]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier...
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4 65#include <asm/byteorder.h>
140b5e59 66#include <linux/cdrom.h>
1da177e4
LT
67
68#include "libata.h"
69
fda0efc5 70
d7bb4cc7 71/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
72const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 75
029cfd6b 76const struct ata_port_operations ata_base_port_ops = {
0aa1113d 77 .prereset = ata_std_prereset,
203c75b8 78 .postreset = ata_std_postreset,
a1efdaba 79 .error_handler = ata_std_error_handler,
029cfd6b
TH
80};
81
82const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
84
85 .qc_defer = ata_std_qc_defer,
57c9efdf 86 .hardreset = sata_std_hardreset,
029cfd6b
TH
87};
88
3373efd8
TH
89static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
92static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
3373efd8 94static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 95static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 96
f3187195 97unsigned int ata_print_id = 1;
1da177e4
LT
98static struct workqueue_struct *ata_wq;
99
453b07ac
TH
100struct workqueue_struct *ata_aux_wq;
101
33267325
TH
102struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
05944bdf 109 unsigned int lflags;
33267325
TH
110};
111
112struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
116};
117
118static struct ata_force_ent *ata_force_tbl;
119static int ata_force_tbl_size;
120
121static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
122/* param_buf is thrown away after initialization, disallow read */
123module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
124MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
125
2486fa56 126static int atapi_enabled = 1;
1623c81e
JG
127module_param(atapi_enabled, int, 0444);
128MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
129
c5c61bda 130static int atapi_dmadir = 0;
95de719a
AL
131module_param(atapi_dmadir, int, 0444);
132MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
133
baf4fdfa
ML
134int atapi_passthru16 = 1;
135module_param(atapi_passthru16, int, 0444);
136MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
137
c3c013a2
JG
138int libata_fua = 0;
139module_param_named(fua, libata_fua, int, 0444);
140MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
141
2dcb407e 142static int ata_ignore_hpa;
1e999736
AC
143module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
145
b3a70601
AC
146static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147module_param_named(dma, libata_dma_mask, int, 0444);
148MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
149
87fbc5a0 150static int ata_probe_timeout;
a8601e5f
AM
151module_param(ata_probe_timeout, int, 0444);
152MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
153
6ebe9d86 154int libata_noacpi = 0;
d7d0dad6 155module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 156MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 157
ae8d4ee7
AC
158int libata_allow_tpm = 0;
159module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
161
1da177e4
LT
162MODULE_AUTHOR("Jeff Garzik");
163MODULE_DESCRIPTION("Library module for ATA devices");
164MODULE_LICENSE("GPL");
165MODULE_VERSION(DRV_VERSION);
166
0baab86b 167
9913ff8a
TH
168static bool ata_sstatus_online(u32 sstatus)
169{
170 return (sstatus & 0xf) == 0x3;
171}
172
1eca4365
TH
173/**
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
178 *
179 * LOCKING:
180 * Host lock or EH context.
aadffb68 181 *
1eca4365
TH
182 * RETURNS:
183 * Pointer to the next link.
aadffb68 184 */
1eca4365
TH
185struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 enum ata_link_iter_mode mode)
aadffb68 187{
1eca4365
TH
188 BUG_ON(mode != ATA_LITER_EDGE &&
189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
190
aadffb68 191 /* NULL link indicates start of iteration */
1eca4365
TH
192 if (!link)
193 switch (mode) {
194 case ATA_LITER_EDGE:
195 case ATA_LITER_PMP_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 /* fall through */
199 case ATA_LITER_HOST_FIRST:
200 return &ap->link;
201 }
aadffb68 202
1eca4365
TH
203 /* we just iterated over the host link, what's next? */
204 if (link == &ap->link)
205 switch (mode) {
206 case ATA_LITER_HOST_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_PMP_FIRST:
211 if (unlikely(ap->slave_link))
b1c72916 212 return ap->slave_link;
1eca4365
TH
213 /* fall through */
214 case ATA_LITER_EDGE:
aadffb68 215 return NULL;
b1c72916 216 }
aadffb68 217
b1c72916
TH
218 /* slave_link excludes PMP */
219 if (unlikely(link == ap->slave_link))
220 return NULL;
221
1eca4365 222 /* we were over a PMP link */
aadffb68
TH
223 if (++link < ap->pmp_link + ap->nr_pmp_links)
224 return link;
1eca4365
TH
225
226 if (mode == ATA_LITER_PMP_FIRST)
227 return &ap->link;
228
aadffb68
TH
229 return NULL;
230}
231
1eca4365
TH
232/**
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
237 *
238 * LOCKING:
239 * Host lock or EH context.
240 *
241 * RETURNS:
242 * Pointer to the next device.
243 */
244struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 enum ata_dev_iter_mode mode)
246{
247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
249
250 /* NULL dev indicates start of iteration */
251 if (!dev)
252 switch (mode) {
253 case ATA_DITER_ENABLED:
254 case ATA_DITER_ALL:
255 dev = link->device;
256 goto check;
257 case ATA_DITER_ENABLED_REVERSE:
258 case ATA_DITER_ALL_REVERSE:
259 dev = link->device + ata_link_max_devices(link) - 1;
260 goto check;
261 }
262
263 next:
264 /* move to the next one */
265 switch (mode) {
266 case ATA_DITER_ENABLED:
267 case ATA_DITER_ALL:
268 if (++dev < link->device + ata_link_max_devices(link))
269 goto check;
270 return NULL;
271 case ATA_DITER_ENABLED_REVERSE:
272 case ATA_DITER_ALL_REVERSE:
273 if (--dev >= link->device)
274 goto check;
275 return NULL;
276 }
277
278 check:
279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 !ata_dev_enabled(dev))
281 goto next;
282 return dev;
283}
284
b1c72916
TH
285/**
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
288 *
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
292 *
293 * LOCKING:
294 * Don't care.
295 *
296 * RETURNS:
297 * Pointer to the found physical link.
298 */
299struct ata_link *ata_dev_phys_link(struct ata_device *dev)
300{
301 struct ata_port *ap = dev->link->ap;
302
303 if (!ap->slave_link)
304 return dev->link;
305 if (!dev->devno)
306 return &ap->link;
307 return ap->slave_link;
308}
309
33267325
TH
310/**
311 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 312 * @ap: ATA port of interest
33267325
TH
313 *
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318 * same effect.
319 *
320 * LOCKING:
321 * EH context.
322 */
323void ata_force_cbl(struct ata_port *ap)
324{
325 int i;
326
327 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
329
330 if (fe->port != -1 && fe->port != ap->print_id)
331 continue;
332
333 if (fe->param.cbl == ATA_CBL_NONE)
334 continue;
335
336 ap->cbl = fe->param.cbl;
337 ata_port_printk(ap, KERN_NOTICE,
338 "FORCE: cable set to %s\n", fe->param.name);
339 return;
340 }
341}
342
343/**
05944bdf 344 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
345 * @link: ATA link of interest
346 *
05944bdf
TH
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
33267325
TH
355 *
356 * LOCKING:
357 * EH context.
358 */
05944bdf 359static void ata_force_link_limits(struct ata_link *link)
33267325 360{
05944bdf 361 bool did_spd = false;
b1c72916
TH
362 int linkno = link->pmp;
363 int i;
33267325
TH
364
365 if (ata_is_host_link(link))
b1c72916 366 linkno += 15;
33267325
TH
367
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
370
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
373
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
376
05944bdf
TH
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_printk(link, KERN_NOTICE,
381 "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
384 }
33267325 385
05944bdf
TH
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_printk(link, KERN_NOTICE,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
392 }
33267325
TH
393 }
394}
395
396/**
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
399 *
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
403 *
404 * LOCKING:
405 * EH context.
406 */
407static void ata_force_xfermask(struct ata_device *dev)
408{
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
412
b1c72916
TH
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
33267325
TH
416
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
420
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
423
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
427
428 if (!fe->param.xfer_mask)
429 continue;
430
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
442 }
443
444 ata_dev_printk(dev, KERN_NOTICE,
445 "FORCE: xfer_mask set to %s\n", fe->param.name);
446 return;
447 }
448}
449
450/**
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
453 *
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
457 *
458 * LOCKING:
459 * EH context.
460 */
461static void ata_force_horkage(struct ata_device *dev)
462{
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
466
b1c72916
TH
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
33267325
TH
470
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
473
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
476
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
480
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
484
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
487
488 ata_dev_printk(dev, KERN_NOTICE,
489 "FORCE: horkage modified (%s)\n", fe->param.name);
490 }
491}
492
436d34b3
TH
493/**
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
496 *
497 * Determine ATAPI command type from @opcode.
498 *
499 * LOCKING:
500 * None.
501 *
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
504 */
505int atapi_cmd_type(u8 opcode)
506{
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
511
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
516
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
520
e52dcc48
TH
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
436d34b3
TH
526 default:
527 return ATAPI_MISC;
528 }
529}
530
1da177e4
LT
531/**
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
1da177e4 534 * @pmp: Port multiplier port
9977126c
TH
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
1da177e4
LT
537 *
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
540 *
541 * LOCKING:
542 * Inherited from caller.
543 */
9977126c 544void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 545{
9977126c
TH
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
550
1da177e4
LT
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
553
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
558
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
563
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
568
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
573}
574
575/**
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
579 *
e12a1be6 580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
581 *
582 * LOCKING:
583 * Inherited from caller.
584 */
585
057ace5e 586void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
587{
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
590
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
595
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
599
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
602}
603
8cbd6df1
AL
604static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
610 0,
611 0,
612 0,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
619 0,
620 0,
621 0,
622 0,
8cbd6df1
AL
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
9a3dccc4
TH
627 ATA_CMD_WRITE_EXT,
628 0,
629 0,
630 0,
631 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 632};
1da177e4
LT
633
634/**
8cbd6df1 635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
1da177e4 638 *
2e9edbf8 639 * Examine the device configuration and tf->flags to calculate
8cbd6df1 640 * the proper read/write commands and protocol to use.
1da177e4
LT
641 *
642 * LOCKING:
643 * caller.
644 */
bd056d7e 645static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 646{
9a3dccc4 647 u8 cmd;
1da177e4 648
9a3dccc4 649 int index, fua, lba48, write;
2e9edbf8 650
9a3dccc4 651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 654
8cbd6df1
AL
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
9a3dccc4 657 index = dev->multi_count ? 0 : 8;
9af5c9c9 658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
0565c26d 661 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
662 } else {
663 tf->protocol = ATA_PROT_DMA;
9a3dccc4 664 index = 16;
8cbd6df1 665 }
1da177e4 666
9a3dccc4
TH
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
671 }
672 return -1;
1da177e4
LT
673}
674
35b649fe
TH
675/**
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
679 *
680 * LOCKING:
681 * None.
682 *
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
686 *
687 * RETURNS:
688 * Block address read from @tf.
689 */
690u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
691{
692 u64 block = 0;
693
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
44901a96 698 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
699 } else
700 block |= (tf->device & 0xf) << 24;
701
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
707
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
711
712 block = (cyl * dev->heads + head) * dev->sectors + sect;
713 }
714
715 return block;
716}
717
bd056d7e
TH
718/**
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
726 *
727 * LOCKING:
728 * None.
729 *
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
732 *
733 * RETURNS:
734 *
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
737 */
738int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 u64 block, u32 n_block, unsigned int tf_flags,
740 unsigned int tag)
741{
742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 tf->flags |= tf_flags;
744
6d1245bf 745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
746 /* yay, NCQ */
747 if (!lba_48_ok(block, n_block))
748 return -ERANGE;
749
750 tf->protocol = ATA_PROT_NCQ;
751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
752
753 if (tf->flags & ATA_TFLAG_WRITE)
754 tf->command = ATA_CMD_FPDMA_WRITE;
755 else
756 tf->command = ATA_CMD_FPDMA_READ;
757
758 tf->nsect = tag << 3;
759 tf->hob_feature = (n_block >> 8) & 0xff;
760 tf->feature = n_block & 0xff;
761
762 tf->hob_lbah = (block >> 40) & 0xff;
763 tf->hob_lbam = (block >> 32) & 0xff;
764 tf->hob_lbal = (block >> 24) & 0xff;
765 tf->lbah = (block >> 16) & 0xff;
766 tf->lbam = (block >> 8) & 0xff;
767 tf->lbal = block & 0xff;
768
769 tf->device = 1 << 6;
770 if (tf->flags & ATA_TFLAG_FUA)
771 tf->device |= 1 << 7;
772 } else if (dev->flags & ATA_DFLAG_LBA) {
773 tf->flags |= ATA_TFLAG_LBA;
774
775 if (lba_28_ok(block, n_block)) {
776 /* use LBA28 */
777 tf->device |= (block >> 24) & 0xf;
778 } else if (lba_48_ok(block, n_block)) {
779 if (!(dev->flags & ATA_DFLAG_LBA48))
780 return -ERANGE;
781
782 /* use LBA48 */
783 tf->flags |= ATA_TFLAG_LBA48;
784
785 tf->hob_nsect = (n_block >> 8) & 0xff;
786
787 tf->hob_lbah = (block >> 40) & 0xff;
788 tf->hob_lbam = (block >> 32) & 0xff;
789 tf->hob_lbal = (block >> 24) & 0xff;
790 } else
791 /* request too large even for LBA48 */
792 return -ERANGE;
793
794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 return -EINVAL;
796
797 tf->nsect = n_block & 0xff;
798
799 tf->lbah = (block >> 16) & 0xff;
800 tf->lbam = (block >> 8) & 0xff;
801 tf->lbal = block & 0xff;
802
803 tf->device |= ATA_LBA;
804 } else {
805 /* CHS */
806 u32 sect, head, cyl, track;
807
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block, n_block))
810 return -ERANGE;
811
812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 return -EINVAL;
814
815 /* Convert LBA to CHS */
816 track = (u32)block / dev->sectors;
817 cyl = track / dev->heads;
818 head = track % dev->heads;
819 sect = (u32)block % dev->sectors + 1;
820
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32)block, track, cyl, head, sect);
823
824 /* Check whether the converted CHS can fit.
825 Cylinder: 0-65535
826 Head: 0-15
827 Sector: 1-255*/
828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 return -ERANGE;
830
831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 tf->lbal = sect;
833 tf->lbam = cyl;
834 tf->lbah = cyl >> 8;
835 tf->device |= head;
836 }
837
838 return 0;
839}
840
cb95d562
TH
841/**
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
846 *
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
849 *
850 * LOCKING:
851 * None.
852 *
853 * RETURNS:
854 * Packed xfer_mask.
855 */
7dc951ae
TH
856unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 unsigned long mwdma_mask,
858 unsigned long udma_mask)
cb95d562
TH
859{
860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
863}
864
c0489e4e
TH
865/**
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
871 *
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
874 */
7dc951ae
TH
875void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
877{
878 if (pio_mask)
879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 if (mwdma_mask)
881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 if (udma_mask)
883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
884}
885
cb95d562 886static const struct ata_xfer_ent {
be9a50c8 887 int shift, bits;
cb95d562
TH
888 u8 base;
889} ata_xfer_tbl[] = {
70cd071e
TH
890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
893 { -1, },
894};
895
896/**
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
899 *
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
902 *
903 * LOCKING:
904 * None.
905 *
906 * RETURNS:
70cd071e 907 * Matching XFER_* value, 0xff if no match found.
cb95d562 908 */
7dc951ae 909u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
910{
911 int highbit = fls(xfer_mask) - 1;
912 const struct ata_xfer_ent *ent;
913
914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 return ent->base + highbit - ent->shift;
70cd071e 917 return 0xff;
cb95d562
TH
918}
919
920/**
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
923 *
924 * Return matching xfer_mask for @xfer_mode.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching xfer_mask, 0 if no match found.
931 */
7dc951ae 932unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
933{
934 const struct ata_xfer_ent *ent;
935
936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 & ~((1 << ent->shift) - 1);
cb95d562
TH
940 return 0;
941}
942
943/**
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_shift for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_shift, -1 if no match found.
954 */
7dc951ae 955int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ent->shift;
962 return -1;
963}
964
1da177e4 965/**
1da7b0d0
TH
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
968 *
969 * Determine string which represents the highest speed
1da7b0d0 970 * (highest bit in @modemask).
1da177e4
LT
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Constant C string representing highest speed listed in
1da7b0d0 977 * @mode_mask, or the constant C string "<n/a>".
1da177e4 978 */
7dc951ae 979const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 980{
75f554bc
TH
981 static const char * const xfer_mode_str[] = {
982 "PIO0",
983 "PIO1",
984 "PIO2",
985 "PIO3",
986 "PIO4",
b352e57d
AC
987 "PIO5",
988 "PIO6",
75f554bc
TH
989 "MWDMA0",
990 "MWDMA1",
991 "MWDMA2",
b352e57d
AC
992 "MWDMA3",
993 "MWDMA4",
75f554bc
TH
994 "UDMA/16",
995 "UDMA/25",
996 "UDMA/33",
997 "UDMA/44",
998 "UDMA/66",
999 "UDMA/100",
1000 "UDMA/133",
1001 "UDMA7",
1002 };
1da7b0d0 1003 int highbit;
1da177e4 1004
1da7b0d0
TH
1005 highbit = fls(xfer_mask) - 1;
1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 return xfer_mode_str[highbit];
1da177e4 1008 return "<n/a>";
1da177e4
LT
1009}
1010
4c360c81
TH
1011static const char *sata_spd_string(unsigned int spd)
1012{
1013 static const char * const spd_str[] = {
1014 "1.5 Gbps",
1015 "3.0 Gbps",
8522ee25 1016 "6.0 Gbps",
4c360c81
TH
1017 };
1018
1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 return "<unknown>";
1021 return spd_str[spd - 1];
1022}
1023
ca77329f
KCA
1024static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1025{
1026 struct ata_link *link = dev->link;
1027 struct ata_port *ap = link->ap;
1028 u32 scontrol;
1029 unsigned int err_mask;
1030 int rc;
1031
1032 /*
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1039 */
1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 ap->pm_policy = NOT_AVAILABLE;
1042 return -EINVAL;
1043 }
1044
1045 /*
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1048 *
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1054 */
1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 if (rc)
1057 return rc;
1058
1059 switch (policy) {
1060 case MIN_POWER:
1061 /* no restrictions on IPM transitions */
1062 scontrol &= ~(0x3 << 8);
1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 if (rc)
1065 return rc;
1066
1067 /* enable DIPM */
1068 if (dev->flags & ATA_DFLAG_DIPM)
1069 err_mask = ata_dev_set_feature(dev,
1070 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 break;
1072 case MEDIUM_POWER:
1073 /* allow IPM to PARTIAL */
1074 scontrol &= ~(0x1 << 8);
1075 scontrol |= (0x2 << 8);
1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 if (rc)
1078 return rc;
1079
f5456b63
KCA
1080 /*
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1084 */
ca77329f
KCA
1085 break;
1086 case NOT_AVAILABLE:
1087 case MAX_PERFORMANCE:
1088 /* disable all IPM transitions */
1089 scontrol |= (0x3 << 8);
1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 if (rc)
1092 return rc;
1093
f5456b63
KCA
1094 /*
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1098 */
ca77329f
KCA
1099 break;
1100 }
1101
1102 /* FIXME: handle SET FEATURES failure */
1103 (void) err_mask;
1104
1105 return 0;
1106}
1107
1108/**
1109 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
ca77329f
KCA
1112 *
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1117 *
1118 * Locking: Caller.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1120 */
1121void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1122{
1123 int rc = 0;
1124 struct ata_port *ap = dev->link->ap;
1125
1126 /* set HIPM first, then DIPM */
1127 if (ap->ops->enable_pm)
1128 rc = ap->ops->enable_pm(ap, policy);
1129 if (rc)
1130 goto enable_pm_out;
1131 rc = ata_dev_set_dipm(dev, policy);
1132
1133enable_pm_out:
1134 if (rc)
1135 ap->pm_policy = MAX_PERFORMANCE;
1136 else
1137 ap->pm_policy = policy;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1139}
1140
1992a5ed 1141#ifdef CONFIG_PM
ca77329f
KCA
1142/**
1143 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1144 * @dev: device to disable power management
ca77329f
KCA
1145 *
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1150 *
1151 * Locking: Caller.
1152 * Returns: void
1153 */
1154static void ata_dev_disable_pm(struct ata_device *dev)
1155{
1156 struct ata_port *ap = dev->link->ap;
1157
1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 if (ap->ops->disable_pm)
1160 ap->ops->disable_pm(ap);
1161}
1992a5ed 1162#endif /* CONFIG_PM */
ca77329f
KCA
1163
1164void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1165{
1166 ap->pm_policy = policy;
3ec25ebd 1167 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 ata_port_schedule_eh(ap);
1170}
1171
1992a5ed 1172#ifdef CONFIG_PM
ca77329f
KCA
1173static void ata_lpm_enable(struct ata_host *host)
1174{
1175 struct ata_link *link;
1176 struct ata_port *ap;
1177 struct ata_device *dev;
1178 int i;
1179
1180 for (i = 0; i < host->n_ports; i++) {
1181 ap = host->ports[i];
1eca4365
TH
1182 ata_for_each_link(link, ap, EDGE) {
1183 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1184 ata_dev_disable_pm(dev);
1185 }
1186 }
1187}
1188
1189static void ata_lpm_disable(struct ata_host *host)
1190{
1191 int i;
1192
1193 for (i = 0; i < host->n_ports; i++) {
1194 struct ata_port *ap = host->ports[i];
1195 ata_lpm_schedule(ap, ap->pm_policy);
1196 }
1197}
1992a5ed 1198#endif /* CONFIG_PM */
ca77329f 1199
1da177e4
LT
1200/**
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1203 *
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1207 *
1208 * LOCKING:
1209 * None.
1210 *
1211 * RETURNS:
633273a3
TH
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1214 */
057ace5e 1215unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1216{
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1220 *
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1230 * SerialATA.
1231 *
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 * SEMB signature. This is worked around in
1236 * ata_dev_read_id().
1da177e4 1237 */
633273a3 1238 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1239 DPRINTK("found ATA device by sig\n");
1240 return ATA_DEV_ATA;
1241 }
1242
633273a3 1243 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1244 DPRINTK("found ATAPI device by sig\n");
1245 return ATA_DEV_ATAPI;
1246 }
1247
633273a3
TH
1248 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249 DPRINTK("found PMP device by sig\n");
1250 return ATA_DEV_PMP;
1251 }
1252
1253 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1254 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 return ATA_DEV_SEMB;
633273a3
TH
1256 }
1257
1da177e4
LT
1258 DPRINTK("unknown device\n");
1259 return ATA_DEV_UNKNOWN;
1260}
1261
1da177e4 1262/**
6a62a04d 1263 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1264 * @id: IDENTIFY DEVICE results we will examine
1265 * @s: string into which data is output
1266 * @ofs: offset into identify device page
1267 * @len: length of string to return. must be an even number.
1268 *
1269 * The strings in the IDENTIFY DEVICE page are broken up into
1270 * 16-bit chunks. Run through the string, and output each
1271 * 8-bit chunk linearly, regardless of platform.
1272 *
1273 * LOCKING:
1274 * caller.
1275 */
1276
6a62a04d
TH
1277void ata_id_string(const u16 *id, unsigned char *s,
1278 unsigned int ofs, unsigned int len)
1da177e4
LT
1279{
1280 unsigned int c;
1281
963e4975
AC
1282 BUG_ON(len & 1);
1283
1da177e4
LT
1284 while (len > 0) {
1285 c = id[ofs] >> 8;
1286 *s = c;
1287 s++;
1288
1289 c = id[ofs] & 0xff;
1290 *s = c;
1291 s++;
1292
1293 ofs++;
1294 len -= 2;
1295 }
1296}
1297
0e949ff3 1298/**
6a62a04d 1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1300 * @id: IDENTIFY DEVICE results we will examine
1301 * @s: string into which data is output
1302 * @ofs: offset into identify device page
1303 * @len: length of string to return. must be an odd number.
1304 *
6a62a04d 1305 * This function is identical to ata_id_string except that it
0e949ff3
TH
1306 * trims trailing spaces and terminates the resulting string with
1307 * null. @len must be actual maximum length (even number) + 1.
1308 *
1309 * LOCKING:
1310 * caller.
1311 */
6a62a04d
TH
1312void ata_id_c_string(const u16 *id, unsigned char *s,
1313 unsigned int ofs, unsigned int len)
0e949ff3
TH
1314{
1315 unsigned char *p;
1316
6a62a04d 1317 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1318
1319 p = s + strnlen(s, len - 1);
1320 while (p > s && p[-1] == ' ')
1321 p--;
1322 *p = '\0';
1323}
0baab86b 1324
db6f8759
TH
1325static u64 ata_id_n_sectors(const u16 *id)
1326{
1327 if (ata_id_has_lba(id)) {
1328 if (ata_id_has_lba48(id))
968e594a 1329 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1330 else
968e594a 1331 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1332 } else {
1333 if (ata_id_current_chs_valid(id))
968e594a
RH
1334 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335 id[ATA_ID_CUR_SECTORS];
db6f8759 1336 else
968e594a
RH
1337 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338 id[ATA_ID_SECTORS];
db6f8759
TH
1339 }
1340}
1341
a5987e0a 1342u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1343{
1344 u64 sectors = 0;
1345
1346 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1348 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1349 sectors |= (tf->lbah & 0xff) << 16;
1350 sectors |= (tf->lbam & 0xff) << 8;
1351 sectors |= (tf->lbal & 0xff);
1352
a5987e0a 1353 return sectors;
1e999736
AC
1354}
1355
a5987e0a 1356u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1357{
1358 u64 sectors = 0;
1359
1360 sectors |= (tf->device & 0x0f) << 24;
1361 sectors |= (tf->lbah & 0xff) << 16;
1362 sectors |= (tf->lbam & 0xff) << 8;
1363 sectors |= (tf->lbal & 0xff);
1364
a5987e0a 1365 return sectors;
1e999736
AC
1366}
1367
1368/**
c728a914
TH
1369 * ata_read_native_max_address - Read native max address
1370 * @dev: target device
1371 * @max_sectors: out parameter for the result native max address
1e999736 1372 *
c728a914
TH
1373 * Perform an LBA48 or LBA28 native size query upon the device in
1374 * question.
1e999736 1375 *
c728a914
TH
1376 * RETURNS:
1377 * 0 on success, -EACCES if command is aborted by the drive.
1378 * -EIO on other errors.
1e999736 1379 */
c728a914 1380static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1381{
c728a914 1382 unsigned int err_mask;
1e999736 1383 struct ata_taskfile tf;
c728a914 1384 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1385
1386 ata_tf_init(dev, &tf);
1387
c728a914 1388 /* always clear all address registers */
1e999736 1389 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1390
c728a914
TH
1391 if (lba48) {
1392 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393 tf.flags |= ATA_TFLAG_LBA48;
1394 } else
1395 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1396
1e999736 1397 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1398 tf.device |= ATA_LBA;
1399
2b789108 1400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1401 if (err_mask) {
1402 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403 "max address (err_mask=0x%x)\n", err_mask);
1404 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405 return -EACCES;
1406 return -EIO;
1407 }
1e999736 1408
c728a914 1409 if (lba48)
a5987e0a 1410 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1411 else
a5987e0a 1412 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1413 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1414 (*max_sectors)--;
c728a914 1415 return 0;
1e999736
AC
1416}
1417
1418/**
c728a914
TH
1419 * ata_set_max_sectors - Set max sectors
1420 * @dev: target device
6b38d1d1 1421 * @new_sectors: new max sectors value to set for the device
1e999736 1422 *
c728a914
TH
1423 * Set max sectors of @dev to @new_sectors.
1424 *
1425 * RETURNS:
1426 * 0 on success, -EACCES if command is aborted or denied (due to
1427 * previous non-volatile SET_MAX) by the drive. -EIO on other
1428 * errors.
1e999736 1429 */
05027adc 1430static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1431{
c728a914 1432 unsigned int err_mask;
1e999736 1433 struct ata_taskfile tf;
c728a914 1434 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1435
1436 new_sectors--;
1437
1438 ata_tf_init(dev, &tf);
1439
1e999736 1440 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1441
1442 if (lba48) {
1443 tf.command = ATA_CMD_SET_MAX_EXT;
1444 tf.flags |= ATA_TFLAG_LBA48;
1445
1446 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1449 } else {
c728a914
TH
1450 tf.command = ATA_CMD_SET_MAX;
1451
1e582ba4
TH
1452 tf.device |= (new_sectors >> 24) & 0xf;
1453 }
1454
1e999736 1455 tf.protocol |= ATA_PROT_NODATA;
c728a914 1456 tf.device |= ATA_LBA;
1e999736
AC
1457
1458 tf.lbal = (new_sectors >> 0) & 0xff;
1459 tf.lbam = (new_sectors >> 8) & 0xff;
1460 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1461
2b789108 1462 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1463 if (err_mask) {
1464 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465 "max address (err_mask=0x%x)\n", err_mask);
1466 if (err_mask == AC_ERR_DEV &&
1467 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468 return -EACCES;
1469 return -EIO;
1470 }
1471
c728a914 1472 return 0;
1e999736
AC
1473}
1474
1475/**
1476 * ata_hpa_resize - Resize a device with an HPA set
1477 * @dev: Device to resize
1478 *
1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480 * it if required to the full size of the media. The caller must check
1481 * the drive has the HPA feature set enabled.
05027adc
TH
1482 *
1483 * RETURNS:
1484 * 0 on success, -errno on failure.
1e999736 1485 */
05027adc 1486static int ata_hpa_resize(struct ata_device *dev)
1e999736 1487{
05027adc
TH
1488 struct ata_eh_context *ehc = &dev->link->eh_context;
1489 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490 u64 sectors = ata_id_n_sectors(dev->id);
1491 u64 native_sectors;
c728a914 1492 int rc;
a617c09f 1493
05027adc
TH
1494 /* do we need to do it? */
1495 if (dev->class != ATA_DEV_ATA ||
1496 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1498 return 0;
1e999736 1499
05027adc
TH
1500 /* read native max address */
1501 rc = ata_read_native_max_address(dev, &native_sectors);
1502 if (rc) {
dda7aba1
TH
1503 /* If device aborted the command or HPA isn't going to
1504 * be unlocked, skip HPA resizing.
05027adc 1505 */
dda7aba1 1506 if (rc == -EACCES || !ata_ignore_hpa) {
05027adc 1507 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1508 "broken, skipping HPA handling\n");
05027adc
TH
1509 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1510
1511 /* we can continue if device aborted the command */
1512 if (rc == -EACCES)
1513 rc = 0;
1e999736 1514 }
37301a55 1515
05027adc
TH
1516 return rc;
1517 }
1518
1519 /* nothing to do? */
1520 if (native_sectors <= sectors || !ata_ignore_hpa) {
1521 if (!print_info || native_sectors == sectors)
1522 return 0;
1523
1524 if (native_sectors > sectors)
1525 ata_dev_printk(dev, KERN_INFO,
1526 "HPA detected: current %llu, native %llu\n",
1527 (unsigned long long)sectors,
1528 (unsigned long long)native_sectors);
1529 else if (native_sectors < sectors)
1530 ata_dev_printk(dev, KERN_WARNING,
1531 "native sectors (%llu) is smaller than "
1532 "sectors (%llu)\n",
1533 (unsigned long long)native_sectors,
1534 (unsigned long long)sectors);
1535 return 0;
1536 }
1537
1538 /* let's unlock HPA */
1539 rc = ata_set_max_sectors(dev, native_sectors);
1540 if (rc == -EACCES) {
1541 /* if device aborted the command, skip HPA resizing */
1542 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1543 "(%llu -> %llu), skipping HPA handling\n",
1544 (unsigned long long)sectors,
1545 (unsigned long long)native_sectors);
1546 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1547 return 0;
1548 } else if (rc)
1549 return rc;
1550
1551 /* re-read IDENTIFY data */
1552 rc = ata_dev_reread_id(dev, 0);
1553 if (rc) {
1554 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1555 "data after HPA resizing\n");
1556 return rc;
1557 }
1558
1559 if (print_info) {
1560 u64 new_sectors = ata_id_n_sectors(dev->id);
1561 ata_dev_printk(dev, KERN_INFO,
1562 "HPA unlocked: %llu -> %llu, native %llu\n",
1563 (unsigned long long)sectors,
1564 (unsigned long long)new_sectors,
1565 (unsigned long long)native_sectors);
1566 }
1567
1568 return 0;
1e999736
AC
1569}
1570
1da177e4
LT
1571/**
1572 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1573 * @id: IDENTIFY DEVICE page to dump
1da177e4 1574 *
0bd3300a
TH
1575 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1576 * page.
1da177e4
LT
1577 *
1578 * LOCKING:
1579 * caller.
1580 */
1581
0bd3300a 1582static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1583{
1584 DPRINTK("49==0x%04x "
1585 "53==0x%04x "
1586 "63==0x%04x "
1587 "64==0x%04x "
1588 "75==0x%04x \n",
0bd3300a
TH
1589 id[49],
1590 id[53],
1591 id[63],
1592 id[64],
1593 id[75]);
1da177e4
LT
1594 DPRINTK("80==0x%04x "
1595 "81==0x%04x "
1596 "82==0x%04x "
1597 "83==0x%04x "
1598 "84==0x%04x \n",
0bd3300a
TH
1599 id[80],
1600 id[81],
1601 id[82],
1602 id[83],
1603 id[84]);
1da177e4
LT
1604 DPRINTK("88==0x%04x "
1605 "93==0x%04x\n",
0bd3300a
TH
1606 id[88],
1607 id[93]);
1da177e4
LT
1608}
1609
cb95d562
TH
1610/**
1611 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1612 * @id: IDENTIFY data to compute xfer mask from
1613 *
1614 * Compute the xfermask for this device. This is not as trivial
1615 * as it seems if we must consider early devices correctly.
1616 *
1617 * FIXME: pre IDE drive timing (do we care ?).
1618 *
1619 * LOCKING:
1620 * None.
1621 *
1622 * RETURNS:
1623 * Computed xfermask
1624 */
7dc951ae 1625unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1626{
7dc951ae 1627 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1628
1629 /* Usual case. Word 53 indicates word 64 is valid */
1630 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1631 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1632 pio_mask <<= 3;
1633 pio_mask |= 0x7;
1634 } else {
1635 /* If word 64 isn't valid then Word 51 high byte holds
1636 * the PIO timing number for the maximum. Turn it into
1637 * a mask.
1638 */
7a0f1c8a 1639 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1640 if (mode < 5) /* Valid PIO range */
2dcb407e 1641 pio_mask = (2 << mode) - 1;
46767aeb
AC
1642 else
1643 pio_mask = 1;
cb95d562
TH
1644
1645 /* But wait.. there's more. Design your standards by
1646 * committee and you too can get a free iordy field to
1647 * process. However its the speeds not the modes that
1648 * are supported... Note drivers using the timing API
1649 * will get this right anyway
1650 */
1651 }
1652
1653 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1654
b352e57d
AC
1655 if (ata_id_is_cfa(id)) {
1656 /*
1657 * Process compact flash extended modes
1658 */
62afe5d7
SS
1659 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1660 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1661
1662 if (pio)
1663 pio_mask |= (1 << 5);
1664 if (pio > 1)
1665 pio_mask |= (1 << 6);
1666 if (dma)
1667 mwdma_mask |= (1 << 3);
1668 if (dma > 1)
1669 mwdma_mask |= (1 << 4);
1670 }
1671
fb21f0d0
TH
1672 udma_mask = 0;
1673 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1674 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1675
1676 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1677}
1678
86e45b6b 1679/**
442eacc3 1680 * ata_pio_queue_task - Queue port_task
86e45b6b 1681 * @ap: The ata_port to queue port_task for
65f27f38 1682 * @data: data for @fn to use
341c2c95 1683 * @delay: delay time in msecs for workqueue function
86e45b6b
TH
1684 *
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1689 *
1690 * libata core layer takes care of synchronization between
442eacc3 1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
86e45b6b
TH
1692 * synchronization.
1693 *
1694 * LOCKING:
1695 * Inherited from caller.
1696 */
624d5c51 1697void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
86e45b6b 1698{
65f27f38 1699 ap->port_task_data = data;
86e45b6b 1700
45a66c1c 1701 /* may fail if ata_port_flush_task() in progress */
341c2c95 1702 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
86e45b6b
TH
1703}
1704
1705/**
1706 * ata_port_flush_task - Flush port_task
1707 * @ap: The ata_port to flush port_task for
1708 *
1709 * After this function completes, port_task is guranteed not to
1710 * be running or scheduled.
1711 *
1712 * LOCKING:
1713 * Kernel thread context (may sleep)
1714 */
1715void ata_port_flush_task(struct ata_port *ap)
1716{
86e45b6b
TH
1717 DPRINTK("ENTER\n");
1718
45a66c1c 1719 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1720
0dd4b21f 1721 if (ata_msg_ctl(ap))
7f5e4e8d 1722 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
86e45b6b
TH
1723}
1724
7102d230 1725static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1726{
77853bf2 1727 struct completion *waiting = qc->private_data;
a2a7a662 1728
a2a7a662 1729 complete(waiting);
a2a7a662
TH
1730}
1731
1732/**
2432697b 1733 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1734 * @dev: Device to which the command is sent
1735 * @tf: Taskfile registers for the command and the result
d69cf37d 1736 * @cdb: CDB for packet command
a2a7a662 1737 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1738 * @sgl: sg list for the data buffer of the command
2432697b 1739 * @n_elem: Number of sg entries
2b789108 1740 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1741 *
1742 * Executes libata internal command with timeout. @tf contains
1743 * command on entry and result on return. Timeout and error
1744 * conditions are reported via return value. No recovery action
1745 * is taken after a command times out. It's caller's duty to
1746 * clean up after timeout.
1747 *
1748 * LOCKING:
1749 * None. Should be called with kernel context, might sleep.
551e8889
TH
1750 *
1751 * RETURNS:
1752 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1753 */
2432697b
TH
1754unsigned ata_exec_internal_sg(struct ata_device *dev,
1755 struct ata_taskfile *tf, const u8 *cdb,
87260216 1756 int dma_dir, struct scatterlist *sgl,
2b789108 1757 unsigned int n_elem, unsigned long timeout)
a2a7a662 1758{
9af5c9c9
TH
1759 struct ata_link *link = dev->link;
1760 struct ata_port *ap = link->ap;
a2a7a662 1761 u8 command = tf->command;
87fbc5a0 1762 int auto_timeout = 0;
a2a7a662 1763 struct ata_queued_cmd *qc;
2ab7db1f 1764 unsigned int tag, preempted_tag;
dedaf2b0 1765 u32 preempted_sactive, preempted_qc_active;
da917d69 1766 int preempted_nr_active_links;
60be6b9a 1767 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1768 unsigned long flags;
77853bf2 1769 unsigned int err_mask;
d95a717f 1770 int rc;
a2a7a662 1771
ba6a1308 1772 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1773
e3180499 1774 /* no internal command while frozen */
b51e9e5d 1775 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1776 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1777 return AC_ERR_SYSTEM;
1778 }
1779
2ab7db1f 1780 /* initialize internal qc */
a2a7a662 1781
2ab7db1f
TH
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1786 */
1787 if (ap->ops->error_handler)
1788 tag = ATA_TAG_INTERNAL;
1789 else
1790 tag = 0;
1791
8a8bc223
TH
1792 if (test_and_set_bit(tag, &ap->qc_allocated))
1793 BUG();
f69499f4 1794 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1795
1796 qc->tag = tag;
1797 qc->scsicmd = NULL;
1798 qc->ap = ap;
1799 qc->dev = dev;
1800 ata_qc_reinit(qc);
1801
9af5c9c9
TH
1802 preempted_tag = link->active_tag;
1803 preempted_sactive = link->sactive;
dedaf2b0 1804 preempted_qc_active = ap->qc_active;
da917d69 1805 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1806 link->active_tag = ATA_TAG_POISON;
1807 link->sactive = 0;
dedaf2b0 1808 ap->qc_active = 0;
da917d69 1809 ap->nr_active_links = 0;
2ab7db1f
TH
1810
1811 /* prepare & issue qc */
a2a7a662 1812 qc->tf = *tf;
d69cf37d
TH
1813 if (cdb)
1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1815 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1816 qc->dma_dir = dma_dir;
1817 if (dma_dir != DMA_NONE) {
2432697b 1818 unsigned int i, buflen = 0;
87260216 1819 struct scatterlist *sg;
2432697b 1820
87260216
JA
1821 for_each_sg(sgl, sg, n_elem, i)
1822 buflen += sg->length;
2432697b 1823
87260216 1824 ata_sg_init(qc, sgl, n_elem);
49c80429 1825 qc->nbytes = buflen;
a2a7a662
TH
1826 }
1827
77853bf2 1828 qc->private_data = &wait;
a2a7a662
TH
1829 qc->complete_fn = ata_qc_complete_internal;
1830
8e0e694a 1831 ata_qc_issue(qc);
a2a7a662 1832
ba6a1308 1833 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1834
87fbc5a0
TH
1835 if (!timeout) {
1836 if (ata_probe_timeout)
1837 timeout = ata_probe_timeout * 1000;
1838 else {
1839 timeout = ata_internal_cmd_timeout(dev, command);
1840 auto_timeout = 1;
1841 }
1842 }
2b789108
TH
1843
1844 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1845
1846 ata_port_flush_task(ap);
41ade50c 1847
d95a717f 1848 if (!rc) {
ba6a1308 1849 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1850
1851 /* We're racing with irq here. If we lose, the
1852 * following test prevents us from completing the qc
d95a717f
TH
1853 * twice. If we win, the port is frozen and will be
1854 * cleaned up by ->post_internal_cmd().
a2a7a662 1855 */
77853bf2 1856 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1857 qc->err_mask |= AC_ERR_TIMEOUT;
1858
1859 if (ap->ops->error_handler)
1860 ata_port_freeze(ap);
1861 else
1862 ata_qc_complete(qc);
f15a1daf 1863
0dd4b21f
BP
1864 if (ata_msg_warn(ap))
1865 ata_dev_printk(dev, KERN_WARNING,
88574551 1866 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1867 }
1868
ba6a1308 1869 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1870 }
1871
d95a717f
TH
1872 /* do post_internal_cmd */
1873 if (ap->ops->post_internal_cmd)
1874 ap->ops->post_internal_cmd(qc);
1875
a51d644a
TH
1876 /* perform minimal error analysis */
1877 if (qc->flags & ATA_QCFLAG_FAILED) {
1878 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1879 qc->err_mask |= AC_ERR_DEV;
1880
1881 if (!qc->err_mask)
1882 qc->err_mask |= AC_ERR_OTHER;
1883
1884 if (qc->err_mask & ~AC_ERR_OTHER)
1885 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1886 }
1887
15869303 1888 /* finish up */
ba6a1308 1889 spin_lock_irqsave(ap->lock, flags);
15869303 1890
e61e0672 1891 *tf = qc->result_tf;
77853bf2
TH
1892 err_mask = qc->err_mask;
1893
1894 ata_qc_free(qc);
9af5c9c9
TH
1895 link->active_tag = preempted_tag;
1896 link->sactive = preempted_sactive;
dedaf2b0 1897 ap->qc_active = preempted_qc_active;
da917d69 1898 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1899
1f7dd3e9
TH
1900 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1901 * Until those drivers are fixed, we detect the condition
1902 * here, fail the command with AC_ERR_SYSTEM and reenable the
1903 * port.
1904 *
1905 * Note that this doesn't change any behavior as internal
1906 * command failure results in disabling the device in the
1907 * higher layer for LLDDs without new reset/EH callbacks.
1908 *
1909 * Kill the following code as soon as those drivers are fixed.
1910 */
198e0fed 1911 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1912 err_mask |= AC_ERR_SYSTEM;
1913 ata_port_probe(ap);
1914 }
1915
ba6a1308 1916 spin_unlock_irqrestore(ap->lock, flags);
15869303 1917
87fbc5a0
TH
1918 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1919 ata_internal_cmd_timed_out(dev, command);
1920
77853bf2 1921 return err_mask;
a2a7a662
TH
1922}
1923
2432697b 1924/**
33480a0e 1925 * ata_exec_internal - execute libata internal command
2432697b
TH
1926 * @dev: Device to which the command is sent
1927 * @tf: Taskfile registers for the command and the result
1928 * @cdb: CDB for packet command
1929 * @dma_dir: Data tranfer direction of the command
1930 * @buf: Data buffer of the command
1931 * @buflen: Length of data buffer
2b789108 1932 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1933 *
1934 * Wrapper around ata_exec_internal_sg() which takes simple
1935 * buffer instead of sg list.
1936 *
1937 * LOCKING:
1938 * None. Should be called with kernel context, might sleep.
1939 *
1940 * RETURNS:
1941 * Zero on success, AC_ERR_* mask on failure
1942 */
1943unsigned ata_exec_internal(struct ata_device *dev,
1944 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1945 int dma_dir, void *buf, unsigned int buflen,
1946 unsigned long timeout)
2432697b 1947{
33480a0e
TH
1948 struct scatterlist *psg = NULL, sg;
1949 unsigned int n_elem = 0;
2432697b 1950
33480a0e
TH
1951 if (dma_dir != DMA_NONE) {
1952 WARN_ON(!buf);
1953 sg_init_one(&sg, buf, buflen);
1954 psg = &sg;
1955 n_elem++;
1956 }
2432697b 1957
2b789108
TH
1958 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1959 timeout);
2432697b
TH
1960}
1961
977e6b9f
TH
1962/**
1963 * ata_do_simple_cmd - execute simple internal command
1964 * @dev: Device to which the command is sent
1965 * @cmd: Opcode to execute
1966 *
1967 * Execute a 'simple' command, that only consists of the opcode
1968 * 'cmd' itself, without filling any other registers
1969 *
1970 * LOCKING:
1971 * Kernel thread context (may sleep).
1972 *
1973 * RETURNS:
1974 * Zero on success, AC_ERR_* mask on failure
e58eb583 1975 */
77b08fb5 1976unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1977{
1978 struct ata_taskfile tf;
e58eb583
TH
1979
1980 ata_tf_init(dev, &tf);
1981
1982 tf.command = cmd;
1983 tf.flags |= ATA_TFLAG_DEVICE;
1984 tf.protocol = ATA_PROT_NODATA;
1985
2b789108 1986 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1987}
1988
1bc4ccff
AC
1989/**
1990 * ata_pio_need_iordy - check if iordy needed
1991 * @adev: ATA device
1992 *
1993 * Check if the current speed of the device requires IORDY. Used
1994 * by various controllers for chip configuration.
1995 */
a617c09f 1996
1bc4ccff
AC
1997unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1998{
432729f0
AC
1999 /* Controller doesn't support IORDY. Probably a pointless check
2000 as the caller should know this */
9af5c9c9 2001 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 2002 return 0;
5c18c4d2
DD
2003 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2004 if (ata_id_is_cfa(adev->id)
2005 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2006 return 0;
432729f0
AC
2007 /* PIO3 and higher it is mandatory */
2008 if (adev->pio_mode > XFER_PIO_2)
2009 return 1;
2010 /* We turn it on when possible */
2011 if (ata_id_has_iordy(adev->id))
1bc4ccff 2012 return 1;
432729f0
AC
2013 return 0;
2014}
2e9edbf8 2015
432729f0
AC
2016/**
2017 * ata_pio_mask_no_iordy - Return the non IORDY mask
2018 * @adev: ATA device
2019 *
2020 * Compute the highest mode possible if we are not using iordy. Return
2021 * -1 if no iordy mode is available.
2022 */
a617c09f 2023
432729f0
AC
2024static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2025{
1bc4ccff 2026 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 2027 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 2028 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
2029 /* Is the speed faster than the drive allows non IORDY ? */
2030 if (pio) {
2031 /* This is cycle times not frequency - watch the logic! */
2032 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
2033 return 3 << ATA_SHIFT_PIO;
2034 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
2035 }
2036 }
432729f0 2037 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
2038}
2039
963e4975
AC
2040/**
2041 * ata_do_dev_read_id - default ID read method
2042 * @dev: device
2043 * @tf: proposed taskfile
2044 * @id: data buffer
2045 *
2046 * Issue the identify taskfile and hand back the buffer containing
2047 * identify data. For some RAID controllers and for pre ATA devices
2048 * this function is wrapped or replaced by the driver
2049 */
2050unsigned int ata_do_dev_read_id(struct ata_device *dev,
2051 struct ata_taskfile *tf, u16 *id)
2052{
2053 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2054 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2055}
2056
1da177e4 2057/**
49016aca 2058 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2059 * @dev: target device
2060 * @p_class: pointer to class of the target device (may be changed)
bff04647 2061 * @flags: ATA_READID_* flags
fe635c7e 2062 * @id: buffer to read IDENTIFY data into
1da177e4 2063 *
49016aca
TH
2064 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2065 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2066 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2067 * for pre-ATA4 drives.
1da177e4 2068 *
50a99018 2069 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2070 * now we abort if we hit that case.
50a99018 2071 *
1da177e4 2072 * LOCKING:
49016aca
TH
2073 * Kernel thread context (may sleep)
2074 *
2075 * RETURNS:
2076 * 0 on success, -errno otherwise.
1da177e4 2077 */
a9beec95 2078int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2079 unsigned int flags, u16 *id)
1da177e4 2080{
9af5c9c9 2081 struct ata_port *ap = dev->link->ap;
49016aca 2082 unsigned int class = *p_class;
a0123703 2083 struct ata_taskfile tf;
49016aca
TH
2084 unsigned int err_mask = 0;
2085 const char *reason;
79b42bab 2086 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2087 int may_fallback = 1, tried_spinup = 0;
49016aca 2088 int rc;
1da177e4 2089
0dd4b21f 2090 if (ata_msg_ctl(ap))
7f5e4e8d 2091 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2092
963e4975 2093retry:
3373efd8 2094 ata_tf_init(dev, &tf);
a0123703 2095
49016aca 2096 switch (class) {
79b42bab
TH
2097 case ATA_DEV_SEMB:
2098 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2099 case ATA_DEV_ATA:
a0123703 2100 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2101 break;
2102 case ATA_DEV_ATAPI:
a0123703 2103 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2104 break;
2105 default:
2106 rc = -ENODEV;
2107 reason = "unsupported class";
2108 goto err_out;
1da177e4
LT
2109 }
2110
a0123703 2111 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2112
2113 /* Some devices choke if TF registers contain garbage. Make
2114 * sure those are properly initialized.
2115 */
2116 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2117
2118 /* Device presence detection is unreliable on some
2119 * controllers. Always poll IDENTIFY if available.
2120 */
2121 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2122
963e4975
AC
2123 if (ap->ops->read_id)
2124 err_mask = ap->ops->read_id(dev, &tf, id);
2125 else
2126 err_mask = ata_do_dev_read_id(dev, &tf, id);
2127
a0123703 2128 if (err_mask) {
800b3996 2129 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2130 ata_dev_printk(dev, KERN_DEBUG,
2131 "NODEV after polling detection\n");
55a8e2c8
TH
2132 return -ENOENT;
2133 }
2134
79b42bab
TH
2135 if (is_semb) {
2136 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2137 "device w/ SEMB sig, disabled\n");
2138 /* SEMB is not supported yet */
2139 *p_class = ATA_DEV_SEMB_UNSUP;
2140 return 0;
2141 }
2142
1ffc151f
TH
2143 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2144 /* Device or controller might have reported
2145 * the wrong device class. Give a shot at the
2146 * other IDENTIFY if the current one is
2147 * aborted by the device.
2148 */
2149 if (may_fallback) {
2150 may_fallback = 0;
2151
2152 if (class == ATA_DEV_ATA)
2153 class = ATA_DEV_ATAPI;
2154 else
2155 class = ATA_DEV_ATA;
2156 goto retry;
2157 }
2158
2159 /* Control reaches here iff the device aborted
2160 * both flavors of IDENTIFYs which happens
2161 * sometimes with phantom devices.
2162 */
2163 ata_dev_printk(dev, KERN_DEBUG,
2164 "both IDENTIFYs aborted, assuming NODEV\n");
2165 return -ENOENT;
54936f8b
TH
2166 }
2167
49016aca
TH
2168 rc = -EIO;
2169 reason = "I/O error";
1da177e4
LT
2170 goto err_out;
2171 }
2172
54936f8b
TH
2173 /* Falling back doesn't make sense if ID data was read
2174 * successfully at least once.
2175 */
2176 may_fallback = 0;
2177
49016aca 2178 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2179
49016aca 2180 /* sanity check */
a4f5749b 2181 rc = -EINVAL;
6070068b 2182 reason = "device reports invalid type";
a4f5749b
TH
2183
2184 if (class == ATA_DEV_ATA) {
2185 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2186 goto err_out;
2187 } else {
2188 if (ata_id_is_ata(id))
2189 goto err_out;
49016aca
TH
2190 }
2191
169439c2
ML
2192 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2193 tried_spinup = 1;
2194 /*
2195 * Drive powered-up in standby mode, and requires a specific
2196 * SET_FEATURES spin-up subcommand before it will accept
2197 * anything other than the original IDENTIFY command.
2198 */
218f3d30 2199 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2200 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2201 rc = -EIO;
2202 reason = "SPINUP failed";
2203 goto err_out;
2204 }
2205 /*
2206 * If the drive initially returned incomplete IDENTIFY info,
2207 * we now must reissue the IDENTIFY command.
2208 */
2209 if (id[2] == 0x37c8)
2210 goto retry;
2211 }
2212
bff04647 2213 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2214 /*
2215 * The exact sequence expected by certain pre-ATA4 drives is:
2216 * SRST RESET
50a99018
AC
2217 * IDENTIFY (optional in early ATA)
2218 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2219 * anything else..
2220 * Some drives were very specific about that exact sequence.
50a99018
AC
2221 *
2222 * Note that ATA4 says lba is mandatory so the second check
2223 * shoud never trigger.
49016aca
TH
2224 */
2225 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2226 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2227 if (err_mask) {
2228 rc = -EIO;
2229 reason = "INIT_DEV_PARAMS failed";
2230 goto err_out;
2231 }
2232
2233 /* current CHS translation info (id[53-58]) might be
2234 * changed. reread the identify device info.
2235 */
bff04647 2236 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2237 goto retry;
2238 }
2239 }
2240
2241 *p_class = class;
fe635c7e 2242
49016aca
TH
2243 return 0;
2244
2245 err_out:
88574551 2246 if (ata_msg_warn(ap))
0dd4b21f 2247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2248 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2249 return rc;
2250}
2251
9062712f
TH
2252static int ata_do_link_spd_horkage(struct ata_device *dev)
2253{
2254 struct ata_link *plink = ata_dev_phys_link(dev);
2255 u32 target, target_limit;
2256
2257 if (!sata_scr_valid(plink))
2258 return 0;
2259
2260 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2261 target = 1;
2262 else
2263 return 0;
2264
2265 target_limit = (1 << target) - 1;
2266
2267 /* if already on stricter limit, no need to push further */
2268 if (plink->sata_spd_limit <= target_limit)
2269 return 0;
2270
2271 plink->sata_spd_limit = target_limit;
2272
2273 /* Request another EH round by returning -EAGAIN if link is
2274 * going faster than the target speed. Forward progress is
2275 * guaranteed by setting sata_spd_limit to target_limit above.
2276 */
2277 if (plink->sata_spd > target) {
2278 ata_dev_printk(dev, KERN_INFO,
2279 "applying link speed limit horkage to %s\n",
2280 sata_spd_string(target));
2281 return -EAGAIN;
2282 }
2283 return 0;
2284}
2285
3373efd8 2286static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2287{
9af5c9c9 2288 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2289
2290 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2291 return 0;
2292
9af5c9c9 2293 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2294}
2295
a6e6ce8e
TH
2296static void ata_dev_config_ncq(struct ata_device *dev,
2297 char *desc, size_t desc_sz)
2298{
9af5c9c9 2299 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2300 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2301
2302 if (!ata_id_has_ncq(dev->id)) {
2303 desc[0] = '\0';
2304 return;
2305 }
75683fe7 2306 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2307 snprintf(desc, desc_sz, "NCQ (not used)");
2308 return;
2309 }
a6e6ce8e 2310 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2311 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2312 dev->flags |= ATA_DFLAG_NCQ;
2313 }
2314
2315 if (hdepth >= ddepth)
2316 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2317 else
2318 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2319}
2320
49016aca 2321/**
ffeae418 2322 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2323 * @dev: Target device to configure
2324 *
2325 * Configure @dev according to @dev->id. Generic and low-level
2326 * driver specific fixups are also applied.
49016aca
TH
2327 *
2328 * LOCKING:
ffeae418
TH
2329 * Kernel thread context (may sleep)
2330 *
2331 * RETURNS:
2332 * 0 on success, -errno otherwise
49016aca 2333 */
efdaedc4 2334int ata_dev_configure(struct ata_device *dev)
49016aca 2335{
9af5c9c9
TH
2336 struct ata_port *ap = dev->link->ap;
2337 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2338 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2339 const u16 *id = dev->id;
7dc951ae 2340 unsigned long xfer_mask;
b352e57d 2341 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2342 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2343 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2344 int rc;
49016aca 2345
0dd4b21f 2346 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2347 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2348 __func__);
ffeae418 2349 return 0;
49016aca
TH
2350 }
2351
0dd4b21f 2352 if (ata_msg_probe(ap))
7f5e4e8d 2353 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2354
75683fe7
TH
2355 /* set horkage */
2356 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2357 ata_force_horkage(dev);
75683fe7 2358
50af2fa1
TH
2359 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2360 ata_dev_printk(dev, KERN_INFO,
2361 "unsupported device, disabling\n");
2362 ata_dev_disable(dev);
2363 return 0;
2364 }
2365
2486fa56
TH
2366 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2367 dev->class == ATA_DEV_ATAPI) {
2368 ata_dev_printk(dev, KERN_WARNING,
2369 "WARNING: ATAPI is %s, device ignored.\n",
2370 atapi_enabled ? "not supported with this driver"
2371 : "disabled");
2372 ata_dev_disable(dev);
2373 return 0;
2374 }
2375
9062712f
TH
2376 rc = ata_do_link_spd_horkage(dev);
2377 if (rc)
2378 return rc;
2379
6746544c
TH
2380 /* let ACPI work its magic */
2381 rc = ata_acpi_on_devcfg(dev);
2382 if (rc)
2383 return rc;
08573a86 2384
05027adc
TH
2385 /* massage HPA, do it early as it might change IDENTIFY data */
2386 rc = ata_hpa_resize(dev);
2387 if (rc)
2388 return rc;
2389
c39f5ebe 2390 /* print device capabilities */
0dd4b21f 2391 if (ata_msg_probe(ap))
88574551
TH
2392 ata_dev_printk(dev, KERN_DEBUG,
2393 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2394 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2395 __func__,
f15a1daf
TH
2396 id[49], id[82], id[83], id[84],
2397 id[85], id[86], id[87], id[88]);
c39f5ebe 2398
208a9933 2399 /* initialize to-be-configured parameters */
ea1dd4e1 2400 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2401 dev->max_sectors = 0;
2402 dev->cdb_len = 0;
2403 dev->n_sectors = 0;
2404 dev->cylinders = 0;
2405 dev->heads = 0;
2406 dev->sectors = 0;
e18086d6 2407 dev->multi_count = 0;
208a9933 2408
1da177e4
LT
2409 /*
2410 * common ATA, ATAPI feature tests
2411 */
2412
ff8854b2 2413 /* find max transfer mode; for printk only */
1148c3a7 2414 xfer_mask = ata_id_xfermask(id);
1da177e4 2415
0dd4b21f
BP
2416 if (ata_msg_probe(ap))
2417 ata_dump_id(id);
1da177e4 2418
ef143d57
AL
2419 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2420 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2421 sizeof(fwrevbuf));
2422
2423 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2424 sizeof(modelbuf));
2425
1da177e4
LT
2426 /* ATA-specific feature tests */
2427 if (dev->class == ATA_DEV_ATA) {
b352e57d 2428 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2429 /* CPRM may make this media unusable */
2430 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2431 ata_dev_printk(dev, KERN_WARNING,
2432 "supports DRM functions and may "
2433 "not be fully accessable.\n");
b352e57d 2434 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2435 } else {
2dcb407e 2436 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2437 /* Warn the user if the device has TPM extensions */
2438 if (ata_id_has_tpm(id))
2439 ata_dev_printk(dev, KERN_WARNING,
2440 "supports DRM functions and may "
2441 "not be fully accessable.\n");
2442 }
b352e57d 2443
1148c3a7 2444 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2445
e18086d6
ML
2446 /* get current R/W Multiple count setting */
2447 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2448 unsigned int max = dev->id[47] & 0xff;
2449 unsigned int cnt = dev->id[59] & 0xff;
2450 /* only recognize/allow powers of two here */
2451 if (is_power_of_2(max) && is_power_of_2(cnt))
2452 if (cnt <= max)
2453 dev->multi_count = cnt;
2454 }
3f64f565 2455
1148c3a7 2456 if (ata_id_has_lba(id)) {
4c2d721a 2457 const char *lba_desc;
a6e6ce8e 2458 char ncq_desc[20];
8bf62ece 2459
4c2d721a
TH
2460 lba_desc = "LBA";
2461 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2462 if (ata_id_has_lba48(id)) {
8bf62ece 2463 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2464 lba_desc = "LBA48";
6fc49adb
TH
2465
2466 if (dev->n_sectors >= (1UL << 28) &&
2467 ata_id_has_flush_ext(id))
2468 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2469 }
8bf62ece 2470
a6e6ce8e
TH
2471 /* config NCQ */
2472 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2473
8bf62ece 2474 /* print device info to dmesg */
3f64f565
EM
2475 if (ata_msg_drv(ap) && print_info) {
2476 ata_dev_printk(dev, KERN_INFO,
2477 "%s: %s, %s, max %s\n",
2478 revbuf, modelbuf, fwrevbuf,
2479 ata_mode_string(xfer_mask));
2480 ata_dev_printk(dev, KERN_INFO,
2481 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2482 (unsigned long long)dev->n_sectors,
3f64f565
EM
2483 dev->multi_count, lba_desc, ncq_desc);
2484 }
ffeae418 2485 } else {
8bf62ece
AL
2486 /* CHS */
2487
2488 /* Default translation */
1148c3a7
TH
2489 dev->cylinders = id[1];
2490 dev->heads = id[3];
2491 dev->sectors = id[6];
8bf62ece 2492
1148c3a7 2493 if (ata_id_current_chs_valid(id)) {
8bf62ece 2494 /* Current CHS translation is valid. */
1148c3a7
TH
2495 dev->cylinders = id[54];
2496 dev->heads = id[55];
2497 dev->sectors = id[56];
8bf62ece
AL
2498 }
2499
2500 /* print device info to dmesg */
3f64f565 2501 if (ata_msg_drv(ap) && print_info) {
88574551 2502 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2503 "%s: %s, %s, max %s\n",
2504 revbuf, modelbuf, fwrevbuf,
2505 ata_mode_string(xfer_mask));
a84471fe 2506 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2507 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2508 (unsigned long long)dev->n_sectors,
2509 dev->multi_count, dev->cylinders,
2510 dev->heads, dev->sectors);
2511 }
07f6f7d0
AL
2512 }
2513
6e7846e9 2514 dev->cdb_len = 16;
1da177e4
LT
2515 }
2516
2517 /* ATAPI-specific feature tests */
2c13b7ce 2518 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2519 const char *cdb_intr_string = "";
2520 const char *atapi_an_string = "";
91163006 2521 const char *dma_dir_string = "";
7d77b247 2522 u32 sntf;
08a556db 2523
1148c3a7 2524 rc = atapi_cdb_len(id);
1da177e4 2525 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2526 if (ata_msg_warn(ap))
88574551
TH
2527 ata_dev_printk(dev, KERN_WARNING,
2528 "unsupported CDB len\n");
ffeae418 2529 rc = -EINVAL;
1da177e4
LT
2530 goto err_out_nosup;
2531 }
6e7846e9 2532 dev->cdb_len = (unsigned int) rc;
1da177e4 2533
7d77b247
TH
2534 /* Enable ATAPI AN if both the host and device have
2535 * the support. If PMP is attached, SNTF is required
2536 * to enable ATAPI AN to discern between PHY status
2537 * changed notifications and ATAPI ANs.
9f45cbd3 2538 */
7d77b247 2539 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2540 (!sata_pmp_attached(ap) ||
7d77b247 2541 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2542 unsigned int err_mask;
2543
9f45cbd3 2544 /* issue SET feature command to turn this on */
218f3d30
JG
2545 err_mask = ata_dev_set_feature(dev,
2546 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2547 if (err_mask)
9f45cbd3 2548 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2549 "failed to enable ATAPI AN "
2550 "(err_mask=0x%x)\n", err_mask);
2551 else {
9f45cbd3 2552 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2553 atapi_an_string = ", ATAPI AN";
2554 }
9f45cbd3
KCA
2555 }
2556
08a556db 2557 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2558 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2559 cdb_intr_string = ", CDB intr";
2560 }
312f7da2 2561
91163006
TH
2562 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2563 dev->flags |= ATA_DFLAG_DMADIR;
2564 dma_dir_string = ", DMADIR";
2565 }
2566
1da177e4 2567 /* print device info to dmesg */
5afc8142 2568 if (ata_msg_drv(ap) && print_info)
ef143d57 2569 ata_dev_printk(dev, KERN_INFO,
91163006 2570 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2571 modelbuf, fwrevbuf,
12436c30 2572 ata_mode_string(xfer_mask),
91163006
TH
2573 cdb_intr_string, atapi_an_string,
2574 dma_dir_string);
1da177e4
LT
2575 }
2576
914ed354
TH
2577 /* determine max_sectors */
2578 dev->max_sectors = ATA_MAX_SECTORS;
2579 if (dev->flags & ATA_DFLAG_LBA48)
2580 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2581
ca77329f
KCA
2582 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2583 if (ata_id_has_hipm(dev->id))
2584 dev->flags |= ATA_DFLAG_HIPM;
2585 if (ata_id_has_dipm(dev->id))
2586 dev->flags |= ATA_DFLAG_DIPM;
2587 }
2588
c5038fc0
AC
2589 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2590 200 sectors */
3373efd8 2591 if (ata_dev_knobble(dev)) {
5afc8142 2592 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2593 ata_dev_printk(dev, KERN_INFO,
2594 "applying bridge limits\n");
5a529139 2595 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2596 dev->max_sectors = ATA_MAX_SECTORS;
2597 }
2598
f8d8e579 2599 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2600 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2601 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2602 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2603 }
f8d8e579 2604
75683fe7 2605 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2606 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2607 dev->max_sectors);
18d6e9d5 2608
ca77329f
KCA
2609 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2610 dev->horkage |= ATA_HORKAGE_IPM;
2611
2612 /* reset link pm_policy for this port to no pm */
2613 ap->pm_policy = MAX_PERFORMANCE;
2614 }
2615
4b2f3ede 2616 if (ap->ops->dev_config)
cd0d3bbc 2617 ap->ops->dev_config(dev);
4b2f3ede 2618
c5038fc0
AC
2619 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2620 /* Let the user know. We don't want to disallow opens for
2621 rescue purposes, or in case the vendor is just a blithering
2622 idiot. Do this after the dev_config call as some controllers
2623 with buggy firmware may want to avoid reporting false device
2624 bugs */
2625
2626 if (print_info) {
2627 ata_dev_printk(dev, KERN_WARNING,
2628"Drive reports diagnostics failure. This may indicate a drive\n");
2629 ata_dev_printk(dev, KERN_WARNING,
2630"fault or invalid emulation. Contact drive vendor for information.\n");
2631 }
2632 }
2633
ac70a964
TH
2634 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2635 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2636 "firmware update to be fully functional.\n");
2637 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2638 "or visit http://ata.wiki.kernel.org.\n");
2639 }
2640
ffeae418 2641 return 0;
1da177e4
LT
2642
2643err_out_nosup:
0dd4b21f 2644 if (ata_msg_probe(ap))
88574551 2645 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2646 "%s: EXIT, err\n", __func__);
ffeae418 2647 return rc;
1da177e4
LT
2648}
2649
be0d18df 2650/**
2e41e8e6 2651 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2652 * @ap: port
2653 *
2e41e8e6 2654 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2655 * detection.
2656 */
2657
2658int ata_cable_40wire(struct ata_port *ap)
2659{
2660 return ATA_CBL_PATA40;
2661}
2662
2663/**
2e41e8e6 2664 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2665 * @ap: port
2666 *
2e41e8e6 2667 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2668 * detection.
2669 */
2670
2671int ata_cable_80wire(struct ata_port *ap)
2672{
2673 return ATA_CBL_PATA80;
2674}
2675
2676/**
2677 * ata_cable_unknown - return unknown PATA cable.
2678 * @ap: port
2679 *
2680 * Helper method for drivers which have no PATA cable detection.
2681 */
2682
2683int ata_cable_unknown(struct ata_port *ap)
2684{
2685 return ATA_CBL_PATA_UNK;
2686}
2687
c88f90c3
TH
2688/**
2689 * ata_cable_ignore - return ignored PATA cable.
2690 * @ap: port
2691 *
2692 * Helper method for drivers which don't use cable type to limit
2693 * transfer mode.
2694 */
2695int ata_cable_ignore(struct ata_port *ap)
2696{
2697 return ATA_CBL_PATA_IGN;
2698}
2699
be0d18df
AC
2700/**
2701 * ata_cable_sata - return SATA cable type
2702 * @ap: port
2703 *
2704 * Helper method for drivers which have SATA cables
2705 */
2706
2707int ata_cable_sata(struct ata_port *ap)
2708{
2709 return ATA_CBL_SATA;
2710}
2711
1da177e4
LT
2712/**
2713 * ata_bus_probe - Reset and probe ATA bus
2714 * @ap: Bus to probe
2715 *
0cba632b
JG
2716 * Master ATA bus probing function. Initiates a hardware-dependent
2717 * bus reset, then attempts to identify any devices found on
2718 * the bus.
2719 *
1da177e4 2720 * LOCKING:
0cba632b 2721 * PCI/etc. bus probe sem.
1da177e4
LT
2722 *
2723 * RETURNS:
96072e69 2724 * Zero on success, negative errno otherwise.
1da177e4
LT
2725 */
2726
80289167 2727int ata_bus_probe(struct ata_port *ap)
1da177e4 2728{
28ca5c57 2729 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2730 int tries[ATA_MAX_DEVICES];
f58229f8 2731 int rc;
e82cbdb9 2732 struct ata_device *dev;
1da177e4 2733
28ca5c57 2734 ata_port_probe(ap);
c19ba8af 2735
1eca4365 2736 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2737 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2738
2739 retry:
1eca4365 2740 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2741 /* If we issue an SRST then an ATA drive (not ATAPI)
2742 * may change configuration and be in PIO0 timing. If
2743 * we do a hard reset (or are coming from power on)
2744 * this is true for ATA or ATAPI. Until we've set a
2745 * suitable controller mode we should not touch the
2746 * bus as we may be talking too fast.
2747 */
2748 dev->pio_mode = XFER_PIO_0;
2749
2750 /* If the controller has a pio mode setup function
2751 * then use it to set the chipset to rights. Don't
2752 * touch the DMA setup as that will be dealt with when
2753 * configuring devices.
2754 */
2755 if (ap->ops->set_piomode)
2756 ap->ops->set_piomode(ap, dev);
2757 }
2758
2044470c 2759 /* reset and determine device classes */
52783c5d 2760 ap->ops->phy_reset(ap);
2061a47a 2761
1eca4365 2762 ata_for_each_dev(dev, &ap->link, ALL) {
52783c5d
TH
2763 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2764 dev->class != ATA_DEV_UNKNOWN)
2765 classes[dev->devno] = dev->class;
2766 else
2767 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2768
52783c5d 2769 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2770 }
1da177e4 2771
52783c5d 2772 ata_port_probe(ap);
2044470c 2773
f31f0cc2
JG
2774 /* read IDENTIFY page and configure devices. We have to do the identify
2775 specific sequence bass-ackwards so that PDIAG- is released by
2776 the slave device */
2777
1eca4365 2778 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2779 if (tries[dev->devno])
2780 dev->class = classes[dev->devno];
ffeae418 2781
14d2bac1 2782 if (!ata_dev_enabled(dev))
ffeae418 2783 continue;
ffeae418 2784
bff04647
TH
2785 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2786 dev->id);
14d2bac1
TH
2787 if (rc)
2788 goto fail;
f31f0cc2
JG
2789 }
2790
be0d18df
AC
2791 /* Now ask for the cable type as PDIAG- should have been released */
2792 if (ap->ops->cable_detect)
2793 ap->cbl = ap->ops->cable_detect(ap);
2794
1eca4365
TH
2795 /* We may have SATA bridge glue hiding here irrespective of
2796 * the reported cable types and sensed types. When SATA
2797 * drives indicate we have a bridge, we don't know which end
2798 * of the link the bridge is which is a problem.
2799 */
2800 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2801 if (ata_id_is_sata(dev->id))
2802 ap->cbl = ATA_CBL_SATA;
614fe29b 2803
f31f0cc2
JG
2804 /* After the identify sequence we can now set up the devices. We do
2805 this in the normal order so that the user doesn't get confused */
2806
1eca4365 2807 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2808 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2809 rc = ata_dev_configure(dev);
9af5c9c9 2810 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2811 if (rc)
2812 goto fail;
1da177e4
LT
2813 }
2814
e82cbdb9 2815 /* configure transfer mode */
0260731f 2816 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2817 if (rc)
51713d35 2818 goto fail;
1da177e4 2819
1eca4365
TH
2820 ata_for_each_dev(dev, &ap->link, ENABLED)
2821 return 0;
1da177e4 2822
e82cbdb9
TH
2823 /* no device present, disable port */
2824 ata_port_disable(ap);
96072e69 2825 return -ENODEV;
14d2bac1
TH
2826
2827 fail:
4ae72a1e
TH
2828 tries[dev->devno]--;
2829
14d2bac1
TH
2830 switch (rc) {
2831 case -EINVAL:
4ae72a1e 2832 /* eeek, something went very wrong, give up */
14d2bac1
TH
2833 tries[dev->devno] = 0;
2834 break;
4ae72a1e
TH
2835
2836 case -ENODEV:
2837 /* give it just one more chance */
2838 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2839 case -EIO:
4ae72a1e
TH
2840 if (tries[dev->devno] == 1) {
2841 /* This is the last chance, better to slow
2842 * down than lose it.
2843 */
a07d499b 2844 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2845 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2846 }
14d2bac1
TH
2847 }
2848
4ae72a1e 2849 if (!tries[dev->devno])
3373efd8 2850 ata_dev_disable(dev);
ec573755 2851
14d2bac1 2852 goto retry;
1da177e4
LT
2853}
2854
2855/**
0cba632b
JG
2856 * ata_port_probe - Mark port as enabled
2857 * @ap: Port for which we indicate enablement
1da177e4 2858 *
0cba632b
JG
2859 * Modify @ap data structure such that the system
2860 * thinks that the entire port is enabled.
2861 *
cca3974e 2862 * LOCKING: host lock, or some other form of
0cba632b 2863 * serialization.
1da177e4
LT
2864 */
2865
2866void ata_port_probe(struct ata_port *ap)
2867{
198e0fed 2868 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2869}
2870
3be680b7
TH
2871/**
2872 * sata_print_link_status - Print SATA link status
936fd732 2873 * @link: SATA link to printk link status about
3be680b7
TH
2874 *
2875 * This function prints link speed and status of a SATA link.
2876 *
2877 * LOCKING:
2878 * None.
2879 */
6bdb4fc9 2880static void sata_print_link_status(struct ata_link *link)
3be680b7 2881{
6d5f9732 2882 u32 sstatus, scontrol, tmp;
3be680b7 2883
936fd732 2884 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2885 return;
936fd732 2886 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2887
b1c72916 2888 if (ata_phys_link_online(link)) {
3be680b7 2889 tmp = (sstatus >> 4) & 0xf;
936fd732 2890 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2891 "SATA link up %s (SStatus %X SControl %X)\n",
2892 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2893 } else {
936fd732 2894 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2895 "SATA link down (SStatus %X SControl %X)\n",
2896 sstatus, scontrol);
3be680b7
TH
2897 }
2898}
2899
ebdfca6e
AC
2900/**
2901 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2902 * @adev: device
2903 *
2904 * Obtain the other device on the same cable, or if none is
2905 * present NULL is returned
2906 */
2e9edbf8 2907
3373efd8 2908struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2909{
9af5c9c9
TH
2910 struct ata_link *link = adev->link;
2911 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2912 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2913 return NULL;
2914 return pair;
2915}
2916
1da177e4 2917/**
780a87f7
JG
2918 * ata_port_disable - Disable port.
2919 * @ap: Port to be disabled.
1da177e4 2920 *
780a87f7
JG
2921 * Modify @ap data structure such that the system
2922 * thinks that the entire port is disabled, and should
2923 * never attempt to probe or communicate with devices
2924 * on this port.
2925 *
cca3974e 2926 * LOCKING: host lock, or some other form of
780a87f7 2927 * serialization.
1da177e4
LT
2928 */
2929
2930void ata_port_disable(struct ata_port *ap)
2931{
9af5c9c9
TH
2932 ap->link.device[0].class = ATA_DEV_NONE;
2933 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2934 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2935}
2936
1c3fae4d 2937/**
3c567b7d 2938 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2939 * @link: Link to adjust SATA spd limit for
a07d499b 2940 * @spd_limit: Additional limit
1c3fae4d 2941 *
936fd732 2942 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2943 * function only adjusts the limit. The change must be applied
3c567b7d 2944 * using sata_set_spd().
1c3fae4d 2945 *
a07d499b
TH
2946 * If @spd_limit is non-zero, the speed is limited to equal to or
2947 * lower than @spd_limit if such speed is supported. If
2948 * @spd_limit is slower than any supported speed, only the lowest
2949 * supported speed is allowed.
2950 *
1c3fae4d
TH
2951 * LOCKING:
2952 * Inherited from caller.
2953 *
2954 * RETURNS:
2955 * 0 on success, negative errno on failure
2956 */
a07d499b 2957int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2958{
81952c54 2959 u32 sstatus, spd, mask;
a07d499b 2960 int rc, bit;
1c3fae4d 2961
936fd732 2962 if (!sata_scr_valid(link))
008a7896
TH
2963 return -EOPNOTSUPP;
2964
2965 /* If SCR can be read, use it to determine the current SPD.
936fd732 2966 * If not, use cached value in link->sata_spd.
008a7896 2967 */
936fd732 2968 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2969 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2970 spd = (sstatus >> 4) & 0xf;
2971 else
936fd732 2972 spd = link->sata_spd;
1c3fae4d 2973
936fd732 2974 mask = link->sata_spd_limit;
1c3fae4d
TH
2975 if (mask <= 1)
2976 return -EINVAL;
008a7896
TH
2977
2978 /* unconditionally mask off the highest bit */
a07d499b
TH
2979 bit = fls(mask) - 1;
2980 mask &= ~(1 << bit);
1c3fae4d 2981
008a7896
TH
2982 /* Mask off all speeds higher than or equal to the current
2983 * one. Force 1.5Gbps if current SPD is not available.
2984 */
2985 if (spd > 1)
2986 mask &= (1 << (spd - 1)) - 1;
2987 else
2988 mask &= 1;
2989
2990 /* were we already at the bottom? */
1c3fae4d
TH
2991 if (!mask)
2992 return -EINVAL;
2993
a07d499b
TH
2994 if (spd_limit) {
2995 if (mask & ((1 << spd_limit) - 1))
2996 mask &= (1 << spd_limit) - 1;
2997 else {
2998 bit = ffs(mask) - 1;
2999 mask = 1 << bit;
3000 }
3001 }
3002
936fd732 3003 link->sata_spd_limit = mask;
1c3fae4d 3004
936fd732 3005 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 3006 sata_spd_string(fls(mask)));
1c3fae4d
TH
3007
3008 return 0;
3009}
3010
936fd732 3011static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 3012{
5270222f
TH
3013 struct ata_link *host_link = &link->ap->link;
3014 u32 limit, target, spd;
1c3fae4d 3015
5270222f
TH
3016 limit = link->sata_spd_limit;
3017
3018 /* Don't configure downstream link faster than upstream link.
3019 * It doesn't speed up anything and some PMPs choke on such
3020 * configuration.
3021 */
3022 if (!ata_is_host_link(link) && host_link->sata_spd)
3023 limit &= (1 << host_link->sata_spd) - 1;
3024
3025 if (limit == UINT_MAX)
3026 target = 0;
1c3fae4d 3027 else
5270222f 3028 target = fls(limit);
1c3fae4d
TH
3029
3030 spd = (*scontrol >> 4) & 0xf;
5270222f 3031 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 3032
5270222f 3033 return spd != target;
1c3fae4d
TH
3034}
3035
3036/**
3c567b7d 3037 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 3038 * @link: Link in question
1c3fae4d
TH
3039 *
3040 * Test whether the spd limit in SControl matches
936fd732 3041 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
3042 * whether hardreset is necessary to apply SATA spd
3043 * configuration.
3044 *
3045 * LOCKING:
3046 * Inherited from caller.
3047 *
3048 * RETURNS:
3049 * 1 if SATA spd configuration is needed, 0 otherwise.
3050 */
1dc55e87 3051static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
3052{
3053 u32 scontrol;
3054
936fd732 3055 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 3056 return 1;
1c3fae4d 3057
936fd732 3058 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3059}
3060
3061/**
3c567b7d 3062 * sata_set_spd - set SATA spd according to spd limit
936fd732 3063 * @link: Link to set SATA spd for
1c3fae4d 3064 *
936fd732 3065 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3066 *
3067 * LOCKING:
3068 * Inherited from caller.
3069 *
3070 * RETURNS:
3071 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3072 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3073 */
936fd732 3074int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3075{
3076 u32 scontrol;
81952c54 3077 int rc;
1c3fae4d 3078
936fd732 3079 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3080 return rc;
1c3fae4d 3081
936fd732 3082 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3083 return 0;
3084
936fd732 3085 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3086 return rc;
3087
1c3fae4d
TH
3088 return 1;
3089}
3090
452503f9
AC
3091/*
3092 * This mode timing computation functionality is ported over from
3093 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3094 */
3095/*
b352e57d 3096 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3097 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3098 * for UDMA6, which is currently supported only by Maxtor drives.
3099 *
3100 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3101 */
3102
3103static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3104/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3105 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3106 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3107 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3108 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3109 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3110 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3111 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3112
3113 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3114 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3115 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3116
3117 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3118 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3119 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3120 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3121 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3122
3123/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3124 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3125 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3126 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3127 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3128 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3129 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3130 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3131
3132 { 0xFF }
3133};
3134
2dcb407e
JG
3135#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3136#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3137
3138static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3139{
3ada9c12
DD
3140 q->setup = EZ(t->setup * 1000, T);
3141 q->act8b = EZ(t->act8b * 1000, T);
3142 q->rec8b = EZ(t->rec8b * 1000, T);
3143 q->cyc8b = EZ(t->cyc8b * 1000, T);
3144 q->active = EZ(t->active * 1000, T);
3145 q->recover = EZ(t->recover * 1000, T);
3146 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3147 q->cycle = EZ(t->cycle * 1000, T);
3148 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3149}
3150
3151void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3152 struct ata_timing *m, unsigned int what)
3153{
3154 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3155 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3156 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3157 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3158 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3159 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3160 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3161 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3162 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3163}
3164
6357357c 3165const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3166{
70cd071e
TH
3167 const struct ata_timing *t = ata_timing;
3168
3169 while (xfer_mode > t->mode)
3170 t++;
452503f9 3171
70cd071e
TH
3172 if (xfer_mode == t->mode)
3173 return t;
3174 return NULL;
452503f9
AC
3175}
3176
3177int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3178 struct ata_timing *t, int T, int UT)
3179{
3180 const struct ata_timing *s;
3181 struct ata_timing p;
3182
3183 /*
2e9edbf8 3184 * Find the mode.
75b1f2f8 3185 */
452503f9
AC
3186
3187 if (!(s = ata_timing_find_mode(speed)))
3188 return -EINVAL;
3189
75b1f2f8
AL
3190 memcpy(t, s, sizeof(*s));
3191
452503f9
AC
3192 /*
3193 * If the drive is an EIDE drive, it can tell us it needs extended
3194 * PIO/MW_DMA cycle timing.
3195 */
3196
3197 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3198 memset(&p, 0, sizeof(p));
2dcb407e 3199 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
3200 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3201 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 3202 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
3203 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3204 }
3205 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3206 }
3207
3208 /*
3209 * Convert the timing to bus clock counts.
3210 */
3211
75b1f2f8 3212 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3213
3214 /*
c893a3ae
RD
3215 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3216 * S.M.A.R.T * and some other commands. We have to ensure that the
3217 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3218 */
3219
fd3367af 3220 if (speed > XFER_PIO_6) {
452503f9
AC
3221 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3222 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3223 }
3224
3225 /*
c893a3ae 3226 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3227 */
3228
3229 if (t->act8b + t->rec8b < t->cyc8b) {
3230 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3231 t->rec8b = t->cyc8b - t->act8b;
3232 }
3233
3234 if (t->active + t->recover < t->cycle) {
3235 t->active += (t->cycle - (t->active + t->recover)) / 2;
3236 t->recover = t->cycle - t->active;
3237 }
a617c09f 3238
4f701d1e
AC
3239 /* In a few cases quantisation may produce enough errors to
3240 leave t->cycle too low for the sum of active and recovery
3241 if so we must correct this */
3242 if (t->active + t->recover > t->cycle)
3243 t->cycle = t->active + t->recover;
452503f9
AC
3244
3245 return 0;
3246}
3247
a0f79b92
TH
3248/**
3249 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3250 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3251 * @cycle: cycle duration in ns
3252 *
3253 * Return matching xfer mode for @cycle. The returned mode is of
3254 * the transfer type specified by @xfer_shift. If @cycle is too
3255 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3256 * than the fastest known mode, the fasted mode is returned.
3257 *
3258 * LOCKING:
3259 * None.
3260 *
3261 * RETURNS:
3262 * Matching xfer_mode, 0xff if no match found.
3263 */
3264u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3265{
3266 u8 base_mode = 0xff, last_mode = 0xff;
3267 const struct ata_xfer_ent *ent;
3268 const struct ata_timing *t;
3269
3270 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3271 if (ent->shift == xfer_shift)
3272 base_mode = ent->base;
3273
3274 for (t = ata_timing_find_mode(base_mode);
3275 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3276 unsigned short this_cycle;
3277
3278 switch (xfer_shift) {
3279 case ATA_SHIFT_PIO:
3280 case ATA_SHIFT_MWDMA:
3281 this_cycle = t->cycle;
3282 break;
3283 case ATA_SHIFT_UDMA:
3284 this_cycle = t->udma;
3285 break;
3286 default:
3287 return 0xff;
3288 }
3289
3290 if (cycle > this_cycle)
3291 break;
3292
3293 last_mode = t->mode;
3294 }
3295
3296 return last_mode;
3297}
3298
cf176e1a
TH
3299/**
3300 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3301 * @dev: Device to adjust xfer masks
458337db 3302 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3303 *
3304 * Adjust xfer masks of @dev downward. Note that this function
3305 * does not apply the change. Invoking ata_set_mode() afterwards
3306 * will apply the limit.
3307 *
3308 * LOCKING:
3309 * Inherited from caller.
3310 *
3311 * RETURNS:
3312 * 0 on success, negative errno on failure
3313 */
458337db 3314int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3315{
458337db 3316 char buf[32];
7dc951ae
TH
3317 unsigned long orig_mask, xfer_mask;
3318 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3319 int quiet, highbit;
cf176e1a 3320
458337db
TH
3321 quiet = !!(sel & ATA_DNXFER_QUIET);
3322 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3323
458337db
TH
3324 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3325 dev->mwdma_mask,
3326 dev->udma_mask);
3327 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3328
458337db
TH
3329 switch (sel) {
3330 case ATA_DNXFER_PIO:
3331 highbit = fls(pio_mask) - 1;
3332 pio_mask &= ~(1 << highbit);
3333 break;
3334
3335 case ATA_DNXFER_DMA:
3336 if (udma_mask) {
3337 highbit = fls(udma_mask) - 1;
3338 udma_mask &= ~(1 << highbit);
3339 if (!udma_mask)
3340 return -ENOENT;
3341 } else if (mwdma_mask) {
3342 highbit = fls(mwdma_mask) - 1;
3343 mwdma_mask &= ~(1 << highbit);
3344 if (!mwdma_mask)
3345 return -ENOENT;
3346 }
3347 break;
3348
3349 case ATA_DNXFER_40C:
3350 udma_mask &= ATA_UDMA_MASK_40C;
3351 break;
3352
3353 case ATA_DNXFER_FORCE_PIO0:
3354 pio_mask &= 1;
3355 case ATA_DNXFER_FORCE_PIO:
3356 mwdma_mask = 0;
3357 udma_mask = 0;
3358 break;
3359
458337db
TH
3360 default:
3361 BUG();
3362 }
3363
3364 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3365
3366 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3367 return -ENOENT;
3368
3369 if (!quiet) {
3370 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3371 snprintf(buf, sizeof(buf), "%s:%s",
3372 ata_mode_string(xfer_mask),
3373 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3374 else
3375 snprintf(buf, sizeof(buf), "%s",
3376 ata_mode_string(xfer_mask));
3377
3378 ata_dev_printk(dev, KERN_WARNING,
3379 "limiting speed to %s\n", buf);
3380 }
cf176e1a
TH
3381
3382 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3383 &dev->udma_mask);
3384
cf176e1a 3385 return 0;
cf176e1a
TH
3386}
3387
3373efd8 3388static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3389{
9af5c9c9 3390 struct ata_eh_context *ehc = &dev->link->eh_context;
4055dee7
TH
3391 const char *dev_err_whine = "";
3392 int ign_dev_err = 0;
83206a29
TH
3393 unsigned int err_mask;
3394 int rc;
1da177e4 3395
e8384607 3396 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3397 if (dev->xfer_shift == ATA_SHIFT_PIO)
3398 dev->flags |= ATA_DFLAG_PIO;
3399
3373efd8 3400 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3401
4055dee7
TH
3402 if (err_mask & ~AC_ERR_DEV)
3403 goto fail;
3404
3405 /* revalidate */
3406 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3407 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3408 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3409 if (rc)
3410 return rc;
3411
b93fda12
AC
3412 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3413 /* Old CFA may refuse this command, which is just fine */
3414 if (ata_id_is_cfa(dev->id))
3415 ign_dev_err = 1;
3416 /* Catch several broken garbage emulations plus some pre
3417 ATA devices */
3418 if (ata_id_major_version(dev->id) == 0 &&
3419 dev->pio_mode <= XFER_PIO_2)
3420 ign_dev_err = 1;
3421 /* Some very old devices and some bad newer ones fail
3422 any kind of SET_XFERMODE request but support PIO0-2
3423 timings and no IORDY */
3424 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3425 ign_dev_err = 1;
3426 }
3acaf94b
AC
3427 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3428 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3429 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3430 dev->dma_mode == XFER_MW_DMA_0 &&
3431 (dev->id[63] >> 8) & 1)
4055dee7 3432 ign_dev_err = 1;
3acaf94b 3433
4055dee7
TH
3434 /* if the device is actually configured correctly, ignore dev err */
3435 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3436 ign_dev_err = 1;
1da177e4 3437
4055dee7
TH
3438 if (err_mask & AC_ERR_DEV) {
3439 if (!ign_dev_err)
3440 goto fail;
3441 else
3442 dev_err_whine = " (device error ignored)";
3443 }
48a8a14f 3444
23e71c3d
TH
3445 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3446 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3447
4055dee7
TH
3448 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3449 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3450 dev_err_whine);
3451
83206a29 3452 return 0;
4055dee7
TH
3453
3454 fail:
3455 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3456 "(err_mask=0x%x)\n", err_mask);
3457 return -EIO;
1da177e4
LT
3458}
3459
1da177e4 3460/**
04351821 3461 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3462 * @link: link on which timings will be programmed
1967b7ff 3463 * @r_failed_dev: out parameter for failed device
1da177e4 3464 *
04351821
AC
3465 * Standard implementation of the function used to tune and set
3466 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3467 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3468 * returned in @r_failed_dev.
780a87f7 3469 *
1da177e4 3470 * LOCKING:
0cba632b 3471 * PCI/etc. bus probe sem.
e82cbdb9
TH
3472 *
3473 * RETURNS:
3474 * 0 on success, negative errno otherwise
1da177e4 3475 */
04351821 3476
0260731f 3477int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3478{
0260731f 3479 struct ata_port *ap = link->ap;
e8e0619f 3480 struct ata_device *dev;
f58229f8 3481 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3482
a6d5a51c 3483 /* step 1: calculate xfer_mask */
1eca4365 3484 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3485 unsigned long pio_mask, dma_mask;
b3a70601 3486 unsigned int mode_mask;
a6d5a51c 3487
b3a70601
AC
3488 mode_mask = ATA_DMA_MASK_ATA;
3489 if (dev->class == ATA_DEV_ATAPI)
3490 mode_mask = ATA_DMA_MASK_ATAPI;
3491 else if (ata_id_is_cfa(dev->id))
3492 mode_mask = ATA_DMA_MASK_CFA;
3493
3373efd8 3494 ata_dev_xfermask(dev);
33267325 3495 ata_force_xfermask(dev);
1da177e4 3496
acf356b1
TH
3497 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3498 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3499
3500 if (libata_dma_mask & mode_mask)
3501 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3502 else
3503 dma_mask = 0;
3504
acf356b1
TH
3505 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3506 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3507
4f65977d 3508 found = 1;
b15b3eba 3509 if (ata_dma_enabled(dev))
5444a6f4 3510 used_dma = 1;
a6d5a51c 3511 }
4f65977d 3512 if (!found)
e82cbdb9 3513 goto out;
a6d5a51c
TH
3514
3515 /* step 2: always set host PIO timings */
1eca4365 3516 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3517 if (dev->pio_mode == 0xff) {
f15a1daf 3518 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3519 rc = -EINVAL;
e82cbdb9 3520 goto out;
e8e0619f
TH
3521 }
3522
3523 dev->xfer_mode = dev->pio_mode;
3524 dev->xfer_shift = ATA_SHIFT_PIO;
3525 if (ap->ops->set_piomode)
3526 ap->ops->set_piomode(ap, dev);
3527 }
1da177e4 3528
a6d5a51c 3529 /* step 3: set host DMA timings */
1eca4365
TH
3530 ata_for_each_dev(dev, link, ENABLED) {
3531 if (!ata_dma_enabled(dev))
e8e0619f
TH
3532 continue;
3533
3534 dev->xfer_mode = dev->dma_mode;
3535 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3536 if (ap->ops->set_dmamode)
3537 ap->ops->set_dmamode(ap, dev);
3538 }
1da177e4
LT
3539
3540 /* step 4: update devices' xfer mode */
1eca4365 3541 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3542 rc = ata_dev_set_mode(dev);
5bbc53f4 3543 if (rc)
e82cbdb9 3544 goto out;
83206a29 3545 }
1da177e4 3546
e8e0619f
TH
3547 /* Record simplex status. If we selected DMA then the other
3548 * host channels are not permitted to do so.
5444a6f4 3549 */
cca3974e 3550 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3551 ap->host->simplex_claimed = ap;
5444a6f4 3552
e82cbdb9
TH
3553 out:
3554 if (rc)
3555 *r_failed_dev = dev;
3556 return rc;
1da177e4
LT
3557}
3558
aa2731ad
TH
3559/**
3560 * ata_wait_ready - wait for link to become ready
3561 * @link: link to be waited on
3562 * @deadline: deadline jiffies for the operation
3563 * @check_ready: callback to check link readiness
3564 *
3565 * Wait for @link to become ready. @check_ready should return
3566 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3567 * link doesn't seem to be occupied, other errno for other error
3568 * conditions.
3569 *
3570 * Transient -ENODEV conditions are allowed for
3571 * ATA_TMOUT_FF_WAIT.
3572 *
3573 * LOCKING:
3574 * EH context.
3575 *
3576 * RETURNS:
3577 * 0 if @linke is ready before @deadline; otherwise, -errno.
3578 */
3579int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3580 int (*check_ready)(struct ata_link *link))
3581{
3582 unsigned long start = jiffies;
341c2c95 3583 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
aa2731ad
TH
3584 int warned = 0;
3585
b1c72916
TH
3586 /* Slave readiness can't be tested separately from master. On
3587 * M/S emulation configuration, this function should be called
3588 * only on the master and it will handle both master and slave.
3589 */
3590 WARN_ON(link == link->ap->slave_link);
3591
aa2731ad
TH
3592 if (time_after(nodev_deadline, deadline))
3593 nodev_deadline = deadline;
3594
3595 while (1) {
3596 unsigned long now = jiffies;
3597 int ready, tmp;
3598
3599 ready = tmp = check_ready(link);
3600 if (ready > 0)
3601 return 0;
3602
3603 /* -ENODEV could be transient. Ignore -ENODEV if link
3604 * is online. Also, some SATA devices take a long
3605 * time to clear 0xff after reset. For example,
3606 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3607 * GoVault needs even more than that. Wait for
3608 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3609 *
3610 * Note that some PATA controllers (pata_ali) explode
3611 * if status register is read more than once when
3612 * there's no device attached.
3613 */
3614 if (ready == -ENODEV) {
3615 if (ata_link_online(link))
3616 ready = 0;
3617 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3618 !ata_link_offline(link) &&
3619 time_before(now, nodev_deadline))
3620 ready = 0;
3621 }
3622
3623 if (ready)
3624 return ready;
3625 if (time_after(now, deadline))
3626 return -EBUSY;
3627
3628 if (!warned && time_after(now, start + 5 * HZ) &&
3629 (deadline - now > 3 * HZ)) {
3630 ata_link_printk(link, KERN_WARNING,
3631 "link is slow to respond, please be patient "
3632 "(ready=%d)\n", tmp);
3633 warned = 1;
3634 }
3635
3636 msleep(50);
3637 }
3638}
3639
3640/**
3641 * ata_wait_after_reset - wait for link to become ready after reset
3642 * @link: link to be waited on
3643 * @deadline: deadline jiffies for the operation
3644 * @check_ready: callback to check link readiness
3645 *
3646 * Wait for @link to become ready after reset.
3647 *
3648 * LOCKING:
3649 * EH context.
3650 *
3651 * RETURNS:
3652 * 0 if @linke is ready before @deadline; otherwise, -errno.
3653 */
2b4221bb 3654int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3655 int (*check_ready)(struct ata_link *link))
3656{
341c2c95 3657 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3658
3659 return ata_wait_ready(link, deadline, check_ready);
3660}
3661
d7bb4cc7 3662/**
936fd732
TH
3663 * sata_link_debounce - debounce SATA phy status
3664 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3665 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3666 * @deadline: deadline jiffies for the operation
d7bb4cc7 3667 *
936fd732 3668* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3669 * holding the same value where DET is not 1 for @duration polled
3670 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3671 * beginning of the stable state. Because DET gets stuck at 1 on
3672 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3673 * until timeout then returns 0 if DET is stable at 1.
3674 *
d4b2bab4
TH
3675 * @timeout is further limited by @deadline. The sooner of the
3676 * two is used.
3677 *
d7bb4cc7
TH
3678 * LOCKING:
3679 * Kernel thread context (may sleep)
3680 *
3681 * RETURNS:
3682 * 0 on success, -errno on failure.
3683 */
936fd732
TH
3684int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3685 unsigned long deadline)
7a7921e8 3686{
341c2c95
TH
3687 unsigned long interval = params[0];
3688 unsigned long duration = params[1];
d4b2bab4 3689 unsigned long last_jiffies, t;
d7bb4cc7
TH
3690 u32 last, cur;
3691 int rc;
3692
341c2c95 3693 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3694 if (time_before(t, deadline))
3695 deadline = t;
3696
936fd732 3697 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3698 return rc;
3699 cur &= 0xf;
3700
3701 last = cur;
3702 last_jiffies = jiffies;
3703
3704 while (1) {
341c2c95 3705 msleep(interval);
936fd732 3706 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3707 return rc;
3708 cur &= 0xf;
3709
3710 /* DET stable? */
3711 if (cur == last) {
d4b2bab4 3712 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3713 continue;
341c2c95
TH
3714 if (time_after(jiffies,
3715 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3716 return 0;
3717 continue;
3718 }
3719
3720 /* unstable, start over */
3721 last = cur;
3722 last_jiffies = jiffies;
3723
f1545154
TH
3724 /* Check deadline. If debouncing failed, return
3725 * -EPIPE to tell upper layer to lower link speed.
3726 */
d4b2bab4 3727 if (time_after(jiffies, deadline))
f1545154 3728 return -EPIPE;
d7bb4cc7
TH
3729 }
3730}
3731
3732/**
936fd732
TH
3733 * sata_link_resume - resume SATA link
3734 * @link: ATA link to resume SATA
d7bb4cc7 3735 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3736 * @deadline: deadline jiffies for the operation
d7bb4cc7 3737 *
936fd732 3738 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3739 *
3740 * LOCKING:
3741 * Kernel thread context (may sleep)
3742 *
3743 * RETURNS:
3744 * 0 on success, -errno on failure.
3745 */
936fd732
TH
3746int sata_link_resume(struct ata_link *link, const unsigned long *params,
3747 unsigned long deadline)
d7bb4cc7 3748{
ac371987 3749 u32 scontrol, serror;
81952c54
TH
3750 int rc;
3751
936fd732 3752 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3753 return rc;
7a7921e8 3754
852ee16a 3755 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3756
936fd732 3757 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3758 return rc;
7a7921e8 3759
d7bb4cc7
TH
3760 /* Some PHYs react badly if SStatus is pounded immediately
3761 * after resuming. Delay 200ms before debouncing.
3762 */
3763 msleep(200);
7a7921e8 3764
ac371987
TH
3765 if ((rc = sata_link_debounce(link, params, deadline)))
3766 return rc;
3767
f046519f 3768 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3769 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3770 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3771
f046519f 3772 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3773}
3774
f5914a46 3775/**
0aa1113d 3776 * ata_std_prereset - prepare for reset
cc0680a5 3777 * @link: ATA link to be reset
d4b2bab4 3778 * @deadline: deadline jiffies for the operation
f5914a46 3779 *
cc0680a5 3780 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3781 * prereset makes libata abort whole reset sequence and give up
3782 * that port, so prereset should be best-effort. It does its
3783 * best to prepare for reset sequence but if things go wrong, it
3784 * should just whine, not fail.
f5914a46
TH
3785 *
3786 * LOCKING:
3787 * Kernel thread context (may sleep)
3788 *
3789 * RETURNS:
3790 * 0 on success, -errno otherwise.
3791 */
0aa1113d 3792int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3793{
cc0680a5 3794 struct ata_port *ap = link->ap;
936fd732 3795 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3796 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3797 int rc;
3798
f5914a46
TH
3799 /* if we're about to do hardreset, nothing more to do */
3800 if (ehc->i.action & ATA_EH_HARDRESET)
3801 return 0;
3802
936fd732 3803 /* if SATA, resume link */
a16abc0b 3804 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3805 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3806 /* whine about phy resume failure but proceed */
3807 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3808 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3809 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3810 }
3811
45db2f6c 3812 /* no point in trying softreset on offline link */
b1c72916 3813 if (ata_phys_link_offline(link))
45db2f6c
TH
3814 ehc->i.action &= ~ATA_EH_SOFTRESET;
3815
f5914a46
TH
3816 return 0;
3817}
3818
c2bd5804 3819/**
624d5c51
TH
3820 * sata_link_hardreset - reset link via SATA phy reset
3821 * @link: link to reset
3822 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3823 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3824 * @online: optional out parameter indicating link onlineness
3825 * @check_ready: optional callback to check link readiness
c2bd5804 3826 *
624d5c51 3827 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3828 * After hardreset, link readiness is waited upon using
3829 * ata_wait_ready() if @check_ready is specified. LLDs are
3830 * allowed to not specify @check_ready and wait itself after this
3831 * function returns. Device classification is LLD's
3832 * responsibility.
3833 *
3834 * *@online is set to one iff reset succeeded and @link is online
3835 * after reset.
c2bd5804
TH
3836 *
3837 * LOCKING:
3838 * Kernel thread context (may sleep)
3839 *
3840 * RETURNS:
3841 * 0 on success, -errno otherwise.
3842 */
624d5c51 3843int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3844 unsigned long deadline,
3845 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3846{
624d5c51 3847 u32 scontrol;
81952c54 3848 int rc;
852ee16a 3849
c2bd5804
TH
3850 DPRINTK("ENTER\n");
3851
9dadd45b
TH
3852 if (online)
3853 *online = false;
3854
936fd732 3855 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3856 /* SATA spec says nothing about how to reconfigure
3857 * spd. To be on the safe side, turn off phy during
3858 * reconfiguration. This works for at least ICH7 AHCI
3859 * and Sil3124.
3860 */
936fd732 3861 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3862 goto out;
81952c54 3863
a34b6fc0 3864 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3865
936fd732 3866 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3867 goto out;
1c3fae4d 3868
936fd732 3869 sata_set_spd(link);
1c3fae4d
TH
3870 }
3871
3872 /* issue phy wake/reset */
936fd732 3873 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3874 goto out;
81952c54 3875
852ee16a 3876 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3877
936fd732 3878 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3879 goto out;
c2bd5804 3880
1c3fae4d 3881 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3882 * 10.4.2 says at least 1 ms.
3883 */
3884 msleep(1);
3885
936fd732
TH
3886 /* bring link back */
3887 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3888 if (rc)
3889 goto out;
3890 /* if link is offline nothing more to do */
b1c72916 3891 if (ata_phys_link_offline(link))
9dadd45b
TH
3892 goto out;
3893
3894 /* Link is online. From this point, -ENODEV too is an error. */
3895 if (online)
3896 *online = true;
3897
071f44b1 3898 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3899 /* If PMP is supported, we have to do follow-up SRST.
3900 * Some PMPs don't send D2H Reg FIS after hardreset if
3901 * the first port is empty. Wait only for
3902 * ATA_TMOUT_PMP_SRST_WAIT.
3903 */
3904 if (check_ready) {
3905 unsigned long pmp_deadline;
3906
341c2c95
TH
3907 pmp_deadline = ata_deadline(jiffies,
3908 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3909 if (time_after(pmp_deadline, deadline))
3910 pmp_deadline = deadline;
3911 ata_wait_ready(link, pmp_deadline, check_ready);
3912 }
3913 rc = -EAGAIN;
3914 goto out;
3915 }
3916
3917 rc = 0;
3918 if (check_ready)
3919 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3920 out:
0cbf0711
TH
3921 if (rc && rc != -EAGAIN) {
3922 /* online is set iff link is online && reset succeeded */
3923 if (online)
3924 *online = false;
9dadd45b
TH
3925 ata_link_printk(link, KERN_ERR,
3926 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3927 }
b6103f6d
TH
3928 DPRINTK("EXIT, rc=%d\n", rc);
3929 return rc;
3930}
3931
57c9efdf
TH
3932/**
3933 * sata_std_hardreset - COMRESET w/o waiting or classification
3934 * @link: link to reset
3935 * @class: resulting class of attached device
3936 * @deadline: deadline jiffies for the operation
3937 *
3938 * Standard SATA COMRESET w/o waiting or classification.
3939 *
3940 * LOCKING:
3941 * Kernel thread context (may sleep)
3942 *
3943 * RETURNS:
3944 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3945 */
3946int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3947 unsigned long deadline)
3948{
3949 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3950 bool online;
3951 int rc;
3952
3953 /* do hardreset */
3954 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3955 return online ? -EAGAIN : rc;
3956}
3957
c2bd5804 3958/**
203c75b8 3959 * ata_std_postreset - standard postreset callback
cc0680a5 3960 * @link: the target ata_link
c2bd5804
TH
3961 * @classes: classes of attached devices
3962 *
3963 * This function is invoked after a successful reset. Note that
3964 * the device might have been reset more than once using
3965 * different reset methods before postreset is invoked.
c2bd5804 3966 *
c2bd5804
TH
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3969 */
203c75b8 3970void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3971{
f046519f
TH
3972 u32 serror;
3973
c2bd5804
TH
3974 DPRINTK("ENTER\n");
3975
f046519f
TH
3976 /* reset complete, clear SError */
3977 if (!sata_scr_read(link, SCR_ERROR, &serror))
3978 sata_scr_write(link, SCR_ERROR, serror);
3979
c2bd5804 3980 /* print link status */
936fd732 3981 sata_print_link_status(link);
c2bd5804 3982
c2bd5804
TH
3983 DPRINTK("EXIT\n");
3984}
3985
623a3128
TH
3986/**
3987 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3988 * @dev: device to compare against
3989 * @new_class: class of the new device
3990 * @new_id: IDENTIFY page of the new device
3991 *
3992 * Compare @new_class and @new_id against @dev and determine
3993 * whether @dev is the device indicated by @new_class and
3994 * @new_id.
3995 *
3996 * LOCKING:
3997 * None.
3998 *
3999 * RETURNS:
4000 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4001 */
3373efd8
TH
4002static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4003 const u16 *new_id)
623a3128
TH
4004{
4005 const u16 *old_id = dev->id;
a0cf733b
TH
4006 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4007 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
4008
4009 if (dev->class != new_class) {
f15a1daf
TH
4010 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4011 dev->class, new_class);
623a3128
TH
4012 return 0;
4013 }
4014
a0cf733b
TH
4015 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4016 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4017 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4018 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4019
4020 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4021 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4022 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4023 return 0;
4024 }
4025
4026 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4027 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4028 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4029 return 0;
4030 }
4031
623a3128
TH
4032 return 1;
4033}
4034
4035/**
fe30911b 4036 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4037 * @dev: target ATA device
bff04647 4038 * @readid_flags: read ID flags
623a3128
TH
4039 *
4040 * Re-read IDENTIFY page and make sure @dev is still attached to
4041 * the port.
4042 *
4043 * LOCKING:
4044 * Kernel thread context (may sleep)
4045 *
4046 * RETURNS:
4047 * 0 on success, negative errno otherwise
4048 */
fe30911b 4049int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4050{
5eb45c02 4051 unsigned int class = dev->class;
9af5c9c9 4052 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4053 int rc;
4054
fe635c7e 4055 /* read ID data */
bff04647 4056 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4057 if (rc)
fe30911b 4058 return rc;
623a3128
TH
4059
4060 /* is the device still there? */
fe30911b
TH
4061 if (!ata_dev_same_device(dev, class, id))
4062 return -ENODEV;
623a3128 4063
fe635c7e 4064 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4065 return 0;
4066}
4067
4068/**
4069 * ata_dev_revalidate - Revalidate ATA device
4070 * @dev: device to revalidate
422c9daa 4071 * @new_class: new class code
fe30911b
TH
4072 * @readid_flags: read ID flags
4073 *
4074 * Re-read IDENTIFY page, make sure @dev is still attached to the
4075 * port and reconfigure it according to the new IDENTIFY page.
4076 *
4077 * LOCKING:
4078 * Kernel thread context (may sleep)
4079 *
4080 * RETURNS:
4081 * 0 on success, negative errno otherwise
4082 */
422c9daa
TH
4083int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4084 unsigned int readid_flags)
fe30911b 4085{
6ddcd3b0 4086 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4087 int rc;
4088
4089 if (!ata_dev_enabled(dev))
4090 return -ENODEV;
4091
422c9daa
TH
4092 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4093 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4094 new_class != ATA_DEV_ATA &&
4095 new_class != ATA_DEV_ATAPI &&
4096 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4097 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4098 dev->class, new_class);
4099 rc = -ENODEV;
4100 goto fail;
4101 }
4102
fe30911b
TH
4103 /* re-read ID */
4104 rc = ata_dev_reread_id(dev, readid_flags);
4105 if (rc)
4106 goto fail;
623a3128
TH
4107
4108 /* configure device according to the new ID */
efdaedc4 4109 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4110 if (rc)
4111 goto fail;
4112
4113 /* verify n_sectors hasn't changed */
b54eebd6
TH
4114 if (dev->class == ATA_DEV_ATA && n_sectors &&
4115 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4116 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4117 "%llu != %llu\n",
4118 (unsigned long long)n_sectors,
4119 (unsigned long long)dev->n_sectors);
8270bec4
TH
4120
4121 /* restore original n_sectors */
4122 dev->n_sectors = n_sectors;
4123
6ddcd3b0
TH
4124 rc = -ENODEV;
4125 goto fail;
4126 }
4127
4128 return 0;
623a3128
TH
4129
4130 fail:
f15a1daf 4131 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4132 return rc;
4133}
4134
6919a0a6
AC
4135struct ata_blacklist_entry {
4136 const char *model_num;
4137 const char *model_rev;
4138 unsigned long horkage;
4139};
4140
4141static const struct ata_blacklist_entry ata_device_blacklist [] = {
4142 /* Devices with DMA related problems under Linux */
4143 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4144 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4145 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4146 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4147 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4148 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4149 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4150 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4151 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4152 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4153 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4154 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4155 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4156 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4157 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4158 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4159 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4160 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4161 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4162 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4163 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4164 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4165 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4166 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4167 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4168 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4169 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4170 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4171 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4172 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4173 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4174 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4175
18d6e9d5 4176 /* Weird ATAPI devices */
40a1d531 4177 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4178 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4179
6919a0a6
AC
4180 /* Devices we expect to fail diagnostics */
4181
4182 /* Devices where NCQ should be avoided */
4183 /* NCQ is slow */
2dcb407e 4184 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4185 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4186 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4187 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4188 /* NCQ is broken */
539cc7c7 4189 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4190 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4191 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4192 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4193 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4194
ac70a964 4195 /* Seagate NCQ + FLUSH CACHE firmware bug */
d10d491f 4196 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
ac70a964 4197 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4198 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
ac70a964 4199 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4200 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
ac70a964 4201 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4202 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
ac70a964 4203 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4204 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964 4205 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f
TH
4206
4207 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4208 ATA_HORKAGE_FIRMWARE_WARN },
4209 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4210 ATA_HORKAGE_FIRMWARE_WARN },
4211 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4212 ATA_HORKAGE_FIRMWARE_WARN },
4213 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4214 ATA_HORKAGE_FIRMWARE_WARN },
4215 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4216 ATA_HORKAGE_FIRMWARE_WARN },
4217
4218 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4223 ATA_HORKAGE_FIRMWARE_WARN },
4224 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4225 ATA_HORKAGE_FIRMWARE_WARN },
4226 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4228
4229 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4235 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4237 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4238 ATA_HORKAGE_FIRMWARE_WARN },
4239
4240 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4246 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4248 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4249 ATA_HORKAGE_FIRMWARE_WARN },
4250
4251 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4252 ATA_HORKAGE_FIRMWARE_WARN },
4253 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4254 ATA_HORKAGE_FIRMWARE_WARN },
4255 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4259 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
ac70a964
TH
4260 ATA_HORKAGE_FIRMWARE_WARN },
4261
36e337d0
RH
4262 /* Blacklist entries taken from Silicon Image 3124/3132
4263 Windows driver .inf file - also several Linux problem reports */
4264 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4265 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4266 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4267
16c55b03
TH
4268 /* devices which puke on READ_NATIVE_MAX */
4269 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4270 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4271 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4272 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4273
93328e11
AC
4274 /* Devices which report 1 sector over size HPA */
4275 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4276 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4277 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4278
6bbfd53d
AC
4279 /* Devices which get the IVB wrong */
4280 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5
AC
4281 /* Maybe we should just blacklist TSSTcorp... */
4282 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4283 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4284 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4285 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4286 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4287 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4288
9ce8e307
JA
4289 /* Devices that do not need bridging limits applied */
4290 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4291
9062712f
TH
4292 /* Devices which aren't very happy with higher link speeds */
4293 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4294
6919a0a6
AC
4295 /* End Marker */
4296 { }
1da177e4 4297};
2e9edbf8 4298
741b7763 4299static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4300{
4301 const char *p;
4302 int len;
4303
4304 /*
4305 * check for trailing wildcard: *\0
4306 */
4307 p = strchr(patt, wildchar);
4308 if (p && ((*(p + 1)) == 0))
4309 len = p - patt;
317b50b8 4310 else {
539cc7c7 4311 len = strlen(name);
317b50b8
AP
4312 if (!len) {
4313 if (!*patt)
4314 return 0;
4315 return -1;
4316 }
4317 }
539cc7c7
JG
4318
4319 return strncmp(patt, name, len);
4320}
4321
75683fe7 4322static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4323{
8bfa79fc
TH
4324 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4325 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4326 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4327
8bfa79fc
TH
4328 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4329 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4330
6919a0a6 4331 while (ad->model_num) {
539cc7c7 4332 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4333 if (ad->model_rev == NULL)
4334 return ad->horkage;
539cc7c7 4335 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4336 return ad->horkage;
f4b15fef 4337 }
6919a0a6 4338 ad++;
f4b15fef 4339 }
1da177e4
LT
4340 return 0;
4341}
4342
6919a0a6
AC
4343static int ata_dma_blacklisted(const struct ata_device *dev)
4344{
4345 /* We don't support polling DMA.
4346 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4347 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4348 */
9af5c9c9 4349 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4350 (dev->flags & ATA_DFLAG_CDB_INTR))
4351 return 1;
75683fe7 4352 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4353}
4354
6bbfd53d
AC
4355/**
4356 * ata_is_40wire - check drive side detection
4357 * @dev: device
4358 *
4359 * Perform drive side detection decoding, allowing for device vendors
4360 * who can't follow the documentation.
4361 */
4362
4363static int ata_is_40wire(struct ata_device *dev)
4364{
4365 if (dev->horkage & ATA_HORKAGE_IVB)
4366 return ata_drive_40wire_relaxed(dev->id);
4367 return ata_drive_40wire(dev->id);
4368}
4369
15a5551c
AC
4370/**
4371 * cable_is_40wire - 40/80/SATA decider
4372 * @ap: port to consider
4373 *
4374 * This function encapsulates the policy for speed management
4375 * in one place. At the moment we don't cache the result but
4376 * there is a good case for setting ap->cbl to the result when
4377 * we are called with unknown cables (and figuring out if it
4378 * impacts hotplug at all).
4379 *
4380 * Return 1 if the cable appears to be 40 wire.
4381 */
4382
4383static int cable_is_40wire(struct ata_port *ap)
4384{
4385 struct ata_link *link;
4386 struct ata_device *dev;
4387
4a9c7b33 4388 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4389 if (ap->cbl == ATA_CBL_PATA40)
4390 return 1;
4a9c7b33
TH
4391
4392 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4393 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4394 return 0;
4a9c7b33
TH
4395
4396 /* If the system is known to be 40 wire short cable (eg
4397 * laptop), then we allow 80 wire modes even if the drive
4398 * isn't sure.
4399 */
f792068e
AC
4400 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4401 return 0;
4a9c7b33
TH
4402
4403 /* If the controller doesn't know, we scan.
4404 *
4405 * Note: We look for all 40 wire detects at this point. Any
4406 * 80 wire detect is taken to be 80 wire cable because
4407 * - in many setups only the one drive (slave if present) will
4408 * give a valid detect
4409 * - if you have a non detect capable drive you don't want it
4410 * to colour the choice
4411 */
1eca4365
TH
4412 ata_for_each_link(link, ap, EDGE) {
4413 ata_for_each_dev(dev, link, ENABLED) {
4414 if (!ata_is_40wire(dev))
15a5551c
AC
4415 return 0;
4416 }
4417 }
4418 return 1;
4419}
4420
a6d5a51c
TH
4421/**
4422 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4423 * @dev: Device to compute xfermask for
4424 *
acf356b1
TH
4425 * Compute supported xfermask of @dev and store it in
4426 * dev->*_mask. This function is responsible for applying all
4427 * known limits including host controller limits, device
4428 * blacklist, etc...
a6d5a51c
TH
4429 *
4430 * LOCKING:
4431 * None.
a6d5a51c 4432 */
3373efd8 4433static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4434{
9af5c9c9
TH
4435 struct ata_link *link = dev->link;
4436 struct ata_port *ap = link->ap;
cca3974e 4437 struct ata_host *host = ap->host;
a6d5a51c 4438 unsigned long xfer_mask;
1da177e4 4439
37deecb5 4440 /* controller modes available */
565083e1
TH
4441 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4442 ap->mwdma_mask, ap->udma_mask);
4443
8343f889 4444 /* drive modes available */
37deecb5
TH
4445 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4446 dev->mwdma_mask, dev->udma_mask);
4447 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4448
b352e57d
AC
4449 /*
4450 * CFA Advanced TrueIDE timings are not allowed on a shared
4451 * cable
4452 */
4453 if (ata_dev_pair(dev)) {
4454 /* No PIO5 or PIO6 */
4455 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4456 /* No MWDMA3 or MWDMA 4 */
4457 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4458 }
4459
37deecb5
TH
4460 if (ata_dma_blacklisted(dev)) {
4461 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4462 ata_dev_printk(dev, KERN_WARNING,
4463 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4464 }
a6d5a51c 4465
14d66ab7 4466 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4467 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4468 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4469 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4470 "other device, disabling DMA\n");
5444a6f4 4471 }
565083e1 4472
e424675f
JG
4473 if (ap->flags & ATA_FLAG_NO_IORDY)
4474 xfer_mask &= ata_pio_mask_no_iordy(dev);
4475
5444a6f4 4476 if (ap->ops->mode_filter)
a76b62ca 4477 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4478
8343f889
RH
4479 /* Apply cable rule here. Don't apply it early because when
4480 * we handle hot plug the cable type can itself change.
4481 * Check this last so that we know if the transfer rate was
4482 * solely limited by the cable.
4483 * Unknown or 80 wire cables reported host side are checked
4484 * drive side as well. Cases where we know a 40wire cable
4485 * is used safely for 80 are not checked here.
4486 */
4487 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4488 /* UDMA/44 or higher would be available */
15a5551c 4489 if (cable_is_40wire(ap)) {
2dcb407e 4490 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4491 "limited to UDMA/33 due to 40-wire cable\n");
4492 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4493 }
4494
565083e1
TH
4495 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4496 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4497}
4498
1da177e4
LT
4499/**
4500 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4501 * @dev: Device to which command will be sent
4502 *
780a87f7
JG
4503 * Issue SET FEATURES - XFER MODE command to device @dev
4504 * on port @ap.
4505 *
1da177e4 4506 * LOCKING:
0cba632b 4507 * PCI/etc. bus probe sem.
83206a29
TH
4508 *
4509 * RETURNS:
4510 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4511 */
4512
3373efd8 4513static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4514{
a0123703 4515 struct ata_taskfile tf;
83206a29 4516 unsigned int err_mask;
1da177e4
LT
4517
4518 /* set up set-features taskfile */
4519 DPRINTK("set features - xfer mode\n");
4520
464cf177
TH
4521 /* Some controllers and ATAPI devices show flaky interrupt
4522 * behavior after setting xfer mode. Use polling instead.
4523 */
3373efd8 4524 ata_tf_init(dev, &tf);
a0123703
TH
4525 tf.command = ATA_CMD_SET_FEATURES;
4526 tf.feature = SETFEATURES_XFER;
464cf177 4527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4528 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4529 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4530 if (ata_pio_need_iordy(dev))
4531 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4532 /* If the device has IORDY and the controller does not - turn it off */
4533 else if (ata_id_has_iordy(dev->id))
11b7becc 4534 tf.nsect = 0x01;
b9f8ab2d
AC
4535 else /* In the ancient relic department - skip all of this */
4536 return 0;
1da177e4 4537
2b789108 4538 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4539
4540 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4541 return err_mask;
4542}
9f45cbd3 4543/**
218f3d30 4544 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4545 * @dev: Device to which command will be sent
4546 * @enable: Whether to enable or disable the feature
218f3d30 4547 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4548 *
4549 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4550 * on port @ap with sector count
9f45cbd3
KCA
4551 *
4552 * LOCKING:
4553 * PCI/etc. bus probe sem.
4554 *
4555 * RETURNS:
4556 * 0 on success, AC_ERR_* mask otherwise.
4557 */
218f3d30
JG
4558static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4559 u8 feature)
9f45cbd3
KCA
4560{
4561 struct ata_taskfile tf;
4562 unsigned int err_mask;
4563
4564 /* set up set-features taskfile */
4565 DPRINTK("set features - SATA features\n");
4566
4567 ata_tf_init(dev, &tf);
4568 tf.command = ATA_CMD_SET_FEATURES;
4569 tf.feature = enable;
4570 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4571 tf.protocol = ATA_PROT_NODATA;
218f3d30 4572 tf.nsect = feature;
9f45cbd3 4573
2b789108 4574 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4575
83206a29
TH
4576 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4577 return err_mask;
1da177e4
LT
4578}
4579
8bf62ece
AL
4580/**
4581 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4582 * @dev: Device to which command will be sent
e2a7f77a
RD
4583 * @heads: Number of heads (taskfile parameter)
4584 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4585 *
4586 * LOCKING:
6aff8f1f
TH
4587 * Kernel thread context (may sleep)
4588 *
4589 * RETURNS:
4590 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4591 */
3373efd8
TH
4592static unsigned int ata_dev_init_params(struct ata_device *dev,
4593 u16 heads, u16 sectors)
8bf62ece 4594{
a0123703 4595 struct ata_taskfile tf;
6aff8f1f 4596 unsigned int err_mask;
8bf62ece
AL
4597
4598 /* Number of sectors per track 1-255. Number of heads 1-16 */
4599 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4600 return AC_ERR_INVALID;
8bf62ece
AL
4601
4602 /* set up init dev params taskfile */
4603 DPRINTK("init dev params \n");
4604
3373efd8 4605 ata_tf_init(dev, &tf);
a0123703
TH
4606 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4607 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4608 tf.protocol = ATA_PROT_NODATA;
4609 tf.nsect = sectors;
4610 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4611
2b789108 4612 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4613 /* A clean abort indicates an original or just out of spec drive
4614 and we should continue as we issue the setup based on the
4615 drive reported working geometry */
4616 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4617 err_mask = 0;
8bf62ece 4618
6aff8f1f
TH
4619 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4620 return err_mask;
8bf62ece
AL
4621}
4622
1da177e4 4623/**
0cba632b
JG
4624 * ata_sg_clean - Unmap DMA memory associated with command
4625 * @qc: Command containing DMA memory to be released
4626 *
4627 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4628 *
4629 * LOCKING:
cca3974e 4630 * spin_lock_irqsave(host lock)
1da177e4 4631 */
70e6ad0c 4632void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4633{
4634 struct ata_port *ap = qc->ap;
ff2aeb1e 4635 struct scatterlist *sg = qc->sg;
1da177e4
LT
4636 int dir = qc->dma_dir;
4637
efcb3cf7 4638 WARN_ON_ONCE(sg == NULL);
1da177e4 4639
dde20207 4640 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4641
dde20207 4642 if (qc->n_elem)
5825627c 4643 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4644
4645 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4646 qc->sg = NULL;
1da177e4
LT
4647}
4648
1da177e4 4649/**
5895ef9a 4650 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4651 * @qc: Metadata associated with taskfile to check
4652 *
780a87f7
JG
4653 * Allow low-level driver to filter ATA PACKET commands, returning
4654 * a status indicating whether or not it is OK to use DMA for the
4655 * supplied PACKET command.
4656 *
1da177e4 4657 * LOCKING:
624d5c51
TH
4658 * spin_lock_irqsave(host lock)
4659 *
4660 * RETURNS: 0 when ATAPI DMA can be used
4661 * nonzero otherwise
4662 */
5895ef9a 4663int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4664{
4665 struct ata_port *ap = qc->ap;
71601958 4666
624d5c51
TH
4667 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4668 * few ATAPI devices choke on such DMA requests.
4669 */
6a87e42e
TH
4670 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4671 unlikely(qc->nbytes & 15))
624d5c51 4672 return 1;
e2cec771 4673
624d5c51
TH
4674 if (ap->ops->check_atapi_dma)
4675 return ap->ops->check_atapi_dma(qc);
e2cec771 4676
624d5c51
TH
4677 return 0;
4678}
1da177e4 4679
624d5c51
TH
4680/**
4681 * ata_std_qc_defer - Check whether a qc needs to be deferred
4682 * @qc: ATA command in question
4683 *
4684 * Non-NCQ commands cannot run with any other command, NCQ or
4685 * not. As upper layer only knows the queue depth, we are
4686 * responsible for maintaining exclusion. This function checks
4687 * whether a new command @qc can be issued.
4688 *
4689 * LOCKING:
4690 * spin_lock_irqsave(host lock)
4691 *
4692 * RETURNS:
4693 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4694 */
4695int ata_std_qc_defer(struct ata_queued_cmd *qc)
4696{
4697 struct ata_link *link = qc->dev->link;
e2cec771 4698
624d5c51
TH
4699 if (qc->tf.protocol == ATA_PROT_NCQ) {
4700 if (!ata_tag_valid(link->active_tag))
4701 return 0;
4702 } else {
4703 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4704 return 0;
4705 }
e2cec771 4706
624d5c51
TH
4707 return ATA_DEFER_LINK;
4708}
6912ccd5 4709
624d5c51 4710void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4711
624d5c51
TH
4712/**
4713 * ata_sg_init - Associate command with scatter-gather table.
4714 * @qc: Command to be associated
4715 * @sg: Scatter-gather table.
4716 * @n_elem: Number of elements in s/g table.
4717 *
4718 * Initialize the data-related elements of queued_cmd @qc
4719 * to point to a scatter-gather table @sg, containing @n_elem
4720 * elements.
4721 *
4722 * LOCKING:
4723 * spin_lock_irqsave(host lock)
4724 */
4725void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4726 unsigned int n_elem)
4727{
4728 qc->sg = sg;
4729 qc->n_elem = n_elem;
4730 qc->cursg = qc->sg;
4731}
bb5cb290 4732
624d5c51
TH
4733/**
4734 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4735 * @qc: Command with scatter-gather table to be mapped.
4736 *
4737 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4738 *
4739 * LOCKING:
4740 * spin_lock_irqsave(host lock)
4741 *
4742 * RETURNS:
4743 * Zero on success, negative on error.
4744 *
4745 */
4746static int ata_sg_setup(struct ata_queued_cmd *qc)
4747{
4748 struct ata_port *ap = qc->ap;
4749 unsigned int n_elem;
1da177e4 4750
624d5c51 4751 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4752
624d5c51
TH
4753 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4754 if (n_elem < 1)
4755 return -1;
bb5cb290 4756
624d5c51 4757 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4758 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4759 qc->n_elem = n_elem;
4760 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4761
624d5c51 4762 return 0;
1da177e4
LT
4763}
4764
624d5c51
TH
4765/**
4766 * swap_buf_le16 - swap halves of 16-bit words in place
4767 * @buf: Buffer to swap
4768 * @buf_words: Number of 16-bit words in buffer.
4769 *
4770 * Swap halves of 16-bit words if needed to convert from
4771 * little-endian byte order to native cpu byte order, or
4772 * vice-versa.
4773 *
4774 * LOCKING:
4775 * Inherited from caller.
4776 */
4777void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4778{
624d5c51
TH
4779#ifdef __BIG_ENDIAN
4780 unsigned int i;
8061f5f0 4781
624d5c51
TH
4782 for (i = 0; i < buf_words; i++)
4783 buf[i] = le16_to_cpu(buf[i]);
4784#endif /* __BIG_ENDIAN */
8061f5f0
TH
4785}
4786
8a8bc223
TH
4787/**
4788 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4789 * @ap: target port
8a8bc223
TH
4790 *
4791 * LOCKING:
4792 * None.
4793 */
4794
4795static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4796{
4797 struct ata_queued_cmd *qc = NULL;
4798 unsigned int i;
4799
4800 /* no command while frozen */
4801 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4802 return NULL;
4803
4804 /* the last tag is reserved for internal command. */
4805 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4806 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4807 qc = __ata_qc_from_tag(ap, i);
4808 break;
4809 }
4810
4811 if (qc)
4812 qc->tag = i;
4813
4814 return qc;
4815}
4816
1da177e4
LT
4817/**
4818 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4819 * @dev: Device from whom we request an available command structure
4820 *
4821 * LOCKING:
0cba632b 4822 * None.
1da177e4
LT
4823 */
4824
8a8bc223 4825struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4826{
9af5c9c9 4827 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4828 struct ata_queued_cmd *qc;
4829
8a8bc223 4830 qc = ata_qc_new(ap);
1da177e4 4831 if (qc) {
1da177e4
LT
4832 qc->scsicmd = NULL;
4833 qc->ap = ap;
4834 qc->dev = dev;
1da177e4 4835
2c13b7ce 4836 ata_qc_reinit(qc);
1da177e4
LT
4837 }
4838
4839 return qc;
4840}
4841
8a8bc223
TH
4842/**
4843 * ata_qc_free - free unused ata_queued_cmd
4844 * @qc: Command to complete
4845 *
4846 * Designed to free unused ata_queued_cmd object
4847 * in case something prevents using it.
4848 *
4849 * LOCKING:
4850 * spin_lock_irqsave(host lock)
4851 */
4852void ata_qc_free(struct ata_queued_cmd *qc)
4853{
4854 struct ata_port *ap = qc->ap;
4855 unsigned int tag;
4856
efcb3cf7 4857 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
8a8bc223
TH
4858
4859 qc->flags = 0;
4860 tag = qc->tag;
4861 if (likely(ata_tag_valid(tag))) {
4862 qc->tag = ATA_TAG_POISON;
4863 clear_bit(tag, &ap->qc_allocated);
4864 }
4865}
4866
76014427 4867void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4868{
dedaf2b0 4869 struct ata_port *ap = qc->ap;
9af5c9c9 4870 struct ata_link *link = qc->dev->link;
dedaf2b0 4871
efcb3cf7
TH
4872 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4873 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4874
4875 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4876 ata_sg_clean(qc);
4877
7401abf2 4878 /* command should be marked inactive atomically with qc completion */
da917d69 4879 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4880 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4881 if (!link->sactive)
4882 ap->nr_active_links--;
4883 } else {
9af5c9c9 4884 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4885 ap->nr_active_links--;
4886 }
4887
4888 /* clear exclusive status */
4889 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4890 ap->excl_link == link))
4891 ap->excl_link = NULL;
7401abf2 4892
3f3791d3
AL
4893 /* atapi: mark qc as inactive to prevent the interrupt handler
4894 * from completing the command twice later, before the error handler
4895 * is called. (when rc != 0 and atapi request sense is needed)
4896 */
4897 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4898 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4899
1da177e4 4900 /* call completion callback */
77853bf2 4901 qc->complete_fn(qc);
1da177e4
LT
4902}
4903
39599a53
TH
4904static void fill_result_tf(struct ata_queued_cmd *qc)
4905{
4906 struct ata_port *ap = qc->ap;
4907
39599a53 4908 qc->result_tf.flags = qc->tf.flags;
22183bf5 4909 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4910}
4911
00115e0f
TH
4912static void ata_verify_xfer(struct ata_queued_cmd *qc)
4913{
4914 struct ata_device *dev = qc->dev;
4915
4916 if (ata_tag_internal(qc->tag))
4917 return;
4918
4919 if (ata_is_nodata(qc->tf.protocol))
4920 return;
4921
4922 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4923 return;
4924
4925 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4926}
4927
f686bcb8
TH
4928/**
4929 * ata_qc_complete - Complete an active ATA command
4930 * @qc: Command to complete
f686bcb8
TH
4931 *
4932 * Indicate to the mid and upper layers that an ATA
4933 * command has completed, with either an ok or not-ok status.
4934 *
4935 * LOCKING:
cca3974e 4936 * spin_lock_irqsave(host lock)
f686bcb8
TH
4937 */
4938void ata_qc_complete(struct ata_queued_cmd *qc)
4939{
4940 struct ata_port *ap = qc->ap;
4941
4942 /* XXX: New EH and old EH use different mechanisms to
4943 * synchronize EH with regular execution path.
4944 *
4945 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4946 * Normal execution path is responsible for not accessing a
4947 * failed qc. libata core enforces the rule by returning NULL
4948 * from ata_qc_from_tag() for failed qcs.
4949 *
4950 * Old EH depends on ata_qc_complete() nullifying completion
4951 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4952 * not synchronize with interrupt handler. Only PIO task is
4953 * taken care of.
4954 */
4955 if (ap->ops->error_handler) {
4dbfa39b
TH
4956 struct ata_device *dev = qc->dev;
4957 struct ata_eh_info *ehi = &dev->link->eh_info;
4958
efcb3cf7 4959 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4960
4961 if (unlikely(qc->err_mask))
4962 qc->flags |= ATA_QCFLAG_FAILED;
4963
4964 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4965 if (!ata_tag_internal(qc->tag)) {
4966 /* always fill result TF for failed qc */
39599a53 4967 fill_result_tf(qc);
f686bcb8
TH
4968 ata_qc_schedule_eh(qc);
4969 return;
4970 }
4971 }
4972
4973 /* read result TF if requested */
4974 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4975 fill_result_tf(qc);
f686bcb8 4976
4dbfa39b
TH
4977 /* Some commands need post-processing after successful
4978 * completion.
4979 */
4980 switch (qc->tf.command) {
4981 case ATA_CMD_SET_FEATURES:
4982 if (qc->tf.feature != SETFEATURES_WC_ON &&
4983 qc->tf.feature != SETFEATURES_WC_OFF)
4984 break;
4985 /* fall through */
4986 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4987 case ATA_CMD_SET_MULTI: /* multi_count changed */
4988 /* revalidate device */
4989 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4990 ata_port_schedule_eh(ap);
4991 break;
054a5fba
TH
4992
4993 case ATA_CMD_SLEEP:
4994 dev->flags |= ATA_DFLAG_SLEEPING;
4995 break;
4dbfa39b
TH
4996 }
4997
00115e0f
TH
4998 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4999 ata_verify_xfer(qc);
5000
f686bcb8
TH
5001 __ata_qc_complete(qc);
5002 } else {
5003 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5004 return;
5005
5006 /* read result TF if failed or requested */
5007 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5008 fill_result_tf(qc);
f686bcb8
TH
5009
5010 __ata_qc_complete(qc);
5011 }
5012}
5013
dedaf2b0
TH
5014/**
5015 * ata_qc_complete_multiple - Complete multiple qcs successfully
5016 * @ap: port in question
5017 * @qc_active: new qc_active mask
dedaf2b0
TH
5018 *
5019 * Complete in-flight commands. This functions is meant to be
5020 * called from low-level driver's interrupt routine to complete
5021 * requests normally. ap->qc_active and @qc_active is compared
5022 * and commands are completed accordingly.
5023 *
5024 * LOCKING:
cca3974e 5025 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5026 *
5027 * RETURNS:
5028 * Number of completed commands on success, -errno otherwise.
5029 */
79f97dad 5030int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5031{
5032 int nr_done = 0;
5033 u32 done_mask;
dedaf2b0
TH
5034
5035 done_mask = ap->qc_active ^ qc_active;
5036
5037 if (unlikely(done_mask & qc_active)) {
5038 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5039 "(%08x->%08x)\n", ap->qc_active, qc_active);
5040 return -EINVAL;
5041 }
5042
43768180 5043 while (done_mask) {
dedaf2b0 5044 struct ata_queued_cmd *qc;
43768180 5045 unsigned int tag = __ffs(done_mask);
dedaf2b0 5046
43768180
JA
5047 qc = ata_qc_from_tag(ap, tag);
5048 if (qc) {
dedaf2b0
TH
5049 ata_qc_complete(qc);
5050 nr_done++;
5051 }
43768180 5052 done_mask &= ~(1 << tag);
dedaf2b0
TH
5053 }
5054
5055 return nr_done;
5056}
5057
1da177e4
LT
5058/**
5059 * ata_qc_issue - issue taskfile to device
5060 * @qc: command to issue to device
5061 *
5062 * Prepare an ATA command to submission to device.
5063 * This includes mapping the data into a DMA-able
5064 * area, filling in the S/G table, and finally
5065 * writing the taskfile to hardware, starting the command.
5066 *
5067 * LOCKING:
cca3974e 5068 * spin_lock_irqsave(host lock)
1da177e4 5069 */
8e0e694a 5070void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5071{
5072 struct ata_port *ap = qc->ap;
9af5c9c9 5073 struct ata_link *link = qc->dev->link;
405e66b3 5074 u8 prot = qc->tf.protocol;
1da177e4 5075
dedaf2b0
TH
5076 /* Make sure only one non-NCQ command is outstanding. The
5077 * check is skipped for old EH because it reuses active qc to
5078 * request ATAPI sense.
5079 */
efcb3cf7 5080 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5081
1973a023 5082 if (ata_is_ncq(prot)) {
efcb3cf7 5083 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5084
5085 if (!link->sactive)
5086 ap->nr_active_links++;
9af5c9c9 5087 link->sactive |= 1 << qc->tag;
dedaf2b0 5088 } else {
efcb3cf7 5089 WARN_ON_ONCE(link->sactive);
da917d69
TH
5090
5091 ap->nr_active_links++;
9af5c9c9 5092 link->active_tag = qc->tag;
dedaf2b0
TH
5093 }
5094
e4a70e76 5095 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5096 ap->qc_active |= 1 << qc->tag;
e4a70e76 5097
f92a2636
TH
5098 /* We guarantee to LLDs that they will have at least one
5099 * non-zero sg if the command is a data command.
5100 */
ff2aeb1e 5101 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
f92a2636 5102
405e66b3 5103 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5104 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7
TH
5105 if (ata_sg_setup(qc))
5106 goto sg_err;
1da177e4 5107
cf480626 5108 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5109 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5110 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5111 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5112 ata_link_abort(link);
5113 return;
5114 }
5115
1da177e4
LT
5116 ap->ops->qc_prep(qc);
5117
8e0e694a
TH
5118 qc->err_mask |= ap->ops->qc_issue(qc);
5119 if (unlikely(qc->err_mask))
5120 goto err;
5121 return;
1da177e4 5122
8e436af9 5123sg_err:
8e0e694a
TH
5124 qc->err_mask |= AC_ERR_SYSTEM;
5125err:
5126 ata_qc_complete(qc);
1da177e4
LT
5127}
5128
34bf2170
TH
5129/**
5130 * sata_scr_valid - test whether SCRs are accessible
936fd732 5131 * @link: ATA link to test SCR accessibility for
34bf2170 5132 *
936fd732 5133 * Test whether SCRs are accessible for @link.
34bf2170
TH
5134 *
5135 * LOCKING:
5136 * None.
5137 *
5138 * RETURNS:
5139 * 1 if SCRs are accessible, 0 otherwise.
5140 */
936fd732 5141int sata_scr_valid(struct ata_link *link)
34bf2170 5142{
936fd732
TH
5143 struct ata_port *ap = link->ap;
5144
a16abc0b 5145 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5146}
5147
5148/**
5149 * sata_scr_read - read SCR register of the specified port
936fd732 5150 * @link: ATA link to read SCR for
34bf2170
TH
5151 * @reg: SCR to read
5152 * @val: Place to store read value
5153 *
936fd732 5154 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5155 * guaranteed to succeed if @link is ap->link, the cable type of
5156 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5157 *
5158 * LOCKING:
633273a3 5159 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5160 *
5161 * RETURNS:
5162 * 0 on success, negative errno on failure.
5163 */
936fd732 5164int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5165{
633273a3 5166 if (ata_is_host_link(link)) {
633273a3 5167 if (sata_scr_valid(link))
82ef04fb 5168 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5169 return -EOPNOTSUPP;
5170 }
5171
5172 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5173}
5174
5175/**
5176 * sata_scr_write - write SCR register of the specified port
936fd732 5177 * @link: ATA link to write SCR for
34bf2170
TH
5178 * @reg: SCR to write
5179 * @val: value to write
5180 *
936fd732 5181 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5182 * guaranteed to succeed if @link is ap->link, the cable type of
5183 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5184 *
5185 * LOCKING:
633273a3 5186 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5187 *
5188 * RETURNS:
5189 * 0 on success, negative errno on failure.
5190 */
936fd732 5191int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5192{
633273a3 5193 if (ata_is_host_link(link)) {
633273a3 5194 if (sata_scr_valid(link))
82ef04fb 5195 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5196 return -EOPNOTSUPP;
5197 }
936fd732 5198
633273a3 5199 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5200}
5201
5202/**
5203 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5204 * @link: ATA link to write SCR for
34bf2170
TH
5205 * @reg: SCR to write
5206 * @val: value to write
5207 *
5208 * This function is identical to sata_scr_write() except that this
5209 * function performs flush after writing to the register.
5210 *
5211 * LOCKING:
633273a3 5212 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5213 *
5214 * RETURNS:
5215 * 0 on success, negative errno on failure.
5216 */
936fd732 5217int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5218{
633273a3 5219 if (ata_is_host_link(link)) {
633273a3 5220 int rc;
da3dbb17 5221
633273a3 5222 if (sata_scr_valid(link)) {
82ef04fb 5223 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5224 if (rc == 0)
82ef04fb 5225 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5226 return rc;
5227 }
5228 return -EOPNOTSUPP;
34bf2170 5229 }
633273a3
TH
5230
5231 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5232}
5233
5234/**
b1c72916 5235 * ata_phys_link_online - test whether the given link is online
936fd732 5236 * @link: ATA link to test
34bf2170 5237 *
936fd732
TH
5238 * Test whether @link is online. Note that this function returns
5239 * 0 if online status of @link cannot be obtained, so
5240 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5241 *
5242 * LOCKING:
5243 * None.
5244 *
5245 * RETURNS:
b5b3fa38 5246 * True if the port online status is available and online.
34bf2170 5247 */
b1c72916 5248bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5249{
5250 u32 sstatus;
5251
936fd732 5252 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5253 ata_sstatus_online(sstatus))
b5b3fa38
TH
5254 return true;
5255 return false;
34bf2170
TH
5256}
5257
5258/**
b1c72916 5259 * ata_phys_link_offline - test whether the given link is offline
936fd732 5260 * @link: ATA link to test
34bf2170 5261 *
936fd732
TH
5262 * Test whether @link is offline. Note that this function
5263 * returns 0 if offline status of @link cannot be obtained, so
5264 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5265 *
5266 * LOCKING:
5267 * None.
5268 *
5269 * RETURNS:
b5b3fa38 5270 * True if the port offline status is available and offline.
34bf2170 5271 */
b1c72916 5272bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5273{
5274 u32 sstatus;
5275
936fd732 5276 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5277 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5278 return true;
5279 return false;
34bf2170 5280}
0baab86b 5281
b1c72916
TH
5282/**
5283 * ata_link_online - test whether the given link is online
5284 * @link: ATA link to test
5285 *
5286 * Test whether @link is online. This is identical to
5287 * ata_phys_link_online() when there's no slave link. When
5288 * there's a slave link, this function should only be called on
5289 * the master link and will return true if any of M/S links is
5290 * online.
5291 *
5292 * LOCKING:
5293 * None.
5294 *
5295 * RETURNS:
5296 * True if the port online status is available and online.
5297 */
5298bool ata_link_online(struct ata_link *link)
5299{
5300 struct ata_link *slave = link->ap->slave_link;
5301
5302 WARN_ON(link == slave); /* shouldn't be called on slave link */
5303
5304 return ata_phys_link_online(link) ||
5305 (slave && ata_phys_link_online(slave));
5306}
5307
5308/**
5309 * ata_link_offline - test whether the given link is offline
5310 * @link: ATA link to test
5311 *
5312 * Test whether @link is offline. This is identical to
5313 * ata_phys_link_offline() when there's no slave link. When
5314 * there's a slave link, this function should only be called on
5315 * the master link and will return true if both M/S links are
5316 * offline.
5317 *
5318 * LOCKING:
5319 * None.
5320 *
5321 * RETURNS:
5322 * True if the port offline status is available and offline.
5323 */
5324bool ata_link_offline(struct ata_link *link)
5325{
5326 struct ata_link *slave = link->ap->slave_link;
5327
5328 WARN_ON(link == slave); /* shouldn't be called on slave link */
5329
5330 return ata_phys_link_offline(link) &&
5331 (!slave || ata_phys_link_offline(slave));
5332}
5333
6ffa01d8 5334#ifdef CONFIG_PM
cca3974e
JG
5335static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5336 unsigned int action, unsigned int ehi_flags,
5337 int wait)
500530f6
TH
5338{
5339 unsigned long flags;
5340 int i, rc;
5341
cca3974e
JG
5342 for (i = 0; i < host->n_ports; i++) {
5343 struct ata_port *ap = host->ports[i];
e3667ebf 5344 struct ata_link *link;
500530f6
TH
5345
5346 /* Previous resume operation might still be in
5347 * progress. Wait for PM_PENDING to clear.
5348 */
5349 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5350 ata_port_wait_eh(ap);
5351 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5352 }
5353
5354 /* request PM ops to EH */
5355 spin_lock_irqsave(ap->lock, flags);
5356
5357 ap->pm_mesg = mesg;
5358 if (wait) {
5359 rc = 0;
5360 ap->pm_result = &rc;
5361 }
5362
5363 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5364 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5365 link->eh_info.action |= action;
5366 link->eh_info.flags |= ehi_flags;
5367 }
500530f6
TH
5368
5369 ata_port_schedule_eh(ap);
5370
5371 spin_unlock_irqrestore(ap->lock, flags);
5372
5373 /* wait and check result */
5374 if (wait) {
5375 ata_port_wait_eh(ap);
5376 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5377 if (rc)
5378 return rc;
5379 }
5380 }
5381
5382 return 0;
5383}
5384
5385/**
cca3974e
JG
5386 * ata_host_suspend - suspend host
5387 * @host: host to suspend
500530f6
TH
5388 * @mesg: PM message
5389 *
cca3974e 5390 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5391 * function requests EH to perform PM operations and waits for EH
5392 * to finish.
5393 *
5394 * LOCKING:
5395 * Kernel thread context (may sleep).
5396 *
5397 * RETURNS:
5398 * 0 on success, -errno on failure.
5399 */
cca3974e 5400int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5401{
9666f400 5402 int rc;
500530f6 5403
ca77329f
KCA
5404 /*
5405 * disable link pm on all ports before requesting
5406 * any pm activity
5407 */
5408 ata_lpm_enable(host);
5409
cca3974e 5410 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5411 if (rc == 0)
5412 host->dev->power.power_state = mesg;
500530f6
TH
5413 return rc;
5414}
5415
5416/**
cca3974e
JG
5417 * ata_host_resume - resume host
5418 * @host: host to resume
500530f6 5419 *
cca3974e 5420 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5421 * function requests EH to perform PM operations and returns.
5422 * Note that all resume operations are performed parallely.
5423 *
5424 * LOCKING:
5425 * Kernel thread context (may sleep).
5426 */
cca3974e 5427void ata_host_resume(struct ata_host *host)
500530f6 5428{
cf480626 5429 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5430 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5431 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5432
5433 /* reenable link pm */
5434 ata_lpm_disable(host);
500530f6 5435}
6ffa01d8 5436#endif
500530f6 5437
c893a3ae
RD
5438/**
5439 * ata_port_start - Set port up for dma.
5440 * @ap: Port to initialize
5441 *
5442 * Called just after data structures for each port are
5443 * initialized. Allocates space for PRD table.
5444 *
5445 * May be used as the port_start() entry in ata_port_operations.
5446 *
5447 * LOCKING:
5448 * Inherited from caller.
5449 */
f0d36efd 5450int ata_port_start(struct ata_port *ap)
1da177e4 5451{
2f1f610b 5452 struct device *dev = ap->dev;
1da177e4 5453
f0d36efd
TH
5454 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5455 GFP_KERNEL);
1da177e4
LT
5456 if (!ap->prd)
5457 return -ENOMEM;
5458
1da177e4
LT
5459 return 0;
5460}
5461
3ef3b43d
TH
5462/**
5463 * ata_dev_init - Initialize an ata_device structure
5464 * @dev: Device structure to initialize
5465 *
5466 * Initialize @dev in preparation for probing.
5467 *
5468 * LOCKING:
5469 * Inherited from caller.
5470 */
5471void ata_dev_init(struct ata_device *dev)
5472{
b1c72916 5473 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5474 struct ata_port *ap = link->ap;
72fa4b74
TH
5475 unsigned long flags;
5476
b1c72916 5477 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5478 link->sata_spd_limit = link->hw_sata_spd_limit;
5479 link->sata_spd = 0;
5a04bf4b 5480
72fa4b74
TH
5481 /* High bits of dev->flags are used to record warm plug
5482 * requests which occur asynchronously. Synchronize using
cca3974e 5483 * host lock.
72fa4b74 5484 */
ba6a1308 5485 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5486 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5487 dev->horkage = 0;
ba6a1308 5488 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5489
99cf610a
TH
5490 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5491 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5492 dev->pio_mask = UINT_MAX;
5493 dev->mwdma_mask = UINT_MAX;
5494 dev->udma_mask = UINT_MAX;
5495}
5496
4fb37a25
TH
5497/**
5498 * ata_link_init - Initialize an ata_link structure
5499 * @ap: ATA port link is attached to
5500 * @link: Link structure to initialize
8989805d 5501 * @pmp: Port multiplier port number
4fb37a25
TH
5502 *
5503 * Initialize @link.
5504 *
5505 * LOCKING:
5506 * Kernel thread context (may sleep)
5507 */
fb7fd614 5508void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5509{
5510 int i;
5511
5512 /* clear everything except for devices */
5513 memset(link, 0, offsetof(struct ata_link, device[0]));
5514
5515 link->ap = ap;
8989805d 5516 link->pmp = pmp;
4fb37a25
TH
5517 link->active_tag = ATA_TAG_POISON;
5518 link->hw_sata_spd_limit = UINT_MAX;
5519
5520 /* can't use iterator, ap isn't initialized yet */
5521 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5522 struct ata_device *dev = &link->device[i];
5523
5524 dev->link = link;
5525 dev->devno = dev - link->device;
5526 ata_dev_init(dev);
5527 }
5528}
5529
5530/**
5531 * sata_link_init_spd - Initialize link->sata_spd_limit
5532 * @link: Link to configure sata_spd_limit for
5533 *
5534 * Initialize @link->[hw_]sata_spd_limit to the currently
5535 * configured value.
5536 *
5537 * LOCKING:
5538 * Kernel thread context (may sleep).
5539 *
5540 * RETURNS:
5541 * 0 on success, -errno on failure.
5542 */
fb7fd614 5543int sata_link_init_spd(struct ata_link *link)
4fb37a25 5544{
33267325 5545 u8 spd;
4fb37a25
TH
5546 int rc;
5547
d127ea7b 5548 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5549 if (rc)
5550 return rc;
5551
d127ea7b 5552 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5553 if (spd)
5554 link->hw_sata_spd_limit &= (1 << spd) - 1;
5555
05944bdf 5556 ata_force_link_limits(link);
33267325 5557
4fb37a25
TH
5558 link->sata_spd_limit = link->hw_sata_spd_limit;
5559
5560 return 0;
5561}
5562
1da177e4 5563/**
f3187195
TH
5564 * ata_port_alloc - allocate and initialize basic ATA port resources
5565 * @host: ATA host this allocated port belongs to
1da177e4 5566 *
f3187195
TH
5567 * Allocate and initialize basic ATA port resources.
5568 *
5569 * RETURNS:
5570 * Allocate ATA port on success, NULL on failure.
0cba632b 5571 *
1da177e4 5572 * LOCKING:
f3187195 5573 * Inherited from calling layer (may sleep).
1da177e4 5574 */
f3187195 5575struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5576{
f3187195 5577 struct ata_port *ap;
1da177e4 5578
f3187195
TH
5579 DPRINTK("ENTER\n");
5580
5581 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5582 if (!ap)
5583 return NULL;
5584
f4d6d004 5585 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5586 ap->lock = &host->lock;
198e0fed 5587 ap->flags = ATA_FLAG_DISABLED;
f3187195 5588 ap->print_id = -1;
1da177e4 5589 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5590 ap->host = host;
f3187195 5591 ap->dev = host->dev;
1da177e4 5592 ap->last_ctl = 0xFF;
bd5d825c
BP
5593
5594#if defined(ATA_VERBOSE_DEBUG)
5595 /* turn on all debugging levels */
5596 ap->msg_enable = 0x00FF;
5597#elif defined(ATA_DEBUG)
5598 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5599#else
0dd4b21f 5600 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5601#endif
1da177e4 5602
127102ae 5603#ifdef CONFIG_ATA_SFF
442eacc3 5604 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
f667fdbb
TH
5605#else
5606 INIT_DELAYED_WORK(&ap->port_task, NULL);
127102ae 5607#endif
65f27f38
DH
5608 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5609 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5610 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5611 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5612 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5613 init_timer_deferrable(&ap->fastdrain_timer);
5614 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5615 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5616
838df628 5617 ap->cbl = ATA_CBL_NONE;
838df628 5618
8989805d 5619 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5620
5621#ifdef ATA_IRQ_TRAP
5622 ap->stats.unhandled_irq = 1;
5623 ap->stats.idle_irq = 1;
5624#endif
1da177e4 5625 return ap;
1da177e4
LT
5626}
5627
f0d36efd
TH
5628static void ata_host_release(struct device *gendev, void *res)
5629{
5630 struct ata_host *host = dev_get_drvdata(gendev);
5631 int i;
5632
1aa506e4
TH
5633 for (i = 0; i < host->n_ports; i++) {
5634 struct ata_port *ap = host->ports[i];
5635
4911487a
TH
5636 if (!ap)
5637 continue;
5638
5639 if (ap->scsi_host)
1aa506e4
TH
5640 scsi_host_put(ap->scsi_host);
5641
633273a3 5642 kfree(ap->pmp_link);
b1c72916 5643 kfree(ap->slave_link);
4911487a 5644 kfree(ap);
1aa506e4
TH
5645 host->ports[i] = NULL;
5646 }
5647
1aa56cca 5648 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5649}
5650
f3187195
TH
5651/**
5652 * ata_host_alloc - allocate and init basic ATA host resources
5653 * @dev: generic device this host is associated with
5654 * @max_ports: maximum number of ATA ports associated with this host
5655 *
5656 * Allocate and initialize basic ATA host resources. LLD calls
5657 * this function to allocate a host, initializes it fully and
5658 * attaches it using ata_host_register().
5659 *
5660 * @max_ports ports are allocated and host->n_ports is
5661 * initialized to @max_ports. The caller is allowed to decrease
5662 * host->n_ports before calling ata_host_register(). The unused
5663 * ports will be automatically freed on registration.
5664 *
5665 * RETURNS:
5666 * Allocate ATA host on success, NULL on failure.
5667 *
5668 * LOCKING:
5669 * Inherited from calling layer (may sleep).
5670 */
5671struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5672{
5673 struct ata_host *host;
5674 size_t sz;
5675 int i;
5676
5677 DPRINTK("ENTER\n");
5678
5679 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5680 return NULL;
5681
5682 /* alloc a container for our list of ATA ports (buses) */
5683 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5684 /* alloc a container for our list of ATA ports (buses) */
5685 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5686 if (!host)
5687 goto err_out;
5688
5689 devres_add(dev, host);
5690 dev_set_drvdata(dev, host);
5691
5692 spin_lock_init(&host->lock);
5693 host->dev = dev;
5694 host->n_ports = max_ports;
5695
5696 /* allocate ports bound to this host */
5697 for (i = 0; i < max_ports; i++) {
5698 struct ata_port *ap;
5699
5700 ap = ata_port_alloc(host);
5701 if (!ap)
5702 goto err_out;
5703
5704 ap->port_no = i;
5705 host->ports[i] = ap;
5706 }
5707
5708 devres_remove_group(dev, NULL);
5709 return host;
5710
5711 err_out:
5712 devres_release_group(dev, NULL);
5713 return NULL;
5714}
5715
f5cda257
TH
5716/**
5717 * ata_host_alloc_pinfo - alloc host and init with port_info array
5718 * @dev: generic device this host is associated with
5719 * @ppi: array of ATA port_info to initialize host with
5720 * @n_ports: number of ATA ports attached to this host
5721 *
5722 * Allocate ATA host and initialize with info from @ppi. If NULL
5723 * terminated, @ppi may contain fewer entries than @n_ports. The
5724 * last entry will be used for the remaining ports.
5725 *
5726 * RETURNS:
5727 * Allocate ATA host on success, NULL on failure.
5728 *
5729 * LOCKING:
5730 * Inherited from calling layer (may sleep).
5731 */
5732struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5733 const struct ata_port_info * const * ppi,
5734 int n_ports)
5735{
5736 const struct ata_port_info *pi;
5737 struct ata_host *host;
5738 int i, j;
5739
5740 host = ata_host_alloc(dev, n_ports);
5741 if (!host)
5742 return NULL;
5743
5744 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5745 struct ata_port *ap = host->ports[i];
5746
5747 if (ppi[j])
5748 pi = ppi[j++];
5749
5750 ap->pio_mask = pi->pio_mask;
5751 ap->mwdma_mask = pi->mwdma_mask;
5752 ap->udma_mask = pi->udma_mask;
5753 ap->flags |= pi->flags;
0c88758b 5754 ap->link.flags |= pi->link_flags;
f5cda257
TH
5755 ap->ops = pi->port_ops;
5756
5757 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5758 host->ops = pi->port_ops;
f5cda257
TH
5759 }
5760
5761 return host;
5762}
5763
b1c72916
TH
5764/**
5765 * ata_slave_link_init - initialize slave link
5766 * @ap: port to initialize slave link for
5767 *
5768 * Create and initialize slave link for @ap. This enables slave
5769 * link handling on the port.
5770 *
5771 * In libata, a port contains links and a link contains devices.
5772 * There is single host link but if a PMP is attached to it,
5773 * there can be multiple fan-out links. On SATA, there's usually
5774 * a single device connected to a link but PATA and SATA
5775 * controllers emulating TF based interface can have two - master
5776 * and slave.
5777 *
5778 * However, there are a few controllers which don't fit into this
5779 * abstraction too well - SATA controllers which emulate TF
5780 * interface with both master and slave devices but also have
5781 * separate SCR register sets for each device. These controllers
5782 * need separate links for physical link handling
5783 * (e.g. onlineness, link speed) but should be treated like a
5784 * traditional M/S controller for everything else (e.g. command
5785 * issue, softreset).
5786 *
5787 * slave_link is libata's way of handling this class of
5788 * controllers without impacting core layer too much. For
5789 * anything other than physical link handling, the default host
5790 * link is used for both master and slave. For physical link
5791 * handling, separate @ap->slave_link is used. All dirty details
5792 * are implemented inside libata core layer. From LLD's POV, the
5793 * only difference is that prereset, hardreset and postreset are
5794 * called once more for the slave link, so the reset sequence
5795 * looks like the following.
5796 *
5797 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5798 * softreset(M) -> postreset(M) -> postreset(S)
5799 *
5800 * Note that softreset is called only for the master. Softreset
5801 * resets both M/S by definition, so SRST on master should handle
5802 * both (the standard method will work just fine).
5803 *
5804 * LOCKING:
5805 * Should be called before host is registered.
5806 *
5807 * RETURNS:
5808 * 0 on success, -errno on failure.
5809 */
5810int ata_slave_link_init(struct ata_port *ap)
5811{
5812 struct ata_link *link;
5813
5814 WARN_ON(ap->slave_link);
5815 WARN_ON(ap->flags & ATA_FLAG_PMP);
5816
5817 link = kzalloc(sizeof(*link), GFP_KERNEL);
5818 if (!link)
5819 return -ENOMEM;
5820
5821 ata_link_init(ap, link, 1);
5822 ap->slave_link = link;
5823 return 0;
5824}
5825
32ebbc0c
TH
5826static void ata_host_stop(struct device *gendev, void *res)
5827{
5828 struct ata_host *host = dev_get_drvdata(gendev);
5829 int i;
5830
5831 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5832
5833 for (i = 0; i < host->n_ports; i++) {
5834 struct ata_port *ap = host->ports[i];
5835
5836 if (ap->ops->port_stop)
5837 ap->ops->port_stop(ap);
5838 }
5839
5840 if (host->ops->host_stop)
5841 host->ops->host_stop(host);
5842}
5843
029cfd6b
TH
5844/**
5845 * ata_finalize_port_ops - finalize ata_port_operations
5846 * @ops: ata_port_operations to finalize
5847 *
5848 * An ata_port_operations can inherit from another ops and that
5849 * ops can again inherit from another. This can go on as many
5850 * times as necessary as long as there is no loop in the
5851 * inheritance chain.
5852 *
5853 * Ops tables are finalized when the host is started. NULL or
5854 * unspecified entries are inherited from the closet ancestor
5855 * which has the method and the entry is populated with it.
5856 * After finalization, the ops table directly points to all the
5857 * methods and ->inherits is no longer necessary and cleared.
5858 *
5859 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5860 *
5861 * LOCKING:
5862 * None.
5863 */
5864static void ata_finalize_port_ops(struct ata_port_operations *ops)
5865{
2da67659 5866 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5867 const struct ata_port_operations *cur;
5868 void **begin = (void **)ops;
5869 void **end = (void **)&ops->inherits;
5870 void **pp;
5871
5872 if (!ops || !ops->inherits)
5873 return;
5874
5875 spin_lock(&lock);
5876
5877 for (cur = ops->inherits; cur; cur = cur->inherits) {
5878 void **inherit = (void **)cur;
5879
5880 for (pp = begin; pp < end; pp++, inherit++)
5881 if (!*pp)
5882 *pp = *inherit;
5883 }
5884
5885 for (pp = begin; pp < end; pp++)
5886 if (IS_ERR(*pp))
5887 *pp = NULL;
5888
5889 ops->inherits = NULL;
5890
5891 spin_unlock(&lock);
5892}
5893
ecef7253
TH
5894/**
5895 * ata_host_start - start and freeze ports of an ATA host
5896 * @host: ATA host to start ports for
5897 *
5898 * Start and then freeze ports of @host. Started status is
5899 * recorded in host->flags, so this function can be called
5900 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5901 * once. If host->ops isn't initialized yet, its set to the
5902 * first non-dummy port ops.
ecef7253
TH
5903 *
5904 * LOCKING:
5905 * Inherited from calling layer (may sleep).
5906 *
5907 * RETURNS:
5908 * 0 if all ports are started successfully, -errno otherwise.
5909 */
5910int ata_host_start(struct ata_host *host)
5911{
32ebbc0c
TH
5912 int have_stop = 0;
5913 void *start_dr = NULL;
ecef7253
TH
5914 int i, rc;
5915
5916 if (host->flags & ATA_HOST_STARTED)
5917 return 0;
5918
029cfd6b
TH
5919 ata_finalize_port_ops(host->ops);
5920
ecef7253
TH
5921 for (i = 0; i < host->n_ports; i++) {
5922 struct ata_port *ap = host->ports[i];
5923
029cfd6b
TH
5924 ata_finalize_port_ops(ap->ops);
5925
f3187195
TH
5926 if (!host->ops && !ata_port_is_dummy(ap))
5927 host->ops = ap->ops;
5928
32ebbc0c
TH
5929 if (ap->ops->port_stop)
5930 have_stop = 1;
5931 }
5932
5933 if (host->ops->host_stop)
5934 have_stop = 1;
5935
5936 if (have_stop) {
5937 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5938 if (!start_dr)
5939 return -ENOMEM;
5940 }
5941
5942 for (i = 0; i < host->n_ports; i++) {
5943 struct ata_port *ap = host->ports[i];
5944
ecef7253
TH
5945 if (ap->ops->port_start) {
5946 rc = ap->ops->port_start(ap);
5947 if (rc) {
0f9fe9b7 5948 if (rc != -ENODEV)
0f757743
AM
5949 dev_printk(KERN_ERR, host->dev,
5950 "failed to start port %d "
5951 "(errno=%d)\n", i, rc);
ecef7253
TH
5952 goto err_out;
5953 }
5954 }
ecef7253
TH
5955 ata_eh_freeze_port(ap);
5956 }
5957
32ebbc0c
TH
5958 if (start_dr)
5959 devres_add(host->dev, start_dr);
ecef7253
TH
5960 host->flags |= ATA_HOST_STARTED;
5961 return 0;
5962
5963 err_out:
5964 while (--i >= 0) {
5965 struct ata_port *ap = host->ports[i];
5966
5967 if (ap->ops->port_stop)
5968 ap->ops->port_stop(ap);
5969 }
32ebbc0c 5970 devres_free(start_dr);
ecef7253
TH
5971 return rc;
5972}
5973
b03732f0 5974/**
cca3974e
JG
5975 * ata_sas_host_init - Initialize a host struct
5976 * @host: host to initialize
5977 * @dev: device host is attached to
5978 * @flags: host flags
5979 * @ops: port_ops
b03732f0
BK
5980 *
5981 * LOCKING:
5982 * PCI/etc. bus probe sem.
5983 *
5984 */
f3187195 5985/* KILLME - the only user left is ipr */
cca3974e 5986void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5987 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5988{
cca3974e
JG
5989 spin_lock_init(&host->lock);
5990 host->dev = dev;
5991 host->flags = flags;
5992 host->ops = ops;
b03732f0
BK
5993}
5994
79318057
AV
5995
5996static void async_port_probe(void *data, async_cookie_t cookie)
5997{
5998 int rc;
5999 struct ata_port *ap = data;
886ad09f
AV
6000
6001 /*
6002 * If we're not allowed to scan this host in parallel,
6003 * we need to wait until all previous scans have completed
6004 * before going further.
fa853a48
AV
6005 * Jeff Garzik says this is only within a controller, so we
6006 * don't need to wait for port 0, only for later ports.
886ad09f 6007 */
fa853a48 6008 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6009 async_synchronize_cookie(cookie);
6010
79318057
AV
6011 /* probe */
6012 if (ap->ops->error_handler) {
6013 struct ata_eh_info *ehi = &ap->link.eh_info;
6014 unsigned long flags;
6015
6016 ata_port_probe(ap);
6017
6018 /* kick EH for boot probing */
6019 spin_lock_irqsave(ap->lock, flags);
6020
6021 ehi->probe_mask |= ATA_ALL_DEVICES;
6022 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6023 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6024
6025 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6026 ap->pflags |= ATA_PFLAG_LOADING;
6027 ata_port_schedule_eh(ap);
6028
6029 spin_unlock_irqrestore(ap->lock, flags);
6030
6031 /* wait for EH to finish */
6032 ata_port_wait_eh(ap);
6033 } else {
6034 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6035 rc = ata_bus_probe(ap);
6036 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6037
6038 if (rc) {
6039 /* FIXME: do something useful here?
6040 * Current libata behavior will
6041 * tear down everything when
6042 * the module is removed
6043 * or the h/w is unplugged.
6044 */
6045 }
6046 }
f29d3b23
AV
6047
6048 /* in order to keep device order, we need to synchronize at this point */
6049 async_synchronize_cookie(cookie);
6050
6051 ata_scsi_scan_host(ap, 1);
6052
79318057 6053}
f3187195
TH
6054/**
6055 * ata_host_register - register initialized ATA host
6056 * @host: ATA host to register
6057 * @sht: template for SCSI host
6058 *
6059 * Register initialized ATA host. @host is allocated using
6060 * ata_host_alloc() and fully initialized by LLD. This function
6061 * starts ports, registers @host with ATA and SCSI layers and
6062 * probe registered devices.
6063 *
6064 * LOCKING:
6065 * Inherited from calling layer (may sleep).
6066 *
6067 * RETURNS:
6068 * 0 on success, -errno otherwise.
6069 */
6070int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6071{
6072 int i, rc;
6073
6074 /* host must have been started */
6075 if (!(host->flags & ATA_HOST_STARTED)) {
6076 dev_printk(KERN_ERR, host->dev,
6077 "BUG: trying to register unstarted host\n");
6078 WARN_ON(1);
6079 return -EINVAL;
6080 }
6081
6082 /* Blow away unused ports. This happens when LLD can't
6083 * determine the exact number of ports to allocate at
6084 * allocation time.
6085 */
6086 for (i = host->n_ports; host->ports[i]; i++)
6087 kfree(host->ports[i]);
6088
6089 /* give ports names and add SCSI hosts */
6090 for (i = 0; i < host->n_ports; i++)
6091 host->ports[i]->print_id = ata_print_id++;
6092
6093 rc = ata_scsi_add_hosts(host, sht);
6094 if (rc)
6095 return rc;
6096
fafbae87
TH
6097 /* associate with ACPI nodes */
6098 ata_acpi_associate(host);
6099
f3187195
TH
6100 /* set cable, sata_spd_limit and report */
6101 for (i = 0; i < host->n_ports; i++) {
6102 struct ata_port *ap = host->ports[i];
f3187195
TH
6103 unsigned long xfer_mask;
6104
6105 /* set SATA cable type if still unset */
6106 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6107 ap->cbl = ATA_CBL_SATA;
6108
6109 /* init sata_spd_limit to the current value */
4fb37a25 6110 sata_link_init_spd(&ap->link);
b1c72916
TH
6111 if (ap->slave_link)
6112 sata_link_init_spd(ap->slave_link);
f3187195 6113
cbcdd875 6114 /* print per-port info to dmesg */
f3187195
TH
6115 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6116 ap->udma_mask);
6117
abf6e8ed 6118 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6119 ata_port_printk(ap, KERN_INFO,
6120 "%cATA max %s %s\n",
a16abc0b 6121 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6122 ata_mode_string(xfer_mask),
cbcdd875 6123 ap->link.eh_info.desc);
abf6e8ed
TH
6124 ata_ehi_clear_desc(&ap->link.eh_info);
6125 } else
f3187195
TH
6126 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6127 }
6128
f6005354 6129 /* perform each probe asynchronously */
f3187195
TH
6130 for (i = 0; i < host->n_ports; i++) {
6131 struct ata_port *ap = host->ports[i];
79318057 6132 async_schedule(async_port_probe, ap);
f3187195 6133 }
f3187195
TH
6134
6135 return 0;
6136}
6137
f5cda257
TH
6138/**
6139 * ata_host_activate - start host, request IRQ and register it
6140 * @host: target ATA host
6141 * @irq: IRQ to request
6142 * @irq_handler: irq_handler used when requesting IRQ
6143 * @irq_flags: irq_flags used when requesting IRQ
6144 * @sht: scsi_host_template to use when registering the host
6145 *
6146 * After allocating an ATA host and initializing it, most libata
6147 * LLDs perform three steps to activate the host - start host,
6148 * request IRQ and register it. This helper takes necessasry
6149 * arguments and performs the three steps in one go.
6150 *
3d46b2e2
PM
6151 * An invalid IRQ skips the IRQ registration and expects the host to
6152 * have set polling mode on the port. In this case, @irq_handler
6153 * should be NULL.
6154 *
f5cda257
TH
6155 * LOCKING:
6156 * Inherited from calling layer (may sleep).
6157 *
6158 * RETURNS:
6159 * 0 on success, -errno otherwise.
6160 */
6161int ata_host_activate(struct ata_host *host, int irq,
6162 irq_handler_t irq_handler, unsigned long irq_flags,
6163 struct scsi_host_template *sht)
6164{
cbcdd875 6165 int i, rc;
f5cda257
TH
6166
6167 rc = ata_host_start(host);
6168 if (rc)
6169 return rc;
6170
3d46b2e2
PM
6171 /* Special case for polling mode */
6172 if (!irq) {
6173 WARN_ON(irq_handler);
6174 return ata_host_register(host, sht);
6175 }
6176
f5cda257
TH
6177 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6178 dev_driver_string(host->dev), host);
6179 if (rc)
6180 return rc;
6181
cbcdd875
TH
6182 for (i = 0; i < host->n_ports; i++)
6183 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6184
f5cda257
TH
6185 rc = ata_host_register(host, sht);
6186 /* if failed, just free the IRQ and leave ports alone */
6187 if (rc)
6188 devm_free_irq(host->dev, irq, host);
6189
6190 return rc;
6191}
6192
720ba126
TH
6193/**
6194 * ata_port_detach - Detach ATA port in prepration of device removal
6195 * @ap: ATA port to be detached
6196 *
6197 * Detach all ATA devices and the associated SCSI devices of @ap;
6198 * then, remove the associated SCSI host. @ap is guaranteed to
6199 * be quiescent on return from this function.
6200 *
6201 * LOCKING:
6202 * Kernel thread context (may sleep).
6203 */
741b7763 6204static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6205{
6206 unsigned long flags;
720ba126
TH
6207
6208 if (!ap->ops->error_handler)
c3cf30a9 6209 goto skip_eh;
720ba126
TH
6210
6211 /* tell EH we're leaving & flush EH */
ba6a1308 6212 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6213 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6214 ata_port_schedule_eh(ap);
ba6a1308 6215 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6216
ece180d1 6217 /* wait till EH commits suicide */
720ba126
TH
6218 ata_port_wait_eh(ap);
6219
ece180d1
TH
6220 /* it better be dead now */
6221 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6222
45a66c1c 6223 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6224
c3cf30a9 6225 skip_eh:
720ba126 6226 /* remove the associated SCSI host */
cca3974e 6227 scsi_remove_host(ap->scsi_host);
720ba126
TH
6228}
6229
0529c159
TH
6230/**
6231 * ata_host_detach - Detach all ports of an ATA host
6232 * @host: Host to detach
6233 *
6234 * Detach all ports of @host.
6235 *
6236 * LOCKING:
6237 * Kernel thread context (may sleep).
6238 */
6239void ata_host_detach(struct ata_host *host)
6240{
6241 int i;
6242
6243 for (i = 0; i < host->n_ports; i++)
6244 ata_port_detach(host->ports[i]);
562f0c2d
TH
6245
6246 /* the host is dead now, dissociate ACPI */
6247 ata_acpi_dissociate(host);
0529c159
TH
6248}
6249
374b1873
JG
6250#ifdef CONFIG_PCI
6251
1da177e4
LT
6252/**
6253 * ata_pci_remove_one - PCI layer callback for device removal
6254 * @pdev: PCI device that was removed
6255 *
b878ca5d
TH
6256 * PCI layer indicates to libata via this hook that hot-unplug or
6257 * module unload event has occurred. Detach all ports. Resource
6258 * release is handled via devres.
1da177e4
LT
6259 *
6260 * LOCKING:
6261 * Inherited from PCI layer (may sleep).
6262 */
f0d36efd 6263void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6264{
2855568b 6265 struct device *dev = &pdev->dev;
cca3974e 6266 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6267
b878ca5d 6268 ata_host_detach(host);
1da177e4
LT
6269}
6270
6271/* move to PCI subsystem */
057ace5e 6272int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6273{
6274 unsigned long tmp = 0;
6275
6276 switch (bits->width) {
6277 case 1: {
6278 u8 tmp8 = 0;
6279 pci_read_config_byte(pdev, bits->reg, &tmp8);
6280 tmp = tmp8;
6281 break;
6282 }
6283 case 2: {
6284 u16 tmp16 = 0;
6285 pci_read_config_word(pdev, bits->reg, &tmp16);
6286 tmp = tmp16;
6287 break;
6288 }
6289 case 4: {
6290 u32 tmp32 = 0;
6291 pci_read_config_dword(pdev, bits->reg, &tmp32);
6292 tmp = tmp32;
6293 break;
6294 }
6295
6296 default:
6297 return -EINVAL;
6298 }
6299
6300 tmp &= bits->mask;
6301
6302 return (tmp == bits->val) ? 1 : 0;
6303}
9b847548 6304
6ffa01d8 6305#ifdef CONFIG_PM
3c5100c1 6306void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6307{
6308 pci_save_state(pdev);
4c90d971 6309 pci_disable_device(pdev);
500530f6 6310
3a2d5b70 6311 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6312 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6313}
6314
553c4aa6 6315int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6316{
553c4aa6
TH
6317 int rc;
6318
9b847548
JA
6319 pci_set_power_state(pdev, PCI_D0);
6320 pci_restore_state(pdev);
553c4aa6 6321
b878ca5d 6322 rc = pcim_enable_device(pdev);
553c4aa6
TH
6323 if (rc) {
6324 dev_printk(KERN_ERR, &pdev->dev,
6325 "failed to enable device after resume (%d)\n", rc);
6326 return rc;
6327 }
6328
9b847548 6329 pci_set_master(pdev);
553c4aa6 6330 return 0;
500530f6
TH
6331}
6332
3c5100c1 6333int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6334{
cca3974e 6335 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6336 int rc = 0;
6337
cca3974e 6338 rc = ata_host_suspend(host, mesg);
500530f6
TH
6339 if (rc)
6340 return rc;
6341
3c5100c1 6342 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6343
6344 return 0;
6345}
6346
6347int ata_pci_device_resume(struct pci_dev *pdev)
6348{
cca3974e 6349 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6350 int rc;
500530f6 6351
553c4aa6
TH
6352 rc = ata_pci_device_do_resume(pdev);
6353 if (rc == 0)
6354 ata_host_resume(host);
6355 return rc;
9b847548 6356}
6ffa01d8
TH
6357#endif /* CONFIG_PM */
6358
1da177e4
LT
6359#endif /* CONFIG_PCI */
6360
33267325
TH
6361static int __init ata_parse_force_one(char **cur,
6362 struct ata_force_ent *force_ent,
6363 const char **reason)
6364{
6365 /* FIXME: Currently, there's no way to tag init const data and
6366 * using __initdata causes build failure on some versions of
6367 * gcc. Once __initdataconst is implemented, add const to the
6368 * following structure.
6369 */
6370 static struct ata_force_param force_tbl[] __initdata = {
6371 { "40c", .cbl = ATA_CBL_PATA40 },
6372 { "80c", .cbl = ATA_CBL_PATA80 },
6373 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6374 { "unk", .cbl = ATA_CBL_PATA_UNK },
6375 { "ign", .cbl = ATA_CBL_PATA_IGN },
6376 { "sata", .cbl = ATA_CBL_SATA },
6377 { "1.5Gbps", .spd_limit = 1 },
6378 { "3.0Gbps", .spd_limit = 2 },
6379 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6380 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6381 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6382 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6383 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6384 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6385 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6386 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6387 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6388 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6389 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6390 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6391 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6392 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6393 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6394 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6395 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6396 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6397 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6398 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6399 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6400 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6401 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6402 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6403 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6404 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6405 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6406 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6407 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6408 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6409 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6410 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6411 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6412 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6413 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6414 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6415 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6416 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6417 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6418 };
6419 char *start = *cur, *p = *cur;
6420 char *id, *val, *endp;
6421 const struct ata_force_param *match_fp = NULL;
6422 int nr_matches = 0, i;
6423
6424 /* find where this param ends and update *cur */
6425 while (*p != '\0' && *p != ',')
6426 p++;
6427
6428 if (*p == '\0')
6429 *cur = p;
6430 else
6431 *cur = p + 1;
6432
6433 *p = '\0';
6434
6435 /* parse */
6436 p = strchr(start, ':');
6437 if (!p) {
6438 val = strstrip(start);
6439 goto parse_val;
6440 }
6441 *p = '\0';
6442
6443 id = strstrip(start);
6444 val = strstrip(p + 1);
6445
6446 /* parse id */
6447 p = strchr(id, '.');
6448 if (p) {
6449 *p++ = '\0';
6450 force_ent->device = simple_strtoul(p, &endp, 10);
6451 if (p == endp || *endp != '\0') {
6452 *reason = "invalid device";
6453 return -EINVAL;
6454 }
6455 }
6456
6457 force_ent->port = simple_strtoul(id, &endp, 10);
6458 if (p == endp || *endp != '\0') {
6459 *reason = "invalid port/link";
6460 return -EINVAL;
6461 }
6462
6463 parse_val:
6464 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6465 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6466 const struct ata_force_param *fp = &force_tbl[i];
6467
6468 if (strncasecmp(val, fp->name, strlen(val)))
6469 continue;
6470
6471 nr_matches++;
6472 match_fp = fp;
6473
6474 if (strcasecmp(val, fp->name) == 0) {
6475 nr_matches = 1;
6476 break;
6477 }
6478 }
6479
6480 if (!nr_matches) {
6481 *reason = "unknown value";
6482 return -EINVAL;
6483 }
6484 if (nr_matches > 1) {
6485 *reason = "ambigious value";
6486 return -EINVAL;
6487 }
6488
6489 force_ent->param = *match_fp;
6490
6491 return 0;
6492}
6493
6494static void __init ata_parse_force_param(void)
6495{
6496 int idx = 0, size = 1;
6497 int last_port = -1, last_device = -1;
6498 char *p, *cur, *next;
6499
6500 /* calculate maximum number of params and allocate force_tbl */
6501 for (p = ata_force_param_buf; *p; p++)
6502 if (*p == ',')
6503 size++;
6504
6505 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6506 if (!ata_force_tbl) {
6507 printk(KERN_WARNING "ata: failed to extend force table, "
6508 "libata.force ignored\n");
6509 return;
6510 }
6511
6512 /* parse and populate the table */
6513 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6514 const char *reason = "";
6515 struct ata_force_ent te = { .port = -1, .device = -1 };
6516
6517 next = cur;
6518 if (ata_parse_force_one(&next, &te, &reason)) {
6519 printk(KERN_WARNING "ata: failed to parse force "
6520 "parameter \"%s\" (%s)\n",
6521 cur, reason);
6522 continue;
6523 }
6524
6525 if (te.port == -1) {
6526 te.port = last_port;
6527 te.device = last_device;
6528 }
6529
6530 ata_force_tbl[idx++] = te;
6531
6532 last_port = te.port;
6533 last_device = te.device;
6534 }
6535
6536 ata_force_tbl_size = idx;
6537}
1da177e4 6538
1da177e4
LT
6539static int __init ata_init(void)
6540{
33267325
TH
6541 ata_parse_force_param();
6542
1da177e4
LT
6543 ata_wq = create_workqueue("ata");
6544 if (!ata_wq)
49ea3b04 6545 goto free_force_tbl;
1da177e4 6546
453b07ac 6547 ata_aux_wq = create_singlethread_workqueue("ata_aux");
49ea3b04
EO
6548 if (!ata_aux_wq)
6549 goto free_wq;
453b07ac 6550
1da177e4
LT
6551 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6552 return 0;
49ea3b04
EO
6553
6554free_wq:
6555 destroy_workqueue(ata_wq);
6556free_force_tbl:
6557 kfree(ata_force_tbl);
6558 return -ENOMEM;
1da177e4
LT
6559}
6560
6561static void __exit ata_exit(void)
6562{
33267325 6563 kfree(ata_force_tbl);
1da177e4 6564 destroy_workqueue(ata_wq);
453b07ac 6565 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6566}
6567
a4625085 6568subsys_initcall(ata_init);
1da177e4
LT
6569module_exit(ata_exit);
6570
67846b30 6571static unsigned long ratelimit_time;
34af946a 6572static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6573
6574int ata_ratelimit(void)
6575{
6576 int rc;
6577 unsigned long flags;
6578
6579 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6580
6581 if (time_after(jiffies, ratelimit_time)) {
6582 rc = 1;
6583 ratelimit_time = jiffies + (HZ/5);
6584 } else
6585 rc = 0;
6586
6587 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6588
6589 return rc;
6590}
6591
c22daff4
TH
6592/**
6593 * ata_wait_register - wait until register value changes
6594 * @reg: IO-mapped register
6595 * @mask: Mask to apply to read register value
6596 * @val: Wait condition
341c2c95
TH
6597 * @interval: polling interval in milliseconds
6598 * @timeout: timeout in milliseconds
c22daff4
TH
6599 *
6600 * Waiting for some bits of register to change is a common
6601 * operation for ATA controllers. This function reads 32bit LE
6602 * IO-mapped register @reg and tests for the following condition.
6603 *
6604 * (*@reg & mask) != val
6605 *
6606 * If the condition is met, it returns; otherwise, the process is
6607 * repeated after @interval_msec until timeout.
6608 *
6609 * LOCKING:
6610 * Kernel thread context (may sleep)
6611 *
6612 * RETURNS:
6613 * The final register value.
6614 */
6615u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6616 unsigned long interval, unsigned long timeout)
c22daff4 6617{
341c2c95 6618 unsigned long deadline;
c22daff4
TH
6619 u32 tmp;
6620
6621 tmp = ioread32(reg);
6622
6623 /* Calculate timeout _after_ the first read to make sure
6624 * preceding writes reach the controller before starting to
6625 * eat away the timeout.
6626 */
341c2c95 6627 deadline = ata_deadline(jiffies, timeout);
c22daff4 6628
341c2c95
TH
6629 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6630 msleep(interval);
c22daff4
TH
6631 tmp = ioread32(reg);
6632 }
6633
6634 return tmp;
6635}
6636
dd5b06c4
TH
6637/*
6638 * Dummy port_ops
6639 */
182d7bba 6640static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6641{
182d7bba 6642 return AC_ERR_SYSTEM;
dd5b06c4
TH
6643}
6644
182d7bba 6645static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6646{
182d7bba 6647 /* truly dummy */
dd5b06c4
TH
6648}
6649
029cfd6b 6650struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6651 .qc_prep = ata_noop_qc_prep,
6652 .qc_issue = ata_dummy_qc_issue,
182d7bba 6653 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6654};
6655
21b0ad4f
TH
6656const struct ata_port_info ata_dummy_port_info = {
6657 .port_ops = &ata_dummy_port_ops,
6658};
6659
1da177e4
LT
6660/*
6661 * libata is essentially a library of internal helper functions for
6662 * low-level ATA host controller drivers. As such, the API/ABI is
6663 * likely to change as new drivers are added and updated.
6664 * Do not depend on ABI/API stability.
6665 */
e9c83914
TH
6666EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6667EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6668EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6669EXPORT_SYMBOL_GPL(ata_base_port_ops);
6670EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6671EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6672EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6673EXPORT_SYMBOL_GPL(ata_link_next);
6674EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6675EXPORT_SYMBOL_GPL(ata_std_bios_param);
cca3974e 6676EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6677EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6678EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6679EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6680EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6681EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6682EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6683EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6684EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6685EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6686EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6687EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6688EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6689EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6690EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6691EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6692EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6693EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6694EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6695EXPORT_SYMBOL_GPL(ata_mode_string);
6696EXPORT_SYMBOL_GPL(ata_id_xfermask);
1da177e4 6697EXPORT_SYMBOL_GPL(ata_port_start);
04351821 6698EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6699EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6700EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4 6701EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6702EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6703EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6704EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6705EXPORT_SYMBOL_GPL(sata_link_debounce);
6706EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6707EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6708EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6709EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6710EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6711EXPORT_SYMBOL_GPL(ata_dev_classify);
6712EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6713EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6714EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6715EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6716EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6717EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6718EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6719EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6720EXPORT_SYMBOL_GPL(sata_scr_valid);
6721EXPORT_SYMBOL_GPL(sata_scr_read);
6722EXPORT_SYMBOL_GPL(sata_scr_write);
6723EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6724EXPORT_SYMBOL_GPL(ata_link_online);
6725EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6726#ifdef CONFIG_PM
cca3974e
JG
6727EXPORT_SYMBOL_GPL(ata_host_suspend);
6728EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6729#endif /* CONFIG_PM */
6a62a04d
TH
6730EXPORT_SYMBOL_GPL(ata_id_string);
6731EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6732EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6733EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6734
1a660164 6735EXPORT_SYMBOL_GPL(ata_pio_queue_task);
1bc4ccff 6736EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6737EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6738EXPORT_SYMBOL_GPL(ata_timing_compute);
6739EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6740EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6741
1da177e4
LT
6742#ifdef CONFIG_PCI
6743EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6744EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6745#ifdef CONFIG_PM
500530f6
TH
6746EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6747EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6748EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6749EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6750#endif /* CONFIG_PM */
1da177e4 6751#endif /* CONFIG_PCI */
9b847548 6752
b64bbc39
TH
6753EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6754EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6755EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6756EXPORT_SYMBOL_GPL(ata_port_desc);
6757#ifdef CONFIG_PCI
6758EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6759#endif /* CONFIG_PCI */
7b70fc03 6760EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6761EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6762EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6763EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6764EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6765EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6766EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6767EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6768EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6769EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6770EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6771EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6772
6773EXPORT_SYMBOL_GPL(ata_cable_40wire);
6774EXPORT_SYMBOL_GPL(ata_cable_80wire);
6775EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6776EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6777EXPORT_SYMBOL_GPL(ata_cable_sata);