]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
ahci.c: remove non-existing SB600 raid id (re-send)
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
cb48cab7 62#define DRV_VERSION "2.20" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
44877b4e 75static unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
a8601e5f
AM
92static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93module_param(ata_probe_timeout, int, 0444);
94MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
95
d7d0dad6
JG
96int libata_noacpi = 1;
97module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
98MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
99
1da177e4
LT
100MODULE_AUTHOR("Jeff Garzik");
101MODULE_DESCRIPTION("Library module for ATA devices");
102MODULE_LICENSE("GPL");
103MODULE_VERSION(DRV_VERSION);
104
0baab86b 105
1da177e4
LT
106/**
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
111 *
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
114 *
115 * LOCKING:
116 * Inherited from caller.
117 */
118
057ace5e 119void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
120{
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
126
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
131
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
136
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
141
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
146}
147
148/**
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
152 *
e12a1be6 153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
057ace5e 159void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
160{
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
163
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
168
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
172
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
175}
176
8cbd6df1
AL
177static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
192 0,
193 0,
194 0,
195 0,
8cbd6df1
AL
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
9a3dccc4
TH
200 ATA_CMD_WRITE_EXT,
201 0,
202 0,
203 0,
204 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 205};
1da177e4
LT
206
207/**
8cbd6df1 208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
1da177e4 211 *
2e9edbf8 212 * Examine the device configuration and tf->flags to calculate
8cbd6df1 213 * the proper read/write commands and protocol to use.
1da177e4
LT
214 *
215 * LOCKING:
216 * caller.
217 */
bd056d7e 218static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 219{
9a3dccc4 220 u8 cmd;
1da177e4 221
9a3dccc4 222 int index, fua, lba48, write;
2e9edbf8 223
9a3dccc4 224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 227
8cbd6df1
AL
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
9a3dccc4 230 index = dev->multi_count ? 0 : 8;
bd056d7e 231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
0565c26d 234 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
235 } else {
236 tf->protocol = ATA_PROT_DMA;
9a3dccc4 237 index = 16;
8cbd6df1 238 }
1da177e4 239
9a3dccc4
TH
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
244 }
245 return -1;
1da177e4
LT
246}
247
35b649fe
TH
248/**
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
252 *
253 * LOCKING:
254 * None.
255 *
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
259 *
260 * RETURNS:
261 * Block address read from @tf.
262 */
263u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
264{
265 u64 block = 0;
266
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
274
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
280
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
284
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
286 }
287
288 return block;
289}
290
bd056d7e
TH
291/**
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
299 *
300 * LOCKING:
301 * None.
302 *
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
305 *
306 * RETURNS:
307 *
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
310 */
311int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
314{
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
317
6d1245bf 318 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
319 /* yay, NCQ */
320 if (!lba_48_ok(block, n_block))
321 return -ERANGE;
322
323 tf->protocol = ATA_PROT_NCQ;
324 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
325
326 if (tf->flags & ATA_TFLAG_WRITE)
327 tf->command = ATA_CMD_FPDMA_WRITE;
328 else
329 tf->command = ATA_CMD_FPDMA_READ;
330
331 tf->nsect = tag << 3;
332 tf->hob_feature = (n_block >> 8) & 0xff;
333 tf->feature = n_block & 0xff;
334
335 tf->hob_lbah = (block >> 40) & 0xff;
336 tf->hob_lbam = (block >> 32) & 0xff;
337 tf->hob_lbal = (block >> 24) & 0xff;
338 tf->lbah = (block >> 16) & 0xff;
339 tf->lbam = (block >> 8) & 0xff;
340 tf->lbal = block & 0xff;
341
342 tf->device = 1 << 6;
343 if (tf->flags & ATA_TFLAG_FUA)
344 tf->device |= 1 << 7;
345 } else if (dev->flags & ATA_DFLAG_LBA) {
346 tf->flags |= ATA_TFLAG_LBA;
347
348 if (lba_28_ok(block, n_block)) {
349 /* use LBA28 */
350 tf->device |= (block >> 24) & 0xf;
351 } else if (lba_48_ok(block, n_block)) {
352 if (!(dev->flags & ATA_DFLAG_LBA48))
353 return -ERANGE;
354
355 /* use LBA48 */
356 tf->flags |= ATA_TFLAG_LBA48;
357
358 tf->hob_nsect = (n_block >> 8) & 0xff;
359
360 tf->hob_lbah = (block >> 40) & 0xff;
361 tf->hob_lbam = (block >> 32) & 0xff;
362 tf->hob_lbal = (block >> 24) & 0xff;
363 } else
364 /* request too large even for LBA48 */
365 return -ERANGE;
366
367 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
368 return -EINVAL;
369
370 tf->nsect = n_block & 0xff;
371
372 tf->lbah = (block >> 16) & 0xff;
373 tf->lbam = (block >> 8) & 0xff;
374 tf->lbal = block & 0xff;
375
376 tf->device |= ATA_LBA;
377 } else {
378 /* CHS */
379 u32 sect, head, cyl, track;
380
381 /* The request -may- be too large for CHS addressing. */
382 if (!lba_28_ok(block, n_block))
383 return -ERANGE;
384
385 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
386 return -EINVAL;
387
388 /* Convert LBA to CHS */
389 track = (u32)block / dev->sectors;
390 cyl = track / dev->heads;
391 head = track % dev->heads;
392 sect = (u32)block % dev->sectors + 1;
393
394 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
395 (u32)block, track, cyl, head, sect);
396
397 /* Check whether the converted CHS can fit.
398 Cylinder: 0-65535
399 Head: 0-15
400 Sector: 1-255*/
401 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
402 return -ERANGE;
403
404 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
405 tf->lbal = sect;
406 tf->lbam = cyl;
407 tf->lbah = cyl >> 8;
408 tf->device |= head;
409 }
410
411 return 0;
412}
413
cb95d562
TH
414/**
415 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
416 * @pio_mask: pio_mask
417 * @mwdma_mask: mwdma_mask
418 * @udma_mask: udma_mask
419 *
420 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
421 * unsigned int xfer_mask.
422 *
423 * LOCKING:
424 * None.
425 *
426 * RETURNS:
427 * Packed xfer_mask.
428 */
429static unsigned int ata_pack_xfermask(unsigned int pio_mask,
430 unsigned int mwdma_mask,
431 unsigned int udma_mask)
432{
433 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
434 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
435 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
436}
437
c0489e4e
TH
438/**
439 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
440 * @xfer_mask: xfer_mask to unpack
441 * @pio_mask: resulting pio_mask
442 * @mwdma_mask: resulting mwdma_mask
443 * @udma_mask: resulting udma_mask
444 *
445 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
446 * Any NULL distination masks will be ignored.
447 */
448static void ata_unpack_xfermask(unsigned int xfer_mask,
449 unsigned int *pio_mask,
450 unsigned int *mwdma_mask,
451 unsigned int *udma_mask)
452{
453 if (pio_mask)
454 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
455 if (mwdma_mask)
456 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
457 if (udma_mask)
458 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
459}
460
cb95d562 461static const struct ata_xfer_ent {
be9a50c8 462 int shift, bits;
cb95d562
TH
463 u8 base;
464} ata_xfer_tbl[] = {
465 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
466 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
467 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
468 { -1, },
469};
470
471/**
472 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
473 * @xfer_mask: xfer_mask of interest
474 *
475 * Return matching XFER_* value for @xfer_mask. Only the highest
476 * bit of @xfer_mask is considered.
477 *
478 * LOCKING:
479 * None.
480 *
481 * RETURNS:
482 * Matching XFER_* value, 0 if no match found.
483 */
484static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
485{
486 int highbit = fls(xfer_mask) - 1;
487 const struct ata_xfer_ent *ent;
488
489 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
490 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
491 return ent->base + highbit - ent->shift;
492 return 0;
493}
494
495/**
496 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
497 * @xfer_mode: XFER_* of interest
498 *
499 * Return matching xfer_mask for @xfer_mode.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching xfer_mask, 0 if no match found.
506 */
507static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
508{
509 const struct ata_xfer_ent *ent;
510
511 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
512 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
513 return 1 << (ent->shift + xfer_mode - ent->base);
514 return 0;
515}
516
517/**
518 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
519 * @xfer_mode: XFER_* of interest
520 *
521 * Return matching xfer_shift for @xfer_mode.
522 *
523 * LOCKING:
524 * None.
525 *
526 * RETURNS:
527 * Matching xfer_shift, -1 if no match found.
528 */
529static int ata_xfer_mode2shift(unsigned int xfer_mode)
530{
531 const struct ata_xfer_ent *ent;
532
533 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
534 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
535 return ent->shift;
536 return -1;
537}
538
1da177e4 539/**
1da7b0d0
TH
540 * ata_mode_string - convert xfer_mask to string
541 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
542 *
543 * Determine string which represents the highest speed
1da7b0d0 544 * (highest bit in @modemask).
1da177e4
LT
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Constant C string representing highest speed listed in
1da7b0d0 551 * @mode_mask, or the constant C string "<n/a>".
1da177e4 552 */
1da7b0d0 553static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 554{
75f554bc
TH
555 static const char * const xfer_mode_str[] = {
556 "PIO0",
557 "PIO1",
558 "PIO2",
559 "PIO3",
560 "PIO4",
b352e57d
AC
561 "PIO5",
562 "PIO6",
75f554bc
TH
563 "MWDMA0",
564 "MWDMA1",
565 "MWDMA2",
b352e57d
AC
566 "MWDMA3",
567 "MWDMA4",
75f554bc
TH
568 "UDMA/16",
569 "UDMA/25",
570 "UDMA/33",
571 "UDMA/44",
572 "UDMA/66",
573 "UDMA/100",
574 "UDMA/133",
575 "UDMA7",
576 };
1da7b0d0 577 int highbit;
1da177e4 578
1da7b0d0
TH
579 highbit = fls(xfer_mask) - 1;
580 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
581 return xfer_mode_str[highbit];
1da177e4 582 return "<n/a>";
1da177e4
LT
583}
584
4c360c81
TH
585static const char *sata_spd_string(unsigned int spd)
586{
587 static const char * const spd_str[] = {
588 "1.5 Gbps",
589 "3.0 Gbps",
590 };
591
592 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
593 return "<unknown>";
594 return spd_str[spd - 1];
595}
596
3373efd8 597void ata_dev_disable(struct ata_device *dev)
0b8efb0a 598{
0dd4b21f 599 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 600 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
601 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
602 ATA_DNXFER_QUIET);
0b8efb0a
TH
603 dev->class++;
604 }
605}
606
1da177e4 607/**
0d5ff566 608 * ata_devchk - PATA device presence detection
1da177e4
LT
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
611 *
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
615 *
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
620 *
621 * LOCKING:
622 * caller.
623 */
624
0d5ff566 625static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
626{
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
629
630 ap->ops->dev_select(ap, device);
631
0d5ff566
TH
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 634
0d5ff566
TH
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 637
0d5ff566
TH
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 640
0d5ff566
TH
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
643
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
646
647 return 0; /* nothing found */
648}
649
1da177e4
LT
650/**
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
653 *
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
657 *
658 * LOCKING:
659 * None.
660 *
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
664 */
665
057ace5e 666unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
667{
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
671 */
672
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
677 }
678
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
683 }
684
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
687}
688
689/**
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
b4dc7623 693 * @r_err: Value of error register on completion
1da177e4
LT
694 *
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
699 *
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
703 *
704 * LOCKING:
705 * caller.
b4dc7623
TH
706 *
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
709 */
710
a619f981 711unsigned int
b4dc7623 712ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 713{
1da177e4
LT
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
717
718 ap->ops->dev_select(ap, device);
719
720 memset(&tf, 0, sizeof(tf));
721
1da177e4 722 ap->ops->tf_read(ap, &tf);
0169e284 723 err = tf.feature;
b4dc7623
TH
724 if (r_err)
725 *r_err = err;
1da177e4 726
93590859
AC
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
1da177e4
LT
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
b4dc7623 736 return ATA_DEV_NONE;
1da177e4 737
b4dc7623 738 /* determine if device is ATA or ATAPI */
1da177e4 739 class = ata_dev_classify(&tf);
b4dc7623 740
1da177e4 741 if (class == ATA_DEV_UNKNOWN)
b4dc7623 742 return ATA_DEV_NONE;
1da177e4 743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
744 return ATA_DEV_NONE;
745 return class;
1da177e4
LT
746}
747
748/**
6a62a04d 749 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
754 *
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
758 *
759 * LOCKING:
760 * caller.
761 */
762
6a62a04d
TH
763void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
1da177e4
LT
765{
766 unsigned int c;
767
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
772
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
776
777 ofs++;
778 len -= 2;
779 }
780}
781
0e949ff3 782/**
6a62a04d 783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
788 *
6a62a04d 789 * This function is identical to ata_id_string except that it
0e949ff3
TH
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
792 *
793 * LOCKING:
794 * caller.
795 */
6a62a04d
TH
796void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
0e949ff3
TH
798{
799 unsigned char *p;
800
801 WARN_ON(!(len & 1));
802
6a62a04d 803 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
804
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
809}
0baab86b 810
2940740b
TH
811static u64 ata_id_n_sectors(const u16 *id)
812{
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
823 }
824}
825
10305f0f
AC
826/**
827 * ata_id_to_dma_mode - Identify DMA mode from id block
828 * @dev: device to identify
cc261267 829 * @unknown: mode to assume if we cannot tell
10305f0f
AC
830 *
831 * Set up the timing values for the device based upon the identify
832 * reported values for the DMA mode. This function is used by drivers
833 * which rely upon firmware configured modes, but wish to report the
834 * mode correctly when possible.
835 *
836 * In addition we emit similarly formatted messages to the default
837 * ata_dev_set_mode handler, in order to provide consistency of
838 * presentation.
839 */
840
841void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
842{
843 unsigned int mask;
844 u8 mode;
845
846 /* Pack the DMA modes */
847 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
848 if (dev->id[53] & 0x04)
849 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
850
851 /* Select the mode in use */
852 mode = ata_xfer_mask2mode(mask);
853
854 if (mode != 0) {
855 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
856 ata_mode_string(mask));
857 } else {
858 /* SWDMA perhaps ? */
859 mode = unknown;
860 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
861 }
862
863 /* Configure the device reporting */
864 dev->xfer_mode = mode;
865 dev->xfer_shift = ata_xfer_mode2shift(mode);
866}
867
0baab86b
EF
868/**
869 * ata_noop_dev_select - Select device 0/1 on ATA bus
870 * @ap: ATA channel to manipulate
871 * @device: ATA device (numbered from zero) to select
872 *
873 * This function performs no actual function.
874 *
875 * May be used as the dev_select() entry in ata_port_operations.
876 *
877 * LOCKING:
878 * caller.
879 */
1da177e4
LT
880void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
881{
882}
883
0baab86b 884
1da177e4
LT
885/**
886 * ata_std_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
889 *
890 * Use the method defined in the ATA specification to
891 * make either device 0, or device 1, active on the
0baab86b
EF
892 * ATA channel. Works with both PIO and MMIO.
893 *
894 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
895 *
896 * LOCKING:
897 * caller.
898 */
899
900void ata_std_dev_select (struct ata_port *ap, unsigned int device)
901{
902 u8 tmp;
903
904 if (device == 0)
905 tmp = ATA_DEVICE_OBS;
906 else
907 tmp = ATA_DEVICE_OBS | ATA_DEV1;
908
0d5ff566 909 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
910 ata_pause(ap); /* needed; also flushes, for mmio */
911}
912
913/**
914 * ata_dev_select - Select device 0/1 on ATA bus
915 * @ap: ATA channel to manipulate
916 * @device: ATA device (numbered from zero) to select
917 * @wait: non-zero to wait for Status register BSY bit to clear
918 * @can_sleep: non-zero if context allows sleeping
919 *
920 * Use the method defined in the ATA specification to
921 * make either device 0, or device 1, active on the
922 * ATA channel.
923 *
924 * This is a high-level version of ata_std_dev_select(),
925 * which additionally provides the services of inserting
926 * the proper pauses and status polling, where needed.
927 *
928 * LOCKING:
929 * caller.
930 */
931
932void ata_dev_select(struct ata_port *ap, unsigned int device,
933 unsigned int wait, unsigned int can_sleep)
934{
88574551 935 if (ata_msg_probe(ap))
44877b4e
TH
936 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
937 "device %u, wait %u\n", device, wait);
1da177e4
LT
938
939 if (wait)
940 ata_wait_idle(ap);
941
942 ap->ops->dev_select(ap, device);
943
944 if (wait) {
945 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
946 msleep(150);
947 ata_wait_idle(ap);
948 }
949}
950
951/**
952 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 953 * @id: IDENTIFY DEVICE page to dump
1da177e4 954 *
0bd3300a
TH
955 * Dump selected 16-bit words from the given IDENTIFY DEVICE
956 * page.
1da177e4
LT
957 *
958 * LOCKING:
959 * caller.
960 */
961
0bd3300a 962static inline void ata_dump_id(const u16 *id)
1da177e4
LT
963{
964 DPRINTK("49==0x%04x "
965 "53==0x%04x "
966 "63==0x%04x "
967 "64==0x%04x "
968 "75==0x%04x \n",
0bd3300a
TH
969 id[49],
970 id[53],
971 id[63],
972 id[64],
973 id[75]);
1da177e4
LT
974 DPRINTK("80==0x%04x "
975 "81==0x%04x "
976 "82==0x%04x "
977 "83==0x%04x "
978 "84==0x%04x \n",
0bd3300a
TH
979 id[80],
980 id[81],
981 id[82],
982 id[83],
983 id[84]);
1da177e4
LT
984 DPRINTK("88==0x%04x "
985 "93==0x%04x\n",
0bd3300a
TH
986 id[88],
987 id[93]);
1da177e4
LT
988}
989
cb95d562
TH
990/**
991 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
992 * @id: IDENTIFY data to compute xfer mask from
993 *
994 * Compute the xfermask for this device. This is not as trivial
995 * as it seems if we must consider early devices correctly.
996 *
997 * FIXME: pre IDE drive timing (do we care ?).
998 *
999 * LOCKING:
1000 * None.
1001 *
1002 * RETURNS:
1003 * Computed xfermask
1004 */
1005static unsigned int ata_id_xfermask(const u16 *id)
1006{
1007 unsigned int pio_mask, mwdma_mask, udma_mask;
1008
1009 /* Usual case. Word 53 indicates word 64 is valid */
1010 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1011 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1012 pio_mask <<= 3;
1013 pio_mask |= 0x7;
1014 } else {
1015 /* If word 64 isn't valid then Word 51 high byte holds
1016 * the PIO timing number for the maximum. Turn it into
1017 * a mask.
1018 */
7a0f1c8a 1019 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1020 if (mode < 5) /* Valid PIO range */
1021 pio_mask = (2 << mode) - 1;
1022 else
1023 pio_mask = 1;
cb95d562
TH
1024
1025 /* But wait.. there's more. Design your standards by
1026 * committee and you too can get a free iordy field to
1027 * process. However its the speeds not the modes that
1028 * are supported... Note drivers using the timing API
1029 * will get this right anyway
1030 */
1031 }
1032
1033 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1034
b352e57d
AC
1035 if (ata_id_is_cfa(id)) {
1036 /*
1037 * Process compact flash extended modes
1038 */
1039 int pio = id[163] & 0x7;
1040 int dma = (id[163] >> 3) & 7;
1041
1042 if (pio)
1043 pio_mask |= (1 << 5);
1044 if (pio > 1)
1045 pio_mask |= (1 << 6);
1046 if (dma)
1047 mwdma_mask |= (1 << 3);
1048 if (dma > 1)
1049 mwdma_mask |= (1 << 4);
1050 }
1051
fb21f0d0
TH
1052 udma_mask = 0;
1053 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1054 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1055
1056 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1057}
1058
86e45b6b
TH
1059/**
1060 * ata_port_queue_task - Queue port_task
1061 * @ap: The ata_port to queue port_task for
e2a7f77a 1062 * @fn: workqueue function to be scheduled
65f27f38 1063 * @data: data for @fn to use
e2a7f77a 1064 * @delay: delay time for workqueue function
86e45b6b
TH
1065 *
1066 * Schedule @fn(@data) for execution after @delay jiffies using
1067 * port_task. There is one port_task per port and it's the
1068 * user(low level driver)'s responsibility to make sure that only
1069 * one task is active at any given time.
1070 *
1071 * libata core layer takes care of synchronization between
1072 * port_task and EH. ata_port_queue_task() may be ignored for EH
1073 * synchronization.
1074 *
1075 * LOCKING:
1076 * Inherited from caller.
1077 */
65f27f38 1078void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1079 unsigned long delay)
1080{
1081 int rc;
1082
b51e9e5d 1083 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
1084 return;
1085
65f27f38
DH
1086 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1087 ap->port_task_data = data;
86e45b6b 1088
52bad64d 1089 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1090
1091 /* rc == 0 means that another user is using port task */
1092 WARN_ON(rc == 0);
1093}
1094
1095/**
1096 * ata_port_flush_task - Flush port_task
1097 * @ap: The ata_port to flush port_task for
1098 *
1099 * After this function completes, port_task is guranteed not to
1100 * be running or scheduled.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 */
1105void ata_port_flush_task(struct ata_port *ap)
1106{
1107 unsigned long flags;
1108
1109 DPRINTK("ENTER\n");
1110
ba6a1308 1111 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1112 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1113 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
1114
1115 DPRINTK("flush #1\n");
1116 flush_workqueue(ata_wq);
1117
1118 /*
1119 * At this point, if a task is running, it's guaranteed to see
1120 * the FLUSH flag; thus, it will never queue pio tasks again.
1121 * Cancel and flush.
1122 */
1123 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 1124 if (ata_msg_ctl(ap))
88574551
TH
1125 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1126 __FUNCTION__);
86e45b6b
TH
1127 flush_workqueue(ata_wq);
1128 }
1129
ba6a1308 1130 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 1131 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 1132 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 1133
0dd4b21f
BP
1134 if (ata_msg_ctl(ap))
1135 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1136}
1137
7102d230 1138static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1139{
77853bf2 1140 struct completion *waiting = qc->private_data;
a2a7a662 1141
a2a7a662 1142 complete(waiting);
a2a7a662
TH
1143}
1144
1145/**
2432697b 1146 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1147 * @dev: Device to which the command is sent
1148 * @tf: Taskfile registers for the command and the result
d69cf37d 1149 * @cdb: CDB for packet command
a2a7a662 1150 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1151 * @sg: sg list for the data buffer of the command
1152 * @n_elem: Number of sg entries
a2a7a662
TH
1153 *
1154 * Executes libata internal command with timeout. @tf contains
1155 * command on entry and result on return. Timeout and error
1156 * conditions are reported via return value. No recovery action
1157 * is taken after a command times out. It's caller's duty to
1158 * clean up after timeout.
1159 *
1160 * LOCKING:
1161 * None. Should be called with kernel context, might sleep.
551e8889
TH
1162 *
1163 * RETURNS:
1164 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1165 */
2432697b
TH
1166unsigned ata_exec_internal_sg(struct ata_device *dev,
1167 struct ata_taskfile *tf, const u8 *cdb,
1168 int dma_dir, struct scatterlist *sg,
1169 unsigned int n_elem)
a2a7a662 1170{
3373efd8 1171 struct ata_port *ap = dev->ap;
a2a7a662
TH
1172 u8 command = tf->command;
1173 struct ata_queued_cmd *qc;
2ab7db1f 1174 unsigned int tag, preempted_tag;
dedaf2b0 1175 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1176 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1177 unsigned long flags;
77853bf2 1178 unsigned int err_mask;
d95a717f 1179 int rc;
a2a7a662 1180
ba6a1308 1181 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1182
e3180499 1183 /* no internal command while frozen */
b51e9e5d 1184 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1185 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1186 return AC_ERR_SYSTEM;
1187 }
1188
2ab7db1f 1189 /* initialize internal qc */
a2a7a662 1190
2ab7db1f
TH
1191 /* XXX: Tag 0 is used for drivers with legacy EH as some
1192 * drivers choke if any other tag is given. This breaks
1193 * ata_tag_internal() test for those drivers. Don't use new
1194 * EH stuff without converting to it.
1195 */
1196 if (ap->ops->error_handler)
1197 tag = ATA_TAG_INTERNAL;
1198 else
1199 tag = 0;
1200
6cec4a39 1201 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1202 BUG();
f69499f4 1203 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1204
1205 qc->tag = tag;
1206 qc->scsicmd = NULL;
1207 qc->ap = ap;
1208 qc->dev = dev;
1209 ata_qc_reinit(qc);
1210
1211 preempted_tag = ap->active_tag;
dedaf2b0
TH
1212 preempted_sactive = ap->sactive;
1213 preempted_qc_active = ap->qc_active;
2ab7db1f 1214 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1215 ap->sactive = 0;
1216 ap->qc_active = 0;
2ab7db1f
TH
1217
1218 /* prepare & issue qc */
a2a7a662 1219 qc->tf = *tf;
d69cf37d
TH
1220 if (cdb)
1221 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1222 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1223 qc->dma_dir = dma_dir;
1224 if (dma_dir != DMA_NONE) {
2432697b
TH
1225 unsigned int i, buflen = 0;
1226
1227 for (i = 0; i < n_elem; i++)
1228 buflen += sg[i].length;
1229
1230 ata_sg_init(qc, sg, n_elem);
49c80429 1231 qc->nbytes = buflen;
a2a7a662
TH
1232 }
1233
77853bf2 1234 qc->private_data = &wait;
a2a7a662
TH
1235 qc->complete_fn = ata_qc_complete_internal;
1236
8e0e694a 1237 ata_qc_issue(qc);
a2a7a662 1238
ba6a1308 1239 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1240
a8601e5f 1241 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1242
1243 ata_port_flush_task(ap);
41ade50c 1244
d95a717f 1245 if (!rc) {
ba6a1308 1246 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1247
1248 /* We're racing with irq here. If we lose, the
1249 * following test prevents us from completing the qc
d95a717f
TH
1250 * twice. If we win, the port is frozen and will be
1251 * cleaned up by ->post_internal_cmd().
a2a7a662 1252 */
77853bf2 1253 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1254 qc->err_mask |= AC_ERR_TIMEOUT;
1255
1256 if (ap->ops->error_handler)
1257 ata_port_freeze(ap);
1258 else
1259 ata_qc_complete(qc);
f15a1daf 1260
0dd4b21f
BP
1261 if (ata_msg_warn(ap))
1262 ata_dev_printk(dev, KERN_WARNING,
88574551 1263 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1264 }
1265
ba6a1308 1266 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1267 }
1268
d95a717f
TH
1269 /* do post_internal_cmd */
1270 if (ap->ops->post_internal_cmd)
1271 ap->ops->post_internal_cmd(qc);
1272
a51d644a
TH
1273 /* perform minimal error analysis */
1274 if (qc->flags & ATA_QCFLAG_FAILED) {
1275 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1276 qc->err_mask |= AC_ERR_DEV;
1277
1278 if (!qc->err_mask)
1279 qc->err_mask |= AC_ERR_OTHER;
1280
1281 if (qc->err_mask & ~AC_ERR_OTHER)
1282 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1283 }
1284
15869303 1285 /* finish up */
ba6a1308 1286 spin_lock_irqsave(ap->lock, flags);
15869303 1287
e61e0672 1288 *tf = qc->result_tf;
77853bf2
TH
1289 err_mask = qc->err_mask;
1290
1291 ata_qc_free(qc);
2ab7db1f 1292 ap->active_tag = preempted_tag;
dedaf2b0
TH
1293 ap->sactive = preempted_sactive;
1294 ap->qc_active = preempted_qc_active;
77853bf2 1295
1f7dd3e9
TH
1296 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1297 * Until those drivers are fixed, we detect the condition
1298 * here, fail the command with AC_ERR_SYSTEM and reenable the
1299 * port.
1300 *
1301 * Note that this doesn't change any behavior as internal
1302 * command failure results in disabling the device in the
1303 * higher layer for LLDDs without new reset/EH callbacks.
1304 *
1305 * Kill the following code as soon as those drivers are fixed.
1306 */
198e0fed 1307 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1308 err_mask |= AC_ERR_SYSTEM;
1309 ata_port_probe(ap);
1310 }
1311
ba6a1308 1312 spin_unlock_irqrestore(ap->lock, flags);
15869303 1313
77853bf2 1314 return err_mask;
a2a7a662
TH
1315}
1316
2432697b 1317/**
33480a0e 1318 * ata_exec_internal - execute libata internal command
2432697b
TH
1319 * @dev: Device to which the command is sent
1320 * @tf: Taskfile registers for the command and the result
1321 * @cdb: CDB for packet command
1322 * @dma_dir: Data tranfer direction of the command
1323 * @buf: Data buffer of the command
1324 * @buflen: Length of data buffer
1325 *
1326 * Wrapper around ata_exec_internal_sg() which takes simple
1327 * buffer instead of sg list.
1328 *
1329 * LOCKING:
1330 * None. Should be called with kernel context, might sleep.
1331 *
1332 * RETURNS:
1333 * Zero on success, AC_ERR_* mask on failure
1334 */
1335unsigned ata_exec_internal(struct ata_device *dev,
1336 struct ata_taskfile *tf, const u8 *cdb,
1337 int dma_dir, void *buf, unsigned int buflen)
1338{
33480a0e
TH
1339 struct scatterlist *psg = NULL, sg;
1340 unsigned int n_elem = 0;
2432697b 1341
33480a0e
TH
1342 if (dma_dir != DMA_NONE) {
1343 WARN_ON(!buf);
1344 sg_init_one(&sg, buf, buflen);
1345 psg = &sg;
1346 n_elem++;
1347 }
2432697b 1348
33480a0e 1349 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1350}
1351
977e6b9f
TH
1352/**
1353 * ata_do_simple_cmd - execute simple internal command
1354 * @dev: Device to which the command is sent
1355 * @cmd: Opcode to execute
1356 *
1357 * Execute a 'simple' command, that only consists of the opcode
1358 * 'cmd' itself, without filling any other registers
1359 *
1360 * LOCKING:
1361 * Kernel thread context (may sleep).
1362 *
1363 * RETURNS:
1364 * Zero on success, AC_ERR_* mask on failure
e58eb583 1365 */
77b08fb5 1366unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1367{
1368 struct ata_taskfile tf;
e58eb583
TH
1369
1370 ata_tf_init(dev, &tf);
1371
1372 tf.command = cmd;
1373 tf.flags |= ATA_TFLAG_DEVICE;
1374 tf.protocol = ATA_PROT_NODATA;
1375
977e6b9f 1376 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1377}
1378
1bc4ccff
AC
1379/**
1380 * ata_pio_need_iordy - check if iordy needed
1381 * @adev: ATA device
1382 *
1383 * Check if the current speed of the device requires IORDY. Used
1384 * by various controllers for chip configuration.
1385 */
432729f0 1386
1bc4ccff
AC
1387unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1388{
432729f0
AC
1389 /* Controller doesn't support IORDY. Probably a pointless check
1390 as the caller should know this */
1391 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1392 return 0;
432729f0
AC
1393 /* PIO3 and higher it is mandatory */
1394 if (adev->pio_mode > XFER_PIO_2)
1395 return 1;
1396 /* We turn it on when possible */
1397 if (ata_id_has_iordy(adev->id))
1bc4ccff 1398 return 1;
432729f0
AC
1399 return 0;
1400}
2e9edbf8 1401
432729f0
AC
1402/**
1403 * ata_pio_mask_no_iordy - Return the non IORDY mask
1404 * @adev: ATA device
1405 *
1406 * Compute the highest mode possible if we are not using iordy. Return
1407 * -1 if no iordy mode is available.
1408 */
1409
1410static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1411{
1bc4ccff 1412 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1413 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1414 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1415 /* Is the speed faster than the drive allows non IORDY ? */
1416 if (pio) {
1417 /* This is cycle times not frequency - watch the logic! */
1418 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1419 return 3 << ATA_SHIFT_PIO;
1420 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1421 }
1422 }
432729f0 1423 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1424}
1425
1da177e4 1426/**
49016aca 1427 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1428 * @dev: target device
1429 * @p_class: pointer to class of the target device (may be changed)
bff04647 1430 * @flags: ATA_READID_* flags
fe635c7e 1431 * @id: buffer to read IDENTIFY data into
1da177e4 1432 *
49016aca
TH
1433 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1434 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1435 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1436 * for pre-ATA4 drives.
1da177e4
LT
1437 *
1438 * LOCKING:
49016aca
TH
1439 * Kernel thread context (may sleep)
1440 *
1441 * RETURNS:
1442 * 0 on success, -errno otherwise.
1da177e4 1443 */
a9beec95 1444int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1445 unsigned int flags, u16 *id)
1da177e4 1446{
3373efd8 1447 struct ata_port *ap = dev->ap;
49016aca 1448 unsigned int class = *p_class;
a0123703 1449 struct ata_taskfile tf;
49016aca
TH
1450 unsigned int err_mask = 0;
1451 const char *reason;
1452 int rc;
1da177e4 1453
0dd4b21f 1454 if (ata_msg_ctl(ap))
44877b4e 1455 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1456
49016aca 1457 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1458
49016aca 1459 retry:
3373efd8 1460 ata_tf_init(dev, &tf);
a0123703 1461
49016aca
TH
1462 switch (class) {
1463 case ATA_DEV_ATA:
a0123703 1464 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1465 break;
1466 case ATA_DEV_ATAPI:
a0123703 1467 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1468 break;
1469 default:
1470 rc = -ENODEV;
1471 reason = "unsupported class";
1472 goto err_out;
1da177e4
LT
1473 }
1474
a0123703 1475 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1476
1477 /* Some devices choke if TF registers contain garbage. Make
1478 * sure those are properly initialized.
1479 */
1480 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1481
1482 /* Device presence detection is unreliable on some
1483 * controllers. Always poll IDENTIFY if available.
1484 */
1485 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1486
3373efd8 1487 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1488 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1489 if (err_mask) {
800b3996 1490 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1491 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1492 ap->print_id, dev->devno);
55a8e2c8
TH
1493 return -ENOENT;
1494 }
1495
49016aca
TH
1496 rc = -EIO;
1497 reason = "I/O error";
1da177e4
LT
1498 goto err_out;
1499 }
1500
49016aca 1501 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1502
49016aca 1503 /* sanity check */
a4f5749b
TH
1504 rc = -EINVAL;
1505 reason = "device reports illegal type";
1506
1507 if (class == ATA_DEV_ATA) {
1508 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1509 goto err_out;
1510 } else {
1511 if (ata_id_is_ata(id))
1512 goto err_out;
49016aca
TH
1513 }
1514
bff04647 1515 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1516 /*
1517 * The exact sequence expected by certain pre-ATA4 drives is:
1518 * SRST RESET
1519 * IDENTIFY
1520 * INITIALIZE DEVICE PARAMETERS
1521 * anything else..
1522 * Some drives were very specific about that exact sequence.
1523 */
1524 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1525 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1526 if (err_mask) {
1527 rc = -EIO;
1528 reason = "INIT_DEV_PARAMS failed";
1529 goto err_out;
1530 }
1531
1532 /* current CHS translation info (id[53-58]) might be
1533 * changed. reread the identify device info.
1534 */
bff04647 1535 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1536 goto retry;
1537 }
1538 }
1539
1540 *p_class = class;
fe635c7e 1541
49016aca
TH
1542 return 0;
1543
1544 err_out:
88574551 1545 if (ata_msg_warn(ap))
0dd4b21f 1546 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1547 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1548 return rc;
1549}
1550
3373efd8 1551static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1552{
3373efd8 1553 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1554}
1555
a6e6ce8e
TH
1556static void ata_dev_config_ncq(struct ata_device *dev,
1557 char *desc, size_t desc_sz)
1558{
1559 struct ata_port *ap = dev->ap;
1560 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1561
1562 if (!ata_id_has_ncq(dev->id)) {
1563 desc[0] = '\0';
1564 return;
1565 }
6919a0a6
AC
1566 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1567 snprintf(desc, desc_sz, "NCQ (not used)");
1568 return;
1569 }
a6e6ce8e 1570 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1571 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1572 dev->flags |= ATA_DFLAG_NCQ;
1573 }
1574
1575 if (hdepth >= ddepth)
1576 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1577 else
1578 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1579}
1580
49016aca 1581/**
ffeae418 1582 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1583 * @dev: Target device to configure
1584 *
1585 * Configure @dev according to @dev->id. Generic and low-level
1586 * driver specific fixups are also applied.
49016aca
TH
1587 *
1588 * LOCKING:
ffeae418
TH
1589 * Kernel thread context (may sleep)
1590 *
1591 * RETURNS:
1592 * 0 on success, -errno otherwise
49016aca 1593 */
efdaedc4 1594int ata_dev_configure(struct ata_device *dev)
49016aca 1595{
3373efd8 1596 struct ata_port *ap = dev->ap;
efdaedc4 1597 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1598 const u16 *id = dev->id;
ff8854b2 1599 unsigned int xfer_mask;
b352e57d 1600 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1601 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1602 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1603 int rc;
49016aca 1604
0dd4b21f 1605 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1606 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1607 __FUNCTION__);
ffeae418 1608 return 0;
49016aca
TH
1609 }
1610
0dd4b21f 1611 if (ata_msg_probe(ap))
44877b4e 1612 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1613
08573a86
KCA
1614 /* set _SDD */
1615 rc = ata_acpi_push_id(ap, dev->devno);
1616 if (rc) {
1617 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1618 rc);
1619 }
1620
1621 /* retrieve and execute the ATA task file of _GTF */
1622 ata_acpi_exec_tfs(ap);
1623
c39f5ebe 1624 /* print device capabilities */
0dd4b21f 1625 if (ata_msg_probe(ap))
88574551
TH
1626 ata_dev_printk(dev, KERN_DEBUG,
1627 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1628 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1629 __FUNCTION__,
f15a1daf
TH
1630 id[49], id[82], id[83], id[84],
1631 id[85], id[86], id[87], id[88]);
c39f5ebe 1632
208a9933 1633 /* initialize to-be-configured parameters */
ea1dd4e1 1634 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1635 dev->max_sectors = 0;
1636 dev->cdb_len = 0;
1637 dev->n_sectors = 0;
1638 dev->cylinders = 0;
1639 dev->heads = 0;
1640 dev->sectors = 0;
1641
1da177e4
LT
1642 /*
1643 * common ATA, ATAPI feature tests
1644 */
1645
ff8854b2 1646 /* find max transfer mode; for printk only */
1148c3a7 1647 xfer_mask = ata_id_xfermask(id);
1da177e4 1648
0dd4b21f
BP
1649 if (ata_msg_probe(ap))
1650 ata_dump_id(id);
1da177e4
LT
1651
1652 /* ATA-specific feature tests */
1653 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1654 if (ata_id_is_cfa(id)) {
1655 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1656 ata_dev_printk(dev, KERN_WARNING,
1657 "supports DRM functions and may "
1658 "not be fully accessable.\n");
b352e57d
AC
1659 snprintf(revbuf, 7, "CFA");
1660 }
1661 else
1662 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1663
1148c3a7 1664 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1665
3f64f565 1666 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
591a6e8e 1667 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3f64f565
EM
1668 sizeof(fwrevbuf));
1669
591a6e8e 1670 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3f64f565
EM
1671 sizeof(modelbuf));
1672
1673 if (dev->id[59] & 0x100)
1674 dev->multi_count = dev->id[59] & 0xff;
1675
1148c3a7 1676 if (ata_id_has_lba(id)) {
4c2d721a 1677 const char *lba_desc;
a6e6ce8e 1678 char ncq_desc[20];
8bf62ece 1679
4c2d721a
TH
1680 lba_desc = "LBA";
1681 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1682 if (ata_id_has_lba48(id)) {
8bf62ece 1683 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1684 lba_desc = "LBA48";
6fc49adb
TH
1685
1686 if (dev->n_sectors >= (1UL << 28) &&
1687 ata_id_has_flush_ext(id))
1688 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1689 }
8bf62ece 1690
a6e6ce8e
TH
1691 /* config NCQ */
1692 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1693
8bf62ece 1694 /* print device info to dmesg */
3f64f565
EM
1695 if (ata_msg_drv(ap) && print_info) {
1696 ata_dev_printk(dev, KERN_INFO,
1697 "%s: %s, %s, max %s\n",
1698 revbuf, modelbuf, fwrevbuf,
1699 ata_mode_string(xfer_mask));
1700 ata_dev_printk(dev, KERN_INFO,
1701 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1702 (unsigned long long)dev->n_sectors,
3f64f565
EM
1703 dev->multi_count, lba_desc, ncq_desc);
1704 }
ffeae418 1705 } else {
8bf62ece
AL
1706 /* CHS */
1707
1708 /* Default translation */
1148c3a7
TH
1709 dev->cylinders = id[1];
1710 dev->heads = id[3];
1711 dev->sectors = id[6];
8bf62ece 1712
1148c3a7 1713 if (ata_id_current_chs_valid(id)) {
8bf62ece 1714 /* Current CHS translation is valid. */
1148c3a7
TH
1715 dev->cylinders = id[54];
1716 dev->heads = id[55];
1717 dev->sectors = id[56];
8bf62ece
AL
1718 }
1719
1720 /* print device info to dmesg */
3f64f565 1721 if (ata_msg_drv(ap) && print_info) {
88574551 1722 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1723 "%s: %s, %s, max %s\n",
1724 revbuf, modelbuf, fwrevbuf,
1725 ata_mode_string(xfer_mask));
a84471fe 1726 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1727 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1728 (unsigned long long)dev->n_sectors,
1729 dev->multi_count, dev->cylinders,
1730 dev->heads, dev->sectors);
1731 }
07f6f7d0
AL
1732 }
1733
6e7846e9 1734 dev->cdb_len = 16;
1da177e4
LT
1735 }
1736
1737 /* ATAPI-specific feature tests */
2c13b7ce 1738 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1739 char *cdb_intr_string = "";
1740
1148c3a7 1741 rc = atapi_cdb_len(id);
1da177e4 1742 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1743 if (ata_msg_warn(ap))
88574551
TH
1744 ata_dev_printk(dev, KERN_WARNING,
1745 "unsupported CDB len\n");
ffeae418 1746 rc = -EINVAL;
1da177e4
LT
1747 goto err_out_nosup;
1748 }
6e7846e9 1749 dev->cdb_len = (unsigned int) rc;
1da177e4 1750
08a556db 1751 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1752 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1753 cdb_intr_string = ", CDB intr";
1754 }
312f7da2 1755
1da177e4 1756 /* print device info to dmesg */
5afc8142 1757 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1758 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1759 ata_mode_string(xfer_mask),
1760 cdb_intr_string);
1da177e4
LT
1761 }
1762
914ed354
TH
1763 /* determine max_sectors */
1764 dev->max_sectors = ATA_MAX_SECTORS;
1765 if (dev->flags & ATA_DFLAG_LBA48)
1766 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1767
93590859
AC
1768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1769 /* Let the user know. We don't want to disallow opens for
1770 rescue purposes, or in case the vendor is just a blithering
1771 idiot */
1772 if (print_info) {
1773 ata_dev_printk(dev, KERN_WARNING,
1774"Drive reports diagnostics failure. This may indicate a drive\n");
1775 ata_dev_printk(dev, KERN_WARNING,
1776"fault or invalid emulation. Contact drive vendor for information.\n");
1777 }
1778 }
1779
4b2f3ede 1780 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1781 if (ata_dev_knobble(dev)) {
5afc8142 1782 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1783 ata_dev_printk(dev, KERN_INFO,
1784 "applying bridge limits\n");
5a529139 1785 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1786 dev->max_sectors = ATA_MAX_SECTORS;
1787 }
1788
18d6e9d5
AL
1789 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
1790 dev->max_sectors = min(ATA_MAX_SECTORS_128, dev->max_sectors);
1791
6f23a31d
AL
1792 /* limit ATAPI DMA to R/W commands only */
1793 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
1794 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
1795
4b2f3ede 1796 if (ap->ops->dev_config)
cd0d3bbc 1797 ap->ops->dev_config(dev);
4b2f3ede 1798
0dd4b21f
BP
1799 if (ata_msg_probe(ap))
1800 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1801 __FUNCTION__, ata_chk_status(ap));
ffeae418 1802 return 0;
1da177e4
LT
1803
1804err_out_nosup:
0dd4b21f 1805 if (ata_msg_probe(ap))
88574551
TH
1806 ata_dev_printk(dev, KERN_DEBUG,
1807 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1808 return rc;
1da177e4
LT
1809}
1810
be0d18df 1811/**
2e41e8e6 1812 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
1813 * @ap: port
1814 *
2e41e8e6 1815 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
1816 * detection.
1817 */
1818
1819int ata_cable_40wire(struct ata_port *ap)
1820{
1821 return ATA_CBL_PATA40;
1822}
1823
1824/**
2e41e8e6 1825 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
1826 * @ap: port
1827 *
2e41e8e6 1828 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
1829 * detection.
1830 */
1831
1832int ata_cable_80wire(struct ata_port *ap)
1833{
1834 return ATA_CBL_PATA80;
1835}
1836
1837/**
1838 * ata_cable_unknown - return unknown PATA cable.
1839 * @ap: port
1840 *
1841 * Helper method for drivers which have no PATA cable detection.
1842 */
1843
1844int ata_cable_unknown(struct ata_port *ap)
1845{
1846 return ATA_CBL_PATA_UNK;
1847}
1848
1849/**
1850 * ata_cable_sata - return SATA cable type
1851 * @ap: port
1852 *
1853 * Helper method for drivers which have SATA cables
1854 */
1855
1856int ata_cable_sata(struct ata_port *ap)
1857{
1858 return ATA_CBL_SATA;
1859}
1860
1da177e4
LT
1861/**
1862 * ata_bus_probe - Reset and probe ATA bus
1863 * @ap: Bus to probe
1864 *
0cba632b
JG
1865 * Master ATA bus probing function. Initiates a hardware-dependent
1866 * bus reset, then attempts to identify any devices found on
1867 * the bus.
1868 *
1da177e4 1869 * LOCKING:
0cba632b 1870 * PCI/etc. bus probe sem.
1da177e4
LT
1871 *
1872 * RETURNS:
96072e69 1873 * Zero on success, negative errno otherwise.
1da177e4
LT
1874 */
1875
80289167 1876int ata_bus_probe(struct ata_port *ap)
1da177e4 1877{
28ca5c57 1878 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 1879 int tries[ATA_MAX_DEVICES];
4ae72a1e 1880 int i, rc;
e82cbdb9 1881 struct ata_device *dev;
1da177e4 1882
28ca5c57 1883 ata_port_probe(ap);
c19ba8af 1884
14d2bac1
TH
1885 for (i = 0; i < ATA_MAX_DEVICES; i++)
1886 tries[i] = ATA_PROBE_MAX_TRIES;
1887
1888 retry:
2044470c 1889 /* reset and determine device classes */
52783c5d 1890 ap->ops->phy_reset(ap);
2061a47a 1891
52783c5d
TH
1892 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1893 dev = &ap->device[i];
c19ba8af 1894
52783c5d
TH
1895 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1896 dev->class != ATA_DEV_UNKNOWN)
1897 classes[dev->devno] = dev->class;
1898 else
1899 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1900
52783c5d 1901 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1902 }
1da177e4 1903
52783c5d 1904 ata_port_probe(ap);
2044470c 1905
b6079ca4
AC
1906 /* after the reset the device state is PIO 0 and the controller
1907 state is undefined. Record the mode */
1908
1909 for (i = 0; i < ATA_MAX_DEVICES; i++)
1910 ap->device[i].pio_mode = XFER_PIO_0;
1911
f31f0cc2
JG
1912 /* read IDENTIFY page and configure devices. We have to do the identify
1913 specific sequence bass-ackwards so that PDIAG- is released by
1914 the slave device */
1915
1916 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 1917 dev = &ap->device[i];
28ca5c57 1918
ec573755
TH
1919 if (tries[i])
1920 dev->class = classes[i];
ffeae418 1921
14d2bac1 1922 if (!ata_dev_enabled(dev))
ffeae418 1923 continue;
ffeae418 1924
bff04647
TH
1925 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1926 dev->id);
14d2bac1
TH
1927 if (rc)
1928 goto fail;
f31f0cc2
JG
1929 }
1930
be0d18df
AC
1931 /* Now ask for the cable type as PDIAG- should have been released */
1932 if (ap->ops->cable_detect)
1933 ap->cbl = ap->ops->cable_detect(ap);
1934
f31f0cc2
JG
1935 /* After the identify sequence we can now set up the devices. We do
1936 this in the normal order so that the user doesn't get confused */
1937
1938 for(i = 0; i < ATA_MAX_DEVICES; i++) {
1939 dev = &ap->device[i];
1940 if (!ata_dev_enabled(dev))
1941 continue;
14d2bac1 1942
efdaedc4
TH
1943 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1944 rc = ata_dev_configure(dev);
1945 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
1946 if (rc)
1947 goto fail;
1da177e4
LT
1948 }
1949
e82cbdb9 1950 /* configure transfer mode */
3adcebb2 1951 rc = ata_set_mode(ap, &dev);
4ae72a1e 1952 if (rc)
51713d35 1953 goto fail;
1da177e4 1954
e82cbdb9
TH
1955 for (i = 0; i < ATA_MAX_DEVICES; i++)
1956 if (ata_dev_enabled(&ap->device[i]))
1957 return 0;
1da177e4 1958
e82cbdb9
TH
1959 /* no device present, disable port */
1960 ata_port_disable(ap);
1da177e4 1961 ap->ops->port_disable(ap);
96072e69 1962 return -ENODEV;
14d2bac1
TH
1963
1964 fail:
4ae72a1e
TH
1965 tries[dev->devno]--;
1966
14d2bac1
TH
1967 switch (rc) {
1968 case -EINVAL:
4ae72a1e 1969 /* eeek, something went very wrong, give up */
14d2bac1
TH
1970 tries[dev->devno] = 0;
1971 break;
4ae72a1e
TH
1972
1973 case -ENODEV:
1974 /* give it just one more chance */
1975 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 1976 case -EIO:
4ae72a1e
TH
1977 if (tries[dev->devno] == 1) {
1978 /* This is the last chance, better to slow
1979 * down than lose it.
1980 */
1981 sata_down_spd_limit(ap);
1982 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
1983 }
14d2bac1
TH
1984 }
1985
4ae72a1e 1986 if (!tries[dev->devno])
3373efd8 1987 ata_dev_disable(dev);
ec573755 1988
14d2bac1 1989 goto retry;
1da177e4
LT
1990}
1991
1992/**
0cba632b
JG
1993 * ata_port_probe - Mark port as enabled
1994 * @ap: Port for which we indicate enablement
1da177e4 1995 *
0cba632b
JG
1996 * Modify @ap data structure such that the system
1997 * thinks that the entire port is enabled.
1998 *
cca3974e 1999 * LOCKING: host lock, or some other form of
0cba632b 2000 * serialization.
1da177e4
LT
2001 */
2002
2003void ata_port_probe(struct ata_port *ap)
2004{
198e0fed 2005 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2006}
2007
3be680b7
TH
2008/**
2009 * sata_print_link_status - Print SATA link status
2010 * @ap: SATA port to printk link status about
2011 *
2012 * This function prints link speed and status of a SATA link.
2013 *
2014 * LOCKING:
2015 * None.
2016 */
43727fbc 2017void sata_print_link_status(struct ata_port *ap)
3be680b7 2018{
6d5f9732 2019 u32 sstatus, scontrol, tmp;
3be680b7 2020
81952c54 2021 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2022 return;
81952c54 2023 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2024
81952c54 2025 if (ata_port_online(ap)) {
3be680b7 2026 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2027 ata_port_printk(ap, KERN_INFO,
2028 "SATA link up %s (SStatus %X SControl %X)\n",
2029 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2030 } else {
f15a1daf
TH
2031 ata_port_printk(ap, KERN_INFO,
2032 "SATA link down (SStatus %X SControl %X)\n",
2033 sstatus, scontrol);
3be680b7
TH
2034 }
2035}
2036
1da177e4 2037/**
780a87f7
JG
2038 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2039 * @ap: SATA port associated with target SATA PHY.
1da177e4 2040 *
780a87f7
JG
2041 * This function issues commands to standard SATA Sxxx
2042 * PHY registers, to wake up the phy (and device), and
2043 * clear any reset condition.
1da177e4
LT
2044 *
2045 * LOCKING:
0cba632b 2046 * PCI/etc. bus probe sem.
1da177e4
LT
2047 *
2048 */
2049void __sata_phy_reset(struct ata_port *ap)
2050{
2051 u32 sstatus;
2052 unsigned long timeout = jiffies + (HZ * 5);
2053
2054 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2055 /* issue phy wake/reset */
81952c54 2056 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2057 /* Couldn't find anything in SATA I/II specs, but
2058 * AHCI-1.1 10.4.2 says at least 1 ms. */
2059 mdelay(1);
1da177e4 2060 }
81952c54
TH
2061 /* phy wake/clear reset */
2062 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2063
2064 /* wait for phy to become ready, if necessary */
2065 do {
2066 msleep(200);
81952c54 2067 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2068 if ((sstatus & 0xf) != 1)
2069 break;
2070 } while (time_before(jiffies, timeout));
2071
3be680b7
TH
2072 /* print link status */
2073 sata_print_link_status(ap);
656563e3 2074
3be680b7 2075 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2076 if (!ata_port_offline(ap))
1da177e4 2077 ata_port_probe(ap);
3be680b7 2078 else
1da177e4 2079 ata_port_disable(ap);
1da177e4 2080
198e0fed 2081 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2082 return;
2083
2084 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2085 ata_port_disable(ap);
2086 return;
2087 }
2088
2089 ap->cbl = ATA_CBL_SATA;
2090}
2091
2092/**
780a87f7
JG
2093 * sata_phy_reset - Reset SATA bus.
2094 * @ap: SATA port associated with target SATA PHY.
1da177e4 2095 *
780a87f7
JG
2096 * This function resets the SATA bus, and then probes
2097 * the bus for devices.
1da177e4
LT
2098 *
2099 * LOCKING:
0cba632b 2100 * PCI/etc. bus probe sem.
1da177e4
LT
2101 *
2102 */
2103void sata_phy_reset(struct ata_port *ap)
2104{
2105 __sata_phy_reset(ap);
198e0fed 2106 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2107 return;
2108 ata_bus_reset(ap);
2109}
2110
ebdfca6e
AC
2111/**
2112 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2113 * @adev: device
2114 *
2115 * Obtain the other device on the same cable, or if none is
2116 * present NULL is returned
2117 */
2e9edbf8 2118
3373efd8 2119struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2120{
3373efd8 2121 struct ata_port *ap = adev->ap;
ebdfca6e 2122 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2123 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2124 return NULL;
2125 return pair;
2126}
2127
1da177e4 2128/**
780a87f7
JG
2129 * ata_port_disable - Disable port.
2130 * @ap: Port to be disabled.
1da177e4 2131 *
780a87f7
JG
2132 * Modify @ap data structure such that the system
2133 * thinks that the entire port is disabled, and should
2134 * never attempt to probe or communicate with devices
2135 * on this port.
2136 *
cca3974e 2137 * LOCKING: host lock, or some other form of
780a87f7 2138 * serialization.
1da177e4
LT
2139 */
2140
2141void ata_port_disable(struct ata_port *ap)
2142{
2143 ap->device[0].class = ATA_DEV_NONE;
2144 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2145 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2146}
2147
1c3fae4d 2148/**
3c567b7d 2149 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2150 * @ap: Port to adjust SATA spd limit for
2151 *
2152 * Adjust SATA spd limit of @ap downward. Note that this
2153 * function only adjusts the limit. The change must be applied
3c567b7d 2154 * using sata_set_spd().
1c3fae4d
TH
2155 *
2156 * LOCKING:
2157 * Inherited from caller.
2158 *
2159 * RETURNS:
2160 * 0 on success, negative errno on failure
2161 */
3c567b7d 2162int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2163{
81952c54
TH
2164 u32 sstatus, spd, mask;
2165 int rc, highbit;
1c3fae4d 2166
81952c54
TH
2167 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2168 if (rc)
2169 return rc;
1c3fae4d
TH
2170
2171 mask = ap->sata_spd_limit;
2172 if (mask <= 1)
2173 return -EINVAL;
2174 highbit = fls(mask) - 1;
2175 mask &= ~(1 << highbit);
2176
81952c54 2177 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2178 if (spd <= 1)
2179 return -EINVAL;
2180 spd--;
2181 mask &= (1 << spd) - 1;
2182 if (!mask)
2183 return -EINVAL;
2184
2185 ap->sata_spd_limit = mask;
2186
f15a1daf
TH
2187 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2188 sata_spd_string(fls(mask)));
1c3fae4d
TH
2189
2190 return 0;
2191}
2192
3c567b7d 2193static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2194{
2195 u32 spd, limit;
2196
2197 if (ap->sata_spd_limit == UINT_MAX)
2198 limit = 0;
2199 else
2200 limit = fls(ap->sata_spd_limit);
2201
2202 spd = (*scontrol >> 4) & 0xf;
2203 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2204
2205 return spd != limit;
2206}
2207
2208/**
3c567b7d 2209 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2210 * @ap: Port in question
2211 *
2212 * Test whether the spd limit in SControl matches
2213 * @ap->sata_spd_limit. This function is used to determine
2214 * whether hardreset is necessary to apply SATA spd
2215 * configuration.
2216 *
2217 * LOCKING:
2218 * Inherited from caller.
2219 *
2220 * RETURNS:
2221 * 1 if SATA spd configuration is needed, 0 otherwise.
2222 */
3c567b7d 2223int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2224{
2225 u32 scontrol;
2226
81952c54 2227 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2228 return 0;
2229
3c567b7d 2230 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2231}
2232
2233/**
3c567b7d 2234 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2235 * @ap: Port to set SATA spd for
2236 *
2237 * Set SATA spd of @ap according to sata_spd_limit.
2238 *
2239 * LOCKING:
2240 * Inherited from caller.
2241 *
2242 * RETURNS:
2243 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2244 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2245 */
3c567b7d 2246int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2247{
2248 u32 scontrol;
81952c54 2249 int rc;
1c3fae4d 2250
81952c54
TH
2251 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2252 return rc;
1c3fae4d 2253
3c567b7d 2254 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2255 return 0;
2256
81952c54
TH
2257 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2258 return rc;
2259
1c3fae4d
TH
2260 return 1;
2261}
2262
452503f9
AC
2263/*
2264 * This mode timing computation functionality is ported over from
2265 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2266 */
2267/*
b352e57d 2268 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2269 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2270 * for UDMA6, which is currently supported only by Maxtor drives.
2271 *
2272 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2273 */
2274
2275static const struct ata_timing ata_timing[] = {
2276
2277 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2278 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2279 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2280 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2281
b352e57d
AC
2282 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2283 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2284 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2285 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2286 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2287
2288/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2289
452503f9
AC
2290 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2291 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2292 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2293
452503f9
AC
2294 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2295 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2296 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2297
b352e57d
AC
2298 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2299 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2300 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2301 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2302
2303 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2304 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2305 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2306
2307/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2308
2309 { 0xFF }
2310};
2311
2312#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2313#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2314
2315static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2316{
2317 q->setup = EZ(t->setup * 1000, T);
2318 q->act8b = EZ(t->act8b * 1000, T);
2319 q->rec8b = EZ(t->rec8b * 1000, T);
2320 q->cyc8b = EZ(t->cyc8b * 1000, T);
2321 q->active = EZ(t->active * 1000, T);
2322 q->recover = EZ(t->recover * 1000, T);
2323 q->cycle = EZ(t->cycle * 1000, T);
2324 q->udma = EZ(t->udma * 1000, UT);
2325}
2326
2327void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2328 struct ata_timing *m, unsigned int what)
2329{
2330 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2331 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2332 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2333 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2334 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2335 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2336 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2337 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2338}
2339
2340static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2341{
2342 const struct ata_timing *t;
2343
2344 for (t = ata_timing; t->mode != speed; t++)
91190758 2345 if (t->mode == 0xFF)
452503f9 2346 return NULL;
2e9edbf8 2347 return t;
452503f9
AC
2348}
2349
2350int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2351 struct ata_timing *t, int T, int UT)
2352{
2353 const struct ata_timing *s;
2354 struct ata_timing p;
2355
2356 /*
2e9edbf8 2357 * Find the mode.
75b1f2f8 2358 */
452503f9
AC
2359
2360 if (!(s = ata_timing_find_mode(speed)))
2361 return -EINVAL;
2362
75b1f2f8
AL
2363 memcpy(t, s, sizeof(*s));
2364
452503f9
AC
2365 /*
2366 * If the drive is an EIDE drive, it can tell us it needs extended
2367 * PIO/MW_DMA cycle timing.
2368 */
2369
2370 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2371 memset(&p, 0, sizeof(p));
2372 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2373 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2374 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2375 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2376 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2377 }
2378 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2379 }
2380
2381 /*
2382 * Convert the timing to bus clock counts.
2383 */
2384
75b1f2f8 2385 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2386
2387 /*
c893a3ae
RD
2388 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2389 * S.M.A.R.T * and some other commands. We have to ensure that the
2390 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2391 */
2392
fd3367af 2393 if (speed > XFER_PIO_6) {
452503f9
AC
2394 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2395 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2396 }
2397
2398 /*
c893a3ae 2399 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2400 */
2401
2402 if (t->act8b + t->rec8b < t->cyc8b) {
2403 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2404 t->rec8b = t->cyc8b - t->act8b;
2405 }
2406
2407 if (t->active + t->recover < t->cycle) {
2408 t->active += (t->cycle - (t->active + t->recover)) / 2;
2409 t->recover = t->cycle - t->active;
2410 }
2411
2412 return 0;
2413}
2414
cf176e1a
TH
2415/**
2416 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2417 * @dev: Device to adjust xfer masks
458337db 2418 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2419 *
2420 * Adjust xfer masks of @dev downward. Note that this function
2421 * does not apply the change. Invoking ata_set_mode() afterwards
2422 * will apply the limit.
2423 *
2424 * LOCKING:
2425 * Inherited from caller.
2426 *
2427 * RETURNS:
2428 * 0 on success, negative errno on failure
2429 */
458337db 2430int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2431{
458337db
TH
2432 char buf[32];
2433 unsigned int orig_mask, xfer_mask;
2434 unsigned int pio_mask, mwdma_mask, udma_mask;
2435 int quiet, highbit;
cf176e1a 2436
458337db
TH
2437 quiet = !!(sel & ATA_DNXFER_QUIET);
2438 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2439
458337db
TH
2440 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2441 dev->mwdma_mask,
2442 dev->udma_mask);
2443 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2444
458337db
TH
2445 switch (sel) {
2446 case ATA_DNXFER_PIO:
2447 highbit = fls(pio_mask) - 1;
2448 pio_mask &= ~(1 << highbit);
2449 break;
2450
2451 case ATA_DNXFER_DMA:
2452 if (udma_mask) {
2453 highbit = fls(udma_mask) - 1;
2454 udma_mask &= ~(1 << highbit);
2455 if (!udma_mask)
2456 return -ENOENT;
2457 } else if (mwdma_mask) {
2458 highbit = fls(mwdma_mask) - 1;
2459 mwdma_mask &= ~(1 << highbit);
2460 if (!mwdma_mask)
2461 return -ENOENT;
2462 }
2463 break;
2464
2465 case ATA_DNXFER_40C:
2466 udma_mask &= ATA_UDMA_MASK_40C;
2467 break;
2468
2469 case ATA_DNXFER_FORCE_PIO0:
2470 pio_mask &= 1;
2471 case ATA_DNXFER_FORCE_PIO:
2472 mwdma_mask = 0;
2473 udma_mask = 0;
2474 break;
2475
458337db
TH
2476 default:
2477 BUG();
2478 }
2479
2480 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2481
2482 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2483 return -ENOENT;
2484
2485 if (!quiet) {
2486 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2487 snprintf(buf, sizeof(buf), "%s:%s",
2488 ata_mode_string(xfer_mask),
2489 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2490 else
2491 snprintf(buf, sizeof(buf), "%s",
2492 ata_mode_string(xfer_mask));
2493
2494 ata_dev_printk(dev, KERN_WARNING,
2495 "limiting speed to %s\n", buf);
2496 }
cf176e1a
TH
2497
2498 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2499 &dev->udma_mask);
2500
cf176e1a 2501 return 0;
cf176e1a
TH
2502}
2503
3373efd8 2504static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2505{
baa1e78a 2506 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2507 unsigned int err_mask;
2508 int rc;
1da177e4 2509
e8384607 2510 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2511 if (dev->xfer_shift == ATA_SHIFT_PIO)
2512 dev->flags |= ATA_DFLAG_PIO;
2513
3373efd8 2514 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2515 /* Old CFA may refuse this command, which is just fine */
2516 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2517 err_mask &= ~AC_ERR_DEV;
2518
83206a29 2519 if (err_mask) {
f15a1daf
TH
2520 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2521 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2522 return -EIO;
2523 }
1da177e4 2524
baa1e78a 2525 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2526 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2527 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2528 if (rc)
83206a29 2529 return rc;
48a8a14f 2530
23e71c3d
TH
2531 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2532 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2533
f15a1daf
TH
2534 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2535 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2536 return 0;
1da177e4
LT
2537}
2538
1da177e4 2539/**
04351821 2540 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2541 * @ap: port on which timings will be programmed
e82cbdb9 2542 * @r_failed_dev: out paramter for failed device
1da177e4 2543 *
04351821
AC
2544 * Standard implementation of the function used to tune and set
2545 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2546 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2547 * returned in @r_failed_dev.
780a87f7 2548 *
1da177e4 2549 * LOCKING:
0cba632b 2550 * PCI/etc. bus probe sem.
e82cbdb9
TH
2551 *
2552 * RETURNS:
2553 * 0 on success, negative errno otherwise
1da177e4 2554 */
04351821
AC
2555
2556int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2557{
e8e0619f 2558 struct ata_device *dev;
e82cbdb9 2559 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2560
3adcebb2 2561
a6d5a51c
TH
2562 /* step 1: calculate xfer_mask */
2563 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2564 unsigned int pio_mask, dma_mask;
a6d5a51c 2565
e8e0619f
TH
2566 dev = &ap->device[i];
2567
e1211e3f 2568 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2569 continue;
2570
3373efd8 2571 ata_dev_xfermask(dev);
1da177e4 2572
acf356b1
TH
2573 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2574 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2575 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2576 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2577
4f65977d 2578 found = 1;
5444a6f4
AC
2579 if (dev->dma_mode)
2580 used_dma = 1;
a6d5a51c 2581 }
4f65977d 2582 if (!found)
e82cbdb9 2583 goto out;
a6d5a51c
TH
2584
2585 /* step 2: always set host PIO timings */
e8e0619f
TH
2586 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2587 dev = &ap->device[i];
2588 if (!ata_dev_enabled(dev))
2589 continue;
2590
2591 if (!dev->pio_mode) {
f15a1daf 2592 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2593 rc = -EINVAL;
e82cbdb9 2594 goto out;
e8e0619f
TH
2595 }
2596
2597 dev->xfer_mode = dev->pio_mode;
2598 dev->xfer_shift = ATA_SHIFT_PIO;
2599 if (ap->ops->set_piomode)
2600 ap->ops->set_piomode(ap, dev);
2601 }
1da177e4 2602
a6d5a51c 2603 /* step 3: set host DMA timings */
e8e0619f
TH
2604 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2605 dev = &ap->device[i];
2606
2607 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2608 continue;
2609
2610 dev->xfer_mode = dev->dma_mode;
2611 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2612 if (ap->ops->set_dmamode)
2613 ap->ops->set_dmamode(ap, dev);
2614 }
1da177e4
LT
2615
2616 /* step 4: update devices' xfer mode */
83206a29 2617 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2618 dev = &ap->device[i];
1da177e4 2619
18d90deb 2620 /* don't update suspended devices' xfer mode */
02670bf3 2621 if (!ata_dev_ready(dev))
83206a29
TH
2622 continue;
2623
3373efd8 2624 rc = ata_dev_set_mode(dev);
5bbc53f4 2625 if (rc)
e82cbdb9 2626 goto out;
83206a29 2627 }
1da177e4 2628
e8e0619f
TH
2629 /* Record simplex status. If we selected DMA then the other
2630 * host channels are not permitted to do so.
5444a6f4 2631 */
cca3974e 2632 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2633 ap->host->simplex_claimed = ap;
5444a6f4 2634
e8e0619f 2635 /* step5: chip specific finalisation */
1da177e4
LT
2636 if (ap->ops->post_set_mode)
2637 ap->ops->post_set_mode(ap);
e82cbdb9
TH
2638 out:
2639 if (rc)
2640 *r_failed_dev = dev;
2641 return rc;
1da177e4
LT
2642}
2643
04351821
AC
2644/**
2645 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2646 * @ap: port on which timings will be programmed
2647 * @r_failed_dev: out paramter for failed device
2648 *
2649 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2650 * ata_set_mode() fails, pointer to the failing device is
2651 * returned in @r_failed_dev.
2652 *
2653 * LOCKING:
2654 * PCI/etc. bus probe sem.
2655 *
2656 * RETURNS:
2657 * 0 on success, negative errno otherwise
2658 */
2659int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2660{
2661 /* has private set_mode? */
2662 if (ap->ops->set_mode)
2663 return ap->ops->set_mode(ap, r_failed_dev);
2664 return ata_do_set_mode(ap, r_failed_dev);
2665}
2666
1fdffbce
JG
2667/**
2668 * ata_tf_to_host - issue ATA taskfile to host controller
2669 * @ap: port to which command is being issued
2670 * @tf: ATA taskfile register set
2671 *
2672 * Issues ATA taskfile register set to ATA host controller,
2673 * with proper synchronization with interrupt handler and
2674 * other threads.
2675 *
2676 * LOCKING:
cca3974e 2677 * spin_lock_irqsave(host lock)
1fdffbce
JG
2678 */
2679
2680static inline void ata_tf_to_host(struct ata_port *ap,
2681 const struct ata_taskfile *tf)
2682{
2683 ap->ops->tf_load(ap, tf);
2684 ap->ops->exec_command(ap, tf);
2685}
2686
1da177e4
LT
2687/**
2688 * ata_busy_sleep - sleep until BSY clears, or timeout
2689 * @ap: port containing status register to be polled
2690 * @tmout_pat: impatience timeout
2691 * @tmout: overall timeout
2692 *
780a87f7
JG
2693 * Sleep until ATA Status register bit BSY clears,
2694 * or a timeout occurs.
2695 *
d1adc1bb
TH
2696 * LOCKING:
2697 * Kernel thread context (may sleep).
2698 *
2699 * RETURNS:
2700 * 0 on success, -errno otherwise.
1da177e4 2701 */
d1adc1bb
TH
2702int ata_busy_sleep(struct ata_port *ap,
2703 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2704{
2705 unsigned long timer_start, timeout;
2706 u8 status;
2707
2708 status = ata_busy_wait(ap, ATA_BUSY, 300);
2709 timer_start = jiffies;
2710 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2711 while (status != 0xff && (status & ATA_BUSY) &&
2712 time_before(jiffies, timeout)) {
1da177e4
LT
2713 msleep(50);
2714 status = ata_busy_wait(ap, ATA_BUSY, 3);
2715 }
2716
d1adc1bb 2717 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2718 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2719 "port is slow to respond, please be patient "
2720 "(Status 0x%x)\n", status);
1da177e4
LT
2721
2722 timeout = timer_start + tmout;
d1adc1bb
TH
2723 while (status != 0xff && (status & ATA_BUSY) &&
2724 time_before(jiffies, timeout)) {
1da177e4
LT
2725 msleep(50);
2726 status = ata_chk_status(ap);
2727 }
2728
d1adc1bb
TH
2729 if (status == 0xff)
2730 return -ENODEV;
2731
1da177e4 2732 if (status & ATA_BUSY) {
f15a1daf 2733 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2734 "(%lu secs, Status 0x%x)\n",
2735 tmout / HZ, status);
d1adc1bb 2736 return -EBUSY;
1da177e4
LT
2737 }
2738
2739 return 0;
2740}
2741
2742static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2743{
2744 struct ata_ioports *ioaddr = &ap->ioaddr;
2745 unsigned int dev0 = devmask & (1 << 0);
2746 unsigned int dev1 = devmask & (1 << 1);
2747 unsigned long timeout;
2748
2749 /* if device 0 was found in ata_devchk, wait for its
2750 * BSY bit to clear
2751 */
2752 if (dev0)
2753 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2754
2755 /* if device 1 was found in ata_devchk, wait for
2756 * register access, then wait for BSY to clear
2757 */
2758 timeout = jiffies + ATA_TMOUT_BOOT;
2759 while (dev1) {
2760 u8 nsect, lbal;
2761
2762 ap->ops->dev_select(ap, 1);
0d5ff566
TH
2763 nsect = ioread8(ioaddr->nsect_addr);
2764 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
2765 if ((nsect == 1) && (lbal == 1))
2766 break;
2767 if (time_after(jiffies, timeout)) {
2768 dev1 = 0;
2769 break;
2770 }
2771 msleep(50); /* give drive a breather */
2772 }
2773 if (dev1)
2774 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2775
2776 /* is all this really necessary? */
2777 ap->ops->dev_select(ap, 0);
2778 if (dev1)
2779 ap->ops->dev_select(ap, 1);
2780 if (dev0)
2781 ap->ops->dev_select(ap, 0);
2782}
2783
1da177e4
LT
2784static unsigned int ata_bus_softreset(struct ata_port *ap,
2785 unsigned int devmask)
2786{
2787 struct ata_ioports *ioaddr = &ap->ioaddr;
2788
44877b4e 2789 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
2790
2791 /* software reset. causes dev0 to be selected */
0d5ff566
TH
2792 iowrite8(ap->ctl, ioaddr->ctl_addr);
2793 udelay(20); /* FIXME: flush */
2794 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2795 udelay(20); /* FIXME: flush */
2796 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2797
2798 /* spec mandates ">= 2ms" before checking status.
2799 * We wait 150ms, because that was the magic delay used for
2800 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2801 * between when the ATA command register is written, and then
2802 * status is checked. Because waiting for "a while" before
2803 * checking status is fine, post SRST, we perform this magic
2804 * delay here as well.
09c7ad79
AC
2805 *
2806 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2807 */
2808 msleep(150);
2809
2e9edbf8 2810 /* Before we perform post reset processing we want to see if
298a41ca
TH
2811 * the bus shows 0xFF because the odd clown forgets the D7
2812 * pulldown resistor.
2813 */
d1adc1bb
TH
2814 if (ata_check_status(ap) == 0xFF)
2815 return 0;
09c7ad79 2816
1da177e4
LT
2817 ata_bus_post_reset(ap, devmask);
2818
2819 return 0;
2820}
2821
2822/**
2823 * ata_bus_reset - reset host port and associated ATA channel
2824 * @ap: port to reset
2825 *
2826 * This is typically the first time we actually start issuing
2827 * commands to the ATA channel. We wait for BSY to clear, then
2828 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2829 * result. Determine what devices, if any, are on the channel
2830 * by looking at the device 0/1 error register. Look at the signature
2831 * stored in each device's taskfile registers, to determine if
2832 * the device is ATA or ATAPI.
2833 *
2834 * LOCKING:
0cba632b 2835 * PCI/etc. bus probe sem.
cca3974e 2836 * Obtains host lock.
1da177e4
LT
2837 *
2838 * SIDE EFFECTS:
198e0fed 2839 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2840 */
2841
2842void ata_bus_reset(struct ata_port *ap)
2843{
2844 struct ata_ioports *ioaddr = &ap->ioaddr;
2845 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2846 u8 err;
aec5c3c1 2847 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4 2848
44877b4e 2849 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
2850
2851 /* determine if device 0/1 are present */
2852 if (ap->flags & ATA_FLAG_SATA_RESET)
2853 dev0 = 1;
2854 else {
2855 dev0 = ata_devchk(ap, 0);
2856 if (slave_possible)
2857 dev1 = ata_devchk(ap, 1);
2858 }
2859
2860 if (dev0)
2861 devmask |= (1 << 0);
2862 if (dev1)
2863 devmask |= (1 << 1);
2864
2865 /* select device 0 again */
2866 ap->ops->dev_select(ap, 0);
2867
2868 /* issue bus reset */
2869 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2870 if (ata_bus_softreset(ap, devmask))
2871 goto err_out;
1da177e4
LT
2872
2873 /*
2874 * determine by signature whether we have ATA or ATAPI devices
2875 */
b4dc7623 2876 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2877 if ((slave_possible) && (err != 0x81))
b4dc7623 2878 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2879
2880 /* re-enable interrupts */
83625006 2881 ap->ops->irq_on(ap);
1da177e4
LT
2882
2883 /* is double-select really necessary? */
2884 if (ap->device[1].class != ATA_DEV_NONE)
2885 ap->ops->dev_select(ap, 1);
2886 if (ap->device[0].class != ATA_DEV_NONE)
2887 ap->ops->dev_select(ap, 0);
2888
2889 /* if no devices were detected, disable this port */
2890 if ((ap->device[0].class == ATA_DEV_NONE) &&
2891 (ap->device[1].class == ATA_DEV_NONE))
2892 goto err_out;
2893
2894 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2895 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 2896 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
2897 }
2898
2899 DPRINTK("EXIT\n");
2900 return;
2901
2902err_out:
f15a1daf 2903 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2904 ap->ops->port_disable(ap);
2905
2906 DPRINTK("EXIT\n");
2907}
2908
d7bb4cc7
TH
2909/**
2910 * sata_phy_debounce - debounce SATA phy status
2911 * @ap: ATA port to debounce SATA phy status for
2912 * @params: timing parameters { interval, duratinon, timeout } in msec
2913 *
2914 * Make sure SStatus of @ap reaches stable state, determined by
2915 * holding the same value where DET is not 1 for @duration polled
2916 * every @interval, before @timeout. Timeout constraints the
2917 * beginning of the stable state. Because, after hot unplugging,
2918 * DET gets stuck at 1 on some controllers, this functions waits
2919 * until timeout then returns 0 if DET is stable at 1.
2920 *
2921 * LOCKING:
2922 * Kernel thread context (may sleep)
2923 *
2924 * RETURNS:
2925 * 0 on success, -errno on failure.
2926 */
2927int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2928{
d7bb4cc7
TH
2929 unsigned long interval_msec = params[0];
2930 unsigned long duration = params[1] * HZ / 1000;
2931 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2932 unsigned long last_jiffies;
2933 u32 last, cur;
2934 int rc;
2935
2936 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2937 return rc;
2938 cur &= 0xf;
2939
2940 last = cur;
2941 last_jiffies = jiffies;
2942
2943 while (1) {
2944 msleep(interval_msec);
2945 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2946 return rc;
2947 cur &= 0xf;
2948
2949 /* DET stable? */
2950 if (cur == last) {
2951 if (cur == 1 && time_before(jiffies, timeout))
2952 continue;
2953 if (time_after(jiffies, last_jiffies + duration))
2954 return 0;
2955 continue;
2956 }
2957
2958 /* unstable, start over */
2959 last = cur;
2960 last_jiffies = jiffies;
2961
2962 /* check timeout */
2963 if (time_after(jiffies, timeout))
2964 return -EBUSY;
2965 }
2966}
2967
2968/**
2969 * sata_phy_resume - resume SATA phy
2970 * @ap: ATA port to resume SATA phy for
2971 * @params: timing parameters { interval, duratinon, timeout } in msec
2972 *
2973 * Resume SATA phy of @ap and debounce it.
2974 *
2975 * LOCKING:
2976 * Kernel thread context (may sleep)
2977 *
2978 * RETURNS:
2979 * 0 on success, -errno on failure.
2980 */
2981int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2982{
2983 u32 scontrol;
81952c54
TH
2984 int rc;
2985
2986 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2987 return rc;
7a7921e8 2988
852ee16a 2989 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2990
2991 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2992 return rc;
7a7921e8 2993
d7bb4cc7
TH
2994 /* Some PHYs react badly if SStatus is pounded immediately
2995 * after resuming. Delay 200ms before debouncing.
2996 */
2997 msleep(200);
7a7921e8 2998
d7bb4cc7 2999 return sata_phy_debounce(ap, params);
7a7921e8
TH
3000}
3001
f5914a46
TH
3002static void ata_wait_spinup(struct ata_port *ap)
3003{
3004 struct ata_eh_context *ehc = &ap->eh_context;
3005 unsigned long end, secs;
3006 int rc;
3007
3008 /* first, debounce phy if SATA */
3009 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 3010 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
3011
3012 /* if debounced successfully and offline, no need to wait */
3013 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
3014 return;
3015 }
3016
3017 /* okay, let's give the drive time to spin up */
3018 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
3019 secs = ((end - jiffies) + HZ - 1) / HZ;
3020
3021 if (time_after(jiffies, end))
3022 return;
3023
3024 if (secs > 5)
3025 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
3026 "(%lu secs)\n", secs);
3027
3028 schedule_timeout_uninterruptible(end - jiffies);
3029}
3030
3031/**
3032 * ata_std_prereset - prepare for reset
3033 * @ap: ATA port to be reset
3034 *
3035 * @ap is about to be reset. Initialize it.
3036 *
3037 * LOCKING:
3038 * Kernel thread context (may sleep)
3039 *
3040 * RETURNS:
3041 * 0 on success, -errno otherwise.
3042 */
3043int ata_std_prereset(struct ata_port *ap)
3044{
3045 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3046 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3047 int rc;
3048
28324304
TH
3049 /* handle link resume & hotplug spinup */
3050 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3051 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3052 ehc->i.action |= ATA_EH_HARDRESET;
3053
3054 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
3055 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
3056 ata_wait_spinup(ap);
f5914a46
TH
3057
3058 /* if we're about to do hardreset, nothing more to do */
3059 if (ehc->i.action & ATA_EH_HARDRESET)
3060 return 0;
3061
3062 /* if SATA, resume phy */
3063 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
3064 rc = sata_phy_resume(ap, timing);
3065 if (rc && rc != -EOPNOTSUPP) {
3066 /* phy resume failed */
3067 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3068 "link for reset (errno=%d)\n", rc);
3069 return rc;
3070 }
3071 }
3072
3073 /* Wait for !BSY if the controller can wait for the first D2H
3074 * Reg FIS and we don't know that no device is attached.
3075 */
3076 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
3077 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
3078
3079 return 0;
3080}
3081
c2bd5804
TH
3082/**
3083 * ata_std_softreset - reset host port via ATA SRST
3084 * @ap: port to reset
c2bd5804
TH
3085 * @classes: resulting classes of attached devices
3086 *
52783c5d 3087 * Reset host port using ATA SRST.
c2bd5804
TH
3088 *
3089 * LOCKING:
3090 * Kernel thread context (may sleep)
3091 *
3092 * RETURNS:
3093 * 0 on success, -errno otherwise.
3094 */
2bf2cb26 3095int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
3096{
3097 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3098 unsigned int devmask = 0, err_mask;
3099 u8 err;
3100
3101 DPRINTK("ENTER\n");
3102
81952c54 3103 if (ata_port_offline(ap)) {
3a39746a
TH
3104 classes[0] = ATA_DEV_NONE;
3105 goto out;
3106 }
3107
c2bd5804
TH
3108 /* determine if device 0/1 are present */
3109 if (ata_devchk(ap, 0))
3110 devmask |= (1 << 0);
3111 if (slave_possible && ata_devchk(ap, 1))
3112 devmask |= (1 << 1);
3113
c2bd5804
TH
3114 /* select device 0 again */
3115 ap->ops->dev_select(ap, 0);
3116
3117 /* issue bus reset */
3118 DPRINTK("about to softreset, devmask=%x\n", devmask);
3119 err_mask = ata_bus_softreset(ap, devmask);
3120 if (err_mask) {
f15a1daf
TH
3121 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
3122 err_mask);
c2bd5804
TH
3123 return -EIO;
3124 }
3125
3126 /* determine by signature whether we have ATA or ATAPI devices */
3127 classes[0] = ata_dev_try_classify(ap, 0, &err);
3128 if (slave_possible && err != 0x81)
3129 classes[1] = ata_dev_try_classify(ap, 1, &err);
3130
3a39746a 3131 out:
c2bd5804
TH
3132 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3133 return 0;
3134}
3135
3136/**
b6103f6d 3137 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3138 * @ap: port to reset
b6103f6d 3139 * @timing: timing parameters { interval, duratinon, timeout } in msec
c2bd5804
TH
3140 *
3141 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3142 *
3143 * LOCKING:
3144 * Kernel thread context (may sleep)
3145 *
3146 * RETURNS:
3147 * 0 on success, -errno otherwise.
3148 */
b6103f6d 3149int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
c2bd5804 3150{
852ee16a 3151 u32 scontrol;
81952c54 3152 int rc;
852ee16a 3153
c2bd5804
TH
3154 DPRINTK("ENTER\n");
3155
3c567b7d 3156 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3157 /* SATA spec says nothing about how to reconfigure
3158 * spd. To be on the safe side, turn off phy during
3159 * reconfiguration. This works for at least ICH7 AHCI
3160 * and Sil3124.
3161 */
81952c54 3162 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3163 goto out;
81952c54 3164
a34b6fc0 3165 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3166
3167 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3168 goto out;
1c3fae4d 3169
3c567b7d 3170 sata_set_spd(ap);
1c3fae4d
TH
3171 }
3172
3173 /* issue phy wake/reset */
81952c54 3174 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3175 goto out;
81952c54 3176
852ee16a 3177 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3178
3179 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3180 goto out;
c2bd5804 3181
1c3fae4d 3182 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3183 * 10.4.2 says at least 1 ms.
3184 */
3185 msleep(1);
3186
1c3fae4d 3187 /* bring phy back */
b6103f6d
TH
3188 rc = sata_phy_resume(ap, timing);
3189 out:
3190 DPRINTK("EXIT, rc=%d\n", rc);
3191 return rc;
3192}
3193
3194/**
3195 * sata_std_hardreset - reset host port via SATA phy reset
3196 * @ap: port to reset
3197 * @class: resulting class of attached device
3198 *
3199 * SATA phy-reset host port using DET bits of SControl register,
3200 * wait for !BSY and classify the attached device.
3201 *
3202 * LOCKING:
3203 * Kernel thread context (may sleep)
3204 *
3205 * RETURNS:
3206 * 0 on success, -errno otherwise.
3207 */
3208int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3209{
3210 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3211 int rc;
3212
3213 DPRINTK("ENTER\n");
3214
3215 /* do hardreset */
3216 rc = sata_port_hardreset(ap, timing);
3217 if (rc) {
3218 ata_port_printk(ap, KERN_ERR,
3219 "COMRESET failed (errno=%d)\n", rc);
3220 return rc;
3221 }
c2bd5804 3222
c2bd5804 3223 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3224 if (ata_port_offline(ap)) {
c2bd5804
TH
3225 *class = ATA_DEV_NONE;
3226 DPRINTK("EXIT, link offline\n");
3227 return 0;
3228 }
3229
34fee227
TH
3230 /* wait a while before checking status, see SRST for more info */
3231 msleep(150);
3232
c2bd5804 3233 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
3234 ata_port_printk(ap, KERN_ERR,
3235 "COMRESET failed (device not ready)\n");
c2bd5804
TH
3236 return -EIO;
3237 }
3238
3a39746a
TH
3239 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3240
c2bd5804
TH
3241 *class = ata_dev_try_classify(ap, 0, NULL);
3242
3243 DPRINTK("EXIT, class=%u\n", *class);
3244 return 0;
3245}
3246
3247/**
3248 * ata_std_postreset - standard postreset callback
3249 * @ap: the target ata_port
3250 * @classes: classes of attached devices
3251 *
3252 * This function is invoked after a successful reset. Note that
3253 * the device might have been reset more than once using
3254 * different reset methods before postreset is invoked.
c2bd5804 3255 *
c2bd5804
TH
3256 * LOCKING:
3257 * Kernel thread context (may sleep)
3258 */
3259void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3260{
dc2b3515
TH
3261 u32 serror;
3262
c2bd5804
TH
3263 DPRINTK("ENTER\n");
3264
c2bd5804 3265 /* print link status */
81952c54 3266 sata_print_link_status(ap);
c2bd5804 3267
dc2b3515
TH
3268 /* clear SError */
3269 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3270 sata_scr_write(ap, SCR_ERROR, serror);
3271
3a39746a 3272 /* re-enable interrupts */
83625006
AI
3273 if (!ap->ops->error_handler)
3274 ap->ops->irq_on(ap);
c2bd5804
TH
3275
3276 /* is double-select really necessary? */
3277 if (classes[0] != ATA_DEV_NONE)
3278 ap->ops->dev_select(ap, 1);
3279 if (classes[1] != ATA_DEV_NONE)
3280 ap->ops->dev_select(ap, 0);
3281
3a39746a
TH
3282 /* bail out if no device is present */
3283 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3284 DPRINTK("EXIT, no device\n");
3285 return;
3286 }
3287
3288 /* set up device control */
0d5ff566
TH
3289 if (ap->ioaddr.ctl_addr)
3290 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3291
3292 DPRINTK("EXIT\n");
3293}
3294
623a3128
TH
3295/**
3296 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3297 * @dev: device to compare against
3298 * @new_class: class of the new device
3299 * @new_id: IDENTIFY page of the new device
3300 *
3301 * Compare @new_class and @new_id against @dev and determine
3302 * whether @dev is the device indicated by @new_class and
3303 * @new_id.
3304 *
3305 * LOCKING:
3306 * None.
3307 *
3308 * RETURNS:
3309 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3310 */
3373efd8
TH
3311static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3312 const u16 *new_id)
623a3128
TH
3313{
3314 const u16 *old_id = dev->id;
a0cf733b
TH
3315 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3316 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3317 u64 new_n_sectors;
3318
3319 if (dev->class != new_class) {
f15a1daf
TH
3320 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3321 dev->class, new_class);
623a3128
TH
3322 return 0;
3323 }
3324
a0cf733b
TH
3325 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3326 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3327 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3328 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3329 new_n_sectors = ata_id_n_sectors(new_id);
3330
3331 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3332 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3333 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3334 return 0;
3335 }
3336
3337 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3338 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3339 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3340 return 0;
3341 }
3342
3343 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
3344 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3345 "%llu != %llu\n",
3346 (unsigned long long)dev->n_sectors,
3347 (unsigned long long)new_n_sectors);
623a3128
TH
3348 return 0;
3349 }
3350
3351 return 1;
3352}
3353
3354/**
3355 * ata_dev_revalidate - Revalidate ATA device
623a3128 3356 * @dev: device to revalidate
bff04647 3357 * @readid_flags: read ID flags
623a3128
TH
3358 *
3359 * Re-read IDENTIFY page and make sure @dev is still attached to
3360 * the port.
3361 *
3362 * LOCKING:
3363 * Kernel thread context (may sleep)
3364 *
3365 * RETURNS:
3366 * 0 on success, negative errno otherwise
3367 */
bff04647 3368int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
623a3128 3369{
5eb45c02 3370 unsigned int class = dev->class;
f15a1daf 3371 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3372 int rc;
3373
5eb45c02
TH
3374 if (!ata_dev_enabled(dev)) {
3375 rc = -ENODEV;
3376 goto fail;
3377 }
623a3128 3378
fe635c7e 3379 /* read ID data */
bff04647 3380 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128
TH
3381 if (rc)
3382 goto fail;
3383
3384 /* is the device still there? */
3373efd8 3385 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
3386 rc = -ENODEV;
3387 goto fail;
3388 }
3389
fe635c7e 3390 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
3391
3392 /* configure device according to the new ID */
efdaedc4 3393 rc = ata_dev_configure(dev);
5eb45c02
TH
3394 if (rc == 0)
3395 return 0;
623a3128
TH
3396
3397 fail:
f15a1daf 3398 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3399 return rc;
3400}
3401
6919a0a6
AC
3402struct ata_blacklist_entry {
3403 const char *model_num;
3404 const char *model_rev;
3405 unsigned long horkage;
3406};
3407
3408static const struct ata_blacklist_entry ata_device_blacklist [] = {
3409 /* Devices with DMA related problems under Linux */
3410 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3411 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3412 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3413 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3414 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3415 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3416 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3417 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3418 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3419 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3420 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3421 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3422 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3423 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3424 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3425 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3426 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3427 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3428 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3429 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3430 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3431 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3432 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3433 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3434 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3435 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3436 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3437 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3438 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3439
18d6e9d5 3440 /* Weird ATAPI devices */
6f23a31d
AL
3441 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3442 ATA_HORKAGE_DMA_RW_ONLY },
18d6e9d5 3443
6919a0a6
AC
3444 /* Devices we expect to fail diagnostics */
3445
3446 /* Devices where NCQ should be avoided */
3447 /* NCQ is slow */
3448 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3449 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3450 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3451 /* NCQ is broken */
3452 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
96442925
JA
3453 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3454 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3455 /* Blacklist entries taken from Silicon Image 3124/3132
3456 Windows driver .inf file - also several Linux problem reports */
3457 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3458 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3459 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3460
3461 /* Devices with NCQ limits */
3462
3463 /* End Marker */
3464 { }
1da177e4 3465};
2e9edbf8 3466
6919a0a6 3467unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3468{
8bfa79fc
TH
3469 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3470 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3471 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3472
8bfa79fc
TH
3473 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3474 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3475
6919a0a6 3476 while (ad->model_num) {
8bfa79fc 3477 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3478 if (ad->model_rev == NULL)
3479 return ad->horkage;
8bfa79fc 3480 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3481 return ad->horkage;
f4b15fef 3482 }
6919a0a6 3483 ad++;
f4b15fef 3484 }
1da177e4
LT
3485 return 0;
3486}
3487
6919a0a6
AC
3488static int ata_dma_blacklisted(const struct ata_device *dev)
3489{
3490 /* We don't support polling DMA.
3491 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3492 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3493 */
3494 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3495 (dev->flags & ATA_DFLAG_CDB_INTR))
3496 return 1;
3497 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3498}
3499
a6d5a51c
TH
3500/**
3501 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3502 * @dev: Device to compute xfermask for
3503 *
acf356b1
TH
3504 * Compute supported xfermask of @dev and store it in
3505 * dev->*_mask. This function is responsible for applying all
3506 * known limits including host controller limits, device
3507 * blacklist, etc...
a6d5a51c
TH
3508 *
3509 * LOCKING:
3510 * None.
a6d5a51c 3511 */
3373efd8 3512static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3513{
3373efd8 3514 struct ata_port *ap = dev->ap;
cca3974e 3515 struct ata_host *host = ap->host;
a6d5a51c 3516 unsigned long xfer_mask;
1da177e4 3517
37deecb5 3518 /* controller modes available */
565083e1
TH
3519 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3520 ap->mwdma_mask, ap->udma_mask);
3521
8343f889 3522 /* drive modes available */
37deecb5
TH
3523 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3524 dev->mwdma_mask, dev->udma_mask);
3525 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3526
b352e57d
AC
3527 /*
3528 * CFA Advanced TrueIDE timings are not allowed on a shared
3529 * cable
3530 */
3531 if (ata_dev_pair(dev)) {
3532 /* No PIO5 or PIO6 */
3533 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3534 /* No MWDMA3 or MWDMA 4 */
3535 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3536 }
3537
37deecb5
TH
3538 if (ata_dma_blacklisted(dev)) {
3539 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3540 ata_dev_printk(dev, KERN_WARNING,
3541 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3542 }
a6d5a51c 3543
14d66ab7
PV
3544 if ((host->flags & ATA_HOST_SIMPLEX) &&
3545 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3546 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3547 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3548 "other device, disabling DMA\n");
5444a6f4 3549 }
565083e1 3550
e424675f
JG
3551 if (ap->flags & ATA_FLAG_NO_IORDY)
3552 xfer_mask &= ata_pio_mask_no_iordy(dev);
3553
5444a6f4 3554 if (ap->ops->mode_filter)
a76b62ca 3555 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3556
8343f889
RH
3557 /* Apply cable rule here. Don't apply it early because when
3558 * we handle hot plug the cable type can itself change.
3559 * Check this last so that we know if the transfer rate was
3560 * solely limited by the cable.
3561 * Unknown or 80 wire cables reported host side are checked
3562 * drive side as well. Cases where we know a 40wire cable
3563 * is used safely for 80 are not checked here.
3564 */
3565 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3566 /* UDMA/44 or higher would be available */
3567 if((ap->cbl == ATA_CBL_PATA40) ||
3568 (ata_drive_40wire(dev->id) &&
3569 (ap->cbl == ATA_CBL_PATA_UNK ||
3570 ap->cbl == ATA_CBL_PATA80))) {
3571 ata_dev_printk(dev, KERN_WARNING,
3572 "limited to UDMA/33 due to 40-wire cable\n");
3573 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3574 }
3575
565083e1
TH
3576 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3577 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3578}
3579
1da177e4
LT
3580/**
3581 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3582 * @dev: Device to which command will be sent
3583 *
780a87f7
JG
3584 * Issue SET FEATURES - XFER MODE command to device @dev
3585 * on port @ap.
3586 *
1da177e4 3587 * LOCKING:
0cba632b 3588 * PCI/etc. bus probe sem.
83206a29
TH
3589 *
3590 * RETURNS:
3591 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3592 */
3593
3373efd8 3594static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3595{
a0123703 3596 struct ata_taskfile tf;
83206a29 3597 unsigned int err_mask;
1da177e4
LT
3598
3599 /* set up set-features taskfile */
3600 DPRINTK("set features - xfer mode\n");
3601
3373efd8 3602 ata_tf_init(dev, &tf);
a0123703
TH
3603 tf.command = ATA_CMD_SET_FEATURES;
3604 tf.feature = SETFEATURES_XFER;
3605 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3606 tf.protocol = ATA_PROT_NODATA;
3607 tf.nsect = dev->xfer_mode;
1da177e4 3608
3373efd8 3609 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3610
83206a29
TH
3611 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3612 return err_mask;
1da177e4
LT
3613}
3614
8bf62ece
AL
3615/**
3616 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3617 * @dev: Device to which command will be sent
e2a7f77a
RD
3618 * @heads: Number of heads (taskfile parameter)
3619 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3620 *
3621 * LOCKING:
6aff8f1f
TH
3622 * Kernel thread context (may sleep)
3623 *
3624 * RETURNS:
3625 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3626 */
3373efd8
TH
3627static unsigned int ata_dev_init_params(struct ata_device *dev,
3628 u16 heads, u16 sectors)
8bf62ece 3629{
a0123703 3630 struct ata_taskfile tf;
6aff8f1f 3631 unsigned int err_mask;
8bf62ece
AL
3632
3633 /* Number of sectors per track 1-255. Number of heads 1-16 */
3634 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3635 return AC_ERR_INVALID;
8bf62ece
AL
3636
3637 /* set up init dev params taskfile */
3638 DPRINTK("init dev params \n");
3639
3373efd8 3640 ata_tf_init(dev, &tf);
a0123703
TH
3641 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3642 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3643 tf.protocol = ATA_PROT_NODATA;
3644 tf.nsect = sectors;
3645 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3646
3373efd8 3647 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3648
6aff8f1f
TH
3649 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3650 return err_mask;
8bf62ece
AL
3651}
3652
1da177e4 3653/**
0cba632b
JG
3654 * ata_sg_clean - Unmap DMA memory associated with command
3655 * @qc: Command containing DMA memory to be released
3656 *
3657 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3658 *
3659 * LOCKING:
cca3974e 3660 * spin_lock_irqsave(host lock)
1da177e4 3661 */
70e6ad0c 3662void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3663{
3664 struct ata_port *ap = qc->ap;
cedc9a47 3665 struct scatterlist *sg = qc->__sg;
1da177e4 3666 int dir = qc->dma_dir;
cedc9a47 3667 void *pad_buf = NULL;
1da177e4 3668
a4631474
TH
3669 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3670 WARN_ON(sg == NULL);
1da177e4
LT
3671
3672 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3673 WARN_ON(qc->n_elem > 1);
1da177e4 3674
2c13b7ce 3675 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3676
cedc9a47
JG
3677 /* if we padded the buffer out to 32-bit bound, and data
3678 * xfer direction is from-device, we must copy from the
3679 * pad buffer back into the supplied buffer
3680 */
3681 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3682 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3683
3684 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3685 if (qc->n_elem)
2f1f610b 3686 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3687 /* restore last sg */
3688 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3689 if (pad_buf) {
3690 struct scatterlist *psg = &qc->pad_sgent;
3691 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3692 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3693 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3694 }
3695 } else {
2e242fa9 3696 if (qc->n_elem)
2f1f610b 3697 dma_unmap_single(ap->dev,
e1410f2d
JG
3698 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3699 dir);
cedc9a47
JG
3700 /* restore sg */
3701 sg->length += qc->pad_len;
3702 if (pad_buf)
3703 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3704 pad_buf, qc->pad_len);
3705 }
1da177e4
LT
3706
3707 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3708 qc->__sg = NULL;
1da177e4
LT
3709}
3710
3711/**
3712 * ata_fill_sg - Fill PCI IDE PRD table
3713 * @qc: Metadata associated with taskfile to be transferred
3714 *
780a87f7
JG
3715 * Fill PCI IDE PRD (scatter-gather) table with segments
3716 * associated with the current disk command.
3717 *
1da177e4 3718 * LOCKING:
cca3974e 3719 * spin_lock_irqsave(host lock)
1da177e4
LT
3720 *
3721 */
3722static void ata_fill_sg(struct ata_queued_cmd *qc)
3723{
1da177e4 3724 struct ata_port *ap = qc->ap;
cedc9a47
JG
3725 struct scatterlist *sg;
3726 unsigned int idx;
1da177e4 3727
a4631474 3728 WARN_ON(qc->__sg == NULL);
f131883e 3729 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3730
3731 idx = 0;
cedc9a47 3732 ata_for_each_sg(sg, qc) {
1da177e4
LT
3733 u32 addr, offset;
3734 u32 sg_len, len;
3735
3736 /* determine if physical DMA addr spans 64K boundary.
3737 * Note h/w doesn't support 64-bit, so we unconditionally
3738 * truncate dma_addr_t to u32.
3739 */
3740 addr = (u32) sg_dma_address(sg);
3741 sg_len = sg_dma_len(sg);
3742
3743 while (sg_len) {
3744 offset = addr & 0xffff;
3745 len = sg_len;
3746 if ((offset + sg_len) > 0x10000)
3747 len = 0x10000 - offset;
3748
3749 ap->prd[idx].addr = cpu_to_le32(addr);
3750 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3751 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3752
3753 idx++;
3754 sg_len -= len;
3755 addr += len;
3756 }
3757 }
3758
3759 if (idx)
3760 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3761}
3762/**
3763 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3764 * @qc: Metadata associated with taskfile to check
3765 *
780a87f7
JG
3766 * Allow low-level driver to filter ATA PACKET commands, returning
3767 * a status indicating whether or not it is OK to use DMA for the
3768 * supplied PACKET command.
3769 *
1da177e4 3770 * LOCKING:
cca3974e 3771 * spin_lock_irqsave(host lock)
0cba632b 3772 *
1da177e4
LT
3773 * RETURNS: 0 when ATAPI DMA can be used
3774 * nonzero otherwise
3775 */
3776int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3777{
3778 struct ata_port *ap = qc->ap;
3779 int rc = 0; /* Assume ATAPI DMA is OK by default */
3780
6f23a31d
AL
3781 /* some drives can only do ATAPI DMA on read/write */
3782 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
3783 struct scsi_cmnd *cmd = qc->scsicmd;
3784 u8 *scsicmd = cmd->cmnd;
3785
3786 switch (scsicmd[0]) {
3787 case READ_10:
3788 case WRITE_10:
3789 case READ_12:
3790 case WRITE_12:
3791 case READ_6:
3792 case WRITE_6:
3793 /* atapi dma maybe ok */
3794 break;
3795 default:
3796 /* turn off atapi dma */
3797 return 1;
3798 }
3799 }
3800
1da177e4
LT
3801 if (ap->ops->check_atapi_dma)
3802 rc = ap->ops->check_atapi_dma(qc);
3803
3804 return rc;
3805}
3806/**
3807 * ata_qc_prep - Prepare taskfile for submission
3808 * @qc: Metadata associated with taskfile to be prepared
3809 *
780a87f7
JG
3810 * Prepare ATA taskfile for submission.
3811 *
1da177e4 3812 * LOCKING:
cca3974e 3813 * spin_lock_irqsave(host lock)
1da177e4
LT
3814 */
3815void ata_qc_prep(struct ata_queued_cmd *qc)
3816{
3817 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3818 return;
3819
3820 ata_fill_sg(qc);
3821}
3822
e46834cd
BK
3823void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3824
0cba632b
JG
3825/**
3826 * ata_sg_init_one - Associate command with memory buffer
3827 * @qc: Command to be associated
3828 * @buf: Memory buffer
3829 * @buflen: Length of memory buffer, in bytes.
3830 *
3831 * Initialize the data-related elements of queued_cmd @qc
3832 * to point to a single memory buffer, @buf of byte length @buflen.
3833 *
3834 * LOCKING:
cca3974e 3835 * spin_lock_irqsave(host lock)
0cba632b
JG
3836 */
3837
1da177e4
LT
3838void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3839{
1da177e4
LT
3840 qc->flags |= ATA_QCFLAG_SINGLE;
3841
cedc9a47 3842 qc->__sg = &qc->sgent;
1da177e4 3843 qc->n_elem = 1;
cedc9a47 3844 qc->orig_n_elem = 1;
1da177e4 3845 qc->buf_virt = buf;
233277ca 3846 qc->nbytes = buflen;
1da177e4 3847
61c0596c 3848 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
3849}
3850
0cba632b
JG
3851/**
3852 * ata_sg_init - Associate command with scatter-gather table.
3853 * @qc: Command to be associated
3854 * @sg: Scatter-gather table.
3855 * @n_elem: Number of elements in s/g table.
3856 *
3857 * Initialize the data-related elements of queued_cmd @qc
3858 * to point to a scatter-gather table @sg, containing @n_elem
3859 * elements.
3860 *
3861 * LOCKING:
cca3974e 3862 * spin_lock_irqsave(host lock)
0cba632b
JG
3863 */
3864
1da177e4
LT
3865void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3866 unsigned int n_elem)
3867{
3868 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3869 qc->__sg = sg;
1da177e4 3870 qc->n_elem = n_elem;
cedc9a47 3871 qc->orig_n_elem = n_elem;
1da177e4
LT
3872}
3873
3874/**
0cba632b
JG
3875 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3876 * @qc: Command with memory buffer to be mapped.
3877 *
3878 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3879 *
3880 * LOCKING:
cca3974e 3881 * spin_lock_irqsave(host lock)
1da177e4
LT
3882 *
3883 * RETURNS:
0cba632b 3884 * Zero on success, negative on error.
1da177e4
LT
3885 */
3886
3887static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3888{
3889 struct ata_port *ap = qc->ap;
3890 int dir = qc->dma_dir;
cedc9a47 3891 struct scatterlist *sg = qc->__sg;
1da177e4 3892 dma_addr_t dma_address;
2e242fa9 3893 int trim_sg = 0;
1da177e4 3894
cedc9a47
JG
3895 /* we must lengthen transfers to end on a 32-bit boundary */
3896 qc->pad_len = sg->length & 3;
3897 if (qc->pad_len) {
3898 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3899 struct scatterlist *psg = &qc->pad_sgent;
3900
a4631474 3901 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3902
3903 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3904
3905 if (qc->tf.flags & ATA_TFLAG_WRITE)
3906 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3907 qc->pad_len);
3908
3909 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3910 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3911 /* trim sg */
3912 sg->length -= qc->pad_len;
2e242fa9
TH
3913 if (sg->length == 0)
3914 trim_sg = 1;
cedc9a47
JG
3915
3916 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3917 sg->length, qc->pad_len);
3918 }
3919
2e242fa9
TH
3920 if (trim_sg) {
3921 qc->n_elem--;
e1410f2d
JG
3922 goto skip_map;
3923 }
3924
2f1f610b 3925 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3926 sg->length, dir);
537a95d9
TH
3927 if (dma_mapping_error(dma_address)) {
3928 /* restore sg */
3929 sg->length += qc->pad_len;
1da177e4 3930 return -1;
537a95d9 3931 }
1da177e4
LT
3932
3933 sg_dma_address(sg) = dma_address;
32529e01 3934 sg_dma_len(sg) = sg->length;
1da177e4 3935
2e242fa9 3936skip_map:
1da177e4
LT
3937 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3938 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3939
3940 return 0;
3941}
3942
3943/**
0cba632b
JG
3944 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3945 * @qc: Command with scatter-gather table to be mapped.
3946 *
3947 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3948 *
3949 * LOCKING:
cca3974e 3950 * spin_lock_irqsave(host lock)
1da177e4
LT
3951 *
3952 * RETURNS:
0cba632b 3953 * Zero on success, negative on error.
1da177e4
LT
3954 *
3955 */
3956
3957static int ata_sg_setup(struct ata_queued_cmd *qc)
3958{
3959 struct ata_port *ap = qc->ap;
cedc9a47
JG
3960 struct scatterlist *sg = qc->__sg;
3961 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3962 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 3963
44877b4e 3964 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 3965 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3966
cedc9a47
JG
3967 /* we must lengthen transfers to end on a 32-bit boundary */
3968 qc->pad_len = lsg->length & 3;
3969 if (qc->pad_len) {
3970 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3971 struct scatterlist *psg = &qc->pad_sgent;
3972 unsigned int offset;
3973
a4631474 3974 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3975
3976 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3977
3978 /*
3979 * psg->page/offset are used to copy to-be-written
3980 * data in this function or read data in ata_sg_clean.
3981 */
3982 offset = lsg->offset + lsg->length - qc->pad_len;
3983 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3984 psg->offset = offset_in_page(offset);
3985
3986 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3987 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3988 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3989 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3990 }
3991
3992 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3993 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3994 /* trim last sg */
3995 lsg->length -= qc->pad_len;
e1410f2d
JG
3996 if (lsg->length == 0)
3997 trim_sg = 1;
cedc9a47
JG
3998
3999 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4000 qc->n_elem - 1, lsg->length, qc->pad_len);
4001 }
4002
e1410f2d
JG
4003 pre_n_elem = qc->n_elem;
4004 if (trim_sg && pre_n_elem)
4005 pre_n_elem--;
4006
4007 if (!pre_n_elem) {
4008 n_elem = 0;
4009 goto skip_map;
4010 }
4011
1da177e4 4012 dir = qc->dma_dir;
2f1f610b 4013 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4014 if (n_elem < 1) {
4015 /* restore last sg */
4016 lsg->length += qc->pad_len;
1da177e4 4017 return -1;
537a95d9 4018 }
1da177e4
LT
4019
4020 DPRINTK("%d sg elements mapped\n", n_elem);
4021
e1410f2d 4022skip_map:
1da177e4
LT
4023 qc->n_elem = n_elem;
4024
4025 return 0;
4026}
4027
0baab86b 4028/**
c893a3ae 4029 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4030 * @buf: Buffer to swap
4031 * @buf_words: Number of 16-bit words in buffer.
4032 *
4033 * Swap halves of 16-bit words if needed to convert from
4034 * little-endian byte order to native cpu byte order, or
4035 * vice-versa.
4036 *
4037 * LOCKING:
6f0ef4fa 4038 * Inherited from caller.
0baab86b 4039 */
1da177e4
LT
4040void swap_buf_le16(u16 *buf, unsigned int buf_words)
4041{
4042#ifdef __BIG_ENDIAN
4043 unsigned int i;
4044
4045 for (i = 0; i < buf_words; i++)
4046 buf[i] = le16_to_cpu(buf[i]);
4047#endif /* __BIG_ENDIAN */
4048}
4049
6ae4cfb5 4050/**
0d5ff566 4051 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4052 * @adev: device to target
6ae4cfb5
AL
4053 * @buf: data buffer
4054 * @buflen: buffer length
344babaa 4055 * @write_data: read/write
6ae4cfb5
AL
4056 *
4057 * Transfer data from/to the device data register by PIO.
4058 *
4059 * LOCKING:
4060 * Inherited from caller.
6ae4cfb5 4061 */
0d5ff566
TH
4062void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4063 unsigned int buflen, int write_data)
1da177e4 4064{
a6b2c5d4 4065 struct ata_port *ap = adev->ap;
6ae4cfb5 4066 unsigned int words = buflen >> 1;
1da177e4 4067
6ae4cfb5 4068 /* Transfer multiple of 2 bytes */
1da177e4 4069 if (write_data)
0d5ff566 4070 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4071 else
0d5ff566 4072 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4073
4074 /* Transfer trailing 1 byte, if any. */
4075 if (unlikely(buflen & 0x01)) {
4076 u16 align_buf[1] = { 0 };
4077 unsigned char *trailing_buf = buf + buflen - 1;
4078
4079 if (write_data) {
4080 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4081 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4082 } else {
0d5ff566 4083 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4084 memcpy(trailing_buf, align_buf, 1);
4085 }
4086 }
1da177e4
LT
4087}
4088
75e99585 4089/**
0d5ff566 4090 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4091 * @adev: device to target
4092 * @buf: data buffer
4093 * @buflen: buffer length
4094 * @write_data: read/write
4095 *
88574551 4096 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4097 * transfer with interrupts disabled.
4098 *
4099 * LOCKING:
4100 * Inherited from caller.
4101 */
0d5ff566
TH
4102void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4103 unsigned int buflen, int write_data)
75e99585
AC
4104{
4105 unsigned long flags;
4106 local_irq_save(flags);
0d5ff566 4107 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4108 local_irq_restore(flags);
4109}
4110
4111
6ae4cfb5 4112/**
5a5dbd18 4113 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4114 * @qc: Command on going
4115 *
5a5dbd18 4116 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4117 *
4118 * LOCKING:
4119 * Inherited from caller.
4120 */
4121
1da177e4
LT
4122static void ata_pio_sector(struct ata_queued_cmd *qc)
4123{
4124 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4125 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4126 struct ata_port *ap = qc->ap;
4127 struct page *page;
4128 unsigned int offset;
4129 unsigned char *buf;
4130
5a5dbd18 4131 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4132 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4133
4134 page = sg[qc->cursg].page;
726f0785 4135 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4136
4137 /* get the current page and offset */
4138 page = nth_page(page, (offset >> PAGE_SHIFT));
4139 offset %= PAGE_SIZE;
4140
1da177e4
LT
4141 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4142
91b8b313
AL
4143 if (PageHighMem(page)) {
4144 unsigned long flags;
4145
a6b2c5d4 4146 /* FIXME: use a bounce buffer */
91b8b313
AL
4147 local_irq_save(flags);
4148 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4149
91b8b313 4150 /* do the actual data transfer */
5a5dbd18 4151 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4152
91b8b313
AL
4153 kunmap_atomic(buf, KM_IRQ0);
4154 local_irq_restore(flags);
4155 } else {
4156 buf = page_address(page);
5a5dbd18 4157 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4158 }
1da177e4 4159
5a5dbd18
ML
4160 qc->curbytes += qc->sect_size;
4161 qc->cursg_ofs += qc->sect_size;
1da177e4 4162
726f0785 4163 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4164 qc->cursg++;
4165 qc->cursg_ofs = 0;
4166 }
1da177e4 4167}
1da177e4 4168
07f6f7d0 4169/**
5a5dbd18 4170 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4171 * @qc: Command on going
4172 *
5a5dbd18 4173 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4174 * ATA device for the DRQ request.
4175 *
4176 * LOCKING:
4177 * Inherited from caller.
4178 */
1da177e4 4179
07f6f7d0
AL
4180static void ata_pio_sectors(struct ata_queued_cmd *qc)
4181{
4182 if (is_multi_taskfile(&qc->tf)) {
4183 /* READ/WRITE MULTIPLE */
4184 unsigned int nsect;
4185
587005de 4186 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4187
5a5dbd18 4188 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4189 qc->dev->multi_count);
07f6f7d0
AL
4190 while (nsect--)
4191 ata_pio_sector(qc);
4192 } else
4193 ata_pio_sector(qc);
4194}
4195
c71c1857
AL
4196/**
4197 * atapi_send_cdb - Write CDB bytes to hardware
4198 * @ap: Port to which ATAPI device is attached.
4199 * @qc: Taskfile currently active
4200 *
4201 * When device has indicated its readiness to accept
4202 * a CDB, this function is called. Send the CDB.
4203 *
4204 * LOCKING:
4205 * caller.
4206 */
4207
4208static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4209{
4210 /* send SCSI cdb */
4211 DPRINTK("send cdb\n");
db024d53 4212 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4213
a6b2c5d4 4214 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4215 ata_altstatus(ap); /* flush */
4216
4217 switch (qc->tf.protocol) {
4218 case ATA_PROT_ATAPI:
4219 ap->hsm_task_state = HSM_ST;
4220 break;
4221 case ATA_PROT_ATAPI_NODATA:
4222 ap->hsm_task_state = HSM_ST_LAST;
4223 break;
4224 case ATA_PROT_ATAPI_DMA:
4225 ap->hsm_task_state = HSM_ST_LAST;
4226 /* initiate bmdma */
4227 ap->ops->bmdma_start(qc);
4228 break;
4229 }
1da177e4
LT
4230}
4231
6ae4cfb5
AL
4232/**
4233 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4234 * @qc: Command on going
4235 * @bytes: number of bytes
4236 *
4237 * Transfer Transfer data from/to the ATAPI device.
4238 *
4239 * LOCKING:
4240 * Inherited from caller.
4241 *
4242 */
4243
1da177e4
LT
4244static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4245{
4246 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4247 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4248 struct ata_port *ap = qc->ap;
4249 struct page *page;
4250 unsigned char *buf;
4251 unsigned int offset, count;
4252
563a6e1f 4253 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4254 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4255
4256next_sg:
563a6e1f 4257 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4258 /*
563a6e1f
AL
4259 * The end of qc->sg is reached and the device expects
4260 * more data to transfer. In order not to overrun qc->sg
4261 * and fulfill length specified in the byte count register,
4262 * - for read case, discard trailing data from the device
4263 * - for write case, padding zero data to the device
4264 */
4265 u16 pad_buf[1] = { 0 };
4266 unsigned int words = bytes >> 1;
4267 unsigned int i;
4268
4269 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4270 ata_dev_printk(qc->dev, KERN_WARNING,
4271 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4272
4273 for (i = 0; i < words; i++)
a6b2c5d4 4274 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4275
14be71f4 4276 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4277 return;
4278 }
4279
cedc9a47 4280 sg = &qc->__sg[qc->cursg];
1da177e4 4281
1da177e4
LT
4282 page = sg->page;
4283 offset = sg->offset + qc->cursg_ofs;
4284
4285 /* get the current page and offset */
4286 page = nth_page(page, (offset >> PAGE_SHIFT));
4287 offset %= PAGE_SIZE;
4288
6952df03 4289 /* don't overrun current sg */
32529e01 4290 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4291
4292 /* don't cross page boundaries */
4293 count = min(count, (unsigned int)PAGE_SIZE - offset);
4294
7282aa4b
AL
4295 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4296
91b8b313
AL
4297 if (PageHighMem(page)) {
4298 unsigned long flags;
4299
a6b2c5d4 4300 /* FIXME: use bounce buffer */
91b8b313
AL
4301 local_irq_save(flags);
4302 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4303
91b8b313 4304 /* do the actual data transfer */
a6b2c5d4 4305 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4306
91b8b313
AL
4307 kunmap_atomic(buf, KM_IRQ0);
4308 local_irq_restore(flags);
4309 } else {
4310 buf = page_address(page);
a6b2c5d4 4311 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4312 }
1da177e4
LT
4313
4314 bytes -= count;
4315 qc->curbytes += count;
4316 qc->cursg_ofs += count;
4317
32529e01 4318 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4319 qc->cursg++;
4320 qc->cursg_ofs = 0;
4321 }
4322
563a6e1f 4323 if (bytes)
1da177e4 4324 goto next_sg;
1da177e4
LT
4325}
4326
6ae4cfb5
AL
4327/**
4328 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4329 * @qc: Command on going
4330 *
4331 * Transfer Transfer data from/to the ATAPI device.
4332 *
4333 * LOCKING:
4334 * Inherited from caller.
6ae4cfb5
AL
4335 */
4336
1da177e4
LT
4337static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4338{
4339 struct ata_port *ap = qc->ap;
4340 struct ata_device *dev = qc->dev;
4341 unsigned int ireason, bc_lo, bc_hi, bytes;
4342 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4343
eec4c3f3
AL
4344 /* Abuse qc->result_tf for temp storage of intermediate TF
4345 * here to save some kernel stack usage.
4346 * For normal completion, qc->result_tf is not relevant. For
4347 * error, qc->result_tf is later overwritten by ata_qc_complete().
4348 * So, the correctness of qc->result_tf is not affected.
4349 */
4350 ap->ops->tf_read(ap, &qc->result_tf);
4351 ireason = qc->result_tf.nsect;
4352 bc_lo = qc->result_tf.lbam;
4353 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4354 bytes = (bc_hi << 8) | bc_lo;
4355
4356 /* shall be cleared to zero, indicating xfer of data */
4357 if (ireason & (1 << 0))
4358 goto err_out;
4359
4360 /* make sure transfer direction matches expected */
4361 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4362 if (do_write != i_write)
4363 goto err_out;
4364
44877b4e 4365 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4366
1da177e4
LT
4367 __atapi_pio_bytes(qc, bytes);
4368
4369 return;
4370
4371err_out:
f15a1daf 4372 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4373 qc->err_mask |= AC_ERR_HSM;
14be71f4 4374 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4375}
4376
4377/**
c234fb00
AL
4378 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4379 * @ap: the target ata_port
4380 * @qc: qc on going
1da177e4 4381 *
c234fb00
AL
4382 * RETURNS:
4383 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4384 */
c234fb00
AL
4385
4386static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4387{
c234fb00
AL
4388 if (qc->tf.flags & ATA_TFLAG_POLLING)
4389 return 1;
1da177e4 4390
c234fb00
AL
4391 if (ap->hsm_task_state == HSM_ST_FIRST) {
4392 if (qc->tf.protocol == ATA_PROT_PIO &&
4393 (qc->tf.flags & ATA_TFLAG_WRITE))
4394 return 1;
1da177e4 4395
c234fb00
AL
4396 if (is_atapi_taskfile(&qc->tf) &&
4397 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4398 return 1;
fe79e683
AL
4399 }
4400
c234fb00
AL
4401 return 0;
4402}
1da177e4 4403
c17ea20d
TH
4404/**
4405 * ata_hsm_qc_complete - finish a qc running on standard HSM
4406 * @qc: Command to complete
4407 * @in_wq: 1 if called from workqueue, 0 otherwise
4408 *
4409 * Finish @qc which is running on standard HSM.
4410 *
4411 * LOCKING:
cca3974e 4412 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4413 * Otherwise, none on entry and grabs host lock.
4414 */
4415static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4416{
4417 struct ata_port *ap = qc->ap;
4418 unsigned long flags;
4419
4420 if (ap->ops->error_handler) {
4421 if (in_wq) {
ba6a1308 4422 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4423
cca3974e
JG
4424 /* EH might have kicked in while host lock is
4425 * released.
c17ea20d
TH
4426 */
4427 qc = ata_qc_from_tag(ap, qc->tag);
4428 if (qc) {
4429 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4430 ap->ops->irq_on(ap);
c17ea20d
TH
4431 ata_qc_complete(qc);
4432 } else
4433 ata_port_freeze(ap);
4434 }
4435
ba6a1308 4436 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4437 } else {
4438 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4439 ata_qc_complete(qc);
4440 else
4441 ata_port_freeze(ap);
4442 }
4443 } else {
4444 if (in_wq) {
ba6a1308 4445 spin_lock_irqsave(ap->lock, flags);
83625006 4446 ap->ops->irq_on(ap);
c17ea20d 4447 ata_qc_complete(qc);
ba6a1308 4448 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4449 } else
4450 ata_qc_complete(qc);
4451 }
1da177e4 4452
c81e29b4 4453 ata_altstatus(ap); /* flush */
c17ea20d
TH
4454}
4455
bb5cb290
AL
4456/**
4457 * ata_hsm_move - move the HSM to the next state.
4458 * @ap: the target ata_port
4459 * @qc: qc on going
4460 * @status: current device status
4461 * @in_wq: 1 if called from workqueue, 0 otherwise
4462 *
4463 * RETURNS:
4464 * 1 when poll next status needed, 0 otherwise.
4465 */
9a1004d0
TH
4466int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4467 u8 status, int in_wq)
e2cec771 4468{
bb5cb290
AL
4469 unsigned long flags = 0;
4470 int poll_next;
4471
6912ccd5
AL
4472 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4473
bb5cb290
AL
4474 /* Make sure ata_qc_issue_prot() does not throw things
4475 * like DMA polling into the workqueue. Notice that
4476 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4477 */
c234fb00 4478 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4479
e2cec771 4480fsm_start:
999bb6f4 4481 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4482 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4483
e2cec771
AL
4484 switch (ap->hsm_task_state) {
4485 case HSM_ST_FIRST:
bb5cb290
AL
4486 /* Send first data block or PACKET CDB */
4487
4488 /* If polling, we will stay in the work queue after
4489 * sending the data. Otherwise, interrupt handler
4490 * takes over after sending the data.
4491 */
4492 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4493
e2cec771 4494 /* check device status */
3655d1d3
AL
4495 if (unlikely((status & ATA_DRQ) == 0)) {
4496 /* handle BSY=0, DRQ=0 as error */
4497 if (likely(status & (ATA_ERR | ATA_DF)))
4498 /* device stops HSM for abort/error */
4499 qc->err_mask |= AC_ERR_DEV;
4500 else
4501 /* HSM violation. Let EH handle this */
4502 qc->err_mask |= AC_ERR_HSM;
4503
14be71f4 4504 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4505 goto fsm_start;
1da177e4
LT
4506 }
4507
71601958
AL
4508 /* Device should not ask for data transfer (DRQ=1)
4509 * when it finds something wrong.
eee6c32f
AL
4510 * We ignore DRQ here and stop the HSM by
4511 * changing hsm_task_state to HSM_ST_ERR and
4512 * let the EH abort the command or reset the device.
71601958
AL
4513 */
4514 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4515 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4516 "error, dev_stat 0x%X\n", status);
3655d1d3 4517 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4518 ap->hsm_task_state = HSM_ST_ERR;
4519 goto fsm_start;
71601958 4520 }
1da177e4 4521
bb5cb290
AL
4522 /* Send the CDB (atapi) or the first data block (ata pio out).
4523 * During the state transition, interrupt handler shouldn't
4524 * be invoked before the data transfer is complete and
4525 * hsm_task_state is changed. Hence, the following locking.
4526 */
4527 if (in_wq)
ba6a1308 4528 spin_lock_irqsave(ap->lock, flags);
1da177e4 4529
bb5cb290
AL
4530 if (qc->tf.protocol == ATA_PROT_PIO) {
4531 /* PIO data out protocol.
4532 * send first data block.
4533 */
0565c26d 4534
bb5cb290
AL
4535 /* ata_pio_sectors() might change the state
4536 * to HSM_ST_LAST. so, the state is changed here
4537 * before ata_pio_sectors().
4538 */
4539 ap->hsm_task_state = HSM_ST;
4540 ata_pio_sectors(qc);
4541 ata_altstatus(ap); /* flush */
4542 } else
4543 /* send CDB */
4544 atapi_send_cdb(ap, qc);
4545
4546 if (in_wq)
ba6a1308 4547 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4548
4549 /* if polling, ata_pio_task() handles the rest.
4550 * otherwise, interrupt handler takes over from here.
4551 */
e2cec771 4552 break;
1c848984 4553
e2cec771
AL
4554 case HSM_ST:
4555 /* complete command or read/write the data register */
4556 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4557 /* ATAPI PIO protocol */
4558 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4559 /* No more data to transfer or device error.
4560 * Device error will be tagged in HSM_ST_LAST.
4561 */
e2cec771
AL
4562 ap->hsm_task_state = HSM_ST_LAST;
4563 goto fsm_start;
4564 }
1da177e4 4565
71601958
AL
4566 /* Device should not ask for data transfer (DRQ=1)
4567 * when it finds something wrong.
eee6c32f
AL
4568 * We ignore DRQ here and stop the HSM by
4569 * changing hsm_task_state to HSM_ST_ERR and
4570 * let the EH abort the command or reset the device.
71601958
AL
4571 */
4572 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4573 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4574 "device error, dev_stat 0x%X\n",
4575 status);
3655d1d3 4576 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4577 ap->hsm_task_state = HSM_ST_ERR;
4578 goto fsm_start;
71601958 4579 }
1da177e4 4580
e2cec771 4581 atapi_pio_bytes(qc);
7fb6ec28 4582
e2cec771
AL
4583 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4584 /* bad ireason reported by device */
4585 goto fsm_start;
1da177e4 4586
e2cec771
AL
4587 } else {
4588 /* ATA PIO protocol */
4589 if (unlikely((status & ATA_DRQ) == 0)) {
4590 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4591 if (likely(status & (ATA_ERR | ATA_DF)))
4592 /* device stops HSM for abort/error */
4593 qc->err_mask |= AC_ERR_DEV;
4594 else
55a8e2c8
TH
4595 /* HSM violation. Let EH handle this.
4596 * Phantom devices also trigger this
4597 * condition. Mark hint.
4598 */
4599 qc->err_mask |= AC_ERR_HSM |
4600 AC_ERR_NODEV_HINT;
3655d1d3 4601
e2cec771
AL
4602 ap->hsm_task_state = HSM_ST_ERR;
4603 goto fsm_start;
4604 }
1da177e4 4605
eee6c32f
AL
4606 /* For PIO reads, some devices may ask for
4607 * data transfer (DRQ=1) alone with ERR=1.
4608 * We respect DRQ here and transfer one
4609 * block of junk data before changing the
4610 * hsm_task_state to HSM_ST_ERR.
4611 *
4612 * For PIO writes, ERR=1 DRQ=1 doesn't make
4613 * sense since the data block has been
4614 * transferred to the device.
71601958
AL
4615 */
4616 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4617 /* data might be corrputed */
4618 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4619
4620 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4621 ata_pio_sectors(qc);
4622 ata_altstatus(ap);
4623 status = ata_wait_idle(ap);
4624 }
4625
3655d1d3
AL
4626 if (status & (ATA_BUSY | ATA_DRQ))
4627 qc->err_mask |= AC_ERR_HSM;
4628
eee6c32f
AL
4629 /* ata_pio_sectors() might change the
4630 * state to HSM_ST_LAST. so, the state
4631 * is changed after ata_pio_sectors().
4632 */
4633 ap->hsm_task_state = HSM_ST_ERR;
4634 goto fsm_start;
71601958
AL
4635 }
4636
e2cec771
AL
4637 ata_pio_sectors(qc);
4638
4639 if (ap->hsm_task_state == HSM_ST_LAST &&
4640 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4641 /* all data read */
4642 ata_altstatus(ap);
52a32205 4643 status = ata_wait_idle(ap);
e2cec771
AL
4644 goto fsm_start;
4645 }
4646 }
4647
4648 ata_altstatus(ap); /* flush */
bb5cb290 4649 poll_next = 1;
1da177e4
LT
4650 break;
4651
14be71f4 4652 case HSM_ST_LAST:
6912ccd5
AL
4653 if (unlikely(!ata_ok(status))) {
4654 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4655 ap->hsm_task_state = HSM_ST_ERR;
4656 goto fsm_start;
4657 }
4658
4659 /* no more data to transfer */
4332a771 4660 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 4661 ap->print_id, qc->dev->devno, status);
e2cec771 4662
6912ccd5
AL
4663 WARN_ON(qc->err_mask);
4664
e2cec771 4665 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4666
e2cec771 4667 /* complete taskfile transaction */
c17ea20d 4668 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4669
4670 poll_next = 0;
1da177e4
LT
4671 break;
4672
14be71f4 4673 case HSM_ST_ERR:
e2cec771
AL
4674 /* make sure qc->err_mask is available to
4675 * know what's wrong and recover
4676 */
4677 WARN_ON(qc->err_mask == 0);
4678
4679 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4680
999bb6f4 4681 /* complete taskfile transaction */
c17ea20d 4682 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4683
4684 poll_next = 0;
e2cec771
AL
4685 break;
4686 default:
bb5cb290 4687 poll_next = 0;
6912ccd5 4688 BUG();
1da177e4
LT
4689 }
4690
bb5cb290 4691 return poll_next;
1da177e4
LT
4692}
4693
65f27f38 4694static void ata_pio_task(struct work_struct *work)
8061f5f0 4695{
65f27f38
DH
4696 struct ata_port *ap =
4697 container_of(work, struct ata_port, port_task.work);
4698 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 4699 u8 status;
a1af3734 4700 int poll_next;
8061f5f0 4701
7fb6ec28 4702fsm_start:
a1af3734 4703 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4704
a1af3734
AL
4705 /*
4706 * This is purely heuristic. This is a fast path.
4707 * Sometimes when we enter, BSY will be cleared in
4708 * a chk-status or two. If not, the drive is probably seeking
4709 * or something. Snooze for a couple msecs, then
4710 * chk-status again. If still busy, queue delayed work.
4711 */
4712 status = ata_busy_wait(ap, ATA_BUSY, 5);
4713 if (status & ATA_BUSY) {
4714 msleep(2);
4715 status = ata_busy_wait(ap, ATA_BUSY, 10);
4716 if (status & ATA_BUSY) {
31ce6dae 4717 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4718 return;
4719 }
8061f5f0
TH
4720 }
4721
a1af3734
AL
4722 /* move the HSM */
4723 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4724
a1af3734
AL
4725 /* another command or interrupt handler
4726 * may be running at this point.
4727 */
4728 if (poll_next)
7fb6ec28 4729 goto fsm_start;
8061f5f0
TH
4730}
4731
1da177e4
LT
4732/**
4733 * ata_qc_new - Request an available ATA command, for queueing
4734 * @ap: Port associated with device @dev
4735 * @dev: Device from whom we request an available command structure
4736 *
4737 * LOCKING:
0cba632b 4738 * None.
1da177e4
LT
4739 */
4740
4741static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4742{
4743 struct ata_queued_cmd *qc = NULL;
4744 unsigned int i;
4745
e3180499 4746 /* no command while frozen */
b51e9e5d 4747 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4748 return NULL;
4749
2ab7db1f
TH
4750 /* the last tag is reserved for internal command. */
4751 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4752 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4753 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4754 break;
4755 }
4756
4757 if (qc)
4758 qc->tag = i;
4759
4760 return qc;
4761}
4762
4763/**
4764 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4765 * @dev: Device from whom we request an available command structure
4766 *
4767 * LOCKING:
0cba632b 4768 * None.
1da177e4
LT
4769 */
4770
3373efd8 4771struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4772{
3373efd8 4773 struct ata_port *ap = dev->ap;
1da177e4
LT
4774 struct ata_queued_cmd *qc;
4775
4776 qc = ata_qc_new(ap);
4777 if (qc) {
1da177e4
LT
4778 qc->scsicmd = NULL;
4779 qc->ap = ap;
4780 qc->dev = dev;
1da177e4 4781
2c13b7ce 4782 ata_qc_reinit(qc);
1da177e4
LT
4783 }
4784
4785 return qc;
4786}
4787
1da177e4
LT
4788/**
4789 * ata_qc_free - free unused ata_queued_cmd
4790 * @qc: Command to complete
4791 *
4792 * Designed to free unused ata_queued_cmd object
4793 * in case something prevents using it.
4794 *
4795 * LOCKING:
cca3974e 4796 * spin_lock_irqsave(host lock)
1da177e4
LT
4797 */
4798void ata_qc_free(struct ata_queued_cmd *qc)
4799{
4ba946e9
TH
4800 struct ata_port *ap = qc->ap;
4801 unsigned int tag;
4802
a4631474 4803 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4804
4ba946e9
TH
4805 qc->flags = 0;
4806 tag = qc->tag;
4807 if (likely(ata_tag_valid(tag))) {
4ba946e9 4808 qc->tag = ATA_TAG_POISON;
6cec4a39 4809 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4810 }
1da177e4
LT
4811}
4812
76014427 4813void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4814{
dedaf2b0
TH
4815 struct ata_port *ap = qc->ap;
4816
a4631474
TH
4817 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4818 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4819
4820 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4821 ata_sg_clean(qc);
4822
7401abf2 4823 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4824 if (qc->tf.protocol == ATA_PROT_NCQ)
4825 ap->sactive &= ~(1 << qc->tag);
4826 else
4827 ap->active_tag = ATA_TAG_POISON;
7401abf2 4828
3f3791d3
AL
4829 /* atapi: mark qc as inactive to prevent the interrupt handler
4830 * from completing the command twice later, before the error handler
4831 * is called. (when rc != 0 and atapi request sense is needed)
4832 */
4833 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4834 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4835
1da177e4 4836 /* call completion callback */
77853bf2 4837 qc->complete_fn(qc);
1da177e4
LT
4838}
4839
39599a53
TH
4840static void fill_result_tf(struct ata_queued_cmd *qc)
4841{
4842 struct ata_port *ap = qc->ap;
4843
39599a53 4844 qc->result_tf.flags = qc->tf.flags;
4742d54f 4845 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
4846}
4847
f686bcb8
TH
4848/**
4849 * ata_qc_complete - Complete an active ATA command
4850 * @qc: Command to complete
4851 * @err_mask: ATA Status register contents
4852 *
4853 * Indicate to the mid and upper layers that an ATA
4854 * command has completed, with either an ok or not-ok status.
4855 *
4856 * LOCKING:
cca3974e 4857 * spin_lock_irqsave(host lock)
f686bcb8
TH
4858 */
4859void ata_qc_complete(struct ata_queued_cmd *qc)
4860{
4861 struct ata_port *ap = qc->ap;
4862
4863 /* XXX: New EH and old EH use different mechanisms to
4864 * synchronize EH with regular execution path.
4865 *
4866 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4867 * Normal execution path is responsible for not accessing a
4868 * failed qc. libata core enforces the rule by returning NULL
4869 * from ata_qc_from_tag() for failed qcs.
4870 *
4871 * Old EH depends on ata_qc_complete() nullifying completion
4872 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4873 * not synchronize with interrupt handler. Only PIO task is
4874 * taken care of.
4875 */
4876 if (ap->ops->error_handler) {
b51e9e5d 4877 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4878
4879 if (unlikely(qc->err_mask))
4880 qc->flags |= ATA_QCFLAG_FAILED;
4881
4882 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4883 if (!ata_tag_internal(qc->tag)) {
4884 /* always fill result TF for failed qc */
39599a53 4885 fill_result_tf(qc);
f686bcb8
TH
4886 ata_qc_schedule_eh(qc);
4887 return;
4888 }
4889 }
4890
4891 /* read result TF if requested */
4892 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4893 fill_result_tf(qc);
f686bcb8
TH
4894
4895 __ata_qc_complete(qc);
4896 } else {
4897 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4898 return;
4899
4900 /* read result TF if failed or requested */
4901 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4902 fill_result_tf(qc);
f686bcb8
TH
4903
4904 __ata_qc_complete(qc);
4905 }
4906}
4907
dedaf2b0
TH
4908/**
4909 * ata_qc_complete_multiple - Complete multiple qcs successfully
4910 * @ap: port in question
4911 * @qc_active: new qc_active mask
4912 * @finish_qc: LLDD callback invoked before completing a qc
4913 *
4914 * Complete in-flight commands. This functions is meant to be
4915 * called from low-level driver's interrupt routine to complete
4916 * requests normally. ap->qc_active and @qc_active is compared
4917 * and commands are completed accordingly.
4918 *
4919 * LOCKING:
cca3974e 4920 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4921 *
4922 * RETURNS:
4923 * Number of completed commands on success, -errno otherwise.
4924 */
4925int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4926 void (*finish_qc)(struct ata_queued_cmd *))
4927{
4928 int nr_done = 0;
4929 u32 done_mask;
4930 int i;
4931
4932 done_mask = ap->qc_active ^ qc_active;
4933
4934 if (unlikely(done_mask & qc_active)) {
4935 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4936 "(%08x->%08x)\n", ap->qc_active, qc_active);
4937 return -EINVAL;
4938 }
4939
4940 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4941 struct ata_queued_cmd *qc;
4942
4943 if (!(done_mask & (1 << i)))
4944 continue;
4945
4946 if ((qc = ata_qc_from_tag(ap, i))) {
4947 if (finish_qc)
4948 finish_qc(qc);
4949 ata_qc_complete(qc);
4950 nr_done++;
4951 }
4952 }
4953
4954 return nr_done;
4955}
4956
1da177e4
LT
4957static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4958{
4959 struct ata_port *ap = qc->ap;
4960
4961 switch (qc->tf.protocol) {
3dc1d881 4962 case ATA_PROT_NCQ:
1da177e4
LT
4963 case ATA_PROT_DMA:
4964 case ATA_PROT_ATAPI_DMA:
4965 return 1;
4966
4967 case ATA_PROT_ATAPI:
4968 case ATA_PROT_PIO:
1da177e4
LT
4969 if (ap->flags & ATA_FLAG_PIO_DMA)
4970 return 1;
4971
4972 /* fall through */
4973
4974 default:
4975 return 0;
4976 }
4977
4978 /* never reached */
4979}
4980
4981/**
4982 * ata_qc_issue - issue taskfile to device
4983 * @qc: command to issue to device
4984 *
4985 * Prepare an ATA command to submission to device.
4986 * This includes mapping the data into a DMA-able
4987 * area, filling in the S/G table, and finally
4988 * writing the taskfile to hardware, starting the command.
4989 *
4990 * LOCKING:
cca3974e 4991 * spin_lock_irqsave(host lock)
1da177e4 4992 */
8e0e694a 4993void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4994{
4995 struct ata_port *ap = qc->ap;
4996
dedaf2b0
TH
4997 /* Make sure only one non-NCQ command is outstanding. The
4998 * check is skipped for old EH because it reuses active qc to
4999 * request ATAPI sense.
5000 */
5001 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5002
5003 if (qc->tf.protocol == ATA_PROT_NCQ) {
5004 WARN_ON(ap->sactive & (1 << qc->tag));
5005 ap->sactive |= 1 << qc->tag;
5006 } else {
5007 WARN_ON(ap->sactive);
5008 ap->active_tag = qc->tag;
5009 }
5010
e4a70e76 5011 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5012 ap->qc_active |= 1 << qc->tag;
e4a70e76 5013
1da177e4
LT
5014 if (ata_should_dma_map(qc)) {
5015 if (qc->flags & ATA_QCFLAG_SG) {
5016 if (ata_sg_setup(qc))
8e436af9 5017 goto sg_err;
1da177e4
LT
5018 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5019 if (ata_sg_setup_one(qc))
8e436af9 5020 goto sg_err;
1da177e4
LT
5021 }
5022 } else {
5023 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5024 }
5025
5026 ap->ops->qc_prep(qc);
5027
8e0e694a
TH
5028 qc->err_mask |= ap->ops->qc_issue(qc);
5029 if (unlikely(qc->err_mask))
5030 goto err;
5031 return;
1da177e4 5032
8e436af9
TH
5033sg_err:
5034 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5035 qc->err_mask |= AC_ERR_SYSTEM;
5036err:
5037 ata_qc_complete(qc);
1da177e4
LT
5038}
5039
5040/**
5041 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5042 * @qc: command to issue to device
5043 *
5044 * Using various libata functions and hooks, this function
5045 * starts an ATA command. ATA commands are grouped into
5046 * classes called "protocols", and issuing each type of protocol
5047 * is slightly different.
5048 *
0baab86b
EF
5049 * May be used as the qc_issue() entry in ata_port_operations.
5050 *
1da177e4 5051 * LOCKING:
cca3974e 5052 * spin_lock_irqsave(host lock)
1da177e4
LT
5053 *
5054 * RETURNS:
9a3d9eb0 5055 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5056 */
5057
9a3d9eb0 5058unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5059{
5060 struct ata_port *ap = qc->ap;
5061
e50362ec
AL
5062 /* Use polling pio if the LLD doesn't handle
5063 * interrupt driven pio and atapi CDB interrupt.
5064 */
5065 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5066 switch (qc->tf.protocol) {
5067 case ATA_PROT_PIO:
e3472cbe 5068 case ATA_PROT_NODATA:
e50362ec
AL
5069 case ATA_PROT_ATAPI:
5070 case ATA_PROT_ATAPI_NODATA:
5071 qc->tf.flags |= ATA_TFLAG_POLLING;
5072 break;
5073 case ATA_PROT_ATAPI_DMA:
5074 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5075 /* see ata_dma_blacklisted() */
e50362ec
AL
5076 BUG();
5077 break;
5078 default:
5079 break;
5080 }
5081 }
5082
3d3cca37
TH
5083 /* Some controllers show flaky interrupt behavior after
5084 * setting xfer mode. Use polling instead.
5085 */
5086 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
5087 qc->tf.feature == SETFEATURES_XFER) &&
5088 (ap->flags & ATA_FLAG_SETXFER_POLLING))
5089 qc->tf.flags |= ATA_TFLAG_POLLING;
5090
312f7da2 5091 /* select the device */
1da177e4
LT
5092 ata_dev_select(ap, qc->dev->devno, 1, 0);
5093
312f7da2 5094 /* start the command */
1da177e4
LT
5095 switch (qc->tf.protocol) {
5096 case ATA_PROT_NODATA:
312f7da2
AL
5097 if (qc->tf.flags & ATA_TFLAG_POLLING)
5098 ata_qc_set_polling(qc);
5099
e5338254 5100 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5101 ap->hsm_task_state = HSM_ST_LAST;
5102
5103 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5104 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5105
1da177e4
LT
5106 break;
5107
5108 case ATA_PROT_DMA:
587005de 5109 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5110
1da177e4
LT
5111 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5112 ap->ops->bmdma_setup(qc); /* set up bmdma */
5113 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5114 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5115 break;
5116
312f7da2
AL
5117 case ATA_PROT_PIO:
5118 if (qc->tf.flags & ATA_TFLAG_POLLING)
5119 ata_qc_set_polling(qc);
1da177e4 5120
e5338254 5121 ata_tf_to_host(ap, &qc->tf);
312f7da2 5122
54f00389
AL
5123 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5124 /* PIO data out protocol */
5125 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5126 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5127
5128 /* always send first data block using
e27486db 5129 * the ata_pio_task() codepath.
54f00389 5130 */
312f7da2 5131 } else {
54f00389
AL
5132 /* PIO data in protocol */
5133 ap->hsm_task_state = HSM_ST;
5134
5135 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5136 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5137
5138 /* if polling, ata_pio_task() handles the rest.
5139 * otherwise, interrupt handler takes over from here.
5140 */
312f7da2
AL
5141 }
5142
1da177e4
LT
5143 break;
5144
1da177e4 5145 case ATA_PROT_ATAPI:
1da177e4 5146 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5147 if (qc->tf.flags & ATA_TFLAG_POLLING)
5148 ata_qc_set_polling(qc);
5149
e5338254 5150 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5151
312f7da2
AL
5152 ap->hsm_task_state = HSM_ST_FIRST;
5153
5154 /* send cdb by polling if no cdb interrupt */
5155 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5156 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5157 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5158 break;
5159
5160 case ATA_PROT_ATAPI_DMA:
587005de 5161 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5162
1da177e4
LT
5163 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5164 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5165 ap->hsm_task_state = HSM_ST_FIRST;
5166
5167 /* send cdb by polling if no cdb interrupt */
5168 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5169 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5170 break;
5171
5172 default:
5173 WARN_ON(1);
9a3d9eb0 5174 return AC_ERR_SYSTEM;
1da177e4
LT
5175 }
5176
5177 return 0;
5178}
5179
1da177e4
LT
5180/**
5181 * ata_host_intr - Handle host interrupt for given (port, task)
5182 * @ap: Port on which interrupt arrived (possibly...)
5183 * @qc: Taskfile currently active in engine
5184 *
5185 * Handle host interrupt for given queued command. Currently,
5186 * only DMA interrupts are handled. All other commands are
5187 * handled via polling with interrupts disabled (nIEN bit).
5188 *
5189 * LOCKING:
cca3974e 5190 * spin_lock_irqsave(host lock)
1da177e4
LT
5191 *
5192 * RETURNS:
5193 * One if interrupt was handled, zero if not (shared irq).
5194 */
5195
5196inline unsigned int ata_host_intr (struct ata_port *ap,
5197 struct ata_queued_cmd *qc)
5198{
ea54763f 5199 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5200 u8 status, host_stat = 0;
1da177e4 5201
312f7da2 5202 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5203 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5204
312f7da2
AL
5205 /* Check whether we are expecting interrupt in this state */
5206 switch (ap->hsm_task_state) {
5207 case HSM_ST_FIRST:
6912ccd5
AL
5208 /* Some pre-ATAPI-4 devices assert INTRQ
5209 * at this state when ready to receive CDB.
5210 */
1da177e4 5211
312f7da2
AL
5212 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5213 * The flag was turned on only for atapi devices.
5214 * No need to check is_atapi_taskfile(&qc->tf) again.
5215 */
5216 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5217 goto idle_irq;
1da177e4 5218 break;
312f7da2
AL
5219 case HSM_ST_LAST:
5220 if (qc->tf.protocol == ATA_PROT_DMA ||
5221 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5222 /* check status of DMA engine */
5223 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5224 VPRINTK("ata%u: host_stat 0x%X\n",
5225 ap->print_id, host_stat);
312f7da2
AL
5226
5227 /* if it's not our irq... */
5228 if (!(host_stat & ATA_DMA_INTR))
5229 goto idle_irq;
5230
5231 /* before we do anything else, clear DMA-Start bit */
5232 ap->ops->bmdma_stop(qc);
a4f16610
AL
5233
5234 if (unlikely(host_stat & ATA_DMA_ERR)) {
5235 /* error when transfering data to/from memory */
5236 qc->err_mask |= AC_ERR_HOST_BUS;
5237 ap->hsm_task_state = HSM_ST_ERR;
5238 }
312f7da2
AL
5239 }
5240 break;
5241 case HSM_ST:
5242 break;
1da177e4
LT
5243 default:
5244 goto idle_irq;
5245 }
5246
312f7da2
AL
5247 /* check altstatus */
5248 status = ata_altstatus(ap);
5249 if (status & ATA_BUSY)
5250 goto idle_irq;
1da177e4 5251
312f7da2
AL
5252 /* check main status, clearing INTRQ */
5253 status = ata_chk_status(ap);
5254 if (unlikely(status & ATA_BUSY))
5255 goto idle_irq;
1da177e4 5256
312f7da2
AL
5257 /* ack bmdma irq events */
5258 ap->ops->irq_clear(ap);
1da177e4 5259
bb5cb290 5260 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5261
5262 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5263 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5264 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5265
1da177e4
LT
5266 return 1; /* irq handled */
5267
5268idle_irq:
5269 ap->stats.idle_irq++;
5270
5271#ifdef ATA_IRQ_TRAP
5272 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5273 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5274 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5275 return 1;
1da177e4
LT
5276 }
5277#endif
5278 return 0; /* irq not handled */
5279}
5280
5281/**
5282 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5283 * @irq: irq line (unused)
cca3974e 5284 * @dev_instance: pointer to our ata_host information structure
1da177e4 5285 *
0cba632b
JG
5286 * Default interrupt handler for PCI IDE devices. Calls
5287 * ata_host_intr() for each port that is not disabled.
5288 *
1da177e4 5289 * LOCKING:
cca3974e 5290 * Obtains host lock during operation.
1da177e4
LT
5291 *
5292 * RETURNS:
0cba632b 5293 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5294 */
5295
7d12e780 5296irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5297{
cca3974e 5298 struct ata_host *host = dev_instance;
1da177e4
LT
5299 unsigned int i;
5300 unsigned int handled = 0;
5301 unsigned long flags;
5302
5303 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5304 spin_lock_irqsave(&host->lock, flags);
1da177e4 5305
cca3974e 5306 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5307 struct ata_port *ap;
5308
cca3974e 5309 ap = host->ports[i];
c1389503 5310 if (ap &&
029f5468 5311 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5312 struct ata_queued_cmd *qc;
5313
5314 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5315 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5316 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5317 handled |= ata_host_intr(ap, qc);
5318 }
5319 }
5320
cca3974e 5321 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5322
5323 return IRQ_RETVAL(handled);
5324}
5325
34bf2170
TH
5326/**
5327 * sata_scr_valid - test whether SCRs are accessible
5328 * @ap: ATA port to test SCR accessibility for
5329 *
5330 * Test whether SCRs are accessible for @ap.
5331 *
5332 * LOCKING:
5333 * None.
5334 *
5335 * RETURNS:
5336 * 1 if SCRs are accessible, 0 otherwise.
5337 */
5338int sata_scr_valid(struct ata_port *ap)
5339{
5340 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5341}
5342
5343/**
5344 * sata_scr_read - read SCR register of the specified port
5345 * @ap: ATA port to read SCR for
5346 * @reg: SCR to read
5347 * @val: Place to store read value
5348 *
5349 * Read SCR register @reg of @ap into *@val. This function is
5350 * guaranteed to succeed if the cable type of the port is SATA
5351 * and the port implements ->scr_read.
5352 *
5353 * LOCKING:
5354 * None.
5355 *
5356 * RETURNS:
5357 * 0 on success, negative errno on failure.
5358 */
5359int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5360{
5361 if (sata_scr_valid(ap)) {
5362 *val = ap->ops->scr_read(ap, reg);
5363 return 0;
5364 }
5365 return -EOPNOTSUPP;
5366}
5367
5368/**
5369 * sata_scr_write - write SCR register of the specified port
5370 * @ap: ATA port to write SCR for
5371 * @reg: SCR to write
5372 * @val: value to write
5373 *
5374 * Write @val to SCR register @reg of @ap. This function is
5375 * guaranteed to succeed if the cable type of the port is SATA
5376 * and the port implements ->scr_read.
5377 *
5378 * LOCKING:
5379 * None.
5380 *
5381 * RETURNS:
5382 * 0 on success, negative errno on failure.
5383 */
5384int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5385{
5386 if (sata_scr_valid(ap)) {
5387 ap->ops->scr_write(ap, reg, val);
5388 return 0;
5389 }
5390 return -EOPNOTSUPP;
5391}
5392
5393/**
5394 * sata_scr_write_flush - write SCR register of the specified port and flush
5395 * @ap: ATA port to write SCR for
5396 * @reg: SCR to write
5397 * @val: value to write
5398 *
5399 * This function is identical to sata_scr_write() except that this
5400 * function performs flush after writing to the register.
5401 *
5402 * LOCKING:
5403 * None.
5404 *
5405 * RETURNS:
5406 * 0 on success, negative errno on failure.
5407 */
5408int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5409{
5410 if (sata_scr_valid(ap)) {
5411 ap->ops->scr_write(ap, reg, val);
5412 ap->ops->scr_read(ap, reg);
5413 return 0;
5414 }
5415 return -EOPNOTSUPP;
5416}
5417
5418/**
5419 * ata_port_online - test whether the given port is online
5420 * @ap: ATA port to test
5421 *
5422 * Test whether @ap is online. Note that this function returns 0
5423 * if online status of @ap cannot be obtained, so
5424 * ata_port_online(ap) != !ata_port_offline(ap).
5425 *
5426 * LOCKING:
5427 * None.
5428 *
5429 * RETURNS:
5430 * 1 if the port online status is available and online.
5431 */
5432int ata_port_online(struct ata_port *ap)
5433{
5434 u32 sstatus;
5435
5436 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5437 return 1;
5438 return 0;
5439}
5440
5441/**
5442 * ata_port_offline - test whether the given port is offline
5443 * @ap: ATA port to test
5444 *
5445 * Test whether @ap is offline. Note that this function returns
5446 * 0 if offline status of @ap cannot be obtained, so
5447 * ata_port_online(ap) != !ata_port_offline(ap).
5448 *
5449 * LOCKING:
5450 * None.
5451 *
5452 * RETURNS:
5453 * 1 if the port offline status is available and offline.
5454 */
5455int ata_port_offline(struct ata_port *ap)
5456{
5457 u32 sstatus;
5458
5459 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5460 return 1;
5461 return 0;
5462}
0baab86b 5463
77b08fb5 5464int ata_flush_cache(struct ata_device *dev)
9b847548 5465{
977e6b9f 5466 unsigned int err_mask;
9b847548
JA
5467 u8 cmd;
5468
5469 if (!ata_try_flush_cache(dev))
5470 return 0;
5471
6fc49adb 5472 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5473 cmd = ATA_CMD_FLUSH_EXT;
5474 else
5475 cmd = ATA_CMD_FLUSH;
5476
977e6b9f
TH
5477 err_mask = ata_do_simple_cmd(dev, cmd);
5478 if (err_mask) {
5479 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5480 return -EIO;
5481 }
5482
5483 return 0;
9b847548
JA
5484}
5485
6ffa01d8 5486#ifdef CONFIG_PM
cca3974e
JG
5487static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5488 unsigned int action, unsigned int ehi_flags,
5489 int wait)
500530f6
TH
5490{
5491 unsigned long flags;
5492 int i, rc;
5493
cca3974e
JG
5494 for (i = 0; i < host->n_ports; i++) {
5495 struct ata_port *ap = host->ports[i];
500530f6
TH
5496
5497 /* Previous resume operation might still be in
5498 * progress. Wait for PM_PENDING to clear.
5499 */
5500 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5501 ata_port_wait_eh(ap);
5502 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5503 }
5504
5505 /* request PM ops to EH */
5506 spin_lock_irqsave(ap->lock, flags);
5507
5508 ap->pm_mesg = mesg;
5509 if (wait) {
5510 rc = 0;
5511 ap->pm_result = &rc;
5512 }
5513
5514 ap->pflags |= ATA_PFLAG_PM_PENDING;
5515 ap->eh_info.action |= action;
5516 ap->eh_info.flags |= ehi_flags;
5517
5518 ata_port_schedule_eh(ap);
5519
5520 spin_unlock_irqrestore(ap->lock, flags);
5521
5522 /* wait and check result */
5523 if (wait) {
5524 ata_port_wait_eh(ap);
5525 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5526 if (rc)
5527 return rc;
5528 }
5529 }
5530
5531 return 0;
5532}
5533
5534/**
cca3974e
JG
5535 * ata_host_suspend - suspend host
5536 * @host: host to suspend
500530f6
TH
5537 * @mesg: PM message
5538 *
cca3974e 5539 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5540 * function requests EH to perform PM operations and waits for EH
5541 * to finish.
5542 *
5543 * LOCKING:
5544 * Kernel thread context (may sleep).
5545 *
5546 * RETURNS:
5547 * 0 on success, -errno on failure.
5548 */
cca3974e 5549int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6
TH
5550{
5551 int i, j, rc;
5552
cca3974e 5553 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
500530f6
TH
5554 if (rc)
5555 goto fail;
5556
5557 /* EH is quiescent now. Fail if we have any ready device.
5558 * This happens if hotplug occurs between completion of device
5559 * suspension and here.
5560 */
cca3974e
JG
5561 for (i = 0; i < host->n_ports; i++) {
5562 struct ata_port *ap = host->ports[i];
500530f6
TH
5563
5564 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5565 struct ata_device *dev = &ap->device[j];
5566
5567 if (ata_dev_ready(dev)) {
5568 ata_port_printk(ap, KERN_WARNING,
5569 "suspend failed, device %d "
5570 "still active\n", dev->devno);
5571 rc = -EBUSY;
5572 goto fail;
5573 }
5574 }
5575 }
5576
cca3974e 5577 host->dev->power.power_state = mesg;
500530f6
TH
5578 return 0;
5579
5580 fail:
cca3974e 5581 ata_host_resume(host);
500530f6
TH
5582 return rc;
5583}
5584
5585/**
cca3974e
JG
5586 * ata_host_resume - resume host
5587 * @host: host to resume
500530f6 5588 *
cca3974e 5589 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5590 * function requests EH to perform PM operations and returns.
5591 * Note that all resume operations are performed parallely.
5592 *
5593 * LOCKING:
5594 * Kernel thread context (may sleep).
5595 */
cca3974e 5596void ata_host_resume(struct ata_host *host)
500530f6 5597{
cca3974e
JG
5598 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5599 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5600 host->dev->power.power_state = PMSG_ON;
500530f6 5601}
6ffa01d8 5602#endif
500530f6 5603
c893a3ae
RD
5604/**
5605 * ata_port_start - Set port up for dma.
5606 * @ap: Port to initialize
5607 *
5608 * Called just after data structures for each port are
5609 * initialized. Allocates space for PRD table.
5610 *
5611 * May be used as the port_start() entry in ata_port_operations.
5612 *
5613 * LOCKING:
5614 * Inherited from caller.
5615 */
f0d36efd 5616int ata_port_start(struct ata_port *ap)
1da177e4 5617{
2f1f610b 5618 struct device *dev = ap->dev;
6037d6bb 5619 int rc;
1da177e4 5620
f0d36efd
TH
5621 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5622 GFP_KERNEL);
1da177e4
LT
5623 if (!ap->prd)
5624 return -ENOMEM;
5625
6037d6bb 5626 rc = ata_pad_alloc(ap, dev);
f0d36efd 5627 if (rc)
6037d6bb 5628 return rc;
1da177e4 5629
f0d36efd
TH
5630 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5631 (unsigned long long)ap->prd_dma);
1da177e4
LT
5632 return 0;
5633}
5634
3ef3b43d
TH
5635/**
5636 * ata_dev_init - Initialize an ata_device structure
5637 * @dev: Device structure to initialize
5638 *
5639 * Initialize @dev in preparation for probing.
5640 *
5641 * LOCKING:
5642 * Inherited from caller.
5643 */
5644void ata_dev_init(struct ata_device *dev)
5645{
5646 struct ata_port *ap = dev->ap;
72fa4b74
TH
5647 unsigned long flags;
5648
5a04bf4b
TH
5649 /* SATA spd limit is bound to the first device */
5650 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5651
72fa4b74
TH
5652 /* High bits of dev->flags are used to record warm plug
5653 * requests which occur asynchronously. Synchronize using
cca3974e 5654 * host lock.
72fa4b74 5655 */
ba6a1308 5656 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5657 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5658 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5659
72fa4b74
TH
5660 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5661 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5662 dev->pio_mask = UINT_MAX;
5663 dev->mwdma_mask = UINT_MAX;
5664 dev->udma_mask = UINT_MAX;
5665}
5666
1da177e4 5667/**
155a8a9c 5668 * ata_port_init - Initialize an ata_port structure
1da177e4 5669 * @ap: Structure to initialize
cca3974e 5670 * @host: Collection of hosts to which @ap belongs
1da177e4
LT
5671 * @ent: Probe information provided by low-level driver
5672 * @port_no: Port number associated with this ata_port
5673 *
155a8a9c 5674 * Initialize a new ata_port structure.
0cba632b 5675 *
1da177e4 5676 * LOCKING:
0cba632b 5677 * Inherited from caller.
1da177e4 5678 */
cca3974e 5679void ata_port_init(struct ata_port *ap, struct ata_host *host,
155a8a9c 5680 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5681{
5682 unsigned int i;
5683
cca3974e 5684 ap->lock = &host->lock;
198e0fed 5685 ap->flags = ATA_FLAG_DISABLED;
44877b4e 5686 ap->print_id = ata_print_id++;
1da177e4 5687 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 5688 ap->host = host;
2f1f610b 5689 ap->dev = ent->dev;
1da177e4 5690 ap->port_no = port_no;
fea63e38
TH
5691 if (port_no == 1 && ent->pinfo2) {
5692 ap->pio_mask = ent->pinfo2->pio_mask;
5693 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5694 ap->udma_mask = ent->pinfo2->udma_mask;
5695 ap->flags |= ent->pinfo2->flags;
5696 ap->ops = ent->pinfo2->port_ops;
5697 } else {
5698 ap->pio_mask = ent->pio_mask;
5699 ap->mwdma_mask = ent->mwdma_mask;
5700 ap->udma_mask = ent->udma_mask;
5701 ap->flags |= ent->port_flags;
5702 ap->ops = ent->port_ops;
5703 }
5a04bf4b 5704 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5705 ap->active_tag = ATA_TAG_POISON;
5706 ap->last_ctl = 0xFF;
bd5d825c
BP
5707
5708#if defined(ATA_VERBOSE_DEBUG)
5709 /* turn on all debugging levels */
5710 ap->msg_enable = 0x00FF;
5711#elif defined(ATA_DEBUG)
5712 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5713#else
0dd4b21f 5714 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5715#endif
1da177e4 5716
65f27f38
DH
5717 INIT_DELAYED_WORK(&ap->port_task, NULL);
5718 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5719 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5720 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5721 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5722
838df628
TH
5723 /* set cable type */
5724 ap->cbl = ATA_CBL_NONE;
5725 if (ap->flags & ATA_FLAG_SATA)
5726 ap->cbl = ATA_CBL_SATA;
5727
acf356b1
TH
5728 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5729 struct ata_device *dev = &ap->device[i];
38d87234 5730 dev->ap = ap;
72fa4b74 5731 dev->devno = i;
3ef3b43d 5732 ata_dev_init(dev);
acf356b1 5733 }
1da177e4
LT
5734
5735#ifdef ATA_IRQ_TRAP
5736 ap->stats.unhandled_irq = 1;
5737 ap->stats.idle_irq = 1;
5738#endif
5739
5740 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5741}
5742
155a8a9c 5743/**
4608c160
TH
5744 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5745 * @ap: ATA port to initialize SCSI host for
5746 * @shost: SCSI host associated with @ap
155a8a9c 5747 *
4608c160 5748 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5749 *
5750 * LOCKING:
5751 * Inherited from caller.
5752 */
4608c160 5753static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5754{
cca3974e 5755 ap->scsi_host = shost;
155a8a9c 5756
44877b4e 5757 shost->unique_id = ap->print_id;
4608c160
TH
5758 shost->max_id = 16;
5759 shost->max_lun = 1;
5760 shost->max_channel = 1;
f0ef88ed 5761 shost->max_cmd_len = 16;
155a8a9c
BK
5762}
5763
1da177e4 5764/**
996139f1 5765 * ata_port_add - Attach low-level ATA driver to system
1da177e4 5766 * @ent: Information provided by low-level driver
cca3974e 5767 * @host: Collections of ports to which we add
1da177e4
LT
5768 * @port_no: Port number associated with this host
5769 *
0cba632b
JG
5770 * Attach low-level ATA driver to system.
5771 *
1da177e4 5772 * LOCKING:
0cba632b 5773 * PCI/etc. bus probe sem.
1da177e4
LT
5774 *
5775 * RETURNS:
0cba632b 5776 * New ata_port on success, for NULL on error.
1da177e4 5777 */
996139f1 5778static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
cca3974e 5779 struct ata_host *host,
1da177e4
LT
5780 unsigned int port_no)
5781{
996139f1 5782 struct Scsi_Host *shost;
1da177e4 5783 struct ata_port *ap;
1da177e4
LT
5784
5785 DPRINTK("ENTER\n");
aec5c3c1 5786
52783c5d 5787 if (!ent->port_ops->error_handler &&
cca3974e 5788 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
aec5c3c1
TH
5789 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5790 port_no);
5791 return NULL;
5792 }
5793
996139f1
JG
5794 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5795 if (!shost)
1da177e4
LT
5796 return NULL;
5797
996139f1 5798 shost->transportt = &ata_scsi_transport_template;
30afc84c 5799
996139f1 5800 ap = ata_shost_to_port(shost);
1da177e4 5801
cca3974e 5802 ata_port_init(ap, host, ent, port_no);
996139f1 5803 ata_port_init_shost(ap, shost);
1da177e4 5804
1da177e4 5805 return ap;
1da177e4
LT
5806}
5807
f0d36efd
TH
5808static void ata_host_release(struct device *gendev, void *res)
5809{
5810 struct ata_host *host = dev_get_drvdata(gendev);
5811 int i;
5812
5813 for (i = 0; i < host->n_ports; i++) {
5814 struct ata_port *ap = host->ports[i];
5815
1aa506e4 5816 if (ap && ap->ops->port_stop)
f0d36efd 5817 ap->ops->port_stop(ap);
f0d36efd
TH
5818 }
5819
5820 if (host->ops->host_stop)
5821 host->ops->host_stop(host);
1aa56cca 5822
1aa506e4
TH
5823 for (i = 0; i < host->n_ports; i++) {
5824 struct ata_port *ap = host->ports[i];
5825
5826 if (ap)
5827 scsi_host_put(ap->scsi_host);
5828
5829 host->ports[i] = NULL;
5830 }
5831
1aa56cca 5832 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5833}
5834
b03732f0 5835/**
cca3974e
JG
5836 * ata_sas_host_init - Initialize a host struct
5837 * @host: host to initialize
5838 * @dev: device host is attached to
5839 * @flags: host flags
5840 * @ops: port_ops
b03732f0
BK
5841 *
5842 * LOCKING:
5843 * PCI/etc. bus probe sem.
5844 *
5845 */
5846
cca3974e
JG
5847void ata_host_init(struct ata_host *host, struct device *dev,
5848 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 5849{
cca3974e
JG
5850 spin_lock_init(&host->lock);
5851 host->dev = dev;
5852 host->flags = flags;
5853 host->ops = ops;
b03732f0
BK
5854}
5855
1da177e4 5856/**
0cba632b
JG
5857 * ata_device_add - Register hardware device with ATA and SCSI layers
5858 * @ent: Probe information describing hardware device to be registered
5859 *
5860 * This function processes the information provided in the probe
5861 * information struct @ent, allocates the necessary ATA and SCSI
5862 * host information structures, initializes them, and registers
5863 * everything with requisite kernel subsystems.
5864 *
5865 * This function requests irqs, probes the ATA bus, and probes
5866 * the SCSI bus.
1da177e4
LT
5867 *
5868 * LOCKING:
0cba632b 5869 * PCI/etc. bus probe sem.
1da177e4
LT
5870 *
5871 * RETURNS:
0cba632b 5872 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5873 */
057ace5e 5874int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5875{
6d0500df 5876 unsigned int i;
1da177e4 5877 struct device *dev = ent->dev;
cca3974e 5878 struct ata_host *host;
39b07ce6 5879 int rc;
1da177e4
LT
5880
5881 DPRINTK("ENTER\n");
f20b16ff 5882
02f076aa
AC
5883 if (ent->irq == 0) {
5884 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5885 return 0;
5886 }
f0d36efd
TH
5887
5888 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5889 return 0;
5890
1da177e4 5891 /* alloc a container for our list of ATA ports (buses) */
f0d36efd
TH
5892 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5893 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
cca3974e 5894 if (!host)
f0d36efd
TH
5895 goto err_out;
5896 devres_add(dev, host);
5897 dev_set_drvdata(dev, host);
1da177e4 5898
cca3974e
JG
5899 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5900 host->n_ports = ent->n_ports;
5901 host->irq = ent->irq;
5902 host->irq2 = ent->irq2;
0d5ff566 5903 host->iomap = ent->iomap;
cca3974e 5904 host->private_data = ent->private_data;
1da177e4
LT
5905
5906 /* register each port bound to this device */
cca3974e 5907 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5908 struct ata_port *ap;
5909 unsigned long xfer_mode_mask;
2ec7df04 5910 int irq_line = ent->irq;
1da177e4 5911
cca3974e 5912 ap = ata_port_add(ent, host, i);
c38778c3 5913 host->ports[i] = ap;
1da177e4
LT
5914 if (!ap)
5915 goto err_out;
5916
dd5b06c4
TH
5917 /* dummy? */
5918 if (ent->dummy_port_mask & (1 << i)) {
5919 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5920 ap->ops = &ata_dummy_port_ops;
5921 continue;
5922 }
5923
5924 /* start port */
5925 rc = ap->ops->port_start(ap);
5926 if (rc) {
cca3974e
JG
5927 host->ports[i] = NULL;
5928 scsi_host_put(ap->scsi_host);
dd5b06c4
TH
5929 goto err_out;
5930 }
5931
2ec7df04
AC
5932 /* Report the secondary IRQ for second channel legacy */
5933 if (i == 1 && ent->irq2)
5934 irq_line = ent->irq2;
5935
1da177e4
LT
5936 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5937 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5938 (ap->pio_mask << ATA_SHIFT_PIO);
5939
5940 /* print per-port info to dmesg */
0d5ff566
TH
5941 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5942 "ctl 0x%p bmdma 0x%p irq %d\n",
f15a1daf
TH
5943 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5944 ata_mode_string(xfer_mode_mask),
5945 ap->ioaddr.cmd_addr,
5946 ap->ioaddr.ctl_addr,
5947 ap->ioaddr.bmdma_addr,
2ec7df04 5948 irq_line);
1da177e4 5949
0f0a3ad3
TH
5950 /* freeze port before requesting IRQ */
5951 ata_eh_freeze_port(ap);
1da177e4
LT
5952 }
5953
2ec7df04 5954 /* obtain irq, that may be shared between channels */
f0d36efd
TH
5955 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5956 ent->irq_flags, DRV_NAME, host);
39b07ce6
JG
5957 if (rc) {
5958 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5959 ent->irq, rc);
1da177e4 5960 goto err_out;
39b07ce6 5961 }
1da177e4 5962
2ec7df04
AC
5963 /* do we have a second IRQ for the other channel, eg legacy mode */
5964 if (ent->irq2) {
5965 /* We will get weird core code crashes later if this is true
5966 so trap it now */
5967 BUG_ON(ent->irq == ent->irq2);
5968
f0d36efd
TH
5969 rc = devm_request_irq(dev, ent->irq2,
5970 ent->port_ops->irq_handler, ent->irq_flags,
5971 DRV_NAME, host);
2ec7df04
AC
5972 if (rc) {
5973 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5974 ent->irq2, rc);
f0d36efd 5975 goto err_out;
2ec7df04
AC
5976 }
5977 }
5978
f0d36efd 5979 /* resource acquisition complete */
b878ca5d 5980 devres_remove_group(dev, ata_device_add);
f0d36efd 5981
1da177e4
LT
5982 /* perform each probe synchronously */
5983 DPRINTK("probe begin\n");
cca3974e
JG
5984 for (i = 0; i < host->n_ports; i++) {
5985 struct ata_port *ap = host->ports[i];
5a04bf4b 5986 u32 scontrol;
1da177e4
LT
5987 int rc;
5988
5a04bf4b
TH
5989 /* init sata_spd_limit to the current value */
5990 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5991 int spd = (scontrol >> 4) & 0xf;
5992 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5993 }
5994 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5995
cca3974e 5996 rc = scsi_add_host(ap->scsi_host, dev);
1da177e4 5997 if (rc) {
f15a1daf 5998 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5999 /* FIXME: do something useful here */
6000 /* FIXME: handle unconditional calls to
6001 * scsi_scan_host and ata_host_remove, below,
6002 * at the very least
6003 */
6004 }
3e706399 6005
52783c5d 6006 if (ap->ops->error_handler) {
1cdaf534 6007 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
6008 unsigned long flags;
6009
6010 ata_port_probe(ap);
6011
6012 /* kick EH for boot probing */
ba6a1308 6013 spin_lock_irqsave(ap->lock, flags);
3e706399 6014
1cdaf534
TH
6015 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6016 ehi->action |= ATA_EH_SOFTRESET;
6017 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 6018
b51e9e5d 6019 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
6020 ata_port_schedule_eh(ap);
6021
ba6a1308 6022 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
6023
6024 /* wait for EH to finish */
6025 ata_port_wait_eh(ap);
6026 } else {
44877b4e 6027 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
3e706399 6028 rc = ata_bus_probe(ap);
44877b4e 6029 DPRINTK("ata%u: bus probe end\n", ap->print_id);
3e706399
TH
6030
6031 if (rc) {
6032 /* FIXME: do something useful here?
6033 * Current libata behavior will
6034 * tear down everything when
6035 * the module is removed
6036 * or the h/w is unplugged.
6037 */
6038 }
6039 }
1da177e4
LT
6040 }
6041
6042 /* probes are done, now scan each port's disk(s) */
c893a3ae 6043 DPRINTK("host probe begin\n");
cca3974e
JG
6044 for (i = 0; i < host->n_ports; i++) {
6045 struct ata_port *ap = host->ports[i];
1da177e4 6046
644dd0cc 6047 ata_scsi_scan_host(ap);
1da177e4
LT
6048 }
6049
1da177e4
LT
6050 VPRINTK("EXIT, returning %u\n", ent->n_ports);
6051 return ent->n_ports; /* success */
6052
f0d36efd
TH
6053 err_out:
6054 devres_release_group(dev, ata_device_add);
f0d36efd 6055 VPRINTK("EXIT, returning %d\n", rc);
1da177e4
LT
6056 return 0;
6057}
6058
720ba126
TH
6059/**
6060 * ata_port_detach - Detach ATA port in prepration of device removal
6061 * @ap: ATA port to be detached
6062 *
6063 * Detach all ATA devices and the associated SCSI devices of @ap;
6064 * then, remove the associated SCSI host. @ap is guaranteed to
6065 * be quiescent on return from this function.
6066 *
6067 * LOCKING:
6068 * Kernel thread context (may sleep).
6069 */
6070void ata_port_detach(struct ata_port *ap)
6071{
6072 unsigned long flags;
6073 int i;
6074
6075 if (!ap->ops->error_handler)
c3cf30a9 6076 goto skip_eh;
720ba126
TH
6077
6078 /* tell EH we're leaving & flush EH */
ba6a1308 6079 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6080 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6081 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6082
6083 ata_port_wait_eh(ap);
6084
6085 /* EH is now guaranteed to see UNLOADING, so no new device
6086 * will be attached. Disable all existing devices.
6087 */
ba6a1308 6088 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6089
6090 for (i = 0; i < ATA_MAX_DEVICES; i++)
6091 ata_dev_disable(&ap->device[i]);
6092
ba6a1308 6093 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6094
6095 /* Final freeze & EH. All in-flight commands are aborted. EH
6096 * will be skipped and retrials will be terminated with bad
6097 * target.
6098 */
ba6a1308 6099 spin_lock_irqsave(ap->lock, flags);
720ba126 6100 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6101 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6102
6103 ata_port_wait_eh(ap);
6104
6105 /* Flush hotplug task. The sequence is similar to
6106 * ata_port_flush_task().
6107 */
6108 flush_workqueue(ata_aux_wq);
6109 cancel_delayed_work(&ap->hotplug_task);
6110 flush_workqueue(ata_aux_wq);
6111
c3cf30a9 6112 skip_eh:
720ba126 6113 /* remove the associated SCSI host */
cca3974e 6114 scsi_remove_host(ap->scsi_host);
720ba126
TH
6115}
6116
0529c159
TH
6117/**
6118 * ata_host_detach - Detach all ports of an ATA host
6119 * @host: Host to detach
6120 *
6121 * Detach all ports of @host.
6122 *
6123 * LOCKING:
6124 * Kernel thread context (may sleep).
6125 */
6126void ata_host_detach(struct ata_host *host)
6127{
6128 int i;
6129
6130 for (i = 0; i < host->n_ports; i++)
6131 ata_port_detach(host->ports[i]);
6132}
6133
f6d950e2
BK
6134struct ata_probe_ent *
6135ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
6136{
6137 struct ata_probe_ent *probe_ent;
6138
4d05447e 6139 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
f6d950e2
BK
6140 if (!probe_ent) {
6141 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
6142 kobject_name(&(dev->kobj)));
6143 return NULL;
6144 }
6145
6146 INIT_LIST_HEAD(&probe_ent->node);
6147 probe_ent->dev = dev;
6148
6149 probe_ent->sht = port->sht;
cca3974e 6150 probe_ent->port_flags = port->flags;
f6d950e2
BK
6151 probe_ent->pio_mask = port->pio_mask;
6152 probe_ent->mwdma_mask = port->mwdma_mask;
6153 probe_ent->udma_mask = port->udma_mask;
6154 probe_ent->port_ops = port->port_ops;
d639ca94 6155 probe_ent->private_data = port->private_data;
f6d950e2
BK
6156
6157 return probe_ent;
6158}
6159
1da177e4
LT
6160/**
6161 * ata_std_ports - initialize ioaddr with standard port offsets.
6162 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6163 *
6164 * Utility function which initializes data_addr, error_addr,
6165 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6166 * device_addr, status_addr, and command_addr to standard offsets
6167 * relative to cmd_addr.
6168 *
6169 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6170 */
0baab86b 6171
1da177e4
LT
6172void ata_std_ports(struct ata_ioports *ioaddr)
6173{
6174 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6175 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6176 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6177 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6178 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6179 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6180 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6181 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6182 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6183 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6184}
6185
0baab86b 6186
374b1873
JG
6187#ifdef CONFIG_PCI
6188
1da177e4
LT
6189/**
6190 * ata_pci_remove_one - PCI layer callback for device removal
6191 * @pdev: PCI device that was removed
6192 *
b878ca5d
TH
6193 * PCI layer indicates to libata via this hook that hot-unplug or
6194 * module unload event has occurred. Detach all ports. Resource
6195 * release is handled via devres.
1da177e4
LT
6196 *
6197 * LOCKING:
6198 * Inherited from PCI layer (may sleep).
6199 */
f0d36efd 6200void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6201{
6202 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6203 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6204
b878ca5d 6205 ata_host_detach(host);
1da177e4
LT
6206}
6207
6208/* move to PCI subsystem */
057ace5e 6209int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6210{
6211 unsigned long tmp = 0;
6212
6213 switch (bits->width) {
6214 case 1: {
6215 u8 tmp8 = 0;
6216 pci_read_config_byte(pdev, bits->reg, &tmp8);
6217 tmp = tmp8;
6218 break;
6219 }
6220 case 2: {
6221 u16 tmp16 = 0;
6222 pci_read_config_word(pdev, bits->reg, &tmp16);
6223 tmp = tmp16;
6224 break;
6225 }
6226 case 4: {
6227 u32 tmp32 = 0;
6228 pci_read_config_dword(pdev, bits->reg, &tmp32);
6229 tmp = tmp32;
6230 break;
6231 }
6232
6233 default:
6234 return -EINVAL;
6235 }
6236
6237 tmp &= bits->mask;
6238
6239 return (tmp == bits->val) ? 1 : 0;
6240}
9b847548 6241
6ffa01d8 6242#ifdef CONFIG_PM
3c5100c1 6243void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6244{
6245 pci_save_state(pdev);
4c90d971 6246 pci_disable_device(pdev);
500530f6 6247
4c90d971 6248 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6249 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6250}
6251
553c4aa6 6252int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6253{
553c4aa6
TH
6254 int rc;
6255
9b847548
JA
6256 pci_set_power_state(pdev, PCI_D0);
6257 pci_restore_state(pdev);
553c4aa6 6258
b878ca5d 6259 rc = pcim_enable_device(pdev);
553c4aa6
TH
6260 if (rc) {
6261 dev_printk(KERN_ERR, &pdev->dev,
6262 "failed to enable device after resume (%d)\n", rc);
6263 return rc;
6264 }
6265
9b847548 6266 pci_set_master(pdev);
553c4aa6 6267 return 0;
500530f6
TH
6268}
6269
3c5100c1 6270int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6271{
cca3974e 6272 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6273 int rc = 0;
6274
cca3974e 6275 rc = ata_host_suspend(host, mesg);
500530f6
TH
6276 if (rc)
6277 return rc;
6278
3c5100c1 6279 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6280
6281 return 0;
6282}
6283
6284int ata_pci_device_resume(struct pci_dev *pdev)
6285{
cca3974e 6286 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6287 int rc;
500530f6 6288
553c4aa6
TH
6289 rc = ata_pci_device_do_resume(pdev);
6290 if (rc == 0)
6291 ata_host_resume(host);
6292 return rc;
9b847548 6293}
6ffa01d8
TH
6294#endif /* CONFIG_PM */
6295
1da177e4
LT
6296#endif /* CONFIG_PCI */
6297
6298
1da177e4
LT
6299static int __init ata_init(void)
6300{
a8601e5f 6301 ata_probe_timeout *= HZ;
1da177e4
LT
6302 ata_wq = create_workqueue("ata");
6303 if (!ata_wq)
6304 return -ENOMEM;
6305
453b07ac
TH
6306 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6307 if (!ata_aux_wq) {
6308 destroy_workqueue(ata_wq);
6309 return -ENOMEM;
6310 }
6311
1da177e4
LT
6312 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6313 return 0;
6314}
6315
6316static void __exit ata_exit(void)
6317{
6318 destroy_workqueue(ata_wq);
453b07ac 6319 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6320}
6321
a4625085 6322subsys_initcall(ata_init);
1da177e4
LT
6323module_exit(ata_exit);
6324
67846b30 6325static unsigned long ratelimit_time;
34af946a 6326static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6327
6328int ata_ratelimit(void)
6329{
6330 int rc;
6331 unsigned long flags;
6332
6333 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6334
6335 if (time_after(jiffies, ratelimit_time)) {
6336 rc = 1;
6337 ratelimit_time = jiffies + (HZ/5);
6338 } else
6339 rc = 0;
6340
6341 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6342
6343 return rc;
6344}
6345
c22daff4
TH
6346/**
6347 * ata_wait_register - wait until register value changes
6348 * @reg: IO-mapped register
6349 * @mask: Mask to apply to read register value
6350 * @val: Wait condition
6351 * @interval_msec: polling interval in milliseconds
6352 * @timeout_msec: timeout in milliseconds
6353 *
6354 * Waiting for some bits of register to change is a common
6355 * operation for ATA controllers. This function reads 32bit LE
6356 * IO-mapped register @reg and tests for the following condition.
6357 *
6358 * (*@reg & mask) != val
6359 *
6360 * If the condition is met, it returns; otherwise, the process is
6361 * repeated after @interval_msec until timeout.
6362 *
6363 * LOCKING:
6364 * Kernel thread context (may sleep)
6365 *
6366 * RETURNS:
6367 * The final register value.
6368 */
6369u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6370 unsigned long interval_msec,
6371 unsigned long timeout_msec)
6372{
6373 unsigned long timeout;
6374 u32 tmp;
6375
6376 tmp = ioread32(reg);
6377
6378 /* Calculate timeout _after_ the first read to make sure
6379 * preceding writes reach the controller before starting to
6380 * eat away the timeout.
6381 */
6382 timeout = jiffies + (timeout_msec * HZ) / 1000;
6383
6384 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6385 msleep(interval_msec);
6386 tmp = ioread32(reg);
6387 }
6388
6389 return tmp;
6390}
6391
dd5b06c4
TH
6392/*
6393 * Dummy port_ops
6394 */
6395static void ata_dummy_noret(struct ata_port *ap) { }
6396static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6397static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6398
6399static u8 ata_dummy_check_status(struct ata_port *ap)
6400{
6401 return ATA_DRDY;
6402}
6403
6404static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6405{
6406 return AC_ERR_SYSTEM;
6407}
6408
6409const struct ata_port_operations ata_dummy_port_ops = {
6410 .port_disable = ata_port_disable,
6411 .check_status = ata_dummy_check_status,
6412 .check_altstatus = ata_dummy_check_status,
6413 .dev_select = ata_noop_dev_select,
6414 .qc_prep = ata_noop_qc_prep,
6415 .qc_issue = ata_dummy_qc_issue,
6416 .freeze = ata_dummy_noret,
6417 .thaw = ata_dummy_noret,
6418 .error_handler = ata_dummy_noret,
6419 .post_internal_cmd = ata_dummy_qc_noret,
6420 .irq_clear = ata_dummy_noret,
6421 .port_start = ata_dummy_ret0,
6422 .port_stop = ata_dummy_noret,
6423};
6424
1da177e4
LT
6425/*
6426 * libata is essentially a library of internal helper functions for
6427 * low-level ATA host controller drivers. As such, the API/ABI is
6428 * likely to change as new drivers are added and updated.
6429 * Do not depend on ABI/API stability.
6430 */
6431
e9c83914
TH
6432EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6433EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6434EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6435EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
1da177e4
LT
6436EXPORT_SYMBOL_GPL(ata_std_bios_param);
6437EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6438EXPORT_SYMBOL_GPL(ata_host_init);
1da177e4 6439EXPORT_SYMBOL_GPL(ata_device_add);
0529c159 6440EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6441EXPORT_SYMBOL_GPL(ata_sg_init);
6442EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6443EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6444EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6445EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6446EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6447EXPORT_SYMBOL_GPL(ata_tf_load);
6448EXPORT_SYMBOL_GPL(ata_tf_read);
6449EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6450EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6451EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6452EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6453EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6454EXPORT_SYMBOL_GPL(ata_check_status);
6455EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6456EXPORT_SYMBOL_GPL(ata_exec_command);
6457EXPORT_SYMBOL_GPL(ata_port_start);
1da177e4 6458EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6459EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6460EXPORT_SYMBOL_GPL(ata_data_xfer);
6461EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6462EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 6463EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6464EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6465EXPORT_SYMBOL_GPL(ata_bmdma_start);
6466EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6467EXPORT_SYMBOL_GPL(ata_bmdma_status);
6468EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6469EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6470EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6471EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6472EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6473EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6474EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6475EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6476EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6477EXPORT_SYMBOL_GPL(sata_phy_debounce);
6478EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6479EXPORT_SYMBOL_GPL(sata_phy_reset);
6480EXPORT_SYMBOL_GPL(__sata_phy_reset);
6481EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6482EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6483EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6484EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6485EXPORT_SYMBOL_GPL(sata_std_hardreset);
6486EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6487EXPORT_SYMBOL_GPL(ata_dev_classify);
6488EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6489EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6490EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6491EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6492EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6493EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6494EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6495EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6496EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6497EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6498EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6499EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6500EXPORT_SYMBOL_GPL(sata_scr_valid);
6501EXPORT_SYMBOL_GPL(sata_scr_read);
6502EXPORT_SYMBOL_GPL(sata_scr_write);
6503EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6504EXPORT_SYMBOL_GPL(ata_port_online);
6505EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6506#ifdef CONFIG_PM
cca3974e
JG
6507EXPORT_SYMBOL_GPL(ata_host_suspend);
6508EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6509#endif /* CONFIG_PM */
6a62a04d
TH
6510EXPORT_SYMBOL_GPL(ata_id_string);
6511EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6512EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6513EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6514EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6515
1bc4ccff 6516EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6517EXPORT_SYMBOL_GPL(ata_timing_compute);
6518EXPORT_SYMBOL_GPL(ata_timing_merge);
6519
1da177e4
LT
6520#ifdef CONFIG_PCI
6521EXPORT_SYMBOL_GPL(pci_test_config_bits);
6522EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6523EXPORT_SYMBOL_GPL(ata_pci_init_one);
6524EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6525#ifdef CONFIG_PM
500530f6
TH
6526EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6527EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6528EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6529EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6530#endif /* CONFIG_PM */
67951ade
AC
6531EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6532EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6533#endif /* CONFIG_PCI */
9b847548 6534
6ffa01d8 6535#ifdef CONFIG_PM
9b847548
JA
6536EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6537EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6ffa01d8 6538#endif /* CONFIG_PM */
ece1d636 6539
ece1d636 6540EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6541EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6542EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6543EXPORT_SYMBOL_GPL(ata_port_freeze);
6544EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6545EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6546EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6547EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6548EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6549EXPORT_SYMBOL_GPL(ata_irq_on);
6550EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6551EXPORT_SYMBOL_GPL(ata_irq_ack);
6552EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6553EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6554
6555EXPORT_SYMBOL_GPL(ata_cable_40wire);
6556EXPORT_SYMBOL_GPL(ata_cable_80wire);
6557EXPORT_SYMBOL_GPL(ata_cable_unknown);
6558EXPORT_SYMBOL_GPL(ata_cable_sata);