]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata-pmp-prep: implement sata_async_notification()
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
fda0efc5 62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
9f45cbd3 71static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable);
3373efd8 72static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 73static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
baf4fdfa
ML
88int atapi_passthru16 = 1;
89module_param(atapi_passthru16, int, 0444);
90MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
91
c3c013a2
JG
92int libata_fua = 0;
93module_param_named(fua, libata_fua, int, 0444);
94MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
95
1e999736
AC
96static int ata_ignore_hpa = 0;
97module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
98MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
99
a8601e5f
AM
100static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
101module_param(ata_probe_timeout, int, 0444);
102MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
103
d7d0dad6
JG
104int libata_noacpi = 1;
105module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
106MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
107
1da177e4
LT
108MODULE_AUTHOR("Jeff Garzik");
109MODULE_DESCRIPTION("Library module for ATA devices");
110MODULE_LICENSE("GPL");
111MODULE_VERSION(DRV_VERSION);
112
0baab86b 113
1da177e4
LT
114/**
115 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
116 * @tf: Taskfile to convert
1da177e4 117 * @pmp: Port multiplier port
9977126c
TH
118 * @is_cmd: This FIS is for command
119 * @fis: Buffer into which data will output
1da177e4
LT
120 *
121 * Converts a standard ATA taskfile to a Serial ATA
122 * FIS structure (Register - Host to Device).
123 *
124 * LOCKING:
125 * Inherited from caller.
126 */
9977126c 127void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 128{
9977126c
TH
129 fis[0] = 0x27; /* Register - Host to Device FIS */
130 fis[1] = pmp & 0xf; /* Port multiplier number*/
131 if (is_cmd)
132 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
133
1da177e4
LT
134 fis[2] = tf->command;
135 fis[3] = tf->feature;
136
137 fis[4] = tf->lbal;
138 fis[5] = tf->lbam;
139 fis[6] = tf->lbah;
140 fis[7] = tf->device;
141
142 fis[8] = tf->hob_lbal;
143 fis[9] = tf->hob_lbam;
144 fis[10] = tf->hob_lbah;
145 fis[11] = tf->hob_feature;
146
147 fis[12] = tf->nsect;
148 fis[13] = tf->hob_nsect;
149 fis[14] = 0;
150 fis[15] = tf->ctl;
151
152 fis[16] = 0;
153 fis[17] = 0;
154 fis[18] = 0;
155 fis[19] = 0;
156}
157
158/**
159 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
160 * @fis: Buffer from which data will be input
161 * @tf: Taskfile to output
162 *
e12a1be6 163 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
164 *
165 * LOCKING:
166 * Inherited from caller.
167 */
168
057ace5e 169void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
170{
171 tf->command = fis[2]; /* status */
172 tf->feature = fis[3]; /* error */
173
174 tf->lbal = fis[4];
175 tf->lbam = fis[5];
176 tf->lbah = fis[6];
177 tf->device = fis[7];
178
179 tf->hob_lbal = fis[8];
180 tf->hob_lbam = fis[9];
181 tf->hob_lbah = fis[10];
182
183 tf->nsect = fis[12];
184 tf->hob_nsect = fis[13];
185}
186
8cbd6df1
AL
187static const u8 ata_rw_cmds[] = {
188 /* pio multi */
189 ATA_CMD_READ_MULTI,
190 ATA_CMD_WRITE_MULTI,
191 ATA_CMD_READ_MULTI_EXT,
192 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
193 0,
194 0,
195 0,
196 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
197 /* pio */
198 ATA_CMD_PIO_READ,
199 ATA_CMD_PIO_WRITE,
200 ATA_CMD_PIO_READ_EXT,
201 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
202 0,
203 0,
204 0,
205 0,
8cbd6df1
AL
206 /* dma */
207 ATA_CMD_READ,
208 ATA_CMD_WRITE,
209 ATA_CMD_READ_EXT,
9a3dccc4
TH
210 ATA_CMD_WRITE_EXT,
211 0,
212 0,
213 0,
214 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 215};
1da177e4
LT
216
217/**
8cbd6df1 218 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
219 * @tf: command to examine and configure
220 * @dev: device tf belongs to
1da177e4 221 *
2e9edbf8 222 * Examine the device configuration and tf->flags to calculate
8cbd6df1 223 * the proper read/write commands and protocol to use.
1da177e4
LT
224 *
225 * LOCKING:
226 * caller.
227 */
bd056d7e 228static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 229{
9a3dccc4 230 u8 cmd;
1da177e4 231
9a3dccc4 232 int index, fua, lba48, write;
2e9edbf8 233
9a3dccc4 234 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
235 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
236 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 237
8cbd6df1
AL
238 if (dev->flags & ATA_DFLAG_PIO) {
239 tf->protocol = ATA_PROT_PIO;
9a3dccc4 240 index = dev->multi_count ? 0 : 8;
9af5c9c9 241 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
242 /* Unable to use DMA due to host limitation */
243 tf->protocol = ATA_PROT_PIO;
0565c26d 244 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
245 } else {
246 tf->protocol = ATA_PROT_DMA;
9a3dccc4 247 index = 16;
8cbd6df1 248 }
1da177e4 249
9a3dccc4
TH
250 cmd = ata_rw_cmds[index + fua + lba48 + write];
251 if (cmd) {
252 tf->command = cmd;
253 return 0;
254 }
255 return -1;
1da177e4
LT
256}
257
35b649fe
TH
258/**
259 * ata_tf_read_block - Read block address from ATA taskfile
260 * @tf: ATA taskfile of interest
261 * @dev: ATA device @tf belongs to
262 *
263 * LOCKING:
264 * None.
265 *
266 * Read block address from @tf. This function can handle all
267 * three address formats - LBA, LBA48 and CHS. tf->protocol and
268 * flags select the address format to use.
269 *
270 * RETURNS:
271 * Block address read from @tf.
272 */
273u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
274{
275 u64 block = 0;
276
277 if (tf->flags & ATA_TFLAG_LBA) {
278 if (tf->flags & ATA_TFLAG_LBA48) {
279 block |= (u64)tf->hob_lbah << 40;
280 block |= (u64)tf->hob_lbam << 32;
281 block |= tf->hob_lbal << 24;
282 } else
283 block |= (tf->device & 0xf) << 24;
284
285 block |= tf->lbah << 16;
286 block |= tf->lbam << 8;
287 block |= tf->lbal;
288 } else {
289 u32 cyl, head, sect;
290
291 cyl = tf->lbam | (tf->lbah << 8);
292 head = tf->device & 0xf;
293 sect = tf->lbal;
294
295 block = (cyl * dev->heads + head) * dev->sectors + sect;
296 }
297
298 return block;
299}
300
bd056d7e
TH
301/**
302 * ata_build_rw_tf - Build ATA taskfile for given read/write request
303 * @tf: Target ATA taskfile
304 * @dev: ATA device @tf belongs to
305 * @block: Block address
306 * @n_block: Number of blocks
307 * @tf_flags: RW/FUA etc...
308 * @tag: tag
309 *
310 * LOCKING:
311 * None.
312 *
313 * Build ATA taskfile @tf for read/write request described by
314 * @block, @n_block, @tf_flags and @tag on @dev.
315 *
316 * RETURNS:
317 *
318 * 0 on success, -ERANGE if the request is too large for @dev,
319 * -EINVAL if the request is invalid.
320 */
321int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
322 u64 block, u32 n_block, unsigned int tf_flags,
323 unsigned int tag)
324{
325 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
326 tf->flags |= tf_flags;
327
6d1245bf 328 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
329 /* yay, NCQ */
330 if (!lba_48_ok(block, n_block))
331 return -ERANGE;
332
333 tf->protocol = ATA_PROT_NCQ;
334 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
335
336 if (tf->flags & ATA_TFLAG_WRITE)
337 tf->command = ATA_CMD_FPDMA_WRITE;
338 else
339 tf->command = ATA_CMD_FPDMA_READ;
340
341 tf->nsect = tag << 3;
342 tf->hob_feature = (n_block >> 8) & 0xff;
343 tf->feature = n_block & 0xff;
344
345 tf->hob_lbah = (block >> 40) & 0xff;
346 tf->hob_lbam = (block >> 32) & 0xff;
347 tf->hob_lbal = (block >> 24) & 0xff;
348 tf->lbah = (block >> 16) & 0xff;
349 tf->lbam = (block >> 8) & 0xff;
350 tf->lbal = block & 0xff;
351
352 tf->device = 1 << 6;
353 if (tf->flags & ATA_TFLAG_FUA)
354 tf->device |= 1 << 7;
355 } else if (dev->flags & ATA_DFLAG_LBA) {
356 tf->flags |= ATA_TFLAG_LBA;
357
358 if (lba_28_ok(block, n_block)) {
359 /* use LBA28 */
360 tf->device |= (block >> 24) & 0xf;
361 } else if (lba_48_ok(block, n_block)) {
362 if (!(dev->flags & ATA_DFLAG_LBA48))
363 return -ERANGE;
364
365 /* use LBA48 */
366 tf->flags |= ATA_TFLAG_LBA48;
367
368 tf->hob_nsect = (n_block >> 8) & 0xff;
369
370 tf->hob_lbah = (block >> 40) & 0xff;
371 tf->hob_lbam = (block >> 32) & 0xff;
372 tf->hob_lbal = (block >> 24) & 0xff;
373 } else
374 /* request too large even for LBA48 */
375 return -ERANGE;
376
377 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
378 return -EINVAL;
379
380 tf->nsect = n_block & 0xff;
381
382 tf->lbah = (block >> 16) & 0xff;
383 tf->lbam = (block >> 8) & 0xff;
384 tf->lbal = block & 0xff;
385
386 tf->device |= ATA_LBA;
387 } else {
388 /* CHS */
389 u32 sect, head, cyl, track;
390
391 /* The request -may- be too large for CHS addressing. */
392 if (!lba_28_ok(block, n_block))
393 return -ERANGE;
394
395 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
396 return -EINVAL;
397
398 /* Convert LBA to CHS */
399 track = (u32)block / dev->sectors;
400 cyl = track / dev->heads;
401 head = track % dev->heads;
402 sect = (u32)block % dev->sectors + 1;
403
404 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
405 (u32)block, track, cyl, head, sect);
406
407 /* Check whether the converted CHS can fit.
408 Cylinder: 0-65535
409 Head: 0-15
410 Sector: 1-255*/
411 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
412 return -ERANGE;
413
414 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
415 tf->lbal = sect;
416 tf->lbam = cyl;
417 tf->lbah = cyl >> 8;
418 tf->device |= head;
419 }
420
421 return 0;
422}
423
cb95d562
TH
424/**
425 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
426 * @pio_mask: pio_mask
427 * @mwdma_mask: mwdma_mask
428 * @udma_mask: udma_mask
429 *
430 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
431 * unsigned int xfer_mask.
432 *
433 * LOCKING:
434 * None.
435 *
436 * RETURNS:
437 * Packed xfer_mask.
438 */
439static unsigned int ata_pack_xfermask(unsigned int pio_mask,
440 unsigned int mwdma_mask,
441 unsigned int udma_mask)
442{
443 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
444 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
445 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
446}
447
c0489e4e
TH
448/**
449 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
450 * @xfer_mask: xfer_mask to unpack
451 * @pio_mask: resulting pio_mask
452 * @mwdma_mask: resulting mwdma_mask
453 * @udma_mask: resulting udma_mask
454 *
455 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
456 * Any NULL distination masks will be ignored.
457 */
458static void ata_unpack_xfermask(unsigned int xfer_mask,
459 unsigned int *pio_mask,
460 unsigned int *mwdma_mask,
461 unsigned int *udma_mask)
462{
463 if (pio_mask)
464 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
465 if (mwdma_mask)
466 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
467 if (udma_mask)
468 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
469}
470
cb95d562 471static const struct ata_xfer_ent {
be9a50c8 472 int shift, bits;
cb95d562
TH
473 u8 base;
474} ata_xfer_tbl[] = {
475 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
476 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
477 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
478 { -1, },
479};
480
481/**
482 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
483 * @xfer_mask: xfer_mask of interest
484 *
485 * Return matching XFER_* value for @xfer_mask. Only the highest
486 * bit of @xfer_mask is considered.
487 *
488 * LOCKING:
489 * None.
490 *
491 * RETURNS:
492 * Matching XFER_* value, 0 if no match found.
493 */
494static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
495{
496 int highbit = fls(xfer_mask) - 1;
497 const struct ata_xfer_ent *ent;
498
499 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
500 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
501 return ent->base + highbit - ent->shift;
502 return 0;
503}
504
505/**
506 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
507 * @xfer_mode: XFER_* of interest
508 *
509 * Return matching xfer_mask for @xfer_mode.
510 *
511 * LOCKING:
512 * None.
513 *
514 * RETURNS:
515 * Matching xfer_mask, 0 if no match found.
516 */
517static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
518{
519 const struct ata_xfer_ent *ent;
520
521 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
522 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
523 return 1 << (ent->shift + xfer_mode - ent->base);
524 return 0;
525}
526
527/**
528 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
529 * @xfer_mode: XFER_* of interest
530 *
531 * Return matching xfer_shift for @xfer_mode.
532 *
533 * LOCKING:
534 * None.
535 *
536 * RETURNS:
537 * Matching xfer_shift, -1 if no match found.
538 */
539static int ata_xfer_mode2shift(unsigned int xfer_mode)
540{
541 const struct ata_xfer_ent *ent;
542
543 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
544 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
545 return ent->shift;
546 return -1;
547}
548
1da177e4 549/**
1da7b0d0
TH
550 * ata_mode_string - convert xfer_mask to string
551 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
552 *
553 * Determine string which represents the highest speed
1da7b0d0 554 * (highest bit in @modemask).
1da177e4
LT
555 *
556 * LOCKING:
557 * None.
558 *
559 * RETURNS:
560 * Constant C string representing highest speed listed in
1da7b0d0 561 * @mode_mask, or the constant C string "<n/a>".
1da177e4 562 */
1da7b0d0 563static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 564{
75f554bc
TH
565 static const char * const xfer_mode_str[] = {
566 "PIO0",
567 "PIO1",
568 "PIO2",
569 "PIO3",
570 "PIO4",
b352e57d
AC
571 "PIO5",
572 "PIO6",
75f554bc
TH
573 "MWDMA0",
574 "MWDMA1",
575 "MWDMA2",
b352e57d
AC
576 "MWDMA3",
577 "MWDMA4",
75f554bc
TH
578 "UDMA/16",
579 "UDMA/25",
580 "UDMA/33",
581 "UDMA/44",
582 "UDMA/66",
583 "UDMA/100",
584 "UDMA/133",
585 "UDMA7",
586 };
1da7b0d0 587 int highbit;
1da177e4 588
1da7b0d0
TH
589 highbit = fls(xfer_mask) - 1;
590 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
591 return xfer_mode_str[highbit];
1da177e4 592 return "<n/a>";
1da177e4
LT
593}
594
4c360c81
TH
595static const char *sata_spd_string(unsigned int spd)
596{
597 static const char * const spd_str[] = {
598 "1.5 Gbps",
599 "3.0 Gbps",
600 };
601
602 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
603 return "<unknown>";
604 return spd_str[spd - 1];
605}
606
3373efd8 607void ata_dev_disable(struct ata_device *dev)
0b8efb0a 608{
09d7f9b0 609 if (ata_dev_enabled(dev)) {
9af5c9c9 610 if (ata_msg_drv(dev->link->ap))
09d7f9b0 611 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
612 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
613 ATA_DNXFER_QUIET);
0b8efb0a
TH
614 dev->class++;
615 }
616}
617
1da177e4 618/**
0d5ff566 619 * ata_devchk - PATA device presence detection
1da177e4
LT
620 * @ap: ATA channel to examine
621 * @device: Device to examine (starting at zero)
622 *
623 * This technique was originally described in
624 * Hale Landis's ATADRVR (www.ata-atapi.com), and
625 * later found its way into the ATA/ATAPI spec.
626 *
627 * Write a pattern to the ATA shadow registers,
628 * and if a device is present, it will respond by
629 * correctly storing and echoing back the
630 * ATA shadow register contents.
631 *
632 * LOCKING:
633 * caller.
634 */
635
0d5ff566 636static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
637{
638 struct ata_ioports *ioaddr = &ap->ioaddr;
639 u8 nsect, lbal;
640
641 ap->ops->dev_select(ap, device);
642
0d5ff566
TH
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 iowrite8(0xaa, ioaddr->nsect_addr);
647 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 648
0d5ff566
TH
649 iowrite8(0x55, ioaddr->nsect_addr);
650 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 651
0d5ff566
TH
652 nsect = ioread8(ioaddr->nsect_addr);
653 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
654
655 if ((nsect == 0x55) && (lbal == 0xaa))
656 return 1; /* we found a device */
657
658 return 0; /* nothing found */
659}
660
1da177e4
LT
661/**
662 * ata_dev_classify - determine device type based on ATA-spec signature
663 * @tf: ATA taskfile register set for device to be identified
664 *
665 * Determine from taskfile register contents whether a device is
666 * ATA or ATAPI, as per "Signature and persistence" section
667 * of ATA/PI spec (volume 1, sect 5.14).
668 *
669 * LOCKING:
670 * None.
671 *
672 * RETURNS:
673 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
674 * the event of failure.
675 */
676
057ace5e 677unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
678{
679 /* Apple's open source Darwin code hints that some devices only
680 * put a proper signature into the LBA mid/high registers,
681 * So, we only check those. It's sufficient for uniqueness.
682 */
683
684 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
685 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
686 DPRINTK("found ATA device by sig\n");
687 return ATA_DEV_ATA;
688 }
689
690 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
691 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
692 DPRINTK("found ATAPI device by sig\n");
693 return ATA_DEV_ATAPI;
694 }
695
696 DPRINTK("unknown device\n");
697 return ATA_DEV_UNKNOWN;
698}
699
700/**
701 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
702 * @dev: ATA device to classify (starting at zero)
703 * @present: device seems present
b4dc7623 704 * @r_err: Value of error register on completion
1da177e4
LT
705 *
706 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
707 * an ATA/ATAPI-defined set of values is placed in the ATA
708 * shadow registers, indicating the results of device detection
709 * and diagnostics.
710 *
711 * Select the ATA device, and read the values from the ATA shadow
712 * registers. Then parse according to the Error register value,
713 * and the spec-defined values examined by ata_dev_classify().
714 *
715 * LOCKING:
716 * caller.
b4dc7623
TH
717 *
718 * RETURNS:
719 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 720 */
3f19859e
TH
721unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
722 u8 *r_err)
1da177e4 723{
3f19859e 724 struct ata_port *ap = dev->link->ap;
1da177e4
LT
725 struct ata_taskfile tf;
726 unsigned int class;
727 u8 err;
728
3f19859e 729 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
730
731 memset(&tf, 0, sizeof(tf));
732
1da177e4 733 ap->ops->tf_read(ap, &tf);
0169e284 734 err = tf.feature;
b4dc7623
TH
735 if (r_err)
736 *r_err = err;
1da177e4 737
93590859 738 /* see if device passed diags: if master then continue and warn later */
3f19859e 739 if (err == 0 && dev->devno == 0)
93590859 740 /* diagnostic fail : do nothing _YET_ */
3f19859e 741 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 742 else if (err == 1)
1da177e4 743 /* do nothing */ ;
3f19859e 744 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
745 /* do nothing */ ;
746 else
b4dc7623 747 return ATA_DEV_NONE;
1da177e4 748
b4dc7623 749 /* determine if device is ATA or ATAPI */
1da177e4 750 class = ata_dev_classify(&tf);
b4dc7623 751
d7fbee05
TH
752 if (class == ATA_DEV_UNKNOWN) {
753 /* If the device failed diagnostic, it's likely to
754 * have reported incorrect device signature too.
755 * Assume ATA device if the device seems present but
756 * device signature is invalid with diagnostic
757 * failure.
758 */
759 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
760 class = ATA_DEV_ATA;
761 else
762 class = ATA_DEV_NONE;
763 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
764 class = ATA_DEV_NONE;
765
b4dc7623 766 return class;
1da177e4
LT
767}
768
769/**
6a62a04d 770 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
771 * @id: IDENTIFY DEVICE results we will examine
772 * @s: string into which data is output
773 * @ofs: offset into identify device page
774 * @len: length of string to return. must be an even number.
775 *
776 * The strings in the IDENTIFY DEVICE page are broken up into
777 * 16-bit chunks. Run through the string, and output each
778 * 8-bit chunk linearly, regardless of platform.
779 *
780 * LOCKING:
781 * caller.
782 */
783
6a62a04d
TH
784void ata_id_string(const u16 *id, unsigned char *s,
785 unsigned int ofs, unsigned int len)
1da177e4
LT
786{
787 unsigned int c;
788
789 while (len > 0) {
790 c = id[ofs] >> 8;
791 *s = c;
792 s++;
793
794 c = id[ofs] & 0xff;
795 *s = c;
796 s++;
797
798 ofs++;
799 len -= 2;
800 }
801}
802
0e949ff3 803/**
6a62a04d 804 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
805 * @id: IDENTIFY DEVICE results we will examine
806 * @s: string into which data is output
807 * @ofs: offset into identify device page
808 * @len: length of string to return. must be an odd number.
809 *
6a62a04d 810 * This function is identical to ata_id_string except that it
0e949ff3
TH
811 * trims trailing spaces and terminates the resulting string with
812 * null. @len must be actual maximum length (even number) + 1.
813 *
814 * LOCKING:
815 * caller.
816 */
6a62a04d
TH
817void ata_id_c_string(const u16 *id, unsigned char *s,
818 unsigned int ofs, unsigned int len)
0e949ff3
TH
819{
820 unsigned char *p;
821
822 WARN_ON(!(len & 1));
823
6a62a04d 824 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
825
826 p = s + strnlen(s, len - 1);
827 while (p > s && p[-1] == ' ')
828 p--;
829 *p = '\0';
830}
0baab86b 831
db6f8759
TH
832static u64 ata_id_n_sectors(const u16 *id)
833{
834 if (ata_id_has_lba(id)) {
835 if (ata_id_has_lba48(id))
836 return ata_id_u64(id, 100);
837 else
838 return ata_id_u32(id, 60);
839 } else {
840 if (ata_id_current_chs_valid(id))
841 return ata_id_u32(id, 57);
842 else
843 return id[1] * id[3] * id[6];
844 }
845}
846
1e999736
AC
847static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
848{
849 u64 sectors = 0;
850
851 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
852 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
853 sectors |= (tf->hob_lbal & 0xff) << 24;
854 sectors |= (tf->lbah & 0xff) << 16;
855 sectors |= (tf->lbam & 0xff) << 8;
856 sectors |= (tf->lbal & 0xff);
857
858 return ++sectors;
859}
860
861static u64 ata_tf_to_lba(struct ata_taskfile *tf)
862{
863 u64 sectors = 0;
864
865 sectors |= (tf->device & 0x0f) << 24;
866 sectors |= (tf->lbah & 0xff) << 16;
867 sectors |= (tf->lbam & 0xff) << 8;
868 sectors |= (tf->lbal & 0xff);
869
870 return ++sectors;
871}
872
873/**
c728a914
TH
874 * ata_read_native_max_address - Read native max address
875 * @dev: target device
876 * @max_sectors: out parameter for the result native max address
1e999736 877 *
c728a914
TH
878 * Perform an LBA48 or LBA28 native size query upon the device in
879 * question.
1e999736 880 *
c728a914
TH
881 * RETURNS:
882 * 0 on success, -EACCES if command is aborted by the drive.
883 * -EIO on other errors.
1e999736 884 */
c728a914 885static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 886{
c728a914 887 unsigned int err_mask;
1e999736 888 struct ata_taskfile tf;
c728a914 889 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
890
891 ata_tf_init(dev, &tf);
892
c728a914 893 /* always clear all address registers */
1e999736 894 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 895
c728a914
TH
896 if (lba48) {
897 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
898 tf.flags |= ATA_TFLAG_LBA48;
899 } else
900 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 901
1e999736 902 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
903 tf.device |= ATA_LBA;
904
905 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
906 if (err_mask) {
907 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
908 "max address (err_mask=0x%x)\n", err_mask);
909 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
910 return -EACCES;
911 return -EIO;
912 }
1e999736 913
c728a914
TH
914 if (lba48)
915 *max_sectors = ata_tf_to_lba48(&tf);
916 else
917 *max_sectors = ata_tf_to_lba(&tf);
1e999736 918
c728a914 919 return 0;
1e999736
AC
920}
921
922/**
c728a914
TH
923 * ata_set_max_sectors - Set max sectors
924 * @dev: target device
6b38d1d1 925 * @new_sectors: new max sectors value to set for the device
1e999736 926 *
c728a914
TH
927 * Set max sectors of @dev to @new_sectors.
928 *
929 * RETURNS:
930 * 0 on success, -EACCES if command is aborted or denied (due to
931 * previous non-volatile SET_MAX) by the drive. -EIO on other
932 * errors.
1e999736 933 */
05027adc 934static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 935{
c728a914 936 unsigned int err_mask;
1e999736 937 struct ata_taskfile tf;
c728a914 938 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
939
940 new_sectors--;
941
942 ata_tf_init(dev, &tf);
943
1e999736 944 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
945
946 if (lba48) {
947 tf.command = ATA_CMD_SET_MAX_EXT;
948 tf.flags |= ATA_TFLAG_LBA48;
949
950 tf.hob_lbal = (new_sectors >> 24) & 0xff;
951 tf.hob_lbam = (new_sectors >> 32) & 0xff;
952 tf.hob_lbah = (new_sectors >> 40) & 0xff;
953 } else
954 tf.command = ATA_CMD_SET_MAX;
955
1e999736 956 tf.protocol |= ATA_PROT_NODATA;
c728a914 957 tf.device |= ATA_LBA;
1e999736
AC
958
959 tf.lbal = (new_sectors >> 0) & 0xff;
960 tf.lbam = (new_sectors >> 8) & 0xff;
961 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 962
c728a914
TH
963 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
964 if (err_mask) {
965 ata_dev_printk(dev, KERN_WARNING, "failed to set "
966 "max address (err_mask=0x%x)\n", err_mask);
967 if (err_mask == AC_ERR_DEV &&
968 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
969 return -EACCES;
970 return -EIO;
971 }
972
c728a914 973 return 0;
1e999736
AC
974}
975
976/**
977 * ata_hpa_resize - Resize a device with an HPA set
978 * @dev: Device to resize
979 *
980 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
981 * it if required to the full size of the media. The caller must check
982 * the drive has the HPA feature set enabled.
05027adc
TH
983 *
984 * RETURNS:
985 * 0 on success, -errno on failure.
1e999736 986 */
05027adc 987static int ata_hpa_resize(struct ata_device *dev)
1e999736 988{
05027adc
TH
989 struct ata_eh_context *ehc = &dev->link->eh_context;
990 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
991 u64 sectors = ata_id_n_sectors(dev->id);
992 u64 native_sectors;
c728a914 993 int rc;
a617c09f 994
05027adc
TH
995 /* do we need to do it? */
996 if (dev->class != ATA_DEV_ATA ||
997 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
998 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 999 return 0;
1e999736 1000
05027adc
TH
1001 /* read native max address */
1002 rc = ata_read_native_max_address(dev, &native_sectors);
1003 if (rc) {
1004 /* If HPA isn't going to be unlocked, skip HPA
1005 * resizing from the next try.
1006 */
1007 if (!ata_ignore_hpa) {
1008 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1009 "broken, will skip HPA handling\n");
1010 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1011
1012 /* we can continue if device aborted the command */
1013 if (rc == -EACCES)
1014 rc = 0;
1e999736 1015 }
37301a55 1016
05027adc
TH
1017 return rc;
1018 }
1019
1020 /* nothing to do? */
1021 if (native_sectors <= sectors || !ata_ignore_hpa) {
1022 if (!print_info || native_sectors == sectors)
1023 return 0;
1024
1025 if (native_sectors > sectors)
1026 ata_dev_printk(dev, KERN_INFO,
1027 "HPA detected: current %llu, native %llu\n",
1028 (unsigned long long)sectors,
1029 (unsigned long long)native_sectors);
1030 else if (native_sectors < sectors)
1031 ata_dev_printk(dev, KERN_WARNING,
1032 "native sectors (%llu) is smaller than "
1033 "sectors (%llu)\n",
1034 (unsigned long long)native_sectors,
1035 (unsigned long long)sectors);
1036 return 0;
1037 }
1038
1039 /* let's unlock HPA */
1040 rc = ata_set_max_sectors(dev, native_sectors);
1041 if (rc == -EACCES) {
1042 /* if device aborted the command, skip HPA resizing */
1043 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1044 "(%llu -> %llu), skipping HPA handling\n",
1045 (unsigned long long)sectors,
1046 (unsigned long long)native_sectors);
1047 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1048 return 0;
1049 } else if (rc)
1050 return rc;
1051
1052 /* re-read IDENTIFY data */
1053 rc = ata_dev_reread_id(dev, 0);
1054 if (rc) {
1055 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1056 "data after HPA resizing\n");
1057 return rc;
1058 }
1059
1060 if (print_info) {
1061 u64 new_sectors = ata_id_n_sectors(dev->id);
1062 ata_dev_printk(dev, KERN_INFO,
1063 "HPA unlocked: %llu -> %llu, native %llu\n",
1064 (unsigned long long)sectors,
1065 (unsigned long long)new_sectors,
1066 (unsigned long long)native_sectors);
1067 }
1068
1069 return 0;
1e999736
AC
1070}
1071
10305f0f
AC
1072/**
1073 * ata_id_to_dma_mode - Identify DMA mode from id block
1074 * @dev: device to identify
cc261267 1075 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1076 *
1077 * Set up the timing values for the device based upon the identify
1078 * reported values for the DMA mode. This function is used by drivers
1079 * which rely upon firmware configured modes, but wish to report the
1080 * mode correctly when possible.
1081 *
1082 * In addition we emit similarly formatted messages to the default
1083 * ata_dev_set_mode handler, in order to provide consistency of
1084 * presentation.
1085 */
1086
1087void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1088{
1089 unsigned int mask;
1090 u8 mode;
1091
1092 /* Pack the DMA modes */
1093 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1094 if (dev->id[53] & 0x04)
1095 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1096
1097 /* Select the mode in use */
1098 mode = ata_xfer_mask2mode(mask);
1099
1100 if (mode != 0) {
1101 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1102 ata_mode_string(mask));
1103 } else {
1104 /* SWDMA perhaps ? */
1105 mode = unknown;
1106 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1107 }
1108
1109 /* Configure the device reporting */
1110 dev->xfer_mode = mode;
1111 dev->xfer_shift = ata_xfer_mode2shift(mode);
1112}
1113
0baab86b
EF
1114/**
1115 * ata_noop_dev_select - Select device 0/1 on ATA bus
1116 * @ap: ATA channel to manipulate
1117 * @device: ATA device (numbered from zero) to select
1118 *
1119 * This function performs no actual function.
1120 *
1121 * May be used as the dev_select() entry in ata_port_operations.
1122 *
1123 * LOCKING:
1124 * caller.
1125 */
1da177e4
LT
1126void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1127{
1128}
1129
0baab86b 1130
1da177e4
LT
1131/**
1132 * ata_std_dev_select - Select device 0/1 on ATA bus
1133 * @ap: ATA channel to manipulate
1134 * @device: ATA device (numbered from zero) to select
1135 *
1136 * Use the method defined in the ATA specification to
1137 * make either device 0, or device 1, active on the
0baab86b
EF
1138 * ATA channel. Works with both PIO and MMIO.
1139 *
1140 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1141 *
1142 * LOCKING:
1143 * caller.
1144 */
1145
1146void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1147{
1148 u8 tmp;
1149
1150 if (device == 0)
1151 tmp = ATA_DEVICE_OBS;
1152 else
1153 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1154
0d5ff566 1155 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1156 ata_pause(ap); /* needed; also flushes, for mmio */
1157}
1158
1159/**
1160 * ata_dev_select - Select device 0/1 on ATA bus
1161 * @ap: ATA channel to manipulate
1162 * @device: ATA device (numbered from zero) to select
1163 * @wait: non-zero to wait for Status register BSY bit to clear
1164 * @can_sleep: non-zero if context allows sleeping
1165 *
1166 * Use the method defined in the ATA specification to
1167 * make either device 0, or device 1, active on the
1168 * ATA channel.
1169 *
1170 * This is a high-level version of ata_std_dev_select(),
1171 * which additionally provides the services of inserting
1172 * the proper pauses and status polling, where needed.
1173 *
1174 * LOCKING:
1175 * caller.
1176 */
1177
1178void ata_dev_select(struct ata_port *ap, unsigned int device,
1179 unsigned int wait, unsigned int can_sleep)
1180{
88574551 1181 if (ata_msg_probe(ap))
44877b4e
TH
1182 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1183 "device %u, wait %u\n", device, wait);
1da177e4
LT
1184
1185 if (wait)
1186 ata_wait_idle(ap);
1187
1188 ap->ops->dev_select(ap, device);
1189
1190 if (wait) {
9af5c9c9 1191 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1192 msleep(150);
1193 ata_wait_idle(ap);
1194 }
1195}
1196
1197/**
1198 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1199 * @id: IDENTIFY DEVICE page to dump
1da177e4 1200 *
0bd3300a
TH
1201 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1202 * page.
1da177e4
LT
1203 *
1204 * LOCKING:
1205 * caller.
1206 */
1207
0bd3300a 1208static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1209{
1210 DPRINTK("49==0x%04x "
1211 "53==0x%04x "
1212 "63==0x%04x "
1213 "64==0x%04x "
1214 "75==0x%04x \n",
0bd3300a
TH
1215 id[49],
1216 id[53],
1217 id[63],
1218 id[64],
1219 id[75]);
1da177e4
LT
1220 DPRINTK("80==0x%04x "
1221 "81==0x%04x "
1222 "82==0x%04x "
1223 "83==0x%04x "
1224 "84==0x%04x \n",
0bd3300a
TH
1225 id[80],
1226 id[81],
1227 id[82],
1228 id[83],
1229 id[84]);
1da177e4
LT
1230 DPRINTK("88==0x%04x "
1231 "93==0x%04x\n",
0bd3300a
TH
1232 id[88],
1233 id[93]);
1da177e4
LT
1234}
1235
cb95d562
TH
1236/**
1237 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1238 * @id: IDENTIFY data to compute xfer mask from
1239 *
1240 * Compute the xfermask for this device. This is not as trivial
1241 * as it seems if we must consider early devices correctly.
1242 *
1243 * FIXME: pre IDE drive timing (do we care ?).
1244 *
1245 * LOCKING:
1246 * None.
1247 *
1248 * RETURNS:
1249 * Computed xfermask
1250 */
1251static unsigned int ata_id_xfermask(const u16 *id)
1252{
1253 unsigned int pio_mask, mwdma_mask, udma_mask;
1254
1255 /* Usual case. Word 53 indicates word 64 is valid */
1256 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1257 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1258 pio_mask <<= 3;
1259 pio_mask |= 0x7;
1260 } else {
1261 /* If word 64 isn't valid then Word 51 high byte holds
1262 * the PIO timing number for the maximum. Turn it into
1263 * a mask.
1264 */
7a0f1c8a 1265 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1266 if (mode < 5) /* Valid PIO range */
1267 pio_mask = (2 << mode) - 1;
1268 else
1269 pio_mask = 1;
cb95d562
TH
1270
1271 /* But wait.. there's more. Design your standards by
1272 * committee and you too can get a free iordy field to
1273 * process. However its the speeds not the modes that
1274 * are supported... Note drivers using the timing API
1275 * will get this right anyway
1276 */
1277 }
1278
1279 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1280
b352e57d
AC
1281 if (ata_id_is_cfa(id)) {
1282 /*
1283 * Process compact flash extended modes
1284 */
1285 int pio = id[163] & 0x7;
1286 int dma = (id[163] >> 3) & 7;
1287
1288 if (pio)
1289 pio_mask |= (1 << 5);
1290 if (pio > 1)
1291 pio_mask |= (1 << 6);
1292 if (dma)
1293 mwdma_mask |= (1 << 3);
1294 if (dma > 1)
1295 mwdma_mask |= (1 << 4);
1296 }
1297
fb21f0d0
TH
1298 udma_mask = 0;
1299 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1300 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1301
1302 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1303}
1304
86e45b6b
TH
1305/**
1306 * ata_port_queue_task - Queue port_task
1307 * @ap: The ata_port to queue port_task for
e2a7f77a 1308 * @fn: workqueue function to be scheduled
65f27f38 1309 * @data: data for @fn to use
e2a7f77a 1310 * @delay: delay time for workqueue function
86e45b6b
TH
1311 *
1312 * Schedule @fn(@data) for execution after @delay jiffies using
1313 * port_task. There is one port_task per port and it's the
1314 * user(low level driver)'s responsibility to make sure that only
1315 * one task is active at any given time.
1316 *
1317 * libata core layer takes care of synchronization between
1318 * port_task and EH. ata_port_queue_task() may be ignored for EH
1319 * synchronization.
1320 *
1321 * LOCKING:
1322 * Inherited from caller.
1323 */
65f27f38 1324void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1325 unsigned long delay)
1326{
65f27f38
DH
1327 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1328 ap->port_task_data = data;
86e45b6b 1329
45a66c1c
ON
1330 /* may fail if ata_port_flush_task() in progress */
1331 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1332}
1333
1334/**
1335 * ata_port_flush_task - Flush port_task
1336 * @ap: The ata_port to flush port_task for
1337 *
1338 * After this function completes, port_task is guranteed not to
1339 * be running or scheduled.
1340 *
1341 * LOCKING:
1342 * Kernel thread context (may sleep)
1343 */
1344void ata_port_flush_task(struct ata_port *ap)
1345{
86e45b6b
TH
1346 DPRINTK("ENTER\n");
1347
45a66c1c 1348 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1349
0dd4b21f
BP
1350 if (ata_msg_ctl(ap))
1351 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1352}
1353
7102d230 1354static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1355{
77853bf2 1356 struct completion *waiting = qc->private_data;
a2a7a662 1357
a2a7a662 1358 complete(waiting);
a2a7a662
TH
1359}
1360
1361/**
2432697b 1362 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1363 * @dev: Device to which the command is sent
1364 * @tf: Taskfile registers for the command and the result
d69cf37d 1365 * @cdb: CDB for packet command
a2a7a662 1366 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1367 * @sg: sg list for the data buffer of the command
1368 * @n_elem: Number of sg entries
a2a7a662
TH
1369 *
1370 * Executes libata internal command with timeout. @tf contains
1371 * command on entry and result on return. Timeout and error
1372 * conditions are reported via return value. No recovery action
1373 * is taken after a command times out. It's caller's duty to
1374 * clean up after timeout.
1375 *
1376 * LOCKING:
1377 * None. Should be called with kernel context, might sleep.
551e8889
TH
1378 *
1379 * RETURNS:
1380 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1381 */
2432697b
TH
1382unsigned ata_exec_internal_sg(struct ata_device *dev,
1383 struct ata_taskfile *tf, const u8 *cdb,
1384 int dma_dir, struct scatterlist *sg,
1385 unsigned int n_elem)
a2a7a662 1386{
9af5c9c9
TH
1387 struct ata_link *link = dev->link;
1388 struct ata_port *ap = link->ap;
a2a7a662
TH
1389 u8 command = tf->command;
1390 struct ata_queued_cmd *qc;
2ab7db1f 1391 unsigned int tag, preempted_tag;
dedaf2b0 1392 u32 preempted_sactive, preempted_qc_active;
da917d69 1393 int preempted_nr_active_links;
60be6b9a 1394 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1395 unsigned long flags;
77853bf2 1396 unsigned int err_mask;
d95a717f 1397 int rc;
a2a7a662 1398
ba6a1308 1399 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1400
e3180499 1401 /* no internal command while frozen */
b51e9e5d 1402 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1403 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1404 return AC_ERR_SYSTEM;
1405 }
1406
2ab7db1f 1407 /* initialize internal qc */
a2a7a662 1408
2ab7db1f
TH
1409 /* XXX: Tag 0 is used for drivers with legacy EH as some
1410 * drivers choke if any other tag is given. This breaks
1411 * ata_tag_internal() test for those drivers. Don't use new
1412 * EH stuff without converting to it.
1413 */
1414 if (ap->ops->error_handler)
1415 tag = ATA_TAG_INTERNAL;
1416 else
1417 tag = 0;
1418
6cec4a39 1419 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1420 BUG();
f69499f4 1421 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1422
1423 qc->tag = tag;
1424 qc->scsicmd = NULL;
1425 qc->ap = ap;
1426 qc->dev = dev;
1427 ata_qc_reinit(qc);
1428
9af5c9c9
TH
1429 preempted_tag = link->active_tag;
1430 preempted_sactive = link->sactive;
dedaf2b0 1431 preempted_qc_active = ap->qc_active;
da917d69 1432 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1433 link->active_tag = ATA_TAG_POISON;
1434 link->sactive = 0;
dedaf2b0 1435 ap->qc_active = 0;
da917d69 1436 ap->nr_active_links = 0;
2ab7db1f
TH
1437
1438 /* prepare & issue qc */
a2a7a662 1439 qc->tf = *tf;
d69cf37d
TH
1440 if (cdb)
1441 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1442 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1443 qc->dma_dir = dma_dir;
1444 if (dma_dir != DMA_NONE) {
2432697b
TH
1445 unsigned int i, buflen = 0;
1446
1447 for (i = 0; i < n_elem; i++)
1448 buflen += sg[i].length;
1449
1450 ata_sg_init(qc, sg, n_elem);
49c80429 1451 qc->nbytes = buflen;
a2a7a662
TH
1452 }
1453
77853bf2 1454 qc->private_data = &wait;
a2a7a662
TH
1455 qc->complete_fn = ata_qc_complete_internal;
1456
8e0e694a 1457 ata_qc_issue(qc);
a2a7a662 1458
ba6a1308 1459 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1460
a8601e5f 1461 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1462
1463 ata_port_flush_task(ap);
41ade50c 1464
d95a717f 1465 if (!rc) {
ba6a1308 1466 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1467
1468 /* We're racing with irq here. If we lose, the
1469 * following test prevents us from completing the qc
d95a717f
TH
1470 * twice. If we win, the port is frozen and will be
1471 * cleaned up by ->post_internal_cmd().
a2a7a662 1472 */
77853bf2 1473 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1474 qc->err_mask |= AC_ERR_TIMEOUT;
1475
1476 if (ap->ops->error_handler)
1477 ata_port_freeze(ap);
1478 else
1479 ata_qc_complete(qc);
f15a1daf 1480
0dd4b21f
BP
1481 if (ata_msg_warn(ap))
1482 ata_dev_printk(dev, KERN_WARNING,
88574551 1483 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1484 }
1485
ba6a1308 1486 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1487 }
1488
d95a717f
TH
1489 /* do post_internal_cmd */
1490 if (ap->ops->post_internal_cmd)
1491 ap->ops->post_internal_cmd(qc);
1492
a51d644a
TH
1493 /* perform minimal error analysis */
1494 if (qc->flags & ATA_QCFLAG_FAILED) {
1495 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1496 qc->err_mask |= AC_ERR_DEV;
1497
1498 if (!qc->err_mask)
1499 qc->err_mask |= AC_ERR_OTHER;
1500
1501 if (qc->err_mask & ~AC_ERR_OTHER)
1502 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1503 }
1504
15869303 1505 /* finish up */
ba6a1308 1506 spin_lock_irqsave(ap->lock, flags);
15869303 1507
e61e0672 1508 *tf = qc->result_tf;
77853bf2
TH
1509 err_mask = qc->err_mask;
1510
1511 ata_qc_free(qc);
9af5c9c9
TH
1512 link->active_tag = preempted_tag;
1513 link->sactive = preempted_sactive;
dedaf2b0 1514 ap->qc_active = preempted_qc_active;
da917d69 1515 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1516
1f7dd3e9
TH
1517 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1518 * Until those drivers are fixed, we detect the condition
1519 * here, fail the command with AC_ERR_SYSTEM and reenable the
1520 * port.
1521 *
1522 * Note that this doesn't change any behavior as internal
1523 * command failure results in disabling the device in the
1524 * higher layer for LLDDs without new reset/EH callbacks.
1525 *
1526 * Kill the following code as soon as those drivers are fixed.
1527 */
198e0fed 1528 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1529 err_mask |= AC_ERR_SYSTEM;
1530 ata_port_probe(ap);
1531 }
1532
ba6a1308 1533 spin_unlock_irqrestore(ap->lock, flags);
15869303 1534
77853bf2 1535 return err_mask;
a2a7a662
TH
1536}
1537
2432697b 1538/**
33480a0e 1539 * ata_exec_internal - execute libata internal command
2432697b
TH
1540 * @dev: Device to which the command is sent
1541 * @tf: Taskfile registers for the command and the result
1542 * @cdb: CDB for packet command
1543 * @dma_dir: Data tranfer direction of the command
1544 * @buf: Data buffer of the command
1545 * @buflen: Length of data buffer
1546 *
1547 * Wrapper around ata_exec_internal_sg() which takes simple
1548 * buffer instead of sg list.
1549 *
1550 * LOCKING:
1551 * None. Should be called with kernel context, might sleep.
1552 *
1553 * RETURNS:
1554 * Zero on success, AC_ERR_* mask on failure
1555 */
1556unsigned ata_exec_internal(struct ata_device *dev,
1557 struct ata_taskfile *tf, const u8 *cdb,
1558 int dma_dir, void *buf, unsigned int buflen)
1559{
33480a0e
TH
1560 struct scatterlist *psg = NULL, sg;
1561 unsigned int n_elem = 0;
2432697b 1562
33480a0e
TH
1563 if (dma_dir != DMA_NONE) {
1564 WARN_ON(!buf);
1565 sg_init_one(&sg, buf, buflen);
1566 psg = &sg;
1567 n_elem++;
1568 }
2432697b 1569
33480a0e 1570 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1571}
1572
977e6b9f
TH
1573/**
1574 * ata_do_simple_cmd - execute simple internal command
1575 * @dev: Device to which the command is sent
1576 * @cmd: Opcode to execute
1577 *
1578 * Execute a 'simple' command, that only consists of the opcode
1579 * 'cmd' itself, without filling any other registers
1580 *
1581 * LOCKING:
1582 * Kernel thread context (may sleep).
1583 *
1584 * RETURNS:
1585 * Zero on success, AC_ERR_* mask on failure
e58eb583 1586 */
77b08fb5 1587unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1588{
1589 struct ata_taskfile tf;
e58eb583
TH
1590
1591 ata_tf_init(dev, &tf);
1592
1593 tf.command = cmd;
1594 tf.flags |= ATA_TFLAG_DEVICE;
1595 tf.protocol = ATA_PROT_NODATA;
1596
977e6b9f 1597 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1598}
1599
1bc4ccff
AC
1600/**
1601 * ata_pio_need_iordy - check if iordy needed
1602 * @adev: ATA device
1603 *
1604 * Check if the current speed of the device requires IORDY. Used
1605 * by various controllers for chip configuration.
1606 */
a617c09f 1607
1bc4ccff
AC
1608unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1609{
432729f0
AC
1610 /* Controller doesn't support IORDY. Probably a pointless check
1611 as the caller should know this */
9af5c9c9 1612 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1613 return 0;
432729f0
AC
1614 /* PIO3 and higher it is mandatory */
1615 if (adev->pio_mode > XFER_PIO_2)
1616 return 1;
1617 /* We turn it on when possible */
1618 if (ata_id_has_iordy(adev->id))
1bc4ccff 1619 return 1;
432729f0
AC
1620 return 0;
1621}
2e9edbf8 1622
432729f0
AC
1623/**
1624 * ata_pio_mask_no_iordy - Return the non IORDY mask
1625 * @adev: ATA device
1626 *
1627 * Compute the highest mode possible if we are not using iordy. Return
1628 * -1 if no iordy mode is available.
1629 */
a617c09f 1630
432729f0
AC
1631static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1632{
1bc4ccff 1633 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1634 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1635 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1636 /* Is the speed faster than the drive allows non IORDY ? */
1637 if (pio) {
1638 /* This is cycle times not frequency - watch the logic! */
1639 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1640 return 3 << ATA_SHIFT_PIO;
1641 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1642 }
1643 }
432729f0 1644 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1645}
1646
1da177e4 1647/**
49016aca 1648 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1649 * @dev: target device
1650 * @p_class: pointer to class of the target device (may be changed)
bff04647 1651 * @flags: ATA_READID_* flags
fe635c7e 1652 * @id: buffer to read IDENTIFY data into
1da177e4 1653 *
49016aca
TH
1654 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1655 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1656 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1657 * for pre-ATA4 drives.
1da177e4 1658 *
50a99018
AC
1659 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1660 * now we abort if we hit that case.
1661 *
1da177e4 1662 * LOCKING:
49016aca
TH
1663 * Kernel thread context (may sleep)
1664 *
1665 * RETURNS:
1666 * 0 on success, -errno otherwise.
1da177e4 1667 */
a9beec95 1668int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1669 unsigned int flags, u16 *id)
1da177e4 1670{
9af5c9c9 1671 struct ata_port *ap = dev->link->ap;
49016aca 1672 unsigned int class = *p_class;
a0123703 1673 struct ata_taskfile tf;
49016aca
TH
1674 unsigned int err_mask = 0;
1675 const char *reason;
54936f8b 1676 int may_fallback = 1, tried_spinup = 0;
49016aca 1677 int rc;
1da177e4 1678
0dd4b21f 1679 if (ata_msg_ctl(ap))
44877b4e 1680 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1681
49016aca 1682 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1683 retry:
3373efd8 1684 ata_tf_init(dev, &tf);
a0123703 1685
49016aca
TH
1686 switch (class) {
1687 case ATA_DEV_ATA:
a0123703 1688 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1689 break;
1690 case ATA_DEV_ATAPI:
a0123703 1691 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1692 break;
1693 default:
1694 rc = -ENODEV;
1695 reason = "unsupported class";
1696 goto err_out;
1da177e4
LT
1697 }
1698
a0123703 1699 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1700
1701 /* Some devices choke if TF registers contain garbage. Make
1702 * sure those are properly initialized.
1703 */
1704 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1705
1706 /* Device presence detection is unreliable on some
1707 * controllers. Always poll IDENTIFY if available.
1708 */
1709 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1710
3373efd8 1711 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1712 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1713 if (err_mask) {
800b3996 1714 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1715 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1716 ap->print_id, dev->devno);
55a8e2c8
TH
1717 return -ENOENT;
1718 }
1719
54936f8b
TH
1720 /* Device or controller might have reported the wrong
1721 * device class. Give a shot at the other IDENTIFY if
1722 * the current one is aborted by the device.
1723 */
1724 if (may_fallback &&
1725 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1726 may_fallback = 0;
1727
1728 if (class == ATA_DEV_ATA)
1729 class = ATA_DEV_ATAPI;
1730 else
1731 class = ATA_DEV_ATA;
1732 goto retry;
1733 }
1734
49016aca
TH
1735 rc = -EIO;
1736 reason = "I/O error";
1da177e4
LT
1737 goto err_out;
1738 }
1739
54936f8b
TH
1740 /* Falling back doesn't make sense if ID data was read
1741 * successfully at least once.
1742 */
1743 may_fallback = 0;
1744
49016aca 1745 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1746
49016aca 1747 /* sanity check */
a4f5749b 1748 rc = -EINVAL;
6070068b 1749 reason = "device reports invalid type";
a4f5749b
TH
1750
1751 if (class == ATA_DEV_ATA) {
1752 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1753 goto err_out;
1754 } else {
1755 if (ata_id_is_ata(id))
1756 goto err_out;
49016aca
TH
1757 }
1758
169439c2
ML
1759 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1760 tried_spinup = 1;
1761 /*
1762 * Drive powered-up in standby mode, and requires a specific
1763 * SET_FEATURES spin-up subcommand before it will accept
1764 * anything other than the original IDENTIFY command.
1765 */
1766 ata_tf_init(dev, &tf);
1767 tf.command = ATA_CMD_SET_FEATURES;
1768 tf.feature = SETFEATURES_SPINUP;
1769 tf.protocol = ATA_PROT_NODATA;
1770 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1771 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
fb0582f9 1772 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1773 rc = -EIO;
1774 reason = "SPINUP failed";
1775 goto err_out;
1776 }
1777 /*
1778 * If the drive initially returned incomplete IDENTIFY info,
1779 * we now must reissue the IDENTIFY command.
1780 */
1781 if (id[2] == 0x37c8)
1782 goto retry;
1783 }
1784
bff04647 1785 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1786 /*
1787 * The exact sequence expected by certain pre-ATA4 drives is:
1788 * SRST RESET
50a99018
AC
1789 * IDENTIFY (optional in early ATA)
1790 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
1791 * anything else..
1792 * Some drives were very specific about that exact sequence.
50a99018
AC
1793 *
1794 * Note that ATA4 says lba is mandatory so the second check
1795 * shoud never trigger.
49016aca
TH
1796 */
1797 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1798 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1799 if (err_mask) {
1800 rc = -EIO;
1801 reason = "INIT_DEV_PARAMS failed";
1802 goto err_out;
1803 }
1804
1805 /* current CHS translation info (id[53-58]) might be
1806 * changed. reread the identify device info.
1807 */
bff04647 1808 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1809 goto retry;
1810 }
1811 }
1812
1813 *p_class = class;
fe635c7e 1814
49016aca
TH
1815 return 0;
1816
1817 err_out:
88574551 1818 if (ata_msg_warn(ap))
0dd4b21f 1819 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1820 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1821 return rc;
1822}
1823
3373efd8 1824static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1825{
9af5c9c9
TH
1826 struct ata_port *ap = dev->link->ap;
1827 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1828}
1829
a6e6ce8e
TH
1830static void ata_dev_config_ncq(struct ata_device *dev,
1831 char *desc, size_t desc_sz)
1832{
9af5c9c9 1833 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
1834 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1835
1836 if (!ata_id_has_ncq(dev->id)) {
1837 desc[0] = '\0';
1838 return;
1839 }
75683fe7 1840 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
1841 snprintf(desc, desc_sz, "NCQ (not used)");
1842 return;
1843 }
a6e6ce8e 1844 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1845 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1846 dev->flags |= ATA_DFLAG_NCQ;
1847 }
1848
1849 if (hdepth >= ddepth)
1850 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1851 else
1852 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1853}
1854
49016aca 1855/**
ffeae418 1856 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1857 * @dev: Target device to configure
1858 *
1859 * Configure @dev according to @dev->id. Generic and low-level
1860 * driver specific fixups are also applied.
49016aca
TH
1861 *
1862 * LOCKING:
ffeae418
TH
1863 * Kernel thread context (may sleep)
1864 *
1865 * RETURNS:
1866 * 0 on success, -errno otherwise
49016aca 1867 */
efdaedc4 1868int ata_dev_configure(struct ata_device *dev)
49016aca 1869{
9af5c9c9
TH
1870 struct ata_port *ap = dev->link->ap;
1871 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 1872 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1873 const u16 *id = dev->id;
ff8854b2 1874 unsigned int xfer_mask;
b352e57d 1875 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1876 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1877 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1878 int rc;
49016aca 1879
0dd4b21f 1880 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1881 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1882 __FUNCTION__);
ffeae418 1883 return 0;
49016aca
TH
1884 }
1885
0dd4b21f 1886 if (ata_msg_probe(ap))
44877b4e 1887 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1888
75683fe7
TH
1889 /* set horkage */
1890 dev->horkage |= ata_dev_blacklisted(dev);
1891
6746544c
TH
1892 /* let ACPI work its magic */
1893 rc = ata_acpi_on_devcfg(dev);
1894 if (rc)
1895 return rc;
08573a86 1896
05027adc
TH
1897 /* massage HPA, do it early as it might change IDENTIFY data */
1898 rc = ata_hpa_resize(dev);
1899 if (rc)
1900 return rc;
1901
c39f5ebe 1902 /* print device capabilities */
0dd4b21f 1903 if (ata_msg_probe(ap))
88574551
TH
1904 ata_dev_printk(dev, KERN_DEBUG,
1905 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1906 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1907 __FUNCTION__,
f15a1daf
TH
1908 id[49], id[82], id[83], id[84],
1909 id[85], id[86], id[87], id[88]);
c39f5ebe 1910
208a9933 1911 /* initialize to-be-configured parameters */
ea1dd4e1 1912 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1913 dev->max_sectors = 0;
1914 dev->cdb_len = 0;
1915 dev->n_sectors = 0;
1916 dev->cylinders = 0;
1917 dev->heads = 0;
1918 dev->sectors = 0;
1919
1da177e4
LT
1920 /*
1921 * common ATA, ATAPI feature tests
1922 */
1923
ff8854b2 1924 /* find max transfer mode; for printk only */
1148c3a7 1925 xfer_mask = ata_id_xfermask(id);
1da177e4 1926
0dd4b21f
BP
1927 if (ata_msg_probe(ap))
1928 ata_dump_id(id);
1da177e4 1929
ef143d57
AL
1930 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1931 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1932 sizeof(fwrevbuf));
1933
1934 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1935 sizeof(modelbuf));
1936
1da177e4
LT
1937 /* ATA-specific feature tests */
1938 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1939 if (ata_id_is_cfa(id)) {
1940 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1941 ata_dev_printk(dev, KERN_WARNING,
1942 "supports DRM functions and may "
1943 "not be fully accessable.\n");
b352e57d
AC
1944 snprintf(revbuf, 7, "CFA");
1945 }
1946 else
1947 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1948
1148c3a7 1949 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1950
3f64f565
EM
1951 if (dev->id[59] & 0x100)
1952 dev->multi_count = dev->id[59] & 0xff;
1953
1148c3a7 1954 if (ata_id_has_lba(id)) {
4c2d721a 1955 const char *lba_desc;
a6e6ce8e 1956 char ncq_desc[20];
8bf62ece 1957
4c2d721a
TH
1958 lba_desc = "LBA";
1959 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1960 if (ata_id_has_lba48(id)) {
8bf62ece 1961 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1962 lba_desc = "LBA48";
6fc49adb
TH
1963
1964 if (dev->n_sectors >= (1UL << 28) &&
1965 ata_id_has_flush_ext(id))
1966 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1967 }
8bf62ece 1968
a6e6ce8e
TH
1969 /* config NCQ */
1970 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1971
8bf62ece 1972 /* print device info to dmesg */
3f64f565
EM
1973 if (ata_msg_drv(ap) && print_info) {
1974 ata_dev_printk(dev, KERN_INFO,
1975 "%s: %s, %s, max %s\n",
1976 revbuf, modelbuf, fwrevbuf,
1977 ata_mode_string(xfer_mask));
1978 ata_dev_printk(dev, KERN_INFO,
1979 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1980 (unsigned long long)dev->n_sectors,
3f64f565
EM
1981 dev->multi_count, lba_desc, ncq_desc);
1982 }
ffeae418 1983 } else {
8bf62ece
AL
1984 /* CHS */
1985
1986 /* Default translation */
1148c3a7
TH
1987 dev->cylinders = id[1];
1988 dev->heads = id[3];
1989 dev->sectors = id[6];
8bf62ece 1990
1148c3a7 1991 if (ata_id_current_chs_valid(id)) {
8bf62ece 1992 /* Current CHS translation is valid. */
1148c3a7
TH
1993 dev->cylinders = id[54];
1994 dev->heads = id[55];
1995 dev->sectors = id[56];
8bf62ece
AL
1996 }
1997
1998 /* print device info to dmesg */
3f64f565 1999 if (ata_msg_drv(ap) && print_info) {
88574551 2000 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2001 "%s: %s, %s, max %s\n",
2002 revbuf, modelbuf, fwrevbuf,
2003 ata_mode_string(xfer_mask));
a84471fe 2004 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2005 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2006 (unsigned long long)dev->n_sectors,
2007 dev->multi_count, dev->cylinders,
2008 dev->heads, dev->sectors);
2009 }
07f6f7d0
AL
2010 }
2011
6e7846e9 2012 dev->cdb_len = 16;
1da177e4
LT
2013 }
2014
2015 /* ATAPI-specific feature tests */
2c13b7ce 2016 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2017 const char *cdb_intr_string = "";
2018 const char *atapi_an_string = "";
7d77b247 2019 u32 sntf;
08a556db 2020
1148c3a7 2021 rc = atapi_cdb_len(id);
1da177e4 2022 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2023 if (ata_msg_warn(ap))
88574551
TH
2024 ata_dev_printk(dev, KERN_WARNING,
2025 "unsupported CDB len\n");
ffeae418 2026 rc = -EINVAL;
1da177e4
LT
2027 goto err_out_nosup;
2028 }
6e7846e9 2029 dev->cdb_len = (unsigned int) rc;
1da177e4 2030
7d77b247
TH
2031 /* Enable ATAPI AN if both the host and device have
2032 * the support. If PMP is attached, SNTF is required
2033 * to enable ATAPI AN to discern between PHY status
2034 * changed notifications and ATAPI ANs.
9f45cbd3 2035 */
7d77b247
TH
2036 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2037 (!ap->nr_pmp_links ||
2038 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2039 unsigned int err_mask;
2040
9f45cbd3 2041 /* issue SET feature command to turn this on */
854c73a2
TH
2042 err_mask = ata_dev_set_AN(dev, SETFEATURES_SATA_ENABLE);
2043 if (err_mask)
9f45cbd3 2044 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2045 "failed to enable ATAPI AN "
2046 "(err_mask=0x%x)\n", err_mask);
2047 else {
9f45cbd3 2048 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2049 atapi_an_string = ", ATAPI AN";
2050 }
9f45cbd3
KCA
2051 }
2052
08a556db 2053 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2054 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2055 cdb_intr_string = ", CDB intr";
2056 }
312f7da2 2057
1da177e4 2058 /* print device info to dmesg */
5afc8142 2059 if (ata_msg_drv(ap) && print_info)
ef143d57 2060 ata_dev_printk(dev, KERN_INFO,
854c73a2 2061 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2062 modelbuf, fwrevbuf,
12436c30 2063 ata_mode_string(xfer_mask),
854c73a2 2064 cdb_intr_string, atapi_an_string);
1da177e4
LT
2065 }
2066
914ed354
TH
2067 /* determine max_sectors */
2068 dev->max_sectors = ATA_MAX_SECTORS;
2069 if (dev->flags & ATA_DFLAG_LBA48)
2070 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2071
93590859
AC
2072 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2073 /* Let the user know. We don't want to disallow opens for
2074 rescue purposes, or in case the vendor is just a blithering
2075 idiot */
2076 if (print_info) {
2077 ata_dev_printk(dev, KERN_WARNING,
2078"Drive reports diagnostics failure. This may indicate a drive\n");
2079 ata_dev_printk(dev, KERN_WARNING,
2080"fault or invalid emulation. Contact drive vendor for information.\n");
2081 }
2082 }
2083
4b2f3ede 2084 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2085 if (ata_dev_knobble(dev)) {
5afc8142 2086 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2087 ata_dev_printk(dev, KERN_INFO,
2088 "applying bridge limits\n");
5a529139 2089 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2090 dev->max_sectors = ATA_MAX_SECTORS;
2091 }
2092
75683fe7 2093 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2094 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2095 dev->max_sectors);
18d6e9d5 2096
4b2f3ede 2097 if (ap->ops->dev_config)
cd0d3bbc 2098 ap->ops->dev_config(dev);
4b2f3ede 2099
0dd4b21f
BP
2100 if (ata_msg_probe(ap))
2101 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2102 __FUNCTION__, ata_chk_status(ap));
ffeae418 2103 return 0;
1da177e4
LT
2104
2105err_out_nosup:
0dd4b21f 2106 if (ata_msg_probe(ap))
88574551
TH
2107 ata_dev_printk(dev, KERN_DEBUG,
2108 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2109 return rc;
1da177e4
LT
2110}
2111
be0d18df 2112/**
2e41e8e6 2113 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2114 * @ap: port
2115 *
2e41e8e6 2116 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2117 * detection.
2118 */
2119
2120int ata_cable_40wire(struct ata_port *ap)
2121{
2122 return ATA_CBL_PATA40;
2123}
2124
2125/**
2e41e8e6 2126 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2127 * @ap: port
2128 *
2e41e8e6 2129 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2130 * detection.
2131 */
2132
2133int ata_cable_80wire(struct ata_port *ap)
2134{
2135 return ATA_CBL_PATA80;
2136}
2137
2138/**
2139 * ata_cable_unknown - return unknown PATA cable.
2140 * @ap: port
2141 *
2142 * Helper method for drivers which have no PATA cable detection.
2143 */
2144
2145int ata_cable_unknown(struct ata_port *ap)
2146{
2147 return ATA_CBL_PATA_UNK;
2148}
2149
2150/**
2151 * ata_cable_sata - return SATA cable type
2152 * @ap: port
2153 *
2154 * Helper method for drivers which have SATA cables
2155 */
2156
2157int ata_cable_sata(struct ata_port *ap)
2158{
2159 return ATA_CBL_SATA;
2160}
2161
1da177e4
LT
2162/**
2163 * ata_bus_probe - Reset and probe ATA bus
2164 * @ap: Bus to probe
2165 *
0cba632b
JG
2166 * Master ATA bus probing function. Initiates a hardware-dependent
2167 * bus reset, then attempts to identify any devices found on
2168 * the bus.
2169 *
1da177e4 2170 * LOCKING:
0cba632b 2171 * PCI/etc. bus probe sem.
1da177e4
LT
2172 *
2173 * RETURNS:
96072e69 2174 * Zero on success, negative errno otherwise.
1da177e4
LT
2175 */
2176
80289167 2177int ata_bus_probe(struct ata_port *ap)
1da177e4 2178{
28ca5c57 2179 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2180 int tries[ATA_MAX_DEVICES];
f58229f8 2181 int rc;
e82cbdb9 2182 struct ata_device *dev;
1da177e4 2183
28ca5c57 2184 ata_port_probe(ap);
c19ba8af 2185
f58229f8
TH
2186 ata_link_for_each_dev(dev, &ap->link)
2187 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2188
2189 retry:
2044470c 2190 /* reset and determine device classes */
52783c5d 2191 ap->ops->phy_reset(ap);
2061a47a 2192
f58229f8 2193 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2194 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2195 dev->class != ATA_DEV_UNKNOWN)
2196 classes[dev->devno] = dev->class;
2197 else
2198 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2199
52783c5d 2200 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2201 }
1da177e4 2202
52783c5d 2203 ata_port_probe(ap);
2044470c 2204
b6079ca4
AC
2205 /* after the reset the device state is PIO 0 and the controller
2206 state is undefined. Record the mode */
2207
f58229f8
TH
2208 ata_link_for_each_dev(dev, &ap->link)
2209 dev->pio_mode = XFER_PIO_0;
b6079ca4 2210
f31f0cc2
JG
2211 /* read IDENTIFY page and configure devices. We have to do the identify
2212 specific sequence bass-ackwards so that PDIAG- is released by
2213 the slave device */
2214
f58229f8
TH
2215 ata_link_for_each_dev(dev, &ap->link) {
2216 if (tries[dev->devno])
2217 dev->class = classes[dev->devno];
ffeae418 2218
14d2bac1 2219 if (!ata_dev_enabled(dev))
ffeae418 2220 continue;
ffeae418 2221
bff04647
TH
2222 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2223 dev->id);
14d2bac1
TH
2224 if (rc)
2225 goto fail;
f31f0cc2
JG
2226 }
2227
be0d18df
AC
2228 /* Now ask for the cable type as PDIAG- should have been released */
2229 if (ap->ops->cable_detect)
2230 ap->cbl = ap->ops->cable_detect(ap);
2231
614fe29b
AC
2232 /* We may have SATA bridge glue hiding here irrespective of the
2233 reported cable types and sensed types */
2234 ata_link_for_each_dev(dev, &ap->link) {
2235 if (!ata_dev_enabled(dev))
2236 continue;
2237 /* SATA drives indicate we have a bridge. We don't know which
2238 end of the link the bridge is which is a problem */
2239 if (ata_id_is_sata(dev->id))
2240 ap->cbl = ATA_CBL_SATA;
2241 }
2242
f31f0cc2
JG
2243 /* After the identify sequence we can now set up the devices. We do
2244 this in the normal order so that the user doesn't get confused */
2245
f58229f8 2246 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2247 if (!ata_dev_enabled(dev))
2248 continue;
14d2bac1 2249
9af5c9c9 2250 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2251 rc = ata_dev_configure(dev);
9af5c9c9 2252 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2253 if (rc)
2254 goto fail;
1da177e4
LT
2255 }
2256
e82cbdb9 2257 /* configure transfer mode */
0260731f 2258 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2259 if (rc)
51713d35 2260 goto fail;
1da177e4 2261
f58229f8
TH
2262 ata_link_for_each_dev(dev, &ap->link)
2263 if (ata_dev_enabled(dev))
e82cbdb9 2264 return 0;
1da177e4 2265
e82cbdb9
TH
2266 /* no device present, disable port */
2267 ata_port_disable(ap);
96072e69 2268 return -ENODEV;
14d2bac1
TH
2269
2270 fail:
4ae72a1e
TH
2271 tries[dev->devno]--;
2272
14d2bac1
TH
2273 switch (rc) {
2274 case -EINVAL:
4ae72a1e 2275 /* eeek, something went very wrong, give up */
14d2bac1
TH
2276 tries[dev->devno] = 0;
2277 break;
4ae72a1e
TH
2278
2279 case -ENODEV:
2280 /* give it just one more chance */
2281 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2282 case -EIO:
4ae72a1e
TH
2283 if (tries[dev->devno] == 1) {
2284 /* This is the last chance, better to slow
2285 * down than lose it.
2286 */
936fd732 2287 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2288 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2289 }
14d2bac1
TH
2290 }
2291
4ae72a1e 2292 if (!tries[dev->devno])
3373efd8 2293 ata_dev_disable(dev);
ec573755 2294
14d2bac1 2295 goto retry;
1da177e4
LT
2296}
2297
2298/**
0cba632b
JG
2299 * ata_port_probe - Mark port as enabled
2300 * @ap: Port for which we indicate enablement
1da177e4 2301 *
0cba632b
JG
2302 * Modify @ap data structure such that the system
2303 * thinks that the entire port is enabled.
2304 *
cca3974e 2305 * LOCKING: host lock, or some other form of
0cba632b 2306 * serialization.
1da177e4
LT
2307 */
2308
2309void ata_port_probe(struct ata_port *ap)
2310{
198e0fed 2311 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2312}
2313
3be680b7
TH
2314/**
2315 * sata_print_link_status - Print SATA link status
936fd732 2316 * @link: SATA link to printk link status about
3be680b7
TH
2317 *
2318 * This function prints link speed and status of a SATA link.
2319 *
2320 * LOCKING:
2321 * None.
2322 */
936fd732 2323void sata_print_link_status(struct ata_link *link)
3be680b7 2324{
6d5f9732 2325 u32 sstatus, scontrol, tmp;
3be680b7 2326
936fd732 2327 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2328 return;
936fd732 2329 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2330
936fd732 2331 if (ata_link_online(link)) {
3be680b7 2332 tmp = (sstatus >> 4) & 0xf;
936fd732 2333 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2334 "SATA link up %s (SStatus %X SControl %X)\n",
2335 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2336 } else {
936fd732 2337 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2338 "SATA link down (SStatus %X SControl %X)\n",
2339 sstatus, scontrol);
3be680b7
TH
2340 }
2341}
2342
1da177e4 2343/**
780a87f7
JG
2344 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2345 * @ap: SATA port associated with target SATA PHY.
1da177e4 2346 *
780a87f7
JG
2347 * This function issues commands to standard SATA Sxxx
2348 * PHY registers, to wake up the phy (and device), and
2349 * clear any reset condition.
1da177e4
LT
2350 *
2351 * LOCKING:
0cba632b 2352 * PCI/etc. bus probe sem.
1da177e4
LT
2353 *
2354 */
2355void __sata_phy_reset(struct ata_port *ap)
2356{
936fd732 2357 struct ata_link *link = &ap->link;
1da177e4 2358 unsigned long timeout = jiffies + (HZ * 5);
936fd732 2359 u32 sstatus;
1da177e4
LT
2360
2361 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2362 /* issue phy wake/reset */
936fd732 2363 sata_scr_write_flush(link, SCR_CONTROL, 0x301);
62ba2841
TH
2364 /* Couldn't find anything in SATA I/II specs, but
2365 * AHCI-1.1 10.4.2 says at least 1 ms. */
2366 mdelay(1);
1da177e4 2367 }
81952c54 2368 /* phy wake/clear reset */
936fd732 2369 sata_scr_write_flush(link, SCR_CONTROL, 0x300);
1da177e4
LT
2370
2371 /* wait for phy to become ready, if necessary */
2372 do {
2373 msleep(200);
936fd732 2374 sata_scr_read(link, SCR_STATUS, &sstatus);
1da177e4
LT
2375 if ((sstatus & 0xf) != 1)
2376 break;
2377 } while (time_before(jiffies, timeout));
2378
3be680b7 2379 /* print link status */
936fd732 2380 sata_print_link_status(link);
656563e3 2381
3be680b7 2382 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 2383 if (!ata_link_offline(link))
1da177e4 2384 ata_port_probe(ap);
3be680b7 2385 else
1da177e4 2386 ata_port_disable(ap);
1da177e4 2387
198e0fed 2388 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2389 return;
2390
2391 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2392 ata_port_disable(ap);
2393 return;
2394 }
2395
2396 ap->cbl = ATA_CBL_SATA;
2397}
2398
2399/**
780a87f7
JG
2400 * sata_phy_reset - Reset SATA bus.
2401 * @ap: SATA port associated with target SATA PHY.
1da177e4 2402 *
780a87f7
JG
2403 * This function resets the SATA bus, and then probes
2404 * the bus for devices.
1da177e4
LT
2405 *
2406 * LOCKING:
0cba632b 2407 * PCI/etc. bus probe sem.
1da177e4
LT
2408 *
2409 */
2410void sata_phy_reset(struct ata_port *ap)
2411{
2412 __sata_phy_reset(ap);
198e0fed 2413 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2414 return;
2415 ata_bus_reset(ap);
2416}
2417
ebdfca6e
AC
2418/**
2419 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2420 * @adev: device
2421 *
2422 * Obtain the other device on the same cable, or if none is
2423 * present NULL is returned
2424 */
2e9edbf8 2425
3373efd8 2426struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2427{
9af5c9c9
TH
2428 struct ata_link *link = adev->link;
2429 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2430 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2431 return NULL;
2432 return pair;
2433}
2434
1da177e4 2435/**
780a87f7
JG
2436 * ata_port_disable - Disable port.
2437 * @ap: Port to be disabled.
1da177e4 2438 *
780a87f7
JG
2439 * Modify @ap data structure such that the system
2440 * thinks that the entire port is disabled, and should
2441 * never attempt to probe or communicate with devices
2442 * on this port.
2443 *
cca3974e 2444 * LOCKING: host lock, or some other form of
780a87f7 2445 * serialization.
1da177e4
LT
2446 */
2447
2448void ata_port_disable(struct ata_port *ap)
2449{
9af5c9c9
TH
2450 ap->link.device[0].class = ATA_DEV_NONE;
2451 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2452 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2453}
2454
1c3fae4d 2455/**
3c567b7d 2456 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2457 * @link: Link to adjust SATA spd limit for
1c3fae4d 2458 *
936fd732 2459 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2460 * function only adjusts the limit. The change must be applied
3c567b7d 2461 * using sata_set_spd().
1c3fae4d
TH
2462 *
2463 * LOCKING:
2464 * Inherited from caller.
2465 *
2466 * RETURNS:
2467 * 0 on success, negative errno on failure
2468 */
936fd732 2469int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2470{
81952c54
TH
2471 u32 sstatus, spd, mask;
2472 int rc, highbit;
1c3fae4d 2473
936fd732 2474 if (!sata_scr_valid(link))
008a7896
TH
2475 return -EOPNOTSUPP;
2476
2477 /* If SCR can be read, use it to determine the current SPD.
936fd732 2478 * If not, use cached value in link->sata_spd.
008a7896 2479 */
936fd732 2480 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2481 if (rc == 0)
2482 spd = (sstatus >> 4) & 0xf;
2483 else
936fd732 2484 spd = link->sata_spd;
1c3fae4d 2485
936fd732 2486 mask = link->sata_spd_limit;
1c3fae4d
TH
2487 if (mask <= 1)
2488 return -EINVAL;
008a7896
TH
2489
2490 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2491 highbit = fls(mask) - 1;
2492 mask &= ~(1 << highbit);
2493
008a7896
TH
2494 /* Mask off all speeds higher than or equal to the current
2495 * one. Force 1.5Gbps if current SPD is not available.
2496 */
2497 if (spd > 1)
2498 mask &= (1 << (spd - 1)) - 1;
2499 else
2500 mask &= 1;
2501
2502 /* were we already at the bottom? */
1c3fae4d
TH
2503 if (!mask)
2504 return -EINVAL;
2505
936fd732 2506 link->sata_spd_limit = mask;
1c3fae4d 2507
936fd732 2508 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2509 sata_spd_string(fls(mask)));
1c3fae4d
TH
2510
2511 return 0;
2512}
2513
936fd732 2514static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d
TH
2515{
2516 u32 spd, limit;
2517
936fd732 2518 if (link->sata_spd_limit == UINT_MAX)
1c3fae4d
TH
2519 limit = 0;
2520 else
936fd732 2521 limit = fls(link->sata_spd_limit);
1c3fae4d
TH
2522
2523 spd = (*scontrol >> 4) & 0xf;
2524 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2525
2526 return spd != limit;
2527}
2528
2529/**
3c567b7d 2530 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2531 * @link: Link in question
1c3fae4d
TH
2532 *
2533 * Test whether the spd limit in SControl matches
936fd732 2534 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2535 * whether hardreset is necessary to apply SATA spd
2536 * configuration.
2537 *
2538 * LOCKING:
2539 * Inherited from caller.
2540 *
2541 * RETURNS:
2542 * 1 if SATA spd configuration is needed, 0 otherwise.
2543 */
936fd732 2544int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2545{
2546 u32 scontrol;
2547
936fd732 2548 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2549 return 0;
2550
936fd732 2551 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2552}
2553
2554/**
3c567b7d 2555 * sata_set_spd - set SATA spd according to spd limit
936fd732 2556 * @link: Link to set SATA spd for
1c3fae4d 2557 *
936fd732 2558 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2559 *
2560 * LOCKING:
2561 * Inherited from caller.
2562 *
2563 * RETURNS:
2564 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2565 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2566 */
936fd732 2567int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2568{
2569 u32 scontrol;
81952c54 2570 int rc;
1c3fae4d 2571
936fd732 2572 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2573 return rc;
1c3fae4d 2574
936fd732 2575 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2576 return 0;
2577
936fd732 2578 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2579 return rc;
2580
1c3fae4d
TH
2581 return 1;
2582}
2583
452503f9
AC
2584/*
2585 * This mode timing computation functionality is ported over from
2586 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2587 */
2588/*
b352e57d 2589 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2590 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2591 * for UDMA6, which is currently supported only by Maxtor drives.
2592 *
2593 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2594 */
2595
2596static const struct ata_timing ata_timing[] = {
2597
2598 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2599 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2600 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2601 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2602
b352e57d
AC
2603 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2604 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2605 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2606 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2607 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2608
2609/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2610
452503f9
AC
2611 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2612 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2613 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2614
452503f9
AC
2615 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2616 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2617 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2618
b352e57d
AC
2619 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2620 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2621 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2622 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2623
2624 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2625 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2626 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2627
2628/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2629
2630 { 0xFF }
2631};
2632
2633#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2634#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2635
2636static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2637{
2638 q->setup = EZ(t->setup * 1000, T);
2639 q->act8b = EZ(t->act8b * 1000, T);
2640 q->rec8b = EZ(t->rec8b * 1000, T);
2641 q->cyc8b = EZ(t->cyc8b * 1000, T);
2642 q->active = EZ(t->active * 1000, T);
2643 q->recover = EZ(t->recover * 1000, T);
2644 q->cycle = EZ(t->cycle * 1000, T);
2645 q->udma = EZ(t->udma * 1000, UT);
2646}
2647
2648void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2649 struct ata_timing *m, unsigned int what)
2650{
2651 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2652 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2653 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2654 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2655 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2656 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2657 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2658 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2659}
2660
2661static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2662{
2663 const struct ata_timing *t;
2664
2665 for (t = ata_timing; t->mode != speed; t++)
91190758 2666 if (t->mode == 0xFF)
452503f9 2667 return NULL;
2e9edbf8 2668 return t;
452503f9
AC
2669}
2670
2671int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2672 struct ata_timing *t, int T, int UT)
2673{
2674 const struct ata_timing *s;
2675 struct ata_timing p;
2676
2677 /*
2e9edbf8 2678 * Find the mode.
75b1f2f8 2679 */
452503f9
AC
2680
2681 if (!(s = ata_timing_find_mode(speed)))
2682 return -EINVAL;
2683
75b1f2f8
AL
2684 memcpy(t, s, sizeof(*s));
2685
452503f9
AC
2686 /*
2687 * If the drive is an EIDE drive, it can tell us it needs extended
2688 * PIO/MW_DMA cycle timing.
2689 */
2690
2691 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2692 memset(&p, 0, sizeof(p));
2693 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2694 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2695 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2696 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2697 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2698 }
2699 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2700 }
2701
2702 /*
2703 * Convert the timing to bus clock counts.
2704 */
2705
75b1f2f8 2706 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2707
2708 /*
c893a3ae
RD
2709 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2710 * S.M.A.R.T * and some other commands. We have to ensure that the
2711 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2712 */
2713
fd3367af 2714 if (speed > XFER_PIO_6) {
452503f9
AC
2715 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2716 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2717 }
2718
2719 /*
c893a3ae 2720 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2721 */
2722
2723 if (t->act8b + t->rec8b < t->cyc8b) {
2724 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2725 t->rec8b = t->cyc8b - t->act8b;
2726 }
2727
2728 if (t->active + t->recover < t->cycle) {
2729 t->active += (t->cycle - (t->active + t->recover)) / 2;
2730 t->recover = t->cycle - t->active;
2731 }
a617c09f 2732
4f701d1e
AC
2733 /* In a few cases quantisation may produce enough errors to
2734 leave t->cycle too low for the sum of active and recovery
2735 if so we must correct this */
2736 if (t->active + t->recover > t->cycle)
2737 t->cycle = t->active + t->recover;
452503f9
AC
2738
2739 return 0;
2740}
2741
cf176e1a
TH
2742/**
2743 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2744 * @dev: Device to adjust xfer masks
458337db 2745 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2746 *
2747 * Adjust xfer masks of @dev downward. Note that this function
2748 * does not apply the change. Invoking ata_set_mode() afterwards
2749 * will apply the limit.
2750 *
2751 * LOCKING:
2752 * Inherited from caller.
2753 *
2754 * RETURNS:
2755 * 0 on success, negative errno on failure
2756 */
458337db 2757int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2758{
458337db
TH
2759 char buf[32];
2760 unsigned int orig_mask, xfer_mask;
2761 unsigned int pio_mask, mwdma_mask, udma_mask;
2762 int quiet, highbit;
cf176e1a 2763
458337db
TH
2764 quiet = !!(sel & ATA_DNXFER_QUIET);
2765 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2766
458337db
TH
2767 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2768 dev->mwdma_mask,
2769 dev->udma_mask);
2770 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2771
458337db
TH
2772 switch (sel) {
2773 case ATA_DNXFER_PIO:
2774 highbit = fls(pio_mask) - 1;
2775 pio_mask &= ~(1 << highbit);
2776 break;
2777
2778 case ATA_DNXFER_DMA:
2779 if (udma_mask) {
2780 highbit = fls(udma_mask) - 1;
2781 udma_mask &= ~(1 << highbit);
2782 if (!udma_mask)
2783 return -ENOENT;
2784 } else if (mwdma_mask) {
2785 highbit = fls(mwdma_mask) - 1;
2786 mwdma_mask &= ~(1 << highbit);
2787 if (!mwdma_mask)
2788 return -ENOENT;
2789 }
2790 break;
2791
2792 case ATA_DNXFER_40C:
2793 udma_mask &= ATA_UDMA_MASK_40C;
2794 break;
2795
2796 case ATA_DNXFER_FORCE_PIO0:
2797 pio_mask &= 1;
2798 case ATA_DNXFER_FORCE_PIO:
2799 mwdma_mask = 0;
2800 udma_mask = 0;
2801 break;
2802
458337db
TH
2803 default:
2804 BUG();
2805 }
2806
2807 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2808
2809 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2810 return -ENOENT;
2811
2812 if (!quiet) {
2813 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2814 snprintf(buf, sizeof(buf), "%s:%s",
2815 ata_mode_string(xfer_mask),
2816 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2817 else
2818 snprintf(buf, sizeof(buf), "%s",
2819 ata_mode_string(xfer_mask));
2820
2821 ata_dev_printk(dev, KERN_WARNING,
2822 "limiting speed to %s\n", buf);
2823 }
cf176e1a
TH
2824
2825 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2826 &dev->udma_mask);
2827
cf176e1a 2828 return 0;
cf176e1a
TH
2829}
2830
3373efd8 2831static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2832{
9af5c9c9 2833 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
2834 unsigned int err_mask;
2835 int rc;
1da177e4 2836
e8384607 2837 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2838 if (dev->xfer_shift == ATA_SHIFT_PIO)
2839 dev->flags |= ATA_DFLAG_PIO;
2840
3373efd8 2841 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2842 /* Old CFA may refuse this command, which is just fine */
2843 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2844 err_mask &= ~AC_ERR_DEV;
0bc2a79a
AC
2845 /* Some very old devices and some bad newer ones fail any kind of
2846 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
2847 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
2848 dev->pio_mode <= XFER_PIO_2)
2849 err_mask &= ~AC_ERR_DEV;
83206a29 2850 if (err_mask) {
f15a1daf
TH
2851 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2852 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2853 return -EIO;
2854 }
1da177e4 2855
baa1e78a 2856 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 2857 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 2858 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2859 if (rc)
83206a29 2860 return rc;
48a8a14f 2861
23e71c3d
TH
2862 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2863 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2864
f15a1daf
TH
2865 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2866 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2867 return 0;
1da177e4
LT
2868}
2869
1da177e4 2870/**
04351821 2871 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2872 * @link: link on which timings will be programmed
e82cbdb9 2873 * @r_failed_dev: out paramter for failed device
1da177e4 2874 *
04351821
AC
2875 * Standard implementation of the function used to tune and set
2876 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2877 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2878 * returned in @r_failed_dev.
780a87f7 2879 *
1da177e4 2880 * LOCKING:
0cba632b 2881 * PCI/etc. bus probe sem.
e82cbdb9
TH
2882 *
2883 * RETURNS:
2884 * 0 on success, negative errno otherwise
1da177e4 2885 */
04351821 2886
0260731f 2887int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 2888{
0260731f 2889 struct ata_port *ap = link->ap;
e8e0619f 2890 struct ata_device *dev;
f58229f8 2891 int rc = 0, used_dma = 0, found = 0;
3adcebb2 2892
a6d5a51c 2893 /* step 1: calculate xfer_mask */
f58229f8 2894 ata_link_for_each_dev(dev, link) {
acf356b1 2895 unsigned int pio_mask, dma_mask;
a6d5a51c 2896
e1211e3f 2897 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2898 continue;
2899
3373efd8 2900 ata_dev_xfermask(dev);
1da177e4 2901
acf356b1
TH
2902 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2903 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2904 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2905 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2906
4f65977d 2907 found = 1;
5444a6f4
AC
2908 if (dev->dma_mode)
2909 used_dma = 1;
a6d5a51c 2910 }
4f65977d 2911 if (!found)
e82cbdb9 2912 goto out;
a6d5a51c
TH
2913
2914 /* step 2: always set host PIO timings */
f58229f8 2915 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2916 if (!ata_dev_enabled(dev))
2917 continue;
2918
2919 if (!dev->pio_mode) {
f15a1daf 2920 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2921 rc = -EINVAL;
e82cbdb9 2922 goto out;
e8e0619f
TH
2923 }
2924
2925 dev->xfer_mode = dev->pio_mode;
2926 dev->xfer_shift = ATA_SHIFT_PIO;
2927 if (ap->ops->set_piomode)
2928 ap->ops->set_piomode(ap, dev);
2929 }
1da177e4 2930
a6d5a51c 2931 /* step 3: set host DMA timings */
f58229f8 2932 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
2933 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2934 continue;
2935
2936 dev->xfer_mode = dev->dma_mode;
2937 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2938 if (ap->ops->set_dmamode)
2939 ap->ops->set_dmamode(ap, dev);
2940 }
1da177e4
LT
2941
2942 /* step 4: update devices' xfer mode */
f58229f8 2943 ata_link_for_each_dev(dev, link) {
18d90deb 2944 /* don't update suspended devices' xfer mode */
9666f400 2945 if (!ata_dev_enabled(dev))
83206a29
TH
2946 continue;
2947
3373efd8 2948 rc = ata_dev_set_mode(dev);
5bbc53f4 2949 if (rc)
e82cbdb9 2950 goto out;
83206a29 2951 }
1da177e4 2952
e8e0619f
TH
2953 /* Record simplex status. If we selected DMA then the other
2954 * host channels are not permitted to do so.
5444a6f4 2955 */
cca3974e 2956 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2957 ap->host->simplex_claimed = ap;
5444a6f4 2958
e82cbdb9
TH
2959 out:
2960 if (rc)
2961 *r_failed_dev = dev;
2962 return rc;
1da177e4
LT
2963}
2964
04351821
AC
2965/**
2966 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 2967 * @link: link on which timings will be programmed
04351821
AC
2968 * @r_failed_dev: out paramter for failed device
2969 *
2970 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2971 * ata_set_mode() fails, pointer to the failing device is
2972 * returned in @r_failed_dev.
2973 *
2974 * LOCKING:
2975 * PCI/etc. bus probe sem.
2976 *
2977 * RETURNS:
2978 * 0 on success, negative errno otherwise
2979 */
0260731f 2980int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 2981{
0260731f
TH
2982 struct ata_port *ap = link->ap;
2983
04351821
AC
2984 /* has private set_mode? */
2985 if (ap->ops->set_mode)
0260731f
TH
2986 return ap->ops->set_mode(link, r_failed_dev);
2987 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
2988}
2989
1fdffbce
JG
2990/**
2991 * ata_tf_to_host - issue ATA taskfile to host controller
2992 * @ap: port to which command is being issued
2993 * @tf: ATA taskfile register set
2994 *
2995 * Issues ATA taskfile register set to ATA host controller,
2996 * with proper synchronization with interrupt handler and
2997 * other threads.
2998 *
2999 * LOCKING:
cca3974e 3000 * spin_lock_irqsave(host lock)
1fdffbce
JG
3001 */
3002
3003static inline void ata_tf_to_host(struct ata_port *ap,
3004 const struct ata_taskfile *tf)
3005{
3006 ap->ops->tf_load(ap, tf);
3007 ap->ops->exec_command(ap, tf);
3008}
3009
1da177e4
LT
3010/**
3011 * ata_busy_sleep - sleep until BSY clears, or timeout
3012 * @ap: port containing status register to be polled
3013 * @tmout_pat: impatience timeout
3014 * @tmout: overall timeout
3015 *
780a87f7
JG
3016 * Sleep until ATA Status register bit BSY clears,
3017 * or a timeout occurs.
3018 *
d1adc1bb
TH
3019 * LOCKING:
3020 * Kernel thread context (may sleep).
3021 *
3022 * RETURNS:
3023 * 0 on success, -errno otherwise.
1da177e4 3024 */
d1adc1bb
TH
3025int ata_busy_sleep(struct ata_port *ap,
3026 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3027{
3028 unsigned long timer_start, timeout;
3029 u8 status;
3030
3031 status = ata_busy_wait(ap, ATA_BUSY, 300);
3032 timer_start = jiffies;
3033 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3034 while (status != 0xff && (status & ATA_BUSY) &&
3035 time_before(jiffies, timeout)) {
1da177e4
LT
3036 msleep(50);
3037 status = ata_busy_wait(ap, ATA_BUSY, 3);
3038 }
3039
d1adc1bb 3040 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3041 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3042 "port is slow to respond, please be patient "
3043 "(Status 0x%x)\n", status);
1da177e4
LT
3044
3045 timeout = timer_start + tmout;
d1adc1bb
TH
3046 while (status != 0xff && (status & ATA_BUSY) &&
3047 time_before(jiffies, timeout)) {
1da177e4
LT
3048 msleep(50);
3049 status = ata_chk_status(ap);
3050 }
3051
d1adc1bb
TH
3052 if (status == 0xff)
3053 return -ENODEV;
3054
1da177e4 3055 if (status & ATA_BUSY) {
f15a1daf 3056 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3057 "(%lu secs, Status 0x%x)\n",
3058 tmout / HZ, status);
d1adc1bb 3059 return -EBUSY;
1da177e4
LT
3060 }
3061
3062 return 0;
3063}
3064
d4b2bab4
TH
3065/**
3066 * ata_wait_ready - sleep until BSY clears, or timeout
3067 * @ap: port containing status register to be polled
3068 * @deadline: deadline jiffies for the operation
3069 *
3070 * Sleep until ATA Status register bit BSY clears, or timeout
3071 * occurs.
3072 *
3073 * LOCKING:
3074 * Kernel thread context (may sleep).
3075 *
3076 * RETURNS:
3077 * 0 on success, -errno otherwise.
3078 */
3079int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3080{
3081 unsigned long start = jiffies;
3082 int warned = 0;
3083
3084 while (1) {
3085 u8 status = ata_chk_status(ap);
3086 unsigned long now = jiffies;
3087
3088 if (!(status & ATA_BUSY))
3089 return 0;
936fd732 3090 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3091 return -ENODEV;
3092 if (time_after(now, deadline))
3093 return -EBUSY;
3094
3095 if (!warned && time_after(now, start + 5 * HZ) &&
3096 (deadline - now > 3 * HZ)) {
3097 ata_port_printk(ap, KERN_WARNING,
3098 "port is slow to respond, please be patient "
3099 "(Status 0x%x)\n", status);
3100 warned = 1;
3101 }
3102
3103 msleep(50);
3104 }
3105}
3106
3107static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3108 unsigned long deadline)
1da177e4
LT
3109{
3110 struct ata_ioports *ioaddr = &ap->ioaddr;
3111 unsigned int dev0 = devmask & (1 << 0);
3112 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3113 int rc, ret = 0;
1da177e4
LT
3114
3115 /* if device 0 was found in ata_devchk, wait for its
3116 * BSY bit to clear
3117 */
d4b2bab4
TH
3118 if (dev0) {
3119 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3120 if (rc) {
3121 if (rc != -ENODEV)
3122 return rc;
3123 ret = rc;
3124 }
d4b2bab4 3125 }
1da177e4 3126
e141d999
TH
3127 /* if device 1 was found in ata_devchk, wait for register
3128 * access briefly, then wait for BSY to clear.
1da177e4 3129 */
e141d999
TH
3130 if (dev1) {
3131 int i;
1da177e4
LT
3132
3133 ap->ops->dev_select(ap, 1);
e141d999
TH
3134
3135 /* Wait for register access. Some ATAPI devices fail
3136 * to set nsect/lbal after reset, so don't waste too
3137 * much time on it. We're gonna wait for !BSY anyway.
3138 */
3139 for (i = 0; i < 2; i++) {
3140 u8 nsect, lbal;
3141
3142 nsect = ioread8(ioaddr->nsect_addr);
3143 lbal = ioread8(ioaddr->lbal_addr);
3144 if ((nsect == 1) && (lbal == 1))
3145 break;
3146 msleep(50); /* give drive a breather */
3147 }
3148
d4b2bab4 3149 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3150 if (rc) {
3151 if (rc != -ENODEV)
3152 return rc;
3153 ret = rc;
3154 }
d4b2bab4 3155 }
1da177e4
LT
3156
3157 /* is all this really necessary? */
3158 ap->ops->dev_select(ap, 0);
3159 if (dev1)
3160 ap->ops->dev_select(ap, 1);
3161 if (dev0)
3162 ap->ops->dev_select(ap, 0);
d4b2bab4 3163
9b89391c 3164 return ret;
1da177e4
LT
3165}
3166
d4b2bab4
TH
3167static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3168 unsigned long deadline)
1da177e4
LT
3169{
3170 struct ata_ioports *ioaddr = &ap->ioaddr;
3171
44877b4e 3172 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3173
3174 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3175 iowrite8(ap->ctl, ioaddr->ctl_addr);
3176 udelay(20); /* FIXME: flush */
3177 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3178 udelay(20); /* FIXME: flush */
3179 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3180
3181 /* spec mandates ">= 2ms" before checking status.
3182 * We wait 150ms, because that was the magic delay used for
3183 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3184 * between when the ATA command register is written, and then
3185 * status is checked. Because waiting for "a while" before
3186 * checking status is fine, post SRST, we perform this magic
3187 * delay here as well.
09c7ad79
AC
3188 *
3189 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3190 */
3191 msleep(150);
3192
2e9edbf8 3193 /* Before we perform post reset processing we want to see if
298a41ca
TH
3194 * the bus shows 0xFF because the odd clown forgets the D7
3195 * pulldown resistor.
3196 */
d1adc1bb 3197 if (ata_check_status(ap) == 0xFF)
9b89391c 3198 return -ENODEV;
09c7ad79 3199
d4b2bab4 3200 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3201}
3202
3203/**
3204 * ata_bus_reset - reset host port and associated ATA channel
3205 * @ap: port to reset
3206 *
3207 * This is typically the first time we actually start issuing
3208 * commands to the ATA channel. We wait for BSY to clear, then
3209 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3210 * result. Determine what devices, if any, are on the channel
3211 * by looking at the device 0/1 error register. Look at the signature
3212 * stored in each device's taskfile registers, to determine if
3213 * the device is ATA or ATAPI.
3214 *
3215 * LOCKING:
0cba632b 3216 * PCI/etc. bus probe sem.
cca3974e 3217 * Obtains host lock.
1da177e4
LT
3218 *
3219 * SIDE EFFECTS:
198e0fed 3220 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3221 */
3222
3223void ata_bus_reset(struct ata_port *ap)
3224{
9af5c9c9 3225 struct ata_device *device = ap->link.device;
1da177e4
LT
3226 struct ata_ioports *ioaddr = &ap->ioaddr;
3227 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3228 u8 err;
aec5c3c1 3229 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3230 int rc;
1da177e4 3231
44877b4e 3232 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3233
3234 /* determine if device 0/1 are present */
3235 if (ap->flags & ATA_FLAG_SATA_RESET)
3236 dev0 = 1;
3237 else {
3238 dev0 = ata_devchk(ap, 0);
3239 if (slave_possible)
3240 dev1 = ata_devchk(ap, 1);
3241 }
3242
3243 if (dev0)
3244 devmask |= (1 << 0);
3245 if (dev1)
3246 devmask |= (1 << 1);
3247
3248 /* select device 0 again */
3249 ap->ops->dev_select(ap, 0);
3250
3251 /* issue bus reset */
9b89391c
TH
3252 if (ap->flags & ATA_FLAG_SRST) {
3253 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3254 if (rc && rc != -ENODEV)
aec5c3c1 3255 goto err_out;
9b89391c 3256 }
1da177e4
LT
3257
3258 /*
3259 * determine by signature whether we have ATA or ATAPI devices
3260 */
3f19859e 3261 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3262 if ((slave_possible) && (err != 0x81))
3f19859e 3263 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3264
1da177e4 3265 /* is double-select really necessary? */
9af5c9c9 3266 if (device[1].class != ATA_DEV_NONE)
1da177e4 3267 ap->ops->dev_select(ap, 1);
9af5c9c9 3268 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3269 ap->ops->dev_select(ap, 0);
3270
3271 /* if no devices were detected, disable this port */
9af5c9c9
TH
3272 if ((device[0].class == ATA_DEV_NONE) &&
3273 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3274 goto err_out;
3275
3276 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3277 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3278 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3279 }
3280
3281 DPRINTK("EXIT\n");
3282 return;
3283
3284err_out:
f15a1daf 3285 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3286 ata_port_disable(ap);
1da177e4
LT
3287
3288 DPRINTK("EXIT\n");
3289}
3290
d7bb4cc7 3291/**
936fd732
TH
3292 * sata_link_debounce - debounce SATA phy status
3293 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3294 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3295 * @deadline: deadline jiffies for the operation
d7bb4cc7 3296 *
936fd732 3297* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3298 * holding the same value where DET is not 1 for @duration polled
3299 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3300 * beginning of the stable state. Because DET gets stuck at 1 on
3301 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3302 * until timeout then returns 0 if DET is stable at 1.
3303 *
d4b2bab4
TH
3304 * @timeout is further limited by @deadline. The sooner of the
3305 * two is used.
3306 *
d7bb4cc7
TH
3307 * LOCKING:
3308 * Kernel thread context (may sleep)
3309 *
3310 * RETURNS:
3311 * 0 on success, -errno on failure.
3312 */
936fd732
TH
3313int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3314 unsigned long deadline)
7a7921e8 3315{
d7bb4cc7 3316 unsigned long interval_msec = params[0];
d4b2bab4
TH
3317 unsigned long duration = msecs_to_jiffies(params[1]);
3318 unsigned long last_jiffies, t;
d7bb4cc7
TH
3319 u32 last, cur;
3320 int rc;
3321
d4b2bab4
TH
3322 t = jiffies + msecs_to_jiffies(params[2]);
3323 if (time_before(t, deadline))
3324 deadline = t;
3325
936fd732 3326 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3327 return rc;
3328 cur &= 0xf;
3329
3330 last = cur;
3331 last_jiffies = jiffies;
3332
3333 while (1) {
3334 msleep(interval_msec);
936fd732 3335 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3336 return rc;
3337 cur &= 0xf;
3338
3339 /* DET stable? */
3340 if (cur == last) {
d4b2bab4 3341 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3342 continue;
3343 if (time_after(jiffies, last_jiffies + duration))
3344 return 0;
3345 continue;
3346 }
3347
3348 /* unstable, start over */
3349 last = cur;
3350 last_jiffies = jiffies;
3351
f1545154
TH
3352 /* Check deadline. If debouncing failed, return
3353 * -EPIPE to tell upper layer to lower link speed.
3354 */
d4b2bab4 3355 if (time_after(jiffies, deadline))
f1545154 3356 return -EPIPE;
d7bb4cc7
TH
3357 }
3358}
3359
3360/**
936fd732
TH
3361 * sata_link_resume - resume SATA link
3362 * @link: ATA link to resume SATA
d7bb4cc7 3363 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3364 * @deadline: deadline jiffies for the operation
d7bb4cc7 3365 *
936fd732 3366 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3367 *
3368 * LOCKING:
3369 * Kernel thread context (may sleep)
3370 *
3371 * RETURNS:
3372 * 0 on success, -errno on failure.
3373 */
936fd732
TH
3374int sata_link_resume(struct ata_link *link, const unsigned long *params,
3375 unsigned long deadline)
d7bb4cc7
TH
3376{
3377 u32 scontrol;
81952c54
TH
3378 int rc;
3379
936fd732 3380 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3381 return rc;
7a7921e8 3382
852ee16a 3383 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3384
936fd732 3385 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3386 return rc;
7a7921e8 3387
d7bb4cc7
TH
3388 /* Some PHYs react badly if SStatus is pounded immediately
3389 * after resuming. Delay 200ms before debouncing.
3390 */
3391 msleep(200);
7a7921e8 3392
936fd732 3393 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3394}
3395
f5914a46
TH
3396/**
3397 * ata_std_prereset - prepare for reset
cc0680a5 3398 * @link: ATA link to be reset
d4b2bab4 3399 * @deadline: deadline jiffies for the operation
f5914a46 3400 *
cc0680a5 3401 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3402 * prereset makes libata abort whole reset sequence and give up
3403 * that port, so prereset should be best-effort. It does its
3404 * best to prepare for reset sequence but if things go wrong, it
3405 * should just whine, not fail.
f5914a46
TH
3406 *
3407 * LOCKING:
3408 * Kernel thread context (may sleep)
3409 *
3410 * RETURNS:
3411 * 0 on success, -errno otherwise.
3412 */
cc0680a5 3413int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3414{
cc0680a5 3415 struct ata_port *ap = link->ap;
936fd732 3416 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3417 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3418 int rc;
3419
31daabda 3420 /* handle link resume */
28324304 3421 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3422 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3423 ehc->i.action |= ATA_EH_HARDRESET;
3424
f5914a46
TH
3425 /* if we're about to do hardreset, nothing more to do */
3426 if (ehc->i.action & ATA_EH_HARDRESET)
3427 return 0;
3428
936fd732 3429 /* if SATA, resume link */
a16abc0b 3430 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3431 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3432 /* whine about phy resume failure but proceed */
3433 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3434 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3435 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3436 }
3437
3438 /* Wait for !BSY if the controller can wait for the first D2H
3439 * Reg FIS and we don't know that no device is attached.
3440 */
0c88758b 3441 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3442 rc = ata_wait_ready(ap, deadline);
6dffaf61 3443 if (rc && rc != -ENODEV) {
cc0680a5 3444 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3445 "(errno=%d), forcing hardreset\n", rc);
3446 ehc->i.action |= ATA_EH_HARDRESET;
3447 }
3448 }
f5914a46
TH
3449
3450 return 0;
3451}
3452
c2bd5804
TH
3453/**
3454 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3455 * @link: ATA link to reset
c2bd5804 3456 * @classes: resulting classes of attached devices
d4b2bab4 3457 * @deadline: deadline jiffies for the operation
c2bd5804 3458 *
52783c5d 3459 * Reset host port using ATA SRST.
c2bd5804
TH
3460 *
3461 * LOCKING:
3462 * Kernel thread context (may sleep)
3463 *
3464 * RETURNS:
3465 * 0 on success, -errno otherwise.
3466 */
cc0680a5 3467int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3468 unsigned long deadline)
c2bd5804 3469{
cc0680a5 3470 struct ata_port *ap = link->ap;
c2bd5804 3471 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3472 unsigned int devmask = 0;
3473 int rc;
c2bd5804
TH
3474 u8 err;
3475
3476 DPRINTK("ENTER\n");
3477
936fd732 3478 if (ata_link_offline(link)) {
3a39746a
TH
3479 classes[0] = ATA_DEV_NONE;
3480 goto out;
3481 }
3482
c2bd5804
TH
3483 /* determine if device 0/1 are present */
3484 if (ata_devchk(ap, 0))
3485 devmask |= (1 << 0);
3486 if (slave_possible && ata_devchk(ap, 1))
3487 devmask |= (1 << 1);
3488
c2bd5804
TH
3489 /* select device 0 again */
3490 ap->ops->dev_select(ap, 0);
3491
3492 /* issue bus reset */
3493 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3494 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3495 /* if link is occupied, -ENODEV too is an error */
936fd732 3496 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3497 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3498 return rc;
c2bd5804
TH
3499 }
3500
3501 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3502 classes[0] = ata_dev_try_classify(&link->device[0],
3503 devmask & (1 << 0), &err);
c2bd5804 3504 if (slave_possible && err != 0x81)
3f19859e
TH
3505 classes[1] = ata_dev_try_classify(&link->device[1],
3506 devmask & (1 << 1), &err);
c2bd5804 3507
3a39746a 3508 out:
c2bd5804
TH
3509 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3510 return 0;
3511}
3512
3513/**
cc0680a5
TH
3514 * sata_link_hardreset - reset link via SATA phy reset
3515 * @link: link to reset
b6103f6d 3516 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3517 * @deadline: deadline jiffies for the operation
c2bd5804 3518 *
cc0680a5 3519 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3520 *
3521 * LOCKING:
3522 * Kernel thread context (may sleep)
3523 *
3524 * RETURNS:
3525 * 0 on success, -errno otherwise.
3526 */
cc0680a5 3527int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3528 unsigned long deadline)
c2bd5804 3529{
852ee16a 3530 u32 scontrol;
81952c54 3531 int rc;
852ee16a 3532
c2bd5804
TH
3533 DPRINTK("ENTER\n");
3534
936fd732 3535 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3536 /* SATA spec says nothing about how to reconfigure
3537 * spd. To be on the safe side, turn off phy during
3538 * reconfiguration. This works for at least ICH7 AHCI
3539 * and Sil3124.
3540 */
936fd732 3541 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3542 goto out;
81952c54 3543
a34b6fc0 3544 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3545
936fd732 3546 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3547 goto out;
1c3fae4d 3548
936fd732 3549 sata_set_spd(link);
1c3fae4d
TH
3550 }
3551
3552 /* issue phy wake/reset */
936fd732 3553 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3554 goto out;
81952c54 3555
852ee16a 3556 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3557
936fd732 3558 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3559 goto out;
c2bd5804 3560
1c3fae4d 3561 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3562 * 10.4.2 says at least 1 ms.
3563 */
3564 msleep(1);
3565
936fd732
TH
3566 /* bring link back */
3567 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3568 out:
3569 DPRINTK("EXIT, rc=%d\n", rc);
3570 return rc;
3571}
3572
3573/**
3574 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3575 * @link: link to reset
b6103f6d 3576 * @class: resulting class of attached device
d4b2bab4 3577 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3578 *
3579 * SATA phy-reset host port using DET bits of SControl register,
3580 * wait for !BSY and classify the attached device.
3581 *
3582 * LOCKING:
3583 * Kernel thread context (may sleep)
3584 *
3585 * RETURNS:
3586 * 0 on success, -errno otherwise.
3587 */
cc0680a5 3588int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3589 unsigned long deadline)
b6103f6d 3590{
cc0680a5 3591 struct ata_port *ap = link->ap;
936fd732 3592 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3593 int rc;
3594
3595 DPRINTK("ENTER\n");
3596
3597 /* do hardreset */
cc0680a5 3598 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3599 if (rc) {
cc0680a5 3600 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3601 "COMRESET failed (errno=%d)\n", rc);
3602 return rc;
3603 }
c2bd5804 3604
c2bd5804 3605 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3606 if (ata_link_offline(link)) {
c2bd5804
TH
3607 *class = ATA_DEV_NONE;
3608 DPRINTK("EXIT, link offline\n");
3609 return 0;
3610 }
3611
34fee227
TH
3612 /* wait a while before checking status, see SRST for more info */
3613 msleep(150);
3614
d4b2bab4 3615 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3616 /* link occupied, -ENODEV too is an error */
3617 if (rc) {
cc0680a5 3618 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3619 "COMRESET failed (errno=%d)\n", rc);
3620 return rc;
c2bd5804
TH
3621 }
3622
3a39746a
TH
3623 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3624
3f19859e 3625 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3626
3627 DPRINTK("EXIT, class=%u\n", *class);
3628 return 0;
3629}
3630
3631/**
3632 * ata_std_postreset - standard postreset callback
cc0680a5 3633 * @link: the target ata_link
c2bd5804
TH
3634 * @classes: classes of attached devices
3635 *
3636 * This function is invoked after a successful reset. Note that
3637 * the device might have been reset more than once using
3638 * different reset methods before postreset is invoked.
c2bd5804 3639 *
c2bd5804
TH
3640 * LOCKING:
3641 * Kernel thread context (may sleep)
3642 */
cc0680a5 3643void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3644{
cc0680a5 3645 struct ata_port *ap = link->ap;
dc2b3515
TH
3646 u32 serror;
3647
c2bd5804
TH
3648 DPRINTK("ENTER\n");
3649
c2bd5804 3650 /* print link status */
936fd732 3651 sata_print_link_status(link);
c2bd5804 3652
dc2b3515 3653 /* clear SError */
936fd732
TH
3654 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3655 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3656
c2bd5804
TH
3657 /* is double-select really necessary? */
3658 if (classes[0] != ATA_DEV_NONE)
3659 ap->ops->dev_select(ap, 1);
3660 if (classes[1] != ATA_DEV_NONE)
3661 ap->ops->dev_select(ap, 0);
3662
3a39746a
TH
3663 /* bail out if no device is present */
3664 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3665 DPRINTK("EXIT, no device\n");
3666 return;
3667 }
3668
3669 /* set up device control */
0d5ff566
TH
3670 if (ap->ioaddr.ctl_addr)
3671 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3672
3673 DPRINTK("EXIT\n");
3674}
3675
623a3128
TH
3676/**
3677 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3678 * @dev: device to compare against
3679 * @new_class: class of the new device
3680 * @new_id: IDENTIFY page of the new device
3681 *
3682 * Compare @new_class and @new_id against @dev and determine
3683 * whether @dev is the device indicated by @new_class and
3684 * @new_id.
3685 *
3686 * LOCKING:
3687 * None.
3688 *
3689 * RETURNS:
3690 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3691 */
3373efd8
TH
3692static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3693 const u16 *new_id)
623a3128
TH
3694{
3695 const u16 *old_id = dev->id;
a0cf733b
TH
3696 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3697 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3698
3699 if (dev->class != new_class) {
f15a1daf
TH
3700 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3701 dev->class, new_class);
623a3128
TH
3702 return 0;
3703 }
3704
a0cf733b
TH
3705 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3706 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3707 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3708 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3709
3710 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3711 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3712 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3713 return 0;
3714 }
3715
3716 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3717 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3718 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3719 return 0;
3720 }
3721
623a3128
TH
3722 return 1;
3723}
3724
3725/**
fe30911b 3726 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3727 * @dev: target ATA device
bff04647 3728 * @readid_flags: read ID flags
623a3128
TH
3729 *
3730 * Re-read IDENTIFY page and make sure @dev is still attached to
3731 * the port.
3732 *
3733 * LOCKING:
3734 * Kernel thread context (may sleep)
3735 *
3736 * RETURNS:
3737 * 0 on success, negative errno otherwise
3738 */
fe30911b 3739int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3740{
5eb45c02 3741 unsigned int class = dev->class;
9af5c9c9 3742 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3743 int rc;
3744
fe635c7e 3745 /* read ID data */
bff04647 3746 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3747 if (rc)
fe30911b 3748 return rc;
623a3128
TH
3749
3750 /* is the device still there? */
fe30911b
TH
3751 if (!ata_dev_same_device(dev, class, id))
3752 return -ENODEV;
623a3128 3753
fe635c7e 3754 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3755 return 0;
3756}
3757
3758/**
3759 * ata_dev_revalidate - Revalidate ATA device
3760 * @dev: device to revalidate
422c9daa 3761 * @new_class: new class code
fe30911b
TH
3762 * @readid_flags: read ID flags
3763 *
3764 * Re-read IDENTIFY page, make sure @dev is still attached to the
3765 * port and reconfigure it according to the new IDENTIFY page.
3766 *
3767 * LOCKING:
3768 * Kernel thread context (may sleep)
3769 *
3770 * RETURNS:
3771 * 0 on success, negative errno otherwise
3772 */
422c9daa
TH
3773int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3774 unsigned int readid_flags)
fe30911b 3775{
6ddcd3b0 3776 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3777 int rc;
3778
3779 if (!ata_dev_enabled(dev))
3780 return -ENODEV;
3781
422c9daa
TH
3782 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3783 if (ata_class_enabled(new_class) &&
3784 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
3785 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3786 dev->class, new_class);
3787 rc = -ENODEV;
3788 goto fail;
3789 }
3790
fe30911b
TH
3791 /* re-read ID */
3792 rc = ata_dev_reread_id(dev, readid_flags);
3793 if (rc)
3794 goto fail;
623a3128
TH
3795
3796 /* configure device according to the new ID */
efdaedc4 3797 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3798 if (rc)
3799 goto fail;
3800
3801 /* verify n_sectors hasn't changed */
b54eebd6
TH
3802 if (dev->class == ATA_DEV_ATA && n_sectors &&
3803 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
3804 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3805 "%llu != %llu\n",
3806 (unsigned long long)n_sectors,
3807 (unsigned long long)dev->n_sectors);
8270bec4
TH
3808
3809 /* restore original n_sectors */
3810 dev->n_sectors = n_sectors;
3811
6ddcd3b0
TH
3812 rc = -ENODEV;
3813 goto fail;
3814 }
3815
3816 return 0;
623a3128
TH
3817
3818 fail:
f15a1daf 3819 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3820 return rc;
3821}
3822
6919a0a6
AC
3823struct ata_blacklist_entry {
3824 const char *model_num;
3825 const char *model_rev;
3826 unsigned long horkage;
3827};
3828
3829static const struct ata_blacklist_entry ata_device_blacklist [] = {
3830 /* Devices with DMA related problems under Linux */
3831 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3832 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3833 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3834 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3835 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3836 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3837 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3838 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3839 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3840 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3841 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3842 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3843 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3844 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3845 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3846 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3847 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3848 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3849 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3850 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3851 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3852 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3853 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3854 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3855 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3856 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3857 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3858 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3859 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3860 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3861 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3862 { "IOMEGA ZIP 250 ATAPI Floppy",
3863 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3864
18d6e9d5 3865 /* Weird ATAPI devices */
40a1d531 3866 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3867
6919a0a6
AC
3868 /* Devices we expect to fail diagnostics */
3869
3870 /* Devices where NCQ should be avoided */
3871 /* NCQ is slow */
3872 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3873 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3874 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 3875 /* NCQ is broken */
539cc7c7 3876 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 3877 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
2f8d90ab 3878 { "HITACHI HDS7250SASUN500G 0621KTAWSD", "K2AOAJ0AHITACHI",
539cc7c7
JG
3879 ATA_HORKAGE_NONCQ },
3880
36e337d0
RH
3881 /* Blacklist entries taken from Silicon Image 3124/3132
3882 Windows driver .inf file - also several Linux problem reports */
3883 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3884 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3885 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3886 /* Drives which do spurious command completion */
3887 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3888 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3889 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3890 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
a520f261 3891 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
3fb6589c 3892 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
0e3dbc01 3893 { "ST3160812AS", "3.AD", ATA_HORKAGE_NONCQ, },
5d6aca8d 3894 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
6919a0a6 3895
16c55b03
TH
3896 /* devices which puke on READ_NATIVE_MAX */
3897 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
3898 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3899 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3900 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6
AC
3901
3902 /* End Marker */
3903 { }
1da177e4 3904};
2e9edbf8 3905
539cc7c7
JG
3906int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
3907{
3908 const char *p;
3909 int len;
3910
3911 /*
3912 * check for trailing wildcard: *\0
3913 */
3914 p = strchr(patt, wildchar);
3915 if (p && ((*(p + 1)) == 0))
3916 len = p - patt;
3917 else
3918 len = strlen(name);
3919
3920 return strncmp(patt, name, len);
3921}
3922
75683fe7 3923static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 3924{
8bfa79fc
TH
3925 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3926 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3927 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3928
8bfa79fc
TH
3929 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3930 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3931
6919a0a6 3932 while (ad->model_num) {
539cc7c7 3933 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
3934 if (ad->model_rev == NULL)
3935 return ad->horkage;
539cc7c7 3936 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 3937 return ad->horkage;
f4b15fef 3938 }
6919a0a6 3939 ad++;
f4b15fef 3940 }
1da177e4
LT
3941 return 0;
3942}
3943
6919a0a6
AC
3944static int ata_dma_blacklisted(const struct ata_device *dev)
3945{
3946 /* We don't support polling DMA.
3947 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3948 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3949 */
9af5c9c9 3950 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
3951 (dev->flags & ATA_DFLAG_CDB_INTR))
3952 return 1;
75683fe7 3953 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
3954}
3955
a6d5a51c
TH
3956/**
3957 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3958 * @dev: Device to compute xfermask for
3959 *
acf356b1
TH
3960 * Compute supported xfermask of @dev and store it in
3961 * dev->*_mask. This function is responsible for applying all
3962 * known limits including host controller limits, device
3963 * blacklist, etc...
a6d5a51c
TH
3964 *
3965 * LOCKING:
3966 * None.
a6d5a51c 3967 */
3373efd8 3968static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3969{
9af5c9c9
TH
3970 struct ata_link *link = dev->link;
3971 struct ata_port *ap = link->ap;
cca3974e 3972 struct ata_host *host = ap->host;
a6d5a51c 3973 unsigned long xfer_mask;
1da177e4 3974
37deecb5 3975 /* controller modes available */
565083e1
TH
3976 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3977 ap->mwdma_mask, ap->udma_mask);
3978
8343f889 3979 /* drive modes available */
37deecb5
TH
3980 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3981 dev->mwdma_mask, dev->udma_mask);
3982 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3983
b352e57d
AC
3984 /*
3985 * CFA Advanced TrueIDE timings are not allowed on a shared
3986 * cable
3987 */
3988 if (ata_dev_pair(dev)) {
3989 /* No PIO5 or PIO6 */
3990 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3991 /* No MWDMA3 or MWDMA 4 */
3992 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3993 }
3994
37deecb5
TH
3995 if (ata_dma_blacklisted(dev)) {
3996 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3997 ata_dev_printk(dev, KERN_WARNING,
3998 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3999 }
a6d5a51c 4000
14d66ab7
PV
4001 if ((host->flags & ATA_HOST_SIMPLEX) &&
4002 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4003 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4004 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4005 "other device, disabling DMA\n");
5444a6f4 4006 }
565083e1 4007
e424675f
JG
4008 if (ap->flags & ATA_FLAG_NO_IORDY)
4009 xfer_mask &= ata_pio_mask_no_iordy(dev);
4010
5444a6f4 4011 if (ap->ops->mode_filter)
a76b62ca 4012 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4013
8343f889
RH
4014 /* Apply cable rule here. Don't apply it early because when
4015 * we handle hot plug the cable type can itself change.
4016 * Check this last so that we know if the transfer rate was
4017 * solely limited by the cable.
4018 * Unknown or 80 wire cables reported host side are checked
4019 * drive side as well. Cases where we know a 40wire cable
4020 * is used safely for 80 are not checked here.
4021 */
4022 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4023 /* UDMA/44 or higher would be available */
4024 if((ap->cbl == ATA_CBL_PATA40) ||
4025 (ata_drive_40wire(dev->id) &&
4026 (ap->cbl == ATA_CBL_PATA_UNK ||
4027 ap->cbl == ATA_CBL_PATA80))) {
4028 ata_dev_printk(dev, KERN_WARNING,
4029 "limited to UDMA/33 due to 40-wire cable\n");
4030 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4031 }
4032
565083e1
TH
4033 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4034 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4035}
4036
1da177e4
LT
4037/**
4038 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4039 * @dev: Device to which command will be sent
4040 *
780a87f7
JG
4041 * Issue SET FEATURES - XFER MODE command to device @dev
4042 * on port @ap.
4043 *
1da177e4 4044 * LOCKING:
0cba632b 4045 * PCI/etc. bus probe sem.
83206a29
TH
4046 *
4047 * RETURNS:
4048 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4049 */
4050
3373efd8 4051static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4052{
a0123703 4053 struct ata_taskfile tf;
83206a29 4054 unsigned int err_mask;
1da177e4
LT
4055
4056 /* set up set-features taskfile */
4057 DPRINTK("set features - xfer mode\n");
4058
464cf177
TH
4059 /* Some controllers and ATAPI devices show flaky interrupt
4060 * behavior after setting xfer mode. Use polling instead.
4061 */
3373efd8 4062 ata_tf_init(dev, &tf);
a0123703
TH
4063 tf.command = ATA_CMD_SET_FEATURES;
4064 tf.feature = SETFEATURES_XFER;
464cf177 4065 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4066 tf.protocol = ATA_PROT_NODATA;
4067 tf.nsect = dev->xfer_mode;
1da177e4 4068
3373efd8 4069 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
9f45cbd3
KCA
4070
4071 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4072 return err_mask;
4073}
4074
4075/**
4076 * ata_dev_set_AN - Issue SET FEATURES - SATA FEATURES
4077 * @dev: Device to which command will be sent
4078 * @enable: Whether to enable or disable the feature
4079 *
4080 * Issue SET FEATURES - SATA FEATURES command to device @dev
4081 * on port @ap with sector count set to indicate Asynchronous
4082 * Notification feature
4083 *
4084 * LOCKING:
4085 * PCI/etc. bus probe sem.
4086 *
4087 * RETURNS:
4088 * 0 on success, AC_ERR_* mask otherwise.
4089 */
4090static unsigned int ata_dev_set_AN(struct ata_device *dev, u8 enable)
4091{
4092 struct ata_taskfile tf;
4093 unsigned int err_mask;
4094
4095 /* set up set-features taskfile */
4096 DPRINTK("set features - SATA features\n");
4097
4098 ata_tf_init(dev, &tf);
4099 tf.command = ATA_CMD_SET_FEATURES;
4100 tf.feature = enable;
4101 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4102 tf.protocol = ATA_PROT_NODATA;
4103 tf.nsect = SATA_AN;
4104
4105 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 4106
83206a29
TH
4107 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4108 return err_mask;
1da177e4
LT
4109}
4110
8bf62ece
AL
4111/**
4112 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4113 * @dev: Device to which command will be sent
e2a7f77a
RD
4114 * @heads: Number of heads (taskfile parameter)
4115 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4116 *
4117 * LOCKING:
6aff8f1f
TH
4118 * Kernel thread context (may sleep)
4119 *
4120 * RETURNS:
4121 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4122 */
3373efd8
TH
4123static unsigned int ata_dev_init_params(struct ata_device *dev,
4124 u16 heads, u16 sectors)
8bf62ece 4125{
a0123703 4126 struct ata_taskfile tf;
6aff8f1f 4127 unsigned int err_mask;
8bf62ece
AL
4128
4129 /* Number of sectors per track 1-255. Number of heads 1-16 */
4130 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4131 return AC_ERR_INVALID;
8bf62ece
AL
4132
4133 /* set up init dev params taskfile */
4134 DPRINTK("init dev params \n");
4135
3373efd8 4136 ata_tf_init(dev, &tf);
a0123703
TH
4137 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4139 tf.protocol = ATA_PROT_NODATA;
4140 tf.nsect = sectors;
4141 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4142
3373efd8 4143 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
18b2466c
AC
4144 /* A clean abort indicates an original or just out of spec drive
4145 and we should continue as we issue the setup based on the
4146 drive reported working geometry */
4147 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4148 err_mask = 0;
8bf62ece 4149
6aff8f1f
TH
4150 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4151 return err_mask;
8bf62ece
AL
4152}
4153
1da177e4 4154/**
0cba632b
JG
4155 * ata_sg_clean - Unmap DMA memory associated with command
4156 * @qc: Command containing DMA memory to be released
4157 *
4158 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4159 *
4160 * LOCKING:
cca3974e 4161 * spin_lock_irqsave(host lock)
1da177e4 4162 */
70e6ad0c 4163void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4164{
4165 struct ata_port *ap = qc->ap;
cedc9a47 4166 struct scatterlist *sg = qc->__sg;
1da177e4 4167 int dir = qc->dma_dir;
cedc9a47 4168 void *pad_buf = NULL;
1da177e4 4169
a4631474
TH
4170 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4171 WARN_ON(sg == NULL);
1da177e4
LT
4172
4173 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4174 WARN_ON(qc->n_elem > 1);
1da177e4 4175
2c13b7ce 4176 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4177
cedc9a47
JG
4178 /* if we padded the buffer out to 32-bit bound, and data
4179 * xfer direction is from-device, we must copy from the
4180 * pad buffer back into the supplied buffer
4181 */
4182 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4183 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4184
4185 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4186 if (qc->n_elem)
2f1f610b 4187 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4188 /* restore last sg */
4189 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4190 if (pad_buf) {
4191 struct scatterlist *psg = &qc->pad_sgent;
4192 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4193 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4194 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4195 }
4196 } else {
2e242fa9 4197 if (qc->n_elem)
2f1f610b 4198 dma_unmap_single(ap->dev,
e1410f2d
JG
4199 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4200 dir);
cedc9a47
JG
4201 /* restore sg */
4202 sg->length += qc->pad_len;
4203 if (pad_buf)
4204 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4205 pad_buf, qc->pad_len);
4206 }
1da177e4
LT
4207
4208 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4209 qc->__sg = NULL;
1da177e4
LT
4210}
4211
4212/**
4213 * ata_fill_sg - Fill PCI IDE PRD table
4214 * @qc: Metadata associated with taskfile to be transferred
4215 *
780a87f7
JG
4216 * Fill PCI IDE PRD (scatter-gather) table with segments
4217 * associated with the current disk command.
4218 *
1da177e4 4219 * LOCKING:
cca3974e 4220 * spin_lock_irqsave(host lock)
1da177e4
LT
4221 *
4222 */
4223static void ata_fill_sg(struct ata_queued_cmd *qc)
4224{
1da177e4 4225 struct ata_port *ap = qc->ap;
cedc9a47
JG
4226 struct scatterlist *sg;
4227 unsigned int idx;
1da177e4 4228
a4631474 4229 WARN_ON(qc->__sg == NULL);
f131883e 4230 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4231
4232 idx = 0;
cedc9a47 4233 ata_for_each_sg(sg, qc) {
1da177e4
LT
4234 u32 addr, offset;
4235 u32 sg_len, len;
4236
4237 /* determine if physical DMA addr spans 64K boundary.
4238 * Note h/w doesn't support 64-bit, so we unconditionally
4239 * truncate dma_addr_t to u32.
4240 */
4241 addr = (u32) sg_dma_address(sg);
4242 sg_len = sg_dma_len(sg);
4243
4244 while (sg_len) {
4245 offset = addr & 0xffff;
4246 len = sg_len;
4247 if ((offset + sg_len) > 0x10000)
4248 len = 0x10000 - offset;
4249
4250 ap->prd[idx].addr = cpu_to_le32(addr);
4251 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4252 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4253
4254 idx++;
4255 sg_len -= len;
4256 addr += len;
4257 }
4258 }
4259
4260 if (idx)
4261 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4262}
b9a4197e 4263
d26fc955
AC
4264/**
4265 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4266 * @qc: Metadata associated with taskfile to be transferred
4267 *
4268 * Fill PCI IDE PRD (scatter-gather) table with segments
4269 * associated with the current disk command. Perform the fill
4270 * so that we avoid writing any length 64K records for
4271 * controllers that don't follow the spec.
4272 *
4273 * LOCKING:
4274 * spin_lock_irqsave(host lock)
4275 *
4276 */
4277static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4278{
4279 struct ata_port *ap = qc->ap;
4280 struct scatterlist *sg;
4281 unsigned int idx;
4282
4283 WARN_ON(qc->__sg == NULL);
4284 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4285
4286 idx = 0;
4287 ata_for_each_sg(sg, qc) {
4288 u32 addr, offset;
4289 u32 sg_len, len, blen;
4290
4291 /* determine if physical DMA addr spans 64K boundary.
4292 * Note h/w doesn't support 64-bit, so we unconditionally
4293 * truncate dma_addr_t to u32.
4294 */
4295 addr = (u32) sg_dma_address(sg);
4296 sg_len = sg_dma_len(sg);
4297
4298 while (sg_len) {
4299 offset = addr & 0xffff;
4300 len = sg_len;
4301 if ((offset + sg_len) > 0x10000)
4302 len = 0x10000 - offset;
4303
4304 blen = len & 0xffff;
4305 ap->prd[idx].addr = cpu_to_le32(addr);
4306 if (blen == 0) {
4307 /* Some PATA chipsets like the CS5530 can't
4308 cope with 0x0000 meaning 64K as the spec says */
4309 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4310 blen = 0x8000;
4311 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4312 }
4313 ap->prd[idx].flags_len = cpu_to_le32(blen);
4314 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4315
4316 idx++;
4317 sg_len -= len;
4318 addr += len;
4319 }
4320 }
4321
4322 if (idx)
4323 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4324}
4325
1da177e4
LT
4326/**
4327 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4328 * @qc: Metadata associated with taskfile to check
4329 *
780a87f7
JG
4330 * Allow low-level driver to filter ATA PACKET commands, returning
4331 * a status indicating whether or not it is OK to use DMA for the
4332 * supplied PACKET command.
4333 *
1da177e4 4334 * LOCKING:
cca3974e 4335 * spin_lock_irqsave(host lock)
0cba632b 4336 *
1da177e4
LT
4337 * RETURNS: 0 when ATAPI DMA can be used
4338 * nonzero otherwise
4339 */
4340int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4341{
4342 struct ata_port *ap = qc->ap;
b9a4197e
TH
4343
4344 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4345 * few ATAPI devices choke on such DMA requests.
4346 */
4347 if (unlikely(qc->nbytes & 15))
4348 return 1;
6f23a31d 4349
1da177e4 4350 if (ap->ops->check_atapi_dma)
b9a4197e 4351 return ap->ops->check_atapi_dma(qc);
1da177e4 4352
b9a4197e 4353 return 0;
1da177e4 4354}
b9a4197e 4355
31cc23b3
TH
4356/**
4357 * ata_std_qc_defer - Check whether a qc needs to be deferred
4358 * @qc: ATA command in question
4359 *
4360 * Non-NCQ commands cannot run with any other command, NCQ or
4361 * not. As upper layer only knows the queue depth, we are
4362 * responsible for maintaining exclusion. This function checks
4363 * whether a new command @qc can be issued.
4364 *
4365 * LOCKING:
4366 * spin_lock_irqsave(host lock)
4367 *
4368 * RETURNS:
4369 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4370 */
4371int ata_std_qc_defer(struct ata_queued_cmd *qc)
4372{
4373 struct ata_link *link = qc->dev->link;
4374
4375 if (qc->tf.protocol == ATA_PROT_NCQ) {
4376 if (!ata_tag_valid(link->active_tag))
4377 return 0;
4378 } else {
4379 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4380 return 0;
4381 }
4382
4383 return ATA_DEFER_LINK;
4384}
4385
1da177e4
LT
4386/**
4387 * ata_qc_prep - Prepare taskfile for submission
4388 * @qc: Metadata associated with taskfile to be prepared
4389 *
780a87f7
JG
4390 * Prepare ATA taskfile for submission.
4391 *
1da177e4 4392 * LOCKING:
cca3974e 4393 * spin_lock_irqsave(host lock)
1da177e4
LT
4394 */
4395void ata_qc_prep(struct ata_queued_cmd *qc)
4396{
4397 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4398 return;
4399
4400 ata_fill_sg(qc);
4401}
4402
d26fc955
AC
4403/**
4404 * ata_dumb_qc_prep - Prepare taskfile for submission
4405 * @qc: Metadata associated with taskfile to be prepared
4406 *
4407 * Prepare ATA taskfile for submission.
4408 *
4409 * LOCKING:
4410 * spin_lock_irqsave(host lock)
4411 */
4412void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4413{
4414 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4415 return;
4416
4417 ata_fill_sg_dumb(qc);
4418}
4419
e46834cd
BK
4420void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4421
0cba632b
JG
4422/**
4423 * ata_sg_init_one - Associate command with memory buffer
4424 * @qc: Command to be associated
4425 * @buf: Memory buffer
4426 * @buflen: Length of memory buffer, in bytes.
4427 *
4428 * Initialize the data-related elements of queued_cmd @qc
4429 * to point to a single memory buffer, @buf of byte length @buflen.
4430 *
4431 * LOCKING:
cca3974e 4432 * spin_lock_irqsave(host lock)
0cba632b
JG
4433 */
4434
1da177e4
LT
4435void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4436{
1da177e4
LT
4437 qc->flags |= ATA_QCFLAG_SINGLE;
4438
cedc9a47 4439 qc->__sg = &qc->sgent;
1da177e4 4440 qc->n_elem = 1;
cedc9a47 4441 qc->orig_n_elem = 1;
1da177e4 4442 qc->buf_virt = buf;
233277ca 4443 qc->nbytes = buflen;
1da177e4 4444
61c0596c 4445 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4446}
4447
0cba632b
JG
4448/**
4449 * ata_sg_init - Associate command with scatter-gather table.
4450 * @qc: Command to be associated
4451 * @sg: Scatter-gather table.
4452 * @n_elem: Number of elements in s/g table.
4453 *
4454 * Initialize the data-related elements of queued_cmd @qc
4455 * to point to a scatter-gather table @sg, containing @n_elem
4456 * elements.
4457 *
4458 * LOCKING:
cca3974e 4459 * spin_lock_irqsave(host lock)
0cba632b
JG
4460 */
4461
1da177e4
LT
4462void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4463 unsigned int n_elem)
4464{
4465 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4466 qc->__sg = sg;
1da177e4 4467 qc->n_elem = n_elem;
cedc9a47 4468 qc->orig_n_elem = n_elem;
1da177e4
LT
4469}
4470
4471/**
0cba632b
JG
4472 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4473 * @qc: Command with memory buffer to be mapped.
4474 *
4475 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4476 *
4477 * LOCKING:
cca3974e 4478 * spin_lock_irqsave(host lock)
1da177e4
LT
4479 *
4480 * RETURNS:
0cba632b 4481 * Zero on success, negative on error.
1da177e4
LT
4482 */
4483
4484static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4485{
4486 struct ata_port *ap = qc->ap;
4487 int dir = qc->dma_dir;
cedc9a47 4488 struct scatterlist *sg = qc->__sg;
1da177e4 4489 dma_addr_t dma_address;
2e242fa9 4490 int trim_sg = 0;
1da177e4 4491
cedc9a47
JG
4492 /* we must lengthen transfers to end on a 32-bit boundary */
4493 qc->pad_len = sg->length & 3;
4494 if (qc->pad_len) {
4495 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4496 struct scatterlist *psg = &qc->pad_sgent;
4497
a4631474 4498 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4499
4500 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4501
4502 if (qc->tf.flags & ATA_TFLAG_WRITE)
4503 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4504 qc->pad_len);
4505
4506 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4507 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4508 /* trim sg */
4509 sg->length -= qc->pad_len;
2e242fa9
TH
4510 if (sg->length == 0)
4511 trim_sg = 1;
cedc9a47
JG
4512
4513 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4514 sg->length, qc->pad_len);
4515 }
4516
2e242fa9
TH
4517 if (trim_sg) {
4518 qc->n_elem--;
e1410f2d
JG
4519 goto skip_map;
4520 }
4521
2f1f610b 4522 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4523 sg->length, dir);
537a95d9
TH
4524 if (dma_mapping_error(dma_address)) {
4525 /* restore sg */
4526 sg->length += qc->pad_len;
1da177e4 4527 return -1;
537a95d9 4528 }
1da177e4
LT
4529
4530 sg_dma_address(sg) = dma_address;
32529e01 4531 sg_dma_len(sg) = sg->length;
1da177e4 4532
2e242fa9 4533skip_map:
1da177e4
LT
4534 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4535 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4536
4537 return 0;
4538}
4539
4540/**
0cba632b
JG
4541 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4542 * @qc: Command with scatter-gather table to be mapped.
4543 *
4544 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4545 *
4546 * LOCKING:
cca3974e 4547 * spin_lock_irqsave(host lock)
1da177e4
LT
4548 *
4549 * RETURNS:
0cba632b 4550 * Zero on success, negative on error.
1da177e4
LT
4551 *
4552 */
4553
4554static int ata_sg_setup(struct ata_queued_cmd *qc)
4555{
4556 struct ata_port *ap = qc->ap;
cedc9a47
JG
4557 struct scatterlist *sg = qc->__sg;
4558 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4559 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4560
44877b4e 4561 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4562 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4563
cedc9a47
JG
4564 /* we must lengthen transfers to end on a 32-bit boundary */
4565 qc->pad_len = lsg->length & 3;
4566 if (qc->pad_len) {
4567 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4568 struct scatterlist *psg = &qc->pad_sgent;
4569 unsigned int offset;
4570
a4631474 4571 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4572
4573 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4574
4575 /*
4576 * psg->page/offset are used to copy to-be-written
4577 * data in this function or read data in ata_sg_clean.
4578 */
4579 offset = lsg->offset + lsg->length - qc->pad_len;
4580 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4581 psg->offset = offset_in_page(offset);
4582
4583 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4584 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4585 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4586 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4587 }
4588
4589 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4590 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4591 /* trim last sg */
4592 lsg->length -= qc->pad_len;
e1410f2d
JG
4593 if (lsg->length == 0)
4594 trim_sg = 1;
cedc9a47
JG
4595
4596 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4597 qc->n_elem - 1, lsg->length, qc->pad_len);
4598 }
4599
e1410f2d
JG
4600 pre_n_elem = qc->n_elem;
4601 if (trim_sg && pre_n_elem)
4602 pre_n_elem--;
4603
4604 if (!pre_n_elem) {
4605 n_elem = 0;
4606 goto skip_map;
4607 }
4608
1da177e4 4609 dir = qc->dma_dir;
2f1f610b 4610 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4611 if (n_elem < 1) {
4612 /* restore last sg */
4613 lsg->length += qc->pad_len;
1da177e4 4614 return -1;
537a95d9 4615 }
1da177e4
LT
4616
4617 DPRINTK("%d sg elements mapped\n", n_elem);
4618
e1410f2d 4619skip_map:
1da177e4
LT
4620 qc->n_elem = n_elem;
4621
4622 return 0;
4623}
4624
0baab86b 4625/**
c893a3ae 4626 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4627 * @buf: Buffer to swap
4628 * @buf_words: Number of 16-bit words in buffer.
4629 *
4630 * Swap halves of 16-bit words if needed to convert from
4631 * little-endian byte order to native cpu byte order, or
4632 * vice-versa.
4633 *
4634 * LOCKING:
6f0ef4fa 4635 * Inherited from caller.
0baab86b 4636 */
1da177e4
LT
4637void swap_buf_le16(u16 *buf, unsigned int buf_words)
4638{
4639#ifdef __BIG_ENDIAN
4640 unsigned int i;
4641
4642 for (i = 0; i < buf_words; i++)
4643 buf[i] = le16_to_cpu(buf[i]);
4644#endif /* __BIG_ENDIAN */
4645}
4646
6ae4cfb5 4647/**
0d5ff566 4648 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4649 * @adev: device to target
6ae4cfb5
AL
4650 * @buf: data buffer
4651 * @buflen: buffer length
344babaa 4652 * @write_data: read/write
6ae4cfb5
AL
4653 *
4654 * Transfer data from/to the device data register by PIO.
4655 *
4656 * LOCKING:
4657 * Inherited from caller.
6ae4cfb5 4658 */
0d5ff566
TH
4659void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4660 unsigned int buflen, int write_data)
1da177e4 4661{
9af5c9c9 4662 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4663 unsigned int words = buflen >> 1;
1da177e4 4664
6ae4cfb5 4665 /* Transfer multiple of 2 bytes */
1da177e4 4666 if (write_data)
0d5ff566 4667 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4668 else
0d5ff566 4669 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4670
4671 /* Transfer trailing 1 byte, if any. */
4672 if (unlikely(buflen & 0x01)) {
4673 u16 align_buf[1] = { 0 };
4674 unsigned char *trailing_buf = buf + buflen - 1;
4675
4676 if (write_data) {
4677 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4678 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4679 } else {
0d5ff566 4680 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4681 memcpy(trailing_buf, align_buf, 1);
4682 }
4683 }
1da177e4
LT
4684}
4685
75e99585 4686/**
0d5ff566 4687 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4688 * @adev: device to target
4689 * @buf: data buffer
4690 * @buflen: buffer length
4691 * @write_data: read/write
4692 *
88574551 4693 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4694 * transfer with interrupts disabled.
4695 *
4696 * LOCKING:
4697 * Inherited from caller.
4698 */
0d5ff566
TH
4699void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4700 unsigned int buflen, int write_data)
75e99585
AC
4701{
4702 unsigned long flags;
4703 local_irq_save(flags);
0d5ff566 4704 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4705 local_irq_restore(flags);
4706}
4707
4708
6ae4cfb5 4709/**
5a5dbd18 4710 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4711 * @qc: Command on going
4712 *
5a5dbd18 4713 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4714 *
4715 * LOCKING:
4716 * Inherited from caller.
4717 */
4718
1da177e4
LT
4719static void ata_pio_sector(struct ata_queued_cmd *qc)
4720{
4721 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4722 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4723 struct ata_port *ap = qc->ap;
4724 struct page *page;
4725 unsigned int offset;
4726 unsigned char *buf;
4727
5a5dbd18 4728 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4729 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4730
4731 page = sg[qc->cursg].page;
726f0785 4732 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4733
4734 /* get the current page and offset */
4735 page = nth_page(page, (offset >> PAGE_SHIFT));
4736 offset %= PAGE_SIZE;
4737
1da177e4
LT
4738 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4739
91b8b313
AL
4740 if (PageHighMem(page)) {
4741 unsigned long flags;
4742
a6b2c5d4 4743 /* FIXME: use a bounce buffer */
91b8b313
AL
4744 local_irq_save(flags);
4745 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4746
91b8b313 4747 /* do the actual data transfer */
5a5dbd18 4748 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4749
91b8b313
AL
4750 kunmap_atomic(buf, KM_IRQ0);
4751 local_irq_restore(flags);
4752 } else {
4753 buf = page_address(page);
5a5dbd18 4754 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4755 }
1da177e4 4756
5a5dbd18
ML
4757 qc->curbytes += qc->sect_size;
4758 qc->cursg_ofs += qc->sect_size;
1da177e4 4759
726f0785 4760 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4761 qc->cursg++;
4762 qc->cursg_ofs = 0;
4763 }
1da177e4 4764}
1da177e4 4765
07f6f7d0 4766/**
5a5dbd18 4767 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4768 * @qc: Command on going
4769 *
5a5dbd18 4770 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4771 * ATA device for the DRQ request.
4772 *
4773 * LOCKING:
4774 * Inherited from caller.
4775 */
1da177e4 4776
07f6f7d0
AL
4777static void ata_pio_sectors(struct ata_queued_cmd *qc)
4778{
4779 if (is_multi_taskfile(&qc->tf)) {
4780 /* READ/WRITE MULTIPLE */
4781 unsigned int nsect;
4782
587005de 4783 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4784
5a5dbd18 4785 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4786 qc->dev->multi_count);
07f6f7d0
AL
4787 while (nsect--)
4788 ata_pio_sector(qc);
4789 } else
4790 ata_pio_sector(qc);
4cc980b3
AL
4791
4792 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
4793}
4794
c71c1857
AL
4795/**
4796 * atapi_send_cdb - Write CDB bytes to hardware
4797 * @ap: Port to which ATAPI device is attached.
4798 * @qc: Taskfile currently active
4799 *
4800 * When device has indicated its readiness to accept
4801 * a CDB, this function is called. Send the CDB.
4802 *
4803 * LOCKING:
4804 * caller.
4805 */
4806
4807static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4808{
4809 /* send SCSI cdb */
4810 DPRINTK("send cdb\n");
db024d53 4811 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4812
a6b2c5d4 4813 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4814 ata_altstatus(ap); /* flush */
4815
4816 switch (qc->tf.protocol) {
4817 case ATA_PROT_ATAPI:
4818 ap->hsm_task_state = HSM_ST;
4819 break;
4820 case ATA_PROT_ATAPI_NODATA:
4821 ap->hsm_task_state = HSM_ST_LAST;
4822 break;
4823 case ATA_PROT_ATAPI_DMA:
4824 ap->hsm_task_state = HSM_ST_LAST;
4825 /* initiate bmdma */
4826 ap->ops->bmdma_start(qc);
4827 break;
4828 }
1da177e4
LT
4829}
4830
6ae4cfb5
AL
4831/**
4832 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4833 * @qc: Command on going
4834 * @bytes: number of bytes
4835 *
4836 * Transfer Transfer data from/to the ATAPI device.
4837 *
4838 * LOCKING:
4839 * Inherited from caller.
4840 *
4841 */
4842
1da177e4
LT
4843static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4844{
4845 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4846 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4847 struct ata_port *ap = qc->ap;
4848 struct page *page;
4849 unsigned char *buf;
4850 unsigned int offset, count;
4851
563a6e1f 4852 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4853 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4854
4855next_sg:
563a6e1f 4856 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4857 /*
563a6e1f
AL
4858 * The end of qc->sg is reached and the device expects
4859 * more data to transfer. In order not to overrun qc->sg
4860 * and fulfill length specified in the byte count register,
4861 * - for read case, discard trailing data from the device
4862 * - for write case, padding zero data to the device
4863 */
4864 u16 pad_buf[1] = { 0 };
4865 unsigned int words = bytes >> 1;
4866 unsigned int i;
4867
4868 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4869 ata_dev_printk(qc->dev, KERN_WARNING,
4870 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4871
4872 for (i = 0; i < words; i++)
a6b2c5d4 4873 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4874
14be71f4 4875 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4876 return;
4877 }
4878
cedc9a47 4879 sg = &qc->__sg[qc->cursg];
1da177e4 4880
1da177e4
LT
4881 page = sg->page;
4882 offset = sg->offset + qc->cursg_ofs;
4883
4884 /* get the current page and offset */
4885 page = nth_page(page, (offset >> PAGE_SHIFT));
4886 offset %= PAGE_SIZE;
4887
6952df03 4888 /* don't overrun current sg */
32529e01 4889 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4890
4891 /* don't cross page boundaries */
4892 count = min(count, (unsigned int)PAGE_SIZE - offset);
4893
7282aa4b
AL
4894 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4895
91b8b313
AL
4896 if (PageHighMem(page)) {
4897 unsigned long flags;
4898
a6b2c5d4 4899 /* FIXME: use bounce buffer */
91b8b313
AL
4900 local_irq_save(flags);
4901 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4902
91b8b313 4903 /* do the actual data transfer */
a6b2c5d4 4904 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4905
91b8b313
AL
4906 kunmap_atomic(buf, KM_IRQ0);
4907 local_irq_restore(flags);
4908 } else {
4909 buf = page_address(page);
a6b2c5d4 4910 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4911 }
1da177e4
LT
4912
4913 bytes -= count;
4914 qc->curbytes += count;
4915 qc->cursg_ofs += count;
4916
32529e01 4917 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4918 qc->cursg++;
4919 qc->cursg_ofs = 0;
4920 }
4921
563a6e1f 4922 if (bytes)
1da177e4 4923 goto next_sg;
1da177e4
LT
4924}
4925
6ae4cfb5
AL
4926/**
4927 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4928 * @qc: Command on going
4929 *
4930 * Transfer Transfer data from/to the ATAPI device.
4931 *
4932 * LOCKING:
4933 * Inherited from caller.
6ae4cfb5
AL
4934 */
4935
1da177e4
LT
4936static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4937{
4938 struct ata_port *ap = qc->ap;
4939 struct ata_device *dev = qc->dev;
4940 unsigned int ireason, bc_lo, bc_hi, bytes;
4941 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4942
eec4c3f3
AL
4943 /* Abuse qc->result_tf for temp storage of intermediate TF
4944 * here to save some kernel stack usage.
4945 * For normal completion, qc->result_tf is not relevant. For
4946 * error, qc->result_tf is later overwritten by ata_qc_complete().
4947 * So, the correctness of qc->result_tf is not affected.
4948 */
4949 ap->ops->tf_read(ap, &qc->result_tf);
4950 ireason = qc->result_tf.nsect;
4951 bc_lo = qc->result_tf.lbam;
4952 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4953 bytes = (bc_hi << 8) | bc_lo;
4954
4955 /* shall be cleared to zero, indicating xfer of data */
4956 if (ireason & (1 << 0))
4957 goto err_out;
4958
4959 /* make sure transfer direction matches expected */
4960 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4961 if (do_write != i_write)
4962 goto err_out;
4963
44877b4e 4964 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4965
1da177e4 4966 __atapi_pio_bytes(qc, bytes);
4cc980b3 4967 ata_altstatus(ap); /* flush */
1da177e4
LT
4968
4969 return;
4970
4971err_out:
f15a1daf 4972 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4973 qc->err_mask |= AC_ERR_HSM;
14be71f4 4974 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4975}
4976
4977/**
c234fb00
AL
4978 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4979 * @ap: the target ata_port
4980 * @qc: qc on going
1da177e4 4981 *
c234fb00
AL
4982 * RETURNS:
4983 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4984 */
c234fb00
AL
4985
4986static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4987{
c234fb00
AL
4988 if (qc->tf.flags & ATA_TFLAG_POLLING)
4989 return 1;
1da177e4 4990
c234fb00
AL
4991 if (ap->hsm_task_state == HSM_ST_FIRST) {
4992 if (qc->tf.protocol == ATA_PROT_PIO &&
4993 (qc->tf.flags & ATA_TFLAG_WRITE))
4994 return 1;
1da177e4 4995
c234fb00
AL
4996 if (is_atapi_taskfile(&qc->tf) &&
4997 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4998 return 1;
fe79e683
AL
4999 }
5000
c234fb00
AL
5001 return 0;
5002}
1da177e4 5003
c17ea20d
TH
5004/**
5005 * ata_hsm_qc_complete - finish a qc running on standard HSM
5006 * @qc: Command to complete
5007 * @in_wq: 1 if called from workqueue, 0 otherwise
5008 *
5009 * Finish @qc which is running on standard HSM.
5010 *
5011 * LOCKING:
cca3974e 5012 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5013 * Otherwise, none on entry and grabs host lock.
5014 */
5015static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5016{
5017 struct ata_port *ap = qc->ap;
5018 unsigned long flags;
5019
5020 if (ap->ops->error_handler) {
5021 if (in_wq) {
ba6a1308 5022 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5023
cca3974e
JG
5024 /* EH might have kicked in while host lock is
5025 * released.
c17ea20d
TH
5026 */
5027 qc = ata_qc_from_tag(ap, qc->tag);
5028 if (qc) {
5029 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5030 ap->ops->irq_on(ap);
c17ea20d
TH
5031 ata_qc_complete(qc);
5032 } else
5033 ata_port_freeze(ap);
5034 }
5035
ba6a1308 5036 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5037 } else {
5038 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5039 ata_qc_complete(qc);
5040 else
5041 ata_port_freeze(ap);
5042 }
5043 } else {
5044 if (in_wq) {
ba6a1308 5045 spin_lock_irqsave(ap->lock, flags);
83625006 5046 ap->ops->irq_on(ap);
c17ea20d 5047 ata_qc_complete(qc);
ba6a1308 5048 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5049 } else
5050 ata_qc_complete(qc);
5051 }
5052}
5053
bb5cb290
AL
5054/**
5055 * ata_hsm_move - move the HSM to the next state.
5056 * @ap: the target ata_port
5057 * @qc: qc on going
5058 * @status: current device status
5059 * @in_wq: 1 if called from workqueue, 0 otherwise
5060 *
5061 * RETURNS:
5062 * 1 when poll next status needed, 0 otherwise.
5063 */
9a1004d0
TH
5064int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5065 u8 status, int in_wq)
e2cec771 5066{
bb5cb290
AL
5067 unsigned long flags = 0;
5068 int poll_next;
5069
6912ccd5
AL
5070 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5071
bb5cb290
AL
5072 /* Make sure ata_qc_issue_prot() does not throw things
5073 * like DMA polling into the workqueue. Notice that
5074 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5075 */
c234fb00 5076 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5077
e2cec771 5078fsm_start:
999bb6f4 5079 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5080 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5081
e2cec771
AL
5082 switch (ap->hsm_task_state) {
5083 case HSM_ST_FIRST:
bb5cb290
AL
5084 /* Send first data block or PACKET CDB */
5085
5086 /* If polling, we will stay in the work queue after
5087 * sending the data. Otherwise, interrupt handler
5088 * takes over after sending the data.
5089 */
5090 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5091
e2cec771 5092 /* check device status */
3655d1d3
AL
5093 if (unlikely((status & ATA_DRQ) == 0)) {
5094 /* handle BSY=0, DRQ=0 as error */
5095 if (likely(status & (ATA_ERR | ATA_DF)))
5096 /* device stops HSM for abort/error */
5097 qc->err_mask |= AC_ERR_DEV;
5098 else
5099 /* HSM violation. Let EH handle this */
5100 qc->err_mask |= AC_ERR_HSM;
5101
14be71f4 5102 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5103 goto fsm_start;
1da177e4
LT
5104 }
5105
71601958
AL
5106 /* Device should not ask for data transfer (DRQ=1)
5107 * when it finds something wrong.
eee6c32f
AL
5108 * We ignore DRQ here and stop the HSM by
5109 * changing hsm_task_state to HSM_ST_ERR and
5110 * let the EH abort the command or reset the device.
71601958
AL
5111 */
5112 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5113 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
5114 "error, dev_stat 0x%X\n", status);
3655d1d3 5115 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5116 ap->hsm_task_state = HSM_ST_ERR;
5117 goto fsm_start;
71601958 5118 }
1da177e4 5119
bb5cb290
AL
5120 /* Send the CDB (atapi) or the first data block (ata pio out).
5121 * During the state transition, interrupt handler shouldn't
5122 * be invoked before the data transfer is complete and
5123 * hsm_task_state is changed. Hence, the following locking.
5124 */
5125 if (in_wq)
ba6a1308 5126 spin_lock_irqsave(ap->lock, flags);
1da177e4 5127
bb5cb290
AL
5128 if (qc->tf.protocol == ATA_PROT_PIO) {
5129 /* PIO data out protocol.
5130 * send first data block.
5131 */
0565c26d 5132
bb5cb290
AL
5133 /* ata_pio_sectors() might change the state
5134 * to HSM_ST_LAST. so, the state is changed here
5135 * before ata_pio_sectors().
5136 */
5137 ap->hsm_task_state = HSM_ST;
5138 ata_pio_sectors(qc);
bb5cb290
AL
5139 } else
5140 /* send CDB */
5141 atapi_send_cdb(ap, qc);
5142
5143 if (in_wq)
ba6a1308 5144 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5145
5146 /* if polling, ata_pio_task() handles the rest.
5147 * otherwise, interrupt handler takes over from here.
5148 */
e2cec771 5149 break;
1c848984 5150
e2cec771
AL
5151 case HSM_ST:
5152 /* complete command or read/write the data register */
5153 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5154 /* ATAPI PIO protocol */
5155 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5156 /* No more data to transfer or device error.
5157 * Device error will be tagged in HSM_ST_LAST.
5158 */
e2cec771
AL
5159 ap->hsm_task_state = HSM_ST_LAST;
5160 goto fsm_start;
5161 }
1da177e4 5162
71601958
AL
5163 /* Device should not ask for data transfer (DRQ=1)
5164 * when it finds something wrong.
eee6c32f
AL
5165 * We ignore DRQ here and stop the HSM by
5166 * changing hsm_task_state to HSM_ST_ERR and
5167 * let the EH abort the command or reset the device.
71601958
AL
5168 */
5169 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5170 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5171 "device error, dev_stat 0x%X\n",
5172 status);
3655d1d3 5173 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5174 ap->hsm_task_state = HSM_ST_ERR;
5175 goto fsm_start;
71601958 5176 }
1da177e4 5177
e2cec771 5178 atapi_pio_bytes(qc);
7fb6ec28 5179
e2cec771
AL
5180 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5181 /* bad ireason reported by device */
5182 goto fsm_start;
1da177e4 5183
e2cec771
AL
5184 } else {
5185 /* ATA PIO protocol */
5186 if (unlikely((status & ATA_DRQ) == 0)) {
5187 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5188 if (likely(status & (ATA_ERR | ATA_DF)))
5189 /* device stops HSM for abort/error */
5190 qc->err_mask |= AC_ERR_DEV;
5191 else
55a8e2c8
TH
5192 /* HSM violation. Let EH handle this.
5193 * Phantom devices also trigger this
5194 * condition. Mark hint.
5195 */
5196 qc->err_mask |= AC_ERR_HSM |
5197 AC_ERR_NODEV_HINT;
3655d1d3 5198
e2cec771
AL
5199 ap->hsm_task_state = HSM_ST_ERR;
5200 goto fsm_start;
5201 }
1da177e4 5202
eee6c32f
AL
5203 /* For PIO reads, some devices may ask for
5204 * data transfer (DRQ=1) alone with ERR=1.
5205 * We respect DRQ here and transfer one
5206 * block of junk data before changing the
5207 * hsm_task_state to HSM_ST_ERR.
5208 *
5209 * For PIO writes, ERR=1 DRQ=1 doesn't make
5210 * sense since the data block has been
5211 * transferred to the device.
71601958
AL
5212 */
5213 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5214 /* data might be corrputed */
5215 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5216
5217 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5218 ata_pio_sectors(qc);
eee6c32f
AL
5219 status = ata_wait_idle(ap);
5220 }
5221
3655d1d3
AL
5222 if (status & (ATA_BUSY | ATA_DRQ))
5223 qc->err_mask |= AC_ERR_HSM;
5224
eee6c32f
AL
5225 /* ata_pio_sectors() might change the
5226 * state to HSM_ST_LAST. so, the state
5227 * is changed after ata_pio_sectors().
5228 */
5229 ap->hsm_task_state = HSM_ST_ERR;
5230 goto fsm_start;
71601958
AL
5231 }
5232
e2cec771
AL
5233 ata_pio_sectors(qc);
5234
5235 if (ap->hsm_task_state == HSM_ST_LAST &&
5236 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5237 /* all data read */
52a32205 5238 status = ata_wait_idle(ap);
e2cec771
AL
5239 goto fsm_start;
5240 }
5241 }
5242
bb5cb290 5243 poll_next = 1;
1da177e4
LT
5244 break;
5245
14be71f4 5246 case HSM_ST_LAST:
6912ccd5
AL
5247 if (unlikely(!ata_ok(status))) {
5248 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5249 ap->hsm_task_state = HSM_ST_ERR;
5250 goto fsm_start;
5251 }
5252
5253 /* no more data to transfer */
4332a771 5254 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5255 ap->print_id, qc->dev->devno, status);
e2cec771 5256
6912ccd5
AL
5257 WARN_ON(qc->err_mask);
5258
e2cec771 5259 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5260
e2cec771 5261 /* complete taskfile transaction */
c17ea20d 5262 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5263
5264 poll_next = 0;
1da177e4
LT
5265 break;
5266
14be71f4 5267 case HSM_ST_ERR:
e2cec771
AL
5268 /* make sure qc->err_mask is available to
5269 * know what's wrong and recover
5270 */
5271 WARN_ON(qc->err_mask == 0);
5272
5273 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5274
999bb6f4 5275 /* complete taskfile transaction */
c17ea20d 5276 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5277
5278 poll_next = 0;
e2cec771
AL
5279 break;
5280 default:
bb5cb290 5281 poll_next = 0;
6912ccd5 5282 BUG();
1da177e4
LT
5283 }
5284
bb5cb290 5285 return poll_next;
1da177e4
LT
5286}
5287
65f27f38 5288static void ata_pio_task(struct work_struct *work)
8061f5f0 5289{
65f27f38
DH
5290 struct ata_port *ap =
5291 container_of(work, struct ata_port, port_task.work);
5292 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5293 u8 status;
a1af3734 5294 int poll_next;
8061f5f0 5295
7fb6ec28 5296fsm_start:
a1af3734 5297 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5298
a1af3734
AL
5299 /*
5300 * This is purely heuristic. This is a fast path.
5301 * Sometimes when we enter, BSY will be cleared in
5302 * a chk-status or two. If not, the drive is probably seeking
5303 * or something. Snooze for a couple msecs, then
5304 * chk-status again. If still busy, queue delayed work.
5305 */
5306 status = ata_busy_wait(ap, ATA_BUSY, 5);
5307 if (status & ATA_BUSY) {
5308 msleep(2);
5309 status = ata_busy_wait(ap, ATA_BUSY, 10);
5310 if (status & ATA_BUSY) {
31ce6dae 5311 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5312 return;
5313 }
8061f5f0
TH
5314 }
5315
a1af3734
AL
5316 /* move the HSM */
5317 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5318
a1af3734
AL
5319 /* another command or interrupt handler
5320 * may be running at this point.
5321 */
5322 if (poll_next)
7fb6ec28 5323 goto fsm_start;
8061f5f0
TH
5324}
5325
1da177e4
LT
5326/**
5327 * ata_qc_new - Request an available ATA command, for queueing
5328 * @ap: Port associated with device @dev
5329 * @dev: Device from whom we request an available command structure
5330 *
5331 * LOCKING:
0cba632b 5332 * None.
1da177e4
LT
5333 */
5334
5335static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5336{
5337 struct ata_queued_cmd *qc = NULL;
5338 unsigned int i;
5339
e3180499 5340 /* no command while frozen */
b51e9e5d 5341 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5342 return NULL;
5343
2ab7db1f
TH
5344 /* the last tag is reserved for internal command. */
5345 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5346 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5347 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5348 break;
5349 }
5350
5351 if (qc)
5352 qc->tag = i;
5353
5354 return qc;
5355}
5356
5357/**
5358 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5359 * @dev: Device from whom we request an available command structure
5360 *
5361 * LOCKING:
0cba632b 5362 * None.
1da177e4
LT
5363 */
5364
3373efd8 5365struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5366{
9af5c9c9 5367 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5368 struct ata_queued_cmd *qc;
5369
5370 qc = ata_qc_new(ap);
5371 if (qc) {
1da177e4
LT
5372 qc->scsicmd = NULL;
5373 qc->ap = ap;
5374 qc->dev = dev;
1da177e4 5375
2c13b7ce 5376 ata_qc_reinit(qc);
1da177e4
LT
5377 }
5378
5379 return qc;
5380}
5381
1da177e4
LT
5382/**
5383 * ata_qc_free - free unused ata_queued_cmd
5384 * @qc: Command to complete
5385 *
5386 * Designed to free unused ata_queued_cmd object
5387 * in case something prevents using it.
5388 *
5389 * LOCKING:
cca3974e 5390 * spin_lock_irqsave(host lock)
1da177e4
LT
5391 */
5392void ata_qc_free(struct ata_queued_cmd *qc)
5393{
4ba946e9
TH
5394 struct ata_port *ap = qc->ap;
5395 unsigned int tag;
5396
a4631474 5397 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5398
4ba946e9
TH
5399 qc->flags = 0;
5400 tag = qc->tag;
5401 if (likely(ata_tag_valid(tag))) {
4ba946e9 5402 qc->tag = ATA_TAG_POISON;
6cec4a39 5403 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5404 }
1da177e4
LT
5405}
5406
76014427 5407void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5408{
dedaf2b0 5409 struct ata_port *ap = qc->ap;
9af5c9c9 5410 struct ata_link *link = qc->dev->link;
dedaf2b0 5411
a4631474
TH
5412 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5413 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5414
5415 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5416 ata_sg_clean(qc);
5417
7401abf2 5418 /* command should be marked inactive atomically with qc completion */
da917d69 5419 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5420 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5421 if (!link->sactive)
5422 ap->nr_active_links--;
5423 } else {
9af5c9c9 5424 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5425 ap->nr_active_links--;
5426 }
5427
5428 /* clear exclusive status */
5429 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5430 ap->excl_link == link))
5431 ap->excl_link = NULL;
7401abf2 5432
3f3791d3
AL
5433 /* atapi: mark qc as inactive to prevent the interrupt handler
5434 * from completing the command twice later, before the error handler
5435 * is called. (when rc != 0 and atapi request sense is needed)
5436 */
5437 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5438 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5439
1da177e4 5440 /* call completion callback */
77853bf2 5441 qc->complete_fn(qc);
1da177e4
LT
5442}
5443
39599a53
TH
5444static void fill_result_tf(struct ata_queued_cmd *qc)
5445{
5446 struct ata_port *ap = qc->ap;
5447
39599a53 5448 qc->result_tf.flags = qc->tf.flags;
4742d54f 5449 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5450}
5451
f686bcb8
TH
5452/**
5453 * ata_qc_complete - Complete an active ATA command
5454 * @qc: Command to complete
5455 * @err_mask: ATA Status register contents
5456 *
5457 * Indicate to the mid and upper layers that an ATA
5458 * command has completed, with either an ok or not-ok status.
5459 *
5460 * LOCKING:
cca3974e 5461 * spin_lock_irqsave(host lock)
f686bcb8
TH
5462 */
5463void ata_qc_complete(struct ata_queued_cmd *qc)
5464{
5465 struct ata_port *ap = qc->ap;
5466
5467 /* XXX: New EH and old EH use different mechanisms to
5468 * synchronize EH with regular execution path.
5469 *
5470 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5471 * Normal execution path is responsible for not accessing a
5472 * failed qc. libata core enforces the rule by returning NULL
5473 * from ata_qc_from_tag() for failed qcs.
5474 *
5475 * Old EH depends on ata_qc_complete() nullifying completion
5476 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5477 * not synchronize with interrupt handler. Only PIO task is
5478 * taken care of.
5479 */
5480 if (ap->ops->error_handler) {
b51e9e5d 5481 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5482
5483 if (unlikely(qc->err_mask))
5484 qc->flags |= ATA_QCFLAG_FAILED;
5485
5486 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5487 if (!ata_tag_internal(qc->tag)) {
5488 /* always fill result TF for failed qc */
39599a53 5489 fill_result_tf(qc);
f686bcb8
TH
5490 ata_qc_schedule_eh(qc);
5491 return;
5492 }
5493 }
5494
5495 /* read result TF if requested */
5496 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5497 fill_result_tf(qc);
f686bcb8
TH
5498
5499 __ata_qc_complete(qc);
5500 } else {
5501 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5502 return;
5503
5504 /* read result TF if failed or requested */
5505 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5506 fill_result_tf(qc);
f686bcb8
TH
5507
5508 __ata_qc_complete(qc);
5509 }
5510}
5511
dedaf2b0
TH
5512/**
5513 * ata_qc_complete_multiple - Complete multiple qcs successfully
5514 * @ap: port in question
5515 * @qc_active: new qc_active mask
5516 * @finish_qc: LLDD callback invoked before completing a qc
5517 *
5518 * Complete in-flight commands. This functions is meant to be
5519 * called from low-level driver's interrupt routine to complete
5520 * requests normally. ap->qc_active and @qc_active is compared
5521 * and commands are completed accordingly.
5522 *
5523 * LOCKING:
cca3974e 5524 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5525 *
5526 * RETURNS:
5527 * Number of completed commands on success, -errno otherwise.
5528 */
5529int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5530 void (*finish_qc)(struct ata_queued_cmd *))
5531{
5532 int nr_done = 0;
5533 u32 done_mask;
5534 int i;
5535
5536 done_mask = ap->qc_active ^ qc_active;
5537
5538 if (unlikely(done_mask & qc_active)) {
5539 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5540 "(%08x->%08x)\n", ap->qc_active, qc_active);
5541 return -EINVAL;
5542 }
5543
5544 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5545 struct ata_queued_cmd *qc;
5546
5547 if (!(done_mask & (1 << i)))
5548 continue;
5549
5550 if ((qc = ata_qc_from_tag(ap, i))) {
5551 if (finish_qc)
5552 finish_qc(qc);
5553 ata_qc_complete(qc);
5554 nr_done++;
5555 }
5556 }
5557
5558 return nr_done;
5559}
5560
1da177e4
LT
5561static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5562{
5563 struct ata_port *ap = qc->ap;
5564
5565 switch (qc->tf.protocol) {
3dc1d881 5566 case ATA_PROT_NCQ:
1da177e4
LT
5567 case ATA_PROT_DMA:
5568 case ATA_PROT_ATAPI_DMA:
5569 return 1;
5570
5571 case ATA_PROT_ATAPI:
5572 case ATA_PROT_PIO:
1da177e4
LT
5573 if (ap->flags & ATA_FLAG_PIO_DMA)
5574 return 1;
5575
5576 /* fall through */
5577
5578 default:
5579 return 0;
5580 }
5581
5582 /* never reached */
5583}
5584
5585/**
5586 * ata_qc_issue - issue taskfile to device
5587 * @qc: command to issue to device
5588 *
5589 * Prepare an ATA command to submission to device.
5590 * This includes mapping the data into a DMA-able
5591 * area, filling in the S/G table, and finally
5592 * writing the taskfile to hardware, starting the command.
5593 *
5594 * LOCKING:
cca3974e 5595 * spin_lock_irqsave(host lock)
1da177e4 5596 */
8e0e694a 5597void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5598{
5599 struct ata_port *ap = qc->ap;
9af5c9c9 5600 struct ata_link *link = qc->dev->link;
1da177e4 5601
dedaf2b0
TH
5602 /* Make sure only one non-NCQ command is outstanding. The
5603 * check is skipped for old EH because it reuses active qc to
5604 * request ATAPI sense.
5605 */
9af5c9c9 5606 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5607
5608 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5609 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5610
5611 if (!link->sactive)
5612 ap->nr_active_links++;
9af5c9c9 5613 link->sactive |= 1 << qc->tag;
dedaf2b0 5614 } else {
9af5c9c9 5615 WARN_ON(link->sactive);
da917d69
TH
5616
5617 ap->nr_active_links++;
9af5c9c9 5618 link->active_tag = qc->tag;
dedaf2b0
TH
5619 }
5620
e4a70e76 5621 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5622 ap->qc_active |= 1 << qc->tag;
e4a70e76 5623
1da177e4
LT
5624 if (ata_should_dma_map(qc)) {
5625 if (qc->flags & ATA_QCFLAG_SG) {
5626 if (ata_sg_setup(qc))
8e436af9 5627 goto sg_err;
1da177e4
LT
5628 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5629 if (ata_sg_setup_one(qc))
8e436af9 5630 goto sg_err;
1da177e4
LT
5631 }
5632 } else {
5633 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5634 }
5635
5636 ap->ops->qc_prep(qc);
5637
8e0e694a
TH
5638 qc->err_mask |= ap->ops->qc_issue(qc);
5639 if (unlikely(qc->err_mask))
5640 goto err;
5641 return;
1da177e4 5642
8e436af9
TH
5643sg_err:
5644 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5645 qc->err_mask |= AC_ERR_SYSTEM;
5646err:
5647 ata_qc_complete(qc);
1da177e4
LT
5648}
5649
5650/**
5651 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5652 * @qc: command to issue to device
5653 *
5654 * Using various libata functions and hooks, this function
5655 * starts an ATA command. ATA commands are grouped into
5656 * classes called "protocols", and issuing each type of protocol
5657 * is slightly different.
5658 *
0baab86b
EF
5659 * May be used as the qc_issue() entry in ata_port_operations.
5660 *
1da177e4 5661 * LOCKING:
cca3974e 5662 * spin_lock_irqsave(host lock)
1da177e4
LT
5663 *
5664 * RETURNS:
9a3d9eb0 5665 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5666 */
5667
9a3d9eb0 5668unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5669{
5670 struct ata_port *ap = qc->ap;
5671
e50362ec
AL
5672 /* Use polling pio if the LLD doesn't handle
5673 * interrupt driven pio and atapi CDB interrupt.
5674 */
5675 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5676 switch (qc->tf.protocol) {
5677 case ATA_PROT_PIO:
e3472cbe 5678 case ATA_PROT_NODATA:
e50362ec
AL
5679 case ATA_PROT_ATAPI:
5680 case ATA_PROT_ATAPI_NODATA:
5681 qc->tf.flags |= ATA_TFLAG_POLLING;
5682 break;
5683 case ATA_PROT_ATAPI_DMA:
5684 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5685 /* see ata_dma_blacklisted() */
e50362ec
AL
5686 BUG();
5687 break;
5688 default:
5689 break;
5690 }
5691 }
5692
312f7da2 5693 /* select the device */
1da177e4
LT
5694 ata_dev_select(ap, qc->dev->devno, 1, 0);
5695
312f7da2 5696 /* start the command */
1da177e4
LT
5697 switch (qc->tf.protocol) {
5698 case ATA_PROT_NODATA:
312f7da2
AL
5699 if (qc->tf.flags & ATA_TFLAG_POLLING)
5700 ata_qc_set_polling(qc);
5701
e5338254 5702 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5703 ap->hsm_task_state = HSM_ST_LAST;
5704
5705 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5706 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5707
1da177e4
LT
5708 break;
5709
5710 case ATA_PROT_DMA:
587005de 5711 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5712
1da177e4
LT
5713 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5714 ap->ops->bmdma_setup(qc); /* set up bmdma */
5715 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5716 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5717 break;
5718
312f7da2
AL
5719 case ATA_PROT_PIO:
5720 if (qc->tf.flags & ATA_TFLAG_POLLING)
5721 ata_qc_set_polling(qc);
1da177e4 5722
e5338254 5723 ata_tf_to_host(ap, &qc->tf);
312f7da2 5724
54f00389
AL
5725 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5726 /* PIO data out protocol */
5727 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5728 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5729
5730 /* always send first data block using
e27486db 5731 * the ata_pio_task() codepath.
54f00389 5732 */
312f7da2 5733 } else {
54f00389
AL
5734 /* PIO data in protocol */
5735 ap->hsm_task_state = HSM_ST;
5736
5737 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5738 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5739
5740 /* if polling, ata_pio_task() handles the rest.
5741 * otherwise, interrupt handler takes over from here.
5742 */
312f7da2
AL
5743 }
5744
1da177e4
LT
5745 break;
5746
1da177e4 5747 case ATA_PROT_ATAPI:
1da177e4 5748 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5749 if (qc->tf.flags & ATA_TFLAG_POLLING)
5750 ata_qc_set_polling(qc);
5751
e5338254 5752 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5753
312f7da2
AL
5754 ap->hsm_task_state = HSM_ST_FIRST;
5755
5756 /* send cdb by polling if no cdb interrupt */
5757 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5758 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5759 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5760 break;
5761
5762 case ATA_PROT_ATAPI_DMA:
587005de 5763 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5764
1da177e4
LT
5765 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5766 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5767 ap->hsm_task_state = HSM_ST_FIRST;
5768
5769 /* send cdb by polling if no cdb interrupt */
5770 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5771 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5772 break;
5773
5774 default:
5775 WARN_ON(1);
9a3d9eb0 5776 return AC_ERR_SYSTEM;
1da177e4
LT
5777 }
5778
5779 return 0;
5780}
5781
1da177e4
LT
5782/**
5783 * ata_host_intr - Handle host interrupt for given (port, task)
5784 * @ap: Port on which interrupt arrived (possibly...)
5785 * @qc: Taskfile currently active in engine
5786 *
5787 * Handle host interrupt for given queued command. Currently,
5788 * only DMA interrupts are handled. All other commands are
5789 * handled via polling with interrupts disabled (nIEN bit).
5790 *
5791 * LOCKING:
cca3974e 5792 * spin_lock_irqsave(host lock)
1da177e4
LT
5793 *
5794 * RETURNS:
5795 * One if interrupt was handled, zero if not (shared irq).
5796 */
5797
5798inline unsigned int ata_host_intr (struct ata_port *ap,
5799 struct ata_queued_cmd *qc)
5800{
9af5c9c9 5801 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 5802 u8 status, host_stat = 0;
1da177e4 5803
312f7da2 5804 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5805 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5806
312f7da2
AL
5807 /* Check whether we are expecting interrupt in this state */
5808 switch (ap->hsm_task_state) {
5809 case HSM_ST_FIRST:
6912ccd5
AL
5810 /* Some pre-ATAPI-4 devices assert INTRQ
5811 * at this state when ready to receive CDB.
5812 */
1da177e4 5813
312f7da2
AL
5814 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5815 * The flag was turned on only for atapi devices.
5816 * No need to check is_atapi_taskfile(&qc->tf) again.
5817 */
5818 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5819 goto idle_irq;
1da177e4 5820 break;
312f7da2
AL
5821 case HSM_ST_LAST:
5822 if (qc->tf.protocol == ATA_PROT_DMA ||
5823 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5824 /* check status of DMA engine */
5825 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5826 VPRINTK("ata%u: host_stat 0x%X\n",
5827 ap->print_id, host_stat);
312f7da2
AL
5828
5829 /* if it's not our irq... */
5830 if (!(host_stat & ATA_DMA_INTR))
5831 goto idle_irq;
5832
5833 /* before we do anything else, clear DMA-Start bit */
5834 ap->ops->bmdma_stop(qc);
a4f16610
AL
5835
5836 if (unlikely(host_stat & ATA_DMA_ERR)) {
5837 /* error when transfering data to/from memory */
5838 qc->err_mask |= AC_ERR_HOST_BUS;
5839 ap->hsm_task_state = HSM_ST_ERR;
5840 }
312f7da2
AL
5841 }
5842 break;
5843 case HSM_ST:
5844 break;
1da177e4
LT
5845 default:
5846 goto idle_irq;
5847 }
5848
312f7da2
AL
5849 /* check altstatus */
5850 status = ata_altstatus(ap);
5851 if (status & ATA_BUSY)
5852 goto idle_irq;
1da177e4 5853
312f7da2
AL
5854 /* check main status, clearing INTRQ */
5855 status = ata_chk_status(ap);
5856 if (unlikely(status & ATA_BUSY))
5857 goto idle_irq;
1da177e4 5858
312f7da2
AL
5859 /* ack bmdma irq events */
5860 ap->ops->irq_clear(ap);
1da177e4 5861
bb5cb290 5862 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5863
5864 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5865 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5866 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5867
1da177e4
LT
5868 return 1; /* irq handled */
5869
5870idle_irq:
5871 ap->stats.idle_irq++;
5872
5873#ifdef ATA_IRQ_TRAP
5874 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
5875 ata_chk_status(ap);
5876 ap->ops->irq_clear(ap);
f15a1daf 5877 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5878 return 1;
1da177e4
LT
5879 }
5880#endif
5881 return 0; /* irq not handled */
5882}
5883
5884/**
5885 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5886 * @irq: irq line (unused)
cca3974e 5887 * @dev_instance: pointer to our ata_host information structure
1da177e4 5888 *
0cba632b
JG
5889 * Default interrupt handler for PCI IDE devices. Calls
5890 * ata_host_intr() for each port that is not disabled.
5891 *
1da177e4 5892 * LOCKING:
cca3974e 5893 * Obtains host lock during operation.
1da177e4
LT
5894 *
5895 * RETURNS:
0cba632b 5896 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5897 */
5898
7d12e780 5899irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5900{
cca3974e 5901 struct ata_host *host = dev_instance;
1da177e4
LT
5902 unsigned int i;
5903 unsigned int handled = 0;
5904 unsigned long flags;
5905
5906 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5907 spin_lock_irqsave(&host->lock, flags);
1da177e4 5908
cca3974e 5909 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5910 struct ata_port *ap;
5911
cca3974e 5912 ap = host->ports[i];
c1389503 5913 if (ap &&
029f5468 5914 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5915 struct ata_queued_cmd *qc;
5916
9af5c9c9 5917 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 5918 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5919 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5920 handled |= ata_host_intr(ap, qc);
5921 }
5922 }
5923
cca3974e 5924 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5925
5926 return IRQ_RETVAL(handled);
5927}
5928
34bf2170
TH
5929/**
5930 * sata_scr_valid - test whether SCRs are accessible
936fd732 5931 * @link: ATA link to test SCR accessibility for
34bf2170 5932 *
936fd732 5933 * Test whether SCRs are accessible for @link.
34bf2170
TH
5934 *
5935 * LOCKING:
5936 * None.
5937 *
5938 * RETURNS:
5939 * 1 if SCRs are accessible, 0 otherwise.
5940 */
936fd732 5941int sata_scr_valid(struct ata_link *link)
34bf2170 5942{
936fd732
TH
5943 struct ata_port *ap = link->ap;
5944
a16abc0b 5945 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5946}
5947
5948/**
5949 * sata_scr_read - read SCR register of the specified port
936fd732 5950 * @link: ATA link to read SCR for
34bf2170
TH
5951 * @reg: SCR to read
5952 * @val: Place to store read value
5953 *
936fd732 5954 * Read SCR register @reg of @link into *@val. This function is
34bf2170
TH
5955 * guaranteed to succeed if the cable type of the port is SATA
5956 * and the port implements ->scr_read.
5957 *
5958 * LOCKING:
5959 * None.
5960 *
5961 * RETURNS:
5962 * 0 on success, negative errno on failure.
5963 */
936fd732 5964int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5965{
936fd732
TH
5966 struct ata_port *ap = link->ap;
5967
5968 if (sata_scr_valid(link))
da3dbb17 5969 return ap->ops->scr_read(ap, reg, val);
34bf2170
TH
5970 return -EOPNOTSUPP;
5971}
5972
5973/**
5974 * sata_scr_write - write SCR register of the specified port
936fd732 5975 * @link: ATA link to write SCR for
34bf2170
TH
5976 * @reg: SCR to write
5977 * @val: value to write
5978 *
936fd732 5979 * Write @val to SCR register @reg of @link. This function is
34bf2170
TH
5980 * guaranteed to succeed if the cable type of the port is SATA
5981 * and the port implements ->scr_read.
5982 *
5983 * LOCKING:
5984 * None.
5985 *
5986 * RETURNS:
5987 * 0 on success, negative errno on failure.
5988 */
936fd732 5989int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5990{
936fd732
TH
5991 struct ata_port *ap = link->ap;
5992
5993 if (sata_scr_valid(link))
da3dbb17 5994 return ap->ops->scr_write(ap, reg, val);
34bf2170
TH
5995 return -EOPNOTSUPP;
5996}
5997
5998/**
5999 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6000 * @link: ATA link to write SCR for
34bf2170
TH
6001 * @reg: SCR to write
6002 * @val: value to write
6003 *
6004 * This function is identical to sata_scr_write() except that this
6005 * function performs flush after writing to the register.
6006 *
6007 * LOCKING:
6008 * None.
6009 *
6010 * RETURNS:
6011 * 0 on success, negative errno on failure.
6012 */
936fd732 6013int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6014{
936fd732 6015 struct ata_port *ap = link->ap;
da3dbb17
TH
6016 int rc;
6017
936fd732 6018 if (sata_scr_valid(link)) {
da3dbb17
TH
6019 rc = ap->ops->scr_write(ap, reg, val);
6020 if (rc == 0)
6021 rc = ap->ops->scr_read(ap, reg, &val);
6022 return rc;
34bf2170
TH
6023 }
6024 return -EOPNOTSUPP;
6025}
6026
6027/**
936fd732
TH
6028 * ata_link_online - test whether the given link is online
6029 * @link: ATA link to test
34bf2170 6030 *
936fd732
TH
6031 * Test whether @link is online. Note that this function returns
6032 * 0 if online status of @link cannot be obtained, so
6033 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6034 *
6035 * LOCKING:
6036 * None.
6037 *
6038 * RETURNS:
6039 * 1 if the port online status is available and online.
6040 */
936fd732 6041int ata_link_online(struct ata_link *link)
34bf2170
TH
6042{
6043 u32 sstatus;
6044
936fd732
TH
6045 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6046 (sstatus & 0xf) == 0x3)
34bf2170
TH
6047 return 1;
6048 return 0;
6049}
6050
6051/**
936fd732
TH
6052 * ata_link_offline - test whether the given link is offline
6053 * @link: ATA link to test
34bf2170 6054 *
936fd732
TH
6055 * Test whether @link is offline. Note that this function
6056 * returns 0 if offline status of @link cannot be obtained, so
6057 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6058 *
6059 * LOCKING:
6060 * None.
6061 *
6062 * RETURNS:
6063 * 1 if the port offline status is available and offline.
6064 */
936fd732 6065int ata_link_offline(struct ata_link *link)
34bf2170
TH
6066{
6067 u32 sstatus;
6068
936fd732
TH
6069 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6070 (sstatus & 0xf) != 0x3)
34bf2170
TH
6071 return 1;
6072 return 0;
6073}
0baab86b 6074
77b08fb5 6075int ata_flush_cache(struct ata_device *dev)
9b847548 6076{
977e6b9f 6077 unsigned int err_mask;
9b847548
JA
6078 u8 cmd;
6079
6080 if (!ata_try_flush_cache(dev))
6081 return 0;
6082
6fc49adb 6083 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6084 cmd = ATA_CMD_FLUSH_EXT;
6085 else
6086 cmd = ATA_CMD_FLUSH;
6087
4f34337b
AC
6088 /* This is wrong. On a failed flush we get back the LBA of the lost
6089 sector and we should (assuming it wasn't aborted as unknown) issue
6090 a further flush command to continue the writeback until it
6091 does not error */
977e6b9f
TH
6092 err_mask = ata_do_simple_cmd(dev, cmd);
6093 if (err_mask) {
6094 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6095 return -EIO;
6096 }
6097
6098 return 0;
9b847548
JA
6099}
6100
6ffa01d8 6101#ifdef CONFIG_PM
cca3974e
JG
6102static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6103 unsigned int action, unsigned int ehi_flags,
6104 int wait)
500530f6
TH
6105{
6106 unsigned long flags;
6107 int i, rc;
6108
cca3974e
JG
6109 for (i = 0; i < host->n_ports; i++) {
6110 struct ata_port *ap = host->ports[i];
e3667ebf 6111 struct ata_link *link;
500530f6
TH
6112
6113 /* Previous resume operation might still be in
6114 * progress. Wait for PM_PENDING to clear.
6115 */
6116 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6117 ata_port_wait_eh(ap);
6118 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6119 }
6120
6121 /* request PM ops to EH */
6122 spin_lock_irqsave(ap->lock, flags);
6123
6124 ap->pm_mesg = mesg;
6125 if (wait) {
6126 rc = 0;
6127 ap->pm_result = &rc;
6128 }
6129
6130 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6131 __ata_port_for_each_link(link, ap) {
6132 link->eh_info.action |= action;
6133 link->eh_info.flags |= ehi_flags;
6134 }
500530f6
TH
6135
6136 ata_port_schedule_eh(ap);
6137
6138 spin_unlock_irqrestore(ap->lock, flags);
6139
6140 /* wait and check result */
6141 if (wait) {
6142 ata_port_wait_eh(ap);
6143 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6144 if (rc)
6145 return rc;
6146 }
6147 }
6148
6149 return 0;
6150}
6151
6152/**
cca3974e
JG
6153 * ata_host_suspend - suspend host
6154 * @host: host to suspend
500530f6
TH
6155 * @mesg: PM message
6156 *
cca3974e 6157 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6158 * function requests EH to perform PM operations and waits for EH
6159 * to finish.
6160 *
6161 * LOCKING:
6162 * Kernel thread context (may sleep).
6163 *
6164 * RETURNS:
6165 * 0 on success, -errno on failure.
6166 */
cca3974e 6167int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6168{
9666f400 6169 int rc;
500530f6 6170
cca3974e 6171 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6172 if (rc == 0)
6173 host->dev->power.power_state = mesg;
500530f6
TH
6174 return rc;
6175}
6176
6177/**
cca3974e
JG
6178 * ata_host_resume - resume host
6179 * @host: host to resume
500530f6 6180 *
cca3974e 6181 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6182 * function requests EH to perform PM operations and returns.
6183 * Note that all resume operations are performed parallely.
6184 *
6185 * LOCKING:
6186 * Kernel thread context (may sleep).
6187 */
cca3974e 6188void ata_host_resume(struct ata_host *host)
500530f6 6189{
cca3974e
JG
6190 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6191 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6192 host->dev->power.power_state = PMSG_ON;
500530f6 6193}
6ffa01d8 6194#endif
500530f6 6195
c893a3ae
RD
6196/**
6197 * ata_port_start - Set port up for dma.
6198 * @ap: Port to initialize
6199 *
6200 * Called just after data structures for each port are
6201 * initialized. Allocates space for PRD table.
6202 *
6203 * May be used as the port_start() entry in ata_port_operations.
6204 *
6205 * LOCKING:
6206 * Inherited from caller.
6207 */
f0d36efd 6208int ata_port_start(struct ata_port *ap)
1da177e4 6209{
2f1f610b 6210 struct device *dev = ap->dev;
6037d6bb 6211 int rc;
1da177e4 6212
f0d36efd
TH
6213 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6214 GFP_KERNEL);
1da177e4
LT
6215 if (!ap->prd)
6216 return -ENOMEM;
6217
6037d6bb 6218 rc = ata_pad_alloc(ap, dev);
f0d36efd 6219 if (rc)
6037d6bb 6220 return rc;
1da177e4 6221
f0d36efd
TH
6222 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6223 (unsigned long long)ap->prd_dma);
1da177e4
LT
6224 return 0;
6225}
6226
3ef3b43d
TH
6227/**
6228 * ata_dev_init - Initialize an ata_device structure
6229 * @dev: Device structure to initialize
6230 *
6231 * Initialize @dev in preparation for probing.
6232 *
6233 * LOCKING:
6234 * Inherited from caller.
6235 */
6236void ata_dev_init(struct ata_device *dev)
6237{
9af5c9c9
TH
6238 struct ata_link *link = dev->link;
6239 struct ata_port *ap = link->ap;
72fa4b74
TH
6240 unsigned long flags;
6241
5a04bf4b 6242 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6243 link->sata_spd_limit = link->hw_sata_spd_limit;
6244 link->sata_spd = 0;
5a04bf4b 6245
72fa4b74
TH
6246 /* High bits of dev->flags are used to record warm plug
6247 * requests which occur asynchronously. Synchronize using
cca3974e 6248 * host lock.
72fa4b74 6249 */
ba6a1308 6250 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6251 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6252 dev->horkage = 0;
ba6a1308 6253 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6254
72fa4b74
TH
6255 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6256 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6257 dev->pio_mask = UINT_MAX;
6258 dev->mwdma_mask = UINT_MAX;
6259 dev->udma_mask = UINT_MAX;
6260}
6261
4fb37a25
TH
6262/**
6263 * ata_link_init - Initialize an ata_link structure
6264 * @ap: ATA port link is attached to
6265 * @link: Link structure to initialize
8989805d 6266 * @pmp: Port multiplier port number
4fb37a25
TH
6267 *
6268 * Initialize @link.
6269 *
6270 * LOCKING:
6271 * Kernel thread context (may sleep)
6272 */
fb7fd614 6273void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6274{
6275 int i;
6276
6277 /* clear everything except for devices */
6278 memset(link, 0, offsetof(struct ata_link, device[0]));
6279
6280 link->ap = ap;
8989805d 6281 link->pmp = pmp;
4fb37a25
TH
6282 link->active_tag = ATA_TAG_POISON;
6283 link->hw_sata_spd_limit = UINT_MAX;
6284
6285 /* can't use iterator, ap isn't initialized yet */
6286 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6287 struct ata_device *dev = &link->device[i];
6288
6289 dev->link = link;
6290 dev->devno = dev - link->device;
6291 ata_dev_init(dev);
6292 }
6293}
6294
6295/**
6296 * sata_link_init_spd - Initialize link->sata_spd_limit
6297 * @link: Link to configure sata_spd_limit for
6298 *
6299 * Initialize @link->[hw_]sata_spd_limit to the currently
6300 * configured value.
6301 *
6302 * LOCKING:
6303 * Kernel thread context (may sleep).
6304 *
6305 * RETURNS:
6306 * 0 on success, -errno on failure.
6307 */
fb7fd614 6308int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6309{
6310 u32 scontrol, spd;
6311 int rc;
6312
6313 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6314 if (rc)
6315 return rc;
6316
6317 spd = (scontrol >> 4) & 0xf;
6318 if (spd)
6319 link->hw_sata_spd_limit &= (1 << spd) - 1;
6320
6321 link->sata_spd_limit = link->hw_sata_spd_limit;
6322
6323 return 0;
6324}
6325
1da177e4 6326/**
f3187195
TH
6327 * ata_port_alloc - allocate and initialize basic ATA port resources
6328 * @host: ATA host this allocated port belongs to
1da177e4 6329 *
f3187195
TH
6330 * Allocate and initialize basic ATA port resources.
6331 *
6332 * RETURNS:
6333 * Allocate ATA port on success, NULL on failure.
0cba632b 6334 *
1da177e4 6335 * LOCKING:
f3187195 6336 * Inherited from calling layer (may sleep).
1da177e4 6337 */
f3187195 6338struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6339{
f3187195 6340 struct ata_port *ap;
1da177e4 6341
f3187195
TH
6342 DPRINTK("ENTER\n");
6343
6344 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6345 if (!ap)
6346 return NULL;
6347
f4d6d004 6348 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6349 ap->lock = &host->lock;
198e0fed 6350 ap->flags = ATA_FLAG_DISABLED;
f3187195 6351 ap->print_id = -1;
1da177e4 6352 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6353 ap->host = host;
f3187195 6354 ap->dev = host->dev;
1da177e4 6355 ap->last_ctl = 0xFF;
bd5d825c
BP
6356
6357#if defined(ATA_VERBOSE_DEBUG)
6358 /* turn on all debugging levels */
6359 ap->msg_enable = 0x00FF;
6360#elif defined(ATA_DEBUG)
6361 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6362#else
0dd4b21f 6363 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6364#endif
1da177e4 6365
65f27f38
DH
6366 INIT_DELAYED_WORK(&ap->port_task, NULL);
6367 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6368 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6369 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6370 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6371 init_timer_deferrable(&ap->fastdrain_timer);
6372 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6373 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6374
838df628 6375 ap->cbl = ATA_CBL_NONE;
838df628 6376
8989805d 6377 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6378
6379#ifdef ATA_IRQ_TRAP
6380 ap->stats.unhandled_irq = 1;
6381 ap->stats.idle_irq = 1;
6382#endif
1da177e4 6383 return ap;
1da177e4
LT
6384}
6385
f0d36efd
TH
6386static void ata_host_release(struct device *gendev, void *res)
6387{
6388 struct ata_host *host = dev_get_drvdata(gendev);
6389 int i;
6390
6391 for (i = 0; i < host->n_ports; i++) {
6392 struct ata_port *ap = host->ports[i];
6393
ecef7253
TH
6394 if (!ap)
6395 continue;
6396
6397 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6398 ap->ops->port_stop(ap);
f0d36efd
TH
6399 }
6400
ecef7253 6401 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6402 host->ops->host_stop(host);
1aa56cca 6403
1aa506e4
TH
6404 for (i = 0; i < host->n_ports; i++) {
6405 struct ata_port *ap = host->ports[i];
6406
4911487a
TH
6407 if (!ap)
6408 continue;
6409
6410 if (ap->scsi_host)
1aa506e4
TH
6411 scsi_host_put(ap->scsi_host);
6412
4911487a 6413 kfree(ap);
1aa506e4
TH
6414 host->ports[i] = NULL;
6415 }
6416
1aa56cca 6417 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6418}
6419
f3187195
TH
6420/**
6421 * ata_host_alloc - allocate and init basic ATA host resources
6422 * @dev: generic device this host is associated with
6423 * @max_ports: maximum number of ATA ports associated with this host
6424 *
6425 * Allocate and initialize basic ATA host resources. LLD calls
6426 * this function to allocate a host, initializes it fully and
6427 * attaches it using ata_host_register().
6428 *
6429 * @max_ports ports are allocated and host->n_ports is
6430 * initialized to @max_ports. The caller is allowed to decrease
6431 * host->n_ports before calling ata_host_register(). The unused
6432 * ports will be automatically freed on registration.
6433 *
6434 * RETURNS:
6435 * Allocate ATA host on success, NULL on failure.
6436 *
6437 * LOCKING:
6438 * Inherited from calling layer (may sleep).
6439 */
6440struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6441{
6442 struct ata_host *host;
6443 size_t sz;
6444 int i;
6445
6446 DPRINTK("ENTER\n");
6447
6448 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6449 return NULL;
6450
6451 /* alloc a container for our list of ATA ports (buses) */
6452 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6453 /* alloc a container for our list of ATA ports (buses) */
6454 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6455 if (!host)
6456 goto err_out;
6457
6458 devres_add(dev, host);
6459 dev_set_drvdata(dev, host);
6460
6461 spin_lock_init(&host->lock);
6462 host->dev = dev;
6463 host->n_ports = max_ports;
6464
6465 /* allocate ports bound to this host */
6466 for (i = 0; i < max_ports; i++) {
6467 struct ata_port *ap;
6468
6469 ap = ata_port_alloc(host);
6470 if (!ap)
6471 goto err_out;
6472
6473 ap->port_no = i;
6474 host->ports[i] = ap;
6475 }
6476
6477 devres_remove_group(dev, NULL);
6478 return host;
6479
6480 err_out:
6481 devres_release_group(dev, NULL);
6482 return NULL;
6483}
6484
f5cda257
TH
6485/**
6486 * ata_host_alloc_pinfo - alloc host and init with port_info array
6487 * @dev: generic device this host is associated with
6488 * @ppi: array of ATA port_info to initialize host with
6489 * @n_ports: number of ATA ports attached to this host
6490 *
6491 * Allocate ATA host and initialize with info from @ppi. If NULL
6492 * terminated, @ppi may contain fewer entries than @n_ports. The
6493 * last entry will be used for the remaining ports.
6494 *
6495 * RETURNS:
6496 * Allocate ATA host on success, NULL on failure.
6497 *
6498 * LOCKING:
6499 * Inherited from calling layer (may sleep).
6500 */
6501struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6502 const struct ata_port_info * const * ppi,
6503 int n_ports)
6504{
6505 const struct ata_port_info *pi;
6506 struct ata_host *host;
6507 int i, j;
6508
6509 host = ata_host_alloc(dev, n_ports);
6510 if (!host)
6511 return NULL;
6512
6513 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6514 struct ata_port *ap = host->ports[i];
6515
6516 if (ppi[j])
6517 pi = ppi[j++];
6518
6519 ap->pio_mask = pi->pio_mask;
6520 ap->mwdma_mask = pi->mwdma_mask;
6521 ap->udma_mask = pi->udma_mask;
6522 ap->flags |= pi->flags;
0c88758b 6523 ap->link.flags |= pi->link_flags;
f5cda257
TH
6524 ap->ops = pi->port_ops;
6525
6526 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6527 host->ops = pi->port_ops;
6528 if (!host->private_data && pi->private_data)
6529 host->private_data = pi->private_data;
6530 }
6531
6532 return host;
6533}
6534
ecef7253
TH
6535/**
6536 * ata_host_start - start and freeze ports of an ATA host
6537 * @host: ATA host to start ports for
6538 *
6539 * Start and then freeze ports of @host. Started status is
6540 * recorded in host->flags, so this function can be called
6541 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6542 * once. If host->ops isn't initialized yet, its set to the
6543 * first non-dummy port ops.
ecef7253
TH
6544 *
6545 * LOCKING:
6546 * Inherited from calling layer (may sleep).
6547 *
6548 * RETURNS:
6549 * 0 if all ports are started successfully, -errno otherwise.
6550 */
6551int ata_host_start(struct ata_host *host)
6552{
6553 int i, rc;
6554
6555 if (host->flags & ATA_HOST_STARTED)
6556 return 0;
6557
6558 for (i = 0; i < host->n_ports; i++) {
6559 struct ata_port *ap = host->ports[i];
6560
f3187195
TH
6561 if (!host->ops && !ata_port_is_dummy(ap))
6562 host->ops = ap->ops;
6563
ecef7253
TH
6564 if (ap->ops->port_start) {
6565 rc = ap->ops->port_start(ap);
6566 if (rc) {
6567 ata_port_printk(ap, KERN_ERR, "failed to "
6568 "start port (errno=%d)\n", rc);
6569 goto err_out;
6570 }
6571 }
6572
6573 ata_eh_freeze_port(ap);
6574 }
6575
6576 host->flags |= ATA_HOST_STARTED;
6577 return 0;
6578
6579 err_out:
6580 while (--i >= 0) {
6581 struct ata_port *ap = host->ports[i];
6582
6583 if (ap->ops->port_stop)
6584 ap->ops->port_stop(ap);
6585 }
6586 return rc;
6587}
6588
b03732f0 6589/**
cca3974e
JG
6590 * ata_sas_host_init - Initialize a host struct
6591 * @host: host to initialize
6592 * @dev: device host is attached to
6593 * @flags: host flags
6594 * @ops: port_ops
b03732f0
BK
6595 *
6596 * LOCKING:
6597 * PCI/etc. bus probe sem.
6598 *
6599 */
f3187195 6600/* KILLME - the only user left is ipr */
cca3974e
JG
6601void ata_host_init(struct ata_host *host, struct device *dev,
6602 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6603{
cca3974e
JG
6604 spin_lock_init(&host->lock);
6605 host->dev = dev;
6606 host->flags = flags;
6607 host->ops = ops;
b03732f0
BK
6608}
6609
f3187195
TH
6610/**
6611 * ata_host_register - register initialized ATA host
6612 * @host: ATA host to register
6613 * @sht: template for SCSI host
6614 *
6615 * Register initialized ATA host. @host is allocated using
6616 * ata_host_alloc() and fully initialized by LLD. This function
6617 * starts ports, registers @host with ATA and SCSI layers and
6618 * probe registered devices.
6619 *
6620 * LOCKING:
6621 * Inherited from calling layer (may sleep).
6622 *
6623 * RETURNS:
6624 * 0 on success, -errno otherwise.
6625 */
6626int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6627{
6628 int i, rc;
6629
6630 /* host must have been started */
6631 if (!(host->flags & ATA_HOST_STARTED)) {
6632 dev_printk(KERN_ERR, host->dev,
6633 "BUG: trying to register unstarted host\n");
6634 WARN_ON(1);
6635 return -EINVAL;
6636 }
6637
6638 /* Blow away unused ports. This happens when LLD can't
6639 * determine the exact number of ports to allocate at
6640 * allocation time.
6641 */
6642 for (i = host->n_ports; host->ports[i]; i++)
6643 kfree(host->ports[i]);
6644
6645 /* give ports names and add SCSI hosts */
6646 for (i = 0; i < host->n_ports; i++)
6647 host->ports[i]->print_id = ata_print_id++;
6648
6649 rc = ata_scsi_add_hosts(host, sht);
6650 if (rc)
6651 return rc;
6652
fafbae87
TH
6653 /* associate with ACPI nodes */
6654 ata_acpi_associate(host);
6655
f3187195
TH
6656 /* set cable, sata_spd_limit and report */
6657 for (i = 0; i < host->n_ports; i++) {
6658 struct ata_port *ap = host->ports[i];
f3187195
TH
6659 unsigned long xfer_mask;
6660
6661 /* set SATA cable type if still unset */
6662 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6663 ap->cbl = ATA_CBL_SATA;
6664
6665 /* init sata_spd_limit to the current value */
4fb37a25 6666 sata_link_init_spd(&ap->link);
f3187195 6667
cbcdd875 6668 /* print per-port info to dmesg */
f3187195
TH
6669 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6670 ap->udma_mask);
6671
f3187195 6672 if (!ata_port_is_dummy(ap))
cbcdd875
TH
6673 ata_port_printk(ap, KERN_INFO,
6674 "%cATA max %s %s\n",
a16abc0b 6675 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6676 ata_mode_string(xfer_mask),
cbcdd875 6677 ap->link.eh_info.desc);
f3187195
TH
6678 else
6679 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6680 }
6681
6682 /* perform each probe synchronously */
6683 DPRINTK("probe begin\n");
6684 for (i = 0; i < host->n_ports; i++) {
6685 struct ata_port *ap = host->ports[i];
6686 int rc;
6687
6688 /* probe */
6689 if (ap->ops->error_handler) {
9af5c9c9 6690 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
6691 unsigned long flags;
6692
6693 ata_port_probe(ap);
6694
6695 /* kick EH for boot probing */
6696 spin_lock_irqsave(ap->lock, flags);
6697
f58229f8
TH
6698 ehi->probe_mask =
6699 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
6700 ehi->action |= ATA_EH_SOFTRESET;
6701 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6702
f4d6d004 6703 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6704 ap->pflags |= ATA_PFLAG_LOADING;
6705 ata_port_schedule_eh(ap);
6706
6707 spin_unlock_irqrestore(ap->lock, flags);
6708
6709 /* wait for EH to finish */
6710 ata_port_wait_eh(ap);
6711 } else {
6712 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6713 rc = ata_bus_probe(ap);
6714 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6715
6716 if (rc) {
6717 /* FIXME: do something useful here?
6718 * Current libata behavior will
6719 * tear down everything when
6720 * the module is removed
6721 * or the h/w is unplugged.
6722 */
6723 }
6724 }
6725 }
6726
6727 /* probes are done, now scan each port's disk(s) */
6728 DPRINTK("host probe begin\n");
6729 for (i = 0; i < host->n_ports; i++) {
6730 struct ata_port *ap = host->ports[i];
6731
1ae46317 6732 ata_scsi_scan_host(ap, 1);
f3187195
TH
6733 }
6734
6735 return 0;
6736}
6737
f5cda257
TH
6738/**
6739 * ata_host_activate - start host, request IRQ and register it
6740 * @host: target ATA host
6741 * @irq: IRQ to request
6742 * @irq_handler: irq_handler used when requesting IRQ
6743 * @irq_flags: irq_flags used when requesting IRQ
6744 * @sht: scsi_host_template to use when registering the host
6745 *
6746 * After allocating an ATA host and initializing it, most libata
6747 * LLDs perform three steps to activate the host - start host,
6748 * request IRQ and register it. This helper takes necessasry
6749 * arguments and performs the three steps in one go.
6750 *
6751 * LOCKING:
6752 * Inherited from calling layer (may sleep).
6753 *
6754 * RETURNS:
6755 * 0 on success, -errno otherwise.
6756 */
6757int ata_host_activate(struct ata_host *host, int irq,
6758 irq_handler_t irq_handler, unsigned long irq_flags,
6759 struct scsi_host_template *sht)
6760{
cbcdd875 6761 int i, rc;
f5cda257
TH
6762
6763 rc = ata_host_start(host);
6764 if (rc)
6765 return rc;
6766
6767 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6768 dev_driver_string(host->dev), host);
6769 if (rc)
6770 return rc;
6771
cbcdd875
TH
6772 for (i = 0; i < host->n_ports; i++)
6773 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6774
f5cda257
TH
6775 rc = ata_host_register(host, sht);
6776 /* if failed, just free the IRQ and leave ports alone */
6777 if (rc)
6778 devm_free_irq(host->dev, irq, host);
6779
6780 return rc;
6781}
6782
720ba126
TH
6783/**
6784 * ata_port_detach - Detach ATA port in prepration of device removal
6785 * @ap: ATA port to be detached
6786 *
6787 * Detach all ATA devices and the associated SCSI devices of @ap;
6788 * then, remove the associated SCSI host. @ap is guaranteed to
6789 * be quiescent on return from this function.
6790 *
6791 * LOCKING:
6792 * Kernel thread context (may sleep).
6793 */
6794void ata_port_detach(struct ata_port *ap)
6795{
6796 unsigned long flags;
41bda9c9 6797 struct ata_link *link;
f58229f8 6798 struct ata_device *dev;
720ba126
TH
6799
6800 if (!ap->ops->error_handler)
c3cf30a9 6801 goto skip_eh;
720ba126
TH
6802
6803 /* tell EH we're leaving & flush EH */
ba6a1308 6804 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6805 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6806 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6807
6808 ata_port_wait_eh(ap);
6809
6810 /* EH is now guaranteed to see UNLOADING, so no new device
6811 * will be attached. Disable all existing devices.
6812 */
ba6a1308 6813 spin_lock_irqsave(ap->lock, flags);
720ba126 6814
41bda9c9
TH
6815 ata_port_for_each_link(link, ap) {
6816 ata_link_for_each_dev(dev, link)
6817 ata_dev_disable(dev);
6818 }
720ba126 6819
ba6a1308 6820 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6821
6822 /* Final freeze & EH. All in-flight commands are aborted. EH
6823 * will be skipped and retrials will be terminated with bad
6824 * target.
6825 */
ba6a1308 6826 spin_lock_irqsave(ap->lock, flags);
720ba126 6827 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6828 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6829
6830 ata_port_wait_eh(ap);
45a66c1c 6831 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6832
c3cf30a9 6833 skip_eh:
720ba126 6834 /* remove the associated SCSI host */
cca3974e 6835 scsi_remove_host(ap->scsi_host);
720ba126
TH
6836}
6837
0529c159
TH
6838/**
6839 * ata_host_detach - Detach all ports of an ATA host
6840 * @host: Host to detach
6841 *
6842 * Detach all ports of @host.
6843 *
6844 * LOCKING:
6845 * Kernel thread context (may sleep).
6846 */
6847void ata_host_detach(struct ata_host *host)
6848{
6849 int i;
6850
6851 for (i = 0; i < host->n_ports; i++)
6852 ata_port_detach(host->ports[i]);
6853}
6854
1da177e4
LT
6855/**
6856 * ata_std_ports - initialize ioaddr with standard port offsets.
6857 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6858 *
6859 * Utility function which initializes data_addr, error_addr,
6860 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6861 * device_addr, status_addr, and command_addr to standard offsets
6862 * relative to cmd_addr.
6863 *
6864 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6865 */
0baab86b 6866
1da177e4
LT
6867void ata_std_ports(struct ata_ioports *ioaddr)
6868{
6869 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6870 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6871 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6872 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6873 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6874 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6875 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6876 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6877 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6878 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6879}
6880
0baab86b 6881
374b1873
JG
6882#ifdef CONFIG_PCI
6883
1da177e4
LT
6884/**
6885 * ata_pci_remove_one - PCI layer callback for device removal
6886 * @pdev: PCI device that was removed
6887 *
b878ca5d
TH
6888 * PCI layer indicates to libata via this hook that hot-unplug or
6889 * module unload event has occurred. Detach all ports. Resource
6890 * release is handled via devres.
1da177e4
LT
6891 *
6892 * LOCKING:
6893 * Inherited from PCI layer (may sleep).
6894 */
f0d36efd 6895void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6896{
6897 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6898 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6899
b878ca5d 6900 ata_host_detach(host);
1da177e4
LT
6901}
6902
6903/* move to PCI subsystem */
057ace5e 6904int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6905{
6906 unsigned long tmp = 0;
6907
6908 switch (bits->width) {
6909 case 1: {
6910 u8 tmp8 = 0;
6911 pci_read_config_byte(pdev, bits->reg, &tmp8);
6912 tmp = tmp8;
6913 break;
6914 }
6915 case 2: {
6916 u16 tmp16 = 0;
6917 pci_read_config_word(pdev, bits->reg, &tmp16);
6918 tmp = tmp16;
6919 break;
6920 }
6921 case 4: {
6922 u32 tmp32 = 0;
6923 pci_read_config_dword(pdev, bits->reg, &tmp32);
6924 tmp = tmp32;
6925 break;
6926 }
6927
6928 default:
6929 return -EINVAL;
6930 }
6931
6932 tmp &= bits->mask;
6933
6934 return (tmp == bits->val) ? 1 : 0;
6935}
9b847548 6936
6ffa01d8 6937#ifdef CONFIG_PM
3c5100c1 6938void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6939{
6940 pci_save_state(pdev);
4c90d971 6941 pci_disable_device(pdev);
500530f6 6942
4c90d971 6943 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6944 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6945}
6946
553c4aa6 6947int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6948{
553c4aa6
TH
6949 int rc;
6950
9b847548
JA
6951 pci_set_power_state(pdev, PCI_D0);
6952 pci_restore_state(pdev);
553c4aa6 6953
b878ca5d 6954 rc = pcim_enable_device(pdev);
553c4aa6
TH
6955 if (rc) {
6956 dev_printk(KERN_ERR, &pdev->dev,
6957 "failed to enable device after resume (%d)\n", rc);
6958 return rc;
6959 }
6960
9b847548 6961 pci_set_master(pdev);
553c4aa6 6962 return 0;
500530f6
TH
6963}
6964
3c5100c1 6965int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6966{
cca3974e 6967 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6968 int rc = 0;
6969
cca3974e 6970 rc = ata_host_suspend(host, mesg);
500530f6
TH
6971 if (rc)
6972 return rc;
6973
3c5100c1 6974 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6975
6976 return 0;
6977}
6978
6979int ata_pci_device_resume(struct pci_dev *pdev)
6980{
cca3974e 6981 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6982 int rc;
500530f6 6983
553c4aa6
TH
6984 rc = ata_pci_device_do_resume(pdev);
6985 if (rc == 0)
6986 ata_host_resume(host);
6987 return rc;
9b847548 6988}
6ffa01d8
TH
6989#endif /* CONFIG_PM */
6990
1da177e4
LT
6991#endif /* CONFIG_PCI */
6992
6993
1da177e4
LT
6994static int __init ata_init(void)
6995{
a8601e5f 6996 ata_probe_timeout *= HZ;
1da177e4
LT
6997 ata_wq = create_workqueue("ata");
6998 if (!ata_wq)
6999 return -ENOMEM;
7000
453b07ac
TH
7001 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7002 if (!ata_aux_wq) {
7003 destroy_workqueue(ata_wq);
7004 return -ENOMEM;
7005 }
7006
1da177e4
LT
7007 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7008 return 0;
7009}
7010
7011static void __exit ata_exit(void)
7012{
7013 destroy_workqueue(ata_wq);
453b07ac 7014 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7015}
7016
a4625085 7017subsys_initcall(ata_init);
1da177e4
LT
7018module_exit(ata_exit);
7019
67846b30 7020static unsigned long ratelimit_time;
34af946a 7021static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7022
7023int ata_ratelimit(void)
7024{
7025 int rc;
7026 unsigned long flags;
7027
7028 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7029
7030 if (time_after(jiffies, ratelimit_time)) {
7031 rc = 1;
7032 ratelimit_time = jiffies + (HZ/5);
7033 } else
7034 rc = 0;
7035
7036 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7037
7038 return rc;
7039}
7040
c22daff4
TH
7041/**
7042 * ata_wait_register - wait until register value changes
7043 * @reg: IO-mapped register
7044 * @mask: Mask to apply to read register value
7045 * @val: Wait condition
7046 * @interval_msec: polling interval in milliseconds
7047 * @timeout_msec: timeout in milliseconds
7048 *
7049 * Waiting for some bits of register to change is a common
7050 * operation for ATA controllers. This function reads 32bit LE
7051 * IO-mapped register @reg and tests for the following condition.
7052 *
7053 * (*@reg & mask) != val
7054 *
7055 * If the condition is met, it returns; otherwise, the process is
7056 * repeated after @interval_msec until timeout.
7057 *
7058 * LOCKING:
7059 * Kernel thread context (may sleep)
7060 *
7061 * RETURNS:
7062 * The final register value.
7063 */
7064u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7065 unsigned long interval_msec,
7066 unsigned long timeout_msec)
7067{
7068 unsigned long timeout;
7069 u32 tmp;
7070
7071 tmp = ioread32(reg);
7072
7073 /* Calculate timeout _after_ the first read to make sure
7074 * preceding writes reach the controller before starting to
7075 * eat away the timeout.
7076 */
7077 timeout = jiffies + (timeout_msec * HZ) / 1000;
7078
7079 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7080 msleep(interval_msec);
7081 tmp = ioread32(reg);
7082 }
7083
7084 return tmp;
7085}
7086
dd5b06c4
TH
7087/*
7088 * Dummy port_ops
7089 */
7090static void ata_dummy_noret(struct ata_port *ap) { }
7091static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7092static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7093
7094static u8 ata_dummy_check_status(struct ata_port *ap)
7095{
7096 return ATA_DRDY;
7097}
7098
7099static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7100{
7101 return AC_ERR_SYSTEM;
7102}
7103
7104const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7105 .check_status = ata_dummy_check_status,
7106 .check_altstatus = ata_dummy_check_status,
7107 .dev_select = ata_noop_dev_select,
7108 .qc_prep = ata_noop_qc_prep,
7109 .qc_issue = ata_dummy_qc_issue,
7110 .freeze = ata_dummy_noret,
7111 .thaw = ata_dummy_noret,
7112 .error_handler = ata_dummy_noret,
7113 .post_internal_cmd = ata_dummy_qc_noret,
7114 .irq_clear = ata_dummy_noret,
7115 .port_start = ata_dummy_ret0,
7116 .port_stop = ata_dummy_noret,
7117};
7118
21b0ad4f
TH
7119const struct ata_port_info ata_dummy_port_info = {
7120 .port_ops = &ata_dummy_port_ops,
7121};
7122
1da177e4
LT
7123/*
7124 * libata is essentially a library of internal helper functions for
7125 * low-level ATA host controller drivers. As such, the API/ABI is
7126 * likely to change as new drivers are added and updated.
7127 * Do not depend on ABI/API stability.
7128 */
7129
e9c83914
TH
7130EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7131EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7132EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7133EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7134EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7135EXPORT_SYMBOL_GPL(ata_std_bios_param);
7136EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7137EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7138EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7139EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7140EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7141EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7142EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7143EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7144EXPORT_SYMBOL_GPL(ata_sg_init);
7145EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7146EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7147EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7148EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7149EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7150EXPORT_SYMBOL_GPL(ata_tf_load);
7151EXPORT_SYMBOL_GPL(ata_tf_read);
7152EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7153EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7154EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7155EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7156EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7157EXPORT_SYMBOL_GPL(ata_check_status);
7158EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7159EXPORT_SYMBOL_GPL(ata_exec_command);
7160EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7161EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7162EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7163EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7164EXPORT_SYMBOL_GPL(ata_data_xfer);
7165EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7166EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7167EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7168EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7169EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7170EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7171EXPORT_SYMBOL_GPL(ata_bmdma_start);
7172EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7173EXPORT_SYMBOL_GPL(ata_bmdma_status);
7174EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7175EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7176EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7177EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7178EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7179EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7180EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7181EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7182EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7183EXPORT_SYMBOL_GPL(sata_link_debounce);
7184EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4
LT
7185EXPORT_SYMBOL_GPL(sata_phy_reset);
7186EXPORT_SYMBOL_GPL(__sata_phy_reset);
7187EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7188EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7189EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7190EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7191EXPORT_SYMBOL_GPL(sata_std_hardreset);
7192EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7193EXPORT_SYMBOL_GPL(ata_dev_classify);
7194EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7195EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7196EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7197EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7198EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 7199EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7200EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7201EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7202EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7203EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7204EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7205EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7206EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7207EXPORT_SYMBOL_GPL(sata_scr_valid);
7208EXPORT_SYMBOL_GPL(sata_scr_read);
7209EXPORT_SYMBOL_GPL(sata_scr_write);
7210EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7211EXPORT_SYMBOL_GPL(ata_link_online);
7212EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7213#ifdef CONFIG_PM
cca3974e
JG
7214EXPORT_SYMBOL_GPL(ata_host_suspend);
7215EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7216#endif /* CONFIG_PM */
6a62a04d
TH
7217EXPORT_SYMBOL_GPL(ata_id_string);
7218EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7219EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7220EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7221
1bc4ccff 7222EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7223EXPORT_SYMBOL_GPL(ata_timing_compute);
7224EXPORT_SYMBOL_GPL(ata_timing_merge);
7225
1da177e4
LT
7226#ifdef CONFIG_PCI
7227EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7228EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7229EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7230EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7231EXPORT_SYMBOL_GPL(ata_pci_init_one);
7232EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7233#ifdef CONFIG_PM
500530f6
TH
7234EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7235EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7236EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7237EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7238#endif /* CONFIG_PM */
67951ade
AC
7239EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7240EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7241#endif /* CONFIG_PCI */
9b847548 7242
b64bbc39
TH
7243EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7244EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7245EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7246EXPORT_SYMBOL_GPL(ata_port_desc);
7247#ifdef CONFIG_PCI
7248EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7249#endif /* CONFIG_PCI */
ece1d636 7250EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03 7251EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7252EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7253EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7254EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7255EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7256EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7257EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7258EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7259EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7260EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7261EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7262EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7263
7264EXPORT_SYMBOL_GPL(ata_cable_40wire);
7265EXPORT_SYMBOL_GPL(ata_cable_80wire);
7266EXPORT_SYMBOL_GPL(ata_cable_unknown);
7267EXPORT_SYMBOL_GPL(ata_cable_sata);