435 if (rc == 0)
2436 spd = (sstatus >> 4) & 0xf;
2437 else
936fd732 2438 spd = link->sata_spd;
1c3fae4d 2439
936fd732 2440 mask = link->sata_spd_limit;
1c3fae4d
TH
2441 if (mask <= 1)
2442 return -EINVAL;
008a7896
TH
2443
2444 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2445 highbit = fls(mask) - 1;
2446 mask &= ~(1 << highbit);
2447
008a7896
TH
2448 /* Mask off all speeds higher than or equal to the current
2449 * one. Force 1.5Gbps if current SPD is not available.
2450 */
2451 if (spd > 1)
2452 mask &= (1 << (spd - 1)) - 1;
2453 else
2454 mask &= 1;
2455
2456 /* were we already at the bottom? */
1c3fae4d
TH
2457 if (!mask)
2458 return -EINVAL;
2459
936fd732 2460 link->sata_spd_limit = mask;
1c3fae4d 2461
936fd732 2462 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2463 sata_spd_string(fls(mask)));
1c3fae4d
TH
2464
2465 return 0;
2466}
2467
936fd732 2468static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2469{
2470 u32 spd, limit;
2471
936fd732 2472 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2473 limit = 0;
2474 else
936fd732 2475 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2476
2477 spd = (*scontrol >> 4) & 0xf;
2478 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2479
2480 return spd != limit;
2481}
2482
2483/**
3c567b7d 2484 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2485 * @link: Link in question
1c3fae4d
TH
2486 *
2487 * Test whether the spd limit in SControl matches
936fd732 2488 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2489 * whether hardreset is necessary to apply SATA spd
2490 * configuration.
2491 *
2492 * LOCKING:
2493 * Inherited from caller.
2494 *
2495 * RETURNS:
2496 * 1 if SATA spd configuration is needed, 0 otherwise.
2497 */
936fd732 2498int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2499{
2500 u32 scontrol;
2501
936fd732 2502 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2503 return 0;
2504
936fd732 2505 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2506}
2507
2508/**
3c567b7d 2509 * sata_set_spd - set SATA spd according to spd limit
936fd732 2510 * @link: Link to set SATA spd for
1c3fae4d 2511 *
936fd732 2512 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2513 *
2514 * LOCKING:
2515 * Inherited from caller.
2516 *
2517 * RETURNS:
2518 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2519 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2520 */
936fd732 2521int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2522{
2523 u32 scontrol;
81952c54 2524 int rc;
1c3fae4d 2525
936fd732 2526 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2527 return rc;
1c3fae4d 2528
936fd732 2529 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2530 return 0;
2531
936fd732 2532 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2533 return rc;
2534
1c3fae4d
TH
2535 return 1;
2536}
2537
452503f9
AC
2538/*
2539 * This mode timing computation functionality is ported over from
2540 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2541 */
2542/*
b352e57d 2543 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2544 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2545 * for UDMA6, which is currently supported only by Maxtor drives.
2546 *
2547 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2548 */
2549
2550static const struct ata_timing ata_timing[] = {
2551
2552 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2553 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2554 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2555 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2556
b352e57d
AC
2557 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2558 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2559 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2560 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2561 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2562
2563/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2564
452503f9
AC
2565 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2566 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2567 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2568
452503f9
AC
2569 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2570 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2571 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2572
b352e57d
AC
2573 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2574 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2575 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2576 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2577
2578 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2579 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2580 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2581
2582/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2583
2584 { 0xFF }
2585};
2586
2587#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2588#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2589
2590static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2591{
2592 q->setup = EZ(t->setup * 1000, T);
2593 q->act8b = EZ(t->act8b * 1000, T);
2594 q->rec8b = EZ(t->rec8b * 1000, T);
2595 q->cyc8b = EZ(t->cyc8b * 1000, T);
2596 q->active = EZ(t->active * 1000, T);
2597 q->recover = EZ(t->recover * 1000, T);
2598 q->cycle = EZ(t->cycle * 1000, T);
2599 q->udma = EZ(t->udma * 1000, UT);
2600}
2601
2602void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2603 struct ata_timing *m, unsigned int what)
2604{
2605 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2606 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2607 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2608 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2609 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2610 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2611 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2612 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2613}
2614
2615static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2616{
2617 const struct ata_timing *t;
2618
2619 for (t = ata_timing; t->mode != speed; t++)
91190758 2620 if (t->mode == 0xFF)
452503f9 2621 return NULL;
2e9edbf8 2622 return t;
452503f9
AC
2623}
2624
2625int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2626 struct ata_timing *t, int T, int UT)
2627{
2628 const struct ata_timing *s;
2629 struct ata_timing p;
2630
2631 /*
2e9edbf8 2632 * Find the mode.
75b1f2f8 2633 */
452503f9
AC
2634
2635 if (!(s = ata_timing_find_mode(speed)))
2636 return -EINVAL;
2637
75b1f2f8
AL
2638 memcpy(t, s, sizeof(*s));
2639
452503f9
AC
2640 /*
2641 * If the drive is an EIDE drive, it can tell us it needs extended
2642 * PIO/MW_DMA cycle timing.
2643 */
2644
2645 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2646 memset(&p, 0, sizeof(p));
2647 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2648 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2649 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2650 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2651 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2652 }
2653 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2654 }
2655
2656 /*
2657 * Convert the timing to bus clock counts.
2658 */
2659
75b1f2f8 2660 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2661
2662 /*
c893a3ae
RD
2663 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2664 * S.M.A.R.T * and some other commands. We have to ensure that the
2665 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2666 */
2667
fd3367af 2668 if (speed > XFER_PIO_6) {
452503f9
AC
2669 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2670 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2671 }
2672
2673 /*
c893a3ae 2674 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2675 */
2676
2677 if (t->act8b + t->rec8b < t->cyc8b) {
2678 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2679 t->rec8b = t->cyc8b - t->act8b;
2680 }
2681
2682 if (t->active + t->recover < t->cycle) {
2683 t->active += (t->cycle - (t->active + t->recover)) / 2;
2684 t->recover = t->cycle - t->active;
2685 }
a617c09f 2686
4f701d1e
AC
2687 /* In a few cases quantisation may produce enough errors to
2688 leave t->cycle too low for the sum of active and recovery
2689 if so we must correct this */
2690 if (t->active + t->recover > t->cycle)
2691 t->cycle = t->active + t->recover;
452503f9
AC
2692
2693 return 0;
2694}
2695
cf176e1a
TH
2696/**
2697 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2698 * @dev: Device to adjust xfer masks
458337db 2699 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2700 *
2701 * Adjust xfer masks of @dev downward. Note that this function
2702 * does not apply the change. Invoking ata_set_mode() afterwards
2703 * will apply the limit.
2704 *
2705 * LOCKING:
2706 * Inherited from caller.
2707 *
2708 * RETURNS:
2709 * 0 on success, negative errno on failure
2710 */
458337db 2711int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2712{
458337db
TH
2713 char buf[32];
2714 unsigned int orig_mask, xfer_mask;
2715 unsigned int pio_mask, mwdma_mask, udma_mask;
2716 int quiet, highbit;
cf176e1a 2717
458337db
TH
2718 quiet = !!(sel & ATA_DNXFER_QUIET);
2719 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2720
458337db
TH
2721 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2722 dev->mwdma_mask,
2723 dev->udma_mask);
2724 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2725
458337db
TH
2726 switch (sel) {
2727 case ATA_DNXFER_PIO:
2728 highbit = fls(pio_mask) - 1;
2729 pio_mask &= ~(1 << highbit);
2730 break;
2731
2732 case ATA_DNXFER_DMA:
2733 if (udma_mask) {
2734 highbit = fls(udma_mask) - 1;
2735 udma_mask &= ~(1 << highbit);
2736 if (!udma_mask)
2737 return -ENOENT;
2738 } else if (mwdma_mask) {
2739 highbit = fls(mwdma_mask) - 1;
2740 mwdma_mask &= ~(1 << highbit);
2741 if (!mwdma_mask)
2742 return -ENOENT;
2743 }
2744 break;
2745
2746 case ATA_DNXFER_40C:
2747 udma_mask &= ATA_UDMA_MASK_40C;
2748 break;
2749
2750 case ATA_DNXFER_FORCE_PIO0:
2751 pio_mask &= 1;
2752 case ATA_DNXFER_FORCE_PIO:
2753 mwdma_mask = 0;
2754 udma_mask = 0;
2755 break;
2756
458337db
TH
2757 default:
2758 BUG();
2759 }
2760
2761 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2762
2763 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2764 return -ENOENT;
2765
2766 if (!quiet) {
2767 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2768 snprintf(buf, sizeof(buf), "%s:%s",
2769 ata_mode_string(xfer_mask),
2770 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2771 else
2772 snprintf(buf, sizeof(buf), "%s",
2773 ata_mode_string(xfer_mask));
2774
2775 ata_dev_printk(dev, KERN_WARNING,
2776 "limiting speed to %s\n", buf);
2777 }
cf176e1a
TH
2778
2779 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2780 &dev->udma_mask);
2781
cf176e1a 2782 return 0;
cf176e1a
TH
2783}
2784
3373efd8 2785static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2786{
9af5c9c9 2787 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2788 unsigned int err_mask;
2789 int rc;
1da177e4 2790
e8384607 2791 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2792 if (dev->xfer_shift == ATA_SHIFT_PIO)
2793 dev->flags |= ATA_DFLAG_PIO;
2794
3373efd8 2795 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2796 /* Old CFA may refuse this command, which is just fine */
2797 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2798 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2799 /* Some very old devices and some bad newer ones fail any kind of
2800 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2801 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2802 dev->pio_mode <= XFER_PIO_2)
2803 err_mask &= ~AC_ERR_DEV;
83206a29 2804 if (err_mask) {
f15a1daf
TH
2805 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2806 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2807 return -EIO;
2808 }
1da177e4 2809
baa1e78a 2810 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2811 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2812 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2813 if (rc)
83206a29 2814 return rc;
48a8a14f 2815
23e71c3d
TH
2816 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2817 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2818
f15a1daf
TH
2819 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2820 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2821 return 0;
1da177e4
LT
2822}
2823
1da177e4 2824/**
04351821 2825 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2826 * @link: link on which timings will be programmed
e82cbdb9 2827 * @r_failed_dev: out paramter for failed device
1da177e4 2828 *
04351821
AC
2829 * Standard implementation of the function used to tune and set
2830 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2831 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2832 * returned in @r_failed_dev.
780a87f7 2833 *
1da177e4 2834 * LOCKING:
0cba632b 2835 * PCI/etc. bus probe sem.
e82cbdb9
TH
2836 *
2837 * RETURNS:
2838 * 0 on success, negative errno otherwise
1da177e4 2839 */
04351821 2840
0260731f 2841int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2842{
0260731f 2843 struct ata_port *ap = link->ap;
e8e0619f 2844 struct ata_device *dev;
f58229f8 2845 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2846
a6d5a51c 2847 /* step 1: calculate xfer_mask */
f58229f8 2848 ata_link_for_each_dev(dev, link) {
acf356b1 2849 unsigned int pio_mask, dma_mask;
a6d5a51c 2850
e1211e3f 2851 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2852 continue;
2853
3373efd8 2854 ata_dev_xfermask(dev);
1da177e4 2855
acf356b1
TH
2856 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2857 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2858 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2859 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2860
4f65977d 2861 found = 1;
5444a6f4
AC
2862 if (dev->dma_mode)
2863 used_dma = 1;
a6d5a51c 2864 }
4f65977d 2865 if (!found)
e82cbdb9 2866 goto out;
a6d5a51c
TH
2867
2868 /* step 2: always set host PIO timings */
f58229f8 2869 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2870 if (!ata_dev_enabled(dev))
2871 continue;
2872
2873 if (!dev->pio_mode) {
f15a1daf 2874 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2875 rc = -EINVAL;
e82cbdb9 2876 goto out;
e8e0619f
TH
2877 }
2878
2879 dev->xfer_mode = dev->pio_mode;
2880 dev->xfer_shift = ATA_SHIFT_PIO;
2881 if (ap->ops->set_piomode)
2882 ap->ops->set_piomode(ap, dev);
2883 }
1da177e4 2884
a6d5a51c 2885 /* step 3: set host DMA timings */
f58229f8 2886 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2887 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2888 continue;
2889
2890 dev->xfer_mode = dev->dma_mode;
2891 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2892 if (ap->ops->set_dmamode)
2893 ap->ops->set_dmamode(ap, dev);
2894 }
1da177e4
LT
2895
2896 /* step 4: update devices' xfer mode */
f58229f8 2897 ata_link_for_each_dev(dev, link) {
18d90deb 2898 /* don't update suspended devices' xfer mode */
9666f400 2899 if (!ata_dev_enabled(dev))
83206a29
TH
2900 continue;
2901
3373efd8 2902 rc = ata_dev_set_mode(dev);
5bbc53f4 2903 if (rc)
e82cbdb9 2904 goto out;
83206a29 2905 }
1da177e4 2906
e8e0619f
TH
2907 /* Record simplex status. If we selected DMA then the other
2908 * host channels are not permitted to do so.
5444a6f4 2909 */
cca3974e 2910 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2911 ap->host->simplex_claimed = ap;
5444a6f4 2912
e82cbdb9
TH
2913 out:
2914 if (rc)
2915 *r_failed_dev = dev;
2916 return rc;
1da177e4
LT
2917}
2918
04351821
AC
2919/**
2920 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2921 * @link: link on which timings will be programmed
04351821
AC
2922 * @r_failed_dev: out paramter for failed device
2923 *
2924 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2925 * ata_set_mode() fails, pointer to the failing device is
2926 * returned in @r_failed_dev.
2927 *
2928 * LOCKING:
2929 * PCI/etc. bus probe sem.
2930 *
2931 * RETURNS:
2932 * 0 on success, negative errno otherwise
2933 */
0260731f 2934int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 2935{
0260731f
TH
2936 struct ata_port *ap = link->ap;
2937
04351821
AC
2938 /* has private set_mode? */
2939 if (ap->ops->set_mode)
0260731f
TH
2940 return ap->ops->set_mode(link, r_failed_dev);
2941 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
2942}
2943
1fdffbce
JG
2944/**
2945 * ata_tf_to_host - issue ATA taskfile to host controller
2946 * @ap: port to which command is being issued
2947 * @tf: ATA taskfile register set
2948 *
2949 * Issues ATA taskfile register set to ATA host controller,
2950 * with proper synchronization with interrupt handler and
2951 * other threads.
2952 *
2953 * LOCKING:
cca3974e 2954 * spin_lock_irqsave(host lock)
1fdffbce
JG
2955 */
2956
2957static inline void ata_tf_to_host(struct ata_port *ap,
2958 const struct ata_taskfile *tf)
2959{
2960 ap->ops->tf_load(ap, tf);
2961 ap->ops->exec_command(ap, tf);
2962}
2963
1da177e4
LT
2964/**
2965 * ata_busy_sleep - sleep until BSY clears, or timeout
2966 * @ap: port containing status register to be polled
2967 * @tmout_pat: impatience timeout
2968 * @tmout: overall timeout
2969 *
780a87f7
JG
2970 * Sleep until ATA Status register bit BSY clears,
2971 * or a timeout occurs.
2972 *
d1adc1bb
TH
2973 * LOCKING:
2974 * Kernel thread context (may sleep).
2975 *
2976 * RETURNS:
2977 * 0 on success, -errno otherwise.
1da177e4 2978 */
d1adc1bb
TH
2979int ata_busy_sleep(struct ata_port *ap,
2980 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2981{
2982 unsigned long timer_start, timeout;
2983 u8 status;
2984
2985 status = ata_busy_wait(ap, ATA_BUSY, 300);
2986 timer_start = jiffies;
2987 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2988 while (status != 0xff && (status & ATA_BUSY) &&
2989 time_before(jiffies, timeout)) {
1da177e4
LT
2990 msleep(50);
2991 status = ata_busy_wait(ap, ATA_BUSY, 3);
2992 }
2993
d1adc1bb 2994 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2995 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2996 "port is slow to respond, please be patient "
2997 "(Status 0x%x)\n", status);
1da177e4
LT
2998
2999 timeout = timer_start + tmout;
d1adc1bb
TH
3000 while (status != 0xff && (status & ATA_BUSY) &&
3001 time_before(jiffies, timeout)) {
1da177e4
LT
3002 msleep(50);
3003 status = ata_chk_status(ap);
3004 }
3005
d1adc1bb
TH
3006 if (status == 0xff)
3007 return -ENODEV;
3008
1da177e4 3009 if (status & ATA_BUSY) {
f15a1daf 3010 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3011 "(%lu secs, Status 0x%x)\n",
3012 tmout / HZ, status);
d1adc1bb 3013 return -EBUSY;
1da177e4
LT
3014 }
3015
3016 return 0;
3017}
3018
d4b2bab4
TH
3019/**
3020 * ata_wait_ready - sleep until BSY clears, or timeout
3021 * @ap: port containing status register to be polled
3022 * @deadline: deadline jiffies for the operation
3023 *
3024 * Sleep until ATA Status register bit BSY clears, or timeout
3025 * occurs.
3026 *
3027 * LOCKING:
3028 * Kernel thread context (may sleep).
3029 *
3030 * RETURNS:
3031 * 0 on success, -errno otherwise.
3032 */
3033int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3034{
3035 unsigned long start = jiffies;
3036 int warned = 0;
3037
3038 while (1) {
3039 u8 status = ata_chk_status(ap);
3040 unsigned long now = jiffies;
3041
3042 if (!(status & ATA_BUSY))
3043 return 0;
936fd732 3044 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3045 return -ENODEV;
3046 if (time_after(now, deadline))
3047 return -EBUSY;
3048
3049 if (!warned && time_after(now, start + 5 * HZ) &&
3050 (deadline - now > 3 * HZ)) {
3051 ata_port_printk(ap, KERN_WARNING,
3052 "port is slow to respond, please be patient "
3053 "(Status 0x%x)\n", status);
3054 warned = 1;
3055 }
3056
3057 msleep(50);
3058 }
3059}
3060
3061static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3062 unsigned long deadline)
1da177e4
LT
3063{
3064 struct ata_ioports *ioaddr = &ap->ioaddr;
3065 unsigned int dev0 = devmask & (1 << 0);
3066 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3067 int rc, ret = 0;
1da177e4
LT
3068
3069 /* if device 0 was found in ata_devchk, wait for its
3070 * BSY bit to clear
3071 */
d4b2bab4
TH
3072 if (dev0) {
3073 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3074 if (rc) {
3075 if (rc != -ENODEV)
3076 return rc;
3077 ret = rc;
3078 }
d4b2bab4 3079 }
1da177e4 3080
e141d999
TH
3081 /* if device 1 was found in ata_devchk, wait for register
3082 * access briefly, then wait for BSY to clear.
1da177e4 3083 */
e141d999
TH
3084 if (dev1) {
3085 int i;
1da177e4
LT
3086
3087 ap->ops->dev_select(ap, 1);
e141d999
TH
3088
3089 /* Wait for register access. Some ATAPI devices fail
3090 * to set nsect/lbal after reset, so don't waste too
3091 * much time on it. We're gonna wait for !BSY anyway.
3092 */
3093 for (i = 0; i < 2; i++) {
3094 u8 nsect, lbal;
3095
3096 nsect = ioread8(ioaddr->nsect_addr);
3097 lbal = ioread8(ioaddr->lbal_addr);
3098 if ((nsect == 1) && (lbal == 1))
3099 break;
3100 msleep(50); /* give drive a breather */
3101 }
3102
d4b2bab4 3103 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3104 if (rc) {
3105 if (rc != -ENODEV)
3106 return rc;
3107 ret = rc;
3108 }
d4b2bab4 3109 }
1da177e4
LT
3110
3111 /* is all this really necessary? */
3112 ap->ops->dev_select(ap, 0);
3113 if (dev1)
3114 ap->ops->dev_select(ap, 1);
3115 if (dev0)
3116 ap->ops->dev_select(ap, 0);
d4b2bab4 3117
9b89391c 3118 return ret;
1da177e4
LT
3119}
3120
d4b2bab4
TH
3121static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3122 unsigned long deadline)
1da177e4
LT
3123{
3124 struct ata_ioports *ioaddr = &ap->ioaddr;
3125
44877b4e 3126 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3127
3128 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3129 iowrite8(ap->ctl, ioaddr->ctl_addr);
3130 udelay(20); /* FIXME: flush */
3131 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3132 udelay(20); /* FIXME: flush */
3133 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3134
3135 /* spec mandates ">= 2ms" before checking status.
3136 * We wait 150ms, because that was the magic delay used for
3137 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3138 * between when the ATA command register is written, and then
3139 * status is checked. Because waiting for "a while" before
3140 * checking status is fine, post SRST, we perform this magic
3141 * delay here as well.
09c7ad79
AC
3142 *
3143 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3144 */
3145 msleep(150);
3146
2e9edbf8 3147 /* Before we perform post reset processing we want to see if
298a41ca
TH
3148 * the bus shows 0xFF because the odd clown forgets the D7
3149 * pulldown resistor.
3150 */
d1adc1bb 3151 if (ata_check_status(ap) == 0xFF)
9b89391c 3152 return -ENODEV;
09c7ad79 3153
d4b2bab4 3154 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3155}
3156
3157/**
3158 * ata_bus_reset - reset host port and associated ATA channel
3159 * @ap: port to reset
3160 *
3161 * This is typically the first time we actually start issuing
3162 * commands to the ATA channel. We wait for BSY to clear, then
3163 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3164 * result. Determine what devices, if any, are on the channel
3165 * by looking at the device 0/1 error register. Look at the signature
3166 * stored in each device's taskfile registers, to determine if
3167 * the device is ATA or ATAPI.
3168 *
3169 * LOCKING:
0cba632b 3170 * PCI/etc. bus probe sem.
cca3974e 3171 * Obtains host lock.
1da177e4
LT
3172 *
3173 * SIDE EFFECTS:
198e0fed 3174 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3175 */
3176
3177void ata_bus_reset(struct ata_port *ap)
3178{
9af5c9c9 3179 struct ata_device *device = ap->link.device;
1da177e4
LT
3180 struct ata_ioports *ioaddr = &ap->ioaddr;
3181 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3182 u8 err;
aec5c3c1 3183 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3184 int rc;
1da177e4 3185
44877b4e 3186 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3187
3188 /* determine if device 0/1 are present */
3189 if (ap->flags & ATA_FLAG_SATA_RESET)
3190 dev0 = 1;
3191 else {
3192 dev0 = ata_devchk(ap, 0);
3193 if (slave_possible)
3194 dev1 = ata_devchk(ap, 1);
3195 }
3196
3197 if (dev0)
3198 devmask |= (1 << 0);
3199 if (dev1)
3200 devmask |= (1 << 1);
3201
3202 /* select device 0 again */
3203 ap->ops->dev_select(ap, 0);
3204
3205 /* issue bus reset */
9b89391c
TH
3206 if (ap->flags & ATA_FLAG_SRST) {
3207 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3208 if (rc && rc != -ENODEV)
aec5c3c1 3209 goto err_out;
9b89391c 3210 }
1da177e4
LT
3211
3212 /*
3213 * determine by signature whether we have ATA or ATAPI devices
3214 */
9af5c9c9 3215 device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3216 if ((slave_possible) && (err != 0x81))
9af5c9c9 3217 device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3218
1da177e4 3219 /* is double-select really necessary? */
9af5c9c9 3220 if (device[1].class != ATA_DEV_NONE)
1da177e4 3221 ap->ops->dev_select(ap, 1);
9af5c9c9 3222 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3223 ap->ops->dev_select(ap, 0);
3224
3225 /* if no devices were detected, disable this port */
9af5c9c9
TH
3226 if ((device[0].class == ATA_DEV_NONE) &&
3227 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3228 goto err_out;
3229
3230 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3231 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3232 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3233 }
3234
3235 DPRINTK("EXIT\n");
3236 return;
3237
3238err_out:
f15a1daf 3239 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3240 ata_port_disable(ap);
1da177e4
LT
3241
3242 DPRINTK("EXIT\n");
3243}
3244
d7bb4cc7 3245/**
936fd732
TH
3246 * sata_link_debounce - debounce SATA phy status
3247 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3248 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3249 * @deadline: deadline jiffies for the operation
d7bb4cc7 3250 *
936fd732 3251* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3252 * holding the same value where DET is not 1 for @duration polled
3253 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3254 * beginning of the stable state. Because DET gets stuck at 1 on
3255 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3256 * until timeout then returns 0 if DET is stable at 1.
3257 *
d4b2bab4
TH
3258 * @timeout is further limited by @deadline. The sooner of the
3259 * two is used.
3260 *
d7bb4cc7
TH
3261 * LOCKING:
3262 * Kernel thread context (may sleep)
3263 *
3264 * RETURNS:
3265 * 0 on success, -errno on failure.
3266 */
936fd732
TH
3267int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3268 unsigned long deadline)
7a7921e8 3269{
d7bb4cc7 3270 unsigned long interval_msec = params[0];
d4b2bab4
TH
3271 unsigned long duration = msecs_to_jiffies(params[1]);
3272 unsigned long last_jiffies, t;
d7bb4cc7
TH
3273 u32 last, cur;
3274 int rc;
3275
d4b2bab4
TH
3276 t = jiffies + msecs_to_jiffies(params[2]);
3277 if (time_before(t, deadline))
3278 deadline = t;
3279
936fd732 3280 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3281 return rc;
3282 cur &= 0xf;
3283
3284 last = cur;
3285 last_jiffies = jiffies;
3286
3287 while (1) {
3288 msleep(interval_msec);
936fd732 3289 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3290 return rc;
3291 cur &= 0xf;
3292
3293 /* DET stable? */
3294 if (cur == last) {
d4b2bab4 3295 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3296 continue;
3297 if (time_after(jiffies, last_jiffies + duration))
3298 return 0;
3299 continue;
3300 }
3301
3302 /* unstable, start over */
3303 last = cur;
3304 last_jiffies = jiffies;
3305
f1545154
TH
3306 /* Check deadline. If debouncing failed, return
3307 * -EPIPE to tell upper layer to lower link speed.
3308 */
d4b2bab4 3309 if (time_after(jiffies, deadline))
f1545154 3310 return -EPIPE;
d7bb4cc7
TH
3311 }
3312}
3313
3314/**
936fd732
TH
3315 * sata_link_resume - resume SATA link
3316 * @link: ATA link to resume SATA
d7bb4cc7 3317 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3318 * @deadline: deadline jiffies for the operation
d7bb4cc7 3319 *
936fd732 3320 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3321 *
3322 * LOCKING:
3323 * Kernel thread context (may sleep)
3324 *
3325 * RETURNS:
3326 * 0 on success, -errno on failure.
3327 */
936fd732
TH
3328int sata_link_resume(struct ata_link *link, const unsigned long *params,
3329 unsigned long deadline)
d7bb4cc7
TH
3330{
3331 u32 scontrol;
81952c54
TH
3332 int rc;
3333
936fd732 3334 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3335 return rc;
7a7921e8 3336
852ee16a 3337 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3338
936fd732 3339 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3340 return rc;
7a7921e8 3341
d7bb4cc7
TH
3342 /* Some PHYs react badly if SStatus is pounded immediately
3343 * after resuming. Delay 200ms before debouncing.
3344 */
3345 msleep(200);
7a7921e8 3346
936fd732 3347 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3348}
3349
f5914a46
TH
3350/**
3351 * ata_std_prereset - prepare for reset
cc0680a5 3352 * @link: ATA link to be reset
d4b2bab4 3353 * @deadline: deadline jiffies for the operation
f5914a46 3354 *
cc0680a5 3355 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3356 * prereset makes libata abort whole reset sequence and give up
3357 * that port, so prereset should be best-effort. It does its
3358 * best to prepare for reset sequence but if things go wrong, it
3359 * should just whine, not fail.
f5914a46
TH
3360 *
3361 * LOCKING:
3362 * Kernel thread context (may sleep)
3363 *
3364 * RETURNS:
3365 * 0 on success, -errno otherwise.
3366 */
cc0680a5 3367int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3368{
cc0680a5 3369 struct ata_port *ap = link->ap;
936fd732 3370 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3371 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3372 int rc;
3373
31daabda 3374 /* handle link resume */
28324304 3375 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3376 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3377 ehc->i.action |= ATA_EH_HARDRESET;
3378
f5914a46
TH
3379 /* if we're about to do hardreset, nothing more to do */
3380 if (ehc->i.action & ATA_EH_HARDRESET)
3381 return 0;
3382
936fd732 3383 /* if SATA, resume link */
a16abc0b 3384 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3385 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3386 /* whine about phy resume failure but proceed */
3387 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3388 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3389 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3390 }
3391
3392 /* Wait for !BSY if the controller can wait for the first D2H
3393 * Reg FIS and we don't know that no device is attached.
3394 */
0c88758b 3395 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3396 rc = ata_wait_ready(ap, deadline);
6dffaf61 3397 if (rc && rc != -ENODEV) {
cc0680a5 3398 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3399 "(errno=%d), forcing hardreset\n", rc);
3400 ehc->i.action |= ATA_EH_HARDRESET;
3401 }
3402 }
f5914a46
TH
3403
3404 return 0;
3405}
3406
c2bd5804
TH
3407/**
3408 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3409 * @link: ATA link to reset
c2bd5804 3410 * @classes: resulting classes of attached devices
d4b2bab4 3411 * @deadline: deadline jiffies for the operation
c2bd5804 3412 *
52783c5d 3413 * Reset host port using ATA SRST.
c2bd5804
TH
3414 *
3415 * LOCKING:
3416 * Kernel thread context (may sleep)
3417 *
3418 * RETURNS:
3419 * 0 on success, -errno otherwise.
3420 */
cc0680a5 3421int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3422 unsigned long deadline)
c2bd5804 3423{
cc0680a5 3424 struct ata_port *ap = link->ap;
c2bd5804 3425 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3426 unsigned int devmask = 0;
3427 int rc;
c2bd5804
TH
3428 u8 err;
3429
3430 DPRINTK("ENTER\n");
3431
936fd732 3432 if (ata_link_offline(link)) {
3a39746a
TH
3433 classes[0] = ATA_DEV_NONE;
3434 goto out;
3435 }
3436
c2bd5804
TH
3437 /* determine if device 0/1 are present */
3438 if (ata_devchk(ap, 0))
3439 devmask |= (1 << 0);
3440 if (slave_possible && ata_devchk(ap, 1))
3441 devmask |= (1 << 1);
3442
c2bd5804
TH
3443 /* select device 0 again */
3444 ap->ops->dev_select(ap, 0);
3445
3446 /* issue bus reset */
3447 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3448 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3449 /* if link is occupied, -ENODEV too is an error */
936fd732 3450 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3451 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3452 return rc;
c2bd5804
TH
3453 }
3454
3455 /* determine by signature whether we have ATA or ATAPI devices */
3456 classes[0] = ata_dev_try_classify(ap, 0, &err);
3457 if (slave_possible && err != 0x81)
3458 classes[1] = ata_dev_try_classify(ap, 1, &err);
3459
3a39746a 3460 out:
c2bd5804
TH
3461 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3462 return 0;
3463}
3464
3465/**
cc0680a5
TH
3466 * sata_link_hardreset - reset link via SATA phy reset
3467 * @link: link to reset
b6103f6d 3468 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3469 * @deadline: deadline jiffies for the operation
c2bd5804 3470 *
cc0680a5 3471 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3472 *
3473 * LOCKING:
3474 * Kernel thread context (may sleep)
3475 *
3476 * RETURNS:
3477 * 0 on success, -errno otherwise.
3478 */
cc0680a5 3479int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3480 unsigned long deadline)
c2bd5804 3481{
852ee16a 3482 u32 scontrol;
81952c54 3483 int rc;
852ee16a 3484
c2bd5804
TH
3485 DPRINTK("ENTER\n");
3486
936fd732 3487 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3488 /* SATA spec says nothing about how to reconfigure
3489 * spd. To be on the safe side, turn off phy during
3490 * reconfiguration. This works for at least ICH7 AHCI
3491 * and Sil3124.
3492 */
936fd732 3493 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3494 goto out;
81952c54 3495
a34b6fc0 3496 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3497
936fd732 3498 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3499 goto out;
1c3fae4d 3500
936fd732 3501 sata_set_spd(link);
1c3fae4d
TH
3502 }
3503
3504 /* issue phy wake/reset */
936fd732 3505 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3506 goto out;
81952c54 3507
852ee16a 3508 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3509
936fd732 3510 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3511 goto out;
c2bd5804 3512
1c3fae4d 3513 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3514 * 10.4.2 says at least 1 ms.
3515 */
3516 msleep(1);
3517
936fd732
TH
3518 /* bring link back */
3519 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3520 out:
3521 DPRINTK("EXIT, rc=%d\n", rc);
3522 return rc;
3523}
3524
3525/**
3526 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3527 * @link: link to reset
b6103f6d 3528 * @class: resulting class of attached device
d4b2bab4 3529 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3530 *
3531 * SATA phy-reset host port using DET bits of SControl register,
3532 * wait for !BSY and classify the attached device.
3533 *
3534 * LOCKING:
3535 * Kernel thread context (may sleep)
3536 *
3537 * RETURNS:
3538 * 0 on success, -errno otherwise.
3539 */
cc0680a5 3540int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3541 unsigned long deadline)
b6103f6d 3542{
cc0680a5 3543 struct ata_port *ap = link->ap;
936fd732 3544 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3545 int rc;
3546
3547 DPRINTK("ENTER\n");
3548
3549 /* do hardreset */
cc0680a5 3550 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3551 if (rc) {
cc0680a5 3552 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3553 "COMRESET failed (errno=%d)\n", rc);
3554 return rc;
3555 }
c2bd5804 3556
c2bd5804 3557 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3558 if (ata_link_offline(link)) {
c2bd5804
TH
3559 *class = ATA_DEV_NONE;
3560 DPRINTK("EXIT, link offline\n");
3561 return 0;
3562 }
3563
34fee227
TH
3564 /* wait a while before checking status, see SRST for more info */
3565 msleep(150);
3566
d4b2bab4 3567 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3568 /* link occupied, -ENODEV too is an error */
3569 if (rc) {
cc0680a5 3570 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3571 "COMRESET failed (errno=%d)\n", rc);
3572 return rc;
c2bd5804
TH
3573 }
3574
3a39746a
TH
3575 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3576
c2bd5804
TH
3577 *class = ata_dev_try_classify(ap, 0, NULL);
3578
3579 DPRINTK("EXIT, class=%u\n", *class);
3580 return 0;
3581}
3582
3583/**
3584 * ata_std_postreset - standard postreset callback
cc0680a5 3585 * @link: the target ata_link
c2bd5804
TH
3586 * @classes: classes of attached devices
3587 *
3588 * This function is invoked after a successful reset. Note that
3589 * the device might have been reset more than once using
3590 * different reset methods before postreset is invoked.
c2bd5804 3591 *
c2bd5804
TH
3592 * LOCKING:
3593 * Kernel thread context (may sleep)
3594 */
cc0680a5 3595void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3596{
cc0680a5 3597 struct ata_port *ap = link->ap;
dc2b3515
TH
3598 u32 serror;
3599
c2bd5804
TH
3600 DPRINTK("ENTER\n");
3601
c2bd5804 3602 /* print link status */
936fd732 3603 sata_print_link_status(link);
c2bd5804 3604
dc2b3515 3605 /* clear SError */
936fd732
TH
3606 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3607 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3608
c2bd5804
TH
3609 /* is double-select really necessary? */
3610 if (classes[0] != ATA_DEV_NONE)
3611 ap->ops->dev_select(ap, 1);
3612 if (classes[1] != ATA_DEV_NONE)
3613 ap->ops->dev_select(ap, 0);
3614
3a39746a
TH
3615 /* bail out if no device is present */
3616 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3617 DPRINTK("EXIT, no device\n");
3618 return;
3619 }
3620
3621 /* set up device control */
0d5ff566
TH
3622 if (ap->ioaddr.ctl_addr)
3623 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3624
3625 DPRINTK("EXIT\n");
3626}
3627
623a3128
TH
3628/**
3629 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3630 * @dev: device to compare against
3631 * @new_class: class of the new device
3632 * @new_id: IDENTIFY page of the new device
3633 *
3634 * Compare @new_class and @new_id against @dev and determine
3635 * whether @dev is the device indicated by @new_class and
3636 * @new_id.
3637 *
3638 * LOCKING:
3639 * None.
3640 *
3641 * RETURNS:
3642 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3643 */
3373efd8
TH
3644static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3645 const u16 *new_id)
623a3128
TH
3646{
3647 const u16 *old_id = dev->id;
a0cf733b
TH
3648 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3649 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3650
3651 if (dev->class != new_class) {
f15a1daf
TH
3652 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3653 dev->class, new_class);
623a3128
TH
3654 return 0;
3655 }
3656
a0cf733b
TH
3657 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3658 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3659 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3660 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3661
3662 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3663 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3664 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3665 return 0;
3666 }
3667
3668 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3669 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3670 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3671 return 0;
3672 }
3673
623a3128
TH
3674 return 1;
3675}
3676
3677/**
fe30911b 3678 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3679 * @dev: target ATA device
bff04647 3680 * @readid_flags: read ID flags
623a3128
TH
3681 *
3682 * Re-read IDENTIFY page and make sure @dev is still attached to
3683 * the port.
3684 *
3685 * LOCKING:
3686 * Kernel thread context (may sleep)
3687 *
3688 * RETURNS:
3689 * 0 on success, negative errno otherwise
3690 */
fe30911b 3691int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3692{
5eb45c02 3693 unsigned int class = dev->class;
9af5c9c9 3694 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3695 int rc;
3696
fe635c7e 3697 /* read ID data */
bff04647 3698 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3699 if (rc)
fe30911b 3700 return rc;
623a3128
TH
3701
3702 /* is the device still there? */
fe30911b
TH
3703 if (!ata_dev_same_device(dev, class, id))
3704 return -ENODEV;
623a3128 3705
fe635c7e 3706 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3707 return 0;
3708}
3709
3710/**
3711 * ata_dev_revalidate - Revalidate ATA device
3712 * @dev: device to revalidate
3713 * @readid_flags: read ID flags
3714 *
3715 * Re-read IDENTIFY page, make sure @dev is still attached to the
3716 * port and reconfigure it according to the new IDENTIFY page.
3717 *
3718 * LOCKING:
3719 * Kernel thread context (may sleep)
3720 *
3721 * RETURNS:
3722 * 0 on success, negative errno otherwise
3723 */
3724int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3725{
6ddcd3b0 3726 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3727 int rc;
3728
3729 if (!ata_dev_enabled(dev))
3730 return -ENODEV;
3731
3732 /* re-read ID */
3733 rc = ata_dev_reread_id(dev, readid_flags);
3734 if (rc)
3735 goto fail;
623a3128
TH
3736
3737 /* configure device according to the new ID */
efdaedc4 3738 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3739 if (rc)
3740 goto fail;
3741
3742 /* verify n_sectors hasn't changed */
b54eebd6
TH
3743 if (dev->class == ATA_DEV_ATA && n_sectors &&
3744 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3745 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3746 "%llu != %llu\n",
3747 (unsigned long long)n_sectors,
3748 (unsigned long long)dev->n_sectors);
8270bec4
TH
3749
3750 /* restore original n_sectors */
3751 dev->n_sectors = n_sectors;
3752
6ddcd3b0
TH
3753 rc = -ENODEV;
3754 goto fail;
3755 }
3756
3757 return 0;
623a3128
TH
3758
3759 fail:
f15a1daf 3760 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3761 return rc;
3762}
3763
6919a0a6
AC
3764struct ata_blacklist_entry {
3765 const char *model_num;
3766 const char *model_rev;
3767 unsigned long horkage;
3768};
3769
3770static const struct ata_blacklist_entry ata_device_blacklist [] = {
3771 /* Devices with DMA related problems under Linux */
3772 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3773 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3774 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3775 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3776 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3777 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3778 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3779 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3780 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3781 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3782 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3783 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3784 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3785 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3786 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3787 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3788 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3789 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3790 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3791 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3792 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3793 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3794 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3795 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3796 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3797 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3798 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3799 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3800 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3801 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3802 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3803 { "IOMEGA ZIP 250 ATAPI Floppy",
3804 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3805
18d6e9d5 3806 /* Weird ATAPI devices */
40a1d531 3807 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3808
6919a0a6
AC
3809 /* Devices we expect to fail diagnostics */
3810
3811 /* Devices where NCQ should be avoided */
3812 /* NCQ is slow */
3813 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3814 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3815 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3816 /* NCQ is broken */
539cc7c7 3817 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3818 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
2f8d90ab 3819 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
539cc7c7
JG
3820 ATA_HORKAGE_NONCQ },
3821
36e337d0
RH
3822 /* Blacklist entries taken from Silicon Image 3124/3132
3823 Windows driver .inf file - also several Linux problem reports */
3824 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3825 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3826 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3827 /* Drives which do spurious command completion */
3828 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3829 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3830 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3831 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3832 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3833 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
0e3dbc01 3834 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
5d6aca8d 3835 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3836
16c55b03
TH
3837 /* devices which puke on READ_NATIVE_MAX */
3838 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3839 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3840 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3841 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3842
3843 /* End Marker */
3844 { }
1da177e4 3845};
2e9edbf8 3846
539cc7c7
JG
3847int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3848{
3849 const char *p;
3850 int len;
3851
3852 /*
3853 * check for trailing wildcard: *\0
3854 */
3855 p = strchr(patt, wildchar);
3856 if (p && ((*(p + 1)) == 0))
3857 len = p - patt;
3858 else
3859 len = strlen(name);
3860
3861 return strncmp(patt, name, len);
3862}
3863
75683fe7 3864static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3865{
8bfa79fc
TH
3866 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3867 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3868 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3869
8bfa79fc
TH
3870 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3871 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3872
6919a0a6 3873 while (ad->model_num) {
539cc7c7 3874 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
3875 if (ad->model_rev == NULL)
3876 return ad->horkage;
539cc7c7 3877 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 3878 return ad->horkage;
f4b15fef 3879 }
6919a0a6 3880 ad++;
f4b15fef 3881 }
1da177e4
LT
3882 return 0;
3883}
3884
6919a0a6
AC
3885static int ata_dma_blacklisted(const struct ata_device *dev)
3886{
3887 /* We don't support polling DMA.
3888 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3889 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3890 */
9af5c9c9 3891 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3892 (dev->flags & ATA_DFLAG_CDB_INTR))
3893 return 1;
75683fe7 3894 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3895}
3896
a6d5a51c
TH
3897/**
3898 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3899 * @dev: Device to compute xfermask for
3900 *
acf356b1
TH
3901 * Compute supported xfermask of @dev and store it in
3902 * dev->*_mask. This function is responsible for applying all
3903 * known limits including host controller limits, device
3904 * blacklist, etc...
a6d5a51c
TH
3905 *
3906 * LOCKING:
3907 * None.
a6d5a51c 3908 */
3373efd8 3909static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3910{
9af5c9c9
TH
3911 struct ata_link *link = dev->link;
3912 struct ata_port *ap = link->ap;
cca3974e 3913 struct ata_host *host = ap->host;
a6d5a51c 3914 unsigned long xfer_mask;
1da177e4 3915
37deecb5 3916 /* controller modes available */
565083e1
TH
3917 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3918 ap->mwdma_mask, ap->udma_mask);
3919
8343f889 3920 /* drive modes available */
37deecb5
TH
3921 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3922 dev->mwdma_mask, dev->udma_mask);
3923 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3924
b352e57d
AC
3925 /*
3926 * CFA Advanced TrueIDE timings are not allowed on a shared
3927 * cable
3928 */
3929 if (ata_dev_pair(dev)) {
3930 /* No PIO5 or PIO6 */
3931 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3932 /* No MWDMA3 or MWDMA 4 */
3933 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3934 }
3935
37deecb5
TH
3936 if (ata_dma_blacklisted(dev)) {
3937 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3938 ata_dev_printk(dev, KERN_WARNING,
3939 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3940 }
a6d5a51c 3941
14d66ab7
PV
3942 if ((host->flags & ATA_HOST_SIMPLEX) &&
3943 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3944 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3945 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3946 "other device, disabling DMA\n");
5444a6f4 3947 }
565083e1 3948
e424675f
JG
3949 if (ap->flags & ATA_FLAG_NO_IORDY)
3950 xfer_mask &= ata_pio_mask_no_iordy(dev);
3951
5444a6f4 3952 if (ap->ops->mode_filter)
a76b62ca 3953 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3954
8343f889
RH
3955 /* Apply cable rule here. Don't apply it early because when
3956 * we handle hot plug the cable type can itself change.
3957 * Check this last so that we know if the transfer rate was
3958 * solely limited by the cable.
3959 * Unknown or 80 wire cables reported host side are checked
3960 * drive side as well. Cases where we know a 40wire cable
3961 * is used safely for 80 are not checked here.
3962 */
3963 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3964 /* UDMA/44 or higher would be available */
3965 if((ap->cbl == ATA_CBL_PATA40) ||
3966 (ata_drive_40wire(dev->id) &&
3967 (ap->cbl == ATA_CBL_PATA_UNK ||
3968 ap->cbl == ATA_CBL_PATA80))) {
3969 ata_dev_printk(dev, KERN_WARNING,
3970 "limited to UDMA/33 due to 40-wire cable\n");
3971 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3972 }
3973
565083e1
TH
3974 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3975 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3976}
3977
1da177e4
LT
3978/**
3979 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3980 * @dev: Device to which command will be sent
3981 *
780a87f7
JG
3982 * Issue SET FEATURES - XFER MODE command to device @dev
3983 * on port @ap.
3984 *
1da177e4 3985 * LOCKING:
0cba632b 3986 * PCI/etc. bus probe sem.
83206a29
TH
3987 *
3988 * RETURNS:
3989 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3990 */
3991
3373efd8 3992static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3993{
a0123703 3994 struct ata_taskfile tf;
83206a29 3995 unsigned int err_mask;
1da177e4
LT
3996
3997 /* set up set-features taskfile */
3998 DPRINTK("set features - xfer mode\n");
3999
464cf177
TH
4000 /* Some controllers and ATAPI devices show flaky interrupt
4001 * behavior after setting xfer mode. Use polling instead.
4002 */
3373efd8 4003 ata_tf_init(dev, &tf);
a0123703
TH
4004 tf.command = ATA_CMD_SET_FEATURES;
4005 tf.feature = SETFEATURES_XFER;
464cf177 4006 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4007 tf.protocol = ATA_PROT_NODATA;
4008 tf.nsect = dev->xfer_mode;
1da177e4 4009
3373efd8 4010 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9f45cbd3
KCA
4011
4012 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4013 return err_mask;
4014}
4015
4016/**
4017 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4018 * @dev: Device to which command will be sent
4019 * @enable: Whether to enable or disable the feature
4020 *
4021 * Issue SET FEATURES - SATA FEATURES command to device @dev
4022 * on port @ap with sector count set to indicate Asynchronous
4023 * Notification feature
4024 *
4025 * LOCKING:
4026 * PCI/etc. bus probe sem.
4027 *
4028 * RETURNS:
4029 * 0 on success, AC_ERR_* mask otherwise.
4030 */
4031static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4032{
4033 struct ata_taskfile tf;
4034 unsigned int err_mask;
4035
4036 /* set up set-features taskfile */
4037 DPRINTK("set features - SATA features\n");
4038
4039 ata_tf_init(dev, &tf);
4040 tf.command = ATA_CMD_SET_FEATURES;
4041 tf.feature = enable;
4042 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4043 tf.protocol = ATA_PROT_NODATA;
4044 tf.nsect = SATA_AN;
4045
4046 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 4047
83206a29
TH
4048 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4049 return err_mask;
1da177e4
LT
4050}
4051
8bf62ece
AL
4052/**
4053 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4054 * @dev: Device to which command will be sent
e2a7f77a
RD
4055 * @heads: Number of heads (taskfile parameter)
4056 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4057 *
4058 * LOCKING:
6aff8f1f
TH
4059 * Kernel thread context (may sleep)
4060 *
4061 * RETURNS:
4062 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4063 */
3373efd8
TH
4064static unsigned int ata_dev_init_params(struct ata_device *dev,
4065 u16 heads, u16 sectors)
8bf62ece 4066{
a0123703 4067 struct ata_taskfile tf;
6aff8f1f 4068 unsigned int err_mask;
8bf62ece
AL
4069
4070 /* Number of sectors per track 1-255. Number of heads 1-16 */
4071 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4072 return AC_ERR_INVALID;
8bf62ece
AL
4073
4074 /* set up init dev params taskfile */
4075 DPRINTK("init dev params \n");
4076
3373efd8 4077 ata_tf_init(dev, &tf);
a0123703
TH
4078 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4079 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4080 tf.protocol = ATA_PROT_NODATA;
4081 tf.nsect = sectors;
4082 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4083
3373efd8 4084 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
4085 /* A clean abort indicates an original or just out of spec drive
4086 and we should continue as we issue the setup based on the
4087 drive reported working geometry */
4088 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4089 err_mask = 0;
8bf62ece 4090
6aff8f1f
TH
4091 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4092 return err_mask;
8bf62ece
AL
4093}
4094
1da177e4 4095/**
0cba632b
JG
4096 * ata_sg_clean - Unmap DMA memory associated with command
4097 * @qc: Command containing DMA memory to be released
4098 *
4099 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4100 *
4101 * LOCKING:
cca3974e 4102 * spin_lock_irqsave(host lock)
1da177e4 4103 */
70e6ad0c 4104void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4105{
4106 struct ata_port *ap = qc->ap;
cedc9a47 4107 struct scatterlist *sg = qc->__sg;
1da177e4 4108 int dir = qc->dma_dir;
cedc9a47 4109 void *pad_buf = NULL;
1da177e4 4110
a4631474
TH
4111 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4112 WARN_ON(sg == NULL);
1da177e4
LT
4113
4114 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4115 WARN_ON(qc->n_elem > 1);
1da177e4 4116
2c13b7ce 4117 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4118
cedc9a47
JG
4119 /* if we padded the buffer out to 32-bit bound, and data
4120 * xfer direction is from-device, we must copy from the
4121 * pad buffer back into the supplied buffer
4122 */
4123 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4124 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4125
4126 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4127 if (qc->n_elem)
2f1f610b 4128 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4129 /* restore last sg */
4130 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4131 if (pad_buf) {
4132 struct scatterlist *psg = &qc->pad_sgent;
4133 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4134 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4135 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4136 }
4137 } else {
2e242fa9 4138 if (qc->n_elem)
2f1f610b 4139 dma_unmap_single(ap->dev,
e1410f2d
JG
4140 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4141 dir);
cedc9a47
JG
4142 /* restore sg */
4143 sg->length += qc->pad_len;
4144 if (pad_buf)
4145 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4146 pad_buf, qc->pad_len);
4147 }
1da177e4
LT
4148
4149 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4150 qc->__sg = NULL;
1da177e4
LT
4151}
4152
4153/**
4154 * ata_fill_sg - Fill PCI IDE PRD table
4155 * @qc: Metadata associated with taskfile to be transferred
4156 *
780a87f7
JG
4157 * Fill PCI IDE PRD (scatter-gather) table with segments
4158 * associated with the current disk command.
4159 *
1da177e4 4160 * LOCKING:
cca3974e 4161 * spin_lock_irqsave(host lock)
1da177e4
LT
4162 *
4163 */
4164static void ata_fill_sg(struct ata_queued_cmd *qc)
4165{
1da177e4 4166 struct ata_port *ap = qc->ap;
cedc9a47
JG
4167 struct scatterlist *sg;
4168 unsigned int idx;
1da177e4 4169
a4631474 4170 WARN_ON(qc->__sg == NULL);
f131883e 4171 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4172
4173 idx = 0;
cedc9a47 4174 ata_for_each_sg(sg, qc) {
1da177e4
LT
4175 u32 addr, offset;
4176 u32 sg_len, len;
4177
4178 /* determine if physical DMA addr spans 64K boundary.
4179 * Note h/w doesn't support 64-bit, so we unconditionally
4180 * truncate dma_addr_t to u32.
4181 */
4182 addr = (u32) sg_dma_address(sg);
4183 sg_len = sg_dma_len(sg);
4184
4185 while (sg_len) {
4186 offset = addr & 0xffff;
4187 len = sg_len;
4188 if ((offset + sg_len) > 0x10000)
4189 len = 0x10000 - offset;
4190
4191 ap->prd[idx].addr = cpu_to_le32(addr);
4192 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4193 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4194
4195 idx++;
4196 sg_len -= len;
4197 addr += len;
4198 }
4199 }
4200
4201 if (idx)
4202 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4203}
b9a4197e 4204
d26fc955
AC
4205/**
4206 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4207 * @qc: Metadata associated with taskfile to be transferred
4208 *
4209 * Fill PCI IDE PRD (scatter-gather) table with segments
4210 * associated with the current disk command. Perform the fill
4211 * so that we avoid writing any length 64K records for
4212 * controllers that don't follow the spec.
4213 *
4214 * LOCKING:
4215 * spin_lock_irqsave(host lock)
4216 *
4217 */
4218static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4219{
4220 struct ata_port *ap = qc->ap;
4221 struct scatterlist *sg;
4222 unsigned int idx;
4223
4224 WARN_ON(qc->__sg == NULL);
4225 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4226
4227 idx = 0;
4228 ata_for_each_sg(sg, qc) {
4229 u32 addr, offset;
4230 u32 sg_len, len, blen;
4231
4232 /* determine if physical DMA addr spans 64K boundary.
4233 * Note h/w doesn't support 64-bit, so we unconditionally
4234 * truncate dma_addr_t to u32.
4235 */
4236 addr = (u32) sg_dma_address(sg);
4237 sg_len = sg_dma_len(sg);
4238
4239 while (sg_len) {
4240 offset = addr & 0xffff;
4241 len = sg_len;
4242 if ((offset + sg_len) > 0x10000)
4243 len = 0x10000 - offset;
4244
4245 blen = len & 0xffff;
4246 ap->prd[idx].addr = cpu_to_le32(addr);
4247 if (blen == 0) {
4248 /* Some PATA chipsets like the CS5530 can't
4249 cope with 0x0000 meaning 64K as the spec says */
4250 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4251 blen = 0x8000;
4252 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4253 }
4254 ap->prd[idx].flags_len = cpu_to_le32(blen);
4255 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4256
4257 idx++;
4258 sg_len -= len;
4259 addr += len;
4260 }
4261 }
4262
4263 if (idx)
4264 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4265}
4266
1da177e4
LT
4267/**
4268 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4269 * @qc: Metadata associated with taskfile to check
4270 *
780a87f7
JG
4271 * Allow low-level driver to filter ATA PACKET commands, returning
4272 * a status indicating whether or not it is OK to use DMA for the
4273 * supplied PACKET command.
4274 *
1da177e4 4275 * LOCKING:
cca3974e 4276 * spin_lock_irqsave(host lock)
0cba632b 4277 *
1da177e4
LT
4278 * RETURNS: 0 when ATAPI DMA can be used
4279 * nonzero otherwise
4280 */
4281int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4282{
4283 struct ata_port *ap = qc->ap;
b9a4197e
TH
4284
4285 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4286 * few ATAPI devices choke on such DMA requests.
4287 */
4288 if (unlikely(qc->nbytes & 15))
4289 return 1;
6f23a31d 4290
1da177e4 4291 if (ap->ops->check_atapi_dma)
b9a4197e 4292 return ap->ops->check_atapi_dma(qc);
1da177e4 4293
b9a4197e 4294 return 0;
1da177e4 4295}
b9a4197e 4296
1da177e4
LT
4297/**
4298 * ata_qc_prep - Prepare taskfile for submission
4299 * @qc: Metadata associated with taskfile to be prepared
4300 *
780a87f7
JG
4301 * Prepare ATA taskfile for submission.
4302 *
1da177e4 4303 * LOCKING:
cca3974e 4304 * spin_lock_irqsave(host lock)
1da177e4
LT
4305 */
4306void ata_qc_prep(struct ata_queued_cmd *qc)
4307{
4308 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4309 return;
4310
4311 ata_fill_sg(qc);
4312}
4313
d26fc955
AC
4314/**
4315 * ata_dumb_qc_prep - Prepare taskfile for submission
4316 * @qc: Metadata associated with taskfile to be prepared
4317 *
4318 * Prepare ATA taskfile for submission.
4319 *
4320 * LOCKING:
4321 * spin_lock_irqsave(host lock)
4322 */
4323void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4324{
4325 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4326 return;
4327
4328 ata_fill_sg_dumb(qc);
4329}
4330
e46834cd
BK
4331void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4332
0cba632b
JG
4333/**
4334 * ata_sg_init_one - Associate command with memory buffer
4335 * @qc: Command to be associated
4336 * @buf: Memory buffer
4337 * @buflen: Length of memory buffer, in bytes.
4338 *
4339 * Initialize the data-related elements of queued_cmd @qc
4340 * to point to a single memory buffer, @buf of byte length @buflen.
4341 *
4342 * LOCKING:
cca3974e 4343 * spin_lock_irqsave(host lock)
0cba632b
JG
4344 */
4345
1da177e4
LT
4346void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4347{
1da177e4
LT
4348 qc->flags |= ATA_QCFLAG_SINGLE;
4349
cedc9a47 4350 qc->__sg = &qc->sgent;
1da177e4 4351 qc->n_elem = 1;
cedc9a47 4352 qc->orig_n_elem = 1;
1da177e4 4353 qc->buf_virt = buf;
233277ca 4354 qc->nbytes = buflen;
1da177e4 4355
61c0596c 4356 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4357}
4358
0cba632b
JG
4359/**
4360 * ata_sg_init - Associate command with scatter-gather table.
4361 * @qc: Command to be associated
4362 * @sg: Scatter-gather table.
4363 * @n_elem: Number of elements in s/g table.
4364 *
4365 * Initialize the data-related elements of queued_cmd @qc
4366 * to point to a scatter-gather table @sg, containing @n_elem
4367 * elements.
4368 *
4369 * LOCKING:
cca3974e 4370 * spin_lock_irqsave(host lock)
0cba632b
JG
4371 */
4372
1da177e4
LT
4373void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4374 unsigned int n_elem)
4375{
4376 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4377 qc->__sg = sg;
1da177e4 4378 qc->n_elem = n_elem;
cedc9a47 4379 qc->orig_n_elem = n_elem;
1da177e4
LT
4380}
4381
4382/**
0cba632b
JG
4383 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4384 * @qc: Command with memory buffer to be mapped.
4385 *
4386 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4387 *
4388 * LOCKING:
cca3974e 4389 * spin_lock_irqsave(host lock)
1da177e4
LT
4390 *
4391 * RETURNS:
0cba632b 4392 * Zero on success, negative on error.
1da177e4
LT
4393 */
4394
4395static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4396{
4397 struct ata_port *ap = qc->ap;
4398 int dir = qc->dma_dir;
cedc9a47 4399 struct scatterlist *sg = qc->__sg;
1da177e4 4400 dma_addr_t dma_address;
2e242fa9 4401 int trim_sg = 0;
1da177e4 4402
cedc9a47
JG
4403 /* we must lengthen transfers to end on a 32-bit boundary */
4404 qc->pad_len = sg->length & 3;
4405 if (qc->pad_len) {
4406 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4407 struct scatterlist *psg = &qc->pad_sgent;
4408
a4631474 4409 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4410
4411 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4412
4413 if (qc->tf.flags & ATA_TFLAG_WRITE)
4414 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4415 qc->pad_len);
4416
4417 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4418 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4419 /* trim sg */
4420 sg->length -= qc->pad_len;
2e242fa9
TH
4421 if (sg->length == 0)
4422 trim_sg = 1;
cedc9a47
JG
4423
4424 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4425 sg->length, qc->pad_len);
4426 }
4427
2e242fa9
TH
4428 if (trim_sg) {
4429 qc->n_elem--;
e1410f2d
JG
4430 goto skip_map;
4431 }
4432
2f1f610b 4433 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4434 sg->length, dir);
537a95d9
TH
4435 if (dma_mapping_error(dma_address)) {
4436 /* restore sg */
4437 sg->length += qc->pad_len;
1da177e4 4438 return -1;
537a95d9 4439 }
1da177e4
LT
4440
4441 sg_dma_address(sg) = dma_address;
32529e01 4442 sg_dma_len(sg) = sg->length;
1da177e4 4443
2e242fa9 4444skip_map:
1da177e4
LT
4445 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4446 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4447
4448 return 0;
4449}
4450
4451/**
0cba632b
JG
4452 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4453 * @qc: Command with scatter-gather table to be mapped.
4454 *
4455 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4456 *
4457 * LOCKING:
cca3974e 4458 * spin_lock_irqsave(host lock)
1da177e4
LT
4459 *
4460 * RETURNS:
0cba632b 4461 * Zero on success, negative on error.
1da177e4
LT
4462 *
4463 */
4464
4465static int ata_sg_setup(struct ata_queued_cmd *qc)
4466{
4467 struct ata_port *ap = qc->ap;
cedc9a47
JG
4468 struct scatterlist *sg = qc->__sg;
4469 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4470 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4471
44877b4e 4472 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4473 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4474
cedc9a47
JG
4475 /* we must lengthen transfers to end on a 32-bit boundary */
4476 qc->pad_len = lsg->length & 3;
4477 if (qc->pad_len) {
4478 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4479 struct scatterlist *psg = &qc->pad_sgent;
4480 unsigned int offset;
4481
a4631474 4482 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4483
4484 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4485
4486 /*
4487 * psg->page/offset are used to copy to-be-written
4488 * data in this function or read data in ata_sg_clean.
4489 */
4490 offset = lsg->offset + lsg->length - qc->pad_len;
4491 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4492 psg->offset = offset_in_page(offset);
4493
4494 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4495 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4496 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4497 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4498 }
4499
4500 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4501 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4502 /* trim last sg */
4503 lsg->length -= qc->pad_len;
e1410f2d
JG
4504 if (lsg->length == 0)
4505 trim_sg = 1;
cedc9a47
JG
4506
4507 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4508 qc->n_elem - 1, lsg->length, qc->pad_len);
4509 }
4510
e1410f2d
JG
4511 pre_n_elem = qc->n_elem;
4512 if (trim_sg && pre_n_elem)
4513 pre_n_elem--;
4514
4515 if (!pre_n_elem) {
4516 n_elem = 0;
4517 goto skip_map;
4518 }
4519
1da177e4 4520 dir = qc->dma_dir;
2f1f610b 4521 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4522 if (n_elem < 1) {
4523 /* restore last sg */
4524 lsg->length += qc->pad_len;
1da177e4 4525 return -1;
537a95d9 4526 }
1da177e4
LT
4527
4528 DPRINTK("%d sg elements mapped\n", n_elem);
4529
e1410f2d 4530skip_map:
1da177e4
LT
4531 qc->n_elem = n_elem;
4532
4533 return 0;
4534}
4535
0baab86b 4536/**
c893a3ae 4537 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4538 * @buf: Buffer to swap
4539 * @buf_words: Number of 16-bit words in buffer.
4540 *
4541 * Swap halves of 16-bit words if needed to convert from
4542 * little-endian byte order to native cpu byte order, or
4543 * vice-versa.
4544 *
4545 * LOCKING:
6f0ef4fa 4546 * Inherited from caller.
0baab86b 4547 */
1da177e4
LT
4548void swap_buf_le16(u16 *buf, unsigned int buf_words)
4549{
4550#ifdef __BIG_ENDIAN
4551 unsigned int i;
4552
4553 for (i = 0; i < buf_words; i++)
4554 buf[i] = le16_to_cpu(buf[i]);
4555#endif /* __BIG_ENDIAN */
4556}
4557
6ae4cfb5 4558/**
0d5ff566 4559 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4560 * @adev: device to target
6ae4cfb5
AL
4561 * @buf: data buffer
4562 * @buflen: buffer length
344babaa 4563 * @write_data: read/write
6ae4cfb5
AL
4564 *
4565 * Transfer data from/to the device data register by PIO.
4566 *
4567 * LOCKING:
4568 * Inherited from caller.
6ae4cfb5 4569 */
0d5ff566
TH
4570void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4571 unsigned int buflen, int write_data)
1da177e4 4572{
9af5c9c9 4573 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4574 unsigned int words = buflen >> 1;
1da177e4 4575
6ae4cfb5 4576 /* Transfer multiple of 2 bytes */
1da177e4 4577 if (write_data)
0d5ff566 4578 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4579 else
0d5ff566 4580 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4581
4582 /* Transfer trailing 1 byte, if any. */
4583 if (unlikely(buflen & 0x01)) {
4584 u16 align_buf[1] = { 0 };
4585 unsigned char *trailing_buf = buf + buflen - 1;
4586
4587 if (write_data) {
4588 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4589 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4590 } else {
0d5ff566 4591 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4592 memcpy(trailing_buf, align_buf, 1);
4593 }
4594 }
1da177e4
LT
4595}
4596
75e99585 4597/**
0d5ff566 4598 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4599 * @adev: device to target
4600 * @buf: data buffer
4601 * @buflen: buffer length
4602 * @write_data: read/write
4603 *
88574551 4604 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4605 * transfer with interrupts disabled.
4606 *
4607 * LOCKING:
4608 * Inherited from caller.
4609 */
0d5ff566
TH
4610void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4611 unsigned int buflen, int write_data)
75e99585
AC
4612{
4613 unsigned long flags;
4614 local_irq_save(flags);
0d5ff566 4615 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4616 local_irq_restore(flags);
4617}
4618
4619
6ae4cfb5 4620/**
5a5dbd18 4621 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4622 * @qc: Command on going
4623 *
5a5dbd18 4624 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4625 *
4626 * LOCKING:
4627 * Inherited from caller.
4628 */
4629
1da177e4
LT
4630static void ata_pio_sector(struct ata_queued_cmd *qc)
4631{
4632 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4633 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4634 struct ata_port *ap = qc->ap;
4635 struct page *page;
4636 unsigned int offset;
4637 unsigned char *buf;
4638
5a5dbd18 4639 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4640 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4641
4642 page = sg[qc->cursg].page;
726f0785 4643 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4644
4645 /* get the current page and offset */
4646 page = nth_page(page, (offset >> PAGE_SHIFT));
4647 offset %= PAGE_SIZE;
4648
1da177e4
LT
4649 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4650
91b8b313
AL
4651 if (PageHighMem(page)) {
4652 unsigned long flags;
4653
a6b2c5d4 4654 /* FIXME: use a bounce buffer */
91b8b313
AL
4655 local_irq_save(flags);
4656 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4657
91b8b313 4658 /* do the actual data transfer */
5a5dbd18 4659 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4660
91b8b313
AL
4661 kunmap_atomic(buf, KM_IRQ0);
4662 local_irq_restore(flags);
4663 } else {
4664 buf = page_address(page);
5a5dbd18 4665 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4666 }
1da177e4 4667
5a5dbd18
ML
4668 qc->curbytes += qc->sect_size;
4669 qc->cursg_ofs += qc->sect_size;
1da177e4 4670
726f0785 4671 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4672 qc->cursg++;
4673 qc->cursg_ofs = 0;
4674 }
1da177e4 4675}
1da177e4 4676
07f6f7d0 4677/**
5a5dbd18 4678 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4679 * @qc: Command on going
4680 *
5a5dbd18 4681 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4682 * ATA device for the DRQ request.
4683 *
4684 * LOCKING:
4685 * Inherited from caller.
4686 */
1da177e4 4687
07f6f7d0
AL
4688static void ata_pio_sectors(struct ata_queued_cmd *qc)
4689{
4690 if (is_multi_taskfile(&qc->tf)) {
4691 /* READ/WRITE MULTIPLE */
4692 unsigned int nsect;
4693
587005de 4694 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4695
5a5dbd18 4696 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4697 qc->dev->multi_count);
07f6f7d0
AL
4698 while (nsect--)
4699 ata_pio_sector(qc);
4700 } else
4701 ata_pio_sector(qc);
4cc980b3
AL
4702
4703 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4704}
4705
c71c1857
AL
4706/**
4707 * atapi_send_cdb - Write CDB bytes to hardware
4708 * @ap: Port to which ATAPI device is attached.
4709 * @qc: Taskfile currently active
4710 *
4711 * When device has indicated its readiness to accept
4712 * a CDB, this function is called. Send the CDB.
4713 *
4714 * LOCKING:
4715 * caller.
4716 */
4717
4718static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4719{
4720 /* send SCSI cdb */
4721 DPRINTK("send cdb\n");
db024d53 4722 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4723
a6b2c5d4 4724 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4725 ata_altstatus(ap); /* flush */
4726
4727 switch (qc->tf.protocol) {
4728 case ATA_PROT_ATAPI:
4729 ap->hsm_task_state = HSM_ST;
4730 break;
4731 case ATA_PROT_ATAPI_NODATA:
4732 ap->hsm_task_state = HSM_ST_LAST;
4733 break;
4734 case ATA_PROT_ATAPI_DMA:
4735 ap->hsm_task_state = HSM_ST_LAST;
4736 /* initiate bmdma */
4737 ap->ops->bmdma_start(qc);
4738 break;
4739 }
1da177e4
LT
4740}
4741
6ae4cfb5
AL
4742/**
4743 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4744 * @qc: Command on going
4745 * @bytes: number of bytes
4746 *
4747 * Transfer Transfer data from/to the ATAPI device.
4748 *
4749 * LOCKING:
4750 * Inherited from caller.
4751 *
4752 */
4753
1da177e4
LT
4754static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4755{
4756 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4757 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4758 struct ata_port *ap = qc->ap;
4759 struct page *page;
4760 unsigned char *buf;
4761 unsigned int offset, count;
4762
563a6e1f 4763 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4764 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4765
4766next_sg:
563a6e1f 4767 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4768 /*
563a6e1f
AL
4769 * The end of qc->sg is reached and the device expects
4770 * more data to transfer. In order not to overrun qc->sg
4771 * and fulfill length specified in the byte count register,
4772 * - for read case, discard trailing data from the device
4773 * - for write case, padding zero data to the device
4774 */
4775 u16 pad_buf[1] = { 0 };
4776 unsigned int words = bytes >> 1;
4777 unsigned int i;
4778
4779 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4780 ata_dev_printk(qc->dev, KERN_WARNING,
4781 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4782
4783 for (i = 0; i < words; i++)
a6b2c5d4 4784 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4785
14be71f4 4786 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4787 return;
4788 }
4789
cedc9a47 4790 sg = &qc->__sg[qc->cursg];
1da177e4 4791
1da177e4
LT
4792 page = sg->page;
4793 offset = sg->offset + qc->cursg_ofs;
4794
4795 /* get the current page and offset */
4796 page = nth_page(page, (offset >> PAGE_SHIFT));
4797 offset %= PAGE_SIZE;
4798
6952df03 4799 /* don't overrun current sg */
32529e01 4800 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4801
4802 /* don't cross page boundaries */
4803 count = min(count, (unsigned int)PAGE_SIZE - offset);
4804
7282aa4b
AL
4805 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4806
91b8b313
AL
4807 if (PageHighMem(page)) {
4808 unsigned long flags;
4809
a6b2c5d4 4810 /* FIXME: use bounce buffer */
91b8b313
AL
4811 local_irq_save(flags);
4812 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4813
91b8b313 4814 /* do the actual data transfer */
a6b2c5d4 4815 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4816
91b8b313
AL
4817 kunmap_atomic(buf, KM_IRQ0);
4818 local_irq_restore(flags);
4819 } else {
4820 buf = page_address(page);
a6b2c5d4 4821 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4822 }
1da177e4
LT
4823
4824 bytes -= count;
4825 qc->curbytes += count;
4826 qc->cursg_ofs += count;
4827
32529e01 4828 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4829 qc->cursg++;
4830 qc->cursg_ofs = 0;
4831 }
4832
563a6e1f 4833 if (bytes)
1da177e4 4834 goto next_sg;
1da177e4
LT
4835}
4836
6ae4cfb5
AL
4837/**
4838 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4839 * @qc: Command on going
4840 *
4841 * Transfer Transfer data from/to the ATAPI device.
4842 *
4843 * LOCKING:
4844 * Inherited from caller.
6ae4cfb5
AL
4845 */
4846
1da177e4
LT
4847static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4848{
4849 struct ata_port *ap = qc->ap;
4850 struct ata_device *dev = qc->dev;
4851 unsigned int ireason, bc_lo, bc_hi, bytes;
4852 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4853
eec4c3f3
AL
4854 /* Abuse qc->result_tf for temp storage of intermediate TF
4855 * here to save some kernel stack usage.
4856 * For normal completion, qc->result_tf is not relevant. For
4857 * error, qc->result_tf is later overwritten by ata_qc_complete().
4858 * So, the correctness of qc->result_tf is not affected.
4859 */
4860 ap->ops->tf_read(ap, &qc->result_tf);
4861 ireason = qc->result_tf.nsect;
4862 bc_lo = qc->result_tf.lbam;
4863 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4864 bytes = (bc_hi << 8) | bc_lo;
4865
4866 /* shall be cleared to zero, indicating xfer of data */
4867 if (ireason & (1 << 0))
4868 goto err_out;
4869
4870 /* make sure transfer direction matches expected */
4871 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4872 if (do_write != i_write)
4873 goto err_out;
4874
44877b4e 4875 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4876
1da177e4 4877 __atapi_pio_bytes(qc, bytes);
4cc980b3 4878 ata_altstatus(ap); /* flush */
1da177e4
LT
4879
4880 return;
4881
4882err_out:
f15a1daf 4883 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4884 qc->err_mask |= AC_ERR_HSM;
14be71f4 4885 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4886}
4887
4888/**
c234fb00
AL
4889 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4890 * @ap: the target ata_port
4891 * @qc: qc on going
1da177e4 4892 *
c234fb00
AL
4893 * RETURNS:
4894 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4895 */
c234fb00
AL
4896
4897static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4898{
c234fb00
AL
4899 if (qc->tf.flags & ATA_TFLAG_POLLING)
4900 return 1;
1da177e4 4901
c234fb00
AL
4902 if (ap->hsm_task_state == HSM_ST_FIRST) {
4903 if (qc->tf.protocol == ATA_PROT_PIO &&
4904 (qc->tf.flags & ATA_TFLAG_WRITE))
4905 return 1;
1da177e4 4906
c234fb00
AL
4907 if (is_atapi_taskfile(&qc->tf) &&
4908 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4909 return 1;
fe79e683
AL
4910 }
4911
c234fb00
AL
4912 return 0;
4913}
1da177e4 4914
c17ea20d
TH
4915/**
4916 * ata_hsm_qc_complete - finish a qc running on standard HSM
4917 * @qc: Command to complete
4918 * @in_wq: 1 if called from workqueue, 0 otherwise
4919 *
4920 * Finish @qc which is running on standard HSM.
4921 *
4922 * LOCKING:
cca3974e 4923 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4924 * Otherwise, none on entry and grabs host lock.
4925 */
4926static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4927{
4928 struct ata_port *ap = qc->ap;
4929 unsigned long flags;
4930
4931 if (ap->ops->error_handler) {
4932 if (in_wq) {
ba6a1308 4933 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4934
cca3974e
JG
4935 /* EH might have kicked in while host lock is
4936 * released.
c17ea20d
TH
4937 */
4938 qc = ata_qc_from_tag(ap, qc->tag);
4939 if (qc) {
4940 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4941 ap->ops->irq_on(ap);
c17ea20d
TH
4942 ata_qc_complete(qc);
4943 } else
4944 ata_port_freeze(ap);
4945 }
4946
ba6a1308 4947 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4948 } else {
4949 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4950 ata_qc_complete(qc);
4951 else
4952 ata_port_freeze(ap);
4953 }
4954 } else {
4955 if (in_wq) {
ba6a1308 4956 spin_lock_irqsave(ap->lock, flags);
83625006 4957 ap->ops->irq_on(ap);
c17ea20d 4958 ata_qc_complete(qc);
ba6a1308 4959 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4960 } else
4961 ata_qc_complete(qc);
4962 }
4963}
4964
bb5cb290
AL
4965/**
4966 * ata_hsm_move - move the HSM to the next state.
4967 * @ap: the target ata_port
4968 * @qc: qc on going
4969 * @status: current device status
4970 * @in_wq: 1 if called from workqueue, 0 otherwise
4971 *
4972 * RETURNS:
4973 * 1 when poll next status needed, 0 otherwise.
4974 */
9a1004d0
TH
4975int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4976 u8 status, int in_wq)
e2cec771 4977{
bb5cb290
AL
4978 unsigned long flags = 0;
4979 int poll_next;
4980
6912ccd5
AL
4981 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4982
bb5cb290
AL
4983 /* Make sure ata_qc_issue_prot() does not throw things
4984 * like DMA polling into the workqueue. Notice that
4985 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4986 */
c234fb00 4987 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4988
e2cec771 4989fsm_start:
999bb6f4 4990 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4991 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4992
e2cec771
AL
4993 switch (ap->hsm_task_state) {
4994 case HSM_ST_FIRST:
bb5cb290
AL
4995 /* Send first data block or PACKET CDB */
4996
4997 /* If polling, we will stay in the work queue after
4998 * sending the data. Otherwise, interrupt handler
4999 * takes over after sending the data.
5000 */
5001 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5002
e2cec771 5003 /* check device status */
3655d1d3
AL
5004 if (unlikely((status & ATA_DRQ) == 0)) {
5005 /* handle BSY=0, DRQ=0 as error */
5006 if (likely(status & (ATA_ERR | ATA_DF)))
5007 /* device stops HSM for abort/error */
5008 qc->err_mask |= AC_ERR_DEV;
5009 else
5010 /* HSM violation. Let EH handle this */
5011 qc->err_mask |= AC_ERR_HSM;
5012
14be71f4 5013 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5014 goto fsm_start;
1da177e4
LT
5015 }
5016
71601958
AL
5017 /* Device should not ask for data transfer (DRQ=1)
5018 * when it finds something wrong.
eee6c32f
AL
5019 * We ignore DRQ here and stop the HSM by
5020 * changing hsm_task_state to HSM_ST_ERR and
5021 * let the EH abort the command or reset the device.
71601958
AL
5022 */
5023 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5024 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5025 "error, dev_stat 0x%X\n", status);
3655d1d3 5026 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5027 ap->hsm_task_state = HSM_ST_ERR;
5028 goto fsm_start;
71601958 5029 }
1da177e4 5030
bb5cb290
AL
5031 /* Send the CDB (atapi) or the first data block (ata pio out).
5032 * During the state transition, interrupt handler shouldn't
5033 * be invoked before the data transfer is complete and
5034 * hsm_task_state is changed. Hence, the following locking.
5035 */
5036 if (in_wq)
ba6a1308 5037 spin_lock_irqsave(ap->lock, flags);
1da177e4 5038
bb5cb290
AL
5039 if (qc->tf.protocol == ATA_PROT_PIO) {
5040 /* PIO data out protocol.
5041 * send first data block.
5042 */
0565c26d 5043
bb5cb290
AL
5044 /* ata_pio_sectors() might change the state
5045 * to HSM_ST_LAST. so, the state is changed here
5046 * before ata_pio_sectors().
5047 */
5048 ap->hsm_task_state = HSM_ST;
5049 ata_pio_sectors(qc);
bb5cb290
AL
5050 } else
5051 /* send CDB */
5052 atapi_send_cdb(ap, qc);
5053
5054 if (in_wq)
ba6a1308 5055 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5056
5057 /* if polling, ata_pio_task() handles the rest.
5058 * otherwise, interrupt handler takes over from here.
5059 */
e2cec771 5060 break;
1c848984 5061
e2cec771
AL
5062 case HSM_ST:
5063 /* complete command or read/write the data register */
5064 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5065 /* ATAPI PIO protocol */
5066 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5067 /* No more data to transfer or device error.
5068 * Device error will be tagged in HSM_ST_LAST.
5069 */
e2cec771
AL
5070 ap->hsm_task_state = HSM_ST_LAST;
5071 goto fsm_start;
5072 }
1da177e4 5073
71601958
AL
5074 /* Device should not ask for data transfer (DRQ=1)
5075 * when it finds something wrong.
eee6c32f
AL
5076 * We ignore DRQ here and stop the HSM by
5077 * changing hsm_task_state to HSM_ST_ERR and
5078 * let the EH abort the command or reset the device.
71601958
AL
5079 */
5080 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5081 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5082 "device error, dev_stat 0x%X\n",
5083 status);
3655d1d3 5084 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5085 ap->hsm_task_state = HSM_ST_ERR;
5086 goto fsm_start;
71601958 5087 }
1da177e4 5088
e2cec771 5089 atapi_pio_bytes(qc);
7fb6ec28 5090
e2cec771
AL
5091 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5092 /* bad ireason reported by device */
5093 goto fsm_start;
1da177e4 5094
e2cec771
AL
5095 } else {
5096 /* ATA PIO protocol */
5097 if (unlikely((status & ATA_DRQ) == 0)) {
5098 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5099 if (likely(status & (ATA_ERR | ATA_DF)))
5100 /* device stops HSM for abort/error */
5101 qc->err_mask |= AC_ERR_DEV;
5102 else
55a8e2c8
TH
5103 /* HSM violation. Let EH handle this.
5104 * Phantom devices also trigger this
5105 * condition. Mark hint.
5106 */
5107 qc->err_mask |= AC_ERR_HSM |
5108 AC_ERR_NODEV_HINT;
3655d1d3 5109
e2cec771
AL
5110 ap->hsm_task_state = HSM_ST_ERR;
5111 goto fsm_start;
5112 }
1da177e4 5113
eee6c32f
AL
5114 /* For PIO reads, some devices may ask for
5115 * data transfer (DRQ=1) alone with ERR=1.
5116 * We respect DRQ here and transfer one
5117 * block of junk data before changing the
5118 * hsm_task_state to HSM_ST_ERR.
5119 *
5120 * For PIO writes, ERR=1 DRQ=1 doesn't make
5121 * sense since the data block has been
5122 * transferred to the device.
71601958
AL
5123 */
5124 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5125 /* data might be corrputed */
5126 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5127
5128 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5129 ata_pio_sectors(qc);
eee6c32f
AL
5130 status = ata_wait_idle(ap);
5131 }
5132
3655d1d3
AL
5133 if (status & (ATA_BUSY | ATA_DRQ))
5134 qc->err_mask |= AC_ERR_HSM;
5135
eee6c32f
AL
5136 /* ata_pio_sectors() might change the
5137 * state to HSM_ST_LAST. so, the state
5138 * is changed after ata_pio_sectors().
5139 */
5140 ap->hsm_task_state = HSM_ST_ERR;
5141 goto fsm_start;
71601958
AL
5142 }
5143
e2cec771
AL
5144 ata_pio_sectors(qc);
5145
5146 if (ap->hsm_task_state == HSM_ST_LAST &&
5147 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5148 /* all data read */
52a32205 5149 status = ata_wait_idle(ap);
e2cec771
AL
5150 goto fsm_start;
5151 }
5152 }
5153
bb5cb290 5154 poll_next = 1;
1da177e4
LT
5155 break;
5156
14be71f4 5157 case HSM_ST_LAST:
6912ccd5
AL
5158 if (unlikely(!ata_ok(status))) {
5159 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5160 ap->hsm_task_state = HSM_ST_ERR;
5161 goto fsm_start;
5162 }
5163
5164 /* no more data to transfer */
4332a771 5165 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5166 ap->print_id, qc->dev->devno, status);
e2cec771 5167
6912ccd5
AL
5168 WARN_ON(qc->err_mask);
5169
e2cec771 5170 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5171
e2cec771 5172 /* complete taskfile transaction */
c17ea20d 5173 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5174
5175 poll_next = 0;
1da177e4
LT
5176 break;
5177
14be71f4 5178 case HSM_ST_ERR:
e2cec771
AL
5179 /* make sure qc->err_mask is available to
5180 * know what's wrong and recover
5181 */
5182 WARN_ON(qc->err_mask == 0);
5183
5184 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5185
999bb6f4 5186 /* complete taskfile transaction */
c17ea20d 5187 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5188
5189 poll_next = 0;
e2cec771
AL
5190 break;
5191 default:
bb5cb290 5192 poll_next = 0;
6912ccd5 5193 BUG();
1da177e4
LT
5194 }
5195
bb5cb290 5196 return poll_next;
1da177e4
LT
5197}
5198
65f27f38 5199static void ata_pio_task(struct work_struct *work)
8061f5f0 5200{
65f27f38
DH
5201 struct ata_port *ap =
5202 container_of(work, struct ata_port, port_task.work);
5203 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5204 u8 status;
a1af3734 5205 int poll_next;
8061f5f0 5206
7fb6ec28 5207fsm_start:
a1af3734 5208 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5209
a1af3734
AL
5210 /*
5211 * This is purely heuristic. This is a fast path.
5212 * Sometimes when we enter, BSY will be cleared in
5213 * a chk-status or two. If not, the drive is probably seeking
5214 * or something. Snooze for a couple msecs, then
5215 * chk-status again. If still busy, queue delayed work.
5216 */
5217 status = ata_busy_wait(ap, ATA_BUSY, 5);
5218 if (status & ATA_BUSY) {
5219 msleep(2);
5220 status = ata_busy_wait(ap, ATA_BUSY, 10);
5221 if (status & ATA_BUSY) {
31ce6dae 5222 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5223 return;
5224 }
8061f5f0
TH
5225 }
5226
a1af3734
AL
5227 /* move the HSM */
5228 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5229
a1af3734
AL
5230 /* another command or interrupt handler
5231 * may be running at this point.
5232 */
5233 if (poll_next)
7fb6ec28 5234 goto fsm_start;
8061f5f0
TH
5235}
5236
1da177e4
LT
5237/**
5238 * ata_qc_new - Request an available ATA command, for queueing
5239 * @ap: Port associated with device @dev
5240 * @dev: Device from whom we request an available command structure
5241 *
5242 * LOCKING:
0cba632b 5243 * None.
1da177e4
LT
5244 */
5245
5246static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5247{
5248 struct ata_queued_cmd *qc = NULL;
5249 unsigned int i;
5250
e3180499 5251 /* no command while frozen */
b51e9e5d 5252 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5253 return NULL;
5254
2ab7db1f
TH
5255 /* the last tag is reserved for internal command. */
5256 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5257 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5258 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5259 break;
5260 }
5261
5262 if (qc)
5263 qc->tag = i;
5264
5265 return qc;
5266}
5267
5268/**
5269 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5270 * @dev: Device from whom we request an available command structure
5271 *
5272 * LOCKING:
0cba632b 5273 * None.
1da177e4
LT
5274 */
5275
3373efd8 5276struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5277{
9af5c9c9 5278 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5279 struct ata_queued_cmd *qc;
5280
5281 qc = ata_qc_new(ap);
5282 if (qc) {
1da177e4
LT
5283 qc->scsicmd = NULL;
5284 qc->ap = ap;
5285 qc->dev = dev;
1da177e4 5286
2c13b7ce 5287 ata_qc_reinit(qc);
1da177e4
LT
5288 }
5289
5290 return qc;
5291}
5292
1da177e4
LT
5293/**
5294 * ata_qc_free - free unused ata_queued_cmd
5295 * @qc: Command to complete
5296 *
5297 * Designed to free unused ata_queued_cmd object
5298 * in case something prevents using it.
5299 *
5300 * LOCKING:
cca3974e 5301 * spin_lock_irqsave(host lock)
1da177e4
LT
5302 */
5303void ata_qc_free(struct ata_queued_cmd *qc)
5304{
4ba946e9
TH
5305 struct ata_port *ap = qc->ap;
5306 unsigned int tag;
5307
a4631474 5308 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5309
4ba946e9
TH
5310 qc->flags = 0;
5311 tag = qc->tag;
5312 if (likely(ata_tag_valid(tag))) {
4ba946e9 5313 qc->tag = ATA_TAG_POISON;
6cec4a39 5314 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5315 }
1da177e4
LT
5316}
5317
76014427 5318void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5319{
dedaf2b0 5320 struct ata_port *ap = qc->ap;
9af5c9c9 5321 struct ata_link *link = qc->dev->link;
dedaf2b0 5322
a4631474
TH
5323 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5324 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5325
5326 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5327 ata_sg_clean(qc);
5328
7401abf2 5329 /* command should be marked inactive atomically with qc completion */
dedaf2b0 5330 if (qc->tf.protocol == ATA_PROT_NCQ)
9af5c9c9 5331 link->sactive &= ~(1 << qc->tag);
dedaf2b0 5332 else
9af5c9c9 5333 link->active_tag = ATA_TAG_POISON;
7401abf2 5334
3f3791d3
AL
5335 /* atapi: mark qc as inactive to prevent the interrupt handler
5336 * from completing the command twice later, before the error handler
5337 * is called. (when rc != 0 and atapi request sense is needed)
5338 */
5339 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5340 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5341
1da177e4 5342 /* call completion callback */
77853bf2 5343 qc->complete_fn(qc);
1da177e4
LT
5344}
5345
39599a53
TH
5346static void fill_result_tf(struct ata_queued_cmd *qc)
5347{
5348 struct ata_port *ap = qc->ap;
5349
39599a53 5350 qc->result_tf.flags = qc->tf.flags;
4742d54f 5351 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5352}
5353
f686bcb8
TH
5354/**
5355 * ata_qc_complete - Complete an active ATA command
5356 * @qc: Command to complete
5357 * @err_mask: ATA Status register contents
5358 *
5359 * Indicate to the mid and upper layers that an ATA
5360 * command has completed, with either an ok or not-ok status.
5361 *
5362 * LOCKING:
cca3974e 5363 * spin_lock_irqsave(host lock)
f686bcb8
TH
5364 */
5365void ata_qc_complete(struct ata_queued_cmd *qc)
5366{
5367 struct ata_port *ap = qc->ap;
5368
5369 /* XXX: New EH and old EH use different mechanisms to
5370 * synchronize EH with regular execution path.
5371 *
5372 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5373 * Normal execution path is responsible for not accessing a
5374 * failed qc. libata core enforces the rule by returning NULL
5375 * from ata_qc_from_tag() for failed qcs.
5376 *
5377 * Old EH depends on ata_qc_complete() nullifying completion
5378 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5379 * not synchronize with interrupt handler. Only PIO task is
5380 * taken care of.
5381 */
5382 if (ap->ops->error_handler) {
b51e9e5d 5383 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5384
5385 if (unlikely(qc->err_mask))
5386 qc->flags |= ATA_QCFLAG_FAILED;
5387
5388 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5389 if (!ata_tag_internal(qc->tag)) {
5390 /* always fill result TF for failed qc */
39599a53 5391 fill_result_tf(qc);
f686bcb8
TH
5392 ata_qc_schedule_eh(qc);
5393 return;
5394 }
5395 }
5396
5397 /* read result TF if requested */
5398 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5399 fill_result_tf(qc);
f686bcb8
TH
5400
5401 __ata_qc_complete(qc);
5402 } else {
5403 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5404 return;
5405
5406 /* read result TF if failed or requested */
5407 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5408 fill_result_tf(qc);
f686bcb8
TH
5409
5410 __ata_qc_complete(qc);
5411 }
5412}
5413
dedaf2b0
TH
5414/**
5415 * ata_qc_complete_multiple - Complete multiple qcs successfully
5416 * @ap: port in question
5417 * @qc_active: new qc_active mask
5418 * @finish_qc: LLDD callback invoked before completing a qc
5419 *
5420 * Complete in-flight commands. This functions is meant to be
5421 * called from low-level driver's interrupt routine to complete
5422 * requests normally. ap->qc_active and @qc_active is compared
5423 * and commands are completed accordingly.
5424 *
5425 * LOCKING:
cca3974e 5426 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5427 *
5428 * RETURNS:
5429 * Number of completed commands on success, -errno otherwise.
5430 */
5431int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5432 void (*finish_qc)(struct ata_queued_cmd *))
5433{
5434 int nr_done = 0;
5435 u32 done_mask;
5436 int i;
5437
5438 done_mask = ap->qc_active ^ qc_active;
5439
5440 if (unlikely(done_mask & qc_active)) {
5441 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5442 "(%08x->%08x)\n", ap->qc_active, qc_active);
5443 return -EINVAL;
5444 }
5445
5446 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5447 struct ata_queued_cmd *qc;
5448
5449 if (!(done_mask & (1 << i)))
5450 continue;
5451
5452 if ((qc = ata_qc_from_tag(ap, i))) {
5453 if (finish_qc)
5454 finish_qc(qc);
5455 ata_qc_complete(qc);
5456 nr_done++;
5457 }
5458 }
5459
5460 return nr_done;
5461}
5462
1da177e4
LT
5463static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5464{
5465 struct ata_port *ap = qc->ap;
5466
5467 switch (qc->tf.protocol) {
3dc1d881 5468 case ATA_PROT_NCQ:
1da177e4
LT
5469 case ATA_PROT_DMA:
5470 case ATA_PROT_ATAPI_DMA:
5471 return 1;
5472
5473 case ATA_PROT_ATAPI:
5474 case ATA_PROT_PIO:
1da177e4
LT
5475 if (ap->flags & ATA_FLAG_PIO_DMA)
5476 return 1;
5477
5478 /* fall through */
5479
5480 default:
5481 return 0;
5482 }
5483
5484 /* never reached */
5485}
5486
5487/**
5488 * ata_qc_issue - issue taskfile to device
5489 * @qc: command to issue to device
5490 *
5491 * Prepare an ATA command to submission to device.
5492 * This includes mapping the data into a DMA-able
5493 * area, filling in the S/G table, and finally
5494 * writing the taskfile to hardware, starting the command.
5495 *
5496 * LOCKING:
cca3974e 5497 * spin_lock_irqsave(host lock)
1da177e4 5498 */
8e0e694a 5499void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5500{
5501 struct ata_port *ap = qc->ap;
9af5c9c9 5502 struct ata_link *link = qc->dev->link;
1da177e4 5503
dedaf2b0
TH
5504 /* Make sure only one non-NCQ command is outstanding. The
5505 * check is skipped for old EH because it reuses active qc to
5506 * request ATAPI sense.
5507 */
9af5c9c9 5508 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5509
5510 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9
TH
5511 WARN_ON(link->sactive & (1 << qc->tag));
5512 link->sactive |= 1 << qc->tag;
dedaf2b0 5513 } else {
9af5c9c9
TH
5514 WARN_ON(link->sactive);
5515 link->active_tag = qc->tag;
dedaf2b0
TH
5516 }
5517
e4a70e76 5518 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5519 ap->qc_active |= 1 << qc->tag;
e4a70e76 5520
1da177e4
LT
5521 if (ata_should_dma_map(qc)) {
5522 if (qc->flags & ATA_QCFLAG_SG) {
5523 if (ata_sg_setup(qc))
8e436af9 5524 goto sg_err;
1da177e4
LT
5525 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5526 if (ata_sg_setup_one(qc))
8e436af9 5527 goto sg_err;
1da177e4
LT
5528 }
5529 } else {
5530 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5531 }
5532
5533 ap->ops->qc_prep(qc);
5534
8e0e694a
TH
5535 qc->err_mask |= ap->ops->qc_issue(qc);
5536 if (unlikely(qc->err_mask))
5537 goto err;
5538 return;
1da177e4 5539
8e436af9
TH
5540sg_err:
5541 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5542 qc->err_mask |= AC_ERR_SYSTEM;
5543err:
5544 ata_qc_complete(qc);
1da177e4
LT
5545}
5546
5547/**
5548 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5549 * @qc: command to issue to device
5550 *
5551 * Using various libata functions and hooks, this function
5552 * starts an ATA command. ATA commands are grouped into
5553 * classes called "protocols", and issuing each type of protocol
5554 * is slightly different.
5555 *
0baab86b
EF
5556 * May be used as the qc_issue() entry in ata_port_operations.
5557 *
1da177e4 5558 * LOCKING:
cca3974e 5559 * spin_lock_irqsave(host lock)
1da177e4
LT
5560 *
5561 * RETURNS:
9a3d9eb0 5562 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5563 */
5564
9a3d9eb0 5565unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5566{
5567 struct ata_port *ap = qc->ap;
5568
e50362ec
AL
5569 /* Use polling pio if the LLD doesn't handle
5570 * interrupt driven pio and atapi CDB interrupt.
5571 */
5572 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5573 switch (qc->tf.protocol) {
5574 case ATA_PROT_PIO:
e3472cbe 5575 case ATA_PROT_NODATA:
e50362ec
AL
5576 case ATA_PROT_ATAPI:
5577 case ATA_PROT_ATAPI_NODATA:
5578 qc->tf.flags |= ATA_TFLAG_POLLING;
5579 break;
5580 case ATA_PROT_ATAPI_DMA:
5581 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5582 /* see ata_dma_blacklisted() */
e50362ec
AL
5583 BUG();
5584 break;
5585 default:
5586 break;
5587 }
5588 }
5589
312f7da2 5590 /* select the device */
1da177e4
LT
5591 ata_dev_select(ap, qc->dev->devno, 1, 0);
5592
312f7da2 5593 /* start the command */
1da177e4
LT
5594 switch (qc->tf.protocol) {
5595 case ATA_PROT_NODATA:
312f7da2
AL
5596 if (qc->tf.flags & ATA_TFLAG_POLLING)
5597 ata_qc_set_polling(qc);
5598
e5338254 5599 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5600 ap->hsm_task_state = HSM_ST_LAST;
5601
5602 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5603 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5604
1da177e4
LT
5605 break;
5606
5607 case ATA_PROT_DMA:
587005de 5608 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5609
1da177e4
LT
5610 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5611 ap->ops->bmdma_setup(qc); /* set up bmdma */
5612 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5613 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5614 break;
5615
312f7da2
AL
5616 case ATA_PROT_PIO:
5617 if (qc->tf.flags & ATA_TFLAG_POLLING)
5618 ata_qc_set_polling(qc);
1da177e4 5619
e5338254 5620 ata_tf_to_host(ap, &qc->tf);
312f7da2 5621
54f00389
AL
5622 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5623 /* PIO data out protocol */
5624 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5625 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5626
5627 /* always send first data block using
e27486db 5628 * the ata_pio_task() codepath.
54f00389 5629 */
312f7da2 5630 } else {
54f00389
AL
5631 /* PIO data in protocol */
5632 ap->hsm_task_state = HSM_ST;
5633
5634 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5635 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5636
5637 /* if polling, ata_pio_task() handles the rest.
5638 * otherwise, interrupt handler takes over from here.
5639 */
312f7da2
AL
5640 }
5641
1da177e4
LT
5642 break;
5643
1da177e4 5644 case ATA_PROT_ATAPI:
1da177e4 5645 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5646 if (qc->tf.flags & ATA_TFLAG_POLLING)
5647 ata_qc_set_polling(qc);
5648
e5338254 5649 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5650
312f7da2
AL
5651 ap->hsm_task_state = HSM_ST_FIRST;
5652
5653 /* send cdb by polling if no cdb interrupt */
5654 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5655 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5656 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5657 break;
5658
5659 case ATA_PROT_ATAPI_DMA:
587005de 5660 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5661
1da177e4
LT
5662 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5663 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5664 ap->hsm_task_state = HSM_ST_FIRST;
5665
5666 /* send cdb by polling if no cdb interrupt */
5667 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5668 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5669 break;
5670
5671 default:
5672 WARN_ON(1);
9a3d9eb0 5673 return AC_ERR_SYSTEM;
1da177e4
LT
5674 }
5675
5676 return 0;
5677}
5678
1da177e4
LT
5679/**
5680 * ata_host_intr - Handle host interrupt for given (port, task)
5681 * @ap: Port on which interrupt arrived (possibly...)
5682 * @qc: Taskfile currently active in engine
5683 *
5684 * Handle host interrupt for given queued command. Currently,
5685 * only DMA interrupts are handled. All other commands are
5686 * handled via polling with interrupts disabled (nIEN bit).
5687 *
5688 * LOCKING:
cca3974e 5689 * spin_lock_irqsave(host lock)
1da177e4
LT
5690 *
5691 * RETURNS:
5692 * One if interrupt was handled, zero if not (shared irq).
5693 */
5694
5695inline unsigned int ata_host_intr (struct ata_port *ap,
5696 struct ata_queued_cmd *qc)
5697{
9af5c9c9 5698 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5699 u8 status, host_stat = 0;
1da177e4 5700
312f7da2 5701 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5702 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5703
312f7da2
AL
5704 /* Check whether we are expecting interrupt in this state */
5705 switch (ap->hsm_task_state) {
5706 case HSM_ST_FIRST:
6912ccd5
AL
5707 /* Some pre-ATAPI-4 devices assert INTRQ
5708 * at this state when ready to receive CDB.
5709 */
1da177e4 5710
312f7da2
AL
5711 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5712 * The flag was turned on only for atapi devices.
5713 * No need to check is_atapi_taskfile(&qc->tf) again.
5714 */
5715 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5716 goto idle_irq;
1da177e4 5717 break;
312f7da2
AL
5718 case HSM_ST_LAST:
5719 if (qc->tf.protocol == ATA_PROT_DMA ||
5720 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5721 /* check status of DMA engine */
5722 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5723 VPRINTK("ata%u: host_stat 0x%X\n",
5724 ap->print_id, host_stat);
312f7da2
AL
5725
5726 /* if it's not our irq... */
5727 if (!(host_stat & ATA_DMA_INTR))
5728 goto idle_irq;
5729
5730 /* before we do anything else, clear DMA-Start bit */
5731 ap->ops->bmdma_stop(qc);
a4f16610
AL
5732
5733 if (unlikely(host_stat & ATA_DMA_ERR)) {
5734 /* error when transfering data to/from memory */
5735 qc->err_mask |= AC_ERR_HOST_BUS;
5736 ap->hsm_task_state = HSM_ST_ERR;
5737 }
312f7da2
AL
5738 }
5739 break;
5740 case HSM_ST:
5741 break;
1da177e4
LT
5742 default:
5743 goto idle_irq;
5744 }
5745
312f7da2
AL
5746 /* check altstatus */
5747 status = ata_altstatus(ap);
5748 if (status & ATA_BUSY)
5749 goto idle_irq;
1da177e4 5750
312f7da2
AL
5751 /* check main status, clearing INTRQ */
5752 status = ata_chk_status(ap);
5753 if (unlikely(status & ATA_BUSY))
5754 goto idle_irq;
1da177e4 5755
312f7da2
AL
5756 /* ack bmdma irq events */
5757 ap->ops->irq_clear(ap);
1da177e4 5758
bb5cb290 5759 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5760
5761 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5762 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5763 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5764
1da177e4
LT
5765 return 1; /* irq handled */
5766
5767idle_irq:
5768 ap->stats.idle_irq++;
5769
5770#ifdef ATA_IRQ_TRAP
5771 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
5772 ata_chk_status(ap);
5773 ap->ops->irq_clear(ap);
f15a1daf 5774 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5775 return 1;
1da177e4
LT
5776 }
5777#endif
5778 return 0; /* irq not handled */
5779}
5780
5781/**
5782 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5783 * @irq: irq line (unused)
cca3974e 5784 * @dev_instance: pointer to our ata_host information structure
1da177e4 5785 *
0cba632b
JG
5786 * Default interrupt handler for PCI IDE devices. Calls
5787 * ata_host_intr() for each port that is not disabled.
5788 *
1da177e4 5789 * LOCKING:
cca3974e 5790 * Obtains host lock during operation.
1da177e4
LT
5791 *
5792 * RETURNS:
0cba632b 5793 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5794 */
5795
7d12e780 5796irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5797{
cca3974e 5798 struct ata_host *host = dev_instance;
1da177e4
LT
5799 unsigned int i;
5800 unsigned int handled = 0;
5801 unsigned long flags;
5802
5803 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5804 spin_lock_irqsave(&host->lock, flags);
1da177e4 5805
cca3974e 5806 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5807 struct ata_port *ap;
5808
cca3974e 5809 ap = host->ports[i];
c1389503 5810 if (ap &&
029f5468 5811 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5812 struct ata_queued_cmd *qc;
5813
9af5c9c9 5814 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 5815 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5816 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5817 handled |= ata_host_intr(ap, qc);
5818 }
5819 }
5820
cca3974e 5821 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5822
5823 return IRQ_RETVAL(handled);
5824}
5825
34bf2170
TH
5826/**
5827 * sata_scr_valid - test whether SCRs are accessible
936fd732 5828 * @link: ATA link to test SCR accessibility for
34bf2170 5829 *
936fd732 5830 * Test whether SCRs are accessible for @link.
34bf2170
TH
5831 *
5832 * LOCKING:
5833 * None.
5834 *
5835 * RETURNS:
5836 * 1 if SCRs are accessible, 0 otherwise.
5837 */
936fd732 5838int sata_scr_valid(struct ata_link *link)
34bf2170 5839{
936fd732
TH
5840 struct ata_port *ap = link->ap;
5841
a16abc0b 5842 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5843}
5844
5845/**
5846 * sata_scr_read - read SCR register of the specified port
936fd732 5847 * @link: ATA link to read SCR for
34bf2170
TH
5848 * @reg: SCR to read
5849 * @val: Place to store read value
5850 *
936fd732 5851 * Read SCR register @reg of @link into *@val. This function is
34bf2170
TH
5852 * guaranteed to succeed if the cable type of the port is SATA
5853 * and the port implements ->scr_read.
5854 *
5855 * LOCKING:
5856 * None.
5857 *
5858 * RETURNS:
5859 * 0 on success, negative errno on failure.
5860 */
936fd732 5861int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5862{
936fd732
TH
5863 struct ata_port *ap = link->ap;
5864
5865 if (sata_scr_valid(link))
da3dbb17 5866 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5867 return -EOPNOTSUPP;
5868}
5869
5870/**
5871 * sata_scr_write - write SCR register of the specified port
936fd732 5872 * @link: ATA link to write SCR for
34bf2170
TH
5873 * @reg: SCR to write
5874 * @val: value to write
5875 *
936fd732 5876 * Write @val to SCR register @reg of @link. This function is
34bf2170
TH
5877 * guaranteed to succeed if the cable type of the port is SATA
5878 * and the port implements ->scr_read.
5879 *
5880 * LOCKING:
5881 * None.
5882 *
5883 * RETURNS:
5884 * 0 on success, negative errno on failure.
5885 */
936fd732 5886int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5887{
936fd732
TH
5888 struct ata_port *ap = link->ap;
5889
5890 if (sata_scr_valid(link))
da3dbb17 5891 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5892 return -EOPNOTSUPP;
5893}
5894
5895/**
5896 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5897 * @link: ATA link to write SCR for
34bf2170
TH
5898 * @reg: SCR to write
5899 * @val: value to write
5900 *
5901 * This function is identical to sata_scr_write() except that this
5902 * function performs flush after writing to the register.
5903 *
5904 * LOCKING:
5905 * None.
5906 *
5907 * RETURNS:
5908 * 0 on success, negative errno on failure.
5909 */
936fd732 5910int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5911{
936fd732 5912 struct ata_port *ap = link->ap;
da3dbb17
TH
5913 int rc;
5914
936fd732 5915 if (sata_scr_valid(link)) {
da3dbb17
TH
5916 rc = ap->ops->scr_write(ap, reg, val);
5917 if (rc == 0)
5918 rc = ap->ops->scr_read(ap, reg, &val);
5919 return rc;
34bf2170
TH
5920 }
5921 return -EOPNOTSUPP;
5922}
5923
5924/**
936fd732
TH
5925 * ata_link_online - test whether the given link is online
5926 * @link: ATA link to test
34bf2170 5927 *
936fd732
TH
5928 * Test whether @link is online. Note that this function returns
5929 * 0 if online status of @link cannot be obtained, so
5930 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5931 *
5932 * LOCKING:
5933 * None.
5934 *
5935 * RETURNS:
5936 * 1 if the port online status is available and online.
5937 */
936fd732 5938int ata_link_online(struct ata_link *link)
34bf2170
TH
5939{
5940 u32 sstatus;
5941
936fd732
TH
5942 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5943 (sstatus & 0xf) == 0x3)
34bf2170
TH
5944 return 1;
5945 return 0;
5946}
5947
5948/**
936fd732
TH
5949 * ata_link_offline - test whether the given link is offline
5950 * @link: ATA link to test
34bf2170 5951 *
936fd732
TH
5952 * Test whether @link is offline. Note that this function
5953 * returns 0 if offline status of @link cannot be obtained, so
5954 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5955 *
5956 * LOCKING:
5957 * None.
5958 *
5959 * RETURNS:
5960 * 1 if the port offline status is available and offline.
5961 */
936fd732 5962int ata_link_offline(struct ata_link *link)
34bf2170
TH
5963{
5964 u32 sstatus;
5965
936fd732
TH
5966 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5967 (sstatus & 0xf) != 0x3)
34bf2170
TH
5968 return 1;
5969 return 0;
5970}
0baab86b 5971
77b08fb5 5972int ata_flush_cache(struct ata_device *dev)
9b847548 5973{
977e6b9f 5974 unsigned int err_mask;
9b847548
JA
5975 u8 cmd;
5976
5977 if (!ata_try_flush_cache(dev))
5978 return 0;
5979
6fc49adb 5980 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5981 cmd = ATA_CMD_FLUSH_EXT;
5982 else
5983 cmd = ATA_CMD_FLUSH;
5984
4f34337b
AC
5985 /* This is wrong. On a failed flush we get back the LBA of the lost
5986 sector and we should (assuming it wasn't aborted as unknown) issue
5987 a further flush command to continue the writeback until it
5988 does not error */
977e6b9f
TH
5989 err_mask = ata_do_simple_cmd(dev, cmd);
5990 if (err_mask) {
5991 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5992 return -EIO;
5993 }
5994
5995 return 0;
9b847548
JA
5996}
5997
6ffa01d8 5998#ifdef CONFIG_PM
cca3974e
JG
5999static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6000 unsigned int action, unsigned int ehi_flags,
6001 int wait)
500530f6
TH
6002{
6003 unsigned long flags;
6004 int i, rc;
6005
cca3974e
JG
6006 for (i = 0; i < host->n_ports; i++) {
6007 struct ata_port *ap = host->ports[i];
e3667ebf 6008 struct ata_link *link;
500530f6
TH
6009
6010 /* Previous resume operation might still be in
6011 * progress. Wait for PM_PENDING to clear.
6012 */
6013 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6014 ata_port_wait_eh(ap);
6015 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6016 }
6017
6018 /* request PM ops to EH */
6019 spin_lock_irqsave(ap->lock, flags);
6020
6021 ap->pm_mesg = mesg;
6022 if (wait) {
6023 rc = 0;
6024 ap->pm_result = &rc;
6025 }
6026
6027 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6028 __ata_port_for_each_link(link, ap) {
6029 link->eh_info.action |= action;
6030 link->eh_info.flags |= ehi_flags;
6031 }
500530f6
TH
6032
6033 ata_port_schedule_eh(ap);
6034
6035 spin_unlock_irqrestore(ap->lock, flags);
6036
6037 /* wait and check result */
6038 if (wait) {
6039 ata_port_wait_eh(ap);
6040 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6041 if (rc)
6042 return rc;
6043 }
6044 }
6045
6046 return 0;
6047}
6048
6049/**
cca3974e
JG
6050 * ata_host_suspend - suspend host
6051 * @host: host to suspend
500530f6
TH
6052 * @mesg: PM message
6053 *
cca3974e 6054 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6055 * function requests EH to perform PM operations and waits for EH
6056 * to finish.
6057 *
6058 * LOCKING:
6059 * Kernel thread context (may sleep).
6060 *
6061 * RETURNS:
6062 * 0 on success, -errno on failure.
6063 */
cca3974e 6064int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6065{
9666f400 6066 int rc;
500530f6 6067
cca3974e 6068 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6069 if (rc == 0)
6070 host->dev->power.power_state = mesg;
500530f6
TH
6071 return rc;
6072}
6073
6074/**
cca3974e
JG
6075 * ata_host_resume - resume host
6076 * @host: host to resume
500530f6 6077 *
cca3974e 6078 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6079 * function requests EH to perform PM operations and returns.
6080 * Note that all resume operations are performed parallely.
6081 *
6082 * LOCKING:
6083 * Kernel thread context (may sleep).
6084 */
cca3974e 6085void ata_host_resume(struct ata_host *host)
500530f6 6086{
cca3974e
JG
6087 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6088 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6089 host->dev->power.power_state = PMSG_ON;
500530f6 6090}
6ffa01d8 6091#endif
500530f6 6092
c893a3ae
RD
6093/**
6094 * ata_port_start - Set port up for dma.
6095 * @ap: Port to initialize
6096 *
6097 * Called just after data structures for each port are
6098 * initialized. Allocates space for PRD table.
6099 *
6100 * May be used as the port_start() entry in ata_port_operations.
6101 *
6102 * LOCKING:
6103 * Inherited from caller.
6104 */
f0d36efd 6105int ata_port_start(struct ata_port *ap)
1da177e4 6106{
2f1f610b 6107 struct device *dev = ap->dev;
6037d6bb 6108 int rc;
1da177e4 6109
f0d36efd
TH
6110 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6111 GFP_KERNEL);
1da177e4
LT
6112 if (!ap->prd)
6113 return -ENOMEM;
6114
6037d6bb 6115 rc = ata_pad_alloc(ap, dev);
f0d36efd 6116 if (rc)
6037d6bb 6117 return rc;
1da177e4 6118
f0d36efd
TH
6119 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6120 (unsigned long long)ap->prd_dma);
1da177e4
LT
6121 return 0;
6122}
6123
3ef3b43d
TH
6124/**
6125 * ata_dev_init - Initialize an ata_device structure
6126 * @dev: Device structure to initialize
6127 *
6128 * Initialize @dev in preparation for probing.
6129 *
6130 * LOCKING:
6131 * Inherited from caller.
6132 */
6133void ata_dev_init(struct ata_device *dev)
6134{
9af5c9c9
TH
6135 struct ata_link *link = dev->link;
6136 struct ata_port *ap = link->ap;
72fa4b74
TH
6137 unsigned long flags;
6138
5a04bf4b 6139 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6140 link->sata_spd_limit = link->hw_sata_spd_limit;
6141 link->sata_spd = 0;
5a04bf4b 6142
72fa4b74
TH
6143 /* High bits of dev->flags are used to record warm plug
6144 * requests which occur asynchronously. Synchronize using
cca3974e 6145 * host lock.
72fa4b74 6146 */
ba6a1308 6147 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6148 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6149 dev->horkage = 0;
ba6a1308 6150 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6151
72fa4b74
TH
6152 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6153 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6154 dev->pio_mask = UINT_MAX;
6155 dev->mwdma_mask = UINT_MAX;
6156 dev->udma_mask = UINT_MAX;
6157}
6158
4fb37a25
TH
6159/**
6160 * ata_link_init - Initialize an ata_link structure
6161 * @ap: ATA port link is attached to
6162 * @link: Link structure to initialize
8989805d 6163 * @pmp: Port multiplier port number
4fb37a25
TH
6164 *
6165 * Initialize @link.
6166 *
6167 * LOCKING:
6168 * Kernel thread context (may sleep)
6169 */
8989805d 6170static void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6171{
6172 int i;
6173
6174 /* clear everything except for devices */
6175 memset(link, 0, offsetof(struct ata_link, device[0]));
6176
6177 link->ap = ap;
8989805d 6178 link->pmp = pmp;
4fb37a25
TH
6179 link->active_tag = ATA_TAG_POISON;
6180 link->hw_sata_spd_limit = UINT_MAX;
6181
6182 /* can't use iterator, ap isn't initialized yet */
6183 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6184 struct ata_device *dev = &link->device[i];
6185
6186 dev->link = link;
6187 dev->devno = dev - link->device;
6188 ata_dev_init(dev);
6189 }
6190}
6191
6192/**
6193 * sata_link_init_spd - Initialize link->sata_spd_limit
6194 * @link: Link to configure sata_spd_limit for
6195 *
6196 * Initialize @link->[hw_]sata_spd_limit to the currently
6197 * configured value.
6198 *
6199 * LOCKING:
6200 * Kernel thread context (may sleep).
6201 *
6202 * RETURNS:
6203 * 0 on success, -errno on failure.
6204 */
6205static int sata_link_init_spd(struct ata_link *link)
6206{
6207 u32 scontrol, spd;
6208 int rc;
6209
6210 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6211 if (rc)
6212 return rc;
6213
6214 spd = (scontrol >> 4) & 0xf;
6215 if (spd)
6216 link->hw_sata_spd_limit &= (1 << spd) - 1;
6217
6218 link->sata_spd_limit = link->hw_sata_spd_limit;
6219
6220 return 0;
6221}
6222
1da177e4 6223/**
f3187195
TH
6224 * ata_port_alloc - allocate and initialize basic ATA port resources
6225 * @host: ATA host this allocated port belongs to
1da177e4 6226 *
f3187195
TH
6227 * Allocate and initialize basic ATA port resources.
6228 *
6229 * RETURNS:
6230 * Allocate ATA port on success, NULL on failure.
0cba632b 6231 *
1da177e4 6232 * LOCKING:
f3187195 6233 * Inherited from calling layer (may sleep).
1da177e4 6234 */
f3187195 6235struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6236{
f3187195 6237 struct ata_port *ap;
1da177e4 6238
f3187195
TH
6239 DPRINTK("ENTER\n");
6240
6241 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6242 if (!ap)
6243 return NULL;
6244
f4d6d004 6245 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6246 ap->lock = &host->lock;
198e0fed 6247 ap->flags = ATA_FLAG_DISABLED;
f3187195 6248 ap->print_id = -1;
1da177e4 6249 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6250 ap->host = host;
f3187195 6251 ap->dev = host->dev;
1da177e4 6252 ap->last_ctl = 0xFF;
bd5d825c
BP
6253
6254#if defined(ATA_VERBOSE_DEBUG)
6255 /* turn on all debugging levels */
6256 ap->msg_enable = 0x00FF;
6257#elif defined(ATA_DEBUG)
6258 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6259#else
0dd4b21f 6260 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6261#endif
1da177e4 6262
65f27f38
DH
6263 INIT_DELAYED_WORK(&ap->port_task, NULL);
6264 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6265 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6266 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6267 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6268 init_timer_deferrable(&ap->fastdrain_timer);
6269 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6270 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6271
838df628 6272 ap->cbl = ATA_CBL_NONE;
838df628 6273
8989805d 6274 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6275
6276#ifdef ATA_IRQ_TRAP
6277 ap->stats.unhandled_irq = 1;
6278 ap->stats.idle_irq = 1;
6279#endif
1da177e4 6280 return ap;
1da177e4
LT
6281}
6282
f0d36efd
TH
6283static void ata_host_release(struct device *gendev, void *res)
6284{
6285 struct ata_host *host = dev_get_drvdata(gendev);
6286 int i;
6287
6288 for (i = 0; i < host->n_ports; i++) {
6289 struct ata_port *ap = host->ports[i];
6290
ecef7253
TH
6291 if (!ap)
6292 continue;
6293
6294 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6295 ap->ops->port_stop(ap);
f0d36efd
TH
6296 }
6297
ecef7253 6298 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6299 host->ops->host_stop(host);
1aa56cca 6300
1aa506e4
TH
6301 for (i = 0; i < host->n_ports; i++) {
6302 struct ata_port *ap = host->ports[i];
6303
4911487a
TH
6304 if (!ap)
6305 continue;
6306
6307 if (ap->scsi_host)
1aa506e4
TH
6308 scsi_host_put(ap->scsi_host);
6309
4911487a 6310 kfree(ap);
1aa506e4
TH
6311 host->ports[i] = NULL;
6312 }
6313
1aa56cca 6314 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6315}
6316
f3187195
TH
6317/**
6318 * ata_host_alloc - allocate and init basic ATA host resources
6319 * @dev: generic device this host is associated with
6320 * @max_ports: maximum number of ATA ports associated with this host
6321 *
6322 * Allocate and initialize basic ATA host resources. LLD calls
6323 * this function to allocate a host, initializes it fully and
6324 * attaches it using ata_host_register().
6325 *
6326 * @max_ports ports are allocated and host->n_ports is
6327 * initialized to @max_ports. The caller is allowed to decrease
6328 * host->n_ports before calling ata_host_register(). The unused
6329 * ports will be automatically freed on registration.
6330 *
6331 * RETURNS:
6332 * Allocate ATA host on success, NULL on failure.
6333 *
6334 * LOCKING:
6335 * Inherited from calling layer (may sleep).
6336 */
6337struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6338{
6339 struct ata_host *host;
6340 size_t sz;
6341 int i;
6342
6343 DPRINTK("ENTER\n");
6344
6345 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6346 return NULL;
6347
6348 /* alloc a container for our list of ATA ports (buses) */
6349 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6350 /* alloc a container for our list of ATA ports (buses) */
6351 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6352 if (!host)
6353 goto err_out;
6354
6355 devres_add(dev, host);
6356 dev_set_drvdata(dev, host);
6357
6358 spin_lock_init(&host->lock);
6359 host->dev = dev;
6360 host->n_ports = max_ports;
6361
6362 /* allocate ports bound to this host */
6363 for (i = 0; i < max_ports; i++) {
6364 struct ata_port *ap;
6365
6366 ap = ata_port_alloc(host);
6367 if (!ap)
6368 goto err_out;
6369
6370 ap->port_no = i;
6371 host->ports[i] = ap;
6372 }
6373
6374 devres_remove_group(dev, NULL);
6375 return host;
6376
6377 err_out:
6378 devres_release_group(dev, NULL);
6379 return NULL;
6380}
6381
f5cda257
TH
6382/**
6383 * ata_host_alloc_pinfo - alloc host and init with port_info array
6384 * @dev: generic device this host is associated with
6385 * @ppi: array of ATA port_info to initialize host with
6386 * @n_ports: number of ATA ports attached to this host
6387 *
6388 * Allocate ATA host and initialize with info from @ppi. If NULL
6389 * terminated, @ppi may contain fewer entries than @n_ports. The
6390 * last entry will be used for the remaining ports.
6391 *
6392 * RETURNS:
6393 * Allocate ATA host on success, NULL on failure.
6394 *
6395 * LOCKING:
6396 * Inherited from calling layer (may sleep).
6397 */
6398struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6399 const struct ata_port_info * const * ppi,
6400 int n_ports)
6401{
6402 const struct ata_port_info *pi;
6403 struct ata_host *host;
6404 int i, j;
6405
6406 host = ata_host_alloc(dev, n_ports);
6407 if (!host)
6408 return NULL;
6409
6410 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6411 struct ata_port *ap = host->ports[i];
6412
6413 if (ppi[j])
6414 pi = ppi[j++];
6415
6416 ap->pio_mask = pi->pio_mask;
6417 ap->mwdma_mask = pi->mwdma_mask;
6418 ap->udma_mask = pi->udma_mask;
6419 ap->flags |= pi->flags;
0c88758b 6420 ap->link.flags |= pi->link_flags;
f5cda257
TH
6421 ap->ops = pi->port_ops;
6422
6423 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6424 host->ops = pi->port_ops;
6425 if (!host->private_data && pi->private_data)
6426 host->private_data = pi->private_data;
6427 }
6428
6429 return host;
6430}
6431
ecef7253
TH
6432/**
6433 * ata_host_start - start and freeze ports of an ATA host
6434 * @host: ATA host to start ports for
6435 *
6436 * Start and then freeze ports of @host. Started status is
6437 * recorded in host->flags, so this function can be called
6438 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6439 * once. If host->ops isn't initialized yet, its set to the
6440 * first non-dummy port ops.
ecef7253
TH
6441 *
6442 * LOCKING:
6443 * Inherited from calling layer (may sleep).
6444 *
6445 * RETURNS:
6446 * 0 if all ports are started successfully, -errno otherwise.
6447 */
6448int ata_host_start(struct ata_host *host)
6449{
6450 int i, rc;
6451
6452 if (host->flags & ATA_HOST_STARTED)
6453 return 0;
6454
6455 for (i = 0; i < host->n_ports; i++) {
6456 struct ata_port *ap = host->ports[i];
6457
f3187195
TH
6458 if (!host->ops && !ata_port_is_dummy(ap))
6459 host->ops = ap->ops;
6460
ecef7253
TH
6461 if (ap->ops->port_start) {
6462 rc = ap->ops->port_start(ap);
6463 if (rc) {
6464 ata_port_printk(ap, KERN_ERR, "failed to "
6465 "start port (errno=%d)\n", rc);
6466 goto err_out;
6467 }
6468 }
6469
6470 ata_eh_freeze_port(ap);
6471 }
6472
6473 host->flags |= ATA_HOST_STARTED;
6474 return 0;
6475
6476 err_out:
6477 while (--i >= 0) {
6478 struct ata_port *ap = host->ports[i];
6479
6480 if (ap->ops->port_stop)
6481 ap->ops->port_stop(ap);
6482 }
6483 return rc;
6484}
6485
b03732f0 6486/**
cca3974e
JG
6487 * ata_sas_host_init - Initialize a host struct
6488 * @host: host to initialize
6489 * @dev: device host is attached to
6490 * @flags: host flags
6491 * @ops: port_ops
b03732f0
BK
6492 *
6493 * LOCKING:
6494 * PCI/etc. bus probe sem.
6495 *
6496 */
f3187195 6497/* KILLME - the only user left is ipr */
cca3974e
JG
6498void ata_host_init(struct ata_host *host, struct device *dev,
6499 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6500{
cca3974e
JG
6501 spin_lock_init(&host->lock);
6502 host->dev = dev;
6503 host->flags = flags;
6504 host->ops = ops;
b03732f0
BK
6505}
6506
f3187195
TH
6507/**
6508 * ata_host_register - register initialized ATA host
6509 * @host: ATA host to register
6510 * @sht: template for SCSI host
6511 *
6512 * Register initialized ATA host. @host is allocated using
6513 * ata_host_alloc() and fully initialized by LLD. This function
6514 * starts ports, registers @host with ATA and SCSI layers and
6515 * probe registered devices.
6516 *
6517 * LOCKING:
6518 * Inherited from calling layer (may sleep).
6519 *
6520 * RETURNS:
6521 * 0 on success, -errno otherwise.
6522 */
6523int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6524{
6525 int i, rc;
6526
6527 /* host must have been started */
6528 if (!(host->flags & ATA_HOST_STARTED)) {
6529 dev_printk(KERN_ERR, host->dev,
6530 "BUG: trying to register unstarted host\n");
6531 WARN_ON(1);
6532 return -EINVAL;
6533 }
6534
6535 /* Blow away unused ports. This happens when LLD can't
6536 * determine the exact number of ports to allocate at
6537 * allocation time.
6538 */
6539 for (i = host->n_ports; host->ports[i]; i++)
6540 kfree(host->ports[i]);
6541
6542 /* give ports names and add SCSI hosts */
6543 for (i = 0; i < host->n_ports; i++)
6544 host->ports[i]->print_id = ata_print_id++;
6545
6546 rc = ata_scsi_add_hosts(host, sht);
6547 if (rc)
6548 return rc;
6549
fafbae87
TH
6550 /* associate with ACPI nodes */
6551 ata_acpi_associate(host);
6552
f3187195
TH
6553 /* set cable, sata_spd_limit and report */
6554 for (i = 0; i < host->n_ports; i++) {
6555 struct ata_port *ap = host->ports[i];
f3187195
TH
6556 unsigned long xfer_mask;
6557
6558 /* set SATA cable type if still unset */
6559 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6560 ap->cbl = ATA_CBL_SATA;
6561
6562 /* init sata_spd_limit to the current value */
4fb37a25 6563 sata_link_init_spd(&ap->link);
f3187195 6564
cbcdd875 6565 /* print per-port info to dmesg */
f3187195
TH
6566 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6567 ap->udma_mask);
6568
f3187195 6569 if (!ata_port_is_dummy(ap))
cbcdd875
TH
6570 ata_port_printk(ap, KERN_INFO,
6571 "%cATA max %s %s\n",
a16abc0b 6572 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6573 ata_mode_string(xfer_mask),
cbcdd875 6574 ap->link.eh_info.desc);
f3187195
TH
6575 else
6576 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6577 }
6578
6579 /* perform each probe synchronously */
6580 DPRINTK("probe begin\n");
6581 for (i = 0; i < host->n_ports; i++) {
6582 struct ata_port *ap = host->ports[i];
6583 int rc;
6584
6585 /* probe */
6586 if (ap->ops->error_handler) {
9af5c9c9 6587 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6588 unsigned long flags;
6589
6590 ata_port_probe(ap);
6591
6592 /* kick EH for boot probing */
6593 spin_lock_irqsave(ap->lock, flags);
6594
f58229f8
TH
6595 ehi->probe_mask =
6596 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6597 ehi->action |= ATA_EH_SOFTRESET;
6598 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6599
f4d6d004 6600 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6601 ap->pflags |= ATA_PFLAG_LOADING;
6602 ata_port_schedule_eh(ap);
6603
6604 spin_unlock_irqrestore(ap->lock, flags);
6605
6606 /* wait for EH to finish */
6607 ata_port_wait_eh(ap);
6608 } else {
6609 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6610 rc = ata_bus_probe(ap);
6611 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6612
6613 if (rc) {
6614 /* FIXME: do something useful here?
6615 * Current libata behavior will
6616 * tear down everything when
6617 * the module is removed
6618 * or the h/w is unplugged.
6619 */
6620 }
6621 }
6622 }
6623
6624 /* probes are done, now scan each port's disk(s) */
6625 DPRINTK("host probe begin\n");
6626 for (i = 0; i < host->n_ports; i++) {
6627 struct ata_port *ap = host->ports[i];
6628
1ae46317 6629 ata_scsi_scan_host(ap, 1);
f3187195
TH
6630 }
6631
6632 return 0;
6633}
6634
f5cda257
TH
6635/**
6636 * ata_host_activate - start host, request IRQ and register it
6637 * @host: target ATA host
6638 * @irq: IRQ to request
6639 * @irq_handler: irq_handler used when requesting IRQ
6640 * @irq_flags: irq_flags used when requesting IRQ
6641 * @sht: scsi_host_template to use when registering the host
6642 *
6643 * After allocating an ATA host and initializing it, most libata
6644 * LLDs perform three steps to activate the host - start host,
6645 * request IRQ and register it. This helper takes necessasry
6646 * arguments and performs the three steps in one go.
6647 *
6648 * LOCKING:
6649 * Inherited from calling layer (may sleep).
6650 *
6651 * RETURNS:
6652 * 0 on success, -errno otherwise.
6653 */
6654int ata_host_activate(struct ata_host *host, int irq,
6655 irq_handler_t irq_handler, unsigned long irq_flags,
6656 struct scsi_host_template *sht)
6657{
cbcdd875 6658 int i, rc;
f5cda257
TH
6659
6660 rc = ata_host_start(host);
6661 if (rc)
6662 return rc;
6663
6664 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6665 dev_driver_string(host->dev), host);
6666 if (rc)
6667 return rc;
6668
cbcdd875
TH
6669 for (i = 0; i < host->n_ports; i++)
6670 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6671
f5cda257
TH
6672 rc = ata_host_register(host, sht);
6673 /* if failed, just free the IRQ and leave ports alone */
6674 if (rc)
6675 devm_free_irq(host->dev, irq, host);
6676
6677 return rc;
6678}
6679
720ba126
TH
6680/**
6681 * ata_port_detach - Detach ATA port in prepration of device removal
6682 * @ap: ATA port to be detached
6683 *
6684 * Detach all ATA devices and the associated SCSI devices of @ap;
6685 * then, remove the associated SCSI host. @ap is guaranteed to
6686 * be quiescent on return from this function.
6687 *
6688 * LOCKING:
6689 * Kernel thread context (may sleep).
6690 */
6691void ata_port_detach(struct ata_port *ap)
6692{
6693 unsigned long flags;
41bda9c9 6694 struct ata_link *link;
f58229f8 6695 struct ata_device *dev;
720ba126
TH
6696
6697 if (!ap->ops->error_handler)
c3cf30a9 6698 goto skip_eh;
720ba126
TH
6699
6700 /* tell EH we're leaving & flush EH */
ba6a1308 6701 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6702 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6703 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6704
6705 ata_port_wait_eh(ap);
6706
6707 /* EH is now guaranteed to see UNLOADING, so no new device
6708 * will be attached. Disable all existing devices.
6709 */
ba6a1308 6710 spin_lock_irqsave(ap->lock, flags);
720ba126 6711
41bda9c9
TH
6712 ata_port_for_each_link(link, ap) {
6713 ata_link_for_each_dev(dev, link)
6714 ata_dev_disable(dev);
6715 }
720ba126 6716
ba6a1308 6717 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6718
6719 /* Final freeze & EH. All in-flight commands are aborted. EH
6720 * will be skipped and retrials will be terminated with bad
6721 * target.
6722 */
ba6a1308 6723 spin_lock_irqsave(ap->lock, flags);
720ba126 6724 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6725 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6726
6727 ata_port_wait_eh(ap);
45a66c1c 6728 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6729
c3cf30a9 6730 skip_eh:
720ba126 6731 /* remove the associated SCSI host */
cca3974e 6732 scsi_remove_host(ap->scsi_host);
720ba126
TH
6733}
6734
0529c159
TH
6735/**
6736 * ata_host_detach - Detach all ports of an ATA host
6737 * @host: Host to detach
6738 *
6739 * Detach all ports of @host.
6740 *
6741 * LOCKING:
6742 * Kernel thread context (may sleep).
6743 */
6744void ata_host_detach(struct ata_host *host)
6745{
6746 int i;
6747
6748 for (i = 0; i < host->n_ports; i++)
6749 ata_port_detach(host->ports[i]);
6750}
6751
1da177e4
LT
6752/**
6753 * ata_std_ports - initialize ioaddr with standard port offsets.
6754 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6755 *
6756 * Utility function which initializes data_addr, error_addr,
6757 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6758 * device_addr, status_addr, and command_addr to standard offsets
6759 * relative to cmd_addr.
6760 *
6761 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6762 */
0baab86b 6763
1da177e4
LT
6764void ata_std_ports(struct ata_ioports *ioaddr)
6765{
6766 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6767 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6768 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6769 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6770 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6771 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6772 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6773 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6774 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6775 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6776}
6777
0baab86b 6778
374b1873
JG
6779#ifdef CONFIG_PCI
6780
1da177e4
LT
6781/**
6782 * ata_pci_remove_one - PCI layer callback for device removal
6783 * @pdev: PCI device that was removed
6784 *
b878ca5d
TH
6785 * PCI layer indicates to libata via this hook that hot-unplug or
6786 * module unload event has occurred. Detach all ports. Resource
6787 * release is handled via devres.
1da177e4
LT
6788 *
6789 * LOCKING:
6790 * Inherited from PCI layer (may sleep).
6791 */
f0d36efd 6792void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6793{
6794 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6795 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6796
b878ca5d 6797 ata_host_detach(host);
1da177e4
LT
6798}
6799
6800/* move to PCI subsystem */
057ace5e 6801int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6802{
6803 unsigned long tmp = 0;
6804
6805 switch (bits->width) {
6806 case 1: {
6807 u8 tmp8 = 0;
6808 pci_read_config_byte(pdev, bits->reg, &tmp8);
6809 tmp = tmp8;
6810 break;
6811 }
6812 case 2: {
6813 u16 tmp16 = 0;
6814 pci_read_config_word(pdev, bits->reg, &tmp16);
6815 tmp = tmp16;
6816 break;
6817 }
6818 case 4: {
6819 u32 tmp32 = 0;
6820 pci_read_config_dword(pdev, bits->reg, &tmp32);
6821 tmp = tmp32;
6822 break;
6823 }
6824
6825 default:
6826 return -EINVAL;
6827 }
6828
6829 tmp &= bits->mask;
6830
6831 return (tmp == bits->val) ? 1 : 0;
6832}
9b847548 6833
6ffa01d8 6834#ifdef CONFIG_PM
3c5100c1 6835void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6836{
6837 pci_save_state(pdev);
4c90d971 6838 pci_disable_device(pdev);
500530f6 6839
4c90d971 6840 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6841 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6842}
6843
553c4aa6 6844int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6845{
553c4aa6
TH
6846 int rc;
6847
9b847548
JA
6848 pci_set_power_state(pdev, PCI_D0);
6849 pci_restore_state(pdev);
553c4aa6 6850
b878ca5d 6851 rc = pcim_enable_device(pdev);
553c4aa6
TH
6852 if (rc) {
6853 dev_printk(KERN_ERR, &pdev->dev,
6854 "failed to enable device after resume (%d)\n", rc);
6855 return rc;
6856 }
6857
9b847548 6858 pci_set_master(pdev);
553c4aa6 6859 return 0;
500530f6
TH
6860}
6861
3c5100c1 6862int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6863{
cca3974e 6864 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6865 int rc = 0;
6866
cca3974e 6867 rc = ata_host_suspend(host, mesg);
500530f6
TH
6868 if (rc)
6869 return rc;
6870
3c5100c1 6871 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6872
6873 return 0;
6874}
6875
6876int ata_pci_device_resume(struct pci_dev *pdev)
6877{
cca3974e 6878 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6879 int rc;
500530f6 6880
553c4aa6
TH
6881 rc = ata_pci_device_do_resume(pdev);
6882 if (rc == 0)
6883 ata_host_resume(host);
6884 return rc;
9b847548 6885}
6ffa01d8
TH
6886#endif /* CONFIG_PM */
6887
1da177e4
LT
6888#endif /* CONFIG_PCI */
6889
6890
1da177e4
LT
6891static int __init ata_init(void)
6892{
a8601e5f 6893 ata_probe_timeout *= HZ;
1da177e4
LT
6894 ata_wq = create_workqueue("ata");
6895 if (!ata_wq)
6896 return -ENOMEM;
6897
453b07ac
TH
6898 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6899 if (!ata_aux_wq) {
6900 destroy_workqueue(ata_wq);
6901 return -ENOMEM;
6902 }
6903
1da177e4
LT
6904 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6905 return 0;
6906}
6907
6908static void __exit ata_exit(void)
6909{
6910 destroy_workqueue(ata_wq);
453b07ac 6911 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6912}
6913
a4625085 6914subsys_initcall(ata_init);
1da177e4
LT
6915module_exit(ata_exit);
6916
67846b30 6917static unsigned long ratelimit_time;
34af946a 6918static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6919
6920int ata_ratelimit(void)
6921{
6922 int rc;
6923 unsigned long flags;
6924
6925 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6926
6927 if (time_after(jiffies, ratelimit_time)) {
6928 rc = 1;
6929 ratelimit_time = jiffies + (HZ/5);
6930 } else
6931 rc = 0;
6932
6933 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6934
6935 return rc;
6936}
6937
c22daff4
TH
6938/**
6939 * ata_wait_register - wait until register value changes
6940 * @reg: IO-mapped register
6941 * @mask: Mask to apply to read register value
6942 * @val: Wait condition
6943 * @interval_msec: polling interval in milliseconds
6944 * @timeout_msec: timeout in milliseconds
6945 *
6946 * Waiting for some bits of register to change is a common
6947 * operation for ATA controllers. This function reads 32bit LE
6948 * IO-mapped register @reg and tests for the following condition.
6949 *
6950 * (*@reg & mask) != val
6951 *
6952 * If the condition is met, it returns; otherwise, the process is
6953 * repeated after @interval_msec until timeout.
6954 *
6955 * LOCKING:
6956 * Kernel thread context (may sleep)
6957 *
6958 * RETURNS:
6959 * The final register value.
6960 */
6961u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6962 unsigned long interval_msec,
6963 unsigned long timeout_msec)
6964{
6965 unsigned long timeout;
6966 u32 tmp;
6967
6968 tmp = ioread32(reg);
6969
6970 /* Calculate timeout _after_ the first read to make sure
6971 * preceding writes reach the controller before starting to
6972 * eat away the timeout.
6973 */
6974 timeout = jiffies + (timeout_msec * HZ) / 1000;
6975
6976 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6977 msleep(interval_msec);
6978 tmp = ioread32(reg);
6979 }
6980
6981 return tmp;
6982}
6983
dd5b06c4
TH
6984/*
6985 * Dummy port_ops
6986 */
6987static void ata_dummy_noret(struct ata_port *ap) { }
6988static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6989static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6990
6991static u8 ata_dummy_check_status(struct ata_port *ap)
6992{
6993 return ATA_DRDY;
6994}
6995
6996static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6997{
6998 return AC_ERR_SYSTEM;
6999}
7000
7001const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7002 .check_status = ata_dummy_check_status,
7003 .check_altstatus = ata_dummy_check_status,
7004 .dev_select = ata_noop_dev_select,
7005 .qc_prep = ata_noop_qc_prep,
7006 .qc_issue = ata_dummy_qc_issue,
7007 .freeze = ata_dummy_noret,
7008 .thaw = ata_dummy_noret,
7009 .error_handler = ata_dummy_noret,
7010 .post_internal_cmd = ata_dummy_qc_noret,
7011 .irq_clear = ata_dummy_noret,
7012 .port_start = ata_dummy_ret0,
7013 .port_stop = ata_dummy_noret,
7014};
7015
21b0ad4f
TH
7016const struct ata_port_info ata_dummy_port_info = {
7017 .port_ops = &ata_dummy_port_ops,
7018};
7019
1da177e4
LT
7020/*
7021 * libata is essentially a library of internal helper functions for
7022 * low-level ATA host controller drivers. As such, the API/ABI is
7023 * likely to change as new drivers are added and updated.
7024 * Do not depend on ABI/API stability.
7025 */
7026
e9c83914
TH
7027EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7028EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7029EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7030EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7031EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7032EXPORT_SYMBOL_GPL(ata_std_bios_param);
7033EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7034EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7035EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7036EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7037EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7038EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7039EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7040EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7041EXPORT_SYMBOL_GPL(ata_sg_init);
7042EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7043EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7044EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7045EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7046EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7047EXPORT_SYMBOL_GPL(ata_tf_load);
7048EXPORT_SYMBOL_GPL(ata_tf_read);
7049EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7050EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7051EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7052EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7053EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7054EXPORT_SYMBOL_GPL(ata_check_status);
7055EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7056EXPORT_SYMBOL_GPL(ata_exec_command);
7057EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7058EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7059EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7060EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7061EXPORT_SYMBOL_GPL(ata_data_xfer);
7062EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 7063EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7064EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7065EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7066EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7067EXPORT_SYMBOL_GPL(ata_bmdma_start);
7068EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7069EXPORT_SYMBOL_GPL(ata_bmdma_status);
7070EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7071EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7072EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7073EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7074EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7075EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7076EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7077EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7078EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7079EXPORT_SYMBOL_GPL(sata_link_debounce);
7080EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7081EXPORT_SYMBOL_GPL(sata_phy_reset);
7082EXPORT_SYMBOL_GPL(__sata_phy_reset);
7083EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7084EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7085EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7086EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7087EXPORT_SYMBOL_GPL(sata_std_hardreset);
7088EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7089EXPORT_SYMBOL_GPL(ata_dev_classify);
7090EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7091EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7092EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7093EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7094EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7095EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7096EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7097EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7098EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7099EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7100EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7101EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7102EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7103EXPORT_SYMBOL_GPL(sata_scr_valid);
7104EXPORT_SYMBOL_GPL(sata_scr_read);
7105EXPORT_SYMBOL_GPL(sata_scr_write);
7106EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7107EXPORT_SYMBOL_GPL(ata_link_online);
7108EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7109#ifdef CONFIG_PM
cca3974e
JG
7110EXPORT_SYMBOL_GPL(ata_host_suspend);
7111EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7112#endif /* CONFIG_PM */
6a62a04d
TH
7113EXPORT_SYMBOL_GPL(ata_id_string);
7114EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7115EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7116EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7117
1bc4ccff 7118EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7119EXPORT_SYMBOL_GPL(ata_timing_compute);
7120EXPORT_SYMBOL_GPL(ata_timing_merge);
7121
1da177e4
LT
7122#ifdef CONFIG_PCI
7123EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7124EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7125EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7126EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7127EXPORT_SYMBOL_GPL(ata_pci_init_one);
7128EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7129#ifdef CONFIG_PM
500530f6
TH
7130EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7131EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7132EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7133EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7134#endif /* CONFIG_PM */
67951ade
AC
7135EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7136EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7137#endif /* CONFIG_PCI */
9b847548 7138
b64bbc39
TH
7139EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7140EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7141EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7142EXPORT_SYMBOL_GPL(ata_port_desc);
7143#ifdef CONFIG_PCI
7144EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7145#endif /* CONFIG_PCI */
ece1d636 7146EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7147EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7148EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7149EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
7150EXPORT_SYMBOL_GPL(ata_port_freeze);
7151EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7152EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7153EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7154EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7155EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7156EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7157EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7158
7159EXPORT_SYMBOL_GPL(ata_cable_40wire);
7160EXPORT_SYMBOL_GPL(ata_cable_80wire);
7161EXPORT_SYMBOL_GPL(ata_cable_unknown);
7162EXPORT_SYMBOL_GPL(ata_cable_sata);