]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
[libata, IDE] add new VIA bridge to VIA PATA drivers
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 74static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 75
f3187195 76unsigned int ata_print_id = 1;
1da177e4
LT
77static struct workqueue_struct *ata_wq;
78
453b07ac
TH
79struct workqueue_struct *ata_aux_wq;
80
418dc1f5 81int atapi_enabled = 1;
1623c81e
JG
82module_param(atapi_enabled, int, 0444);
83MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
95de719a
AL
85int atapi_dmadir = 0;
86module_param(atapi_dmadir, int, 0444);
87MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88
c3c013a2
JG
89int libata_fua = 0;
90module_param_named(fua, libata_fua, int, 0444);
91MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92
1e999736
AC
93static int ata_ignore_hpa = 0;
94module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
95MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
96
a8601e5f
AM
97static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
98module_param(ata_probe_timeout, int, 0444);
99MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
100
d7d0dad6
JG
101int libata_noacpi = 1;
102module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
103MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
104
1da177e4
LT
105MODULE_AUTHOR("Jeff Garzik");
106MODULE_DESCRIPTION("Library module for ATA devices");
107MODULE_LICENSE("GPL");
108MODULE_VERSION(DRV_VERSION);
109
0baab86b 110
1da177e4
LT
111/**
112 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
113 * @tf: Taskfile to convert
1da177e4 114 * @pmp: Port multiplier port
9977126c
TH
115 * @is_cmd: This FIS is for command
116 * @fis: Buffer into which data will output
1da177e4
LT
117 *
118 * Converts a standard ATA taskfile to a Serial ATA
119 * FIS structure (Register - Host to Device).
120 *
121 * LOCKING:
122 * Inherited from caller.
123 */
9977126c 124void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 125{
9977126c
TH
126 fis[0] = 0x27; /* Register - Host to Device FIS */
127 fis[1] = pmp & 0xf; /* Port multiplier number*/
128 if (is_cmd)
129 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
130
1da177e4
LT
131 fis[2] = tf->command;
132 fis[3] = tf->feature;
133
134 fis[4] = tf->lbal;
135 fis[5] = tf->lbam;
136 fis[6] = tf->lbah;
137 fis[7] = tf->device;
138
139 fis[8] = tf->hob_lbal;
140 fis[9] = tf->hob_lbam;
141 fis[10] = tf->hob_lbah;
142 fis[11] = tf->hob_feature;
143
144 fis[12] = tf->nsect;
145 fis[13] = tf->hob_nsect;
146 fis[14] = 0;
147 fis[15] = tf->ctl;
148
149 fis[16] = 0;
150 fis[17] = 0;
151 fis[18] = 0;
152 fis[19] = 0;
153}
154
155/**
156 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
157 * @fis: Buffer from which data will be input
158 * @tf: Taskfile to output
159 *
e12a1be6 160 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
161 *
162 * LOCKING:
163 * Inherited from caller.
164 */
165
057ace5e 166void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
167{
168 tf->command = fis[2]; /* status */
169 tf->feature = fis[3]; /* error */
170
171 tf->lbal = fis[4];
172 tf->lbam = fis[5];
173 tf->lbah = fis[6];
174 tf->device = fis[7];
175
176 tf->hob_lbal = fis[8];
177 tf->hob_lbam = fis[9];
178 tf->hob_lbah = fis[10];
179
180 tf->nsect = fis[12];
181 tf->hob_nsect = fis[13];
182}
183
8cbd6df1
AL
184static const u8 ata_rw_cmds[] = {
185 /* pio multi */
186 ATA_CMD_READ_MULTI,
187 ATA_CMD_WRITE_MULTI,
188 ATA_CMD_READ_MULTI_EXT,
189 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
190 0,
191 0,
192 0,
193 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
194 /* pio */
195 ATA_CMD_PIO_READ,
196 ATA_CMD_PIO_WRITE,
197 ATA_CMD_PIO_READ_EXT,
198 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
199 0,
200 0,
201 0,
202 0,
8cbd6df1
AL
203 /* dma */
204 ATA_CMD_READ,
205 ATA_CMD_WRITE,
206 ATA_CMD_READ_EXT,
9a3dccc4
TH
207 ATA_CMD_WRITE_EXT,
208 0,
209 0,
210 0,
211 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 212};
1da177e4
LT
213
214/**
8cbd6df1 215 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
216 * @tf: command to examine and configure
217 * @dev: device tf belongs to
1da177e4 218 *
2e9edbf8 219 * Examine the device configuration and tf->flags to calculate
8cbd6df1 220 * the proper read/write commands and protocol to use.
1da177e4
LT
221 *
222 * LOCKING:
223 * caller.
224 */
bd056d7e 225static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 226{
9a3dccc4 227 u8 cmd;
1da177e4 228
9a3dccc4 229 int index, fua, lba48, write;
2e9edbf8 230
9a3dccc4 231 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
232 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
233 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 234
8cbd6df1
AL
235 if (dev->flags & ATA_DFLAG_PIO) {
236 tf->protocol = ATA_PROT_PIO;
9a3dccc4 237 index = dev->multi_count ? 0 : 8;
bd056d7e 238 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
239 /* Unable to use DMA due to host limitation */
240 tf->protocol = ATA_PROT_PIO;
0565c26d 241 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
242 } else {
243 tf->protocol = ATA_PROT_DMA;
9a3dccc4 244 index = 16;
8cbd6df1 245 }
1da177e4 246
9a3dccc4
TH
247 cmd = ata_rw_cmds[index + fua + lba48 + write];
248 if (cmd) {
249 tf->command = cmd;
250 return 0;
251 }
252 return -1;
1da177e4
LT
253}
254
35b649fe
TH
255/**
256 * ata_tf_read_block - Read block address from ATA taskfile
257 * @tf: ATA taskfile of interest
258 * @dev: ATA device @tf belongs to
259 *
260 * LOCKING:
261 * None.
262 *
263 * Read block address from @tf. This function can handle all
264 * three address formats - LBA, LBA48 and CHS. tf->protocol and
265 * flags select the address format to use.
266 *
267 * RETURNS:
268 * Block address read from @tf.
269 */
270u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
271{
272 u64 block = 0;
273
274 if (tf->flags & ATA_TFLAG_LBA) {
275 if (tf->flags & ATA_TFLAG_LBA48) {
276 block |= (u64)tf->hob_lbah << 40;
277 block |= (u64)tf->hob_lbam << 32;
278 block |= tf->hob_lbal << 24;
279 } else
280 block |= (tf->device & 0xf) << 24;
281
282 block |= tf->lbah << 16;
283 block |= tf->lbam << 8;
284 block |= tf->lbal;
285 } else {
286 u32 cyl, head, sect;
287
288 cyl = tf->lbam | (tf->lbah << 8);
289 head = tf->device & 0xf;
290 sect = tf->lbal;
291
292 block = (cyl * dev->heads + head) * dev->sectors + sect;
293 }
294
295 return block;
296}
297
bd056d7e
TH
298/**
299 * ata_build_rw_tf - Build ATA taskfile for given read/write request
300 * @tf: Target ATA taskfile
301 * @dev: ATA device @tf belongs to
302 * @block: Block address
303 * @n_block: Number of blocks
304 * @tf_flags: RW/FUA etc...
305 * @tag: tag
306 *
307 * LOCKING:
308 * None.
309 *
310 * Build ATA taskfile @tf for read/write request described by
311 * @block, @n_block, @tf_flags and @tag on @dev.
312 *
313 * RETURNS:
314 *
315 * 0 on success, -ERANGE if the request is too large for @dev,
316 * -EINVAL if the request is invalid.
317 */
318int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
319 u64 block, u32 n_block, unsigned int tf_flags,
320 unsigned int tag)
321{
322 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
323 tf->flags |= tf_flags;
324
6d1245bf 325 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
326 /* yay, NCQ */
327 if (!lba_48_ok(block, n_block))
328 return -ERANGE;
329
330 tf->protocol = ATA_PROT_NCQ;
331 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
332
333 if (tf->flags & ATA_TFLAG_WRITE)
334 tf->command = ATA_CMD_FPDMA_WRITE;
335 else
336 tf->command = ATA_CMD_FPDMA_READ;
337
338 tf->nsect = tag << 3;
339 tf->hob_feature = (n_block >> 8) & 0xff;
340 tf->feature = n_block & 0xff;
341
342 tf->hob_lbah = (block >> 40) & 0xff;
343 tf->hob_lbam = (block >> 32) & 0xff;
344 tf->hob_lbal = (block >> 24) & 0xff;
345 tf->lbah = (block >> 16) & 0xff;
346 tf->lbam = (block >> 8) & 0xff;
347 tf->lbal = block & 0xff;
348
349 tf->device = 1 << 6;
350 if (tf->flags & ATA_TFLAG_FUA)
351 tf->device |= 1 << 7;
352 } else if (dev->flags & ATA_DFLAG_LBA) {
353 tf->flags |= ATA_TFLAG_LBA;
354
355 if (lba_28_ok(block, n_block)) {
356 /* use LBA28 */
357 tf->device |= (block >> 24) & 0xf;
358 } else if (lba_48_ok(block, n_block)) {
359 if (!(dev->flags & ATA_DFLAG_LBA48))
360 return -ERANGE;
361
362 /* use LBA48 */
363 tf->flags |= ATA_TFLAG_LBA48;
364
365 tf->hob_nsect = (n_block >> 8) & 0xff;
366
367 tf->hob_lbah = (block >> 40) & 0xff;
368 tf->hob_lbam = (block >> 32) & 0xff;
369 tf->hob_lbal = (block >> 24) & 0xff;
370 } else
371 /* request too large even for LBA48 */
372 return -ERANGE;
373
374 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
375 return -EINVAL;
376
377 tf->nsect = n_block & 0xff;
378
379 tf->lbah = (block >> 16) & 0xff;
380 tf->lbam = (block >> 8) & 0xff;
381 tf->lbal = block & 0xff;
382
383 tf->device |= ATA_LBA;
384 } else {
385 /* CHS */
386 u32 sect, head, cyl, track;
387
388 /* The request -may- be too large for CHS addressing. */
389 if (!lba_28_ok(block, n_block))
390 return -ERANGE;
391
392 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
393 return -EINVAL;
394
395 /* Convert LBA to CHS */
396 track = (u32)block / dev->sectors;
397 cyl = track / dev->heads;
398 head = track % dev->heads;
399 sect = (u32)block % dev->sectors + 1;
400
401 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
402 (u32)block, track, cyl, head, sect);
403
404 /* Check whether the converted CHS can fit.
405 Cylinder: 0-65535
406 Head: 0-15
407 Sector: 1-255*/
408 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
409 return -ERANGE;
410
411 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
412 tf->lbal = sect;
413 tf->lbam = cyl;
414 tf->lbah = cyl >> 8;
415 tf->device |= head;
416 }
417
418 return 0;
419}
420
cb95d562
TH
421/**
422 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
423 * @pio_mask: pio_mask
424 * @mwdma_mask: mwdma_mask
425 * @udma_mask: udma_mask
426 *
427 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
428 * unsigned int xfer_mask.
429 *
430 * LOCKING:
431 * None.
432 *
433 * RETURNS:
434 * Packed xfer_mask.
435 */
436static unsigned int ata_pack_xfermask(unsigned int pio_mask,
437 unsigned int mwdma_mask,
438 unsigned int udma_mask)
439{
440 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
441 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
442 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
443}
444
c0489e4e
TH
445/**
446 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
447 * @xfer_mask: xfer_mask to unpack
448 * @pio_mask: resulting pio_mask
449 * @mwdma_mask: resulting mwdma_mask
450 * @udma_mask: resulting udma_mask
451 *
452 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
453 * Any NULL distination masks will be ignored.
454 */
455static void ata_unpack_xfermask(unsigned int xfer_mask,
456 unsigned int *pio_mask,
457 unsigned int *mwdma_mask,
458 unsigned int *udma_mask)
459{
460 if (pio_mask)
461 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
462 if (mwdma_mask)
463 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
464 if (udma_mask)
465 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
466}
467
cb95d562 468static const struct ata_xfer_ent {
be9a50c8 469 int shift, bits;
cb95d562
TH
470 u8 base;
471} ata_xfer_tbl[] = {
472 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
473 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
474 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
475 { -1, },
476};
477
478/**
479 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
480 * @xfer_mask: xfer_mask of interest
481 *
482 * Return matching XFER_* value for @xfer_mask. Only the highest
483 * bit of @xfer_mask is considered.
484 *
485 * LOCKING:
486 * None.
487 *
488 * RETURNS:
489 * Matching XFER_* value, 0 if no match found.
490 */
491static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
492{
493 int highbit = fls(xfer_mask) - 1;
494 const struct ata_xfer_ent *ent;
495
496 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
497 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
498 return ent->base + highbit - ent->shift;
499 return 0;
500}
501
502/**
503 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
504 * @xfer_mode: XFER_* of interest
505 *
506 * Return matching xfer_mask for @xfer_mode.
507 *
508 * LOCKING:
509 * None.
510 *
511 * RETURNS:
512 * Matching xfer_mask, 0 if no match found.
513 */
514static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
515{
516 const struct ata_xfer_ent *ent;
517
518 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
519 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
520 return 1 << (ent->shift + xfer_mode - ent->base);
521 return 0;
522}
523
524/**
525 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
526 * @xfer_mode: XFER_* of interest
527 *
528 * Return matching xfer_shift for @xfer_mode.
529 *
530 * LOCKING:
531 * None.
532 *
533 * RETURNS:
534 * Matching xfer_shift, -1 if no match found.
535 */
536static int ata_xfer_mode2shift(unsigned int xfer_mode)
537{
538 const struct ata_xfer_ent *ent;
539
540 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
541 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
542 return ent->shift;
543 return -1;
544}
545
1da177e4 546/**
1da7b0d0
TH
547 * ata_mode_string - convert xfer_mask to string
548 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
549 *
550 * Determine string which represents the highest speed
1da7b0d0 551 * (highest bit in @modemask).
1da177e4
LT
552 *
553 * LOCKING:
554 * None.
555 *
556 * RETURNS:
557 * Constant C string representing highest speed listed in
1da7b0d0 558 * @mode_mask, or the constant C string "<n/a>".
1da177e4 559 */
1da7b0d0 560static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 561{
75f554bc
TH
562 static const char * const xfer_mode_str[] = {
563 "PIO0",
564 "PIO1",
565 "PIO2",
566 "PIO3",
567 "PIO4",
b352e57d
AC
568 "PIO5",
569 "PIO6",
75f554bc
TH
570 "MWDMA0",
571 "MWDMA1",
572 "MWDMA2",
b352e57d
AC
573 "MWDMA3",
574 "MWDMA4",
75f554bc
TH
575 "UDMA/16",
576 "UDMA/25",
577 "UDMA/33",
578 "UDMA/44",
579 "UDMA/66",
580 "UDMA/100",
581 "UDMA/133",
582 "UDMA7",
583 };
1da7b0d0 584 int highbit;
1da177e4 585
1da7b0d0
TH
586 highbit = fls(xfer_mask) - 1;
587 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
588 return xfer_mode_str[highbit];
1da177e4 589 return "<n/a>";
1da177e4
LT
590}
591
4c360c81
TH
592static const char *sata_spd_string(unsigned int spd)
593{
594 static const char * const spd_str[] = {
595 "1.5 Gbps",
596 "3.0 Gbps",
597 };
598
599 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
600 return "<unknown>";
601 return spd_str[spd - 1];
602}
603
3373efd8 604void ata_dev_disable(struct ata_device *dev)
0b8efb0a 605{
09d7f9b0
TH
606 if (ata_dev_enabled(dev)) {
607 if (ata_msg_drv(dev->ap))
608 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
609 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
610 ATA_DNXFER_QUIET);
0b8efb0a
TH
611 dev->class++;
612 }
613}
614
1da177e4 615/**
0d5ff566 616 * ata_devchk - PATA device presence detection
1da177e4
LT
617 * @ap: ATA channel to examine
618 * @device: Device to examine (starting at zero)
619 *
620 * This technique was originally described in
621 * Hale Landis's ATADRVR (www.ata-atapi.com), and
622 * later found its way into the ATA/ATAPI spec.
623 *
624 * Write a pattern to the ATA shadow registers,
625 * and if a device is present, it will respond by
626 * correctly storing and echoing back the
627 * ATA shadow register contents.
628 *
629 * LOCKING:
630 * caller.
631 */
632
0d5ff566 633static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
634{
635 struct ata_ioports *ioaddr = &ap->ioaddr;
636 u8 nsect, lbal;
637
638 ap->ops->dev_select(ap, device);
639
0d5ff566
TH
640 iowrite8(0x55, ioaddr->nsect_addr);
641 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0xaa, ioaddr->nsect_addr);
644 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0x55, ioaddr->nsect_addr);
647 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 nsect = ioread8(ioaddr->nsect_addr);
650 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
651
652 if ((nsect == 0x55) && (lbal == 0xaa))
653 return 1; /* we found a device */
654
655 return 0; /* nothing found */
656}
657
1da177e4
LT
658/**
659 * ata_dev_classify - determine device type based on ATA-spec signature
660 * @tf: ATA taskfile register set for device to be identified
661 *
662 * Determine from taskfile register contents whether a device is
663 * ATA or ATAPI, as per "Signature and persistence" section
664 * of ATA/PI spec (volume 1, sect 5.14).
665 *
666 * LOCKING:
667 * None.
668 *
669 * RETURNS:
670 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
671 * the event of failure.
672 */
673
057ace5e 674unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
675{
676 /* Apple's open source Darwin code hints that some devices only
677 * put a proper signature into the LBA mid/high registers,
678 * So, we only check those. It's sufficient for uniqueness.
679 */
680
681 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
682 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
683 DPRINTK("found ATA device by sig\n");
684 return ATA_DEV_ATA;
685 }
686
687 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
688 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
689 DPRINTK("found ATAPI device by sig\n");
690 return ATA_DEV_ATAPI;
691 }
692
693 DPRINTK("unknown device\n");
694 return ATA_DEV_UNKNOWN;
695}
696
697/**
698 * ata_dev_try_classify - Parse returned ATA device signature
699 * @ap: ATA channel to examine
700 * @device: Device to examine (starting at zero)
b4dc7623 701 * @r_err: Value of error register on completion
1da177e4
LT
702 *
703 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
704 * an ATA/ATAPI-defined set of values is placed in the ATA
705 * shadow registers, indicating the results of device detection
706 * and diagnostics.
707 *
708 * Select the ATA device, and read the values from the ATA shadow
709 * registers. Then parse according to the Error register value,
710 * and the spec-defined values examined by ata_dev_classify().
711 *
712 * LOCKING:
713 * caller.
b4dc7623
TH
714 *
715 * RETURNS:
716 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
717 */
718
a619f981 719unsigned int
b4dc7623 720ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 721{
1da177e4
LT
722 struct ata_taskfile tf;
723 unsigned int class;
724 u8 err;
725
726 ap->ops->dev_select(ap, device);
727
728 memset(&tf, 0, sizeof(tf));
729
1da177e4 730 ap->ops->tf_read(ap, &tf);
0169e284 731 err = tf.feature;
b4dc7623
TH
732 if (r_err)
733 *r_err = err;
1da177e4 734
93590859
AC
735 /* see if device passed diags: if master then continue and warn later */
736 if (err == 0 && device == 0)
737 /* diagnostic fail : do nothing _YET_ */
738 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
739 else if (err == 1)
1da177e4
LT
740 /* do nothing */ ;
741 else if ((device == 0) && (err == 0x81))
742 /* do nothing */ ;
743 else
b4dc7623 744 return ATA_DEV_NONE;
1da177e4 745
b4dc7623 746 /* determine if device is ATA or ATAPI */
1da177e4 747 class = ata_dev_classify(&tf);
b4dc7623 748
1da177e4 749 if (class == ATA_DEV_UNKNOWN)
b4dc7623 750 return ATA_DEV_NONE;
1da177e4 751 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
752 return ATA_DEV_NONE;
753 return class;
1da177e4
LT
754}
755
756/**
6a62a04d 757 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
758 * @id: IDENTIFY DEVICE results we will examine
759 * @s: string into which data is output
760 * @ofs: offset into identify device page
761 * @len: length of string to return. must be an even number.
762 *
763 * The strings in the IDENTIFY DEVICE page are broken up into
764 * 16-bit chunks. Run through the string, and output each
765 * 8-bit chunk linearly, regardless of platform.
766 *
767 * LOCKING:
768 * caller.
769 */
770
6a62a04d
TH
771void ata_id_string(const u16 *id, unsigned char *s,
772 unsigned int ofs, unsigned int len)
1da177e4
LT
773{
774 unsigned int c;
775
776 while (len > 0) {
777 c = id[ofs] >> 8;
778 *s = c;
779 s++;
780
781 c = id[ofs] & 0xff;
782 *s = c;
783 s++;
784
785 ofs++;
786 len -= 2;
787 }
788}
789
0e949ff3 790/**
6a62a04d 791 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
792 * @id: IDENTIFY DEVICE results we will examine
793 * @s: string into which data is output
794 * @ofs: offset into identify device page
795 * @len: length of string to return. must be an odd number.
796 *
6a62a04d 797 * This function is identical to ata_id_string except that it
0e949ff3
TH
798 * trims trailing spaces and terminates the resulting string with
799 * null. @len must be actual maximum length (even number) + 1.
800 *
801 * LOCKING:
802 * caller.
803 */
6a62a04d
TH
804void ata_id_c_string(const u16 *id, unsigned char *s,
805 unsigned int ofs, unsigned int len)
0e949ff3
TH
806{
807 unsigned char *p;
808
809 WARN_ON(!(len & 1));
810
6a62a04d 811 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
812
813 p = s + strnlen(s, len - 1);
814 while (p > s && p[-1] == ' ')
815 p--;
816 *p = '\0';
817}
0baab86b 818
1e999736
AC
819static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
820{
821 u64 sectors = 0;
822
823 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
824 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
825 sectors |= (tf->hob_lbal & 0xff) << 24;
826 sectors |= (tf->lbah & 0xff) << 16;
827 sectors |= (tf->lbam & 0xff) << 8;
828 sectors |= (tf->lbal & 0xff);
829
830 return ++sectors;
831}
832
833static u64 ata_tf_to_lba(struct ata_taskfile *tf)
834{
835 u64 sectors = 0;
836
837 sectors |= (tf->device & 0x0f) << 24;
838 sectors |= (tf->lbah & 0xff) << 16;
839 sectors |= (tf->lbam & 0xff) << 8;
840 sectors |= (tf->lbal & 0xff);
841
842 return ++sectors;
843}
844
845/**
846 * ata_read_native_max_address_ext - LBA48 native max query
847 * @dev: Device to query
848 *
849 * Perform an LBA48 size query upon the device in question. Return the
850 * actual LBA48 size or zero if the command fails.
851 */
852
853static u64 ata_read_native_max_address_ext(struct ata_device *dev)
854{
855 unsigned int err;
856 struct ata_taskfile tf;
857
858 ata_tf_init(dev, &tf);
859
860 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
861 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
862 tf.protocol |= ATA_PROT_NODATA;
863 tf.device |= 0x40;
864
865 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
866 if (err)
867 return 0;
868
869 return ata_tf_to_lba48(&tf);
870}
871
872/**
873 * ata_read_native_max_address - LBA28 native max query
874 * @dev: Device to query
875 *
876 * Performa an LBA28 size query upon the device in question. Return the
877 * actual LBA28 size or zero if the command fails.
878 */
879
880static u64 ata_read_native_max_address(struct ata_device *dev)
881{
882 unsigned int err;
883 struct ata_taskfile tf;
884
885 ata_tf_init(dev, &tf);
886
887 tf.command = ATA_CMD_READ_NATIVE_MAX;
888 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
889 tf.protocol |= ATA_PROT_NODATA;
890 tf.device |= 0x40;
891
892 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
893 if (err)
894 return 0;
895
896 return ata_tf_to_lba(&tf);
897}
898
899/**
900 * ata_set_native_max_address_ext - LBA48 native max set
901 * @dev: Device to query
6b38d1d1 902 * @new_sectors: new max sectors value to set for the device
1e999736
AC
903 *
904 * Perform an LBA48 size set max upon the device in question. Return the
905 * actual LBA48 size or zero if the command fails.
906 */
907
908static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
909{
910 unsigned int err;
911 struct ata_taskfile tf;
912
913 new_sectors--;
914
915 ata_tf_init(dev, &tf);
916
917 tf.command = ATA_CMD_SET_MAX_EXT;
918 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
919 tf.protocol |= ATA_PROT_NODATA;
920 tf.device |= 0x40;
921
922 tf.lbal = (new_sectors >> 0) & 0xff;
923 tf.lbam = (new_sectors >> 8) & 0xff;
924 tf.lbah = (new_sectors >> 16) & 0xff;
925
926 tf.hob_lbal = (new_sectors >> 24) & 0xff;
927 tf.hob_lbam = (new_sectors >> 32) & 0xff;
928 tf.hob_lbah = (new_sectors >> 40) & 0xff;
929
930 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
931 if (err)
932 return 0;
933
934 return ata_tf_to_lba48(&tf);
935}
936
937/**
938 * ata_set_native_max_address - LBA28 native max set
939 * @dev: Device to query
6b38d1d1 940 * @new_sectors: new max sectors value to set for the device
1e999736
AC
941 *
942 * Perform an LBA28 size set max upon the device in question. Return the
943 * actual LBA28 size or zero if the command fails.
944 */
945
946static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
947{
948 unsigned int err;
949 struct ata_taskfile tf;
950
951 new_sectors--;
952
953 ata_tf_init(dev, &tf);
954
955 tf.command = ATA_CMD_SET_MAX;
956 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
957 tf.protocol |= ATA_PROT_NODATA;
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
962 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
963
964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
965 if (err)
966 return 0;
967
968 return ata_tf_to_lba(&tf);
969}
970
971/**
972 * ata_hpa_resize - Resize a device with an HPA set
973 * @dev: Device to resize
974 *
975 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
976 * it if required to the full size of the media. The caller must check
977 * the drive has the HPA feature set enabled.
978 */
979
980static u64 ata_hpa_resize(struct ata_device *dev)
981{
982 u64 sectors = dev->n_sectors;
983 u64 hpa_sectors;
a617c09f 984
1e999736
AC
985 if (ata_id_has_lba48(dev->id))
986 hpa_sectors = ata_read_native_max_address_ext(dev);
987 else
988 hpa_sectors = ata_read_native_max_address(dev);
989
1e999736
AC
990 if (hpa_sectors > sectors) {
991 ata_dev_printk(dev, KERN_INFO,
992 "Host Protected Area detected:\n"
993 "\tcurrent size: %lld sectors\n"
994 "\tnative size: %lld sectors\n",
bd1d5ec6 995 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
996
997 if (ata_ignore_hpa) {
998 if (ata_id_has_lba48(dev->id))
999 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1000 else
bd1d5ec6
AM
1001 hpa_sectors = ata_set_native_max_address(dev,
1002 hpa_sectors);
1e999736
AC
1003
1004 if (hpa_sectors) {
bd1d5ec6
AM
1005 ata_dev_printk(dev, KERN_INFO, "native size "
1006 "increased to %lld sectors\n",
1007 (long long)hpa_sectors);
1e999736
AC
1008 return hpa_sectors;
1009 }
1010 }
37301a55
TH
1011 } else if (hpa_sectors < sectors)
1012 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1013 "is smaller than sectors (%lld)\n", __FUNCTION__,
1014 (long long)hpa_sectors, (long long)sectors);
1015
1e999736
AC
1016 return sectors;
1017}
1018
2940740b
TH
1019static u64 ata_id_n_sectors(const u16 *id)
1020{
1021 if (ata_id_has_lba(id)) {
1022 if (ata_id_has_lba48(id))
1023 return ata_id_u64(id, 100);
1024 else
1025 return ata_id_u32(id, 60);
1026 } else {
1027 if (ata_id_current_chs_valid(id))
1028 return ata_id_u32(id, 57);
1029 else
1030 return id[1] * id[3] * id[6];
1031 }
1032}
1033
10305f0f
AC
1034/**
1035 * ata_id_to_dma_mode - Identify DMA mode from id block
1036 * @dev: device to identify
cc261267 1037 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1038 *
1039 * Set up the timing values for the device based upon the identify
1040 * reported values for the DMA mode. This function is used by drivers
1041 * which rely upon firmware configured modes, but wish to report the
1042 * mode correctly when possible.
1043 *
1044 * In addition we emit similarly formatted messages to the default
1045 * ata_dev_set_mode handler, in order to provide consistency of
1046 * presentation.
1047 */
1048
1049void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1050{
1051 unsigned int mask;
1052 u8 mode;
1053
1054 /* Pack the DMA modes */
1055 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1056 if (dev->id[53] & 0x04)
1057 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1058
1059 /* Select the mode in use */
1060 mode = ata_xfer_mask2mode(mask);
1061
1062 if (mode != 0) {
1063 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1064 ata_mode_string(mask));
1065 } else {
1066 /* SWDMA perhaps ? */
1067 mode = unknown;
1068 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1069 }
1070
1071 /* Configure the device reporting */
1072 dev->xfer_mode = mode;
1073 dev->xfer_shift = ata_xfer_mode2shift(mode);
1074}
1075
0baab86b
EF
1076/**
1077 * ata_noop_dev_select - Select device 0/1 on ATA bus
1078 * @ap: ATA channel to manipulate
1079 * @device: ATA device (numbered from zero) to select
1080 *
1081 * This function performs no actual function.
1082 *
1083 * May be used as the dev_select() entry in ata_port_operations.
1084 *
1085 * LOCKING:
1086 * caller.
1087 */
1da177e4
LT
1088void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1089{
1090}
1091
0baab86b 1092
1da177e4
LT
1093/**
1094 * ata_std_dev_select - Select device 0/1 on ATA bus
1095 * @ap: ATA channel to manipulate
1096 * @device: ATA device (numbered from zero) to select
1097 *
1098 * Use the method defined in the ATA specification to
1099 * make either device 0, or device 1, active on the
0baab86b
EF
1100 * ATA channel. Works with both PIO and MMIO.
1101 *
1102 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
1108void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1109{
1110 u8 tmp;
1111
1112 if (device == 0)
1113 tmp = ATA_DEVICE_OBS;
1114 else
1115 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1116
0d5ff566 1117 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1118 ata_pause(ap); /* needed; also flushes, for mmio */
1119}
1120
1121/**
1122 * ata_dev_select - Select device 0/1 on ATA bus
1123 * @ap: ATA channel to manipulate
1124 * @device: ATA device (numbered from zero) to select
1125 * @wait: non-zero to wait for Status register BSY bit to clear
1126 * @can_sleep: non-zero if context allows sleeping
1127 *
1128 * Use the method defined in the ATA specification to
1129 * make either device 0, or device 1, active on the
1130 * ATA channel.
1131 *
1132 * This is a high-level version of ata_std_dev_select(),
1133 * which additionally provides the services of inserting
1134 * the proper pauses and status polling, where needed.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
1139
1140void ata_dev_select(struct ata_port *ap, unsigned int device,
1141 unsigned int wait, unsigned int can_sleep)
1142{
88574551 1143 if (ata_msg_probe(ap))
44877b4e
TH
1144 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1145 "device %u, wait %u\n", device, wait);
1da177e4
LT
1146
1147 if (wait)
1148 ata_wait_idle(ap);
1149
1150 ap->ops->dev_select(ap, device);
1151
1152 if (wait) {
1153 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1154 msleep(150);
1155 ata_wait_idle(ap);
1156 }
1157}
1158
1159/**
1160 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1161 * @id: IDENTIFY DEVICE page to dump
1da177e4 1162 *
0bd3300a
TH
1163 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1164 * page.
1da177e4
LT
1165 *
1166 * LOCKING:
1167 * caller.
1168 */
1169
0bd3300a 1170static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1171{
1172 DPRINTK("49==0x%04x "
1173 "53==0x%04x "
1174 "63==0x%04x "
1175 "64==0x%04x "
1176 "75==0x%04x \n",
0bd3300a
TH
1177 id[49],
1178 id[53],
1179 id[63],
1180 id[64],
1181 id[75]);
1da177e4
LT
1182 DPRINTK("80==0x%04x "
1183 "81==0x%04x "
1184 "82==0x%04x "
1185 "83==0x%04x "
1186 "84==0x%04x \n",
0bd3300a
TH
1187 id[80],
1188 id[81],
1189 id[82],
1190 id[83],
1191 id[84]);
1da177e4
LT
1192 DPRINTK("88==0x%04x "
1193 "93==0x%04x\n",
0bd3300a
TH
1194 id[88],
1195 id[93]);
1da177e4
LT
1196}
1197
cb95d562
TH
1198/**
1199 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1200 * @id: IDENTIFY data to compute xfer mask from
1201 *
1202 * Compute the xfermask for this device. This is not as trivial
1203 * as it seems if we must consider early devices correctly.
1204 *
1205 * FIXME: pre IDE drive timing (do we care ?).
1206 *
1207 * LOCKING:
1208 * None.
1209 *
1210 * RETURNS:
1211 * Computed xfermask
1212 */
1213static unsigned int ata_id_xfermask(const u16 *id)
1214{
1215 unsigned int pio_mask, mwdma_mask, udma_mask;
1216
1217 /* Usual case. Word 53 indicates word 64 is valid */
1218 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1219 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1220 pio_mask <<= 3;
1221 pio_mask |= 0x7;
1222 } else {
1223 /* If word 64 isn't valid then Word 51 high byte holds
1224 * the PIO timing number for the maximum. Turn it into
1225 * a mask.
1226 */
7a0f1c8a 1227 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1228 if (mode < 5) /* Valid PIO range */
1229 pio_mask = (2 << mode) - 1;
1230 else
1231 pio_mask = 1;
cb95d562
TH
1232
1233 /* But wait.. there's more. Design your standards by
1234 * committee and you too can get a free iordy field to
1235 * process. However its the speeds not the modes that
1236 * are supported... Note drivers using the timing API
1237 * will get this right anyway
1238 */
1239 }
1240
1241 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1242
b352e57d
AC
1243 if (ata_id_is_cfa(id)) {
1244 /*
1245 * Process compact flash extended modes
1246 */
1247 int pio = id[163] & 0x7;
1248 int dma = (id[163] >> 3) & 7;
1249
1250 if (pio)
1251 pio_mask |= (1 << 5);
1252 if (pio > 1)
1253 pio_mask |= (1 << 6);
1254 if (dma)
1255 mwdma_mask |= (1 << 3);
1256 if (dma > 1)
1257 mwdma_mask |= (1 << 4);
1258 }
1259
fb21f0d0
TH
1260 udma_mask = 0;
1261 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1262 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1263
1264 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1265}
1266
86e45b6b
TH
1267/**
1268 * ata_port_queue_task - Queue port_task
1269 * @ap: The ata_port to queue port_task for
e2a7f77a 1270 * @fn: workqueue function to be scheduled
65f27f38 1271 * @data: data for @fn to use
e2a7f77a 1272 * @delay: delay time for workqueue function
86e45b6b
TH
1273 *
1274 * Schedule @fn(@data) for execution after @delay jiffies using
1275 * port_task. There is one port_task per port and it's the
1276 * user(low level driver)'s responsibility to make sure that only
1277 * one task is active at any given time.
1278 *
1279 * libata core layer takes care of synchronization between
1280 * port_task and EH. ata_port_queue_task() may be ignored for EH
1281 * synchronization.
1282 *
1283 * LOCKING:
1284 * Inherited from caller.
1285 */
65f27f38 1286void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1287 unsigned long delay)
1288{
65f27f38
DH
1289 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1290 ap->port_task_data = data;
86e45b6b 1291
45a66c1c
ON
1292 /* may fail if ata_port_flush_task() in progress */
1293 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1294}
1295
1296/**
1297 * ata_port_flush_task - Flush port_task
1298 * @ap: The ata_port to flush port_task for
1299 *
1300 * After this function completes, port_task is guranteed not to
1301 * be running or scheduled.
1302 *
1303 * LOCKING:
1304 * Kernel thread context (may sleep)
1305 */
1306void ata_port_flush_task(struct ata_port *ap)
1307{
86e45b6b
TH
1308 DPRINTK("ENTER\n");
1309
45a66c1c 1310 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1311
0dd4b21f
BP
1312 if (ata_msg_ctl(ap))
1313 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1314}
1315
7102d230 1316static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1317{
77853bf2 1318 struct completion *waiting = qc->private_data;
a2a7a662 1319
a2a7a662 1320 complete(waiting);
a2a7a662
TH
1321}
1322
1323/**
2432697b 1324 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1325 * @dev: Device to which the command is sent
1326 * @tf: Taskfile registers for the command and the result
d69cf37d 1327 * @cdb: CDB for packet command
a2a7a662 1328 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1329 * @sg: sg list for the data buffer of the command
1330 * @n_elem: Number of sg entries
a2a7a662
TH
1331 *
1332 * Executes libata internal command with timeout. @tf contains
1333 * command on entry and result on return. Timeout and error
1334 * conditions are reported via return value. No recovery action
1335 * is taken after a command times out. It's caller's duty to
1336 * clean up after timeout.
1337 *
1338 * LOCKING:
1339 * None. Should be called with kernel context, might sleep.
551e8889
TH
1340 *
1341 * RETURNS:
1342 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1343 */
2432697b
TH
1344unsigned ata_exec_internal_sg(struct ata_device *dev,
1345 struct ata_taskfile *tf, const u8 *cdb,
1346 int dma_dir, struct scatterlist *sg,
1347 unsigned int n_elem)
a2a7a662 1348{
3373efd8 1349 struct ata_port *ap = dev->ap;
a2a7a662
TH
1350 u8 command = tf->command;
1351 struct ata_queued_cmd *qc;
2ab7db1f 1352 unsigned int tag, preempted_tag;
dedaf2b0 1353 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1354 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1355 unsigned long flags;
77853bf2 1356 unsigned int err_mask;
d95a717f 1357 int rc;
a2a7a662 1358
ba6a1308 1359 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1360
e3180499 1361 /* no internal command while frozen */
b51e9e5d 1362 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1363 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1364 return AC_ERR_SYSTEM;
1365 }
1366
2ab7db1f 1367 /* initialize internal qc */
a2a7a662 1368
2ab7db1f
TH
1369 /* XXX: Tag 0 is used for drivers with legacy EH as some
1370 * drivers choke if any other tag is given. This breaks
1371 * ata_tag_internal() test for those drivers. Don't use new
1372 * EH stuff without converting to it.
1373 */
1374 if (ap->ops->error_handler)
1375 tag = ATA_TAG_INTERNAL;
1376 else
1377 tag = 0;
1378
6cec4a39 1379 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1380 BUG();
f69499f4 1381 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1382
1383 qc->tag = tag;
1384 qc->scsicmd = NULL;
1385 qc->ap = ap;
1386 qc->dev = dev;
1387 ata_qc_reinit(qc);
1388
1389 preempted_tag = ap->active_tag;
dedaf2b0
TH
1390 preempted_sactive = ap->sactive;
1391 preempted_qc_active = ap->qc_active;
2ab7db1f 1392 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1393 ap->sactive = 0;
1394 ap->qc_active = 0;
2ab7db1f
TH
1395
1396 /* prepare & issue qc */
a2a7a662 1397 qc->tf = *tf;
d69cf37d
TH
1398 if (cdb)
1399 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1400 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1401 qc->dma_dir = dma_dir;
1402 if (dma_dir != DMA_NONE) {
2432697b
TH
1403 unsigned int i, buflen = 0;
1404
1405 for (i = 0; i < n_elem; i++)
1406 buflen += sg[i].length;
1407
1408 ata_sg_init(qc, sg, n_elem);
49c80429 1409 qc->nbytes = buflen;
a2a7a662
TH
1410 }
1411
77853bf2 1412 qc->private_data = &wait;
a2a7a662
TH
1413 qc->complete_fn = ata_qc_complete_internal;
1414
8e0e694a 1415 ata_qc_issue(qc);
a2a7a662 1416
ba6a1308 1417 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1418
a8601e5f 1419 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1420
1421 ata_port_flush_task(ap);
41ade50c 1422
d95a717f 1423 if (!rc) {
ba6a1308 1424 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1425
1426 /* We're racing with irq here. If we lose, the
1427 * following test prevents us from completing the qc
d95a717f
TH
1428 * twice. If we win, the port is frozen and will be
1429 * cleaned up by ->post_internal_cmd().
a2a7a662 1430 */
77853bf2 1431 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1432 qc->err_mask |= AC_ERR_TIMEOUT;
1433
1434 if (ap->ops->error_handler)
1435 ata_port_freeze(ap);
1436 else
1437 ata_qc_complete(qc);
f15a1daf 1438
0dd4b21f
BP
1439 if (ata_msg_warn(ap))
1440 ata_dev_printk(dev, KERN_WARNING,
88574551 1441 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1442 }
1443
ba6a1308 1444 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1445 }
1446
d95a717f
TH
1447 /* do post_internal_cmd */
1448 if (ap->ops->post_internal_cmd)
1449 ap->ops->post_internal_cmd(qc);
1450
a51d644a
TH
1451 /* perform minimal error analysis */
1452 if (qc->flags & ATA_QCFLAG_FAILED) {
1453 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1454 qc->err_mask |= AC_ERR_DEV;
1455
1456 if (!qc->err_mask)
1457 qc->err_mask |= AC_ERR_OTHER;
1458
1459 if (qc->err_mask & ~AC_ERR_OTHER)
1460 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1461 }
1462
15869303 1463 /* finish up */
ba6a1308 1464 spin_lock_irqsave(ap->lock, flags);
15869303 1465
e61e0672 1466 *tf = qc->result_tf;
77853bf2
TH
1467 err_mask = qc->err_mask;
1468
1469 ata_qc_free(qc);
2ab7db1f 1470 ap->active_tag = preempted_tag;
dedaf2b0
TH
1471 ap->sactive = preempted_sactive;
1472 ap->qc_active = preempted_qc_active;
77853bf2 1473
1f7dd3e9
TH
1474 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1475 * Until those drivers are fixed, we detect the condition
1476 * here, fail the command with AC_ERR_SYSTEM and reenable the
1477 * port.
1478 *
1479 * Note that this doesn't change any behavior as internal
1480 * command failure results in disabling the device in the
1481 * higher layer for LLDDs without new reset/EH callbacks.
1482 *
1483 * Kill the following code as soon as those drivers are fixed.
1484 */
198e0fed 1485 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1486 err_mask |= AC_ERR_SYSTEM;
1487 ata_port_probe(ap);
1488 }
1489
ba6a1308 1490 spin_unlock_irqrestore(ap->lock, flags);
15869303 1491
77853bf2 1492 return err_mask;
a2a7a662
TH
1493}
1494
2432697b 1495/**
33480a0e 1496 * ata_exec_internal - execute libata internal command
2432697b
TH
1497 * @dev: Device to which the command is sent
1498 * @tf: Taskfile registers for the command and the result
1499 * @cdb: CDB for packet command
1500 * @dma_dir: Data tranfer direction of the command
1501 * @buf: Data buffer of the command
1502 * @buflen: Length of data buffer
1503 *
1504 * Wrapper around ata_exec_internal_sg() which takes simple
1505 * buffer instead of sg list.
1506 *
1507 * LOCKING:
1508 * None. Should be called with kernel context, might sleep.
1509 *
1510 * RETURNS:
1511 * Zero on success, AC_ERR_* mask on failure
1512 */
1513unsigned ata_exec_internal(struct ata_device *dev,
1514 struct ata_taskfile *tf, const u8 *cdb,
1515 int dma_dir, void *buf, unsigned int buflen)
1516{
33480a0e
TH
1517 struct scatterlist *psg = NULL, sg;
1518 unsigned int n_elem = 0;
2432697b 1519
33480a0e
TH
1520 if (dma_dir != DMA_NONE) {
1521 WARN_ON(!buf);
1522 sg_init_one(&sg, buf, buflen);
1523 psg = &sg;
1524 n_elem++;
1525 }
2432697b 1526
33480a0e 1527 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1528}
1529
977e6b9f
TH
1530/**
1531 * ata_do_simple_cmd - execute simple internal command
1532 * @dev: Device to which the command is sent
1533 * @cmd: Opcode to execute
1534 *
1535 * Execute a 'simple' command, that only consists of the opcode
1536 * 'cmd' itself, without filling any other registers
1537 *
1538 * LOCKING:
1539 * Kernel thread context (may sleep).
1540 *
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
e58eb583 1543 */
77b08fb5 1544unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1545{
1546 struct ata_taskfile tf;
e58eb583
TH
1547
1548 ata_tf_init(dev, &tf);
1549
1550 tf.command = cmd;
1551 tf.flags |= ATA_TFLAG_DEVICE;
1552 tf.protocol = ATA_PROT_NODATA;
1553
977e6b9f 1554 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1555}
1556
1bc4ccff
AC
1557/**
1558 * ata_pio_need_iordy - check if iordy needed
1559 * @adev: ATA device
1560 *
1561 * Check if the current speed of the device requires IORDY. Used
1562 * by various controllers for chip configuration.
1563 */
a617c09f 1564
1bc4ccff
AC
1565unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1566{
432729f0
AC
1567 /* Controller doesn't support IORDY. Probably a pointless check
1568 as the caller should know this */
1569 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1570 return 0;
432729f0
AC
1571 /* PIO3 and higher it is mandatory */
1572 if (adev->pio_mode > XFER_PIO_2)
1573 return 1;
1574 /* We turn it on when possible */
1575 if (ata_id_has_iordy(adev->id))
1bc4ccff 1576 return 1;
432729f0
AC
1577 return 0;
1578}
2e9edbf8 1579
432729f0
AC
1580/**
1581 * ata_pio_mask_no_iordy - Return the non IORDY mask
1582 * @adev: ATA device
1583 *
1584 * Compute the highest mode possible if we are not using iordy. Return
1585 * -1 if no iordy mode is available.
1586 */
a617c09f 1587
432729f0
AC
1588static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1589{
1bc4ccff 1590 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1591 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1592 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1593 /* Is the speed faster than the drive allows non IORDY ? */
1594 if (pio) {
1595 /* This is cycle times not frequency - watch the logic! */
1596 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1597 return 3 << ATA_SHIFT_PIO;
1598 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1599 }
1600 }
432729f0 1601 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1602}
1603
1da177e4 1604/**
49016aca 1605 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1606 * @dev: target device
1607 * @p_class: pointer to class of the target device (may be changed)
bff04647 1608 * @flags: ATA_READID_* flags
fe635c7e 1609 * @id: buffer to read IDENTIFY data into
1da177e4 1610 *
49016aca
TH
1611 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1612 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1613 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1614 * for pre-ATA4 drives.
1da177e4
LT
1615 *
1616 * LOCKING:
49016aca
TH
1617 * Kernel thread context (may sleep)
1618 *
1619 * RETURNS:
1620 * 0 on success, -errno otherwise.
1da177e4 1621 */
a9beec95 1622int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1623 unsigned int flags, u16 *id)
1da177e4 1624{
3373efd8 1625 struct ata_port *ap = dev->ap;
49016aca 1626 unsigned int class = *p_class;
a0123703 1627 struct ata_taskfile tf;
49016aca
TH
1628 unsigned int err_mask = 0;
1629 const char *reason;
54936f8b 1630 int may_fallback = 1, tried_spinup = 0;
49016aca 1631 int rc;
1da177e4 1632
0dd4b21f 1633 if (ata_msg_ctl(ap))
44877b4e 1634 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1635
49016aca 1636 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1637 retry:
3373efd8 1638 ata_tf_init(dev, &tf);
a0123703 1639
49016aca
TH
1640 switch (class) {
1641 case ATA_DEV_ATA:
a0123703 1642 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1643 break;
1644 case ATA_DEV_ATAPI:
a0123703 1645 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1646 break;
1647 default:
1648 rc = -ENODEV;
1649 reason = "unsupported class";
1650 goto err_out;
1da177e4
LT
1651 }
1652
a0123703 1653 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1654
1655 /* Some devices choke if TF registers contain garbage. Make
1656 * sure those are properly initialized.
1657 */
1658 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1659
1660 /* Device presence detection is unreliable on some
1661 * controllers. Always poll IDENTIFY if available.
1662 */
1663 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1664
3373efd8 1665 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1666 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1667 if (err_mask) {
800b3996 1668 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1669 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1670 ap->print_id, dev->devno);
55a8e2c8
TH
1671 return -ENOENT;
1672 }
1673
54936f8b
TH
1674 /* Device or controller might have reported the wrong
1675 * device class. Give a shot at the other IDENTIFY if
1676 * the current one is aborted by the device.
1677 */
1678 if (may_fallback &&
1679 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1680 may_fallback = 0;
1681
1682 if (class == ATA_DEV_ATA)
1683 class = ATA_DEV_ATAPI;
1684 else
1685 class = ATA_DEV_ATA;
1686 goto retry;
1687 }
1688
49016aca
TH
1689 rc = -EIO;
1690 reason = "I/O error";
1da177e4
LT
1691 goto err_out;
1692 }
1693
54936f8b
TH
1694 /* Falling back doesn't make sense if ID data was read
1695 * successfully at least once.
1696 */
1697 may_fallback = 0;
1698
49016aca 1699 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1700
49016aca 1701 /* sanity check */
a4f5749b 1702 rc = -EINVAL;
6070068b 1703 reason = "device reports invalid type";
a4f5749b
TH
1704
1705 if (class == ATA_DEV_ATA) {
1706 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1707 goto err_out;
1708 } else {
1709 if (ata_id_is_ata(id))
1710 goto err_out;
49016aca
TH
1711 }
1712
169439c2
ML
1713 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1714 tried_spinup = 1;
1715 /*
1716 * Drive powered-up in standby mode, and requires a specific
1717 * SET_FEATURES spin-up subcommand before it will accept
1718 * anything other than the original IDENTIFY command.
1719 */
1720 ata_tf_init(dev, &tf);
1721 tf.command = ATA_CMD_SET_FEATURES;
1722 tf.feature = SETFEATURES_SPINUP;
1723 tf.protocol = ATA_PROT_NODATA;
1724 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1725 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1726 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1727 rc = -EIO;
1728 reason = "SPINUP failed";
1729 goto err_out;
1730 }
1731 /*
1732 * If the drive initially returned incomplete IDENTIFY info,
1733 * we now must reissue the IDENTIFY command.
1734 */
1735 if (id[2] == 0x37c8)
1736 goto retry;
1737 }
1738
bff04647 1739 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1740 /*
1741 * The exact sequence expected by certain pre-ATA4 drives is:
1742 * SRST RESET
1743 * IDENTIFY
1744 * INITIALIZE DEVICE PARAMETERS
1745 * anything else..
1746 * Some drives were very specific about that exact sequence.
1747 */
1748 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1749 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1750 if (err_mask) {
1751 rc = -EIO;
1752 reason = "INIT_DEV_PARAMS failed";
1753 goto err_out;
1754 }
1755
1756 /* current CHS translation info (id[53-58]) might be
1757 * changed. reread the identify device info.
1758 */
bff04647 1759 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1760 goto retry;
1761 }
1762 }
1763
1764 *p_class = class;
fe635c7e 1765
49016aca
TH
1766 return 0;
1767
1768 err_out:
88574551 1769 if (ata_msg_warn(ap))
0dd4b21f 1770 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1771 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1772 return rc;
1773}
1774
3373efd8 1775static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1776{
3373efd8 1777 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1778}
1779
a6e6ce8e
TH
1780static void ata_dev_config_ncq(struct ata_device *dev,
1781 char *desc, size_t desc_sz)
1782{
1783 struct ata_port *ap = dev->ap;
1784 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1785
1786 if (!ata_id_has_ncq(dev->id)) {
1787 desc[0] = '\0';
1788 return;
1789 }
75683fe7 1790 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1791 snprintf(desc, desc_sz, "NCQ (not used)");
1792 return;
1793 }
a6e6ce8e 1794 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1795 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1796 dev->flags |= ATA_DFLAG_NCQ;
1797 }
1798
1799 if (hdepth >= ddepth)
1800 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1801 else
1802 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1803}
1804
49016aca 1805/**
ffeae418 1806 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1807 * @dev: Target device to configure
1808 *
1809 * Configure @dev according to @dev->id. Generic and low-level
1810 * driver specific fixups are also applied.
49016aca
TH
1811 *
1812 * LOCKING:
ffeae418
TH
1813 * Kernel thread context (may sleep)
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno otherwise
49016aca 1817 */
efdaedc4 1818int ata_dev_configure(struct ata_device *dev)
49016aca 1819{
3373efd8 1820 struct ata_port *ap = dev->ap;
6746544c
TH
1821 struct ata_eh_context *ehc = &ap->eh_context;
1822 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1823 const u16 *id = dev->id;
ff8854b2 1824 unsigned int xfer_mask;
b352e57d 1825 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1826 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1827 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1828 int rc;
49016aca 1829
0dd4b21f 1830 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1831 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1832 __FUNCTION__);
ffeae418 1833 return 0;
49016aca
TH
1834 }
1835
0dd4b21f 1836 if (ata_msg_probe(ap))
44877b4e 1837 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1838
75683fe7
TH
1839 /* set horkage */
1840 dev->horkage |= ata_dev_blacklisted(dev);
1841
6746544c
TH
1842 /* let ACPI work its magic */
1843 rc = ata_acpi_on_devcfg(dev);
1844 if (rc)
1845 return rc;
08573a86 1846
c39f5ebe 1847 /* print device capabilities */
0dd4b21f 1848 if (ata_msg_probe(ap))
88574551
TH
1849 ata_dev_printk(dev, KERN_DEBUG,
1850 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1851 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1852 __FUNCTION__,
f15a1daf
TH
1853 id[49], id[82], id[83], id[84],
1854 id[85], id[86], id[87], id[88]);
c39f5ebe 1855
208a9933 1856 /* initialize to-be-configured parameters */
ea1dd4e1 1857 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1858 dev->max_sectors = 0;
1859 dev->cdb_len = 0;
1860 dev->n_sectors = 0;
1861 dev->cylinders = 0;
1862 dev->heads = 0;
1863 dev->sectors = 0;
1864
1da177e4
LT
1865 /*
1866 * common ATA, ATAPI feature tests
1867 */
1868
ff8854b2 1869 /* find max transfer mode; for printk only */
1148c3a7 1870 xfer_mask = ata_id_xfermask(id);
1da177e4 1871
0dd4b21f
BP
1872 if (ata_msg_probe(ap))
1873 ata_dump_id(id);
1da177e4 1874
ef143d57
AL
1875 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1876 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1877 sizeof(fwrevbuf));
1878
1879 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1880 sizeof(modelbuf));
1881
1da177e4
LT
1882 /* ATA-specific feature tests */
1883 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1884 if (ata_id_is_cfa(id)) {
1885 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1886 ata_dev_printk(dev, KERN_WARNING,
1887 "supports DRM functions and may "
1888 "not be fully accessable.\n");
b352e57d
AC
1889 snprintf(revbuf, 7, "CFA");
1890 }
1891 else
1892 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1893
1148c3a7 1894 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1895
3f64f565
EM
1896 if (dev->id[59] & 0x100)
1897 dev->multi_count = dev->id[59] & 0xff;
1898
1148c3a7 1899 if (ata_id_has_lba(id)) {
4c2d721a 1900 const char *lba_desc;
a6e6ce8e 1901 char ncq_desc[20];
8bf62ece 1902
4c2d721a
TH
1903 lba_desc = "LBA";
1904 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1905 if (ata_id_has_lba48(id)) {
8bf62ece 1906 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1907 lba_desc = "LBA48";
6fc49adb
TH
1908
1909 if (dev->n_sectors >= (1UL << 28) &&
1910 ata_id_has_flush_ext(id))
1911 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1912 }
8bf62ece 1913
16c55b03
TH
1914 if (!(dev->horkage & ATA_HORKAGE_BROKEN_HPA) &&
1915 ata_id_hpa_enabled(dev->id))
1916 dev->n_sectors = ata_hpa_resize(dev);
1e999736 1917
a6e6ce8e
TH
1918 /* config NCQ */
1919 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1920
8bf62ece 1921 /* print device info to dmesg */
3f64f565
EM
1922 if (ata_msg_drv(ap) && print_info) {
1923 ata_dev_printk(dev, KERN_INFO,
1924 "%s: %s, %s, max %s\n",
1925 revbuf, modelbuf, fwrevbuf,
1926 ata_mode_string(xfer_mask));
1927 ata_dev_printk(dev, KERN_INFO,
1928 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1929 (unsigned long long)dev->n_sectors,
3f64f565
EM
1930 dev->multi_count, lba_desc, ncq_desc);
1931 }
ffeae418 1932 } else {
8bf62ece
AL
1933 /* CHS */
1934
1935 /* Default translation */
1148c3a7
TH
1936 dev->cylinders = id[1];
1937 dev->heads = id[3];
1938 dev->sectors = id[6];
8bf62ece 1939
1148c3a7 1940 if (ata_id_current_chs_valid(id)) {
8bf62ece 1941 /* Current CHS translation is valid. */
1148c3a7
TH
1942 dev->cylinders = id[54];
1943 dev->heads = id[55];
1944 dev->sectors = id[56];
8bf62ece
AL
1945 }
1946
1947 /* print device info to dmesg */
3f64f565 1948 if (ata_msg_drv(ap) && print_info) {
88574551 1949 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1950 "%s: %s, %s, max %s\n",
1951 revbuf, modelbuf, fwrevbuf,
1952 ata_mode_string(xfer_mask));
a84471fe 1953 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1954 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1955 (unsigned long long)dev->n_sectors,
1956 dev->multi_count, dev->cylinders,
1957 dev->heads, dev->sectors);
1958 }
07f6f7d0
AL
1959 }
1960
6e7846e9 1961 dev->cdb_len = 16;
1da177e4
LT
1962 }
1963
1964 /* ATAPI-specific feature tests */
2c13b7ce 1965 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1966 char *cdb_intr_string = "";
1967
1148c3a7 1968 rc = atapi_cdb_len(id);
1da177e4 1969 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1970 if (ata_msg_warn(ap))
88574551
TH
1971 ata_dev_printk(dev, KERN_WARNING,
1972 "unsupported CDB len\n");
ffeae418 1973 rc = -EINVAL;
1da177e4
LT
1974 goto err_out_nosup;
1975 }
6e7846e9 1976 dev->cdb_len = (unsigned int) rc;
1da177e4 1977
08a556db 1978 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1979 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1980 cdb_intr_string = ", CDB intr";
1981 }
312f7da2 1982
1da177e4 1983 /* print device info to dmesg */
5afc8142 1984 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1985 ata_dev_printk(dev, KERN_INFO,
1986 "ATAPI: %s, %s, max %s%s\n",
1987 modelbuf, fwrevbuf,
12436c30
TH
1988 ata_mode_string(xfer_mask),
1989 cdb_intr_string);
1da177e4
LT
1990 }
1991
914ed354
TH
1992 /* determine max_sectors */
1993 dev->max_sectors = ATA_MAX_SECTORS;
1994 if (dev->flags & ATA_DFLAG_LBA48)
1995 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1996
93590859
AC
1997 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1998 /* Let the user know. We don't want to disallow opens for
1999 rescue purposes, or in case the vendor is just a blithering
2000 idiot */
2001 if (print_info) {
2002 ata_dev_printk(dev, KERN_WARNING,
2003"Drive reports diagnostics failure. This may indicate a drive\n");
2004 ata_dev_printk(dev, KERN_WARNING,
2005"fault or invalid emulation. Contact drive vendor for information.\n");
2006 }
2007 }
2008
4b2f3ede 2009 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2010 if (ata_dev_knobble(dev)) {
5afc8142 2011 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2012 ata_dev_printk(dev, KERN_INFO,
2013 "applying bridge limits\n");
5a529139 2014 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2015 dev->max_sectors = ATA_MAX_SECTORS;
2016 }
2017
75683fe7 2018 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2019 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2020 dev->max_sectors);
18d6e9d5 2021
4b2f3ede 2022 if (ap->ops->dev_config)
cd0d3bbc 2023 ap->ops->dev_config(dev);
4b2f3ede 2024
0dd4b21f
BP
2025 if (ata_msg_probe(ap))
2026 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2027 __FUNCTION__, ata_chk_status(ap));
ffeae418 2028 return 0;
1da177e4
LT
2029
2030err_out_nosup:
0dd4b21f 2031 if (ata_msg_probe(ap))
88574551
TH
2032 ata_dev_printk(dev, KERN_DEBUG,
2033 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2034 return rc;
1da177e4
LT
2035}
2036
be0d18df 2037/**
2e41e8e6 2038 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2039 * @ap: port
2040 *
2e41e8e6 2041 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2042 * detection.
2043 */
2044
2045int ata_cable_40wire(struct ata_port *ap)
2046{
2047 return ATA_CBL_PATA40;
2048}
2049
2050/**
2e41e8e6 2051 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2052 * @ap: port
2053 *
2e41e8e6 2054 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2055 * detection.
2056 */
2057
2058int ata_cable_80wire(struct ata_port *ap)
2059{
2060 return ATA_CBL_PATA80;
2061}
2062
2063/**
2064 * ata_cable_unknown - return unknown PATA cable.
2065 * @ap: port
2066 *
2067 * Helper method for drivers which have no PATA cable detection.
2068 */
2069
2070int ata_cable_unknown(struct ata_port *ap)
2071{
2072 return ATA_CBL_PATA_UNK;
2073}
2074
2075/**
2076 * ata_cable_sata - return SATA cable type
2077 * @ap: port
2078 *
2079 * Helper method for drivers which have SATA cables
2080 */
2081
2082int ata_cable_sata(struct ata_port *ap)
2083{
2084 return ATA_CBL_SATA;
2085}
2086
1da177e4
LT
2087/**
2088 * ata_bus_probe - Reset and probe ATA bus
2089 * @ap: Bus to probe
2090 *
0cba632b
JG
2091 * Master ATA bus probing function. Initiates a hardware-dependent
2092 * bus reset, then attempts to identify any devices found on
2093 * the bus.
2094 *
1da177e4 2095 * LOCKING:
0cba632b 2096 * PCI/etc. bus probe sem.
1da177e4
LT
2097 *
2098 * RETURNS:
96072e69 2099 * Zero on success, negative errno otherwise.
1da177e4
LT
2100 */
2101
80289167 2102int ata_bus_probe(struct ata_port *ap)
1da177e4 2103{
28ca5c57 2104 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2105 int tries[ATA_MAX_DEVICES];
4ae72a1e 2106 int i, rc;
e82cbdb9 2107 struct ata_device *dev;
1da177e4 2108
28ca5c57 2109 ata_port_probe(ap);
c19ba8af 2110
14d2bac1
TH
2111 for (i = 0; i < ATA_MAX_DEVICES; i++)
2112 tries[i] = ATA_PROBE_MAX_TRIES;
2113
2114 retry:
2044470c 2115 /* reset and determine device classes */
52783c5d 2116 ap->ops->phy_reset(ap);
2061a47a 2117
52783c5d
TH
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
c19ba8af 2120
52783c5d
TH
2121 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2122 dev->class != ATA_DEV_UNKNOWN)
2123 classes[dev->devno] = dev->class;
2124 else
2125 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2126
52783c5d 2127 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2128 }
1da177e4 2129
52783c5d 2130 ata_port_probe(ap);
2044470c 2131
b6079ca4
AC
2132 /* after the reset the device state is PIO 0 and the controller
2133 state is undefined. Record the mode */
2134
2135 for (i = 0; i < ATA_MAX_DEVICES; i++)
2136 ap->device[i].pio_mode = XFER_PIO_0;
2137
f31f0cc2
JG
2138 /* read IDENTIFY page and configure devices. We have to do the identify
2139 specific sequence bass-ackwards so that PDIAG- is released by
2140 the slave device */
2141
2142 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2143 dev = &ap->device[i];
28ca5c57 2144
ec573755
TH
2145 if (tries[i])
2146 dev->class = classes[i];
ffeae418 2147
14d2bac1 2148 if (!ata_dev_enabled(dev))
ffeae418 2149 continue;
ffeae418 2150
bff04647
TH
2151 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2152 dev->id);
14d2bac1
TH
2153 if (rc)
2154 goto fail;
f31f0cc2
JG
2155 }
2156
be0d18df
AC
2157 /* Now ask for the cable type as PDIAG- should have been released */
2158 if (ap->ops->cable_detect)
2159 ap->cbl = ap->ops->cable_detect(ap);
2160
f31f0cc2
JG
2161 /* After the identify sequence we can now set up the devices. We do
2162 this in the normal order so that the user doesn't get confused */
2163
2164 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2165 dev = &ap->device[i];
2166 if (!ata_dev_enabled(dev))
2167 continue;
14d2bac1 2168
efdaedc4
TH
2169 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2170 rc = ata_dev_configure(dev);
2171 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2172 if (rc)
2173 goto fail;
1da177e4
LT
2174 }
2175
e82cbdb9 2176 /* configure transfer mode */
3adcebb2 2177 rc = ata_set_mode(ap, &dev);
4ae72a1e 2178 if (rc)
51713d35 2179 goto fail;
1da177e4 2180
e82cbdb9
TH
2181 for (i = 0; i < ATA_MAX_DEVICES; i++)
2182 if (ata_dev_enabled(&ap->device[i]))
2183 return 0;
1da177e4 2184
e82cbdb9
TH
2185 /* no device present, disable port */
2186 ata_port_disable(ap);
1da177e4 2187 ap->ops->port_disable(ap);
96072e69 2188 return -ENODEV;
14d2bac1
TH
2189
2190 fail:
4ae72a1e
TH
2191 tries[dev->devno]--;
2192
14d2bac1
TH
2193 switch (rc) {
2194 case -EINVAL:
4ae72a1e 2195 /* eeek, something went very wrong, give up */
14d2bac1
TH
2196 tries[dev->devno] = 0;
2197 break;
4ae72a1e
TH
2198
2199 case -ENODEV:
2200 /* give it just one more chance */
2201 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2202 case -EIO:
4ae72a1e
TH
2203 if (tries[dev->devno] == 1) {
2204 /* This is the last chance, better to slow
2205 * down than lose it.
2206 */
2207 sata_down_spd_limit(ap);
2208 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2209 }
14d2bac1
TH
2210 }
2211
4ae72a1e 2212 if (!tries[dev->devno])
3373efd8 2213 ata_dev_disable(dev);
ec573755 2214
14d2bac1 2215 goto retry;
1da177e4
LT
2216}
2217
2218/**
0cba632b
JG
2219 * ata_port_probe - Mark port as enabled
2220 * @ap: Port for which we indicate enablement
1da177e4 2221 *
0cba632b
JG
2222 * Modify @ap data structure such that the system
2223 * thinks that the entire port is enabled.
2224 *
cca3974e 2225 * LOCKING: host lock, or some other form of
0cba632b 2226 * serialization.
1da177e4
LT
2227 */
2228
2229void ata_port_probe(struct ata_port *ap)
2230{
198e0fed 2231 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2232}
2233
3be680b7
TH
2234/**
2235 * sata_print_link_status - Print SATA link status
2236 * @ap: SATA port to printk link status about
2237 *
2238 * This function prints link speed and status of a SATA link.
2239 *
2240 * LOCKING:
2241 * None.
2242 */
43727fbc 2243void sata_print_link_status(struct ata_port *ap)
3be680b7 2244{
6d5f9732 2245 u32 sstatus, scontrol, tmp;
3be680b7 2246
81952c54 2247 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2248 return;
81952c54 2249 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2250
81952c54 2251 if (ata_port_online(ap)) {
3be680b7 2252 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2253 ata_port_printk(ap, KERN_INFO,
2254 "SATA link up %s (SStatus %X SControl %X)\n",
2255 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2256 } else {
f15a1daf
TH
2257 ata_port_printk(ap, KERN_INFO,
2258 "SATA link down (SStatus %X SControl %X)\n",
2259 sstatus, scontrol);
3be680b7
TH
2260 }
2261}
2262
1da177e4 2263/**
780a87f7
JG
2264 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2265 * @ap: SATA port associated with target SATA PHY.
1da177e4 2266 *
780a87f7
JG
2267 * This function issues commands to standard SATA Sxxx
2268 * PHY registers, to wake up the phy (and device), and
2269 * clear any reset condition.
1da177e4
LT
2270 *
2271 * LOCKING:
0cba632b 2272 * PCI/etc. bus probe sem.
1da177e4
LT
2273 *
2274 */
2275void __sata_phy_reset(struct ata_port *ap)
2276{
2277 u32 sstatus;
2278 unsigned long timeout = jiffies + (HZ * 5);
2279
2280 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2281 /* issue phy wake/reset */
81952c54 2282 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2283 /* Couldn't find anything in SATA I/II specs, but
2284 * AHCI-1.1 10.4.2 says at least 1 ms. */
2285 mdelay(1);
1da177e4 2286 }
81952c54
TH
2287 /* phy wake/clear reset */
2288 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2289
2290 /* wait for phy to become ready, if necessary */
2291 do {
2292 msleep(200);
81952c54 2293 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2294 if ((sstatus & 0xf) != 1)
2295 break;
2296 } while (time_before(jiffies, timeout));
2297
3be680b7
TH
2298 /* print link status */
2299 sata_print_link_status(ap);
656563e3 2300
3be680b7 2301 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2302 if (!ata_port_offline(ap))
1da177e4 2303 ata_port_probe(ap);
3be680b7 2304 else
1da177e4 2305 ata_port_disable(ap);
1da177e4 2306
198e0fed 2307 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2308 return;
2309
2310 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2311 ata_port_disable(ap);
2312 return;
2313 }
2314
2315 ap->cbl = ATA_CBL_SATA;
2316}
2317
2318/**
780a87f7
JG
2319 * sata_phy_reset - Reset SATA bus.
2320 * @ap: SATA port associated with target SATA PHY.
1da177e4 2321 *
780a87f7
JG
2322 * This function resets the SATA bus, and then probes
2323 * the bus for devices.
1da177e4
LT
2324 *
2325 * LOCKING:
0cba632b 2326 * PCI/etc. bus probe sem.
1da177e4
LT
2327 *
2328 */
2329void sata_phy_reset(struct ata_port *ap)
2330{
2331 __sata_phy_reset(ap);
198e0fed 2332 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2333 return;
2334 ata_bus_reset(ap);
2335}
2336
ebdfca6e
AC
2337/**
2338 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2339 * @adev: device
2340 *
2341 * Obtain the other device on the same cable, or if none is
2342 * present NULL is returned
2343 */
2e9edbf8 2344
3373efd8 2345struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2346{
3373efd8 2347 struct ata_port *ap = adev->ap;
ebdfca6e 2348 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2349 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2350 return NULL;
2351 return pair;
2352}
2353
1da177e4 2354/**
780a87f7
JG
2355 * ata_port_disable - Disable port.
2356 * @ap: Port to be disabled.
1da177e4 2357 *
780a87f7
JG
2358 * Modify @ap data structure such that the system
2359 * thinks that the entire port is disabled, and should
2360 * never attempt to probe or communicate with devices
2361 * on this port.
2362 *
cca3974e 2363 * LOCKING: host lock, or some other form of
780a87f7 2364 * serialization.
1da177e4
LT
2365 */
2366
2367void ata_port_disable(struct ata_port *ap)
2368{
2369 ap->device[0].class = ATA_DEV_NONE;
2370 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2371 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2372}
2373
1c3fae4d 2374/**
3c567b7d 2375 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2376 * @ap: Port to adjust SATA spd limit for
2377 *
2378 * Adjust SATA spd limit of @ap downward. Note that this
2379 * function only adjusts the limit. The change must be applied
3c567b7d 2380 * using sata_set_spd().
1c3fae4d
TH
2381 *
2382 * LOCKING:
2383 * Inherited from caller.
2384 *
2385 * RETURNS:
2386 * 0 on success, negative errno on failure
2387 */
3c567b7d 2388int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2389{
81952c54
TH
2390 u32 sstatus, spd, mask;
2391 int rc, highbit;
1c3fae4d 2392
008a7896
TH
2393 if (!sata_scr_valid(ap))
2394 return -EOPNOTSUPP;
2395
2396 /* If SCR can be read, use it to determine the current SPD.
2397 * If not, use cached value in ap->sata_spd.
2398 */
81952c54 2399 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
008a7896
TH
2400 if (rc == 0)
2401 spd = (sstatus >> 4) & 0xf;
2402 else
2403 spd = ap->sata_spd;
1c3fae4d
TH
2404
2405 mask = ap->sata_spd_limit;
2406 if (mask <= 1)
2407 return -EINVAL;
008a7896
TH
2408
2409 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2410 highbit = fls(mask) - 1;
2411 mask &= ~(1 << highbit);
2412
008a7896
TH
2413 /* Mask off all speeds higher than or equal to the current
2414 * one. Force 1.5Gbps if current SPD is not available.
2415 */
2416 if (spd > 1)
2417 mask &= (1 << (spd - 1)) - 1;
2418 else
2419 mask &= 1;
2420
2421 /* were we already at the bottom? */
1c3fae4d
TH
2422 if (!mask)
2423 return -EINVAL;
2424
2425 ap->sata_spd_limit = mask;
2426
f15a1daf
TH
2427 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2428 sata_spd_string(fls(mask)));
1c3fae4d
TH
2429
2430 return 0;
2431}
2432
3c567b7d 2433static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2434{
2435 u32 spd, limit;
2436
2437 if (ap->sata_spd_limit == UINT_MAX)
2438 limit = 0;
2439 else
2440 limit = fls(ap->sata_spd_limit);
2441
2442 spd = (*scontrol >> 4) & 0xf;
2443 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2444
2445 return spd != limit;
2446}
2447
2448/**
3c567b7d 2449 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2450 * @ap: Port in question
2451 *
2452 * Test whether the spd limit in SControl matches
2453 * @ap->sata_spd_limit. This function is used to determine
2454 * whether hardreset is necessary to apply SATA spd
2455 * configuration.
2456 *
2457 * LOCKING:
2458 * Inherited from caller.
2459 *
2460 * RETURNS:
2461 * 1 if SATA spd configuration is needed, 0 otherwise.
2462 */
3c567b7d 2463int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2464{
2465 u32 scontrol;
2466
81952c54 2467 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2468 return 0;
2469
3c567b7d 2470 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2471}
2472
2473/**
3c567b7d 2474 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2475 * @ap: Port to set SATA spd for
2476 *
2477 * Set SATA spd of @ap according to sata_spd_limit.
2478 *
2479 * LOCKING:
2480 * Inherited from caller.
2481 *
2482 * RETURNS:
2483 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2484 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2485 */
3c567b7d 2486int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2487{
2488 u32 scontrol;
81952c54 2489 int rc;
1c3fae4d 2490
81952c54
TH
2491 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2492 return rc;
1c3fae4d 2493
3c567b7d 2494 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2495 return 0;
2496
81952c54
TH
2497 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2498 return rc;
2499
1c3fae4d
TH
2500 return 1;
2501}
2502
452503f9
AC
2503/*
2504 * This mode timing computation functionality is ported over from
2505 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2506 */
2507/*
b352e57d 2508 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2509 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2510 * for UDMA6, which is currently supported only by Maxtor drives.
2511 *
2512 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2513 */
2514
2515static const struct ata_timing ata_timing[] = {
2516
2517 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2518 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2519 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2520 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2521
b352e57d
AC
2522 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2523 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2524 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2525 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2526 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2527
2528/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2529
452503f9
AC
2530 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2531 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2532 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2533
452503f9
AC
2534 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2535 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2536 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2537
b352e57d
AC
2538 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2539 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2540 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2541 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2542
2543 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2544 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2545 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2546
2547/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2548
2549 { 0xFF }
2550};
2551
2552#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2553#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2554
2555static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2556{
2557 q->setup = EZ(t->setup * 1000, T);
2558 q->act8b = EZ(t->act8b * 1000, T);
2559 q->rec8b = EZ(t->rec8b * 1000, T);
2560 q->cyc8b = EZ(t->cyc8b * 1000, T);
2561 q->active = EZ(t->active * 1000, T);
2562 q->recover = EZ(t->recover * 1000, T);
2563 q->cycle = EZ(t->cycle * 1000, T);
2564 q->udma = EZ(t->udma * 1000, UT);
2565}
2566
2567void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2568 struct ata_timing *m, unsigned int what)
2569{
2570 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2571 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2572 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2573 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2574 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2575 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2576 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2577 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2578}
2579
2580static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2581{
2582 const struct ata_timing *t;
2583
2584 for (t = ata_timing; t->mode != speed; t++)
91190758 2585 if (t->mode == 0xFF)
452503f9 2586 return NULL;
2e9edbf8 2587 return t;
452503f9
AC
2588}
2589
2590int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2591 struct ata_timing *t, int T, int UT)
2592{
2593 const struct ata_timing *s;
2594 struct ata_timing p;
2595
2596 /*
2e9edbf8 2597 * Find the mode.
75b1f2f8 2598 */
452503f9
AC
2599
2600 if (!(s = ata_timing_find_mode(speed)))
2601 return -EINVAL;
2602
75b1f2f8
AL
2603 memcpy(t, s, sizeof(*s));
2604
452503f9
AC
2605 /*
2606 * If the drive is an EIDE drive, it can tell us it needs extended
2607 * PIO/MW_DMA cycle timing.
2608 */
2609
2610 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2611 memset(&p, 0, sizeof(p));
2612 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2613 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2614 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2615 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2616 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2617 }
2618 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2619 }
2620
2621 /*
2622 * Convert the timing to bus clock counts.
2623 */
2624
75b1f2f8 2625 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2626
2627 /*
c893a3ae
RD
2628 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2629 * S.M.A.R.T * and some other commands. We have to ensure that the
2630 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2631 */
2632
fd3367af 2633 if (speed > XFER_PIO_6) {
452503f9
AC
2634 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2635 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2636 }
2637
2638 /*
c893a3ae 2639 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2640 */
2641
2642 if (t->act8b + t->rec8b < t->cyc8b) {
2643 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2644 t->rec8b = t->cyc8b - t->act8b;
2645 }
2646
2647 if (t->active + t->recover < t->cycle) {
2648 t->active += (t->cycle - (t->active + t->recover)) / 2;
2649 t->recover = t->cycle - t->active;
2650 }
a617c09f 2651
4f701d1e
AC
2652 /* In a few cases quantisation may produce enough errors to
2653 leave t->cycle too low for the sum of active and recovery
2654 if so we must correct this */
2655 if (t->active + t->recover > t->cycle)
2656 t->cycle = t->active + t->recover;
452503f9
AC
2657
2658 return 0;
2659}
2660
cf176e1a
TH
2661/**
2662 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2663 * @dev: Device to adjust xfer masks
458337db 2664 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2665 *
2666 * Adjust xfer masks of @dev downward. Note that this function
2667 * does not apply the change. Invoking ata_set_mode() afterwards
2668 * will apply the limit.
2669 *
2670 * LOCKING:
2671 * Inherited from caller.
2672 *
2673 * RETURNS:
2674 * 0 on success, negative errno on failure
2675 */
458337db 2676int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2677{
458337db
TH
2678 char buf[32];
2679 unsigned int orig_mask, xfer_mask;
2680 unsigned int pio_mask, mwdma_mask, udma_mask;
2681 int quiet, highbit;
cf176e1a 2682
458337db
TH
2683 quiet = !!(sel & ATA_DNXFER_QUIET);
2684 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2685
458337db
TH
2686 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2687 dev->mwdma_mask,
2688 dev->udma_mask);
2689 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2690
458337db
TH
2691 switch (sel) {
2692 case ATA_DNXFER_PIO:
2693 highbit = fls(pio_mask) - 1;
2694 pio_mask &= ~(1 << highbit);
2695 break;
2696
2697 case ATA_DNXFER_DMA:
2698 if (udma_mask) {
2699 highbit = fls(udma_mask) - 1;
2700 udma_mask &= ~(1 << highbit);
2701 if (!udma_mask)
2702 return -ENOENT;
2703 } else if (mwdma_mask) {
2704 highbit = fls(mwdma_mask) - 1;
2705 mwdma_mask &= ~(1 << highbit);
2706 if (!mwdma_mask)
2707 return -ENOENT;
2708 }
2709 break;
2710
2711 case ATA_DNXFER_40C:
2712 udma_mask &= ATA_UDMA_MASK_40C;
2713 break;
2714
2715 case ATA_DNXFER_FORCE_PIO0:
2716 pio_mask &= 1;
2717 case ATA_DNXFER_FORCE_PIO:
2718 mwdma_mask = 0;
2719 udma_mask = 0;
2720 break;
2721
458337db
TH
2722 default:
2723 BUG();
2724 }
2725
2726 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2727
2728 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2729 return -ENOENT;
2730
2731 if (!quiet) {
2732 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2733 snprintf(buf, sizeof(buf), "%s:%s",
2734 ata_mode_string(xfer_mask),
2735 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2736 else
2737 snprintf(buf, sizeof(buf), "%s",
2738 ata_mode_string(xfer_mask));
2739
2740 ata_dev_printk(dev, KERN_WARNING,
2741 "limiting speed to %s\n", buf);
2742 }
cf176e1a
TH
2743
2744 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2745 &dev->udma_mask);
2746
cf176e1a 2747 return 0;
cf176e1a
TH
2748}
2749
3373efd8 2750static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2751{
baa1e78a 2752 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2753 unsigned int err_mask;
2754 int rc;
1da177e4 2755
e8384607 2756 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2757 if (dev->xfer_shift == ATA_SHIFT_PIO)
2758 dev->flags |= ATA_DFLAG_PIO;
2759
3373efd8 2760 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2761 /* Old CFA may refuse this command, which is just fine */
2762 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2763 err_mask &= ~AC_ERR_DEV;
2764
83206a29 2765 if (err_mask) {
f15a1daf
TH
2766 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2767 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2768 return -EIO;
2769 }
1da177e4 2770
baa1e78a 2771 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2772 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2773 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2774 if (rc)
83206a29 2775 return rc;
48a8a14f 2776
23e71c3d
TH
2777 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2778 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2779
f15a1daf
TH
2780 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2781 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2782 return 0;
1da177e4
LT
2783}
2784
1da177e4 2785/**
04351821 2786 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2787 * @ap: port on which timings will be programmed
e82cbdb9 2788 * @r_failed_dev: out paramter for failed device
1da177e4 2789 *
04351821
AC
2790 * Standard implementation of the function used to tune and set
2791 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2792 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2793 * returned in @r_failed_dev.
780a87f7 2794 *
1da177e4 2795 * LOCKING:
0cba632b 2796 * PCI/etc. bus probe sem.
e82cbdb9
TH
2797 *
2798 * RETURNS:
2799 * 0 on success, negative errno otherwise
1da177e4 2800 */
04351821
AC
2801
2802int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2803{
e8e0619f 2804 struct ata_device *dev;
e82cbdb9 2805 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2806
3adcebb2 2807
a6d5a51c
TH
2808 /* step 1: calculate xfer_mask */
2809 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2810 unsigned int pio_mask, dma_mask;
a6d5a51c 2811
e8e0619f
TH
2812 dev = &ap->device[i];
2813
e1211e3f 2814 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2815 continue;
2816
3373efd8 2817 ata_dev_xfermask(dev);
1da177e4 2818
acf356b1
TH
2819 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2820 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2821 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2822 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2823
4f65977d 2824 found = 1;
5444a6f4
AC
2825 if (dev->dma_mode)
2826 used_dma = 1;
a6d5a51c 2827 }
4f65977d 2828 if (!found)
e82cbdb9 2829 goto out;
a6d5a51c
TH
2830
2831 /* step 2: always set host PIO timings */
e8e0619f
TH
2832 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2833 dev = &ap->device[i];
2834 if (!ata_dev_enabled(dev))
2835 continue;
2836
2837 if (!dev->pio_mode) {
f15a1daf 2838 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2839 rc = -EINVAL;
e82cbdb9 2840 goto out;
e8e0619f
TH
2841 }
2842
2843 dev->xfer_mode = dev->pio_mode;
2844 dev->xfer_shift = ATA_SHIFT_PIO;
2845 if (ap->ops->set_piomode)
2846 ap->ops->set_piomode(ap, dev);
2847 }
1da177e4 2848
a6d5a51c 2849 /* step 3: set host DMA timings */
e8e0619f
TH
2850 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2851 dev = &ap->device[i];
2852
2853 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2854 continue;
2855
2856 dev->xfer_mode = dev->dma_mode;
2857 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2858 if (ap->ops->set_dmamode)
2859 ap->ops->set_dmamode(ap, dev);
2860 }
1da177e4
LT
2861
2862 /* step 4: update devices' xfer mode */
83206a29 2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2864 dev = &ap->device[i];
1da177e4 2865
18d90deb 2866 /* don't update suspended devices' xfer mode */
9666f400 2867 if (!ata_dev_enabled(dev))
83206a29
TH
2868 continue;
2869
3373efd8 2870 rc = ata_dev_set_mode(dev);
5bbc53f4 2871 if (rc)
e82cbdb9 2872 goto out;
83206a29 2873 }
1da177e4 2874
e8e0619f
TH
2875 /* Record simplex status. If we selected DMA then the other
2876 * host channels are not permitted to do so.
5444a6f4 2877 */
cca3974e 2878 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2879 ap->host->simplex_claimed = ap;
5444a6f4 2880
e82cbdb9
TH
2881 out:
2882 if (rc)
2883 *r_failed_dev = dev;
2884 return rc;
1da177e4
LT
2885}
2886
04351821
AC
2887/**
2888 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2889 * @ap: port on which timings will be programmed
2890 * @r_failed_dev: out paramter for failed device
2891 *
2892 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2893 * ata_set_mode() fails, pointer to the failing device is
2894 * returned in @r_failed_dev.
2895 *
2896 * LOCKING:
2897 * PCI/etc. bus probe sem.
2898 *
2899 * RETURNS:
2900 * 0 on success, negative errno otherwise
2901 */
2902int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2903{
2904 /* has private set_mode? */
2905 if (ap->ops->set_mode)
2906 return ap->ops->set_mode(ap, r_failed_dev);
2907 return ata_do_set_mode(ap, r_failed_dev);
2908}
2909
1fdffbce
JG
2910/**
2911 * ata_tf_to_host - issue ATA taskfile to host controller
2912 * @ap: port to which command is being issued
2913 * @tf: ATA taskfile register set
2914 *
2915 * Issues ATA taskfile register set to ATA host controller,
2916 * with proper synchronization with interrupt handler and
2917 * other threads.
2918 *
2919 * LOCKING:
cca3974e 2920 * spin_lock_irqsave(host lock)
1fdffbce
JG
2921 */
2922
2923static inline void ata_tf_to_host(struct ata_port *ap,
2924 const struct ata_taskfile *tf)
2925{
2926 ap->ops->tf_load(ap, tf);
2927 ap->ops->exec_command(ap, tf);
2928}
2929
1da177e4
LT
2930/**
2931 * ata_busy_sleep - sleep until BSY clears, or timeout
2932 * @ap: port containing status register to be polled
2933 * @tmout_pat: impatience timeout
2934 * @tmout: overall timeout
2935 *
780a87f7
JG
2936 * Sleep until ATA Status register bit BSY clears,
2937 * or a timeout occurs.
2938 *
d1adc1bb
TH
2939 * LOCKING:
2940 * Kernel thread context (may sleep).
2941 *
2942 * RETURNS:
2943 * 0 on success, -errno otherwise.
1da177e4 2944 */
d1adc1bb
TH
2945int ata_busy_sleep(struct ata_port *ap,
2946 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2947{
2948 unsigned long timer_start, timeout;
2949 u8 status;
2950
2951 status = ata_busy_wait(ap, ATA_BUSY, 300);
2952 timer_start = jiffies;
2953 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2954 while (status != 0xff && (status & ATA_BUSY) &&
2955 time_before(jiffies, timeout)) {
1da177e4
LT
2956 msleep(50);
2957 status = ata_busy_wait(ap, ATA_BUSY, 3);
2958 }
2959
d1adc1bb 2960 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2961 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2962 "port is slow to respond, please be patient "
2963 "(Status 0x%x)\n", status);
1da177e4
LT
2964
2965 timeout = timer_start + tmout;
d1adc1bb
TH
2966 while (status != 0xff && (status & ATA_BUSY) &&
2967 time_before(jiffies, timeout)) {
1da177e4
LT
2968 msleep(50);
2969 status = ata_chk_status(ap);
2970 }
2971
d1adc1bb
TH
2972 if (status == 0xff)
2973 return -ENODEV;
2974
1da177e4 2975 if (status & ATA_BUSY) {
f15a1daf 2976 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2977 "(%lu secs, Status 0x%x)\n",
2978 tmout / HZ, status);
d1adc1bb 2979 return -EBUSY;
1da177e4
LT
2980 }
2981
2982 return 0;
2983}
2984
d4b2bab4
TH
2985/**
2986 * ata_wait_ready - sleep until BSY clears, or timeout
2987 * @ap: port containing status register to be polled
2988 * @deadline: deadline jiffies for the operation
2989 *
2990 * Sleep until ATA Status register bit BSY clears, or timeout
2991 * occurs.
2992 *
2993 * LOCKING:
2994 * Kernel thread context (may sleep).
2995 *
2996 * RETURNS:
2997 * 0 on success, -errno otherwise.
2998 */
2999int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3000{
3001 unsigned long start = jiffies;
3002 int warned = 0;
3003
3004 while (1) {
3005 u8 status = ata_chk_status(ap);
3006 unsigned long now = jiffies;
3007
3008 if (!(status & ATA_BUSY))
3009 return 0;
fd7fe701 3010 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
3011 return -ENODEV;
3012 if (time_after(now, deadline))
3013 return -EBUSY;
3014
3015 if (!warned && time_after(now, start + 5 * HZ) &&
3016 (deadline - now > 3 * HZ)) {
3017 ata_port_printk(ap, KERN_WARNING,
3018 "port is slow to respond, please be patient "
3019 "(Status 0x%x)\n", status);
3020 warned = 1;
3021 }
3022
3023 msleep(50);
3024 }
3025}
3026
3027static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3028 unsigned long deadline)
1da177e4
LT
3029{
3030 struct ata_ioports *ioaddr = &ap->ioaddr;
3031 unsigned int dev0 = devmask & (1 << 0);
3032 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3033 int rc, ret = 0;
1da177e4
LT
3034
3035 /* if device 0 was found in ata_devchk, wait for its
3036 * BSY bit to clear
3037 */
d4b2bab4
TH
3038 if (dev0) {
3039 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3040 if (rc) {
3041 if (rc != -ENODEV)
3042 return rc;
3043 ret = rc;
3044 }
d4b2bab4 3045 }
1da177e4 3046
e141d999
TH
3047 /* if device 1 was found in ata_devchk, wait for register
3048 * access briefly, then wait for BSY to clear.
1da177e4 3049 */
e141d999
TH
3050 if (dev1) {
3051 int i;
1da177e4
LT
3052
3053 ap->ops->dev_select(ap, 1);
e141d999
TH
3054
3055 /* Wait for register access. Some ATAPI devices fail
3056 * to set nsect/lbal after reset, so don't waste too
3057 * much time on it. We're gonna wait for !BSY anyway.
3058 */
3059 for (i = 0; i < 2; i++) {
3060 u8 nsect, lbal;
3061
3062 nsect = ioread8(ioaddr->nsect_addr);
3063 lbal = ioread8(ioaddr->lbal_addr);
3064 if ((nsect == 1) && (lbal == 1))
3065 break;
3066 msleep(50); /* give drive a breather */
3067 }
3068
d4b2bab4 3069 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3070 if (rc) {
3071 if (rc != -ENODEV)
3072 return rc;
3073 ret = rc;
3074 }
d4b2bab4 3075 }
1da177e4
LT
3076
3077 /* is all this really necessary? */
3078 ap->ops->dev_select(ap, 0);
3079 if (dev1)
3080 ap->ops->dev_select(ap, 1);
3081 if (dev0)
3082 ap->ops->dev_select(ap, 0);
d4b2bab4 3083
9b89391c 3084 return ret;
1da177e4
LT
3085}
3086
d4b2bab4
TH
3087static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3088 unsigned long deadline)
1da177e4
LT
3089{
3090 struct ata_ioports *ioaddr = &ap->ioaddr;
3091
44877b4e 3092 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3093
3094 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3095 iowrite8(ap->ctl, ioaddr->ctl_addr);
3096 udelay(20); /* FIXME: flush */
3097 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3098 udelay(20); /* FIXME: flush */
3099 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3100
3101 /* spec mandates ">= 2ms" before checking status.
3102 * We wait 150ms, because that was the magic delay used for
3103 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3104 * between when the ATA command register is written, and then
3105 * status is checked. Because waiting for "a while" before
3106 * checking status is fine, post SRST, we perform this magic
3107 * delay here as well.
09c7ad79
AC
3108 *
3109 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3110 */
3111 msleep(150);
3112
2e9edbf8 3113 /* Before we perform post reset processing we want to see if
298a41ca
TH
3114 * the bus shows 0xFF because the odd clown forgets the D7
3115 * pulldown resistor.
3116 */
d1adc1bb 3117 if (ata_check_status(ap) == 0xFF)
9b89391c 3118 return -ENODEV;
09c7ad79 3119
d4b2bab4 3120 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3121}
3122
3123/**
3124 * ata_bus_reset - reset host port and associated ATA channel
3125 * @ap: port to reset
3126 *
3127 * This is typically the first time we actually start issuing
3128 * commands to the ATA channel. We wait for BSY to clear, then
3129 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3130 * result. Determine what devices, if any, are on the channel
3131 * by looking at the device 0/1 error register. Look at the signature
3132 * stored in each device's taskfile registers, to determine if
3133 * the device is ATA or ATAPI.
3134 *
3135 * LOCKING:
0cba632b 3136 * PCI/etc. bus probe sem.
cca3974e 3137 * Obtains host lock.
1da177e4
LT
3138 *
3139 * SIDE EFFECTS:
198e0fed 3140 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3141 */
3142
3143void ata_bus_reset(struct ata_port *ap)
3144{
3145 struct ata_ioports *ioaddr = &ap->ioaddr;
3146 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3147 u8 err;
aec5c3c1 3148 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3149 int rc;
1da177e4 3150
44877b4e 3151 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3152
3153 /* determine if device 0/1 are present */
3154 if (ap->flags & ATA_FLAG_SATA_RESET)
3155 dev0 = 1;
3156 else {
3157 dev0 = ata_devchk(ap, 0);
3158 if (slave_possible)
3159 dev1 = ata_devchk(ap, 1);
3160 }
3161
3162 if (dev0)
3163 devmask |= (1 << 0);
3164 if (dev1)
3165 devmask |= (1 << 1);
3166
3167 /* select device 0 again */
3168 ap->ops->dev_select(ap, 0);
3169
3170 /* issue bus reset */
9b89391c
TH
3171 if (ap->flags & ATA_FLAG_SRST) {
3172 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3173 if (rc && rc != -ENODEV)
aec5c3c1 3174 goto err_out;
9b89391c 3175 }
1da177e4
LT
3176
3177 /*
3178 * determine by signature whether we have ATA or ATAPI devices
3179 */
b4dc7623 3180 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3181 if ((slave_possible) && (err != 0x81))
b4dc7623 3182 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4 3183
1da177e4
LT
3184 /* is double-select really necessary? */
3185 if (ap->device[1].class != ATA_DEV_NONE)
3186 ap->ops->dev_select(ap, 1);
3187 if (ap->device[0].class != ATA_DEV_NONE)
3188 ap->ops->dev_select(ap, 0);
3189
3190 /* if no devices were detected, disable this port */
3191 if ((ap->device[0].class == ATA_DEV_NONE) &&
3192 (ap->device[1].class == ATA_DEV_NONE))
3193 goto err_out;
3194
3195 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3196 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3197 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3198 }
3199
3200 DPRINTK("EXIT\n");
3201 return;
3202
3203err_out:
f15a1daf 3204 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3205 ap->ops->port_disable(ap);
3206
3207 DPRINTK("EXIT\n");
3208}
3209
d7bb4cc7
TH
3210/**
3211 * sata_phy_debounce - debounce SATA phy status
3212 * @ap: ATA port to debounce SATA phy status for
3213 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3214 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3215 *
3216 * Make sure SStatus of @ap reaches stable state, determined by
3217 * holding the same value where DET is not 1 for @duration polled
3218 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3219 * beginning of the stable state. Because DET gets stuck at 1 on
3220 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3221 * until timeout then returns 0 if DET is stable at 1.
3222 *
d4b2bab4
TH
3223 * @timeout is further limited by @deadline. The sooner of the
3224 * two is used.
3225 *
d7bb4cc7
TH
3226 * LOCKING:
3227 * Kernel thread context (may sleep)
3228 *
3229 * RETURNS:
3230 * 0 on success, -errno on failure.
3231 */
d4b2bab4
TH
3232int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3233 unsigned long deadline)
7a7921e8 3234{
d7bb4cc7 3235 unsigned long interval_msec = params[0];
d4b2bab4
TH
3236 unsigned long duration = msecs_to_jiffies(params[1]);
3237 unsigned long last_jiffies, t;
d7bb4cc7
TH
3238 u32 last, cur;
3239 int rc;
3240
d4b2bab4
TH
3241 t = jiffies + msecs_to_jiffies(params[2]);
3242 if (time_before(t, deadline))
3243 deadline = t;
3244
d7bb4cc7
TH
3245 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3246 return rc;
3247 cur &= 0xf;
3248
3249 last = cur;
3250 last_jiffies = jiffies;
3251
3252 while (1) {
3253 msleep(interval_msec);
3254 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3255 return rc;
3256 cur &= 0xf;
3257
3258 /* DET stable? */
3259 if (cur == last) {
d4b2bab4 3260 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3261 continue;
3262 if (time_after(jiffies, last_jiffies + duration))
3263 return 0;
3264 continue;
3265 }
3266
3267 /* unstable, start over */
3268 last = cur;
3269 last_jiffies = jiffies;
3270
f1545154
TH
3271 /* Check deadline. If debouncing failed, return
3272 * -EPIPE to tell upper layer to lower link speed.
3273 */
d4b2bab4 3274 if (time_after(jiffies, deadline))
f1545154 3275 return -EPIPE;
d7bb4cc7
TH
3276 }
3277}
3278
3279/**
3280 * sata_phy_resume - resume SATA phy
3281 * @ap: ATA port to resume SATA phy for
3282 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3283 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3284 *
3285 * Resume SATA phy of @ap and debounce it.
3286 *
3287 * LOCKING:
3288 * Kernel thread context (may sleep)
3289 *
3290 * RETURNS:
3291 * 0 on success, -errno on failure.
3292 */
d4b2bab4
TH
3293int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3294 unsigned long deadline)
d7bb4cc7
TH
3295{
3296 u32 scontrol;
81952c54
TH
3297 int rc;
3298
3299 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3300 return rc;
7a7921e8 3301
852ee16a 3302 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3303
3304 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3305 return rc;
7a7921e8 3306
d7bb4cc7
TH
3307 /* Some PHYs react badly if SStatus is pounded immediately
3308 * after resuming. Delay 200ms before debouncing.
3309 */
3310 msleep(200);
7a7921e8 3311
d4b2bab4 3312 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3313}
3314
f5914a46
TH
3315/**
3316 * ata_std_prereset - prepare for reset
3317 * @ap: ATA port to be reset
d4b2bab4 3318 * @deadline: deadline jiffies for the operation
f5914a46 3319 *
b8cffc6a
TH
3320 * @ap is about to be reset. Initialize it. Failure from
3321 * prereset makes libata abort whole reset sequence and give up
3322 * that port, so prereset should be best-effort. It does its
3323 * best to prepare for reset sequence but if things go wrong, it
3324 * should just whine, not fail.
f5914a46
TH
3325 *
3326 * LOCKING:
3327 * Kernel thread context (may sleep)
3328 *
3329 * RETURNS:
3330 * 0 on success, -errno otherwise.
3331 */
d4b2bab4 3332int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3333{
3334 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3335 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3336 int rc;
3337
31daabda 3338 /* handle link resume */
28324304
TH
3339 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3340 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3341 ehc->i.action |= ATA_EH_HARDRESET;
3342
f5914a46
TH
3343 /* if we're about to do hardreset, nothing more to do */
3344 if (ehc->i.action & ATA_EH_HARDRESET)
3345 return 0;
3346
3347 /* if SATA, resume phy */
a16abc0b 3348 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3349 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3350 /* whine about phy resume failure but proceed */
3351 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3352 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3353 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3354 }
3355
3356 /* Wait for !BSY if the controller can wait for the first D2H
3357 * Reg FIS and we don't know that no device is attached.
3358 */
b8cffc6a
TH
3359 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3360 rc = ata_wait_ready(ap, deadline);
6dffaf61 3361 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3362 ata_port_printk(ap, KERN_WARNING, "device not ready "
3363 "(errno=%d), forcing hardreset\n", rc);
3364 ehc->i.action |= ATA_EH_HARDRESET;
3365 }
3366 }
f5914a46
TH
3367
3368 return 0;
3369}
3370
c2bd5804
TH
3371/**
3372 * ata_std_softreset - reset host port via ATA SRST
3373 * @ap: port to reset
c2bd5804 3374 * @classes: resulting classes of attached devices
d4b2bab4 3375 * @deadline: deadline jiffies for the operation
c2bd5804 3376 *
52783c5d 3377 * Reset host port using ATA SRST.
c2bd5804
TH
3378 *
3379 * LOCKING:
3380 * Kernel thread context (may sleep)
3381 *
3382 * RETURNS:
3383 * 0 on success, -errno otherwise.
3384 */
d4b2bab4
TH
3385int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3386 unsigned long deadline)
c2bd5804
TH
3387{
3388 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3389 unsigned int devmask = 0;
3390 int rc;
c2bd5804
TH
3391 u8 err;
3392
3393 DPRINTK("ENTER\n");
3394
81952c54 3395 if (ata_port_offline(ap)) {
3a39746a
TH
3396 classes[0] = ATA_DEV_NONE;
3397 goto out;
3398 }
3399
c2bd5804
TH
3400 /* determine if device 0/1 are present */
3401 if (ata_devchk(ap, 0))
3402 devmask |= (1 << 0);
3403 if (slave_possible && ata_devchk(ap, 1))
3404 devmask |= (1 << 1);
3405
c2bd5804
TH
3406 /* select device 0 again */
3407 ap->ops->dev_select(ap, 0);
3408
3409 /* issue bus reset */
3410 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3411 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3412 /* if link is occupied, -ENODEV too is an error */
3413 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3414 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3415 return rc;
c2bd5804
TH
3416 }
3417
3418 /* determine by signature whether we have ATA or ATAPI devices */
3419 classes[0] = ata_dev_try_classify(ap, 0, &err);
3420 if (slave_possible && err != 0x81)
3421 classes[1] = ata_dev_try_classify(ap, 1, &err);
3422
3a39746a 3423 out:
c2bd5804
TH
3424 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3425 return 0;
3426}
3427
3428/**
b6103f6d 3429 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3430 * @ap: port to reset
b6103f6d 3431 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3432 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3433 *
3434 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3435 *
3436 * LOCKING:
3437 * Kernel thread context (may sleep)
3438 *
3439 * RETURNS:
3440 * 0 on success, -errno otherwise.
3441 */
d4b2bab4
TH
3442int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3443 unsigned long deadline)
c2bd5804 3444{
852ee16a 3445 u32 scontrol;
81952c54 3446 int rc;
852ee16a 3447
c2bd5804
TH
3448 DPRINTK("ENTER\n");
3449
3c567b7d 3450 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3451 /* SATA spec says nothing about how to reconfigure
3452 * spd. To be on the safe side, turn off phy during
3453 * reconfiguration. This works for at least ICH7 AHCI
3454 * and Sil3124.
3455 */
81952c54 3456 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3457 goto out;
81952c54 3458
a34b6fc0 3459 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3460
3461 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3462 goto out;
1c3fae4d 3463
3c567b7d 3464 sata_set_spd(ap);
1c3fae4d
TH
3465 }
3466
3467 /* issue phy wake/reset */
81952c54 3468 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3469 goto out;
81952c54 3470
852ee16a 3471 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3472
3473 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3474 goto out;
c2bd5804 3475
1c3fae4d 3476 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3477 * 10.4.2 says at least 1 ms.
3478 */
3479 msleep(1);
3480
1c3fae4d 3481 /* bring phy back */
d4b2bab4 3482 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3483 out:
3484 DPRINTK("EXIT, rc=%d\n", rc);
3485 return rc;
3486}
3487
3488/**
3489 * sata_std_hardreset - reset host port via SATA phy reset
3490 * @ap: port to reset
3491 * @class: resulting class of attached device
d4b2bab4 3492 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3493 *
3494 * SATA phy-reset host port using DET bits of SControl register,
3495 * wait for !BSY and classify the attached device.
3496 *
3497 * LOCKING:
3498 * Kernel thread context (may sleep)
3499 *
3500 * RETURNS:
3501 * 0 on success, -errno otherwise.
3502 */
d4b2bab4
TH
3503int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3504 unsigned long deadline)
b6103f6d
TH
3505{
3506 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3507 int rc;
3508
3509 DPRINTK("ENTER\n");
3510
3511 /* do hardreset */
d4b2bab4 3512 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3513 if (rc) {
3514 ata_port_printk(ap, KERN_ERR,
3515 "COMRESET failed (errno=%d)\n", rc);
3516 return rc;
3517 }
c2bd5804 3518
c2bd5804 3519 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3520 if (ata_port_offline(ap)) {
c2bd5804
TH
3521 *class = ATA_DEV_NONE;
3522 DPRINTK("EXIT, link offline\n");
3523 return 0;
3524 }
3525
34fee227
TH
3526 /* wait a while before checking status, see SRST for more info */
3527 msleep(150);
3528
d4b2bab4 3529 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3530 /* link occupied, -ENODEV too is an error */
3531 if (rc) {
f15a1daf 3532 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3533 "COMRESET failed (errno=%d)\n", rc);
3534 return rc;
c2bd5804
TH
3535 }
3536
3a39746a
TH
3537 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3538
c2bd5804
TH
3539 *class = ata_dev_try_classify(ap, 0, NULL);
3540
3541 DPRINTK("EXIT, class=%u\n", *class);
3542 return 0;
3543}
3544
3545/**
3546 * ata_std_postreset - standard postreset callback
3547 * @ap: the target ata_port
3548 * @classes: classes of attached devices
3549 *
3550 * This function is invoked after a successful reset. Note that
3551 * the device might have been reset more than once using
3552 * different reset methods before postreset is invoked.
c2bd5804 3553 *
c2bd5804
TH
3554 * LOCKING:
3555 * Kernel thread context (may sleep)
3556 */
3557void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3558{
dc2b3515
TH
3559 u32 serror;
3560
c2bd5804
TH
3561 DPRINTK("ENTER\n");
3562
c2bd5804 3563 /* print link status */
81952c54 3564 sata_print_link_status(ap);
c2bd5804 3565
dc2b3515
TH
3566 /* clear SError */
3567 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3568 sata_scr_write(ap, SCR_ERROR, serror);
3569
c2bd5804
TH
3570 /* is double-select really necessary? */
3571 if (classes[0] != ATA_DEV_NONE)
3572 ap->ops->dev_select(ap, 1);
3573 if (classes[1] != ATA_DEV_NONE)
3574 ap->ops->dev_select(ap, 0);
3575
3a39746a
TH
3576 /* bail out if no device is present */
3577 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3578 DPRINTK("EXIT, no device\n");
3579 return;
3580 }
3581
3582 /* set up device control */
0d5ff566
TH
3583 if (ap->ioaddr.ctl_addr)
3584 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3585
3586 DPRINTK("EXIT\n");
3587}
3588
623a3128
TH
3589/**
3590 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3591 * @dev: device to compare against
3592 * @new_class: class of the new device
3593 * @new_id: IDENTIFY page of the new device
3594 *
3595 * Compare @new_class and @new_id against @dev and determine
3596 * whether @dev is the device indicated by @new_class and
3597 * @new_id.
3598 *
3599 * LOCKING:
3600 * None.
3601 *
3602 * RETURNS:
3603 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3604 */
3373efd8
TH
3605static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606 const u16 *new_id)
623a3128
TH
3607{
3608 const u16 *old_id = dev->id;
a0cf733b
TH
3609 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3611
3612 if (dev->class != new_class) {
f15a1daf
TH
3613 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3614 dev->class, new_class);
623a3128
TH
3615 return 0;
3616 }
3617
a0cf733b
TH
3618 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3622
3623 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3624 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3625 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3626 return 0;
3627 }
3628
3629 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3630 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3631 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3632 return 0;
3633 }
3634
623a3128
TH
3635 return 1;
3636}
3637
3638/**
fe30911b 3639 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3640 * @dev: target ATA device
bff04647 3641 * @readid_flags: read ID flags
623a3128
TH
3642 *
3643 * Re-read IDENTIFY page and make sure @dev is still attached to
3644 * the port.
3645 *
3646 * LOCKING:
3647 * Kernel thread context (may sleep)
3648 *
3649 * RETURNS:
3650 * 0 on success, negative errno otherwise
3651 */
fe30911b 3652int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3653{
5eb45c02 3654 unsigned int class = dev->class;
f15a1daf 3655 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3656 int rc;
3657
fe635c7e 3658 /* read ID data */
bff04647 3659 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3660 if (rc)
fe30911b 3661 return rc;
623a3128
TH
3662
3663 /* is the device still there? */
fe30911b
TH
3664 if (!ata_dev_same_device(dev, class, id))
3665 return -ENODEV;
623a3128 3666
fe635c7e 3667 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3668 return 0;
3669}
3670
3671/**
3672 * ata_dev_revalidate - Revalidate ATA device
3673 * @dev: device to revalidate
3674 * @readid_flags: read ID flags
3675 *
3676 * Re-read IDENTIFY page, make sure @dev is still attached to the
3677 * port and reconfigure it according to the new IDENTIFY page.
3678 *
3679 * LOCKING:
3680 * Kernel thread context (may sleep)
3681 *
3682 * RETURNS:
3683 * 0 on success, negative errno otherwise
3684 */
3685int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3686{
6ddcd3b0 3687 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3688 int rc;
3689
3690 if (!ata_dev_enabled(dev))
3691 return -ENODEV;
3692
3693 /* re-read ID */
3694 rc = ata_dev_reread_id(dev, readid_flags);
3695 if (rc)
3696 goto fail;
623a3128
TH
3697
3698 /* configure device according to the new ID */
efdaedc4 3699 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3700 if (rc)
3701 goto fail;
3702
3703 /* verify n_sectors hasn't changed */
b54eebd6
TH
3704 if (dev->class == ATA_DEV_ATA && n_sectors &&
3705 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3706 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3707 "%llu != %llu\n",
3708 (unsigned long long)n_sectors,
3709 (unsigned long long)dev->n_sectors);
8270bec4
TH
3710
3711 /* restore original n_sectors */
3712 dev->n_sectors = n_sectors;
3713
6ddcd3b0
TH
3714 rc = -ENODEV;
3715 goto fail;
3716 }
3717
3718 return 0;
623a3128
TH
3719
3720 fail:
f15a1daf 3721 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3722 return rc;
3723}
3724
6919a0a6
AC
3725struct ata_blacklist_entry {
3726 const char *model_num;
3727 const char *model_rev;
3728 unsigned long horkage;
3729};
3730
3731static const struct ata_blacklist_entry ata_device_blacklist [] = {
3732 /* Devices with DMA related problems under Linux */
3733 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3734 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3735 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3736 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3737 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3738 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3739 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3740 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3741 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3742 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3743 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3744 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3745 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3746 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3747 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3748 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3749 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3750 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3751 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3752 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3753 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3754 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3755 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3756 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3757 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3758 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3759 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3760 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3761 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3762 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3763 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3764 { "IOMEGA ZIP 250 ATAPI Floppy",
3765 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3766
18d6e9d5 3767 /* Weird ATAPI devices */
40a1d531 3768 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3769
6919a0a6
AC
3770 /* Devices we expect to fail diagnostics */
3771
3772 /* Devices where NCQ should be avoided */
3773 /* NCQ is slow */
3774 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3775 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3776 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3777 /* NCQ is broken */
3778 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
e8361fc4 3779 { "Maxtor 6B200M0", "BANC1BM0", ATA_HORKAGE_NONCQ },
471e44b2 3780 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
2f8d90ab
PB
3781 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
3782 ATA_HORKAGE_NONCQ },
96442925
JA
3783 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3784 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3785 /* Blacklist entries taken from Silicon Image 3124/3132
3786 Windows driver .inf file - also several Linux problem reports */
3787 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3788 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3789 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3790 /* Drives which do spurious command completion */
3791 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3792 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3793 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3794 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3795 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3796 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
5d6aca8d 3797 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3798
16c55b03
TH
3799 /* devices which puke on READ_NATIVE_MAX */
3800 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3801 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3802 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3803 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3804
3805 /* End Marker */
3806 { }
1da177e4 3807};
2e9edbf8 3808
75683fe7 3809static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3810{
8bfa79fc
TH
3811 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3812 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3813 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3814
8bfa79fc
TH
3815 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3816 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3817
6919a0a6 3818 while (ad->model_num) {
8bfa79fc 3819 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3820 if (ad->model_rev == NULL)
3821 return ad->horkage;
8bfa79fc 3822 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3823 return ad->horkage;
f4b15fef 3824 }
6919a0a6 3825 ad++;
f4b15fef 3826 }
1da177e4
LT
3827 return 0;
3828}
3829
6919a0a6
AC
3830static int ata_dma_blacklisted(const struct ata_device *dev)
3831{
3832 /* We don't support polling DMA.
3833 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3834 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3835 */
3836 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3837 (dev->flags & ATA_DFLAG_CDB_INTR))
3838 return 1;
75683fe7 3839 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3840}
3841
a6d5a51c
TH
3842/**
3843 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3844 * @dev: Device to compute xfermask for
3845 *
acf356b1
TH
3846 * Compute supported xfermask of @dev and store it in
3847 * dev->*_mask. This function is responsible for applying all
3848 * known limits including host controller limits, device
3849 * blacklist, etc...
a6d5a51c
TH
3850 *
3851 * LOCKING:
3852 * None.
a6d5a51c 3853 */
3373efd8 3854static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3855{
3373efd8 3856 struct ata_port *ap = dev->ap;
cca3974e 3857 struct ata_host *host = ap->host;
a6d5a51c 3858 unsigned long xfer_mask;
1da177e4 3859
37deecb5 3860 /* controller modes available */
565083e1
TH
3861 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3862 ap->mwdma_mask, ap->udma_mask);
3863
8343f889 3864 /* drive modes available */
37deecb5
TH
3865 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3866 dev->mwdma_mask, dev->udma_mask);
3867 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3868
b352e57d
AC
3869 /*
3870 * CFA Advanced TrueIDE timings are not allowed on a shared
3871 * cable
3872 */
3873 if (ata_dev_pair(dev)) {
3874 /* No PIO5 or PIO6 */
3875 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3876 /* No MWDMA3 or MWDMA 4 */
3877 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3878 }
3879
37deecb5
TH
3880 if (ata_dma_blacklisted(dev)) {
3881 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3882 ata_dev_printk(dev, KERN_WARNING,
3883 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3884 }
a6d5a51c 3885
14d66ab7
PV
3886 if ((host->flags & ATA_HOST_SIMPLEX) &&
3887 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3888 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3889 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3890 "other device, disabling DMA\n");
5444a6f4 3891 }
565083e1 3892
e424675f
JG
3893 if (ap->flags & ATA_FLAG_NO_IORDY)
3894 xfer_mask &= ata_pio_mask_no_iordy(dev);
3895
5444a6f4 3896 if (ap->ops->mode_filter)
a76b62ca 3897 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3898
8343f889
RH
3899 /* Apply cable rule here. Don't apply it early because when
3900 * we handle hot plug the cable type can itself change.
3901 * Check this last so that we know if the transfer rate was
3902 * solely limited by the cable.
3903 * Unknown or 80 wire cables reported host side are checked
3904 * drive side as well. Cases where we know a 40wire cable
3905 * is used safely for 80 are not checked here.
3906 */
3907 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3908 /* UDMA/44 or higher would be available */
3909 if((ap->cbl == ATA_CBL_PATA40) ||
3910 (ata_drive_40wire(dev->id) &&
3911 (ap->cbl == ATA_CBL_PATA_UNK ||
3912 ap->cbl == ATA_CBL_PATA80))) {
3913 ata_dev_printk(dev, KERN_WARNING,
3914 "limited to UDMA/33 due to 40-wire cable\n");
3915 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3916 }
3917
565083e1
TH
3918 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3919 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3920}
3921
1da177e4
LT
3922/**
3923 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3924 * @dev: Device to which command will be sent
3925 *
780a87f7
JG
3926 * Issue SET FEATURES - XFER MODE command to device @dev
3927 * on port @ap.
3928 *
1da177e4 3929 * LOCKING:
0cba632b 3930 * PCI/etc. bus probe sem.
83206a29
TH
3931 *
3932 * RETURNS:
3933 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3934 */
3935
3373efd8 3936static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3937{
a0123703 3938 struct ata_taskfile tf;
83206a29 3939 unsigned int err_mask;
1da177e4
LT
3940
3941 /* set up set-features taskfile */
3942 DPRINTK("set features - xfer mode\n");
3943
464cf177
TH
3944 /* Some controllers and ATAPI devices show flaky interrupt
3945 * behavior after setting xfer mode. Use polling instead.
3946 */
3373efd8 3947 ata_tf_init(dev, &tf);
a0123703
TH
3948 tf.command = ATA_CMD_SET_FEATURES;
3949 tf.feature = SETFEATURES_XFER;
464cf177 3950 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3951 tf.protocol = ATA_PROT_NODATA;
3952 tf.nsect = dev->xfer_mode;
1da177e4 3953
3373efd8 3954 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3955
83206a29
TH
3956 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3957 return err_mask;
1da177e4
LT
3958}
3959
8bf62ece
AL
3960/**
3961 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3962 * @dev: Device to which command will be sent
e2a7f77a
RD
3963 * @heads: Number of heads (taskfile parameter)
3964 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3965 *
3966 * LOCKING:
6aff8f1f
TH
3967 * Kernel thread context (may sleep)
3968 *
3969 * RETURNS:
3970 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3971 */
3373efd8
TH
3972static unsigned int ata_dev_init_params(struct ata_device *dev,
3973 u16 heads, u16 sectors)
8bf62ece 3974{
a0123703 3975 struct ata_taskfile tf;
6aff8f1f 3976 unsigned int err_mask;
8bf62ece
AL
3977
3978 /* Number of sectors per track 1-255. Number of heads 1-16 */
3979 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3980 return AC_ERR_INVALID;
8bf62ece
AL
3981
3982 /* set up init dev params taskfile */
3983 DPRINTK("init dev params \n");
3984
3373efd8 3985 ata_tf_init(dev, &tf);
a0123703
TH
3986 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3987 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3988 tf.protocol = ATA_PROT_NODATA;
3989 tf.nsect = sectors;
3990 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3991
3373efd8 3992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
3993 /* A clean abort indicates an original or just out of spec drive
3994 and we should continue as we issue the setup based on the
3995 drive reported working geometry */
3996 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
3997 err_mask = 0;
8bf62ece 3998
6aff8f1f
TH
3999 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4000 return err_mask;
8bf62ece
AL
4001}
4002
1da177e4 4003/**
0cba632b
JG
4004 * ata_sg_clean - Unmap DMA memory associated with command
4005 * @qc: Command containing DMA memory to be released
4006 *
4007 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4008 *
4009 * LOCKING:
cca3974e 4010 * spin_lock_irqsave(host lock)
1da177e4 4011 */
70e6ad0c 4012void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4013{
4014 struct ata_port *ap = qc->ap;
cedc9a47 4015 struct scatterlist *sg = qc->__sg;
1da177e4 4016 int dir = qc->dma_dir;
cedc9a47 4017 void *pad_buf = NULL;
1da177e4 4018
a4631474
TH
4019 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4020 WARN_ON(sg == NULL);
1da177e4
LT
4021
4022 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4023 WARN_ON(qc->n_elem > 1);
1da177e4 4024
2c13b7ce 4025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4026
cedc9a47
JG
4027 /* if we padded the buffer out to 32-bit bound, and data
4028 * xfer direction is from-device, we must copy from the
4029 * pad buffer back into the supplied buffer
4030 */
4031 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4032 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4033
4034 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4035 if (qc->n_elem)
2f1f610b 4036 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4037 /* restore last sg */
4038 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4039 if (pad_buf) {
4040 struct scatterlist *psg = &qc->pad_sgent;
4041 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4042 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4043 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4044 }
4045 } else {
2e242fa9 4046 if (qc->n_elem)
2f1f610b 4047 dma_unmap_single(ap->dev,
e1410f2d
JG
4048 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4049 dir);
cedc9a47
JG
4050 /* restore sg */
4051 sg->length += qc->pad_len;
4052 if (pad_buf)
4053 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4054 pad_buf, qc->pad_len);
4055 }
1da177e4
LT
4056
4057 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4058 qc->__sg = NULL;
1da177e4
LT
4059}
4060
4061/**
4062 * ata_fill_sg - Fill PCI IDE PRD table
4063 * @qc: Metadata associated with taskfile to be transferred
4064 *
780a87f7
JG
4065 * Fill PCI IDE PRD (scatter-gather) table with segments
4066 * associated with the current disk command.
4067 *
1da177e4 4068 * LOCKING:
cca3974e 4069 * spin_lock_irqsave(host lock)
1da177e4
LT
4070 *
4071 */
4072static void ata_fill_sg(struct ata_queued_cmd *qc)
4073{
1da177e4 4074 struct ata_port *ap = qc->ap;
cedc9a47
JG
4075 struct scatterlist *sg;
4076 unsigned int idx;
1da177e4 4077
a4631474 4078 WARN_ON(qc->__sg == NULL);
f131883e 4079 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4080
4081 idx = 0;
cedc9a47 4082 ata_for_each_sg(sg, qc) {
1da177e4
LT
4083 u32 addr, offset;
4084 u32 sg_len, len;
4085
4086 /* determine if physical DMA addr spans 64K boundary.
4087 * Note h/w doesn't support 64-bit, so we unconditionally
4088 * truncate dma_addr_t to u32.
4089 */
4090 addr = (u32) sg_dma_address(sg);
4091 sg_len = sg_dma_len(sg);
4092
4093 while (sg_len) {
4094 offset = addr & 0xffff;
4095 len = sg_len;
4096 if ((offset + sg_len) > 0x10000)
4097 len = 0x10000 - offset;
4098
4099 ap->prd[idx].addr = cpu_to_le32(addr);
4100 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4101 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4102
4103 idx++;
4104 sg_len -= len;
4105 addr += len;
4106 }
4107 }
4108
4109 if (idx)
4110 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4111}
b9a4197e 4112
d26fc955
AC
4113/**
4114 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4115 * @qc: Metadata associated with taskfile to be transferred
4116 *
4117 * Fill PCI IDE PRD (scatter-gather) table with segments
4118 * associated with the current disk command. Perform the fill
4119 * so that we avoid writing any length 64K records for
4120 * controllers that don't follow the spec.
4121 *
4122 * LOCKING:
4123 * spin_lock_irqsave(host lock)
4124 *
4125 */
4126static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4127{
4128 struct ata_port *ap = qc->ap;
4129 struct scatterlist *sg;
4130 unsigned int idx;
4131
4132 WARN_ON(qc->__sg == NULL);
4133 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4134
4135 idx = 0;
4136 ata_for_each_sg(sg, qc) {
4137 u32 addr, offset;
4138 u32 sg_len, len, blen;
4139
4140 /* determine if physical DMA addr spans 64K boundary.
4141 * Note h/w doesn't support 64-bit, so we unconditionally
4142 * truncate dma_addr_t to u32.
4143 */
4144 addr = (u32) sg_dma_address(sg);
4145 sg_len = sg_dma_len(sg);
4146
4147 while (sg_len) {
4148 offset = addr & 0xffff;
4149 len = sg_len;
4150 if ((offset + sg_len) > 0x10000)
4151 len = 0x10000 - offset;
4152
4153 blen = len & 0xffff;
4154 ap->prd[idx].addr = cpu_to_le32(addr);
4155 if (blen == 0) {
4156 /* Some PATA chipsets like the CS5530 can't
4157 cope with 0x0000 meaning 64K as the spec says */
4158 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4159 blen = 0x8000;
4160 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4161 }
4162 ap->prd[idx].flags_len = cpu_to_le32(blen);
4163 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4164
4165 idx++;
4166 sg_len -= len;
4167 addr += len;
4168 }
4169 }
4170
4171 if (idx)
4172 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4173}
4174
1da177e4
LT
4175/**
4176 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4177 * @qc: Metadata associated with taskfile to check
4178 *
780a87f7
JG
4179 * Allow low-level driver to filter ATA PACKET commands, returning
4180 * a status indicating whether or not it is OK to use DMA for the
4181 * supplied PACKET command.
4182 *
1da177e4 4183 * LOCKING:
cca3974e 4184 * spin_lock_irqsave(host lock)
0cba632b 4185 *
1da177e4
LT
4186 * RETURNS: 0 when ATAPI DMA can be used
4187 * nonzero otherwise
4188 */
4189int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4190{
4191 struct ata_port *ap = qc->ap;
b9a4197e
TH
4192
4193 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4194 * few ATAPI devices choke on such DMA requests.
4195 */
4196 if (unlikely(qc->nbytes & 15))
4197 return 1;
6f23a31d 4198
1da177e4 4199 if (ap->ops->check_atapi_dma)
b9a4197e 4200 return ap->ops->check_atapi_dma(qc);
1da177e4 4201
b9a4197e 4202 return 0;
1da177e4 4203}
b9a4197e 4204
1da177e4
LT
4205/**
4206 * ata_qc_prep - Prepare taskfile for submission
4207 * @qc: Metadata associated with taskfile to be prepared
4208 *
780a87f7
JG
4209 * Prepare ATA taskfile for submission.
4210 *
1da177e4 4211 * LOCKING:
cca3974e 4212 * spin_lock_irqsave(host lock)
1da177e4
LT
4213 */
4214void ata_qc_prep(struct ata_queued_cmd *qc)
4215{
4216 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4217 return;
4218
4219 ata_fill_sg(qc);
4220}
4221
d26fc955
AC
4222/**
4223 * ata_dumb_qc_prep - Prepare taskfile for submission
4224 * @qc: Metadata associated with taskfile to be prepared
4225 *
4226 * Prepare ATA taskfile for submission.
4227 *
4228 * LOCKING:
4229 * spin_lock_irqsave(host lock)
4230 */
4231void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4232{
4233 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4234 return;
4235
4236 ata_fill_sg_dumb(qc);
4237}
4238
e46834cd
BK
4239void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4240
0cba632b
JG
4241/**
4242 * ata_sg_init_one - Associate command with memory buffer
4243 * @qc: Command to be associated
4244 * @buf: Memory buffer
4245 * @buflen: Length of memory buffer, in bytes.
4246 *
4247 * Initialize the data-related elements of queued_cmd @qc
4248 * to point to a single memory buffer, @buf of byte length @buflen.
4249 *
4250 * LOCKING:
cca3974e 4251 * spin_lock_irqsave(host lock)
0cba632b
JG
4252 */
4253
1da177e4
LT
4254void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4255{
1da177e4
LT
4256 qc->flags |= ATA_QCFLAG_SINGLE;
4257
cedc9a47 4258 qc->__sg = &qc->sgent;
1da177e4 4259 qc->n_elem = 1;
cedc9a47 4260 qc->orig_n_elem = 1;
1da177e4 4261 qc->buf_virt = buf;
233277ca 4262 qc->nbytes = buflen;
1da177e4 4263
61c0596c 4264 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4265}
4266
0cba632b
JG
4267/**
4268 * ata_sg_init - Associate command with scatter-gather table.
4269 * @qc: Command to be associated
4270 * @sg: Scatter-gather table.
4271 * @n_elem: Number of elements in s/g table.
4272 *
4273 * Initialize the data-related elements of queued_cmd @qc
4274 * to point to a scatter-gather table @sg, containing @n_elem
4275 * elements.
4276 *
4277 * LOCKING:
cca3974e 4278 * spin_lock_irqsave(host lock)
0cba632b
JG
4279 */
4280
1da177e4
LT
4281void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4282 unsigned int n_elem)
4283{
4284 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4285 qc->__sg = sg;
1da177e4 4286 qc->n_elem = n_elem;
cedc9a47 4287 qc->orig_n_elem = n_elem;
1da177e4
LT
4288}
4289
4290/**
0cba632b
JG
4291 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4292 * @qc: Command with memory buffer to be mapped.
4293 *
4294 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4295 *
4296 * LOCKING:
cca3974e 4297 * spin_lock_irqsave(host lock)
1da177e4
LT
4298 *
4299 * RETURNS:
0cba632b 4300 * Zero on success, negative on error.
1da177e4
LT
4301 */
4302
4303static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4304{
4305 struct ata_port *ap = qc->ap;
4306 int dir = qc->dma_dir;
cedc9a47 4307 struct scatterlist *sg = qc->__sg;
1da177e4 4308 dma_addr_t dma_address;
2e242fa9 4309 int trim_sg = 0;
1da177e4 4310
cedc9a47
JG
4311 /* we must lengthen transfers to end on a 32-bit boundary */
4312 qc->pad_len = sg->length & 3;
4313 if (qc->pad_len) {
4314 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4315 struct scatterlist *psg = &qc->pad_sgent;
4316
a4631474 4317 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4318
4319 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4320
4321 if (qc->tf.flags & ATA_TFLAG_WRITE)
4322 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4323 qc->pad_len);
4324
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4327 /* trim sg */
4328 sg->length -= qc->pad_len;
2e242fa9
TH
4329 if (sg->length == 0)
4330 trim_sg = 1;
cedc9a47
JG
4331
4332 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4333 sg->length, qc->pad_len);
4334 }
4335
2e242fa9
TH
4336 if (trim_sg) {
4337 qc->n_elem--;
e1410f2d
JG
4338 goto skip_map;
4339 }
4340
2f1f610b 4341 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4342 sg->length, dir);
537a95d9
TH
4343 if (dma_mapping_error(dma_address)) {
4344 /* restore sg */
4345 sg->length += qc->pad_len;
1da177e4 4346 return -1;
537a95d9 4347 }
1da177e4
LT
4348
4349 sg_dma_address(sg) = dma_address;
32529e01 4350 sg_dma_len(sg) = sg->length;
1da177e4 4351
2e242fa9 4352skip_map:
1da177e4
LT
4353 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4354 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4355
4356 return 0;
4357}
4358
4359/**
0cba632b
JG
4360 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4361 * @qc: Command with scatter-gather table to be mapped.
4362 *
4363 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4364 *
4365 * LOCKING:
cca3974e 4366 * spin_lock_irqsave(host lock)
1da177e4
LT
4367 *
4368 * RETURNS:
0cba632b 4369 * Zero on success, negative on error.
1da177e4
LT
4370 *
4371 */
4372
4373static int ata_sg_setup(struct ata_queued_cmd *qc)
4374{
4375 struct ata_port *ap = qc->ap;
cedc9a47
JG
4376 struct scatterlist *sg = qc->__sg;
4377 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4378 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4379
44877b4e 4380 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4381 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4382
cedc9a47
JG
4383 /* we must lengthen transfers to end on a 32-bit boundary */
4384 qc->pad_len = lsg->length & 3;
4385 if (qc->pad_len) {
4386 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4387 struct scatterlist *psg = &qc->pad_sgent;
4388 unsigned int offset;
4389
a4631474 4390 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4391
4392 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4393
4394 /*
4395 * psg->page/offset are used to copy to-be-written
4396 * data in this function or read data in ata_sg_clean.
4397 */
4398 offset = lsg->offset + lsg->length - qc->pad_len;
4399 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4400 psg->offset = offset_in_page(offset);
4401
4402 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4403 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4404 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4405 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4406 }
4407
4408 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4409 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4410 /* trim last sg */
4411 lsg->length -= qc->pad_len;
e1410f2d
JG
4412 if (lsg->length == 0)
4413 trim_sg = 1;
cedc9a47
JG
4414
4415 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4416 qc->n_elem - 1, lsg->length, qc->pad_len);
4417 }
4418
e1410f2d
JG
4419 pre_n_elem = qc->n_elem;
4420 if (trim_sg && pre_n_elem)
4421 pre_n_elem--;
4422
4423 if (!pre_n_elem) {
4424 n_elem = 0;
4425 goto skip_map;
4426 }
4427
1da177e4 4428 dir = qc->dma_dir;
2f1f610b 4429 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4430 if (n_elem < 1) {
4431 /* restore last sg */
4432 lsg->length += qc->pad_len;
1da177e4 4433 return -1;
537a95d9 4434 }
1da177e4
LT
4435
4436 DPRINTK("%d sg elements mapped\n", n_elem);
4437
e1410f2d 4438skip_map:
1da177e4
LT
4439 qc->n_elem = n_elem;
4440
4441 return 0;
4442}
4443
0baab86b 4444/**
c893a3ae 4445 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4446 * @buf: Buffer to swap
4447 * @buf_words: Number of 16-bit words in buffer.
4448 *
4449 * Swap halves of 16-bit words if needed to convert from
4450 * little-endian byte order to native cpu byte order, or
4451 * vice-versa.
4452 *
4453 * LOCKING:
6f0ef4fa 4454 * Inherited from caller.
0baab86b 4455 */
1da177e4
LT
4456void swap_buf_le16(u16 *buf, unsigned int buf_words)
4457{
4458#ifdef __BIG_ENDIAN
4459 unsigned int i;
4460
4461 for (i = 0; i < buf_words; i++)
4462 buf[i] = le16_to_cpu(buf[i]);
4463#endif /* __BIG_ENDIAN */
4464}
4465
6ae4cfb5 4466/**
0d5ff566 4467 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4468 * @adev: device to target
6ae4cfb5
AL
4469 * @buf: data buffer
4470 * @buflen: buffer length
344babaa 4471 * @write_data: read/write
6ae4cfb5
AL
4472 *
4473 * Transfer data from/to the device data register by PIO.
4474 *
4475 * LOCKING:
4476 * Inherited from caller.
6ae4cfb5 4477 */
0d5ff566
TH
4478void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4479 unsigned int buflen, int write_data)
1da177e4 4480{
a6b2c5d4 4481 struct ata_port *ap = adev->ap;
6ae4cfb5 4482 unsigned int words = buflen >> 1;
1da177e4 4483
6ae4cfb5 4484 /* Transfer multiple of 2 bytes */
1da177e4 4485 if (write_data)
0d5ff566 4486 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4487 else
0d5ff566 4488 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4489
4490 /* Transfer trailing 1 byte, if any. */
4491 if (unlikely(buflen & 0x01)) {
4492 u16 align_buf[1] = { 0 };
4493 unsigned char *trailing_buf = buf + buflen - 1;
4494
4495 if (write_data) {
4496 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4497 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4498 } else {
0d5ff566 4499 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4500 memcpy(trailing_buf, align_buf, 1);
4501 }
4502 }
1da177e4
LT
4503}
4504
75e99585 4505/**
0d5ff566 4506 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4507 * @adev: device to target
4508 * @buf: data buffer
4509 * @buflen: buffer length
4510 * @write_data: read/write
4511 *
88574551 4512 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4513 * transfer with interrupts disabled.
4514 *
4515 * LOCKING:
4516 * Inherited from caller.
4517 */
0d5ff566
TH
4518void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4519 unsigned int buflen, int write_data)
75e99585
AC
4520{
4521 unsigned long flags;
4522 local_irq_save(flags);
0d5ff566 4523 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4524 local_irq_restore(flags);
4525}
4526
4527
6ae4cfb5 4528/**
5a5dbd18 4529 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4530 * @qc: Command on going
4531 *
5a5dbd18 4532 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4533 *
4534 * LOCKING:
4535 * Inherited from caller.
4536 */
4537
1da177e4
LT
4538static void ata_pio_sector(struct ata_queued_cmd *qc)
4539{
4540 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4541 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4542 struct ata_port *ap = qc->ap;
4543 struct page *page;
4544 unsigned int offset;
4545 unsigned char *buf;
4546
5a5dbd18 4547 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4548 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4549
4550 page = sg[qc->cursg].page;
726f0785 4551 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4552
4553 /* get the current page and offset */
4554 page = nth_page(page, (offset >> PAGE_SHIFT));
4555 offset %= PAGE_SIZE;
4556
1da177e4
LT
4557 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4558
91b8b313
AL
4559 if (PageHighMem(page)) {
4560 unsigned long flags;
4561
a6b2c5d4 4562 /* FIXME: use a bounce buffer */
91b8b313
AL
4563 local_irq_save(flags);
4564 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4565
91b8b313 4566 /* do the actual data transfer */
5a5dbd18 4567 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4568
91b8b313
AL
4569 kunmap_atomic(buf, KM_IRQ0);
4570 local_irq_restore(flags);
4571 } else {
4572 buf = page_address(page);
5a5dbd18 4573 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4574 }
1da177e4 4575
5a5dbd18
ML
4576 qc->curbytes += qc->sect_size;
4577 qc->cursg_ofs += qc->sect_size;
1da177e4 4578
726f0785 4579 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4580 qc->cursg++;
4581 qc->cursg_ofs = 0;
4582 }
1da177e4 4583}
1da177e4 4584
07f6f7d0 4585/**
5a5dbd18 4586 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4587 * @qc: Command on going
4588 *
5a5dbd18 4589 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4590 * ATA device for the DRQ request.
4591 *
4592 * LOCKING:
4593 * Inherited from caller.
4594 */
1da177e4 4595
07f6f7d0
AL
4596static void ata_pio_sectors(struct ata_queued_cmd *qc)
4597{
4598 if (is_multi_taskfile(&qc->tf)) {
4599 /* READ/WRITE MULTIPLE */
4600 unsigned int nsect;
4601
587005de 4602 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4603
5a5dbd18 4604 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4605 qc->dev->multi_count);
07f6f7d0
AL
4606 while (nsect--)
4607 ata_pio_sector(qc);
4608 } else
4609 ata_pio_sector(qc);
4610}
4611
c71c1857
AL
4612/**
4613 * atapi_send_cdb - Write CDB bytes to hardware
4614 * @ap: Port to which ATAPI device is attached.
4615 * @qc: Taskfile currently active
4616 *
4617 * When device has indicated its readiness to accept
4618 * a CDB, this function is called. Send the CDB.
4619 *
4620 * LOCKING:
4621 * caller.
4622 */
4623
4624static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4625{
4626 /* send SCSI cdb */
4627 DPRINTK("send cdb\n");
db024d53 4628 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4629
a6b2c5d4 4630 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4631 ata_altstatus(ap); /* flush */
4632
4633 switch (qc->tf.protocol) {
4634 case ATA_PROT_ATAPI:
4635 ap->hsm_task_state = HSM_ST;
4636 break;
4637 case ATA_PROT_ATAPI_NODATA:
4638 ap->hsm_task_state = HSM_ST_LAST;
4639 break;
4640 case ATA_PROT_ATAPI_DMA:
4641 ap->hsm_task_state = HSM_ST_LAST;
4642 /* initiate bmdma */
4643 ap->ops->bmdma_start(qc);
4644 break;
4645 }
1da177e4
LT
4646}
4647
6ae4cfb5
AL
4648/**
4649 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4650 * @qc: Command on going
4651 * @bytes: number of bytes
4652 *
4653 * Transfer Transfer data from/to the ATAPI device.
4654 *
4655 * LOCKING:
4656 * Inherited from caller.
4657 *
4658 */
4659
1da177e4
LT
4660static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4661{
4662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4663 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4664 struct ata_port *ap = qc->ap;
4665 struct page *page;
4666 unsigned char *buf;
4667 unsigned int offset, count;
4668
563a6e1f 4669 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4670 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4671
4672next_sg:
563a6e1f 4673 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4674 /*
563a6e1f
AL
4675 * The end of qc->sg is reached and the device expects
4676 * more data to transfer. In order not to overrun qc->sg
4677 * and fulfill length specified in the byte count register,
4678 * - for read case, discard trailing data from the device
4679 * - for write case, padding zero data to the device
4680 */
4681 u16 pad_buf[1] = { 0 };
4682 unsigned int words = bytes >> 1;
4683 unsigned int i;
4684
4685 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4686 ata_dev_printk(qc->dev, KERN_WARNING,
4687 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4688
4689 for (i = 0; i < words; i++)
a6b2c5d4 4690 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4691
14be71f4 4692 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4693 return;
4694 }
4695
cedc9a47 4696 sg = &qc->__sg[qc->cursg];
1da177e4 4697
1da177e4
LT
4698 page = sg->page;
4699 offset = sg->offset + qc->cursg_ofs;
4700
4701 /* get the current page and offset */
4702 page = nth_page(page, (offset >> PAGE_SHIFT));
4703 offset %= PAGE_SIZE;
4704
6952df03 4705 /* don't overrun current sg */
32529e01 4706 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4707
4708 /* don't cross page boundaries */
4709 count = min(count, (unsigned int)PAGE_SIZE - offset);
4710
7282aa4b
AL
4711 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4712
91b8b313
AL
4713 if (PageHighMem(page)) {
4714 unsigned long flags;
4715
a6b2c5d4 4716 /* FIXME: use bounce buffer */
91b8b313
AL
4717 local_irq_save(flags);
4718 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4719
91b8b313 4720 /* do the actual data transfer */
a6b2c5d4 4721 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4722
91b8b313
AL
4723 kunmap_atomic(buf, KM_IRQ0);
4724 local_irq_restore(flags);
4725 } else {
4726 buf = page_address(page);
a6b2c5d4 4727 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4728 }
1da177e4
LT
4729
4730 bytes -= count;
4731 qc->curbytes += count;
4732 qc->cursg_ofs += count;
4733
32529e01 4734 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4735 qc->cursg++;
4736 qc->cursg_ofs = 0;
4737 }
4738
563a6e1f 4739 if (bytes)
1da177e4 4740 goto next_sg;
1da177e4
LT
4741}
4742
6ae4cfb5
AL
4743/**
4744 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4745 * @qc: Command on going
4746 *
4747 * Transfer Transfer data from/to the ATAPI device.
4748 *
4749 * LOCKING:
4750 * Inherited from caller.
6ae4cfb5
AL
4751 */
4752
1da177e4
LT
4753static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4754{
4755 struct ata_port *ap = qc->ap;
4756 struct ata_device *dev = qc->dev;
4757 unsigned int ireason, bc_lo, bc_hi, bytes;
4758 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4759
eec4c3f3
AL
4760 /* Abuse qc->result_tf for temp storage of intermediate TF
4761 * here to save some kernel stack usage.
4762 * For normal completion, qc->result_tf is not relevant. For
4763 * error, qc->result_tf is later overwritten by ata_qc_complete().
4764 * So, the correctness of qc->result_tf is not affected.
4765 */
4766 ap->ops->tf_read(ap, &qc->result_tf);
4767 ireason = qc->result_tf.nsect;
4768 bc_lo = qc->result_tf.lbam;
4769 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4770 bytes = (bc_hi << 8) | bc_lo;
4771
4772 /* shall be cleared to zero, indicating xfer of data */
4773 if (ireason & (1 << 0))
4774 goto err_out;
4775
4776 /* make sure transfer direction matches expected */
4777 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4778 if (do_write != i_write)
4779 goto err_out;
4780
44877b4e 4781 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4782
1da177e4
LT
4783 __atapi_pio_bytes(qc, bytes);
4784
4785 return;
4786
4787err_out:
f15a1daf 4788 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4789 qc->err_mask |= AC_ERR_HSM;
14be71f4 4790 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4791}
4792
4793/**
c234fb00
AL
4794 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4795 * @ap: the target ata_port
4796 * @qc: qc on going
1da177e4 4797 *
c234fb00
AL
4798 * RETURNS:
4799 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4800 */
c234fb00
AL
4801
4802static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4803{
c234fb00
AL
4804 if (qc->tf.flags & ATA_TFLAG_POLLING)
4805 return 1;
1da177e4 4806
c234fb00
AL
4807 if (ap->hsm_task_state == HSM_ST_FIRST) {
4808 if (qc->tf.protocol == ATA_PROT_PIO &&
4809 (qc->tf.flags & ATA_TFLAG_WRITE))
4810 return 1;
1da177e4 4811
c234fb00
AL
4812 if (is_atapi_taskfile(&qc->tf) &&
4813 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4814 return 1;
fe79e683
AL
4815 }
4816
c234fb00
AL
4817 return 0;
4818}
1da177e4 4819
c17ea20d
TH
4820/**
4821 * ata_hsm_qc_complete - finish a qc running on standard HSM
4822 * @qc: Command to complete
4823 * @in_wq: 1 if called from workqueue, 0 otherwise
4824 *
4825 * Finish @qc which is running on standard HSM.
4826 *
4827 * LOCKING:
cca3974e 4828 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4829 * Otherwise, none on entry and grabs host lock.
4830 */
4831static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4832{
4833 struct ata_port *ap = qc->ap;
4834 unsigned long flags;
4835
4836 if (ap->ops->error_handler) {
4837 if (in_wq) {
ba6a1308 4838 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4839
cca3974e
JG
4840 /* EH might have kicked in while host lock is
4841 * released.
c17ea20d
TH
4842 */
4843 qc = ata_qc_from_tag(ap, qc->tag);
4844 if (qc) {
4845 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4846 ap->ops->irq_on(ap);
c17ea20d
TH
4847 ata_qc_complete(qc);
4848 } else
4849 ata_port_freeze(ap);
4850 }
4851
ba6a1308 4852 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4853 } else {
4854 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4855 ata_qc_complete(qc);
4856 else
4857 ata_port_freeze(ap);
4858 }
4859 } else {
4860 if (in_wq) {
ba6a1308 4861 spin_lock_irqsave(ap->lock, flags);
83625006 4862 ap->ops->irq_on(ap);
c17ea20d 4863 ata_qc_complete(qc);
ba6a1308 4864 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4865 } else
4866 ata_qc_complete(qc);
4867 }
4868}
4869
bb5cb290
AL
4870/**
4871 * ata_hsm_move - move the HSM to the next state.
4872 * @ap: the target ata_port
4873 * @qc: qc on going
4874 * @status: current device status
4875 * @in_wq: 1 if called from workqueue, 0 otherwise
4876 *
4877 * RETURNS:
4878 * 1 when poll next status needed, 0 otherwise.
4879 */
9a1004d0
TH
4880int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4881 u8 status, int in_wq)
e2cec771 4882{
bb5cb290
AL
4883 unsigned long flags = 0;
4884 int poll_next;
4885
6912ccd5
AL
4886 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4887
bb5cb290
AL
4888 /* Make sure ata_qc_issue_prot() does not throw things
4889 * like DMA polling into the workqueue. Notice that
4890 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4891 */
c234fb00 4892 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4893
e2cec771 4894fsm_start:
999bb6f4 4895 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4896 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4897
e2cec771
AL
4898 switch (ap->hsm_task_state) {
4899 case HSM_ST_FIRST:
bb5cb290
AL
4900 /* Send first data block or PACKET CDB */
4901
4902 /* If polling, we will stay in the work queue after
4903 * sending the data. Otherwise, interrupt handler
4904 * takes over after sending the data.
4905 */
4906 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4907
e2cec771 4908 /* check device status */
3655d1d3
AL
4909 if (unlikely((status & ATA_DRQ) == 0)) {
4910 /* handle BSY=0, DRQ=0 as error */
4911 if (likely(status & (ATA_ERR | ATA_DF)))
4912 /* device stops HSM for abort/error */
4913 qc->err_mask |= AC_ERR_DEV;
4914 else
4915 /* HSM violation. Let EH handle this */
4916 qc->err_mask |= AC_ERR_HSM;
4917
14be71f4 4918 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4919 goto fsm_start;
1da177e4
LT
4920 }
4921
71601958
AL
4922 /* Device should not ask for data transfer (DRQ=1)
4923 * when it finds something wrong.
eee6c32f
AL
4924 * We ignore DRQ here and stop the HSM by
4925 * changing hsm_task_state to HSM_ST_ERR and
4926 * let the EH abort the command or reset the device.
71601958
AL
4927 */
4928 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4929 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4930 "error, dev_stat 0x%X\n", status);
3655d1d3 4931 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4932 ap->hsm_task_state = HSM_ST_ERR;
4933 goto fsm_start;
71601958 4934 }
1da177e4 4935
bb5cb290
AL
4936 /* Send the CDB (atapi) or the first data block (ata pio out).
4937 * During the state transition, interrupt handler shouldn't
4938 * be invoked before the data transfer is complete and
4939 * hsm_task_state is changed. Hence, the following locking.
4940 */
4941 if (in_wq)
ba6a1308 4942 spin_lock_irqsave(ap->lock, flags);
1da177e4 4943
bb5cb290
AL
4944 if (qc->tf.protocol == ATA_PROT_PIO) {
4945 /* PIO data out protocol.
4946 * send first data block.
4947 */
0565c26d 4948
bb5cb290
AL
4949 /* ata_pio_sectors() might change the state
4950 * to HSM_ST_LAST. so, the state is changed here
4951 * before ata_pio_sectors().
4952 */
4953 ap->hsm_task_state = HSM_ST;
4954 ata_pio_sectors(qc);
4955 ata_altstatus(ap); /* flush */
4956 } else
4957 /* send CDB */
4958 atapi_send_cdb(ap, qc);
4959
4960 if (in_wq)
ba6a1308 4961 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4962
4963 /* if polling, ata_pio_task() handles the rest.
4964 * otherwise, interrupt handler takes over from here.
4965 */
e2cec771 4966 break;
1c848984 4967
e2cec771
AL
4968 case HSM_ST:
4969 /* complete command or read/write the data register */
4970 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4971 /* ATAPI PIO protocol */
4972 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4973 /* No more data to transfer or device error.
4974 * Device error will be tagged in HSM_ST_LAST.
4975 */
e2cec771
AL
4976 ap->hsm_task_state = HSM_ST_LAST;
4977 goto fsm_start;
4978 }
1da177e4 4979
71601958
AL
4980 /* Device should not ask for data transfer (DRQ=1)
4981 * when it finds something wrong.
eee6c32f
AL
4982 * We ignore DRQ here and stop the HSM by
4983 * changing hsm_task_state to HSM_ST_ERR and
4984 * let the EH abort the command or reset the device.
71601958
AL
4985 */
4986 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4987 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4988 "device error, dev_stat 0x%X\n",
4989 status);
3655d1d3 4990 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4991 ap->hsm_task_state = HSM_ST_ERR;
4992 goto fsm_start;
71601958 4993 }
1da177e4 4994
e2cec771 4995 atapi_pio_bytes(qc);
7fb6ec28 4996
e2cec771
AL
4997 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4998 /* bad ireason reported by device */
4999 goto fsm_start;
1da177e4 5000
e2cec771
AL
5001 } else {
5002 /* ATA PIO protocol */
5003 if (unlikely((status & ATA_DRQ) == 0)) {
5004 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5005 if (likely(status & (ATA_ERR | ATA_DF)))
5006 /* device stops HSM for abort/error */
5007 qc->err_mask |= AC_ERR_DEV;
5008 else
55a8e2c8
TH
5009 /* HSM violation. Let EH handle this.
5010 * Phantom devices also trigger this
5011 * condition. Mark hint.
5012 */
5013 qc->err_mask |= AC_ERR_HSM |
5014 AC_ERR_NODEV_HINT;
3655d1d3 5015
e2cec771
AL
5016 ap->hsm_task_state = HSM_ST_ERR;
5017 goto fsm_start;
5018 }
1da177e4 5019
eee6c32f
AL
5020 /* For PIO reads, some devices may ask for
5021 * data transfer (DRQ=1) alone with ERR=1.
5022 * We respect DRQ here and transfer one
5023 * block of junk data before changing the
5024 * hsm_task_state to HSM_ST_ERR.
5025 *
5026 * For PIO writes, ERR=1 DRQ=1 doesn't make
5027 * sense since the data block has been
5028 * transferred to the device.
71601958
AL
5029 */
5030 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5031 /* data might be corrputed */
5032 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5033
5034 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5035 ata_pio_sectors(qc);
5036 ata_altstatus(ap);
5037 status = ata_wait_idle(ap);
5038 }
5039
3655d1d3
AL
5040 if (status & (ATA_BUSY | ATA_DRQ))
5041 qc->err_mask |= AC_ERR_HSM;
5042
eee6c32f
AL
5043 /* ata_pio_sectors() might change the
5044 * state to HSM_ST_LAST. so, the state
5045 * is changed after ata_pio_sectors().
5046 */
5047 ap->hsm_task_state = HSM_ST_ERR;
5048 goto fsm_start;
71601958
AL
5049 }
5050
e2cec771
AL
5051 ata_pio_sectors(qc);
5052
5053 if (ap->hsm_task_state == HSM_ST_LAST &&
5054 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5055 /* all data read */
5056 ata_altstatus(ap);
52a32205 5057 status = ata_wait_idle(ap);
e2cec771
AL
5058 goto fsm_start;
5059 }
5060 }
5061
5062 ata_altstatus(ap); /* flush */
bb5cb290 5063 poll_next = 1;
1da177e4
LT
5064 break;
5065
14be71f4 5066 case HSM_ST_LAST:
6912ccd5
AL
5067 if (unlikely(!ata_ok(status))) {
5068 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5069 ap->hsm_task_state = HSM_ST_ERR;
5070 goto fsm_start;
5071 }
5072
5073 /* no more data to transfer */
4332a771 5074 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5075 ap->print_id, qc->dev->devno, status);
e2cec771 5076
6912ccd5
AL
5077 WARN_ON(qc->err_mask);
5078
e2cec771 5079 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5080
e2cec771 5081 /* complete taskfile transaction */
c17ea20d 5082 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5083
5084 poll_next = 0;
1da177e4
LT
5085 break;
5086
14be71f4 5087 case HSM_ST_ERR:
e2cec771
AL
5088 /* make sure qc->err_mask is available to
5089 * know what's wrong and recover
5090 */
5091 WARN_ON(qc->err_mask == 0);
5092
5093 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5094
999bb6f4 5095 /* complete taskfile transaction */
c17ea20d 5096 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5097
5098 poll_next = 0;
e2cec771
AL
5099 break;
5100 default:
bb5cb290 5101 poll_next = 0;
6912ccd5 5102 BUG();
1da177e4
LT
5103 }
5104
bb5cb290 5105 return poll_next;
1da177e4
LT
5106}
5107
65f27f38 5108static void ata_pio_task(struct work_struct *work)
8061f5f0 5109{
65f27f38
DH
5110 struct ata_port *ap =
5111 container_of(work, struct ata_port, port_task.work);
5112 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5113 u8 status;
a1af3734 5114 int poll_next;
8061f5f0 5115
7fb6ec28 5116fsm_start:
a1af3734 5117 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5118
a1af3734
AL
5119 /*
5120 * This is purely heuristic. This is a fast path.
5121 * Sometimes when we enter, BSY will be cleared in
5122 * a chk-status or two. If not, the drive is probably seeking
5123 * or something. Snooze for a couple msecs, then
5124 * chk-status again. If still busy, queue delayed work.
5125 */
5126 status = ata_busy_wait(ap, ATA_BUSY, 5);
5127 if (status & ATA_BUSY) {
5128 msleep(2);
5129 status = ata_busy_wait(ap, ATA_BUSY, 10);
5130 if (status & ATA_BUSY) {
31ce6dae 5131 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5132 return;
5133 }
8061f5f0
TH
5134 }
5135
a1af3734
AL
5136 /* move the HSM */
5137 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5138
a1af3734
AL
5139 /* another command or interrupt handler
5140 * may be running at this point.
5141 */
5142 if (poll_next)
7fb6ec28 5143 goto fsm_start;
8061f5f0
TH
5144}
5145
1da177e4
LT
5146/**
5147 * ata_qc_new - Request an available ATA command, for queueing
5148 * @ap: Port associated with device @dev
5149 * @dev: Device from whom we request an available command structure
5150 *
5151 * LOCKING:
0cba632b 5152 * None.
1da177e4
LT
5153 */
5154
5155static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5156{
5157 struct ata_queued_cmd *qc = NULL;
5158 unsigned int i;
5159
e3180499 5160 /* no command while frozen */
b51e9e5d 5161 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5162 return NULL;
5163
2ab7db1f
TH
5164 /* the last tag is reserved for internal command. */
5165 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5166 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5167 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5168 break;
5169 }
5170
5171 if (qc)
5172 qc->tag = i;
5173
5174 return qc;
5175}
5176
5177/**
5178 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5179 * @dev: Device from whom we request an available command structure
5180 *
5181 * LOCKING:
0cba632b 5182 * None.
1da177e4
LT
5183 */
5184
3373efd8 5185struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5186{
3373efd8 5187 struct ata_port *ap = dev->ap;
1da177e4
LT
5188 struct ata_queued_cmd *qc;
5189
5190 qc = ata_qc_new(ap);
5191 if (qc) {
1da177e4
LT
5192 qc->scsicmd = NULL;
5193 qc->ap = ap;
5194 qc->dev = dev;
1da177e4 5195
2c13b7ce 5196 ata_qc_reinit(qc);
1da177e4
LT
5197 }
5198
5199 return qc;
5200}
5201
1da177e4
LT
5202/**
5203 * ata_qc_free - free unused ata_queued_cmd
5204 * @qc: Command to complete
5205 *
5206 * Designed to free unused ata_queued_cmd object
5207 * in case something prevents using it.
5208 *
5209 * LOCKING:
cca3974e 5210 * spin_lock_irqsave(host lock)
1da177e4
LT
5211 */
5212void ata_qc_free(struct ata_queued_cmd *qc)
5213{
4ba946e9
TH
5214 struct ata_port *ap = qc->ap;
5215 unsigned int tag;
5216
a4631474 5217 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5218
4ba946e9
TH
5219 qc->flags = 0;
5220 tag = qc->tag;
5221 if (likely(ata_tag_valid(tag))) {
4ba946e9 5222 qc->tag = ATA_TAG_POISON;
6cec4a39 5223 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5224 }
1da177e4
LT
5225}
5226
76014427 5227void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5228{
dedaf2b0
TH
5229 struct ata_port *ap = qc->ap;
5230
a4631474
TH
5231 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5232 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5233
5234 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5235 ata_sg_clean(qc);
5236
7401abf2 5237 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5238 if (qc->tf.protocol == ATA_PROT_NCQ)
5239 ap->sactive &= ~(1 << qc->tag);
5240 else
5241 ap->active_tag = ATA_TAG_POISON;
7401abf2 5242
3f3791d3
AL
5243 /* atapi: mark qc as inactive to prevent the interrupt handler
5244 * from completing the command twice later, before the error handler
5245 * is called. (when rc != 0 and atapi request sense is needed)
5246 */
5247 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5248 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5249
1da177e4 5250 /* call completion callback */
77853bf2 5251 qc->complete_fn(qc);
1da177e4
LT
5252}
5253
39599a53
TH
5254static void fill_result_tf(struct ata_queued_cmd *qc)
5255{
5256 struct ata_port *ap = qc->ap;
5257
39599a53 5258 qc->result_tf.flags = qc->tf.flags;
4742d54f 5259 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5260}
5261
f686bcb8
TH
5262/**
5263 * ata_qc_complete - Complete an active ATA command
5264 * @qc: Command to complete
5265 * @err_mask: ATA Status register contents
5266 *
5267 * Indicate to the mid and upper layers that an ATA
5268 * command has completed, with either an ok or not-ok status.
5269 *
5270 * LOCKING:
cca3974e 5271 * spin_lock_irqsave(host lock)
f686bcb8
TH
5272 */
5273void ata_qc_complete(struct ata_queued_cmd *qc)
5274{
5275 struct ata_port *ap = qc->ap;
5276
5277 /* XXX: New EH and old EH use different mechanisms to
5278 * synchronize EH with regular execution path.
5279 *
5280 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5281 * Normal execution path is responsible for not accessing a
5282 * failed qc. libata core enforces the rule by returning NULL
5283 * from ata_qc_from_tag() for failed qcs.
5284 *
5285 * Old EH depends on ata_qc_complete() nullifying completion
5286 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5287 * not synchronize with interrupt handler. Only PIO task is
5288 * taken care of.
5289 */
5290 if (ap->ops->error_handler) {
b51e9e5d 5291 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5292
5293 if (unlikely(qc->err_mask))
5294 qc->flags |= ATA_QCFLAG_FAILED;
5295
5296 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5297 if (!ata_tag_internal(qc->tag)) {
5298 /* always fill result TF for failed qc */
39599a53 5299 fill_result_tf(qc);
f686bcb8
TH
5300 ata_qc_schedule_eh(qc);
5301 return;
5302 }
5303 }
5304
5305 /* read result TF if requested */
5306 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5307 fill_result_tf(qc);
f686bcb8
TH
5308
5309 __ata_qc_complete(qc);
5310 } else {
5311 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5312 return;
5313
5314 /* read result TF if failed or requested */
5315 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5316 fill_result_tf(qc);
f686bcb8
TH
5317
5318 __ata_qc_complete(qc);
5319 }
5320}
5321
dedaf2b0
TH
5322/**
5323 * ata_qc_complete_multiple - Complete multiple qcs successfully
5324 * @ap: port in question
5325 * @qc_active: new qc_active mask
5326 * @finish_qc: LLDD callback invoked before completing a qc
5327 *
5328 * Complete in-flight commands. This functions is meant to be
5329 * called from low-level driver's interrupt routine to complete
5330 * requests normally. ap->qc_active and @qc_active is compared
5331 * and commands are completed accordingly.
5332 *
5333 * LOCKING:
cca3974e 5334 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5335 *
5336 * RETURNS:
5337 * Number of completed commands on success, -errno otherwise.
5338 */
5339int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5340 void (*finish_qc)(struct ata_queued_cmd *))
5341{
5342 int nr_done = 0;
5343 u32 done_mask;
5344 int i;
5345
5346 done_mask = ap->qc_active ^ qc_active;
5347
5348 if (unlikely(done_mask & qc_active)) {
5349 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5350 "(%08x->%08x)\n", ap->qc_active, qc_active);
5351 return -EINVAL;
5352 }
5353
5354 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5355 struct ata_queued_cmd *qc;
5356
5357 if (!(done_mask & (1 << i)))
5358 continue;
5359
5360 if ((qc = ata_qc_from_tag(ap, i))) {
5361 if (finish_qc)
5362 finish_qc(qc);
5363 ata_qc_complete(qc);
5364 nr_done++;
5365 }
5366 }
5367
5368 return nr_done;
5369}
5370
1da177e4
LT
5371static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5372{
5373 struct ata_port *ap = qc->ap;
5374
5375 switch (qc->tf.protocol) {
3dc1d881 5376 case ATA_PROT_NCQ:
1da177e4
LT
5377 case ATA_PROT_DMA:
5378 case ATA_PROT_ATAPI_DMA:
5379 return 1;
5380
5381 case ATA_PROT_ATAPI:
5382 case ATA_PROT_PIO:
1da177e4
LT
5383 if (ap->flags & ATA_FLAG_PIO_DMA)
5384 return 1;
5385
5386 /* fall through */
5387
5388 default:
5389 return 0;
5390 }
5391
5392 /* never reached */
5393}
5394
5395/**
5396 * ata_qc_issue - issue taskfile to device
5397 * @qc: command to issue to device
5398 *
5399 * Prepare an ATA command to submission to device.
5400 * This includes mapping the data into a DMA-able
5401 * area, filling in the S/G table, and finally
5402 * writing the taskfile to hardware, starting the command.
5403 *
5404 * LOCKING:
cca3974e 5405 * spin_lock_irqsave(host lock)
1da177e4 5406 */
8e0e694a 5407void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5408{
5409 struct ata_port *ap = qc->ap;
5410
dedaf2b0
TH
5411 /* Make sure only one non-NCQ command is outstanding. The
5412 * check is skipped for old EH because it reuses active qc to
5413 * request ATAPI sense.
5414 */
5415 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5416
5417 if (qc->tf.protocol == ATA_PROT_NCQ) {
5418 WARN_ON(ap->sactive & (1 << qc->tag));
5419 ap->sactive |= 1 << qc->tag;
5420 } else {
5421 WARN_ON(ap->sactive);
5422 ap->active_tag = qc->tag;
5423 }
5424
e4a70e76 5425 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5426 ap->qc_active |= 1 << qc->tag;
e4a70e76 5427
1da177e4
LT
5428 if (ata_should_dma_map(qc)) {
5429 if (qc->flags & ATA_QCFLAG_SG) {
5430 if (ata_sg_setup(qc))
8e436af9 5431 goto sg_err;
1da177e4
LT
5432 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5433 if (ata_sg_setup_one(qc))
8e436af9 5434 goto sg_err;
1da177e4
LT
5435 }
5436 } else {
5437 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5438 }
5439
5440 ap->ops->qc_prep(qc);
5441
8e0e694a
TH
5442 qc->err_mask |= ap->ops->qc_issue(qc);
5443 if (unlikely(qc->err_mask))
5444 goto err;
5445 return;
1da177e4 5446
8e436af9
TH
5447sg_err:
5448 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5449 qc->err_mask |= AC_ERR_SYSTEM;
5450err:
5451 ata_qc_complete(qc);
1da177e4
LT
5452}
5453
5454/**
5455 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5456 * @qc: command to issue to device
5457 *
5458 * Using various libata functions and hooks, this function
5459 * starts an ATA command. ATA commands are grouped into
5460 * classes called "protocols", and issuing each type of protocol
5461 * is slightly different.
5462 *
0baab86b
EF
5463 * May be used as the qc_issue() entry in ata_port_operations.
5464 *
1da177e4 5465 * LOCKING:
cca3974e 5466 * spin_lock_irqsave(host lock)
1da177e4
LT
5467 *
5468 * RETURNS:
9a3d9eb0 5469 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5470 */
5471
9a3d9eb0 5472unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5473{
5474 struct ata_port *ap = qc->ap;
5475
e50362ec
AL
5476 /* Use polling pio if the LLD doesn't handle
5477 * interrupt driven pio and atapi CDB interrupt.
5478 */
5479 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5480 switch (qc->tf.protocol) {
5481 case ATA_PROT_PIO:
e3472cbe 5482 case ATA_PROT_NODATA:
e50362ec
AL
5483 case ATA_PROT_ATAPI:
5484 case ATA_PROT_ATAPI_NODATA:
5485 qc->tf.flags |= ATA_TFLAG_POLLING;
5486 break;
5487 case ATA_PROT_ATAPI_DMA:
5488 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5489 /* see ata_dma_blacklisted() */
e50362ec
AL
5490 BUG();
5491 break;
5492 default:
5493 break;
5494 }
5495 }
5496
312f7da2 5497 /* select the device */
1da177e4
LT
5498 ata_dev_select(ap, qc->dev->devno, 1, 0);
5499
312f7da2 5500 /* start the command */
1da177e4
LT
5501 switch (qc->tf.protocol) {
5502 case ATA_PROT_NODATA:
312f7da2
AL
5503 if (qc->tf.flags & ATA_TFLAG_POLLING)
5504 ata_qc_set_polling(qc);
5505
e5338254 5506 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5507 ap->hsm_task_state = HSM_ST_LAST;
5508
5509 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5510 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5511
1da177e4
LT
5512 break;
5513
5514 case ATA_PROT_DMA:
587005de 5515 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5516
1da177e4
LT
5517 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5518 ap->ops->bmdma_setup(qc); /* set up bmdma */
5519 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5520 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5521 break;
5522
312f7da2
AL
5523 case ATA_PROT_PIO:
5524 if (qc->tf.flags & ATA_TFLAG_POLLING)
5525 ata_qc_set_polling(qc);
1da177e4 5526
e5338254 5527 ata_tf_to_host(ap, &qc->tf);
312f7da2 5528
54f00389
AL
5529 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5530 /* PIO data out protocol */
5531 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5532 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5533
5534 /* always send first data block using
e27486db 5535 * the ata_pio_task() codepath.
54f00389 5536 */
312f7da2 5537 } else {
54f00389
AL
5538 /* PIO data in protocol */
5539 ap->hsm_task_state = HSM_ST;
5540
5541 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5542 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5543
5544 /* if polling, ata_pio_task() handles the rest.
5545 * otherwise, interrupt handler takes over from here.
5546 */
312f7da2
AL
5547 }
5548
1da177e4
LT
5549 break;
5550
1da177e4 5551 case ATA_PROT_ATAPI:
1da177e4 5552 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5553 if (qc->tf.flags & ATA_TFLAG_POLLING)
5554 ata_qc_set_polling(qc);
5555
e5338254 5556 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5557
312f7da2
AL
5558 ap->hsm_task_state = HSM_ST_FIRST;
5559
5560 /* send cdb by polling if no cdb interrupt */
5561 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5562 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5563 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5564 break;
5565
5566 case ATA_PROT_ATAPI_DMA:
587005de 5567 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5568
1da177e4
LT
5569 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5570 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5571 ap->hsm_task_state = HSM_ST_FIRST;
5572
5573 /* send cdb by polling if no cdb interrupt */
5574 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5575 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5576 break;
5577
5578 default:
5579 WARN_ON(1);
9a3d9eb0 5580 return AC_ERR_SYSTEM;
1da177e4
LT
5581 }
5582
5583 return 0;
5584}
5585
1da177e4
LT
5586/**
5587 * ata_host_intr - Handle host interrupt for given (port, task)
5588 * @ap: Port on which interrupt arrived (possibly...)
5589 * @qc: Taskfile currently active in engine
5590 *
5591 * Handle host interrupt for given queued command. Currently,
5592 * only DMA interrupts are handled. All other commands are
5593 * handled via polling with interrupts disabled (nIEN bit).
5594 *
5595 * LOCKING:
cca3974e 5596 * spin_lock_irqsave(host lock)
1da177e4
LT
5597 *
5598 * RETURNS:
5599 * One if interrupt was handled, zero if not (shared irq).
5600 */
5601
5602inline unsigned int ata_host_intr (struct ata_port *ap,
5603 struct ata_queued_cmd *qc)
5604{
ea54763f 5605 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5606 u8 status, host_stat = 0;
1da177e4 5607
312f7da2 5608 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5609 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5610
312f7da2
AL
5611 /* Check whether we are expecting interrupt in this state */
5612 switch (ap->hsm_task_state) {
5613 case HSM_ST_FIRST:
6912ccd5
AL
5614 /* Some pre-ATAPI-4 devices assert INTRQ
5615 * at this state when ready to receive CDB.
5616 */
1da177e4 5617
312f7da2
AL
5618 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5619 * The flag was turned on only for atapi devices.
5620 * No need to check is_atapi_taskfile(&qc->tf) again.
5621 */
5622 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5623 goto idle_irq;
1da177e4 5624 break;
312f7da2
AL
5625 case HSM_ST_LAST:
5626 if (qc->tf.protocol == ATA_PROT_DMA ||
5627 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5628 /* check status of DMA engine */
5629 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5630 VPRINTK("ata%u: host_stat 0x%X\n",
5631 ap->print_id, host_stat);
312f7da2
AL
5632
5633 /* if it's not our irq... */
5634 if (!(host_stat & ATA_DMA_INTR))
5635 goto idle_irq;
5636
5637 /* before we do anything else, clear DMA-Start bit */
5638 ap->ops->bmdma_stop(qc);
a4f16610
AL
5639
5640 if (unlikely(host_stat & ATA_DMA_ERR)) {
5641 /* error when transfering data to/from memory */
5642 qc->err_mask |= AC_ERR_HOST_BUS;
5643 ap->hsm_task_state = HSM_ST_ERR;
5644 }
312f7da2
AL
5645 }
5646 break;
5647 case HSM_ST:
5648 break;
1da177e4
LT
5649 default:
5650 goto idle_irq;
5651 }
5652
312f7da2
AL
5653 /* check altstatus */
5654 status = ata_altstatus(ap);
5655 if (status & ATA_BUSY)
5656 goto idle_irq;
1da177e4 5657
312f7da2
AL
5658 /* check main status, clearing INTRQ */
5659 status = ata_chk_status(ap);
5660 if (unlikely(status & ATA_BUSY))
5661 goto idle_irq;
1da177e4 5662
312f7da2
AL
5663 /* ack bmdma irq events */
5664 ap->ops->irq_clear(ap);
1da177e4 5665
bb5cb290 5666 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5667
5668 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5669 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5670 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5671
1da177e4
LT
5672 return 1; /* irq handled */
5673
5674idle_irq:
5675 ap->stats.idle_irq++;
5676
5677#ifdef ATA_IRQ_TRAP
5678 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5679 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5680 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5681 return 1;
1da177e4
LT
5682 }
5683#endif
5684 return 0; /* irq not handled */
5685}
5686
5687/**
5688 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5689 * @irq: irq line (unused)
cca3974e 5690 * @dev_instance: pointer to our ata_host information structure
1da177e4 5691 *
0cba632b
JG
5692 * Default interrupt handler for PCI IDE devices. Calls
5693 * ata_host_intr() for each port that is not disabled.
5694 *
1da177e4 5695 * LOCKING:
cca3974e 5696 * Obtains host lock during operation.
1da177e4
LT
5697 *
5698 * RETURNS:
0cba632b 5699 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5700 */
5701
7d12e780 5702irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5703{
cca3974e 5704 struct ata_host *host = dev_instance;
1da177e4
LT
5705 unsigned int i;
5706 unsigned int handled = 0;
5707 unsigned long flags;
5708
5709 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5710 spin_lock_irqsave(&host->lock, flags);
1da177e4 5711
cca3974e 5712 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5713 struct ata_port *ap;
5714
cca3974e 5715 ap = host->ports[i];
c1389503 5716 if (ap &&
029f5468 5717 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5718 struct ata_queued_cmd *qc;
5719
5720 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5721 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5722 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5723 handled |= ata_host_intr(ap, qc);
5724 }
5725 }
5726
cca3974e 5727 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5728
5729 return IRQ_RETVAL(handled);
5730}
5731
34bf2170
TH
5732/**
5733 * sata_scr_valid - test whether SCRs are accessible
5734 * @ap: ATA port to test SCR accessibility for
5735 *
5736 * Test whether SCRs are accessible for @ap.
5737 *
5738 * LOCKING:
5739 * None.
5740 *
5741 * RETURNS:
5742 * 1 if SCRs are accessible, 0 otherwise.
5743 */
5744int sata_scr_valid(struct ata_port *ap)
5745{
a16abc0b 5746 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5747}
5748
5749/**
5750 * sata_scr_read - read SCR register of the specified port
5751 * @ap: ATA port to read SCR for
5752 * @reg: SCR to read
5753 * @val: Place to store read value
5754 *
5755 * Read SCR register @reg of @ap into *@val. This function is
5756 * guaranteed to succeed if the cable type of the port is SATA
5757 * and the port implements ->scr_read.
5758 *
5759 * LOCKING:
5760 * None.
5761 *
5762 * RETURNS:
5763 * 0 on success, negative errno on failure.
5764 */
5765int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5766{
da3dbb17
TH
5767 if (sata_scr_valid(ap))
5768 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5769 return -EOPNOTSUPP;
5770}
5771
5772/**
5773 * sata_scr_write - write SCR register of the specified port
5774 * @ap: ATA port to write SCR for
5775 * @reg: SCR to write
5776 * @val: value to write
5777 *
5778 * Write @val to SCR register @reg of @ap. This function is
5779 * guaranteed to succeed if the cable type of the port is SATA
5780 * and the port implements ->scr_read.
5781 *
5782 * LOCKING:
5783 * None.
5784 *
5785 * RETURNS:
5786 * 0 on success, negative errno on failure.
5787 */
5788int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5789{
da3dbb17
TH
5790 if (sata_scr_valid(ap))
5791 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5792 return -EOPNOTSUPP;
5793}
5794
5795/**
5796 * sata_scr_write_flush - write SCR register of the specified port and flush
5797 * @ap: ATA port to write SCR for
5798 * @reg: SCR to write
5799 * @val: value to write
5800 *
5801 * This function is identical to sata_scr_write() except that this
5802 * function performs flush after writing to the register.
5803 *
5804 * LOCKING:
5805 * None.
5806 *
5807 * RETURNS:
5808 * 0 on success, negative errno on failure.
5809 */
5810int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5811{
da3dbb17
TH
5812 int rc;
5813
34bf2170 5814 if (sata_scr_valid(ap)) {
da3dbb17
TH
5815 rc = ap->ops->scr_write(ap, reg, val);
5816 if (rc == 0)
5817 rc = ap->ops->scr_read(ap, reg, &val);
5818 return rc;
34bf2170
TH
5819 }
5820 return -EOPNOTSUPP;
5821}
5822
5823/**
5824 * ata_port_online - test whether the given port is online
5825 * @ap: ATA port to test
5826 *
5827 * Test whether @ap is online. Note that this function returns 0
5828 * if online status of @ap cannot be obtained, so
5829 * ata_port_online(ap) != !ata_port_offline(ap).
5830 *
5831 * LOCKING:
5832 * None.
5833 *
5834 * RETURNS:
5835 * 1 if the port online status is available and online.
5836 */
5837int ata_port_online(struct ata_port *ap)
5838{
5839 u32 sstatus;
5840
5841 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5842 return 1;
5843 return 0;
5844}
5845
5846/**
5847 * ata_port_offline - test whether the given port is offline
5848 * @ap: ATA port to test
5849 *
5850 * Test whether @ap is offline. Note that this function returns
5851 * 0 if offline status of @ap cannot be obtained, so
5852 * ata_port_online(ap) != !ata_port_offline(ap).
5853 *
5854 * LOCKING:
5855 * None.
5856 *
5857 * RETURNS:
5858 * 1 if the port offline status is available and offline.
5859 */
5860int ata_port_offline(struct ata_port *ap)
5861{
5862 u32 sstatus;
5863
5864 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5865 return 1;
5866 return 0;
5867}
0baab86b 5868
77b08fb5 5869int ata_flush_cache(struct ata_device *dev)
9b847548 5870{
977e6b9f 5871 unsigned int err_mask;
9b847548
JA
5872 u8 cmd;
5873
5874 if (!ata_try_flush_cache(dev))
5875 return 0;
5876
6fc49adb 5877 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5878 cmd = ATA_CMD_FLUSH_EXT;
5879 else
5880 cmd = ATA_CMD_FLUSH;
5881
977e6b9f
TH
5882 err_mask = ata_do_simple_cmd(dev, cmd);
5883 if (err_mask) {
5884 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5885 return -EIO;
5886 }
5887
5888 return 0;
9b847548
JA
5889}
5890
6ffa01d8 5891#ifdef CONFIG_PM
cca3974e
JG
5892static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5893 unsigned int action, unsigned int ehi_flags,
5894 int wait)
500530f6
TH
5895{
5896 unsigned long flags;
5897 int i, rc;
5898
cca3974e
JG
5899 for (i = 0; i < host->n_ports; i++) {
5900 struct ata_port *ap = host->ports[i];
500530f6
TH
5901
5902 /* Previous resume operation might still be in
5903 * progress. Wait for PM_PENDING to clear.
5904 */
5905 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5906 ata_port_wait_eh(ap);
5907 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5908 }
5909
5910 /* request PM ops to EH */
5911 spin_lock_irqsave(ap->lock, flags);
5912
5913 ap->pm_mesg = mesg;
5914 if (wait) {
5915 rc = 0;
5916 ap->pm_result = &rc;
5917 }
5918
5919 ap->pflags |= ATA_PFLAG_PM_PENDING;
5920 ap->eh_info.action |= action;
5921 ap->eh_info.flags |= ehi_flags;
5922
5923 ata_port_schedule_eh(ap);
5924
5925 spin_unlock_irqrestore(ap->lock, flags);
5926
5927 /* wait and check result */
5928 if (wait) {
5929 ata_port_wait_eh(ap);
5930 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5931 if (rc)
5932 return rc;
5933 }
5934 }
5935
5936 return 0;
5937}
5938
5939/**
cca3974e
JG
5940 * ata_host_suspend - suspend host
5941 * @host: host to suspend
500530f6
TH
5942 * @mesg: PM message
5943 *
cca3974e 5944 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5945 * function requests EH to perform PM operations and waits for EH
5946 * to finish.
5947 *
5948 * LOCKING:
5949 * Kernel thread context (may sleep).
5950 *
5951 * RETURNS:
5952 * 0 on success, -errno on failure.
5953 */
cca3974e 5954int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5955{
9666f400 5956 int rc;
500530f6 5957
cca3974e 5958 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5959 if (rc == 0)
5960 host->dev->power.power_state = mesg;
500530f6
TH
5961 return rc;
5962}
5963
5964/**
cca3974e
JG
5965 * ata_host_resume - resume host
5966 * @host: host to resume
500530f6 5967 *
cca3974e 5968 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5969 * function requests EH to perform PM operations and returns.
5970 * Note that all resume operations are performed parallely.
5971 *
5972 * LOCKING:
5973 * Kernel thread context (may sleep).
5974 */
cca3974e 5975void ata_host_resume(struct ata_host *host)
500530f6 5976{
cca3974e
JG
5977 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5978 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5979 host->dev->power.power_state = PMSG_ON;
500530f6 5980}
6ffa01d8 5981#endif
500530f6 5982
c893a3ae
RD
5983/**
5984 * ata_port_start - Set port up for dma.
5985 * @ap: Port to initialize
5986 *
5987 * Called just after data structures for each port are
5988 * initialized. Allocates space for PRD table.
5989 *
5990 * May be used as the port_start() entry in ata_port_operations.
5991 *
5992 * LOCKING:
5993 * Inherited from caller.
5994 */
f0d36efd 5995int ata_port_start(struct ata_port *ap)
1da177e4 5996{
2f1f610b 5997 struct device *dev = ap->dev;
6037d6bb 5998 int rc;
1da177e4 5999
f0d36efd
TH
6000 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6001 GFP_KERNEL);
1da177e4
LT
6002 if (!ap->prd)
6003 return -ENOMEM;
6004
6037d6bb 6005 rc = ata_pad_alloc(ap, dev);
f0d36efd 6006 if (rc)
6037d6bb 6007 return rc;
1da177e4 6008
f0d36efd
TH
6009 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6010 (unsigned long long)ap->prd_dma);
1da177e4
LT
6011 return 0;
6012}
6013
3ef3b43d
TH
6014/**
6015 * ata_dev_init - Initialize an ata_device structure
6016 * @dev: Device structure to initialize
6017 *
6018 * Initialize @dev in preparation for probing.
6019 *
6020 * LOCKING:
6021 * Inherited from caller.
6022 */
6023void ata_dev_init(struct ata_device *dev)
6024{
6025 struct ata_port *ap = dev->ap;
72fa4b74
TH
6026 unsigned long flags;
6027
5a04bf4b
TH
6028 /* SATA spd limit is bound to the first device */
6029 ap->sata_spd_limit = ap->hw_sata_spd_limit;
008a7896 6030 ap->sata_spd = 0;
5a04bf4b 6031
72fa4b74
TH
6032 /* High bits of dev->flags are used to record warm plug
6033 * requests which occur asynchronously. Synchronize using
cca3974e 6034 * host lock.
72fa4b74 6035 */
ba6a1308 6036 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6037 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6038 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6039
72fa4b74
TH
6040 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6041 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6042 dev->pio_mask = UINT_MAX;
6043 dev->mwdma_mask = UINT_MAX;
6044 dev->udma_mask = UINT_MAX;
6045}
6046
1da177e4 6047/**
f3187195
TH
6048 * ata_port_alloc - allocate and initialize basic ATA port resources
6049 * @host: ATA host this allocated port belongs to
1da177e4 6050 *
f3187195
TH
6051 * Allocate and initialize basic ATA port resources.
6052 *
6053 * RETURNS:
6054 * Allocate ATA port on success, NULL on failure.
0cba632b 6055 *
1da177e4 6056 * LOCKING:
f3187195 6057 * Inherited from calling layer (may sleep).
1da177e4 6058 */
f3187195 6059struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6060{
f3187195 6061 struct ata_port *ap;
1da177e4
LT
6062 unsigned int i;
6063
f3187195
TH
6064 DPRINTK("ENTER\n");
6065
6066 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6067 if (!ap)
6068 return NULL;
6069
f4d6d004 6070 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6071 ap->lock = &host->lock;
198e0fed 6072 ap->flags = ATA_FLAG_DISABLED;
f3187195 6073 ap->print_id = -1;
1da177e4 6074 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6075 ap->host = host;
f3187195
TH
6076 ap->dev = host->dev;
6077
5a04bf4b 6078 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6079 ap->active_tag = ATA_TAG_POISON;
6080 ap->last_ctl = 0xFF;
bd5d825c
BP
6081
6082#if defined(ATA_VERBOSE_DEBUG)
6083 /* turn on all debugging levels */
6084 ap->msg_enable = 0x00FF;
6085#elif defined(ATA_DEBUG)
6086 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6087#else
0dd4b21f 6088 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6089#endif
1da177e4 6090
65f27f38
DH
6091 INIT_DELAYED_WORK(&ap->port_task, NULL);
6092 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6093 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6094 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6095 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6096 init_timer_deferrable(&ap->fastdrain_timer);
6097 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6098 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6099
838df628 6100 ap->cbl = ATA_CBL_NONE;
838df628 6101
acf356b1
TH
6102 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6103 struct ata_device *dev = &ap->device[i];
38d87234 6104 dev->ap = ap;
72fa4b74 6105 dev->devno = i;
3ef3b43d 6106 ata_dev_init(dev);
acf356b1 6107 }
1da177e4
LT
6108
6109#ifdef ATA_IRQ_TRAP
6110 ap->stats.unhandled_irq = 1;
6111 ap->stats.idle_irq = 1;
6112#endif
1da177e4 6113 return ap;
1da177e4
LT
6114}
6115
f0d36efd
TH
6116static void ata_host_release(struct device *gendev, void *res)
6117{
6118 struct ata_host *host = dev_get_drvdata(gendev);
6119 int i;
6120
6121 for (i = 0; i < host->n_ports; i++) {
6122 struct ata_port *ap = host->ports[i];
6123
ecef7253
TH
6124 if (!ap)
6125 continue;
6126
6127 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6128 ap->ops->port_stop(ap);
f0d36efd
TH
6129 }
6130
ecef7253 6131 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6132 host->ops->host_stop(host);
1aa56cca 6133
1aa506e4
TH
6134 for (i = 0; i < host->n_ports; i++) {
6135 struct ata_port *ap = host->ports[i];
6136
4911487a
TH
6137 if (!ap)
6138 continue;
6139
6140 if (ap->scsi_host)
1aa506e4
TH
6141 scsi_host_put(ap->scsi_host);
6142
4911487a 6143 kfree(ap);
1aa506e4
TH
6144 host->ports[i] = NULL;
6145 }
6146
1aa56cca 6147 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6148}
6149
f3187195
TH
6150/**
6151 * ata_host_alloc - allocate and init basic ATA host resources
6152 * @dev: generic device this host is associated with
6153 * @max_ports: maximum number of ATA ports associated with this host
6154 *
6155 * Allocate and initialize basic ATA host resources. LLD calls
6156 * this function to allocate a host, initializes it fully and
6157 * attaches it using ata_host_register().
6158 *
6159 * @max_ports ports are allocated and host->n_ports is
6160 * initialized to @max_ports. The caller is allowed to decrease
6161 * host->n_ports before calling ata_host_register(). The unused
6162 * ports will be automatically freed on registration.
6163 *
6164 * RETURNS:
6165 * Allocate ATA host on success, NULL on failure.
6166 *
6167 * LOCKING:
6168 * Inherited from calling layer (may sleep).
6169 */
6170struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6171{
6172 struct ata_host *host;
6173 size_t sz;
6174 int i;
6175
6176 DPRINTK("ENTER\n");
6177
6178 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6179 return NULL;
6180
6181 /* alloc a container for our list of ATA ports (buses) */
6182 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6183 /* alloc a container for our list of ATA ports (buses) */
6184 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6185 if (!host)
6186 goto err_out;
6187
6188 devres_add(dev, host);
6189 dev_set_drvdata(dev, host);
6190
6191 spin_lock_init(&host->lock);
6192 host->dev = dev;
6193 host->n_ports = max_ports;
6194
6195 /* allocate ports bound to this host */
6196 for (i = 0; i < max_ports; i++) {
6197 struct ata_port *ap;
6198
6199 ap = ata_port_alloc(host);
6200 if (!ap)
6201 goto err_out;
6202
6203 ap->port_no = i;
6204 host->ports[i] = ap;
6205 }
6206
6207 devres_remove_group(dev, NULL);
6208 return host;
6209
6210 err_out:
6211 devres_release_group(dev, NULL);
6212 return NULL;
6213}
6214
f5cda257
TH
6215/**
6216 * ata_host_alloc_pinfo - alloc host and init with port_info array
6217 * @dev: generic device this host is associated with
6218 * @ppi: array of ATA port_info to initialize host with
6219 * @n_ports: number of ATA ports attached to this host
6220 *
6221 * Allocate ATA host and initialize with info from @ppi. If NULL
6222 * terminated, @ppi may contain fewer entries than @n_ports. The
6223 * last entry will be used for the remaining ports.
6224 *
6225 * RETURNS:
6226 * Allocate ATA host on success, NULL on failure.
6227 *
6228 * LOCKING:
6229 * Inherited from calling layer (may sleep).
6230 */
6231struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6232 const struct ata_port_info * const * ppi,
6233 int n_ports)
6234{
6235 const struct ata_port_info *pi;
6236 struct ata_host *host;
6237 int i, j;
6238
6239 host = ata_host_alloc(dev, n_ports);
6240 if (!host)
6241 return NULL;
6242
6243 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6244 struct ata_port *ap = host->ports[i];
6245
6246 if (ppi[j])
6247 pi = ppi[j++];
6248
6249 ap->pio_mask = pi->pio_mask;
6250 ap->mwdma_mask = pi->mwdma_mask;
6251 ap->udma_mask = pi->udma_mask;
6252 ap->flags |= pi->flags;
6253 ap->ops = pi->port_ops;
6254
6255 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6256 host->ops = pi->port_ops;
6257 if (!host->private_data && pi->private_data)
6258 host->private_data = pi->private_data;
6259 }
6260
6261 return host;
6262}
6263
ecef7253
TH
6264/**
6265 * ata_host_start - start and freeze ports of an ATA host
6266 * @host: ATA host to start ports for
6267 *
6268 * Start and then freeze ports of @host. Started status is
6269 * recorded in host->flags, so this function can be called
6270 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6271 * once. If host->ops isn't initialized yet, its set to the
6272 * first non-dummy port ops.
ecef7253
TH
6273 *
6274 * LOCKING:
6275 * Inherited from calling layer (may sleep).
6276 *
6277 * RETURNS:
6278 * 0 if all ports are started successfully, -errno otherwise.
6279 */
6280int ata_host_start(struct ata_host *host)
6281{
6282 int i, rc;
6283
6284 if (host->flags & ATA_HOST_STARTED)
6285 return 0;
6286
6287 for (i = 0; i < host->n_ports; i++) {
6288 struct ata_port *ap = host->ports[i];
6289
f3187195
TH
6290 if (!host->ops && !ata_port_is_dummy(ap))
6291 host->ops = ap->ops;
6292
ecef7253
TH
6293 if (ap->ops->port_start) {
6294 rc = ap->ops->port_start(ap);
6295 if (rc) {
6296 ata_port_printk(ap, KERN_ERR, "failed to "
6297 "start port (errno=%d)\n", rc);
6298 goto err_out;
6299 }
6300 }
6301
6302 ata_eh_freeze_port(ap);
6303 }
6304
6305 host->flags |= ATA_HOST_STARTED;
6306 return 0;
6307
6308 err_out:
6309 while (--i >= 0) {
6310 struct ata_port *ap = host->ports[i];
6311
6312 if (ap->ops->port_stop)
6313 ap->ops->port_stop(ap);
6314 }
6315 return rc;
6316}
6317
b03732f0 6318/**
cca3974e
JG
6319 * ata_sas_host_init - Initialize a host struct
6320 * @host: host to initialize
6321 * @dev: device host is attached to
6322 * @flags: host flags
6323 * @ops: port_ops
b03732f0
BK
6324 *
6325 * LOCKING:
6326 * PCI/etc. bus probe sem.
6327 *
6328 */
f3187195 6329/* KILLME - the only user left is ipr */
cca3974e
JG
6330void ata_host_init(struct ata_host *host, struct device *dev,
6331 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6332{
cca3974e
JG
6333 spin_lock_init(&host->lock);
6334 host->dev = dev;
6335 host->flags = flags;
6336 host->ops = ops;
b03732f0
BK
6337}
6338
f3187195
TH
6339/**
6340 * ata_host_register - register initialized ATA host
6341 * @host: ATA host to register
6342 * @sht: template for SCSI host
6343 *
6344 * Register initialized ATA host. @host is allocated using
6345 * ata_host_alloc() and fully initialized by LLD. This function
6346 * starts ports, registers @host with ATA and SCSI layers and
6347 * probe registered devices.
6348 *
6349 * LOCKING:
6350 * Inherited from calling layer (may sleep).
6351 *
6352 * RETURNS:
6353 * 0 on success, -errno otherwise.
6354 */
6355int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6356{
6357 int i, rc;
6358
6359 /* host must have been started */
6360 if (!(host->flags & ATA_HOST_STARTED)) {
6361 dev_printk(KERN_ERR, host->dev,
6362 "BUG: trying to register unstarted host\n");
6363 WARN_ON(1);
6364 return -EINVAL;
6365 }
6366
6367 /* Blow away unused ports. This happens when LLD can't
6368 * determine the exact number of ports to allocate at
6369 * allocation time.
6370 */
6371 for (i = host->n_ports; host->ports[i]; i++)
6372 kfree(host->ports[i]);
6373
6374 /* give ports names and add SCSI hosts */
6375 for (i = 0; i < host->n_ports; i++)
6376 host->ports[i]->print_id = ata_print_id++;
6377
6378 rc = ata_scsi_add_hosts(host, sht);
6379 if (rc)
6380 return rc;
6381
fafbae87
TH
6382 /* associate with ACPI nodes */
6383 ata_acpi_associate(host);
6384
f3187195
TH
6385 /* set cable, sata_spd_limit and report */
6386 for (i = 0; i < host->n_ports; i++) {
6387 struct ata_port *ap = host->ports[i];
6388 int irq_line;
6389 u32 scontrol;
6390 unsigned long xfer_mask;
6391
6392 /* set SATA cable type if still unset */
6393 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6394 ap->cbl = ATA_CBL_SATA;
6395
6396 /* init sata_spd_limit to the current value */
6397 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6398 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6399 if (spd)
6400 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6401 }
6402 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6403
6404 /* report the secondary IRQ for second channel legacy */
6405 irq_line = host->irq;
6406 if (i == 1 && host->irq2)
6407 irq_line = host->irq2;
6408
6409 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6410 ap->udma_mask);
6411
6412 /* print per-port info to dmesg */
6413 if (!ata_port_is_dummy(ap))
6414 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6415 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6416 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6417 ata_mode_string(xfer_mask),
6418 ap->ioaddr.cmd_addr,
6419 ap->ioaddr.ctl_addr,
6420 ap->ioaddr.bmdma_addr,
6421 irq_line);
6422 else
6423 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6424 }
6425
6426 /* perform each probe synchronously */
6427 DPRINTK("probe begin\n");
6428 for (i = 0; i < host->n_ports; i++) {
6429 struct ata_port *ap = host->ports[i];
6430 int rc;
6431
6432 /* probe */
6433 if (ap->ops->error_handler) {
6434 struct ata_eh_info *ehi = &ap->eh_info;
6435 unsigned long flags;
6436
6437 ata_port_probe(ap);
6438
6439 /* kick EH for boot probing */
6440 spin_lock_irqsave(ap->lock, flags);
6441
6442 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6443 ehi->action |= ATA_EH_SOFTRESET;
6444 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6445
f4d6d004 6446 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6447 ap->pflags |= ATA_PFLAG_LOADING;
6448 ata_port_schedule_eh(ap);
6449
6450 spin_unlock_irqrestore(ap->lock, flags);
6451
6452 /* wait for EH to finish */
6453 ata_port_wait_eh(ap);
6454 } else {
6455 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6456 rc = ata_bus_probe(ap);
6457 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6458
6459 if (rc) {
6460 /* FIXME: do something useful here?
6461 * Current libata behavior will
6462 * tear down everything when
6463 * the module is removed
6464 * or the h/w is unplugged.
6465 */
6466 }
6467 }
6468 }
6469
6470 /* probes are done, now scan each port's disk(s) */
6471 DPRINTK("host probe begin\n");
6472 for (i = 0; i < host->n_ports; i++) {
6473 struct ata_port *ap = host->ports[i];
6474
1ae46317 6475 ata_scsi_scan_host(ap, 1);
f3187195
TH
6476 }
6477
6478 return 0;
6479}
6480
f5cda257
TH
6481/**
6482 * ata_host_activate - start host, request IRQ and register it
6483 * @host: target ATA host
6484 * @irq: IRQ to request
6485 * @irq_handler: irq_handler used when requesting IRQ
6486 * @irq_flags: irq_flags used when requesting IRQ
6487 * @sht: scsi_host_template to use when registering the host
6488 *
6489 * After allocating an ATA host and initializing it, most libata
6490 * LLDs perform three steps to activate the host - start host,
6491 * request IRQ and register it. This helper takes necessasry
6492 * arguments and performs the three steps in one go.
6493 *
6494 * LOCKING:
6495 * Inherited from calling layer (may sleep).
6496 *
6497 * RETURNS:
6498 * 0 on success, -errno otherwise.
6499 */
6500int ata_host_activate(struct ata_host *host, int irq,
6501 irq_handler_t irq_handler, unsigned long irq_flags,
6502 struct scsi_host_template *sht)
6503{
6504 int rc;
6505
6506 rc = ata_host_start(host);
6507 if (rc)
6508 return rc;
6509
6510 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6511 dev_driver_string(host->dev), host);
6512 if (rc)
6513 return rc;
6514
4031826b
TH
6515 /* Used to print device info at probe */
6516 host->irq = irq;
6517
f5cda257
TH
6518 rc = ata_host_register(host, sht);
6519 /* if failed, just free the IRQ and leave ports alone */
6520 if (rc)
6521 devm_free_irq(host->dev, irq, host);
6522
6523 return rc;
6524}
6525
720ba126
TH
6526/**
6527 * ata_port_detach - Detach ATA port in prepration of device removal
6528 * @ap: ATA port to be detached
6529 *
6530 * Detach all ATA devices and the associated SCSI devices of @ap;
6531 * then, remove the associated SCSI host. @ap is guaranteed to
6532 * be quiescent on return from this function.
6533 *
6534 * LOCKING:
6535 * Kernel thread context (may sleep).
6536 */
6537void ata_port_detach(struct ata_port *ap)
6538{
6539 unsigned long flags;
6540 int i;
6541
6542 if (!ap->ops->error_handler)
c3cf30a9 6543 goto skip_eh;
720ba126
TH
6544
6545 /* tell EH we're leaving & flush EH */
ba6a1308 6546 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6547 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6548 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6549
6550 ata_port_wait_eh(ap);
6551
6552 /* EH is now guaranteed to see UNLOADING, so no new device
6553 * will be attached. Disable all existing devices.
6554 */
ba6a1308 6555 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6556
6557 for (i = 0; i < ATA_MAX_DEVICES; i++)
6558 ata_dev_disable(&ap->device[i]);
6559
ba6a1308 6560 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6561
6562 /* Final freeze & EH. All in-flight commands are aborted. EH
6563 * will be skipped and retrials will be terminated with bad
6564 * target.
6565 */
ba6a1308 6566 spin_lock_irqsave(ap->lock, flags);
720ba126 6567 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6568 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6569
6570 ata_port_wait_eh(ap);
45a66c1c 6571 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6572
c3cf30a9 6573 skip_eh:
720ba126 6574 /* remove the associated SCSI host */
cca3974e 6575 scsi_remove_host(ap->scsi_host);
720ba126
TH
6576}
6577
0529c159
TH
6578/**
6579 * ata_host_detach - Detach all ports of an ATA host
6580 * @host: Host to detach
6581 *
6582 * Detach all ports of @host.
6583 *
6584 * LOCKING:
6585 * Kernel thread context (may sleep).
6586 */
6587void ata_host_detach(struct ata_host *host)
6588{
6589 int i;
6590
6591 for (i = 0; i < host->n_ports; i++)
6592 ata_port_detach(host->ports[i]);
6593}
6594
1da177e4
LT
6595/**
6596 * ata_std_ports - initialize ioaddr with standard port offsets.
6597 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6598 *
6599 * Utility function which initializes data_addr, error_addr,
6600 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6601 * device_addr, status_addr, and command_addr to standard offsets
6602 * relative to cmd_addr.
6603 *
6604 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6605 */
0baab86b 6606
1da177e4
LT
6607void ata_std_ports(struct ata_ioports *ioaddr)
6608{
6609 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6610 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6611 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6612 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6613 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6614 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6615 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6616 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6617 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6618 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6619}
6620
0baab86b 6621
374b1873
JG
6622#ifdef CONFIG_PCI
6623
1da177e4
LT
6624/**
6625 * ata_pci_remove_one - PCI layer callback for device removal
6626 * @pdev: PCI device that was removed
6627 *
b878ca5d
TH
6628 * PCI layer indicates to libata via this hook that hot-unplug or
6629 * module unload event has occurred. Detach all ports. Resource
6630 * release is handled via devres.
1da177e4
LT
6631 *
6632 * LOCKING:
6633 * Inherited from PCI layer (may sleep).
6634 */
f0d36efd 6635void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6636{
6637 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6638 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6639
b878ca5d 6640 ata_host_detach(host);
1da177e4
LT
6641}
6642
6643/* move to PCI subsystem */
057ace5e 6644int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6645{
6646 unsigned long tmp = 0;
6647
6648 switch (bits->width) {
6649 case 1: {
6650 u8 tmp8 = 0;
6651 pci_read_config_byte(pdev, bits->reg, &tmp8);
6652 tmp = tmp8;
6653 break;
6654 }
6655 case 2: {
6656 u16 tmp16 = 0;
6657 pci_read_config_word(pdev, bits->reg, &tmp16);
6658 tmp = tmp16;
6659 break;
6660 }
6661 case 4: {
6662 u32 tmp32 = 0;
6663 pci_read_config_dword(pdev, bits->reg, &tmp32);
6664 tmp = tmp32;
6665 break;
6666 }
6667
6668 default:
6669 return -EINVAL;
6670 }
6671
6672 tmp &= bits->mask;
6673
6674 return (tmp == bits->val) ? 1 : 0;
6675}
9b847548 6676
6ffa01d8 6677#ifdef CONFIG_PM
3c5100c1 6678void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6679{
6680 pci_save_state(pdev);
4c90d971 6681 pci_disable_device(pdev);
500530f6 6682
4c90d971 6683 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6684 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6685}
6686
553c4aa6 6687int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6688{
553c4aa6
TH
6689 int rc;
6690
9b847548
JA
6691 pci_set_power_state(pdev, PCI_D0);
6692 pci_restore_state(pdev);
553c4aa6 6693
b878ca5d 6694 rc = pcim_enable_device(pdev);
553c4aa6
TH
6695 if (rc) {
6696 dev_printk(KERN_ERR, &pdev->dev,
6697 "failed to enable device after resume (%d)\n", rc);
6698 return rc;
6699 }
6700
9b847548 6701 pci_set_master(pdev);
553c4aa6 6702 return 0;
500530f6
TH
6703}
6704
3c5100c1 6705int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6706{
cca3974e 6707 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6708 int rc = 0;
6709
cca3974e 6710 rc = ata_host_suspend(host, mesg);
500530f6
TH
6711 if (rc)
6712 return rc;
6713
3c5100c1 6714 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6715
6716 return 0;
6717}
6718
6719int ata_pci_device_resume(struct pci_dev *pdev)
6720{
cca3974e 6721 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6722 int rc;
500530f6 6723
553c4aa6
TH
6724 rc = ata_pci_device_do_resume(pdev);
6725 if (rc == 0)
6726 ata_host_resume(host);
6727 return rc;
9b847548 6728}
6ffa01d8
TH
6729#endif /* CONFIG_PM */
6730
1da177e4
LT
6731#endif /* CONFIG_PCI */
6732
6733
1da177e4
LT
6734static int __init ata_init(void)
6735{
a8601e5f 6736 ata_probe_timeout *= HZ;
1da177e4
LT
6737 ata_wq = create_workqueue("ata");
6738 if (!ata_wq)
6739 return -ENOMEM;
6740
453b07ac
TH
6741 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6742 if (!ata_aux_wq) {
6743 destroy_workqueue(ata_wq);
6744 return -ENOMEM;
6745 }
6746
1da177e4
LT
6747 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6748 return 0;
6749}
6750
6751static void __exit ata_exit(void)
6752{
6753 destroy_workqueue(ata_wq);
453b07ac 6754 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6755}
6756
a4625085 6757subsys_initcall(ata_init);
1da177e4
LT
6758module_exit(ata_exit);
6759
67846b30 6760static unsigned long ratelimit_time;
34af946a 6761static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6762
6763int ata_ratelimit(void)
6764{
6765 int rc;
6766 unsigned long flags;
6767
6768 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6769
6770 if (time_after(jiffies, ratelimit_time)) {
6771 rc = 1;
6772 ratelimit_time = jiffies + (HZ/5);
6773 } else
6774 rc = 0;
6775
6776 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6777
6778 return rc;
6779}
6780
c22daff4
TH
6781/**
6782 * ata_wait_register - wait until register value changes
6783 * @reg: IO-mapped register
6784 * @mask: Mask to apply to read register value
6785 * @val: Wait condition
6786 * @interval_msec: polling interval in milliseconds
6787 * @timeout_msec: timeout in milliseconds
6788 *
6789 * Waiting for some bits of register to change is a common
6790 * operation for ATA controllers. This function reads 32bit LE
6791 * IO-mapped register @reg and tests for the following condition.
6792 *
6793 * (*@reg & mask) != val
6794 *
6795 * If the condition is met, it returns; otherwise, the process is
6796 * repeated after @interval_msec until timeout.
6797 *
6798 * LOCKING:
6799 * Kernel thread context (may sleep)
6800 *
6801 * RETURNS:
6802 * The final register value.
6803 */
6804u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6805 unsigned long interval_msec,
6806 unsigned long timeout_msec)
6807{
6808 unsigned long timeout;
6809 u32 tmp;
6810
6811 tmp = ioread32(reg);
6812
6813 /* Calculate timeout _after_ the first read to make sure
6814 * preceding writes reach the controller before starting to
6815 * eat away the timeout.
6816 */
6817 timeout = jiffies + (timeout_msec * HZ) / 1000;
6818
6819 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6820 msleep(interval_msec);
6821 tmp = ioread32(reg);
6822 }
6823
6824 return tmp;
6825}
6826
dd5b06c4
TH
6827/*
6828 * Dummy port_ops
6829 */
6830static void ata_dummy_noret(struct ata_port *ap) { }
6831static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6832static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6833
6834static u8 ata_dummy_check_status(struct ata_port *ap)
6835{
6836 return ATA_DRDY;
6837}
6838
6839static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6840{
6841 return AC_ERR_SYSTEM;
6842}
6843
6844const struct ata_port_operations ata_dummy_port_ops = {
6845 .port_disable = ata_port_disable,
6846 .check_status = ata_dummy_check_status,
6847 .check_altstatus = ata_dummy_check_status,
6848 .dev_select = ata_noop_dev_select,
6849 .qc_prep = ata_noop_qc_prep,
6850 .qc_issue = ata_dummy_qc_issue,
6851 .freeze = ata_dummy_noret,
6852 .thaw = ata_dummy_noret,
6853 .error_handler = ata_dummy_noret,
6854 .post_internal_cmd = ata_dummy_qc_noret,
6855 .irq_clear = ata_dummy_noret,
6856 .port_start = ata_dummy_ret0,
6857 .port_stop = ata_dummy_noret,
6858};
6859
21b0ad4f
TH
6860const struct ata_port_info ata_dummy_port_info = {
6861 .port_ops = &ata_dummy_port_ops,
6862};
6863
1da177e4
LT
6864/*
6865 * libata is essentially a library of internal helper functions for
6866 * low-level ATA host controller drivers. As such, the API/ABI is
6867 * likely to change as new drivers are added and updated.
6868 * Do not depend on ABI/API stability.
6869 */
6870
e9c83914
TH
6871EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6872EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6873EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6874EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6875EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6876EXPORT_SYMBOL_GPL(ata_std_bios_param);
6877EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6878EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6879EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6880EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6881EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6882EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6883EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6884EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6885EXPORT_SYMBOL_GPL(ata_sg_init);
6886EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6887EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6888EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6889EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6890EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6891EXPORT_SYMBOL_GPL(ata_tf_load);
6892EXPORT_SYMBOL_GPL(ata_tf_read);
6893EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6894EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6895EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6896EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6897EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6898EXPORT_SYMBOL_GPL(ata_check_status);
6899EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6900EXPORT_SYMBOL_GPL(ata_exec_command);
6901EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6902EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6903EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6904EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6905EXPORT_SYMBOL_GPL(ata_data_xfer);
6906EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6907EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6908EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6909EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6910EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6911EXPORT_SYMBOL_GPL(ata_bmdma_start);
6912EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6913EXPORT_SYMBOL_GPL(ata_bmdma_status);
6914EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6915EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6916EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6917EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6918EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6919EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6920EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6921EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6922EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6923EXPORT_SYMBOL_GPL(sata_phy_debounce);
6924EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6925EXPORT_SYMBOL_GPL(sata_phy_reset);
6926EXPORT_SYMBOL_GPL(__sata_phy_reset);
6927EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6928EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6929EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6930EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6931EXPORT_SYMBOL_GPL(sata_std_hardreset);
6932EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6933EXPORT_SYMBOL_GPL(ata_dev_classify);
6934EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6935EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6936EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6937EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6938EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6939EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6940EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6941EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6942EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6943EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6944EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6945EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6946EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6947EXPORT_SYMBOL_GPL(sata_scr_valid);
6948EXPORT_SYMBOL_GPL(sata_scr_read);
6949EXPORT_SYMBOL_GPL(sata_scr_write);
6950EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6951EXPORT_SYMBOL_GPL(ata_port_online);
6952EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6953#ifdef CONFIG_PM
cca3974e
JG
6954EXPORT_SYMBOL_GPL(ata_host_suspend);
6955EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6956#endif /* CONFIG_PM */
6a62a04d
TH
6957EXPORT_SYMBOL_GPL(ata_id_string);
6958EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6959EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
6960EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6961
1bc4ccff 6962EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6963EXPORT_SYMBOL_GPL(ata_timing_compute);
6964EXPORT_SYMBOL_GPL(ata_timing_merge);
6965
1da177e4
LT
6966#ifdef CONFIG_PCI
6967EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6968EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6969EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6970EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6971EXPORT_SYMBOL_GPL(ata_pci_init_one);
6972EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6973#ifdef CONFIG_PM
500530f6
TH
6974EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6975EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6976EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6977EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6978#endif /* CONFIG_PM */
67951ade
AC
6979EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6980EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6981#endif /* CONFIG_PCI */
9b847548 6982
b64bbc39
TH
6983EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6984EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6985EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
ece1d636 6986EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6987EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6988EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6989EXPORT_SYMBOL_GPL(ata_port_freeze);
6990EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6991EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6992EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6993EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6994EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6995EXPORT_SYMBOL_GPL(ata_irq_on);
6996EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6997EXPORT_SYMBOL_GPL(ata_irq_ack);
6998EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6999EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7000
7001EXPORT_SYMBOL_GPL(ata_cable_40wire);
7002EXPORT_SYMBOL_GPL(ata_cable_80wire);
7003EXPORT_SYMBOL_GPL(ata_cable_unknown);
7004EXPORT_SYMBOL_GPL(ata_cable_sata);