]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: quirk IOMEGA ZIP 250 ATAPI FLOPPY
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
193515d5 53#include <scsi/scsi_cmnd.h>
1da177e4
LT
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
8bc3fc47 62#define DRV_VERSION "2.21" /* must be exactly four chars */
fda0efc5
JG
63
64
d7bb4cc7 65/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 69
3373efd8
TH
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
1da177e4 74
f3187195 75unsigned int ata_print_id = 1;
1da177e4
LT
76static struct workqueue_struct *ata_wq;
77
453b07ac
TH
78struct workqueue_struct *ata_aux_wq;
79
418dc1f5 80int atapi_enabled = 1;
1623c81e
JG
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
95de719a
AL
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
c3c013a2
JG
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
1e999736
AC
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
a8601e5f
AM
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
d7d0dad6
JG
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
11ef697b
KCA
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
1da177e4
LT
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
0baab86b 109
1da177e4
LT
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
057ace5e 123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
e12a1be6 157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
057ace5e 163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
8cbd6df1
AL
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
196 0,
197 0,
198 0,
199 0,
8cbd6df1
AL
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
9a3dccc4
TH
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 209};
1da177e4
LT
210
211/**
8cbd6df1 212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
1da177e4 215 *
2e9edbf8 216 * Examine the device configuration and tf->flags to calculate
8cbd6df1 217 * the proper read/write commands and protocol to use.
1da177e4
LT
218 *
219 * LOCKING:
220 * caller.
221 */
bd056d7e 222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 223{
9a3dccc4 224 u8 cmd;
1da177e4 225
9a3dccc4 226 int index, fua, lba48, write;
2e9edbf8 227
9a3dccc4 228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 231
8cbd6df1
AL
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
9a3dccc4 234 index = dev->multi_count ? 0 : 8;
bd056d7e 235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
0565c26d 238 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
239 } else {
240 tf->protocol = ATA_PROT_DMA;
9a3dccc4 241 index = 16;
8cbd6df1 242 }
1da177e4 243
9a3dccc4
TH
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
1da177e4
LT
250}
251
35b649fe
TH
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
bd056d7e
TH
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
6d1245bf 322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
cb95d562
TH
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
c0489e4e
TH
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
cb95d562 465static const struct ata_xfer_ent {
be9a50c8 466 int shift, bits;
cb95d562
TH
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
1da177e4 543/**
1da7b0d0
TH
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
546 *
547 * Determine string which represents the highest speed
1da7b0d0 548 * (highest bit in @modemask).
1da177e4
LT
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
1da7b0d0 555 * @mode_mask, or the constant C string "<n/a>".
1da177e4 556 */
1da7b0d0 557static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 558{
75f554bc
TH
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
b352e57d
AC
565 "PIO5",
566 "PIO6",
75f554bc
TH
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
b352e57d
AC
570 "MWDMA3",
571 "MWDMA4",
75f554bc
TH
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
1da7b0d0 581 int highbit;
1da177e4 582
1da7b0d0
TH
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
1da177e4 586 return "<n/a>";
1da177e4
LT
587}
588
4c360c81
TH
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
3373efd8 601void ata_dev_disable(struct ata_device *dev)
0b8efb0a 602{
09d7f9b0
TH
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
0b8efb0a
TH
608 dev->class++;
609 }
610}
611
1da177e4 612/**
0d5ff566 613 * ata_devchk - PATA device presence detection
1da177e4
LT
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
0d5ff566 630static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
631{
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
0d5ff566
TH
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 639
0d5ff566
TH
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 642
0d5ff566
TH
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 645
0d5ff566
TH
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653}
654
1da177e4
LT
655/**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
057ace5e 671unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
672{
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692}
693
694/**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
b4dc7623 698 * @r_err: Value of error register on completion
1da177e4
LT
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
b4dc7623
TH
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
714 */
715
a619f981 716unsigned int
b4dc7623 717ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 718{
1da177e4
LT
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
1da177e4 727 ap->ops->tf_read(ap, &tf);
0169e284 728 err = tf.feature;
b4dc7623
TH
729 if (r_err)
730 *r_err = err;
1da177e4 731
93590859
AC
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
1da177e4
LT
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
b4dc7623 741 return ATA_DEV_NONE;
1da177e4 742
b4dc7623 743 /* determine if device is ATA or ATAPI */
1da177e4 744 class = ata_dev_classify(&tf);
b4dc7623 745
1da177e4 746 if (class == ATA_DEV_UNKNOWN)
b4dc7623 747 return ATA_DEV_NONE;
1da177e4 748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
749 return ATA_DEV_NONE;
750 return class;
1da177e4
LT
751}
752
753/**
6a62a04d 754 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
6a62a04d
TH
768void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
1da177e4
LT
770{
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785}
786
0e949ff3 787/**
6a62a04d 788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
6a62a04d 794 * This function is identical to ata_id_string except that it
0e949ff3
TH
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
6a62a04d
TH
801void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
0e949ff3
TH
803{
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
6a62a04d 808 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814}
0baab86b 815
1e999736
AC
816static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817{
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828}
829
830static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831{
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840}
841
842/**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851{
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867}
868
869/**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877static u64 ata_read_native_max_address(struct ata_device *dev)
878{
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894}
895
896/**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
6b38d1d1 899 * @new_sectors: new max sectors value to set for the device
1e999736
AC
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906{
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932}
933
934/**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
6b38d1d1 937 * @new_sectors: new max sectors value to set for the device
1e999736
AC
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944{
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966}
967
968/**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977static u64 ata_hpa_resize(struct ata_device *dev)
978{
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
a617c09f 981
1e999736
AC
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
1e999736
AC
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
bd1d5ec6 992 (long long)sectors, (long long)hpa_sectors);
1e999736
AC
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
bd1d5ec6
AM
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1e999736
AC
1000
1001 if (hpa_sectors) {
bd1d5ec6
AM
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1e999736
AC
1005 return hpa_sectors;
1006 }
1007 }
37301a55
TH
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1e999736
AC
1013 return sectors;
1014}
1015
2940740b
TH
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
10305f0f
AC
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
cc261267 1034 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
0baab86b
EF
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1da177e4
LT
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
0baab86b 1089
1da177e4
LT
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
0baab86b
EF
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
0d5ff566 1114 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
88574551 1140 if (ata_msg_probe(ap))
44877b4e
TH
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1da177e4
LT
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1158 * @id: IDENTIFY DEVICE page to dump
1da177e4 1159 *
0bd3300a
TH
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1da177e4
LT
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
0bd3300a 1167static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
0bd3300a
TH
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1da177e4
LT
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
0bd3300a
TH
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1da177e4
LT
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
0bd3300a
TH
1191 id[88],
1192 id[93]);
1da177e4
LT
1193}
1194
cb95d562
TH
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
7a0f1c8a 1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb
AC
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
cb95d562
TH
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1239
b352e57d
AC
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
fb21f0d0
TH
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
86e45b6b
TH
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
e2a7f77a 1267 * @fn: workqueue function to be scheduled
65f27f38 1268 * @data: data for @fn to use
e2a7f77a 1269 * @delay: delay time for workqueue function
86e45b6b
TH
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
65f27f38 1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1284 unsigned long delay)
1285{
65f27f38
DH
1286 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1287 ap->port_task_data = data;
86e45b6b 1288
45a66c1c
ON
1289 /* may fail if ata_port_flush_task() in progress */
1290 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1291}
1292
1293/**
1294 * ata_port_flush_task - Flush port_task
1295 * @ap: The ata_port to flush port_task for
1296 *
1297 * After this function completes, port_task is guranteed not to
1298 * be running or scheduled.
1299 *
1300 * LOCKING:
1301 * Kernel thread context (may sleep)
1302 */
1303void ata_port_flush_task(struct ata_port *ap)
1304{
86e45b6b
TH
1305 DPRINTK("ENTER\n");
1306
45a66c1c 1307 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1308
0dd4b21f
BP
1309 if (ata_msg_ctl(ap))
1310 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1311}
1312
7102d230 1313static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1314{
77853bf2 1315 struct completion *waiting = qc->private_data;
a2a7a662 1316
a2a7a662 1317 complete(waiting);
a2a7a662
TH
1318}
1319
1320/**
2432697b 1321 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1322 * @dev: Device to which the command is sent
1323 * @tf: Taskfile registers for the command and the result
d69cf37d 1324 * @cdb: CDB for packet command
a2a7a662 1325 * @dma_dir: Data tranfer direction of the command
2432697b
TH
1326 * @sg: sg list for the data buffer of the command
1327 * @n_elem: Number of sg entries
a2a7a662
TH
1328 *
1329 * Executes libata internal command with timeout. @tf contains
1330 * command on entry and result on return. Timeout and error
1331 * conditions are reported via return value. No recovery action
1332 * is taken after a command times out. It's caller's duty to
1333 * clean up after timeout.
1334 *
1335 * LOCKING:
1336 * None. Should be called with kernel context, might sleep.
551e8889
TH
1337 *
1338 * RETURNS:
1339 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1340 */
2432697b
TH
1341unsigned ata_exec_internal_sg(struct ata_device *dev,
1342 struct ata_taskfile *tf, const u8 *cdb,
1343 int dma_dir, struct scatterlist *sg,
1344 unsigned int n_elem)
a2a7a662 1345{
3373efd8 1346 struct ata_port *ap = dev->ap;
a2a7a662
TH
1347 u8 command = tf->command;
1348 struct ata_queued_cmd *qc;
2ab7db1f 1349 unsigned int tag, preempted_tag;
dedaf2b0 1350 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1351 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1352 unsigned long flags;
77853bf2 1353 unsigned int err_mask;
d95a717f 1354 int rc;
a2a7a662 1355
ba6a1308 1356 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1357
e3180499 1358 /* no internal command while frozen */
b51e9e5d 1359 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1360 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1361 return AC_ERR_SYSTEM;
1362 }
1363
2ab7db1f 1364 /* initialize internal qc */
a2a7a662 1365
2ab7db1f
TH
1366 /* XXX: Tag 0 is used for drivers with legacy EH as some
1367 * drivers choke if any other tag is given. This breaks
1368 * ata_tag_internal() test for those drivers. Don't use new
1369 * EH stuff without converting to it.
1370 */
1371 if (ap->ops->error_handler)
1372 tag = ATA_TAG_INTERNAL;
1373 else
1374 tag = 0;
1375
6cec4a39 1376 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1377 BUG();
f69499f4 1378 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1379
1380 qc->tag = tag;
1381 qc->scsicmd = NULL;
1382 qc->ap = ap;
1383 qc->dev = dev;
1384 ata_qc_reinit(qc);
1385
1386 preempted_tag = ap->active_tag;
dedaf2b0
TH
1387 preempted_sactive = ap->sactive;
1388 preempted_qc_active = ap->qc_active;
2ab7db1f 1389 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1390 ap->sactive = 0;
1391 ap->qc_active = 0;
2ab7db1f
TH
1392
1393 /* prepare & issue qc */
a2a7a662 1394 qc->tf = *tf;
d69cf37d
TH
1395 if (cdb)
1396 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1397 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1398 qc->dma_dir = dma_dir;
1399 if (dma_dir != DMA_NONE) {
2432697b
TH
1400 unsigned int i, buflen = 0;
1401
1402 for (i = 0; i < n_elem; i++)
1403 buflen += sg[i].length;
1404
1405 ata_sg_init(qc, sg, n_elem);
49c80429 1406 qc->nbytes = buflen;
a2a7a662
TH
1407 }
1408
77853bf2 1409 qc->private_data = &wait;
a2a7a662
TH
1410 qc->complete_fn = ata_qc_complete_internal;
1411
8e0e694a 1412 ata_qc_issue(qc);
a2a7a662 1413
ba6a1308 1414 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1415
a8601e5f 1416 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1417
1418 ata_port_flush_task(ap);
41ade50c 1419
d95a717f 1420 if (!rc) {
ba6a1308 1421 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1422
1423 /* We're racing with irq here. If we lose, the
1424 * following test prevents us from completing the qc
d95a717f
TH
1425 * twice. If we win, the port is frozen and will be
1426 * cleaned up by ->post_internal_cmd().
a2a7a662 1427 */
77853bf2 1428 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1429 qc->err_mask |= AC_ERR_TIMEOUT;
1430
1431 if (ap->ops->error_handler)
1432 ata_port_freeze(ap);
1433 else
1434 ata_qc_complete(qc);
f15a1daf 1435
0dd4b21f
BP
1436 if (ata_msg_warn(ap))
1437 ata_dev_printk(dev, KERN_WARNING,
88574551 1438 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1439 }
1440
ba6a1308 1441 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1442 }
1443
d95a717f
TH
1444 /* do post_internal_cmd */
1445 if (ap->ops->post_internal_cmd)
1446 ap->ops->post_internal_cmd(qc);
1447
a51d644a
TH
1448 /* perform minimal error analysis */
1449 if (qc->flags & ATA_QCFLAG_FAILED) {
1450 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1451 qc->err_mask |= AC_ERR_DEV;
1452
1453 if (!qc->err_mask)
1454 qc->err_mask |= AC_ERR_OTHER;
1455
1456 if (qc->err_mask & ~AC_ERR_OTHER)
1457 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1458 }
1459
15869303 1460 /* finish up */
ba6a1308 1461 spin_lock_irqsave(ap->lock, flags);
15869303 1462
e61e0672 1463 *tf = qc->result_tf;
77853bf2
TH
1464 err_mask = qc->err_mask;
1465
1466 ata_qc_free(qc);
2ab7db1f 1467 ap->active_tag = preempted_tag;
dedaf2b0
TH
1468 ap->sactive = preempted_sactive;
1469 ap->qc_active = preempted_qc_active;
77853bf2 1470
1f7dd3e9
TH
1471 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1472 * Until those drivers are fixed, we detect the condition
1473 * here, fail the command with AC_ERR_SYSTEM and reenable the
1474 * port.
1475 *
1476 * Note that this doesn't change any behavior as internal
1477 * command failure results in disabling the device in the
1478 * higher layer for LLDDs without new reset/EH callbacks.
1479 *
1480 * Kill the following code as soon as those drivers are fixed.
1481 */
198e0fed 1482 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1483 err_mask |= AC_ERR_SYSTEM;
1484 ata_port_probe(ap);
1485 }
1486
ba6a1308 1487 spin_unlock_irqrestore(ap->lock, flags);
15869303 1488
77853bf2 1489 return err_mask;
a2a7a662
TH
1490}
1491
2432697b 1492/**
33480a0e 1493 * ata_exec_internal - execute libata internal command
2432697b
TH
1494 * @dev: Device to which the command is sent
1495 * @tf: Taskfile registers for the command and the result
1496 * @cdb: CDB for packet command
1497 * @dma_dir: Data tranfer direction of the command
1498 * @buf: Data buffer of the command
1499 * @buflen: Length of data buffer
1500 *
1501 * Wrapper around ata_exec_internal_sg() which takes simple
1502 * buffer instead of sg list.
1503 *
1504 * LOCKING:
1505 * None. Should be called with kernel context, might sleep.
1506 *
1507 * RETURNS:
1508 * Zero on success, AC_ERR_* mask on failure
1509 */
1510unsigned ata_exec_internal(struct ata_device *dev,
1511 struct ata_taskfile *tf, const u8 *cdb,
1512 int dma_dir, void *buf, unsigned int buflen)
1513{
33480a0e
TH
1514 struct scatterlist *psg = NULL, sg;
1515 unsigned int n_elem = 0;
2432697b 1516
33480a0e
TH
1517 if (dma_dir != DMA_NONE) {
1518 WARN_ON(!buf);
1519 sg_init_one(&sg, buf, buflen);
1520 psg = &sg;
1521 n_elem++;
1522 }
2432697b 1523
33480a0e 1524 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
2432697b
TH
1525}
1526
977e6b9f
TH
1527/**
1528 * ata_do_simple_cmd - execute simple internal command
1529 * @dev: Device to which the command is sent
1530 * @cmd: Opcode to execute
1531 *
1532 * Execute a 'simple' command, that only consists of the opcode
1533 * 'cmd' itself, without filling any other registers
1534 *
1535 * LOCKING:
1536 * Kernel thread context (may sleep).
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
e58eb583 1540 */
77b08fb5 1541unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1542{
1543 struct ata_taskfile tf;
e58eb583
TH
1544
1545 ata_tf_init(dev, &tf);
1546
1547 tf.command = cmd;
1548 tf.flags |= ATA_TFLAG_DEVICE;
1549 tf.protocol = ATA_PROT_NODATA;
1550
977e6b9f 1551 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1552}
1553
1bc4ccff
AC
1554/**
1555 * ata_pio_need_iordy - check if iordy needed
1556 * @adev: ATA device
1557 *
1558 * Check if the current speed of the device requires IORDY. Used
1559 * by various controllers for chip configuration.
1560 */
a617c09f 1561
1bc4ccff
AC
1562unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1563{
432729f0
AC
1564 /* Controller doesn't support IORDY. Probably a pointless check
1565 as the caller should know this */
1566 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1567 return 0;
432729f0
AC
1568 /* PIO3 and higher it is mandatory */
1569 if (adev->pio_mode > XFER_PIO_2)
1570 return 1;
1571 /* We turn it on when possible */
1572 if (ata_id_has_iordy(adev->id))
1bc4ccff 1573 return 1;
432729f0
AC
1574 return 0;
1575}
2e9edbf8 1576
432729f0
AC
1577/**
1578 * ata_pio_mask_no_iordy - Return the non IORDY mask
1579 * @adev: ATA device
1580 *
1581 * Compute the highest mode possible if we are not using iordy. Return
1582 * -1 if no iordy mode is available.
1583 */
a617c09f 1584
432729f0
AC
1585static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1586{
1bc4ccff 1587 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1588 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1589 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1590 /* Is the speed faster than the drive allows non IORDY ? */
1591 if (pio) {
1592 /* This is cycle times not frequency - watch the logic! */
1593 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1594 return 3 << ATA_SHIFT_PIO;
1595 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1596 }
1597 }
432729f0 1598 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1599}
1600
1da177e4 1601/**
49016aca 1602 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1603 * @dev: target device
1604 * @p_class: pointer to class of the target device (may be changed)
bff04647 1605 * @flags: ATA_READID_* flags
fe635c7e 1606 * @id: buffer to read IDENTIFY data into
1da177e4 1607 *
49016aca
TH
1608 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1609 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1610 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1611 * for pre-ATA4 drives.
1da177e4
LT
1612 *
1613 * LOCKING:
49016aca
TH
1614 * Kernel thread context (may sleep)
1615 *
1616 * RETURNS:
1617 * 0 on success, -errno otherwise.
1da177e4 1618 */
a9beec95 1619int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1620 unsigned int flags, u16 *id)
1da177e4 1621{
3373efd8 1622 struct ata_port *ap = dev->ap;
49016aca 1623 unsigned int class = *p_class;
a0123703 1624 struct ata_taskfile tf;
49016aca
TH
1625 unsigned int err_mask = 0;
1626 const char *reason;
54936f8b 1627 int may_fallback = 1, tried_spinup = 0;
49016aca 1628 int rc;
1da177e4 1629
0dd4b21f 1630 if (ata_msg_ctl(ap))
44877b4e 1631 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1632
49016aca 1633 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1634 retry:
3373efd8 1635 ata_tf_init(dev, &tf);
a0123703 1636
49016aca
TH
1637 switch (class) {
1638 case ATA_DEV_ATA:
a0123703 1639 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1640 break;
1641 case ATA_DEV_ATAPI:
a0123703 1642 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1643 break;
1644 default:
1645 rc = -ENODEV;
1646 reason = "unsupported class";
1647 goto err_out;
1da177e4
LT
1648 }
1649
a0123703 1650 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1651
1652 /* Some devices choke if TF registers contain garbage. Make
1653 * sure those are properly initialized.
1654 */
1655 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1656
1657 /* Device presence detection is unreliable on some
1658 * controllers. Always poll IDENTIFY if available.
1659 */
1660 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1661
3373efd8 1662 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1663 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1664 if (err_mask) {
800b3996 1665 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1666 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1667 ap->print_id, dev->devno);
55a8e2c8
TH
1668 return -ENOENT;
1669 }
1670
54936f8b
TH
1671 /* Device or controller might have reported the wrong
1672 * device class. Give a shot at the other IDENTIFY if
1673 * the current one is aborted by the device.
1674 */
1675 if (may_fallback &&
1676 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1677 may_fallback = 0;
1678
1679 if (class == ATA_DEV_ATA)
1680 class = ATA_DEV_ATAPI;
1681 else
1682 class = ATA_DEV_ATA;
1683 goto retry;
1684 }
1685
49016aca
TH
1686 rc = -EIO;
1687 reason = "I/O error";
1da177e4
LT
1688 goto err_out;
1689 }
1690
54936f8b
TH
1691 /* Falling back doesn't make sense if ID data was read
1692 * successfully at least once.
1693 */
1694 may_fallback = 0;
1695
49016aca 1696 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1697
49016aca 1698 /* sanity check */
a4f5749b 1699 rc = -EINVAL;
6070068b 1700 reason = "device reports invalid type";
a4f5749b
TH
1701
1702 if (class == ATA_DEV_ATA) {
1703 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1704 goto err_out;
1705 } else {
1706 if (ata_id_is_ata(id))
1707 goto err_out;
49016aca
TH
1708 }
1709
169439c2
ML
1710 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1711 tried_spinup = 1;
1712 /*
1713 * Drive powered-up in standby mode, and requires a specific
1714 * SET_FEATURES spin-up subcommand before it will accept
1715 * anything other than the original IDENTIFY command.
1716 */
1717 ata_tf_init(dev, &tf);
1718 tf.command = ATA_CMD_SET_FEATURES;
1719 tf.feature = SETFEATURES_SPINUP;
1720 tf.protocol = ATA_PROT_NODATA;
1721 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1722 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1723 if (err_mask) {
1724 rc = -EIO;
1725 reason = "SPINUP failed";
1726 goto err_out;
1727 }
1728 /*
1729 * If the drive initially returned incomplete IDENTIFY info,
1730 * we now must reissue the IDENTIFY command.
1731 */
1732 if (id[2] == 0x37c8)
1733 goto retry;
1734 }
1735
bff04647 1736 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
1737 /*
1738 * The exact sequence expected by certain pre-ATA4 drives is:
1739 * SRST RESET
1740 * IDENTIFY
1741 * INITIALIZE DEVICE PARAMETERS
1742 * anything else..
1743 * Some drives were very specific about that exact sequence.
1744 */
1745 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1746 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1747 if (err_mask) {
1748 rc = -EIO;
1749 reason = "INIT_DEV_PARAMS failed";
1750 goto err_out;
1751 }
1752
1753 /* current CHS translation info (id[53-58]) might be
1754 * changed. reread the identify device info.
1755 */
bff04647 1756 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
1757 goto retry;
1758 }
1759 }
1760
1761 *p_class = class;
fe635c7e 1762
49016aca
TH
1763 return 0;
1764
1765 err_out:
88574551 1766 if (ata_msg_warn(ap))
0dd4b21f 1767 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1768 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1769 return rc;
1770}
1771
3373efd8 1772static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1773{
3373efd8 1774 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1775}
1776
a6e6ce8e
TH
1777static void ata_dev_config_ncq(struct ata_device *dev,
1778 char *desc, size_t desc_sz)
1779{
1780 struct ata_port *ap = dev->ap;
1781 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1782
1783 if (!ata_id_has_ncq(dev->id)) {
1784 desc[0] = '\0';
1785 return;
1786 }
6919a0a6
AC
1787 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1788 snprintf(desc, desc_sz, "NCQ (not used)");
1789 return;
1790 }
a6e6ce8e 1791 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 1792 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
1793 dev->flags |= ATA_DFLAG_NCQ;
1794 }
1795
1796 if (hdepth >= ddepth)
1797 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1798 else
1799 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1800}
1801
49016aca 1802/**
ffeae418 1803 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
1804 * @dev: Target device to configure
1805 *
1806 * Configure @dev according to @dev->id. Generic and low-level
1807 * driver specific fixups are also applied.
49016aca
TH
1808 *
1809 * LOCKING:
ffeae418
TH
1810 * Kernel thread context (may sleep)
1811 *
1812 * RETURNS:
1813 * 0 on success, -errno otherwise
49016aca 1814 */
efdaedc4 1815int ata_dev_configure(struct ata_device *dev)
49016aca 1816{
3373efd8 1817 struct ata_port *ap = dev->ap;
6746544c
TH
1818 struct ata_eh_context *ehc = &ap->eh_context;
1819 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 1820 const u16 *id = dev->id;
ff8854b2 1821 unsigned int xfer_mask;
b352e57d 1822 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
1823 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1824 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 1825 int rc;
49016aca 1826
0dd4b21f 1827 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
1828 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1829 __FUNCTION__);
ffeae418 1830 return 0;
49016aca
TH
1831 }
1832
0dd4b21f 1833 if (ata_msg_probe(ap))
44877b4e 1834 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1835
6746544c
TH
1836 /* let ACPI work its magic */
1837 rc = ata_acpi_on_devcfg(dev);
1838 if (rc)
1839 return rc;
08573a86 1840
c39f5ebe 1841 /* print device capabilities */
0dd4b21f 1842 if (ata_msg_probe(ap))
88574551
TH
1843 ata_dev_printk(dev, KERN_DEBUG,
1844 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1845 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1846 __FUNCTION__,
f15a1daf
TH
1847 id[49], id[82], id[83], id[84],
1848 id[85], id[86], id[87], id[88]);
c39f5ebe 1849
208a9933 1850 /* initialize to-be-configured parameters */
ea1dd4e1 1851 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1852 dev->max_sectors = 0;
1853 dev->cdb_len = 0;
1854 dev->n_sectors = 0;
1855 dev->cylinders = 0;
1856 dev->heads = 0;
1857 dev->sectors = 0;
1858
1da177e4
LT
1859 /*
1860 * common ATA, ATAPI feature tests
1861 */
1862
ff8854b2 1863 /* find max transfer mode; for printk only */
1148c3a7 1864 xfer_mask = ata_id_xfermask(id);
1da177e4 1865
0dd4b21f
BP
1866 if (ata_msg_probe(ap))
1867 ata_dump_id(id);
1da177e4 1868
ef143d57
AL
1869 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1870 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1871 sizeof(fwrevbuf));
1872
1873 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1874 sizeof(modelbuf));
1875
1da177e4
LT
1876 /* ATA-specific feature tests */
1877 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
1878 if (ata_id_is_cfa(id)) {
1879 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
1880 ata_dev_printk(dev, KERN_WARNING,
1881 "supports DRM functions and may "
1882 "not be fully accessable.\n");
b352e57d
AC
1883 snprintf(revbuf, 7, "CFA");
1884 }
1885 else
1886 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1887
1148c3a7 1888 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1889
3f64f565
EM
1890 if (dev->id[59] & 0x100)
1891 dev->multi_count = dev->id[59] & 0xff;
1892
1148c3a7 1893 if (ata_id_has_lba(id)) {
4c2d721a 1894 const char *lba_desc;
a6e6ce8e 1895 char ncq_desc[20];
8bf62ece 1896
4c2d721a
TH
1897 lba_desc = "LBA";
1898 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1899 if (ata_id_has_lba48(id)) {
8bf62ece 1900 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 1901 lba_desc = "LBA48";
6fc49adb
TH
1902
1903 if (dev->n_sectors >= (1UL << 28) &&
1904 ata_id_has_flush_ext(id))
1905 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 1906 }
8bf62ece 1907
1e999736
AC
1908 if (ata_id_hpa_enabled(dev->id))
1909 dev->n_sectors = ata_hpa_resize(dev);
1910
a6e6ce8e
TH
1911 /* config NCQ */
1912 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1913
8bf62ece 1914 /* print device info to dmesg */
3f64f565
EM
1915 if (ata_msg_drv(ap) && print_info) {
1916 ata_dev_printk(dev, KERN_INFO,
1917 "%s: %s, %s, max %s\n",
1918 revbuf, modelbuf, fwrevbuf,
1919 ata_mode_string(xfer_mask));
1920 ata_dev_printk(dev, KERN_INFO,
1921 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 1922 (unsigned long long)dev->n_sectors,
3f64f565
EM
1923 dev->multi_count, lba_desc, ncq_desc);
1924 }
ffeae418 1925 } else {
8bf62ece
AL
1926 /* CHS */
1927
1928 /* Default translation */
1148c3a7
TH
1929 dev->cylinders = id[1];
1930 dev->heads = id[3];
1931 dev->sectors = id[6];
8bf62ece 1932
1148c3a7 1933 if (ata_id_current_chs_valid(id)) {
8bf62ece 1934 /* Current CHS translation is valid. */
1148c3a7
TH
1935 dev->cylinders = id[54];
1936 dev->heads = id[55];
1937 dev->sectors = id[56];
8bf62ece
AL
1938 }
1939
1940 /* print device info to dmesg */
3f64f565 1941 if (ata_msg_drv(ap) && print_info) {
88574551 1942 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1943 "%s: %s, %s, max %s\n",
1944 revbuf, modelbuf, fwrevbuf,
1945 ata_mode_string(xfer_mask));
a84471fe 1946 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
1947 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1948 (unsigned long long)dev->n_sectors,
1949 dev->multi_count, dev->cylinders,
1950 dev->heads, dev->sectors);
1951 }
07f6f7d0
AL
1952 }
1953
6e7846e9 1954 dev->cdb_len = 16;
1da177e4
LT
1955 }
1956
1957 /* ATAPI-specific feature tests */
2c13b7ce 1958 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1959 char *cdb_intr_string = "";
1960
1148c3a7 1961 rc = atapi_cdb_len(id);
1da177e4 1962 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1963 if (ata_msg_warn(ap))
88574551
TH
1964 ata_dev_printk(dev, KERN_WARNING,
1965 "unsupported CDB len\n");
ffeae418 1966 rc = -EINVAL;
1da177e4
LT
1967 goto err_out_nosup;
1968 }
6e7846e9 1969 dev->cdb_len = (unsigned int) rc;
1da177e4 1970
08a556db 1971 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1972 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1973 cdb_intr_string = ", CDB intr";
1974 }
312f7da2 1975
1da177e4 1976 /* print device info to dmesg */
5afc8142 1977 if (ata_msg_drv(ap) && print_info)
ef143d57
AL
1978 ata_dev_printk(dev, KERN_INFO,
1979 "ATAPI: %s, %s, max %s%s\n",
1980 modelbuf, fwrevbuf,
12436c30
TH
1981 ata_mode_string(xfer_mask),
1982 cdb_intr_string);
1da177e4
LT
1983 }
1984
914ed354
TH
1985 /* determine max_sectors */
1986 dev->max_sectors = ATA_MAX_SECTORS;
1987 if (dev->flags & ATA_DFLAG_LBA48)
1988 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1989
93590859
AC
1990 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1991 /* Let the user know. We don't want to disallow opens for
1992 rescue purposes, or in case the vendor is just a blithering
1993 idiot */
1994 if (print_info) {
1995 ata_dev_printk(dev, KERN_WARNING,
1996"Drive reports diagnostics failure. This may indicate a drive\n");
1997 ata_dev_printk(dev, KERN_WARNING,
1998"fault or invalid emulation. Contact drive vendor for information.\n");
1999 }
2000 }
2001
4b2f3ede 2002 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2003 if (ata_dev_knobble(dev)) {
5afc8142 2004 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2005 ata_dev_printk(dev, KERN_INFO,
2006 "applying bridge limits\n");
5a529139 2007 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2008 dev->max_sectors = ATA_MAX_SECTORS;
2009 }
2010
18d6e9d5 2011 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2012 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2013 dev->max_sectors);
18d6e9d5 2014
4b2f3ede 2015 if (ap->ops->dev_config)
cd0d3bbc 2016 ap->ops->dev_config(dev);
4b2f3ede 2017
0dd4b21f
BP
2018 if (ata_msg_probe(ap))
2019 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2020 __FUNCTION__, ata_chk_status(ap));
ffeae418 2021 return 0;
1da177e4
LT
2022
2023err_out_nosup:
0dd4b21f 2024 if (ata_msg_probe(ap))
88574551
TH
2025 ata_dev_printk(dev, KERN_DEBUG,
2026 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2027 return rc;
1da177e4
LT
2028}
2029
be0d18df 2030/**
2e41e8e6 2031 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2032 * @ap: port
2033 *
2e41e8e6 2034 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2035 * detection.
2036 */
2037
2038int ata_cable_40wire(struct ata_port *ap)
2039{
2040 return ATA_CBL_PATA40;
2041}
2042
2043/**
2e41e8e6 2044 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2045 * @ap: port
2046 *
2e41e8e6 2047 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2048 * detection.
2049 */
2050
2051int ata_cable_80wire(struct ata_port *ap)
2052{
2053 return ATA_CBL_PATA80;
2054}
2055
2056/**
2057 * ata_cable_unknown - return unknown PATA cable.
2058 * @ap: port
2059 *
2060 * Helper method for drivers which have no PATA cable detection.
2061 */
2062
2063int ata_cable_unknown(struct ata_port *ap)
2064{
2065 return ATA_CBL_PATA_UNK;
2066}
2067
2068/**
2069 * ata_cable_sata - return SATA cable type
2070 * @ap: port
2071 *
2072 * Helper method for drivers which have SATA cables
2073 */
2074
2075int ata_cable_sata(struct ata_port *ap)
2076{
2077 return ATA_CBL_SATA;
2078}
2079
1da177e4
LT
2080/**
2081 * ata_bus_probe - Reset and probe ATA bus
2082 * @ap: Bus to probe
2083 *
0cba632b
JG
2084 * Master ATA bus probing function. Initiates a hardware-dependent
2085 * bus reset, then attempts to identify any devices found on
2086 * the bus.
2087 *
1da177e4 2088 * LOCKING:
0cba632b 2089 * PCI/etc. bus probe sem.
1da177e4
LT
2090 *
2091 * RETURNS:
96072e69 2092 * Zero on success, negative errno otherwise.
1da177e4
LT
2093 */
2094
80289167 2095int ata_bus_probe(struct ata_port *ap)
1da177e4 2096{
28ca5c57 2097 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2098 int tries[ATA_MAX_DEVICES];
4ae72a1e 2099 int i, rc;
e82cbdb9 2100 struct ata_device *dev;
1da177e4 2101
28ca5c57 2102 ata_port_probe(ap);
c19ba8af 2103
14d2bac1
TH
2104 for (i = 0; i < ATA_MAX_DEVICES; i++)
2105 tries[i] = ATA_PROBE_MAX_TRIES;
2106
2107 retry:
2044470c 2108 /* reset and determine device classes */
52783c5d 2109 ap->ops->phy_reset(ap);
2061a47a 2110
52783c5d
TH
2111 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2112 dev = &ap->device[i];
c19ba8af 2113
52783c5d
TH
2114 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2115 dev->class != ATA_DEV_UNKNOWN)
2116 classes[dev->devno] = dev->class;
2117 else
2118 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2119
52783c5d 2120 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2121 }
1da177e4 2122
52783c5d 2123 ata_port_probe(ap);
2044470c 2124
b6079ca4
AC
2125 /* after the reset the device state is PIO 0 and the controller
2126 state is undefined. Record the mode */
2127
2128 for (i = 0; i < ATA_MAX_DEVICES; i++)
2129 ap->device[i].pio_mode = XFER_PIO_0;
2130
f31f0cc2
JG
2131 /* read IDENTIFY page and configure devices. We have to do the identify
2132 specific sequence bass-ackwards so that PDIAG- is released by
2133 the slave device */
2134
2135 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
e82cbdb9 2136 dev = &ap->device[i];
28ca5c57 2137
ec573755
TH
2138 if (tries[i])
2139 dev->class = classes[i];
ffeae418 2140
14d2bac1 2141 if (!ata_dev_enabled(dev))
ffeae418 2142 continue;
ffeae418 2143
bff04647
TH
2144 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2145 dev->id);
14d2bac1
TH
2146 if (rc)
2147 goto fail;
f31f0cc2
JG
2148 }
2149
be0d18df
AC
2150 /* Now ask for the cable type as PDIAG- should have been released */
2151 if (ap->ops->cable_detect)
2152 ap->cbl = ap->ops->cable_detect(ap);
2153
f31f0cc2
JG
2154 /* After the identify sequence we can now set up the devices. We do
2155 this in the normal order so that the user doesn't get confused */
2156
2157 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2158 dev = &ap->device[i];
2159 if (!ata_dev_enabled(dev))
2160 continue;
14d2bac1 2161
efdaedc4
TH
2162 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2163 rc = ata_dev_configure(dev);
2164 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2165 if (rc)
2166 goto fail;
1da177e4
LT
2167 }
2168
e82cbdb9 2169 /* configure transfer mode */
3adcebb2 2170 rc = ata_set_mode(ap, &dev);
4ae72a1e 2171 if (rc)
51713d35 2172 goto fail;
1da177e4 2173
e82cbdb9
TH
2174 for (i = 0; i < ATA_MAX_DEVICES; i++)
2175 if (ata_dev_enabled(&ap->device[i]))
2176 return 0;
1da177e4 2177
e82cbdb9
TH
2178 /* no device present, disable port */
2179 ata_port_disable(ap);
1da177e4 2180 ap->ops->port_disable(ap);
96072e69 2181 return -ENODEV;
14d2bac1
TH
2182
2183 fail:
4ae72a1e
TH
2184 tries[dev->devno]--;
2185
14d2bac1
TH
2186 switch (rc) {
2187 case -EINVAL:
4ae72a1e 2188 /* eeek, something went very wrong, give up */
14d2bac1
TH
2189 tries[dev->devno] = 0;
2190 break;
4ae72a1e
TH
2191
2192 case -ENODEV:
2193 /* give it just one more chance */
2194 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2195 case -EIO:
4ae72a1e
TH
2196 if (tries[dev->devno] == 1) {
2197 /* This is the last chance, better to slow
2198 * down than lose it.
2199 */
2200 sata_down_spd_limit(ap);
2201 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2202 }
14d2bac1
TH
2203 }
2204
4ae72a1e 2205 if (!tries[dev->devno])
3373efd8 2206 ata_dev_disable(dev);
ec573755 2207
14d2bac1 2208 goto retry;
1da177e4
LT
2209}
2210
2211/**
0cba632b
JG
2212 * ata_port_probe - Mark port as enabled
2213 * @ap: Port for which we indicate enablement
1da177e4 2214 *
0cba632b
JG
2215 * Modify @ap data structure such that the system
2216 * thinks that the entire port is enabled.
2217 *
cca3974e 2218 * LOCKING: host lock, or some other form of
0cba632b 2219 * serialization.
1da177e4
LT
2220 */
2221
2222void ata_port_probe(struct ata_port *ap)
2223{
198e0fed 2224 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2225}
2226
3be680b7
TH
2227/**
2228 * sata_print_link_status - Print SATA link status
2229 * @ap: SATA port to printk link status about
2230 *
2231 * This function prints link speed and status of a SATA link.
2232 *
2233 * LOCKING:
2234 * None.
2235 */
43727fbc 2236void sata_print_link_status(struct ata_port *ap)
3be680b7 2237{
6d5f9732 2238 u32 sstatus, scontrol, tmp;
3be680b7 2239
81952c54 2240 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 2241 return;
81952c54 2242 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 2243
81952c54 2244 if (ata_port_online(ap)) {
3be680b7 2245 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
2246 ata_port_printk(ap, KERN_INFO,
2247 "SATA link up %s (SStatus %X SControl %X)\n",
2248 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2249 } else {
f15a1daf
TH
2250 ata_port_printk(ap, KERN_INFO,
2251 "SATA link down (SStatus %X SControl %X)\n",
2252 sstatus, scontrol);
3be680b7
TH
2253 }
2254}
2255
1da177e4 2256/**
780a87f7
JG
2257 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2258 * @ap: SATA port associated with target SATA PHY.
1da177e4 2259 *
780a87f7
JG
2260 * This function issues commands to standard SATA Sxxx
2261 * PHY registers, to wake up the phy (and device), and
2262 * clear any reset condition.
1da177e4
LT
2263 *
2264 * LOCKING:
0cba632b 2265 * PCI/etc. bus probe sem.
1da177e4
LT
2266 *
2267 */
2268void __sata_phy_reset(struct ata_port *ap)
2269{
2270 u32 sstatus;
2271 unsigned long timeout = jiffies + (HZ * 5);
2272
2273 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 2274 /* issue phy wake/reset */
81952c54 2275 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
2276 /* Couldn't find anything in SATA I/II specs, but
2277 * AHCI-1.1 10.4.2 says at least 1 ms. */
2278 mdelay(1);
1da177e4 2279 }
81952c54
TH
2280 /* phy wake/clear reset */
2281 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
2282
2283 /* wait for phy to become ready, if necessary */
2284 do {
2285 msleep(200);
81952c54 2286 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
2287 if ((sstatus & 0xf) != 1)
2288 break;
2289 } while (time_before(jiffies, timeout));
2290
3be680b7
TH
2291 /* print link status */
2292 sata_print_link_status(ap);
656563e3 2293
3be680b7 2294 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2295 if (!ata_port_offline(ap))
1da177e4 2296 ata_port_probe(ap);
3be680b7 2297 else
1da177e4 2298 ata_port_disable(ap);
1da177e4 2299
198e0fed 2300 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2301 return;
2302
2303 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2304 ata_port_disable(ap);
2305 return;
2306 }
2307
2308 ap->cbl = ATA_CBL_SATA;
2309}
2310
2311/**
780a87f7
JG
2312 * sata_phy_reset - Reset SATA bus.
2313 * @ap: SATA port associated with target SATA PHY.
1da177e4 2314 *
780a87f7
JG
2315 * This function resets the SATA bus, and then probes
2316 * the bus for devices.
1da177e4
LT
2317 *
2318 * LOCKING:
0cba632b 2319 * PCI/etc. bus probe sem.
1da177e4
LT
2320 *
2321 */
2322void sata_phy_reset(struct ata_port *ap)
2323{
2324 __sata_phy_reset(ap);
198e0fed 2325 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
2326 return;
2327 ata_bus_reset(ap);
2328}
2329
ebdfca6e
AC
2330/**
2331 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2332 * @adev: device
2333 *
2334 * Obtain the other device on the same cable, or if none is
2335 * present NULL is returned
2336 */
2e9edbf8 2337
3373efd8 2338struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2339{
3373efd8 2340 struct ata_port *ap = adev->ap;
ebdfca6e 2341 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 2342 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2343 return NULL;
2344 return pair;
2345}
2346
1da177e4 2347/**
780a87f7
JG
2348 * ata_port_disable - Disable port.
2349 * @ap: Port to be disabled.
1da177e4 2350 *
780a87f7
JG
2351 * Modify @ap data structure such that the system
2352 * thinks that the entire port is disabled, and should
2353 * never attempt to probe or communicate with devices
2354 * on this port.
2355 *
cca3974e 2356 * LOCKING: host lock, or some other form of
780a87f7 2357 * serialization.
1da177e4
LT
2358 */
2359
2360void ata_port_disable(struct ata_port *ap)
2361{
2362 ap->device[0].class = ATA_DEV_NONE;
2363 ap->device[1].class = ATA_DEV_NONE;
198e0fed 2364 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2365}
2366
1c3fae4d 2367/**
3c567b7d 2368 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
2369 * @ap: Port to adjust SATA spd limit for
2370 *
2371 * Adjust SATA spd limit of @ap downward. Note that this
2372 * function only adjusts the limit. The change must be applied
3c567b7d 2373 * using sata_set_spd().
1c3fae4d
TH
2374 *
2375 * LOCKING:
2376 * Inherited from caller.
2377 *
2378 * RETURNS:
2379 * 0 on success, negative errno on failure
2380 */
3c567b7d 2381int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 2382{
81952c54
TH
2383 u32 sstatus, spd, mask;
2384 int rc, highbit;
1c3fae4d 2385
81952c54
TH
2386 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2387 if (rc)
2388 return rc;
1c3fae4d
TH
2389
2390 mask = ap->sata_spd_limit;
2391 if (mask <= 1)
2392 return -EINVAL;
2393 highbit = fls(mask) - 1;
2394 mask &= ~(1 << highbit);
2395
81952c54 2396 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
2397 if (spd <= 1)
2398 return -EINVAL;
2399 spd--;
2400 mask &= (1 << spd) - 1;
2401 if (!mask)
2402 return -EINVAL;
2403
2404 ap->sata_spd_limit = mask;
2405
f15a1daf
TH
2406 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2407 sata_spd_string(fls(mask)));
1c3fae4d
TH
2408
2409 return 0;
2410}
2411
3c567b7d 2412static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
2413{
2414 u32 spd, limit;
2415
2416 if (ap->sata_spd_limit == UINT_MAX)
2417 limit = 0;
2418 else
2419 limit = fls(ap->sata_spd_limit);
2420
2421 spd = (*scontrol >> 4) & 0xf;
2422 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2423
2424 return spd != limit;
2425}
2426
2427/**
3c567b7d 2428 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
2429 * @ap: Port in question
2430 *
2431 * Test whether the spd limit in SControl matches
2432 * @ap->sata_spd_limit. This function is used to determine
2433 * whether hardreset is necessary to apply SATA spd
2434 * configuration.
2435 *
2436 * LOCKING:
2437 * Inherited from caller.
2438 *
2439 * RETURNS:
2440 * 1 if SATA spd configuration is needed, 0 otherwise.
2441 */
3c567b7d 2442int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
2443{
2444 u32 scontrol;
2445
81952c54 2446 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
2447 return 0;
2448
3c567b7d 2449 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
2450}
2451
2452/**
3c567b7d 2453 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
2454 * @ap: Port to set SATA spd for
2455 *
2456 * Set SATA spd of @ap according to sata_spd_limit.
2457 *
2458 * LOCKING:
2459 * Inherited from caller.
2460 *
2461 * RETURNS:
2462 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2463 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2464 */
3c567b7d 2465int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
2466{
2467 u32 scontrol;
81952c54 2468 int rc;
1c3fae4d 2469
81952c54
TH
2470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2471 return rc;
1c3fae4d 2472
3c567b7d 2473 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
2474 return 0;
2475
81952c54
TH
2476 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2477 return rc;
2478
1c3fae4d
TH
2479 return 1;
2480}
2481
452503f9
AC
2482/*
2483 * This mode timing computation functionality is ported over from
2484 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2485 */
2486/*
b352e57d 2487 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2488 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2489 * for UDMA6, which is currently supported only by Maxtor drives.
2490 *
2491 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2492 */
2493
2494static const struct ata_timing ata_timing[] = {
2495
2496 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2497 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2498 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2499 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2500
b352e57d
AC
2501 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2502 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2503 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2504 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2505 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2506
2507/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2508
452503f9
AC
2509 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2510 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2511 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2512
452503f9
AC
2513 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2514 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2515 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2516
b352e57d
AC
2517 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2518 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2519 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2520 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2521
2522 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2523 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2524 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2525
2526/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2527
2528 { 0xFF }
2529};
2530
2531#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2532#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2533
2534static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2535{
2536 q->setup = EZ(t->setup * 1000, T);
2537 q->act8b = EZ(t->act8b * 1000, T);
2538 q->rec8b = EZ(t->rec8b * 1000, T);
2539 q->cyc8b = EZ(t->cyc8b * 1000, T);
2540 q->active = EZ(t->active * 1000, T);
2541 q->recover = EZ(t->recover * 1000, T);
2542 q->cycle = EZ(t->cycle * 1000, T);
2543 q->udma = EZ(t->udma * 1000, UT);
2544}
2545
2546void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2547 struct ata_timing *m, unsigned int what)
2548{
2549 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2550 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2551 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2552 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2553 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2554 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2555 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2556 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2557}
2558
2559static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2560{
2561 const struct ata_timing *t;
2562
2563 for (t = ata_timing; t->mode != speed; t++)
91190758 2564 if (t->mode == 0xFF)
452503f9 2565 return NULL;
2e9edbf8 2566 return t;
452503f9
AC
2567}
2568
2569int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2570 struct ata_timing *t, int T, int UT)
2571{
2572 const struct ata_timing *s;
2573 struct ata_timing p;
2574
2575 /*
2e9edbf8 2576 * Find the mode.
75b1f2f8 2577 */
452503f9
AC
2578
2579 if (!(s = ata_timing_find_mode(speed)))
2580 return -EINVAL;
2581
75b1f2f8
AL
2582 memcpy(t, s, sizeof(*s));
2583
452503f9
AC
2584 /*
2585 * If the drive is an EIDE drive, it can tell us it needs extended
2586 * PIO/MW_DMA cycle timing.
2587 */
2588
2589 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2590 memset(&p, 0, sizeof(p));
2591 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2592 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2593 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2594 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2595 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2596 }
2597 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2598 }
2599
2600 /*
2601 * Convert the timing to bus clock counts.
2602 */
2603
75b1f2f8 2604 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2605
2606 /*
c893a3ae
RD
2607 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2608 * S.M.A.R.T * and some other commands. We have to ensure that the
2609 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2610 */
2611
fd3367af 2612 if (speed > XFER_PIO_6) {
452503f9
AC
2613 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2614 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2615 }
2616
2617 /*
c893a3ae 2618 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2619 */
2620
2621 if (t->act8b + t->rec8b < t->cyc8b) {
2622 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2623 t->rec8b = t->cyc8b - t->act8b;
2624 }
2625
2626 if (t->active + t->recover < t->cycle) {
2627 t->active += (t->cycle - (t->active + t->recover)) / 2;
2628 t->recover = t->cycle - t->active;
2629 }
a617c09f 2630
4f701d1e
AC
2631 /* In a few cases quantisation may produce enough errors to
2632 leave t->cycle too low for the sum of active and recovery
2633 if so we must correct this */
2634 if (t->active + t->recover > t->cycle)
2635 t->cycle = t->active + t->recover;
452503f9
AC
2636
2637 return 0;
2638}
2639
cf176e1a
TH
2640/**
2641 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2642 * @dev: Device to adjust xfer masks
458337db 2643 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2644 *
2645 * Adjust xfer masks of @dev downward. Note that this function
2646 * does not apply the change. Invoking ata_set_mode() afterwards
2647 * will apply the limit.
2648 *
2649 * LOCKING:
2650 * Inherited from caller.
2651 *
2652 * RETURNS:
2653 * 0 on success, negative errno on failure
2654 */
458337db 2655int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2656{
458337db
TH
2657 char buf[32];
2658 unsigned int orig_mask, xfer_mask;
2659 unsigned int pio_mask, mwdma_mask, udma_mask;
2660 int quiet, highbit;
cf176e1a 2661
458337db
TH
2662 quiet = !!(sel & ATA_DNXFER_QUIET);
2663 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2664
458337db
TH
2665 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2666 dev->mwdma_mask,
2667 dev->udma_mask);
2668 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2669
458337db
TH
2670 switch (sel) {
2671 case ATA_DNXFER_PIO:
2672 highbit = fls(pio_mask) - 1;
2673 pio_mask &= ~(1 << highbit);
2674 break;
2675
2676 case ATA_DNXFER_DMA:
2677 if (udma_mask) {
2678 highbit = fls(udma_mask) - 1;
2679 udma_mask &= ~(1 << highbit);
2680 if (!udma_mask)
2681 return -ENOENT;
2682 } else if (mwdma_mask) {
2683 highbit = fls(mwdma_mask) - 1;
2684 mwdma_mask &= ~(1 << highbit);
2685 if (!mwdma_mask)
2686 return -ENOENT;
2687 }
2688 break;
2689
2690 case ATA_DNXFER_40C:
2691 udma_mask &= ATA_UDMA_MASK_40C;
2692 break;
2693
2694 case ATA_DNXFER_FORCE_PIO0:
2695 pio_mask &= 1;
2696 case ATA_DNXFER_FORCE_PIO:
2697 mwdma_mask = 0;
2698 udma_mask = 0;
2699 break;
2700
458337db
TH
2701 default:
2702 BUG();
2703 }
2704
2705 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2706
2707 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2708 return -ENOENT;
2709
2710 if (!quiet) {
2711 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2712 snprintf(buf, sizeof(buf), "%s:%s",
2713 ata_mode_string(xfer_mask),
2714 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2715 else
2716 snprintf(buf, sizeof(buf), "%s",
2717 ata_mode_string(xfer_mask));
2718
2719 ata_dev_printk(dev, KERN_WARNING,
2720 "limiting speed to %s\n", buf);
2721 }
cf176e1a
TH
2722
2723 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2724 &dev->udma_mask);
2725
cf176e1a 2726 return 0;
cf176e1a
TH
2727}
2728
3373efd8 2729static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2730{
baa1e78a 2731 struct ata_eh_context *ehc = &dev->ap->eh_context;
83206a29
TH
2732 unsigned int err_mask;
2733 int rc;
1da177e4 2734
e8384607 2735 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2736 if (dev->xfer_shift == ATA_SHIFT_PIO)
2737 dev->flags |= ATA_DFLAG_PIO;
2738
3373efd8 2739 err_mask = ata_dev_set_xfermode(dev);
11750a40
AC
2740 /* Old CFA may refuse this command, which is just fine */
2741 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2742 err_mask &= ~AC_ERR_DEV;
2743
83206a29 2744 if (err_mask) {
f15a1daf
TH
2745 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2746 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2747 return -EIO;
2748 }
1da177e4 2749
baa1e78a 2750 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3373efd8 2751 rc = ata_dev_revalidate(dev, 0);
baa1e78a 2752 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 2753 if (rc)
83206a29 2754 return rc;
48a8a14f 2755
23e71c3d
TH
2756 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2757 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2758
f15a1daf
TH
2759 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2760 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2761 return 0;
1da177e4
LT
2762}
2763
1da177e4 2764/**
04351821 2765 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
1da177e4 2766 * @ap: port on which timings will be programmed
e82cbdb9 2767 * @r_failed_dev: out paramter for failed device
1da177e4 2768 *
04351821
AC
2769 * Standard implementation of the function used to tune and set
2770 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2771 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 2772 * returned in @r_failed_dev.
780a87f7 2773 *
1da177e4 2774 * LOCKING:
0cba632b 2775 * PCI/etc. bus probe sem.
e82cbdb9
TH
2776 *
2777 * RETURNS:
2778 * 0 on success, negative errno otherwise
1da177e4 2779 */
04351821
AC
2780
2781int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2782{
e8e0619f 2783 struct ata_device *dev;
e82cbdb9 2784 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2785
3adcebb2 2786
a6d5a51c
TH
2787 /* step 1: calculate xfer_mask */
2788 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2789 unsigned int pio_mask, dma_mask;
a6d5a51c 2790
e8e0619f
TH
2791 dev = &ap->device[i];
2792
e1211e3f 2793 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2794 continue;
2795
3373efd8 2796 ata_dev_xfermask(dev);
1da177e4 2797
acf356b1
TH
2798 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2799 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2800 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2801 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2802
4f65977d 2803 found = 1;
5444a6f4
AC
2804 if (dev->dma_mode)
2805 used_dma = 1;
a6d5a51c 2806 }
4f65977d 2807 if (!found)
e82cbdb9 2808 goto out;
a6d5a51c
TH
2809
2810 /* step 2: always set host PIO timings */
e8e0619f
TH
2811 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2812 dev = &ap->device[i];
2813 if (!ata_dev_enabled(dev))
2814 continue;
2815
2816 if (!dev->pio_mode) {
f15a1daf 2817 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2818 rc = -EINVAL;
e82cbdb9 2819 goto out;
e8e0619f
TH
2820 }
2821
2822 dev->xfer_mode = dev->pio_mode;
2823 dev->xfer_shift = ATA_SHIFT_PIO;
2824 if (ap->ops->set_piomode)
2825 ap->ops->set_piomode(ap, dev);
2826 }
1da177e4 2827
a6d5a51c 2828 /* step 3: set host DMA timings */
e8e0619f
TH
2829 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2830 dev = &ap->device[i];
2831
2832 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2833 continue;
2834
2835 dev->xfer_mode = dev->dma_mode;
2836 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2837 if (ap->ops->set_dmamode)
2838 ap->ops->set_dmamode(ap, dev);
2839 }
1da177e4
LT
2840
2841 /* step 4: update devices' xfer mode */
83206a29 2842 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2843 dev = &ap->device[i];
1da177e4 2844
18d90deb 2845 /* don't update suspended devices' xfer mode */
9666f400 2846 if (!ata_dev_enabled(dev))
83206a29
TH
2847 continue;
2848
3373efd8 2849 rc = ata_dev_set_mode(dev);
5bbc53f4 2850 if (rc)
e82cbdb9 2851 goto out;
83206a29 2852 }
1da177e4 2853
e8e0619f
TH
2854 /* Record simplex status. If we selected DMA then the other
2855 * host channels are not permitted to do so.
5444a6f4 2856 */
cca3974e 2857 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 2858 ap->host->simplex_claimed = ap;
5444a6f4 2859
e82cbdb9
TH
2860 out:
2861 if (rc)
2862 *r_failed_dev = dev;
2863 return rc;
1da177e4
LT
2864}
2865
04351821
AC
2866/**
2867 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2868 * @ap: port on which timings will be programmed
2869 * @r_failed_dev: out paramter for failed device
2870 *
2871 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2872 * ata_set_mode() fails, pointer to the failing device is
2873 * returned in @r_failed_dev.
2874 *
2875 * LOCKING:
2876 * PCI/etc. bus probe sem.
2877 *
2878 * RETURNS:
2879 * 0 on success, negative errno otherwise
2880 */
2881int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2882{
2883 /* has private set_mode? */
2884 if (ap->ops->set_mode)
2885 return ap->ops->set_mode(ap, r_failed_dev);
2886 return ata_do_set_mode(ap, r_failed_dev);
2887}
2888
1fdffbce
JG
2889/**
2890 * ata_tf_to_host - issue ATA taskfile to host controller
2891 * @ap: port to which command is being issued
2892 * @tf: ATA taskfile register set
2893 *
2894 * Issues ATA taskfile register set to ATA host controller,
2895 * with proper synchronization with interrupt handler and
2896 * other threads.
2897 *
2898 * LOCKING:
cca3974e 2899 * spin_lock_irqsave(host lock)
1fdffbce
JG
2900 */
2901
2902static inline void ata_tf_to_host(struct ata_port *ap,
2903 const struct ata_taskfile *tf)
2904{
2905 ap->ops->tf_load(ap, tf);
2906 ap->ops->exec_command(ap, tf);
2907}
2908
1da177e4
LT
2909/**
2910 * ata_busy_sleep - sleep until BSY clears, or timeout
2911 * @ap: port containing status register to be polled
2912 * @tmout_pat: impatience timeout
2913 * @tmout: overall timeout
2914 *
780a87f7
JG
2915 * Sleep until ATA Status register bit BSY clears,
2916 * or a timeout occurs.
2917 *
d1adc1bb
TH
2918 * LOCKING:
2919 * Kernel thread context (may sleep).
2920 *
2921 * RETURNS:
2922 * 0 on success, -errno otherwise.
1da177e4 2923 */
d1adc1bb
TH
2924int ata_busy_sleep(struct ata_port *ap,
2925 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2926{
2927 unsigned long timer_start, timeout;
2928 u8 status;
2929
2930 status = ata_busy_wait(ap, ATA_BUSY, 300);
2931 timer_start = jiffies;
2932 timeout = timer_start + tmout_pat;
d1adc1bb
TH
2933 while (status != 0xff && (status & ATA_BUSY) &&
2934 time_before(jiffies, timeout)) {
1da177e4
LT
2935 msleep(50);
2936 status = ata_busy_wait(ap, ATA_BUSY, 3);
2937 }
2938
d1adc1bb 2939 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 2940 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
2941 "port is slow to respond, please be patient "
2942 "(Status 0x%x)\n", status);
1da177e4
LT
2943
2944 timeout = timer_start + tmout;
d1adc1bb
TH
2945 while (status != 0xff && (status & ATA_BUSY) &&
2946 time_before(jiffies, timeout)) {
1da177e4
LT
2947 msleep(50);
2948 status = ata_chk_status(ap);
2949 }
2950
d1adc1bb
TH
2951 if (status == 0xff)
2952 return -ENODEV;
2953
1da177e4 2954 if (status & ATA_BUSY) {
f15a1daf 2955 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
2956 "(%lu secs, Status 0x%x)\n",
2957 tmout / HZ, status);
d1adc1bb 2958 return -EBUSY;
1da177e4
LT
2959 }
2960
2961 return 0;
2962}
2963
d4b2bab4
TH
2964/**
2965 * ata_wait_ready - sleep until BSY clears, or timeout
2966 * @ap: port containing status register to be polled
2967 * @deadline: deadline jiffies for the operation
2968 *
2969 * Sleep until ATA Status register bit BSY clears, or timeout
2970 * occurs.
2971 *
2972 * LOCKING:
2973 * Kernel thread context (may sleep).
2974 *
2975 * RETURNS:
2976 * 0 on success, -errno otherwise.
2977 */
2978int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
2979{
2980 unsigned long start = jiffies;
2981 int warned = 0;
2982
2983 while (1) {
2984 u8 status = ata_chk_status(ap);
2985 unsigned long now = jiffies;
2986
2987 if (!(status & ATA_BUSY))
2988 return 0;
fd7fe701 2989 if (!ata_port_online(ap) && status == 0xff)
d4b2bab4
TH
2990 return -ENODEV;
2991 if (time_after(now, deadline))
2992 return -EBUSY;
2993
2994 if (!warned && time_after(now, start + 5 * HZ) &&
2995 (deadline - now > 3 * HZ)) {
2996 ata_port_printk(ap, KERN_WARNING,
2997 "port is slow to respond, please be patient "
2998 "(Status 0x%x)\n", status);
2999 warned = 1;
3000 }
3001
3002 msleep(50);
3003 }
3004}
3005
3006static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3007 unsigned long deadline)
1da177e4
LT
3008{
3009 struct ata_ioports *ioaddr = &ap->ioaddr;
3010 unsigned int dev0 = devmask & (1 << 0);
3011 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3012 int rc, ret = 0;
1da177e4
LT
3013
3014 /* if device 0 was found in ata_devchk, wait for its
3015 * BSY bit to clear
3016 */
d4b2bab4
TH
3017 if (dev0) {
3018 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3019 if (rc) {
3020 if (rc != -ENODEV)
3021 return rc;
3022 ret = rc;
3023 }
d4b2bab4 3024 }
1da177e4 3025
e141d999
TH
3026 /* if device 1 was found in ata_devchk, wait for register
3027 * access briefly, then wait for BSY to clear.
1da177e4 3028 */
e141d999
TH
3029 if (dev1) {
3030 int i;
1da177e4
LT
3031
3032 ap->ops->dev_select(ap, 1);
e141d999
TH
3033
3034 /* Wait for register access. Some ATAPI devices fail
3035 * to set nsect/lbal after reset, so don't waste too
3036 * much time on it. We're gonna wait for !BSY anyway.
3037 */
3038 for (i = 0; i < 2; i++) {
3039 u8 nsect, lbal;
3040
3041 nsect = ioread8(ioaddr->nsect_addr);
3042 lbal = ioread8(ioaddr->lbal_addr);
3043 if ((nsect == 1) && (lbal == 1))
3044 break;
3045 msleep(50); /* give drive a breather */
3046 }
3047
d4b2bab4 3048 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3049 if (rc) {
3050 if (rc != -ENODEV)
3051 return rc;
3052 ret = rc;
3053 }
d4b2bab4 3054 }
1da177e4
LT
3055
3056 /* is all this really necessary? */
3057 ap->ops->dev_select(ap, 0);
3058 if (dev1)
3059 ap->ops->dev_select(ap, 1);
3060 if (dev0)
3061 ap->ops->dev_select(ap, 0);
d4b2bab4 3062
9b89391c 3063 return ret;
1da177e4
LT
3064}
3065
d4b2bab4
TH
3066static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3067 unsigned long deadline)
1da177e4
LT
3068{
3069 struct ata_ioports *ioaddr = &ap->ioaddr;
3070
44877b4e 3071 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3072
3073 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3074 iowrite8(ap->ctl, ioaddr->ctl_addr);
3075 udelay(20); /* FIXME: flush */
3076 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3077 udelay(20); /* FIXME: flush */
3078 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3079
3080 /* spec mandates ">= 2ms" before checking status.
3081 * We wait 150ms, because that was the magic delay used for
3082 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3083 * between when the ATA command register is written, and then
3084 * status is checked. Because waiting for "a while" before
3085 * checking status is fine, post SRST, we perform this magic
3086 * delay here as well.
09c7ad79
AC
3087 *
3088 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
3089 */
3090 msleep(150);
3091
2e9edbf8 3092 /* Before we perform post reset processing we want to see if
298a41ca
TH
3093 * the bus shows 0xFF because the odd clown forgets the D7
3094 * pulldown resistor.
3095 */
d1adc1bb 3096 if (ata_check_status(ap) == 0xFF)
9b89391c 3097 return -ENODEV;
09c7ad79 3098
d4b2bab4 3099 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3100}
3101
3102/**
3103 * ata_bus_reset - reset host port and associated ATA channel
3104 * @ap: port to reset
3105 *
3106 * This is typically the first time we actually start issuing
3107 * commands to the ATA channel. We wait for BSY to clear, then
3108 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3109 * result. Determine what devices, if any, are on the channel
3110 * by looking at the device 0/1 error register. Look at the signature
3111 * stored in each device's taskfile registers, to determine if
3112 * the device is ATA or ATAPI.
3113 *
3114 * LOCKING:
0cba632b 3115 * PCI/etc. bus probe sem.
cca3974e 3116 * Obtains host lock.
1da177e4
LT
3117 *
3118 * SIDE EFFECTS:
198e0fed 3119 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3120 */
3121
3122void ata_bus_reset(struct ata_port *ap)
3123{
3124 struct ata_ioports *ioaddr = &ap->ioaddr;
3125 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3126 u8 err;
aec5c3c1 3127 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3128 int rc;
1da177e4 3129
44877b4e 3130 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3131
3132 /* determine if device 0/1 are present */
3133 if (ap->flags & ATA_FLAG_SATA_RESET)
3134 dev0 = 1;
3135 else {
3136 dev0 = ata_devchk(ap, 0);
3137 if (slave_possible)
3138 dev1 = ata_devchk(ap, 1);
3139 }
3140
3141 if (dev0)
3142 devmask |= (1 << 0);
3143 if (dev1)
3144 devmask |= (1 << 1);
3145
3146 /* select device 0 again */
3147 ap->ops->dev_select(ap, 0);
3148
3149 /* issue bus reset */
9b89391c
TH
3150 if (ap->flags & ATA_FLAG_SRST) {
3151 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3152 if (rc && rc != -ENODEV)
aec5c3c1 3153 goto err_out;
9b89391c 3154 }
1da177e4
LT
3155
3156 /*
3157 * determine by signature whether we have ATA or ATAPI devices
3158 */
b4dc7623 3159 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 3160 if ((slave_possible) && (err != 0x81))
b4dc7623 3161 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
3162
3163 /* re-enable interrupts */
83625006 3164 ap->ops->irq_on(ap);
1da177e4
LT
3165
3166 /* is double-select really necessary? */
3167 if (ap->device[1].class != ATA_DEV_NONE)
3168 ap->ops->dev_select(ap, 1);
3169 if (ap->device[0].class != ATA_DEV_NONE)
3170 ap->ops->dev_select(ap, 0);
3171
3172 /* if no devices were detected, disable this port */
3173 if ((ap->device[0].class == ATA_DEV_NONE) &&
3174 (ap->device[1].class == ATA_DEV_NONE))
3175 goto err_out;
3176
3177 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3178 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3179 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3180 }
3181
3182 DPRINTK("EXIT\n");
3183 return;
3184
3185err_out:
f15a1daf 3186 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
3187 ap->ops->port_disable(ap);
3188
3189 DPRINTK("EXIT\n");
3190}
3191
d7bb4cc7
TH
3192/**
3193 * sata_phy_debounce - debounce SATA phy status
3194 * @ap: ATA port to debounce SATA phy status for
3195 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3196 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3197 *
3198 * Make sure SStatus of @ap reaches stable state, determined by
3199 * holding the same value where DET is not 1 for @duration polled
3200 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3201 * beginning of the stable state. Because DET gets stuck at 1 on
3202 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3203 * until timeout then returns 0 if DET is stable at 1.
3204 *
d4b2bab4
TH
3205 * @timeout is further limited by @deadline. The sooner of the
3206 * two is used.
3207 *
d7bb4cc7
TH
3208 * LOCKING:
3209 * Kernel thread context (may sleep)
3210 *
3211 * RETURNS:
3212 * 0 on success, -errno on failure.
3213 */
d4b2bab4
TH
3214int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3215 unsigned long deadline)
7a7921e8 3216{
d7bb4cc7 3217 unsigned long interval_msec = params[0];
d4b2bab4
TH
3218 unsigned long duration = msecs_to_jiffies(params[1]);
3219 unsigned long last_jiffies, t;
d7bb4cc7
TH
3220 u32 last, cur;
3221 int rc;
3222
d4b2bab4
TH
3223 t = jiffies + msecs_to_jiffies(params[2]);
3224 if (time_before(t, deadline))
3225 deadline = t;
3226
d7bb4cc7
TH
3227 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3228 return rc;
3229 cur &= 0xf;
3230
3231 last = cur;
3232 last_jiffies = jiffies;
3233
3234 while (1) {
3235 msleep(interval_msec);
3236 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3237 return rc;
3238 cur &= 0xf;
3239
3240 /* DET stable? */
3241 if (cur == last) {
d4b2bab4 3242 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3243 continue;
3244 if (time_after(jiffies, last_jiffies + duration))
3245 return 0;
3246 continue;
3247 }
3248
3249 /* unstable, start over */
3250 last = cur;
3251 last_jiffies = jiffies;
3252
d4b2bab4
TH
3253 /* check deadline */
3254 if (time_after(jiffies, deadline))
d7bb4cc7
TH
3255 return -EBUSY;
3256 }
3257}
3258
3259/**
3260 * sata_phy_resume - resume SATA phy
3261 * @ap: ATA port to resume SATA phy for
3262 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3263 * @deadline: deadline jiffies for the operation
d7bb4cc7
TH
3264 *
3265 * Resume SATA phy of @ap and debounce it.
3266 *
3267 * LOCKING:
3268 * Kernel thread context (may sleep)
3269 *
3270 * RETURNS:
3271 * 0 on success, -errno on failure.
3272 */
d4b2bab4
TH
3273int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3274 unsigned long deadline)
d7bb4cc7
TH
3275{
3276 u32 scontrol;
81952c54
TH
3277 int rc;
3278
3279 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3280 return rc;
7a7921e8 3281
852ee16a 3282 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
3283
3284 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3285 return rc;
7a7921e8 3286
d7bb4cc7
TH
3287 /* Some PHYs react badly if SStatus is pounded immediately
3288 * after resuming. Delay 200ms before debouncing.
3289 */
3290 msleep(200);
7a7921e8 3291
d4b2bab4 3292 return sata_phy_debounce(ap, params, deadline);
7a7921e8
TH
3293}
3294
f5914a46
TH
3295/**
3296 * ata_std_prereset - prepare for reset
3297 * @ap: ATA port to be reset
d4b2bab4 3298 * @deadline: deadline jiffies for the operation
f5914a46 3299 *
b8cffc6a
TH
3300 * @ap is about to be reset. Initialize it. Failure from
3301 * prereset makes libata abort whole reset sequence and give up
3302 * that port, so prereset should be best-effort. It does its
3303 * best to prepare for reset sequence but if things go wrong, it
3304 * should just whine, not fail.
f5914a46
TH
3305 *
3306 * LOCKING:
3307 * Kernel thread context (may sleep)
3308 *
3309 * RETURNS:
3310 * 0 on success, -errno otherwise.
3311 */
d4b2bab4 3312int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
f5914a46
TH
3313{
3314 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 3315 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3316 int rc;
3317
31daabda 3318 /* handle link resume */
28324304
TH
3319 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3320 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3321 ehc->i.action |= ATA_EH_HARDRESET;
3322
f5914a46
TH
3323 /* if we're about to do hardreset, nothing more to do */
3324 if (ehc->i.action & ATA_EH_HARDRESET)
3325 return 0;
3326
3327 /* if SATA, resume phy */
a16abc0b 3328 if (ap->flags & ATA_FLAG_SATA) {
d4b2bab4 3329 rc = sata_phy_resume(ap, timing, deadline);
b8cffc6a
TH
3330 /* whine about phy resume failure but proceed */
3331 if (rc && rc != -EOPNOTSUPP)
f5914a46
TH
3332 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3333 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3334 }
3335
3336 /* Wait for !BSY if the controller can wait for the first D2H
3337 * Reg FIS and we don't know that no device is attached.
3338 */
b8cffc6a
TH
3339 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3340 rc = ata_wait_ready(ap, deadline);
6dffaf61 3341 if (rc && rc != -ENODEV) {
b8cffc6a
TH
3342 ata_port_printk(ap, KERN_WARNING, "device not ready "
3343 "(errno=%d), forcing hardreset\n", rc);
3344 ehc->i.action |= ATA_EH_HARDRESET;
3345 }
3346 }
f5914a46
TH
3347
3348 return 0;
3349}
3350
c2bd5804
TH
3351/**
3352 * ata_std_softreset - reset host port via ATA SRST
3353 * @ap: port to reset
c2bd5804 3354 * @classes: resulting classes of attached devices
d4b2bab4 3355 * @deadline: deadline jiffies for the operation
c2bd5804 3356 *
52783c5d 3357 * Reset host port using ATA SRST.
c2bd5804
TH
3358 *
3359 * LOCKING:
3360 * Kernel thread context (may sleep)
3361 *
3362 * RETURNS:
3363 * 0 on success, -errno otherwise.
3364 */
d4b2bab4
TH
3365int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3366 unsigned long deadline)
c2bd5804
TH
3367{
3368 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3369 unsigned int devmask = 0;
3370 int rc;
c2bd5804
TH
3371 u8 err;
3372
3373 DPRINTK("ENTER\n");
3374
81952c54 3375 if (ata_port_offline(ap)) {
3a39746a
TH
3376 classes[0] = ATA_DEV_NONE;
3377 goto out;
3378 }
3379
c2bd5804
TH
3380 /* determine if device 0/1 are present */
3381 if (ata_devchk(ap, 0))
3382 devmask |= (1 << 0);
3383 if (slave_possible && ata_devchk(ap, 1))
3384 devmask |= (1 << 1);
3385
c2bd5804
TH
3386 /* select device 0 again */
3387 ap->ops->dev_select(ap, 0);
3388
3389 /* issue bus reset */
3390 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3391 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c
TH
3392 /* if link is occupied, -ENODEV too is an error */
3393 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
d4b2bab4
TH
3394 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3395 return rc;
c2bd5804
TH
3396 }
3397
3398 /* determine by signature whether we have ATA or ATAPI devices */
3399 classes[0] = ata_dev_try_classify(ap, 0, &err);
3400 if (slave_possible && err != 0x81)
3401 classes[1] = ata_dev_try_classify(ap, 1, &err);
3402
3a39746a 3403 out:
c2bd5804
TH
3404 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3405 return 0;
3406}
3407
3408/**
b6103f6d 3409 * sata_port_hardreset - reset port via SATA phy reset
c2bd5804 3410 * @ap: port to reset
b6103f6d 3411 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3412 * @deadline: deadline jiffies for the operation
c2bd5804
TH
3413 *
3414 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
3415 *
3416 * LOCKING:
3417 * Kernel thread context (may sleep)
3418 *
3419 * RETURNS:
3420 * 0 on success, -errno otherwise.
3421 */
d4b2bab4
TH
3422int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3423 unsigned long deadline)
c2bd5804 3424{
852ee16a 3425 u32 scontrol;
81952c54 3426 int rc;
852ee16a 3427
c2bd5804
TH
3428 DPRINTK("ENTER\n");
3429
3c567b7d 3430 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
3431 /* SATA spec says nothing about how to reconfigure
3432 * spd. To be on the safe side, turn off phy during
3433 * reconfiguration. This works for at least ICH7 AHCI
3434 * and Sil3124.
3435 */
81952c54 3436 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3437 goto out;
81952c54 3438
a34b6fc0 3439 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54
TH
3440
3441 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
b6103f6d 3442 goto out;
1c3fae4d 3443
3c567b7d 3444 sata_set_spd(ap);
1c3fae4d
TH
3445 }
3446
3447 /* issue phy wake/reset */
81952c54 3448 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
b6103f6d 3449 goto out;
81952c54 3450
852ee16a 3451 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
3452
3453 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
b6103f6d 3454 goto out;
c2bd5804 3455
1c3fae4d 3456 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3457 * 10.4.2 says at least 1 ms.
3458 */
3459 msleep(1);
3460
1c3fae4d 3461 /* bring phy back */
d4b2bab4 3462 rc = sata_phy_resume(ap, timing, deadline);
b6103f6d
TH
3463 out:
3464 DPRINTK("EXIT, rc=%d\n", rc);
3465 return rc;
3466}
3467
3468/**
3469 * sata_std_hardreset - reset host port via SATA phy reset
3470 * @ap: port to reset
3471 * @class: resulting class of attached device
d4b2bab4 3472 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3473 *
3474 * SATA phy-reset host port using DET bits of SControl register,
3475 * wait for !BSY and classify the attached device.
3476 *
3477 * LOCKING:
3478 * Kernel thread context (may sleep)
3479 *
3480 * RETURNS:
3481 * 0 on success, -errno otherwise.
3482 */
d4b2bab4
TH
3483int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3484 unsigned long deadline)
b6103f6d
TH
3485{
3486 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3487 int rc;
3488
3489 DPRINTK("ENTER\n");
3490
3491 /* do hardreset */
d4b2bab4 3492 rc = sata_port_hardreset(ap, timing, deadline);
b6103f6d
TH
3493 if (rc) {
3494 ata_port_printk(ap, KERN_ERR,
3495 "COMRESET failed (errno=%d)\n", rc);
3496 return rc;
3497 }
c2bd5804 3498
c2bd5804 3499 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 3500 if (ata_port_offline(ap)) {
c2bd5804
TH
3501 *class = ATA_DEV_NONE;
3502 DPRINTK("EXIT, link offline\n");
3503 return 0;
3504 }
3505
34fee227
TH
3506 /* wait a while before checking status, see SRST for more info */
3507 msleep(150);
3508
d4b2bab4 3509 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3510 /* link occupied, -ENODEV too is an error */
3511 if (rc) {
f15a1daf 3512 ata_port_printk(ap, KERN_ERR,
d4b2bab4
TH
3513 "COMRESET failed (errno=%d)\n", rc);
3514 return rc;
c2bd5804
TH
3515 }
3516
3a39746a
TH
3517 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3518
c2bd5804
TH
3519 *class = ata_dev_try_classify(ap, 0, NULL);
3520
3521 DPRINTK("EXIT, class=%u\n", *class);
3522 return 0;
3523}
3524
3525/**
3526 * ata_std_postreset - standard postreset callback
3527 * @ap: the target ata_port
3528 * @classes: classes of attached devices
3529 *
3530 * This function is invoked after a successful reset. Note that
3531 * the device might have been reset more than once using
3532 * different reset methods before postreset is invoked.
c2bd5804 3533 *
c2bd5804
TH
3534 * LOCKING:
3535 * Kernel thread context (may sleep)
3536 */
3537void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3538{
dc2b3515
TH
3539 u32 serror;
3540
c2bd5804
TH
3541 DPRINTK("ENTER\n");
3542
c2bd5804 3543 /* print link status */
81952c54 3544 sata_print_link_status(ap);
c2bd5804 3545
dc2b3515
TH
3546 /* clear SError */
3547 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3548 sata_scr_write(ap, SCR_ERROR, serror);
3549
3a39746a 3550 /* re-enable interrupts */
83625006
AI
3551 if (!ap->ops->error_handler)
3552 ap->ops->irq_on(ap);
c2bd5804
TH
3553
3554 /* is double-select really necessary? */
3555 if (classes[0] != ATA_DEV_NONE)
3556 ap->ops->dev_select(ap, 1);
3557 if (classes[1] != ATA_DEV_NONE)
3558 ap->ops->dev_select(ap, 0);
3559
3a39746a
TH
3560 /* bail out if no device is present */
3561 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3562 DPRINTK("EXIT, no device\n");
3563 return;
3564 }
3565
3566 /* set up device control */
0d5ff566
TH
3567 if (ap->ioaddr.ctl_addr)
3568 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3569
3570 DPRINTK("EXIT\n");
3571}
3572
623a3128
TH
3573/**
3574 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3575 * @dev: device to compare against
3576 * @new_class: class of the new device
3577 * @new_id: IDENTIFY page of the new device
3578 *
3579 * Compare @new_class and @new_id against @dev and determine
3580 * whether @dev is the device indicated by @new_class and
3581 * @new_id.
3582 *
3583 * LOCKING:
3584 * None.
3585 *
3586 * RETURNS:
3587 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3588 */
3373efd8
TH
3589static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3590 const u16 *new_id)
623a3128
TH
3591{
3592 const u16 *old_id = dev->id;
a0cf733b
TH
3593 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3594 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3595
3596 if (dev->class != new_class) {
f15a1daf
TH
3597 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3598 dev->class, new_class);
623a3128
TH
3599 return 0;
3600 }
3601
a0cf733b
TH
3602 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3603 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3604 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3605 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3606
3607 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3608 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3609 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3610 return 0;
3611 }
3612
3613 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3614 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3615 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3616 return 0;
3617 }
3618
623a3128
TH
3619 return 1;
3620}
3621
3622/**
fe30911b 3623 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3624 * @dev: target ATA device
bff04647 3625 * @readid_flags: read ID flags
623a3128
TH
3626 *
3627 * Re-read IDENTIFY page and make sure @dev is still attached to
3628 * the port.
3629 *
3630 * LOCKING:
3631 * Kernel thread context (may sleep)
3632 *
3633 * RETURNS:
3634 * 0 on success, negative errno otherwise
3635 */
fe30911b 3636int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3637{
5eb45c02 3638 unsigned int class = dev->class;
f15a1daf 3639 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
3640 int rc;
3641
fe635c7e 3642 /* read ID data */
bff04647 3643 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3644 if (rc)
fe30911b 3645 return rc;
623a3128
TH
3646
3647 /* is the device still there? */
fe30911b
TH
3648 if (!ata_dev_same_device(dev, class, id))
3649 return -ENODEV;
623a3128 3650
fe635c7e 3651 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3652 return 0;
3653}
3654
3655/**
3656 * ata_dev_revalidate - Revalidate ATA device
3657 * @dev: device to revalidate
3658 * @readid_flags: read ID flags
3659 *
3660 * Re-read IDENTIFY page, make sure @dev is still attached to the
3661 * port and reconfigure it according to the new IDENTIFY page.
3662 *
3663 * LOCKING:
3664 * Kernel thread context (may sleep)
3665 *
3666 * RETURNS:
3667 * 0 on success, negative errno otherwise
3668 */
3669int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3670{
6ddcd3b0 3671 u64 n_sectors = dev->n_sectors;
fe30911b
TH
3672 int rc;
3673
3674 if (!ata_dev_enabled(dev))
3675 return -ENODEV;
3676
3677 /* re-read ID */
3678 rc = ata_dev_reread_id(dev, readid_flags);
3679 if (rc)
3680 goto fail;
623a3128
TH
3681
3682 /* configure device according to the new ID */
efdaedc4 3683 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3684 if (rc)
3685 goto fail;
3686
3687 /* verify n_sectors hasn't changed */
3688 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3689 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3690 "%llu != %llu\n",
3691 (unsigned long long)n_sectors,
3692 (unsigned long long)dev->n_sectors);
3693 rc = -ENODEV;
3694 goto fail;
3695 }
3696
3697 return 0;
623a3128
TH
3698
3699 fail:
f15a1daf 3700 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
3701 return rc;
3702}
3703
6919a0a6
AC
3704struct ata_blacklist_entry {
3705 const char *model_num;
3706 const char *model_rev;
3707 unsigned long horkage;
3708};
3709
3710static const struct ata_blacklist_entry ata_device_blacklist [] = {
3711 /* Devices with DMA related problems under Linux */
3712 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3713 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3714 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3715 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3716 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3717 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3718 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3719 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3720 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3721 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3722 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3723 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3724 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3725 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3726 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3727 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3728 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3729 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3730 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3731 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3732 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3733 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3734 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3735 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3736 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3737 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
3738 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3739 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3740 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
39f19886 3741 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
5acd50f6 3742 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
39ce7128
TH
3743 { "IOMEGA ZIP 250 ATAPI Floppy",
3744 NULL, ATA_HORKAGE_NODMA },
6919a0a6 3745
18d6e9d5 3746 /* Weird ATAPI devices */
40a1d531 3747 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 3748
6919a0a6
AC
3749 /* Devices we expect to fail diagnostics */
3750
3751 /* Devices where NCQ should be avoided */
3752 /* NCQ is slow */
3753 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
3754 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3755 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30
PR
3756 /* NCQ is broken */
3757 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
471e44b2 3758 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
96442925
JA
3759 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3760 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
36e337d0
RH
3761 /* Blacklist entries taken from Silicon Image 3124/3132
3762 Windows driver .inf file - also several Linux problem reports */
3763 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3764 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3765 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
3766 /* Drives which do spurious command completion */
3767 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 3768 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
e14cbfa6 3769 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
2f8fcebb 3770 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
6919a0a6
AC
3771
3772 /* Devices with NCQ limits */
3773
3774 /* End Marker */
3775 { }
1da177e4 3776};
2e9edbf8 3777
6919a0a6 3778unsigned long ata_device_blacklisted(const struct ata_device *dev)
1da177e4 3779{
8bfa79fc
TH
3780 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3781 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 3782 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 3783
8bfa79fc
TH
3784 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3785 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 3786
6919a0a6 3787 while (ad->model_num) {
8bfa79fc 3788 if (!strcmp(ad->model_num, model_num)) {
6919a0a6
AC
3789 if (ad->model_rev == NULL)
3790 return ad->horkage;
8bfa79fc 3791 if (!strcmp(ad->model_rev, model_rev))
6919a0a6 3792 return ad->horkage;
f4b15fef 3793 }
6919a0a6 3794 ad++;
f4b15fef 3795 }
1da177e4
LT
3796 return 0;
3797}
3798
6919a0a6
AC
3799static int ata_dma_blacklisted(const struct ata_device *dev)
3800{
3801 /* We don't support polling DMA.
3802 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3803 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3804 */
3805 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3806 (dev->flags & ATA_DFLAG_CDB_INTR))
3807 return 1;
3808 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3809}
3810
a6d5a51c
TH
3811/**
3812 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3813 * @dev: Device to compute xfermask for
3814 *
acf356b1
TH
3815 * Compute supported xfermask of @dev and store it in
3816 * dev->*_mask. This function is responsible for applying all
3817 * known limits including host controller limits, device
3818 * blacklist, etc...
a6d5a51c
TH
3819 *
3820 * LOCKING:
3821 * None.
a6d5a51c 3822 */
3373efd8 3823static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3824{
3373efd8 3825 struct ata_port *ap = dev->ap;
cca3974e 3826 struct ata_host *host = ap->host;
a6d5a51c 3827 unsigned long xfer_mask;
1da177e4 3828
37deecb5 3829 /* controller modes available */
565083e1
TH
3830 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3831 ap->mwdma_mask, ap->udma_mask);
3832
8343f889 3833 /* drive modes available */
37deecb5
TH
3834 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3835 dev->mwdma_mask, dev->udma_mask);
3836 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3837
b352e57d
AC
3838 /*
3839 * CFA Advanced TrueIDE timings are not allowed on a shared
3840 * cable
3841 */
3842 if (ata_dev_pair(dev)) {
3843 /* No PIO5 or PIO6 */
3844 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3845 /* No MWDMA3 or MWDMA 4 */
3846 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3847 }
3848
37deecb5
TH
3849 if (ata_dma_blacklisted(dev)) {
3850 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3851 ata_dev_printk(dev, KERN_WARNING,
3852 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3853 }
a6d5a51c 3854
14d66ab7
PV
3855 if ((host->flags & ATA_HOST_SIMPLEX) &&
3856 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
3857 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3858 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3859 "other device, disabling DMA\n");
5444a6f4 3860 }
565083e1 3861
e424675f
JG
3862 if (ap->flags & ATA_FLAG_NO_IORDY)
3863 xfer_mask &= ata_pio_mask_no_iordy(dev);
3864
5444a6f4 3865 if (ap->ops->mode_filter)
a76b62ca 3866 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 3867
8343f889
RH
3868 /* Apply cable rule here. Don't apply it early because when
3869 * we handle hot plug the cable type can itself change.
3870 * Check this last so that we know if the transfer rate was
3871 * solely limited by the cable.
3872 * Unknown or 80 wire cables reported host side are checked
3873 * drive side as well. Cases where we know a 40wire cable
3874 * is used safely for 80 are not checked here.
3875 */
3876 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3877 /* UDMA/44 or higher would be available */
3878 if((ap->cbl == ATA_CBL_PATA40) ||
3879 (ata_drive_40wire(dev->id) &&
3880 (ap->cbl == ATA_CBL_PATA_UNK ||
3881 ap->cbl == ATA_CBL_PATA80))) {
3882 ata_dev_printk(dev, KERN_WARNING,
3883 "limited to UDMA/33 due to 40-wire cable\n");
3884 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3885 }
3886
565083e1
TH
3887 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3888 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3889}
3890
1da177e4
LT
3891/**
3892 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3893 * @dev: Device to which command will be sent
3894 *
780a87f7
JG
3895 * Issue SET FEATURES - XFER MODE command to device @dev
3896 * on port @ap.
3897 *
1da177e4 3898 * LOCKING:
0cba632b 3899 * PCI/etc. bus probe sem.
83206a29
TH
3900 *
3901 * RETURNS:
3902 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3903 */
3904
3373efd8 3905static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3906{
a0123703 3907 struct ata_taskfile tf;
83206a29 3908 unsigned int err_mask;
1da177e4
LT
3909
3910 /* set up set-features taskfile */
3911 DPRINTK("set features - xfer mode\n");
3912
464cf177
TH
3913 /* Some controllers and ATAPI devices show flaky interrupt
3914 * behavior after setting xfer mode. Use polling instead.
3915 */
3373efd8 3916 ata_tf_init(dev, &tf);
a0123703
TH
3917 tf.command = ATA_CMD_SET_FEATURES;
3918 tf.feature = SETFEATURES_XFER;
464cf177 3919 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
3920 tf.protocol = ATA_PROT_NODATA;
3921 tf.nsect = dev->xfer_mode;
1da177e4 3922
3373efd8 3923 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3924
83206a29
TH
3925 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3926 return err_mask;
1da177e4
LT
3927}
3928
8bf62ece
AL
3929/**
3930 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3931 * @dev: Device to which command will be sent
e2a7f77a
RD
3932 * @heads: Number of heads (taskfile parameter)
3933 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3934 *
3935 * LOCKING:
6aff8f1f
TH
3936 * Kernel thread context (may sleep)
3937 *
3938 * RETURNS:
3939 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3940 */
3373efd8
TH
3941static unsigned int ata_dev_init_params(struct ata_device *dev,
3942 u16 heads, u16 sectors)
8bf62ece 3943{
a0123703 3944 struct ata_taskfile tf;
6aff8f1f 3945 unsigned int err_mask;
8bf62ece
AL
3946
3947 /* Number of sectors per track 1-255. Number of heads 1-16 */
3948 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3949 return AC_ERR_INVALID;
8bf62ece
AL
3950
3951 /* set up init dev params taskfile */
3952 DPRINTK("init dev params \n");
3953
3373efd8 3954 ata_tf_init(dev, &tf);
a0123703
TH
3955 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3956 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3957 tf.protocol = ATA_PROT_NODATA;
3958 tf.nsect = sectors;
3959 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3960
3373efd8 3961 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3962
6aff8f1f
TH
3963 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3964 return err_mask;
8bf62ece
AL
3965}
3966
1da177e4 3967/**
0cba632b
JG
3968 * ata_sg_clean - Unmap DMA memory associated with command
3969 * @qc: Command containing DMA memory to be released
3970 *
3971 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3972 *
3973 * LOCKING:
cca3974e 3974 * spin_lock_irqsave(host lock)
1da177e4 3975 */
70e6ad0c 3976void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
3977{
3978 struct ata_port *ap = qc->ap;
cedc9a47 3979 struct scatterlist *sg = qc->__sg;
1da177e4 3980 int dir = qc->dma_dir;
cedc9a47 3981 void *pad_buf = NULL;
1da177e4 3982
a4631474
TH
3983 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3984 WARN_ON(sg == NULL);
1da177e4
LT
3985
3986 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3987 WARN_ON(qc->n_elem > 1);
1da177e4 3988
2c13b7ce 3989 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3990
cedc9a47
JG
3991 /* if we padded the buffer out to 32-bit bound, and data
3992 * xfer direction is from-device, we must copy from the
3993 * pad buffer back into the supplied buffer
3994 */
3995 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3996 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3997
3998 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3999 if (qc->n_elem)
2f1f610b 4000 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
4001 /* restore last sg */
4002 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4003 if (pad_buf) {
4004 struct scatterlist *psg = &qc->pad_sgent;
4005 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4006 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4007 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4008 }
4009 } else {
2e242fa9 4010 if (qc->n_elem)
2f1f610b 4011 dma_unmap_single(ap->dev,
e1410f2d
JG
4012 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4013 dir);
cedc9a47
JG
4014 /* restore sg */
4015 sg->length += qc->pad_len;
4016 if (pad_buf)
4017 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4018 pad_buf, qc->pad_len);
4019 }
1da177e4
LT
4020
4021 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4022 qc->__sg = NULL;
1da177e4
LT
4023}
4024
4025/**
4026 * ata_fill_sg - Fill PCI IDE PRD table
4027 * @qc: Metadata associated with taskfile to be transferred
4028 *
780a87f7
JG
4029 * Fill PCI IDE PRD (scatter-gather) table with segments
4030 * associated with the current disk command.
4031 *
1da177e4 4032 * LOCKING:
cca3974e 4033 * spin_lock_irqsave(host lock)
1da177e4
LT
4034 *
4035 */
4036static void ata_fill_sg(struct ata_queued_cmd *qc)
4037{
1da177e4 4038 struct ata_port *ap = qc->ap;
cedc9a47
JG
4039 struct scatterlist *sg;
4040 unsigned int idx;
1da177e4 4041
a4631474 4042 WARN_ON(qc->__sg == NULL);
f131883e 4043 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4044
4045 idx = 0;
cedc9a47 4046 ata_for_each_sg(sg, qc) {
1da177e4
LT
4047 u32 addr, offset;
4048 u32 sg_len, len;
4049
4050 /* determine if physical DMA addr spans 64K boundary.
4051 * Note h/w doesn't support 64-bit, so we unconditionally
4052 * truncate dma_addr_t to u32.
4053 */
4054 addr = (u32) sg_dma_address(sg);
4055 sg_len = sg_dma_len(sg);
4056
4057 while (sg_len) {
4058 offset = addr & 0xffff;
4059 len = sg_len;
4060 if ((offset + sg_len) > 0x10000)
4061 len = 0x10000 - offset;
4062
4063 ap->prd[idx].addr = cpu_to_le32(addr);
4064 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4065 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4066
4067 idx++;
4068 sg_len -= len;
4069 addr += len;
4070 }
4071 }
4072
4073 if (idx)
4074 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4075}
b9a4197e 4076
d26fc955
AC
4077/**
4078 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4079 * @qc: Metadata associated with taskfile to be transferred
4080 *
4081 * Fill PCI IDE PRD (scatter-gather) table with segments
4082 * associated with the current disk command. Perform the fill
4083 * so that we avoid writing any length 64K records for
4084 * controllers that don't follow the spec.
4085 *
4086 * LOCKING:
4087 * spin_lock_irqsave(host lock)
4088 *
4089 */
4090static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4091{
4092 struct ata_port *ap = qc->ap;
4093 struct scatterlist *sg;
4094 unsigned int idx;
4095
4096 WARN_ON(qc->__sg == NULL);
4097 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4098
4099 idx = 0;
4100 ata_for_each_sg(sg, qc) {
4101 u32 addr, offset;
4102 u32 sg_len, len, blen;
4103
4104 /* determine if physical DMA addr spans 64K boundary.
4105 * Note h/w doesn't support 64-bit, so we unconditionally
4106 * truncate dma_addr_t to u32.
4107 */
4108 addr = (u32) sg_dma_address(sg);
4109 sg_len = sg_dma_len(sg);
4110
4111 while (sg_len) {
4112 offset = addr & 0xffff;
4113 len = sg_len;
4114 if ((offset + sg_len) > 0x10000)
4115 len = 0x10000 - offset;
4116
4117 blen = len & 0xffff;
4118 ap->prd[idx].addr = cpu_to_le32(addr);
4119 if (blen == 0) {
4120 /* Some PATA chipsets like the CS5530 can't
4121 cope with 0x0000 meaning 64K as the spec says */
4122 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4123 blen = 0x8000;
4124 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4125 }
4126 ap->prd[idx].flags_len = cpu_to_le32(blen);
4127 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4128
4129 idx++;
4130 sg_len -= len;
4131 addr += len;
4132 }
4133 }
4134
4135 if (idx)
4136 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4137}
4138
1da177e4
LT
4139/**
4140 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4141 * @qc: Metadata associated with taskfile to check
4142 *
780a87f7
JG
4143 * Allow low-level driver to filter ATA PACKET commands, returning
4144 * a status indicating whether or not it is OK to use DMA for the
4145 * supplied PACKET command.
4146 *
1da177e4 4147 * LOCKING:
cca3974e 4148 * spin_lock_irqsave(host lock)
0cba632b 4149 *
1da177e4
LT
4150 * RETURNS: 0 when ATAPI DMA can be used
4151 * nonzero otherwise
4152 */
4153int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4154{
4155 struct ata_port *ap = qc->ap;
b9a4197e
TH
4156
4157 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4158 * few ATAPI devices choke on such DMA requests.
4159 */
4160 if (unlikely(qc->nbytes & 15))
4161 return 1;
6f23a31d 4162
1da177e4 4163 if (ap->ops->check_atapi_dma)
b9a4197e 4164 return ap->ops->check_atapi_dma(qc);
1da177e4 4165
b9a4197e 4166 return 0;
1da177e4 4167}
b9a4197e 4168
1da177e4
LT
4169/**
4170 * ata_qc_prep - Prepare taskfile for submission
4171 * @qc: Metadata associated with taskfile to be prepared
4172 *
780a87f7
JG
4173 * Prepare ATA taskfile for submission.
4174 *
1da177e4 4175 * LOCKING:
cca3974e 4176 * spin_lock_irqsave(host lock)
1da177e4
LT
4177 */
4178void ata_qc_prep(struct ata_queued_cmd *qc)
4179{
4180 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4181 return;
4182
4183 ata_fill_sg(qc);
4184}
4185
d26fc955
AC
4186/**
4187 * ata_dumb_qc_prep - Prepare taskfile for submission
4188 * @qc: Metadata associated with taskfile to be prepared
4189 *
4190 * Prepare ATA taskfile for submission.
4191 *
4192 * LOCKING:
4193 * spin_lock_irqsave(host lock)
4194 */
4195void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4196{
4197 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4198 return;
4199
4200 ata_fill_sg_dumb(qc);
4201}
4202
e46834cd
BK
4203void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4204
0cba632b
JG
4205/**
4206 * ata_sg_init_one - Associate command with memory buffer
4207 * @qc: Command to be associated
4208 * @buf: Memory buffer
4209 * @buflen: Length of memory buffer, in bytes.
4210 *
4211 * Initialize the data-related elements of queued_cmd @qc
4212 * to point to a single memory buffer, @buf of byte length @buflen.
4213 *
4214 * LOCKING:
cca3974e 4215 * spin_lock_irqsave(host lock)
0cba632b
JG
4216 */
4217
1da177e4
LT
4218void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4219{
1da177e4
LT
4220 qc->flags |= ATA_QCFLAG_SINGLE;
4221
cedc9a47 4222 qc->__sg = &qc->sgent;
1da177e4 4223 qc->n_elem = 1;
cedc9a47 4224 qc->orig_n_elem = 1;
1da177e4 4225 qc->buf_virt = buf;
233277ca 4226 qc->nbytes = buflen;
1da177e4 4227
61c0596c 4228 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4229}
4230
0cba632b
JG
4231/**
4232 * ata_sg_init - Associate command with scatter-gather table.
4233 * @qc: Command to be associated
4234 * @sg: Scatter-gather table.
4235 * @n_elem: Number of elements in s/g table.
4236 *
4237 * Initialize the data-related elements of queued_cmd @qc
4238 * to point to a scatter-gather table @sg, containing @n_elem
4239 * elements.
4240 *
4241 * LOCKING:
cca3974e 4242 * spin_lock_irqsave(host lock)
0cba632b
JG
4243 */
4244
1da177e4
LT
4245void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4246 unsigned int n_elem)
4247{
4248 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4249 qc->__sg = sg;
1da177e4 4250 qc->n_elem = n_elem;
cedc9a47 4251 qc->orig_n_elem = n_elem;
1da177e4
LT
4252}
4253
4254/**
0cba632b
JG
4255 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4256 * @qc: Command with memory buffer to be mapped.
4257 *
4258 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4259 *
4260 * LOCKING:
cca3974e 4261 * spin_lock_irqsave(host lock)
1da177e4
LT
4262 *
4263 * RETURNS:
0cba632b 4264 * Zero on success, negative on error.
1da177e4
LT
4265 */
4266
4267static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4268{
4269 struct ata_port *ap = qc->ap;
4270 int dir = qc->dma_dir;
cedc9a47 4271 struct scatterlist *sg = qc->__sg;
1da177e4 4272 dma_addr_t dma_address;
2e242fa9 4273 int trim_sg = 0;
1da177e4 4274
cedc9a47
JG
4275 /* we must lengthen transfers to end on a 32-bit boundary */
4276 qc->pad_len = sg->length & 3;
4277 if (qc->pad_len) {
4278 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4279 struct scatterlist *psg = &qc->pad_sgent;
4280
a4631474 4281 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4282
4283 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4284
4285 if (qc->tf.flags & ATA_TFLAG_WRITE)
4286 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4287 qc->pad_len);
4288
4289 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4290 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4291 /* trim sg */
4292 sg->length -= qc->pad_len;
2e242fa9
TH
4293 if (sg->length == 0)
4294 trim_sg = 1;
cedc9a47
JG
4295
4296 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4297 sg->length, qc->pad_len);
4298 }
4299
2e242fa9
TH
4300 if (trim_sg) {
4301 qc->n_elem--;
e1410f2d
JG
4302 goto skip_map;
4303 }
4304
2f1f610b 4305 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4306 sg->length, dir);
537a95d9
TH
4307 if (dma_mapping_error(dma_address)) {
4308 /* restore sg */
4309 sg->length += qc->pad_len;
1da177e4 4310 return -1;
537a95d9 4311 }
1da177e4
LT
4312
4313 sg_dma_address(sg) = dma_address;
32529e01 4314 sg_dma_len(sg) = sg->length;
1da177e4 4315
2e242fa9 4316skip_map:
1da177e4
LT
4317 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4318 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4319
4320 return 0;
4321}
4322
4323/**
0cba632b
JG
4324 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4325 * @qc: Command with scatter-gather table to be mapped.
4326 *
4327 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4328 *
4329 * LOCKING:
cca3974e 4330 * spin_lock_irqsave(host lock)
1da177e4
LT
4331 *
4332 * RETURNS:
0cba632b 4333 * Zero on success, negative on error.
1da177e4
LT
4334 *
4335 */
4336
4337static int ata_sg_setup(struct ata_queued_cmd *qc)
4338{
4339 struct ata_port *ap = qc->ap;
cedc9a47
JG
4340 struct scatterlist *sg = qc->__sg;
4341 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 4342 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4343
44877b4e 4344 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4345 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4346
cedc9a47
JG
4347 /* we must lengthen transfers to end on a 32-bit boundary */
4348 qc->pad_len = lsg->length & 3;
4349 if (qc->pad_len) {
4350 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4351 struct scatterlist *psg = &qc->pad_sgent;
4352 unsigned int offset;
4353
a4631474 4354 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4355
4356 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4357
4358 /*
4359 * psg->page/offset are used to copy to-be-written
4360 * data in this function or read data in ata_sg_clean.
4361 */
4362 offset = lsg->offset + lsg->length - qc->pad_len;
4363 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4364 psg->offset = offset_in_page(offset);
4365
4366 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4367 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4368 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4369 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4370 }
4371
4372 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4373 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4374 /* trim last sg */
4375 lsg->length -= qc->pad_len;
e1410f2d
JG
4376 if (lsg->length == 0)
4377 trim_sg = 1;
cedc9a47
JG
4378
4379 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4380 qc->n_elem - 1, lsg->length, qc->pad_len);
4381 }
4382
e1410f2d
JG
4383 pre_n_elem = qc->n_elem;
4384 if (trim_sg && pre_n_elem)
4385 pre_n_elem--;
4386
4387 if (!pre_n_elem) {
4388 n_elem = 0;
4389 goto skip_map;
4390 }
4391
1da177e4 4392 dir = qc->dma_dir;
2f1f610b 4393 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4394 if (n_elem < 1) {
4395 /* restore last sg */
4396 lsg->length += qc->pad_len;
1da177e4 4397 return -1;
537a95d9 4398 }
1da177e4
LT
4399
4400 DPRINTK("%d sg elements mapped\n", n_elem);
4401
e1410f2d 4402skip_map:
1da177e4
LT
4403 qc->n_elem = n_elem;
4404
4405 return 0;
4406}
4407
0baab86b 4408/**
c893a3ae 4409 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4410 * @buf: Buffer to swap
4411 * @buf_words: Number of 16-bit words in buffer.
4412 *
4413 * Swap halves of 16-bit words if needed to convert from
4414 * little-endian byte order to native cpu byte order, or
4415 * vice-versa.
4416 *
4417 * LOCKING:
6f0ef4fa 4418 * Inherited from caller.
0baab86b 4419 */
1da177e4
LT
4420void swap_buf_le16(u16 *buf, unsigned int buf_words)
4421{
4422#ifdef __BIG_ENDIAN
4423 unsigned int i;
4424
4425 for (i = 0; i < buf_words; i++)
4426 buf[i] = le16_to_cpu(buf[i]);
4427#endif /* __BIG_ENDIAN */
4428}
4429
6ae4cfb5 4430/**
0d5ff566 4431 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4432 * @adev: device to target
6ae4cfb5
AL
4433 * @buf: data buffer
4434 * @buflen: buffer length
344babaa 4435 * @write_data: read/write
6ae4cfb5
AL
4436 *
4437 * Transfer data from/to the device data register by PIO.
4438 *
4439 * LOCKING:
4440 * Inherited from caller.
6ae4cfb5 4441 */
0d5ff566
TH
4442void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4443 unsigned int buflen, int write_data)
1da177e4 4444{
a6b2c5d4 4445 struct ata_port *ap = adev->ap;
6ae4cfb5 4446 unsigned int words = buflen >> 1;
1da177e4 4447
6ae4cfb5 4448 /* Transfer multiple of 2 bytes */
1da177e4 4449 if (write_data)
0d5ff566 4450 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4451 else
0d5ff566 4452 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4453
4454 /* Transfer trailing 1 byte, if any. */
4455 if (unlikely(buflen & 0x01)) {
4456 u16 align_buf[1] = { 0 };
4457 unsigned char *trailing_buf = buf + buflen - 1;
4458
4459 if (write_data) {
4460 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4461 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4462 } else {
0d5ff566 4463 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4464 memcpy(trailing_buf, align_buf, 1);
4465 }
4466 }
1da177e4
LT
4467}
4468
75e99585 4469/**
0d5ff566 4470 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
4471 * @adev: device to target
4472 * @buf: data buffer
4473 * @buflen: buffer length
4474 * @write_data: read/write
4475 *
88574551 4476 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
4477 * transfer with interrupts disabled.
4478 *
4479 * LOCKING:
4480 * Inherited from caller.
4481 */
0d5ff566
TH
4482void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4483 unsigned int buflen, int write_data)
75e99585
AC
4484{
4485 unsigned long flags;
4486 local_irq_save(flags);
0d5ff566 4487 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
4488 local_irq_restore(flags);
4489}
4490
4491
6ae4cfb5 4492/**
5a5dbd18 4493 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
4494 * @qc: Command on going
4495 *
5a5dbd18 4496 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
4497 *
4498 * LOCKING:
4499 * Inherited from caller.
4500 */
4501
1da177e4
LT
4502static void ata_pio_sector(struct ata_queued_cmd *qc)
4503{
4504 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4505 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4506 struct ata_port *ap = qc->ap;
4507 struct page *page;
4508 unsigned int offset;
4509 unsigned char *buf;
4510
5a5dbd18 4511 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 4512 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4513
4514 page = sg[qc->cursg].page;
726f0785 4515 offset = sg[qc->cursg].offset + qc->cursg_ofs;
1da177e4
LT
4516
4517 /* get the current page and offset */
4518 page = nth_page(page, (offset >> PAGE_SHIFT));
4519 offset %= PAGE_SIZE;
4520
1da177e4
LT
4521 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4522
91b8b313
AL
4523 if (PageHighMem(page)) {
4524 unsigned long flags;
4525
a6b2c5d4 4526 /* FIXME: use a bounce buffer */
91b8b313
AL
4527 local_irq_save(flags);
4528 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4529
91b8b313 4530 /* do the actual data transfer */
5a5dbd18 4531 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 4532
91b8b313
AL
4533 kunmap_atomic(buf, KM_IRQ0);
4534 local_irq_restore(flags);
4535 } else {
4536 buf = page_address(page);
5a5dbd18 4537 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 4538 }
1da177e4 4539
5a5dbd18
ML
4540 qc->curbytes += qc->sect_size;
4541 qc->cursg_ofs += qc->sect_size;
1da177e4 4542
726f0785 4543 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
1da177e4
LT
4544 qc->cursg++;
4545 qc->cursg_ofs = 0;
4546 }
1da177e4 4547}
1da177e4 4548
07f6f7d0 4549/**
5a5dbd18 4550 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
4551 * @qc: Command on going
4552 *
5a5dbd18 4553 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
4554 * ATA device for the DRQ request.
4555 *
4556 * LOCKING:
4557 * Inherited from caller.
4558 */
1da177e4 4559
07f6f7d0
AL
4560static void ata_pio_sectors(struct ata_queued_cmd *qc)
4561{
4562 if (is_multi_taskfile(&qc->tf)) {
4563 /* READ/WRITE MULTIPLE */
4564 unsigned int nsect;
4565
587005de 4566 WARN_ON(qc->dev->multi_count == 0);
1da177e4 4567
5a5dbd18 4568 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 4569 qc->dev->multi_count);
07f6f7d0
AL
4570 while (nsect--)
4571 ata_pio_sector(qc);
4572 } else
4573 ata_pio_sector(qc);
4574}
4575
c71c1857
AL
4576/**
4577 * atapi_send_cdb - Write CDB bytes to hardware
4578 * @ap: Port to which ATAPI device is attached.
4579 * @qc: Taskfile currently active
4580 *
4581 * When device has indicated its readiness to accept
4582 * a CDB, this function is called. Send the CDB.
4583 *
4584 * LOCKING:
4585 * caller.
4586 */
4587
4588static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4589{
4590 /* send SCSI cdb */
4591 DPRINTK("send cdb\n");
db024d53 4592 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 4593
a6b2c5d4 4594 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
4595 ata_altstatus(ap); /* flush */
4596
4597 switch (qc->tf.protocol) {
4598 case ATA_PROT_ATAPI:
4599 ap->hsm_task_state = HSM_ST;
4600 break;
4601 case ATA_PROT_ATAPI_NODATA:
4602 ap->hsm_task_state = HSM_ST_LAST;
4603 break;
4604 case ATA_PROT_ATAPI_DMA:
4605 ap->hsm_task_state = HSM_ST_LAST;
4606 /* initiate bmdma */
4607 ap->ops->bmdma_start(qc);
4608 break;
4609 }
1da177e4
LT
4610}
4611
6ae4cfb5
AL
4612/**
4613 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4614 * @qc: Command on going
4615 * @bytes: number of bytes
4616 *
4617 * Transfer Transfer data from/to the ATAPI device.
4618 *
4619 * LOCKING:
4620 * Inherited from caller.
4621 *
4622 */
4623
1da177e4
LT
4624static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4625{
4626 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 4627 struct scatterlist *sg = qc->__sg;
1da177e4
LT
4628 struct ata_port *ap = qc->ap;
4629 struct page *page;
4630 unsigned char *buf;
4631 unsigned int offset, count;
4632
563a6e1f 4633 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 4634 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4635
4636next_sg:
563a6e1f 4637 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 4638 /*
563a6e1f
AL
4639 * The end of qc->sg is reached and the device expects
4640 * more data to transfer. In order not to overrun qc->sg
4641 * and fulfill length specified in the byte count register,
4642 * - for read case, discard trailing data from the device
4643 * - for write case, padding zero data to the device
4644 */
4645 u16 pad_buf[1] = { 0 };
4646 unsigned int words = bytes >> 1;
4647 unsigned int i;
4648
4649 if (words) /* warning if bytes > 1 */
f15a1daf
TH
4650 ata_dev_printk(qc->dev, KERN_WARNING,
4651 "%u bytes trailing data\n", bytes);
563a6e1f
AL
4652
4653 for (i = 0; i < words; i++)
a6b2c5d4 4654 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 4655
14be71f4 4656 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
4657 return;
4658 }
4659
cedc9a47 4660 sg = &qc->__sg[qc->cursg];
1da177e4 4661
1da177e4
LT
4662 page = sg->page;
4663 offset = sg->offset + qc->cursg_ofs;
4664
4665 /* get the current page and offset */
4666 page = nth_page(page, (offset >> PAGE_SHIFT));
4667 offset %= PAGE_SIZE;
4668
6952df03 4669 /* don't overrun current sg */
32529e01 4670 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
4671
4672 /* don't cross page boundaries */
4673 count = min(count, (unsigned int)PAGE_SIZE - offset);
4674
7282aa4b
AL
4675 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4676
91b8b313
AL
4677 if (PageHighMem(page)) {
4678 unsigned long flags;
4679
a6b2c5d4 4680 /* FIXME: use bounce buffer */
91b8b313
AL
4681 local_irq_save(flags);
4682 buf = kmap_atomic(page, KM_IRQ0);
083958d3 4683
91b8b313 4684 /* do the actual data transfer */
a6b2c5d4 4685 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 4686
91b8b313
AL
4687 kunmap_atomic(buf, KM_IRQ0);
4688 local_irq_restore(flags);
4689 } else {
4690 buf = page_address(page);
a6b2c5d4 4691 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 4692 }
1da177e4
LT
4693
4694 bytes -= count;
4695 qc->curbytes += count;
4696 qc->cursg_ofs += count;
4697
32529e01 4698 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
4699 qc->cursg++;
4700 qc->cursg_ofs = 0;
4701 }
4702
563a6e1f 4703 if (bytes)
1da177e4 4704 goto next_sg;
1da177e4
LT
4705}
4706
6ae4cfb5
AL
4707/**
4708 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4709 * @qc: Command on going
4710 *
4711 * Transfer Transfer data from/to the ATAPI device.
4712 *
4713 * LOCKING:
4714 * Inherited from caller.
6ae4cfb5
AL
4715 */
4716
1da177e4
LT
4717static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4718{
4719 struct ata_port *ap = qc->ap;
4720 struct ata_device *dev = qc->dev;
4721 unsigned int ireason, bc_lo, bc_hi, bytes;
4722 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4723
eec4c3f3
AL
4724 /* Abuse qc->result_tf for temp storage of intermediate TF
4725 * here to save some kernel stack usage.
4726 * For normal completion, qc->result_tf is not relevant. For
4727 * error, qc->result_tf is later overwritten by ata_qc_complete().
4728 * So, the correctness of qc->result_tf is not affected.
4729 */
4730 ap->ops->tf_read(ap, &qc->result_tf);
4731 ireason = qc->result_tf.nsect;
4732 bc_lo = qc->result_tf.lbam;
4733 bc_hi = qc->result_tf.lbah;
1da177e4
LT
4734 bytes = (bc_hi << 8) | bc_lo;
4735
4736 /* shall be cleared to zero, indicating xfer of data */
4737 if (ireason & (1 << 0))
4738 goto err_out;
4739
4740 /* make sure transfer direction matches expected */
4741 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4742 if (do_write != i_write)
4743 goto err_out;
4744
44877b4e 4745 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 4746
1da177e4
LT
4747 __atapi_pio_bytes(qc, bytes);
4748
4749 return;
4750
4751err_out:
f15a1daf 4752 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 4753 qc->err_mask |= AC_ERR_HSM;
14be71f4 4754 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
4755}
4756
4757/**
c234fb00
AL
4758 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4759 * @ap: the target ata_port
4760 * @qc: qc on going
1da177e4 4761 *
c234fb00
AL
4762 * RETURNS:
4763 * 1 if ok in workqueue, 0 otherwise.
1da177e4 4764 */
c234fb00
AL
4765
4766static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 4767{
c234fb00
AL
4768 if (qc->tf.flags & ATA_TFLAG_POLLING)
4769 return 1;
1da177e4 4770
c234fb00
AL
4771 if (ap->hsm_task_state == HSM_ST_FIRST) {
4772 if (qc->tf.protocol == ATA_PROT_PIO &&
4773 (qc->tf.flags & ATA_TFLAG_WRITE))
4774 return 1;
1da177e4 4775
c234fb00
AL
4776 if (is_atapi_taskfile(&qc->tf) &&
4777 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4778 return 1;
fe79e683
AL
4779 }
4780
c234fb00
AL
4781 return 0;
4782}
1da177e4 4783
c17ea20d
TH
4784/**
4785 * ata_hsm_qc_complete - finish a qc running on standard HSM
4786 * @qc: Command to complete
4787 * @in_wq: 1 if called from workqueue, 0 otherwise
4788 *
4789 * Finish @qc which is running on standard HSM.
4790 *
4791 * LOCKING:
cca3974e 4792 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
4793 * Otherwise, none on entry and grabs host lock.
4794 */
4795static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4796{
4797 struct ata_port *ap = qc->ap;
4798 unsigned long flags;
4799
4800 if (ap->ops->error_handler) {
4801 if (in_wq) {
ba6a1308 4802 spin_lock_irqsave(ap->lock, flags);
c17ea20d 4803
cca3974e
JG
4804 /* EH might have kicked in while host lock is
4805 * released.
c17ea20d
TH
4806 */
4807 qc = ata_qc_from_tag(ap, qc->tag);
4808 if (qc) {
4809 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 4810 ap->ops->irq_on(ap);
c17ea20d
TH
4811 ata_qc_complete(qc);
4812 } else
4813 ata_port_freeze(ap);
4814 }
4815
ba6a1308 4816 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4817 } else {
4818 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4819 ata_qc_complete(qc);
4820 else
4821 ata_port_freeze(ap);
4822 }
4823 } else {
4824 if (in_wq) {
ba6a1308 4825 spin_lock_irqsave(ap->lock, flags);
83625006 4826 ap->ops->irq_on(ap);
c17ea20d 4827 ata_qc_complete(qc);
ba6a1308 4828 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
4829 } else
4830 ata_qc_complete(qc);
4831 }
4832}
4833
bb5cb290
AL
4834/**
4835 * ata_hsm_move - move the HSM to the next state.
4836 * @ap: the target ata_port
4837 * @qc: qc on going
4838 * @status: current device status
4839 * @in_wq: 1 if called from workqueue, 0 otherwise
4840 *
4841 * RETURNS:
4842 * 1 when poll next status needed, 0 otherwise.
4843 */
9a1004d0
TH
4844int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4845 u8 status, int in_wq)
e2cec771 4846{
bb5cb290
AL
4847 unsigned long flags = 0;
4848 int poll_next;
4849
6912ccd5
AL
4850 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4851
bb5cb290
AL
4852 /* Make sure ata_qc_issue_prot() does not throw things
4853 * like DMA polling into the workqueue. Notice that
4854 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4855 */
c234fb00 4856 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4857
e2cec771 4858fsm_start:
999bb6f4 4859 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 4860 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 4861
e2cec771
AL
4862 switch (ap->hsm_task_state) {
4863 case HSM_ST_FIRST:
bb5cb290
AL
4864 /* Send first data block or PACKET CDB */
4865
4866 /* If polling, we will stay in the work queue after
4867 * sending the data. Otherwise, interrupt handler
4868 * takes over after sending the data.
4869 */
4870 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4871
e2cec771 4872 /* check device status */
3655d1d3
AL
4873 if (unlikely((status & ATA_DRQ) == 0)) {
4874 /* handle BSY=0, DRQ=0 as error */
4875 if (likely(status & (ATA_ERR | ATA_DF)))
4876 /* device stops HSM for abort/error */
4877 qc->err_mask |= AC_ERR_DEV;
4878 else
4879 /* HSM violation. Let EH handle this */
4880 qc->err_mask |= AC_ERR_HSM;
4881
14be71f4 4882 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4883 goto fsm_start;
1da177e4
LT
4884 }
4885
71601958
AL
4886 /* Device should not ask for data transfer (DRQ=1)
4887 * when it finds something wrong.
eee6c32f
AL
4888 * We ignore DRQ here and stop the HSM by
4889 * changing hsm_task_state to HSM_ST_ERR and
4890 * let the EH abort the command or reset the device.
71601958
AL
4891 */
4892 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4893 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4894 "error, dev_stat 0x%X\n", status);
3655d1d3 4895 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4896 ap->hsm_task_state = HSM_ST_ERR;
4897 goto fsm_start;
71601958 4898 }
1da177e4 4899
bb5cb290
AL
4900 /* Send the CDB (atapi) or the first data block (ata pio out).
4901 * During the state transition, interrupt handler shouldn't
4902 * be invoked before the data transfer is complete and
4903 * hsm_task_state is changed. Hence, the following locking.
4904 */
4905 if (in_wq)
ba6a1308 4906 spin_lock_irqsave(ap->lock, flags);
1da177e4 4907
bb5cb290
AL
4908 if (qc->tf.protocol == ATA_PROT_PIO) {
4909 /* PIO data out protocol.
4910 * send first data block.
4911 */
0565c26d 4912
bb5cb290
AL
4913 /* ata_pio_sectors() might change the state
4914 * to HSM_ST_LAST. so, the state is changed here
4915 * before ata_pio_sectors().
4916 */
4917 ap->hsm_task_state = HSM_ST;
4918 ata_pio_sectors(qc);
4919 ata_altstatus(ap); /* flush */
4920 } else
4921 /* send CDB */
4922 atapi_send_cdb(ap, qc);
4923
4924 if (in_wq)
ba6a1308 4925 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4926
4927 /* if polling, ata_pio_task() handles the rest.
4928 * otherwise, interrupt handler takes over from here.
4929 */
e2cec771 4930 break;
1c848984 4931
e2cec771
AL
4932 case HSM_ST:
4933 /* complete command or read/write the data register */
4934 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4935 /* ATAPI PIO protocol */
4936 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4937 /* No more data to transfer or device error.
4938 * Device error will be tagged in HSM_ST_LAST.
4939 */
e2cec771
AL
4940 ap->hsm_task_state = HSM_ST_LAST;
4941 goto fsm_start;
4942 }
1da177e4 4943
71601958
AL
4944 /* Device should not ask for data transfer (DRQ=1)
4945 * when it finds something wrong.
eee6c32f
AL
4946 * We ignore DRQ here and stop the HSM by
4947 * changing hsm_task_state to HSM_ST_ERR and
4948 * let the EH abort the command or reset the device.
71601958
AL
4949 */
4950 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
4951 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4952 "device error, dev_stat 0x%X\n",
4953 status);
3655d1d3 4954 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4955 ap->hsm_task_state = HSM_ST_ERR;
4956 goto fsm_start;
71601958 4957 }
1da177e4 4958
e2cec771 4959 atapi_pio_bytes(qc);
7fb6ec28 4960
e2cec771
AL
4961 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4962 /* bad ireason reported by device */
4963 goto fsm_start;
1da177e4 4964
e2cec771
AL
4965 } else {
4966 /* ATA PIO protocol */
4967 if (unlikely((status & ATA_DRQ) == 0)) {
4968 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4969 if (likely(status & (ATA_ERR | ATA_DF)))
4970 /* device stops HSM for abort/error */
4971 qc->err_mask |= AC_ERR_DEV;
4972 else
55a8e2c8
TH
4973 /* HSM violation. Let EH handle this.
4974 * Phantom devices also trigger this
4975 * condition. Mark hint.
4976 */
4977 qc->err_mask |= AC_ERR_HSM |
4978 AC_ERR_NODEV_HINT;
3655d1d3 4979
e2cec771
AL
4980 ap->hsm_task_state = HSM_ST_ERR;
4981 goto fsm_start;
4982 }
1da177e4 4983
eee6c32f
AL
4984 /* For PIO reads, some devices may ask for
4985 * data transfer (DRQ=1) alone with ERR=1.
4986 * We respect DRQ here and transfer one
4987 * block of junk data before changing the
4988 * hsm_task_state to HSM_ST_ERR.
4989 *
4990 * For PIO writes, ERR=1 DRQ=1 doesn't make
4991 * sense since the data block has been
4992 * transferred to the device.
71601958
AL
4993 */
4994 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4995 /* data might be corrputed */
4996 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4997
4998 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4999 ata_pio_sectors(qc);
5000 ata_altstatus(ap);
5001 status = ata_wait_idle(ap);
5002 }
5003
3655d1d3
AL
5004 if (status & (ATA_BUSY | ATA_DRQ))
5005 qc->err_mask |= AC_ERR_HSM;
5006
eee6c32f
AL
5007 /* ata_pio_sectors() might change the
5008 * state to HSM_ST_LAST. so, the state
5009 * is changed after ata_pio_sectors().
5010 */
5011 ap->hsm_task_state = HSM_ST_ERR;
5012 goto fsm_start;
71601958
AL
5013 }
5014
e2cec771
AL
5015 ata_pio_sectors(qc);
5016
5017 if (ap->hsm_task_state == HSM_ST_LAST &&
5018 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5019 /* all data read */
5020 ata_altstatus(ap);
52a32205 5021 status = ata_wait_idle(ap);
e2cec771
AL
5022 goto fsm_start;
5023 }
5024 }
5025
5026 ata_altstatus(ap); /* flush */
bb5cb290 5027 poll_next = 1;
1da177e4
LT
5028 break;
5029
14be71f4 5030 case HSM_ST_LAST:
6912ccd5
AL
5031 if (unlikely(!ata_ok(status))) {
5032 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5033 ap->hsm_task_state = HSM_ST_ERR;
5034 goto fsm_start;
5035 }
5036
5037 /* no more data to transfer */
4332a771 5038 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5039 ap->print_id, qc->dev->devno, status);
e2cec771 5040
6912ccd5
AL
5041 WARN_ON(qc->err_mask);
5042
e2cec771 5043 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5044
e2cec771 5045 /* complete taskfile transaction */
c17ea20d 5046 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5047
5048 poll_next = 0;
1da177e4
LT
5049 break;
5050
14be71f4 5051 case HSM_ST_ERR:
e2cec771
AL
5052 /* make sure qc->err_mask is available to
5053 * know what's wrong and recover
5054 */
5055 WARN_ON(qc->err_mask == 0);
5056
5057 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5058
999bb6f4 5059 /* complete taskfile transaction */
c17ea20d 5060 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5061
5062 poll_next = 0;
e2cec771
AL
5063 break;
5064 default:
bb5cb290 5065 poll_next = 0;
6912ccd5 5066 BUG();
1da177e4
LT
5067 }
5068
bb5cb290 5069 return poll_next;
1da177e4
LT
5070}
5071
65f27f38 5072static void ata_pio_task(struct work_struct *work)
8061f5f0 5073{
65f27f38
DH
5074 struct ata_port *ap =
5075 container_of(work, struct ata_port, port_task.work);
5076 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5077 u8 status;
a1af3734 5078 int poll_next;
8061f5f0 5079
7fb6ec28 5080fsm_start:
a1af3734 5081 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5082
a1af3734
AL
5083 /*
5084 * This is purely heuristic. This is a fast path.
5085 * Sometimes when we enter, BSY will be cleared in
5086 * a chk-status or two. If not, the drive is probably seeking
5087 * or something. Snooze for a couple msecs, then
5088 * chk-status again. If still busy, queue delayed work.
5089 */
5090 status = ata_busy_wait(ap, ATA_BUSY, 5);
5091 if (status & ATA_BUSY) {
5092 msleep(2);
5093 status = ata_busy_wait(ap, ATA_BUSY, 10);
5094 if (status & ATA_BUSY) {
31ce6dae 5095 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5096 return;
5097 }
8061f5f0
TH
5098 }
5099
a1af3734
AL
5100 /* move the HSM */
5101 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5102
a1af3734
AL
5103 /* another command or interrupt handler
5104 * may be running at this point.
5105 */
5106 if (poll_next)
7fb6ec28 5107 goto fsm_start;
8061f5f0
TH
5108}
5109
1da177e4
LT
5110/**
5111 * ata_qc_new - Request an available ATA command, for queueing
5112 * @ap: Port associated with device @dev
5113 * @dev: Device from whom we request an available command structure
5114 *
5115 * LOCKING:
0cba632b 5116 * None.
1da177e4
LT
5117 */
5118
5119static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5120{
5121 struct ata_queued_cmd *qc = NULL;
5122 unsigned int i;
5123
e3180499 5124 /* no command while frozen */
b51e9e5d 5125 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5126 return NULL;
5127
2ab7db1f
TH
5128 /* the last tag is reserved for internal command. */
5129 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5130 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5131 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5132 break;
5133 }
5134
5135 if (qc)
5136 qc->tag = i;
5137
5138 return qc;
5139}
5140
5141/**
5142 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5143 * @dev: Device from whom we request an available command structure
5144 *
5145 * LOCKING:
0cba632b 5146 * None.
1da177e4
LT
5147 */
5148
3373efd8 5149struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5150{
3373efd8 5151 struct ata_port *ap = dev->ap;
1da177e4
LT
5152 struct ata_queued_cmd *qc;
5153
5154 qc = ata_qc_new(ap);
5155 if (qc) {
1da177e4
LT
5156 qc->scsicmd = NULL;
5157 qc->ap = ap;
5158 qc->dev = dev;
1da177e4 5159
2c13b7ce 5160 ata_qc_reinit(qc);
1da177e4
LT
5161 }
5162
5163 return qc;
5164}
5165
1da177e4
LT
5166/**
5167 * ata_qc_free - free unused ata_queued_cmd
5168 * @qc: Command to complete
5169 *
5170 * Designed to free unused ata_queued_cmd object
5171 * in case something prevents using it.
5172 *
5173 * LOCKING:
cca3974e 5174 * spin_lock_irqsave(host lock)
1da177e4
LT
5175 */
5176void ata_qc_free(struct ata_queued_cmd *qc)
5177{
4ba946e9
TH
5178 struct ata_port *ap = qc->ap;
5179 unsigned int tag;
5180
a4631474 5181 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5182
4ba946e9
TH
5183 qc->flags = 0;
5184 tag = qc->tag;
5185 if (likely(ata_tag_valid(tag))) {
4ba946e9 5186 qc->tag = ATA_TAG_POISON;
6cec4a39 5187 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5188 }
1da177e4
LT
5189}
5190
76014427 5191void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5192{
dedaf2b0
TH
5193 struct ata_port *ap = qc->ap;
5194
a4631474
TH
5195 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5196 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5197
5198 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5199 ata_sg_clean(qc);
5200
7401abf2 5201 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
5202 if (qc->tf.protocol == ATA_PROT_NCQ)
5203 ap->sactive &= ~(1 << qc->tag);
5204 else
5205 ap->active_tag = ATA_TAG_POISON;
7401abf2 5206
3f3791d3
AL
5207 /* atapi: mark qc as inactive to prevent the interrupt handler
5208 * from completing the command twice later, before the error handler
5209 * is called. (when rc != 0 and atapi request sense is needed)
5210 */
5211 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5212 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5213
1da177e4 5214 /* call completion callback */
77853bf2 5215 qc->complete_fn(qc);
1da177e4
LT
5216}
5217
39599a53
TH
5218static void fill_result_tf(struct ata_queued_cmd *qc)
5219{
5220 struct ata_port *ap = qc->ap;
5221
39599a53 5222 qc->result_tf.flags = qc->tf.flags;
4742d54f 5223 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5224}
5225
f686bcb8
TH
5226/**
5227 * ata_qc_complete - Complete an active ATA command
5228 * @qc: Command to complete
5229 * @err_mask: ATA Status register contents
5230 *
5231 * Indicate to the mid and upper layers that an ATA
5232 * command has completed, with either an ok or not-ok status.
5233 *
5234 * LOCKING:
cca3974e 5235 * spin_lock_irqsave(host lock)
f686bcb8
TH
5236 */
5237void ata_qc_complete(struct ata_queued_cmd *qc)
5238{
5239 struct ata_port *ap = qc->ap;
5240
5241 /* XXX: New EH and old EH use different mechanisms to
5242 * synchronize EH with regular execution path.
5243 *
5244 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5245 * Normal execution path is responsible for not accessing a
5246 * failed qc. libata core enforces the rule by returning NULL
5247 * from ata_qc_from_tag() for failed qcs.
5248 *
5249 * Old EH depends on ata_qc_complete() nullifying completion
5250 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5251 * not synchronize with interrupt handler. Only PIO task is
5252 * taken care of.
5253 */
5254 if (ap->ops->error_handler) {
b51e9e5d 5255 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5256
5257 if (unlikely(qc->err_mask))
5258 qc->flags |= ATA_QCFLAG_FAILED;
5259
5260 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5261 if (!ata_tag_internal(qc->tag)) {
5262 /* always fill result TF for failed qc */
39599a53 5263 fill_result_tf(qc);
f686bcb8
TH
5264 ata_qc_schedule_eh(qc);
5265 return;
5266 }
5267 }
5268
5269 /* read result TF if requested */
5270 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5271 fill_result_tf(qc);
f686bcb8
TH
5272
5273 __ata_qc_complete(qc);
5274 } else {
5275 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5276 return;
5277
5278 /* read result TF if failed or requested */
5279 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5280 fill_result_tf(qc);
f686bcb8
TH
5281
5282 __ata_qc_complete(qc);
5283 }
5284}
5285
dedaf2b0
TH
5286/**
5287 * ata_qc_complete_multiple - Complete multiple qcs successfully
5288 * @ap: port in question
5289 * @qc_active: new qc_active mask
5290 * @finish_qc: LLDD callback invoked before completing a qc
5291 *
5292 * Complete in-flight commands. This functions is meant to be
5293 * called from low-level driver's interrupt routine to complete
5294 * requests normally. ap->qc_active and @qc_active is compared
5295 * and commands are completed accordingly.
5296 *
5297 * LOCKING:
cca3974e 5298 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5299 *
5300 * RETURNS:
5301 * Number of completed commands on success, -errno otherwise.
5302 */
5303int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5304 void (*finish_qc)(struct ata_queued_cmd *))
5305{
5306 int nr_done = 0;
5307 u32 done_mask;
5308 int i;
5309
5310 done_mask = ap->qc_active ^ qc_active;
5311
5312 if (unlikely(done_mask & qc_active)) {
5313 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5314 "(%08x->%08x)\n", ap->qc_active, qc_active);
5315 return -EINVAL;
5316 }
5317
5318 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5319 struct ata_queued_cmd *qc;
5320
5321 if (!(done_mask & (1 << i)))
5322 continue;
5323
5324 if ((qc = ata_qc_from_tag(ap, i))) {
5325 if (finish_qc)
5326 finish_qc(qc);
5327 ata_qc_complete(qc);
5328 nr_done++;
5329 }
5330 }
5331
5332 return nr_done;
5333}
5334
1da177e4
LT
5335static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5336{
5337 struct ata_port *ap = qc->ap;
5338
5339 switch (qc->tf.protocol) {
3dc1d881 5340 case ATA_PROT_NCQ:
1da177e4
LT
5341 case ATA_PROT_DMA:
5342 case ATA_PROT_ATAPI_DMA:
5343 return 1;
5344
5345 case ATA_PROT_ATAPI:
5346 case ATA_PROT_PIO:
1da177e4
LT
5347 if (ap->flags & ATA_FLAG_PIO_DMA)
5348 return 1;
5349
5350 /* fall through */
5351
5352 default:
5353 return 0;
5354 }
5355
5356 /* never reached */
5357}
5358
5359/**
5360 * ata_qc_issue - issue taskfile to device
5361 * @qc: command to issue to device
5362 *
5363 * Prepare an ATA command to submission to device.
5364 * This includes mapping the data into a DMA-able
5365 * area, filling in the S/G table, and finally
5366 * writing the taskfile to hardware, starting the command.
5367 *
5368 * LOCKING:
cca3974e 5369 * spin_lock_irqsave(host lock)
1da177e4 5370 */
8e0e694a 5371void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5372{
5373 struct ata_port *ap = qc->ap;
5374
dedaf2b0
TH
5375 /* Make sure only one non-NCQ command is outstanding. The
5376 * check is skipped for old EH because it reuses active qc to
5377 * request ATAPI sense.
5378 */
5379 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5380
5381 if (qc->tf.protocol == ATA_PROT_NCQ) {
5382 WARN_ON(ap->sactive & (1 << qc->tag));
5383 ap->sactive |= 1 << qc->tag;
5384 } else {
5385 WARN_ON(ap->sactive);
5386 ap->active_tag = qc->tag;
5387 }
5388
e4a70e76 5389 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5390 ap->qc_active |= 1 << qc->tag;
e4a70e76 5391
1da177e4
LT
5392 if (ata_should_dma_map(qc)) {
5393 if (qc->flags & ATA_QCFLAG_SG) {
5394 if (ata_sg_setup(qc))
8e436af9 5395 goto sg_err;
1da177e4
LT
5396 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5397 if (ata_sg_setup_one(qc))
8e436af9 5398 goto sg_err;
1da177e4
LT
5399 }
5400 } else {
5401 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5402 }
5403
5404 ap->ops->qc_prep(qc);
5405
8e0e694a
TH
5406 qc->err_mask |= ap->ops->qc_issue(qc);
5407 if (unlikely(qc->err_mask))
5408 goto err;
5409 return;
1da177e4 5410
8e436af9
TH
5411sg_err:
5412 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
5413 qc->err_mask |= AC_ERR_SYSTEM;
5414err:
5415 ata_qc_complete(qc);
1da177e4
LT
5416}
5417
5418/**
5419 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5420 * @qc: command to issue to device
5421 *
5422 * Using various libata functions and hooks, this function
5423 * starts an ATA command. ATA commands are grouped into
5424 * classes called "protocols", and issuing each type of protocol
5425 * is slightly different.
5426 *
0baab86b
EF
5427 * May be used as the qc_issue() entry in ata_port_operations.
5428 *
1da177e4 5429 * LOCKING:
cca3974e 5430 * spin_lock_irqsave(host lock)
1da177e4
LT
5431 *
5432 * RETURNS:
9a3d9eb0 5433 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
5434 */
5435
9a3d9eb0 5436unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
5437{
5438 struct ata_port *ap = qc->ap;
5439
e50362ec
AL
5440 /* Use polling pio if the LLD doesn't handle
5441 * interrupt driven pio and atapi CDB interrupt.
5442 */
5443 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5444 switch (qc->tf.protocol) {
5445 case ATA_PROT_PIO:
e3472cbe 5446 case ATA_PROT_NODATA:
e50362ec
AL
5447 case ATA_PROT_ATAPI:
5448 case ATA_PROT_ATAPI_NODATA:
5449 qc->tf.flags |= ATA_TFLAG_POLLING;
5450 break;
5451 case ATA_PROT_ATAPI_DMA:
5452 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 5453 /* see ata_dma_blacklisted() */
e50362ec
AL
5454 BUG();
5455 break;
5456 default:
5457 break;
5458 }
5459 }
5460
312f7da2 5461 /* select the device */
1da177e4
LT
5462 ata_dev_select(ap, qc->dev->devno, 1, 0);
5463
312f7da2 5464 /* start the command */
1da177e4
LT
5465 switch (qc->tf.protocol) {
5466 case ATA_PROT_NODATA:
312f7da2
AL
5467 if (qc->tf.flags & ATA_TFLAG_POLLING)
5468 ata_qc_set_polling(qc);
5469
e5338254 5470 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
5471 ap->hsm_task_state = HSM_ST_LAST;
5472
5473 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5474 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 5475
1da177e4
LT
5476 break;
5477
5478 case ATA_PROT_DMA:
587005de 5479 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5480
1da177e4
LT
5481 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5482 ap->ops->bmdma_setup(qc); /* set up bmdma */
5483 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 5484 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5485 break;
5486
312f7da2
AL
5487 case ATA_PROT_PIO:
5488 if (qc->tf.flags & ATA_TFLAG_POLLING)
5489 ata_qc_set_polling(qc);
1da177e4 5490
e5338254 5491 ata_tf_to_host(ap, &qc->tf);
312f7da2 5492
54f00389
AL
5493 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5494 /* PIO data out protocol */
5495 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 5496 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5497
5498 /* always send first data block using
e27486db 5499 * the ata_pio_task() codepath.
54f00389 5500 */
312f7da2 5501 } else {
54f00389
AL
5502 /* PIO data in protocol */
5503 ap->hsm_task_state = HSM_ST;
5504
5505 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 5506 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
5507
5508 /* if polling, ata_pio_task() handles the rest.
5509 * otherwise, interrupt handler takes over from here.
5510 */
312f7da2
AL
5511 }
5512
1da177e4
LT
5513 break;
5514
1da177e4 5515 case ATA_PROT_ATAPI:
1da177e4 5516 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
5517 if (qc->tf.flags & ATA_TFLAG_POLLING)
5518 ata_qc_set_polling(qc);
5519
e5338254 5520 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 5521
312f7da2
AL
5522 ap->hsm_task_state = HSM_ST_FIRST;
5523
5524 /* send cdb by polling if no cdb interrupt */
5525 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5526 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 5527 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5528 break;
5529
5530 case ATA_PROT_ATAPI_DMA:
587005de 5531 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 5532
1da177e4
LT
5533 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5534 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
5535 ap->hsm_task_state = HSM_ST_FIRST;
5536
5537 /* send cdb by polling if no cdb interrupt */
5538 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 5539 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
5540 break;
5541
5542 default:
5543 WARN_ON(1);
9a3d9eb0 5544 return AC_ERR_SYSTEM;
1da177e4
LT
5545 }
5546
5547 return 0;
5548}
5549
1da177e4
LT
5550/**
5551 * ata_host_intr - Handle host interrupt for given (port, task)
5552 * @ap: Port on which interrupt arrived (possibly...)
5553 * @qc: Taskfile currently active in engine
5554 *
5555 * Handle host interrupt for given queued command. Currently,
5556 * only DMA interrupts are handled. All other commands are
5557 * handled via polling with interrupts disabled (nIEN bit).
5558 *
5559 * LOCKING:
cca3974e 5560 * spin_lock_irqsave(host lock)
1da177e4
LT
5561 *
5562 * RETURNS:
5563 * One if interrupt was handled, zero if not (shared irq).
5564 */
5565
5566inline unsigned int ata_host_intr (struct ata_port *ap,
5567 struct ata_queued_cmd *qc)
5568{
ea54763f 5569 struct ata_eh_info *ehi = &ap->eh_info;
312f7da2 5570 u8 status, host_stat = 0;
1da177e4 5571
312f7da2 5572 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 5573 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 5574
312f7da2
AL
5575 /* Check whether we are expecting interrupt in this state */
5576 switch (ap->hsm_task_state) {
5577 case HSM_ST_FIRST:
6912ccd5
AL
5578 /* Some pre-ATAPI-4 devices assert INTRQ
5579 * at this state when ready to receive CDB.
5580 */
1da177e4 5581
312f7da2
AL
5582 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5583 * The flag was turned on only for atapi devices.
5584 * No need to check is_atapi_taskfile(&qc->tf) again.
5585 */
5586 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 5587 goto idle_irq;
1da177e4 5588 break;
312f7da2
AL
5589 case HSM_ST_LAST:
5590 if (qc->tf.protocol == ATA_PROT_DMA ||
5591 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5592 /* check status of DMA engine */
5593 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
5594 VPRINTK("ata%u: host_stat 0x%X\n",
5595 ap->print_id, host_stat);
312f7da2
AL
5596
5597 /* if it's not our irq... */
5598 if (!(host_stat & ATA_DMA_INTR))
5599 goto idle_irq;
5600
5601 /* before we do anything else, clear DMA-Start bit */
5602 ap->ops->bmdma_stop(qc);
a4f16610
AL
5603
5604 if (unlikely(host_stat & ATA_DMA_ERR)) {
5605 /* error when transfering data to/from memory */
5606 qc->err_mask |= AC_ERR_HOST_BUS;
5607 ap->hsm_task_state = HSM_ST_ERR;
5608 }
312f7da2
AL
5609 }
5610 break;
5611 case HSM_ST:
5612 break;
1da177e4
LT
5613 default:
5614 goto idle_irq;
5615 }
5616
312f7da2
AL
5617 /* check altstatus */
5618 status = ata_altstatus(ap);
5619 if (status & ATA_BUSY)
5620 goto idle_irq;
1da177e4 5621
312f7da2
AL
5622 /* check main status, clearing INTRQ */
5623 status = ata_chk_status(ap);
5624 if (unlikely(status & ATA_BUSY))
5625 goto idle_irq;
1da177e4 5626
312f7da2
AL
5627 /* ack bmdma irq events */
5628 ap->ops->irq_clear(ap);
1da177e4 5629
bb5cb290 5630 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
5631
5632 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5633 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5634 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5635
1da177e4
LT
5636 return 1; /* irq handled */
5637
5638idle_irq:
5639 ap->stats.idle_irq++;
5640
5641#ifdef ATA_IRQ_TRAP
5642 if ((ap->stats.idle_irq % 1000) == 0) {
83625006 5643 ap->ops->irq_ack(ap, 0); /* debug trap */
f15a1daf 5644 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 5645 return 1;
1da177e4
LT
5646 }
5647#endif
5648 return 0; /* irq not handled */
5649}
5650
5651/**
5652 * ata_interrupt - Default ATA host interrupt handler
0cba632b 5653 * @irq: irq line (unused)
cca3974e 5654 * @dev_instance: pointer to our ata_host information structure
1da177e4 5655 *
0cba632b
JG
5656 * Default interrupt handler for PCI IDE devices. Calls
5657 * ata_host_intr() for each port that is not disabled.
5658 *
1da177e4 5659 * LOCKING:
cca3974e 5660 * Obtains host lock during operation.
1da177e4
LT
5661 *
5662 * RETURNS:
0cba632b 5663 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
5664 */
5665
7d12e780 5666irqreturn_t ata_interrupt (int irq, void *dev_instance)
1da177e4 5667{
cca3974e 5668 struct ata_host *host = dev_instance;
1da177e4
LT
5669 unsigned int i;
5670 unsigned int handled = 0;
5671 unsigned long flags;
5672
5673 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 5674 spin_lock_irqsave(&host->lock, flags);
1da177e4 5675
cca3974e 5676 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
5677 struct ata_port *ap;
5678
cca3974e 5679 ap = host->ports[i];
c1389503 5680 if (ap &&
029f5468 5681 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
5682 struct ata_queued_cmd *qc;
5683
5684 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 5685 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 5686 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
5687 handled |= ata_host_intr(ap, qc);
5688 }
5689 }
5690
cca3974e 5691 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
5692
5693 return IRQ_RETVAL(handled);
5694}
5695
34bf2170
TH
5696/**
5697 * sata_scr_valid - test whether SCRs are accessible
5698 * @ap: ATA port to test SCR accessibility for
5699 *
5700 * Test whether SCRs are accessible for @ap.
5701 *
5702 * LOCKING:
5703 * None.
5704 *
5705 * RETURNS:
5706 * 1 if SCRs are accessible, 0 otherwise.
5707 */
5708int sata_scr_valid(struct ata_port *ap)
5709{
a16abc0b 5710 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5711}
5712
5713/**
5714 * sata_scr_read - read SCR register of the specified port
5715 * @ap: ATA port to read SCR for
5716 * @reg: SCR to read
5717 * @val: Place to store read value
5718 *
5719 * Read SCR register @reg of @ap into *@val. This function is
5720 * guaranteed to succeed if the cable type of the port is SATA
5721 * and the port implements ->scr_read.
5722 *
5723 * LOCKING:
5724 * None.
5725 *
5726 * RETURNS:
5727 * 0 on success, negative errno on failure.
5728 */
5729int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5730{
5731 if (sata_scr_valid(ap)) {
5732 *val = ap->ops->scr_read(ap, reg);
5733 return 0;
5734 }
5735 return -EOPNOTSUPP;
5736}
5737
5738/**
5739 * sata_scr_write - write SCR register of the specified port
5740 * @ap: ATA port to write SCR for
5741 * @reg: SCR to write
5742 * @val: value to write
5743 *
5744 * Write @val to SCR register @reg of @ap. This function is
5745 * guaranteed to succeed if the cable type of the port is SATA
5746 * and the port implements ->scr_read.
5747 *
5748 * LOCKING:
5749 * None.
5750 *
5751 * RETURNS:
5752 * 0 on success, negative errno on failure.
5753 */
5754int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5755{
5756 if (sata_scr_valid(ap)) {
5757 ap->ops->scr_write(ap, reg, val);
5758 return 0;
5759 }
5760 return -EOPNOTSUPP;
5761}
5762
5763/**
5764 * sata_scr_write_flush - write SCR register of the specified port and flush
5765 * @ap: ATA port to write SCR for
5766 * @reg: SCR to write
5767 * @val: value to write
5768 *
5769 * This function is identical to sata_scr_write() except that this
5770 * function performs flush after writing to the register.
5771 *
5772 * LOCKING:
5773 * None.
5774 *
5775 * RETURNS:
5776 * 0 on success, negative errno on failure.
5777 */
5778int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5779{
5780 if (sata_scr_valid(ap)) {
5781 ap->ops->scr_write(ap, reg, val);
5782 ap->ops->scr_read(ap, reg);
5783 return 0;
5784 }
5785 return -EOPNOTSUPP;
5786}
5787
5788/**
5789 * ata_port_online - test whether the given port is online
5790 * @ap: ATA port to test
5791 *
5792 * Test whether @ap is online. Note that this function returns 0
5793 * if online status of @ap cannot be obtained, so
5794 * ata_port_online(ap) != !ata_port_offline(ap).
5795 *
5796 * LOCKING:
5797 * None.
5798 *
5799 * RETURNS:
5800 * 1 if the port online status is available and online.
5801 */
5802int ata_port_online(struct ata_port *ap)
5803{
5804 u32 sstatus;
5805
5806 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5807 return 1;
5808 return 0;
5809}
5810
5811/**
5812 * ata_port_offline - test whether the given port is offline
5813 * @ap: ATA port to test
5814 *
5815 * Test whether @ap is offline. Note that this function returns
5816 * 0 if offline status of @ap cannot be obtained, so
5817 * ata_port_online(ap) != !ata_port_offline(ap).
5818 *
5819 * LOCKING:
5820 * None.
5821 *
5822 * RETURNS:
5823 * 1 if the port offline status is available and offline.
5824 */
5825int ata_port_offline(struct ata_port *ap)
5826{
5827 u32 sstatus;
5828
5829 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5830 return 1;
5831 return 0;
5832}
0baab86b 5833
77b08fb5 5834int ata_flush_cache(struct ata_device *dev)
9b847548 5835{
977e6b9f 5836 unsigned int err_mask;
9b847548
JA
5837 u8 cmd;
5838
5839 if (!ata_try_flush_cache(dev))
5840 return 0;
5841
6fc49adb 5842 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
5843 cmd = ATA_CMD_FLUSH_EXT;
5844 else
5845 cmd = ATA_CMD_FLUSH;
5846
977e6b9f
TH
5847 err_mask = ata_do_simple_cmd(dev, cmd);
5848 if (err_mask) {
5849 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5850 return -EIO;
5851 }
5852
5853 return 0;
9b847548
JA
5854}
5855
6ffa01d8 5856#ifdef CONFIG_PM
cca3974e
JG
5857static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5858 unsigned int action, unsigned int ehi_flags,
5859 int wait)
500530f6
TH
5860{
5861 unsigned long flags;
5862 int i, rc;
5863
cca3974e
JG
5864 for (i = 0; i < host->n_ports; i++) {
5865 struct ata_port *ap = host->ports[i];
500530f6
TH
5866
5867 /* Previous resume operation might still be in
5868 * progress. Wait for PM_PENDING to clear.
5869 */
5870 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5871 ata_port_wait_eh(ap);
5872 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5873 }
5874
5875 /* request PM ops to EH */
5876 spin_lock_irqsave(ap->lock, flags);
5877
5878 ap->pm_mesg = mesg;
5879 if (wait) {
5880 rc = 0;
5881 ap->pm_result = &rc;
5882 }
5883
5884 ap->pflags |= ATA_PFLAG_PM_PENDING;
5885 ap->eh_info.action |= action;
5886 ap->eh_info.flags |= ehi_flags;
5887
5888 ata_port_schedule_eh(ap);
5889
5890 spin_unlock_irqrestore(ap->lock, flags);
5891
5892 /* wait and check result */
5893 if (wait) {
5894 ata_port_wait_eh(ap);
5895 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5896 if (rc)
5897 return rc;
5898 }
5899 }
5900
5901 return 0;
5902}
5903
5904/**
cca3974e
JG
5905 * ata_host_suspend - suspend host
5906 * @host: host to suspend
500530f6
TH
5907 * @mesg: PM message
5908 *
cca3974e 5909 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5910 * function requests EH to perform PM operations and waits for EH
5911 * to finish.
5912 *
5913 * LOCKING:
5914 * Kernel thread context (may sleep).
5915 *
5916 * RETURNS:
5917 * 0 on success, -errno on failure.
5918 */
cca3974e 5919int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5920{
9666f400 5921 int rc;
500530f6 5922
cca3974e 5923 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
5924 if (rc == 0)
5925 host->dev->power.power_state = mesg;
500530f6
TH
5926 return rc;
5927}
5928
5929/**
cca3974e
JG
5930 * ata_host_resume - resume host
5931 * @host: host to resume
500530f6 5932 *
cca3974e 5933 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5934 * function requests EH to perform PM operations and returns.
5935 * Note that all resume operations are performed parallely.
5936 *
5937 * LOCKING:
5938 * Kernel thread context (may sleep).
5939 */
cca3974e 5940void ata_host_resume(struct ata_host *host)
500530f6 5941{
cca3974e
JG
5942 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5943 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5944 host->dev->power.power_state = PMSG_ON;
500530f6 5945}
6ffa01d8 5946#endif
500530f6 5947
c893a3ae
RD
5948/**
5949 * ata_port_start - Set port up for dma.
5950 * @ap: Port to initialize
5951 *
5952 * Called just after data structures for each port are
5953 * initialized. Allocates space for PRD table.
5954 *
5955 * May be used as the port_start() entry in ata_port_operations.
5956 *
5957 * LOCKING:
5958 * Inherited from caller.
5959 */
f0d36efd 5960int ata_port_start(struct ata_port *ap)
1da177e4 5961{
2f1f610b 5962 struct device *dev = ap->dev;
6037d6bb 5963 int rc;
1da177e4 5964
f0d36efd
TH
5965 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5966 GFP_KERNEL);
1da177e4
LT
5967 if (!ap->prd)
5968 return -ENOMEM;
5969
6037d6bb 5970 rc = ata_pad_alloc(ap, dev);
f0d36efd 5971 if (rc)
6037d6bb 5972 return rc;
1da177e4 5973
f0d36efd
TH
5974 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5975 (unsigned long long)ap->prd_dma);
1da177e4
LT
5976 return 0;
5977}
5978
3ef3b43d
TH
5979/**
5980 * ata_dev_init - Initialize an ata_device structure
5981 * @dev: Device structure to initialize
5982 *
5983 * Initialize @dev in preparation for probing.
5984 *
5985 * LOCKING:
5986 * Inherited from caller.
5987 */
5988void ata_dev_init(struct ata_device *dev)
5989{
5990 struct ata_port *ap = dev->ap;
72fa4b74
TH
5991 unsigned long flags;
5992
5a04bf4b
TH
5993 /* SATA spd limit is bound to the first device */
5994 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5995
72fa4b74
TH
5996 /* High bits of dev->flags are used to record warm plug
5997 * requests which occur asynchronously. Synchronize using
cca3974e 5998 * host lock.
72fa4b74 5999 */
ba6a1308 6000 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6001 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 6002 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6003
72fa4b74
TH
6004 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6005 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6006 dev->pio_mask = UINT_MAX;
6007 dev->mwdma_mask = UINT_MAX;
6008 dev->udma_mask = UINT_MAX;
6009}
6010
1da177e4 6011/**
f3187195
TH
6012 * ata_port_alloc - allocate and initialize basic ATA port resources
6013 * @host: ATA host this allocated port belongs to
1da177e4 6014 *
f3187195
TH
6015 * Allocate and initialize basic ATA port resources.
6016 *
6017 * RETURNS:
6018 * Allocate ATA port on success, NULL on failure.
0cba632b 6019 *
1da177e4 6020 * LOCKING:
f3187195 6021 * Inherited from calling layer (may sleep).
1da177e4 6022 */
f3187195 6023struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6024{
f3187195 6025 struct ata_port *ap;
1da177e4
LT
6026 unsigned int i;
6027
f3187195
TH
6028 DPRINTK("ENTER\n");
6029
6030 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6031 if (!ap)
6032 return NULL;
6033
f4d6d004 6034 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6035 ap->lock = &host->lock;
198e0fed 6036 ap->flags = ATA_FLAG_DISABLED;
f3187195 6037 ap->print_id = -1;
1da177e4 6038 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6039 ap->host = host;
f3187195
TH
6040 ap->dev = host->dev;
6041
5a04bf4b 6042 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
6043 ap->active_tag = ATA_TAG_POISON;
6044 ap->last_ctl = 0xFF;
bd5d825c
BP
6045
6046#if defined(ATA_VERBOSE_DEBUG)
6047 /* turn on all debugging levels */
6048 ap->msg_enable = 0x00FF;
6049#elif defined(ATA_DEBUG)
6050 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6051#else
0dd4b21f 6052 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6053#endif
1da177e4 6054
65f27f38
DH
6055 INIT_DELAYED_WORK(&ap->port_task, NULL);
6056 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6057 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6058 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6059 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 6060
838df628 6061 ap->cbl = ATA_CBL_NONE;
838df628 6062
acf356b1
TH
6063 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6064 struct ata_device *dev = &ap->device[i];
38d87234 6065 dev->ap = ap;
72fa4b74 6066 dev->devno = i;
3ef3b43d 6067 ata_dev_init(dev);
acf356b1 6068 }
1da177e4
LT
6069
6070#ifdef ATA_IRQ_TRAP
6071 ap->stats.unhandled_irq = 1;
6072 ap->stats.idle_irq = 1;
6073#endif
1da177e4 6074 return ap;
1da177e4
LT
6075}
6076
f0d36efd
TH
6077static void ata_host_release(struct device *gendev, void *res)
6078{
6079 struct ata_host *host = dev_get_drvdata(gendev);
6080 int i;
6081
6082 for (i = 0; i < host->n_ports; i++) {
6083 struct ata_port *ap = host->ports[i];
6084
ecef7253
TH
6085 if (!ap)
6086 continue;
6087
6088 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
f0d36efd 6089 ap->ops->port_stop(ap);
f0d36efd
TH
6090 }
6091
ecef7253 6092 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
f0d36efd 6093 host->ops->host_stop(host);
1aa56cca 6094
1aa506e4
TH
6095 for (i = 0; i < host->n_ports; i++) {
6096 struct ata_port *ap = host->ports[i];
6097
4911487a
TH
6098 if (!ap)
6099 continue;
6100
6101 if (ap->scsi_host)
1aa506e4
TH
6102 scsi_host_put(ap->scsi_host);
6103
4911487a 6104 kfree(ap);
1aa506e4
TH
6105 host->ports[i] = NULL;
6106 }
6107
1aa56cca 6108 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6109}
6110
f3187195
TH
6111/**
6112 * ata_host_alloc - allocate and init basic ATA host resources
6113 * @dev: generic device this host is associated with
6114 * @max_ports: maximum number of ATA ports associated with this host
6115 *
6116 * Allocate and initialize basic ATA host resources. LLD calls
6117 * this function to allocate a host, initializes it fully and
6118 * attaches it using ata_host_register().
6119 *
6120 * @max_ports ports are allocated and host->n_ports is
6121 * initialized to @max_ports. The caller is allowed to decrease
6122 * host->n_ports before calling ata_host_register(). The unused
6123 * ports will be automatically freed on registration.
6124 *
6125 * RETURNS:
6126 * Allocate ATA host on success, NULL on failure.
6127 *
6128 * LOCKING:
6129 * Inherited from calling layer (may sleep).
6130 */
6131struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6132{
6133 struct ata_host *host;
6134 size_t sz;
6135 int i;
6136
6137 DPRINTK("ENTER\n");
6138
6139 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6140 return NULL;
6141
6142 /* alloc a container for our list of ATA ports (buses) */
6143 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6144 /* alloc a container for our list of ATA ports (buses) */
6145 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6146 if (!host)
6147 goto err_out;
6148
6149 devres_add(dev, host);
6150 dev_set_drvdata(dev, host);
6151
6152 spin_lock_init(&host->lock);
6153 host->dev = dev;
6154 host->n_ports = max_ports;
6155
6156 /* allocate ports bound to this host */
6157 for (i = 0; i < max_ports; i++) {
6158 struct ata_port *ap;
6159
6160 ap = ata_port_alloc(host);
6161 if (!ap)
6162 goto err_out;
6163
6164 ap->port_no = i;
6165 host->ports[i] = ap;
6166 }
6167
6168 devres_remove_group(dev, NULL);
6169 return host;
6170
6171 err_out:
6172 devres_release_group(dev, NULL);
6173 return NULL;
6174}
6175
f5cda257
TH
6176/**
6177 * ata_host_alloc_pinfo - alloc host and init with port_info array
6178 * @dev: generic device this host is associated with
6179 * @ppi: array of ATA port_info to initialize host with
6180 * @n_ports: number of ATA ports attached to this host
6181 *
6182 * Allocate ATA host and initialize with info from @ppi. If NULL
6183 * terminated, @ppi may contain fewer entries than @n_ports. The
6184 * last entry will be used for the remaining ports.
6185 *
6186 * RETURNS:
6187 * Allocate ATA host on success, NULL on failure.
6188 *
6189 * LOCKING:
6190 * Inherited from calling layer (may sleep).
6191 */
6192struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6193 const struct ata_port_info * const * ppi,
6194 int n_ports)
6195{
6196 const struct ata_port_info *pi;
6197 struct ata_host *host;
6198 int i, j;
6199
6200 host = ata_host_alloc(dev, n_ports);
6201 if (!host)
6202 return NULL;
6203
6204 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6205 struct ata_port *ap = host->ports[i];
6206
6207 if (ppi[j])
6208 pi = ppi[j++];
6209
6210 ap->pio_mask = pi->pio_mask;
6211 ap->mwdma_mask = pi->mwdma_mask;
6212 ap->udma_mask = pi->udma_mask;
6213 ap->flags |= pi->flags;
6214 ap->ops = pi->port_ops;
6215
6216 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6217 host->ops = pi->port_ops;
6218 if (!host->private_data && pi->private_data)
6219 host->private_data = pi->private_data;
6220 }
6221
6222 return host;
6223}
6224
ecef7253
TH
6225/**
6226 * ata_host_start - start and freeze ports of an ATA host
6227 * @host: ATA host to start ports for
6228 *
6229 * Start and then freeze ports of @host. Started status is
6230 * recorded in host->flags, so this function can be called
6231 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6232 * once. If host->ops isn't initialized yet, its set to the
6233 * first non-dummy port ops.
ecef7253
TH
6234 *
6235 * LOCKING:
6236 * Inherited from calling layer (may sleep).
6237 *
6238 * RETURNS:
6239 * 0 if all ports are started successfully, -errno otherwise.
6240 */
6241int ata_host_start(struct ata_host *host)
6242{
6243 int i, rc;
6244
6245 if (host->flags & ATA_HOST_STARTED)
6246 return 0;
6247
6248 for (i = 0; i < host->n_ports; i++) {
6249 struct ata_port *ap = host->ports[i];
6250
f3187195
TH
6251 if (!host->ops && !ata_port_is_dummy(ap))
6252 host->ops = ap->ops;
6253
ecef7253
TH
6254 if (ap->ops->port_start) {
6255 rc = ap->ops->port_start(ap);
6256 if (rc) {
6257 ata_port_printk(ap, KERN_ERR, "failed to "
6258 "start port (errno=%d)\n", rc);
6259 goto err_out;
6260 }
6261 }
6262
6263 ata_eh_freeze_port(ap);
6264 }
6265
6266 host->flags |= ATA_HOST_STARTED;
6267 return 0;
6268
6269 err_out:
6270 while (--i >= 0) {
6271 struct ata_port *ap = host->ports[i];
6272
6273 if (ap->ops->port_stop)
6274 ap->ops->port_stop(ap);
6275 }
6276 return rc;
6277}
6278
b03732f0 6279/**
cca3974e
JG
6280 * ata_sas_host_init - Initialize a host struct
6281 * @host: host to initialize
6282 * @dev: device host is attached to
6283 * @flags: host flags
6284 * @ops: port_ops
b03732f0
BK
6285 *
6286 * LOCKING:
6287 * PCI/etc. bus probe sem.
6288 *
6289 */
f3187195 6290/* KILLME - the only user left is ipr */
cca3974e
JG
6291void ata_host_init(struct ata_host *host, struct device *dev,
6292 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 6293{
cca3974e
JG
6294 spin_lock_init(&host->lock);
6295 host->dev = dev;
6296 host->flags = flags;
6297 host->ops = ops;
b03732f0
BK
6298}
6299
f3187195
TH
6300/**
6301 * ata_host_register - register initialized ATA host
6302 * @host: ATA host to register
6303 * @sht: template for SCSI host
6304 *
6305 * Register initialized ATA host. @host is allocated using
6306 * ata_host_alloc() and fully initialized by LLD. This function
6307 * starts ports, registers @host with ATA and SCSI layers and
6308 * probe registered devices.
6309 *
6310 * LOCKING:
6311 * Inherited from calling layer (may sleep).
6312 *
6313 * RETURNS:
6314 * 0 on success, -errno otherwise.
6315 */
6316int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6317{
6318 int i, rc;
6319
6320 /* host must have been started */
6321 if (!(host->flags & ATA_HOST_STARTED)) {
6322 dev_printk(KERN_ERR, host->dev,
6323 "BUG: trying to register unstarted host\n");
6324 WARN_ON(1);
6325 return -EINVAL;
6326 }
6327
6328 /* Blow away unused ports. This happens when LLD can't
6329 * determine the exact number of ports to allocate at
6330 * allocation time.
6331 */
6332 for (i = host->n_ports; host->ports[i]; i++)
6333 kfree(host->ports[i]);
6334
6335 /* give ports names and add SCSI hosts */
6336 for (i = 0; i < host->n_ports; i++)
6337 host->ports[i]->print_id = ata_print_id++;
6338
6339 rc = ata_scsi_add_hosts(host, sht);
6340 if (rc)
6341 return rc;
6342
fafbae87
TH
6343 /* associate with ACPI nodes */
6344 ata_acpi_associate(host);
6345
f3187195
TH
6346 /* set cable, sata_spd_limit and report */
6347 for (i = 0; i < host->n_ports; i++) {
6348 struct ata_port *ap = host->ports[i];
6349 int irq_line;
6350 u32 scontrol;
6351 unsigned long xfer_mask;
6352
6353 /* set SATA cable type if still unset */
6354 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6355 ap->cbl = ATA_CBL_SATA;
6356
6357 /* init sata_spd_limit to the current value */
6358 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6359 int spd = (scontrol >> 4) & 0xf;
afe3cc51
TH
6360 if (spd)
6361 ap->hw_sata_spd_limit &= (1 << spd) - 1;
f3187195
TH
6362 }
6363 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6364
6365 /* report the secondary IRQ for second channel legacy */
6366 irq_line = host->irq;
6367 if (i == 1 && host->irq2)
6368 irq_line = host->irq2;
6369
6370 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6371 ap->udma_mask);
6372
6373 /* print per-port info to dmesg */
6374 if (!ata_port_is_dummy(ap))
6375 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6376 "ctl 0x%p bmdma 0x%p irq %d\n",
a16abc0b 6377 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195
TH
6378 ata_mode_string(xfer_mask),
6379 ap->ioaddr.cmd_addr,
6380 ap->ioaddr.ctl_addr,
6381 ap->ioaddr.bmdma_addr,
6382 irq_line);
6383 else
6384 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6385 }
6386
6387 /* perform each probe synchronously */
6388 DPRINTK("probe begin\n");
6389 for (i = 0; i < host->n_ports; i++) {
6390 struct ata_port *ap = host->ports[i];
6391 int rc;
6392
6393 /* probe */
6394 if (ap->ops->error_handler) {
6395 struct ata_eh_info *ehi = &ap->eh_info;
6396 unsigned long flags;
6397
6398 ata_port_probe(ap);
6399
6400 /* kick EH for boot probing */
6401 spin_lock_irqsave(ap->lock, flags);
6402
6403 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6404 ehi->action |= ATA_EH_SOFTRESET;
6405 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6406
f4d6d004 6407 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
6408 ap->pflags |= ATA_PFLAG_LOADING;
6409 ata_port_schedule_eh(ap);
6410
6411 spin_unlock_irqrestore(ap->lock, flags);
6412
6413 /* wait for EH to finish */
6414 ata_port_wait_eh(ap);
6415 } else {
6416 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6417 rc = ata_bus_probe(ap);
6418 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6419
6420 if (rc) {
6421 /* FIXME: do something useful here?
6422 * Current libata behavior will
6423 * tear down everything when
6424 * the module is removed
6425 * or the h/w is unplugged.
6426 */
6427 }
6428 }
6429 }
6430
6431 /* probes are done, now scan each port's disk(s) */
6432 DPRINTK("host probe begin\n");
6433 for (i = 0; i < host->n_ports; i++) {
6434 struct ata_port *ap = host->ports[i];
6435
6436 ata_scsi_scan_host(ap);
6437 }
6438
6439 return 0;
6440}
6441
f5cda257
TH
6442/**
6443 * ata_host_activate - start host, request IRQ and register it
6444 * @host: target ATA host
6445 * @irq: IRQ to request
6446 * @irq_handler: irq_handler used when requesting IRQ
6447 * @irq_flags: irq_flags used when requesting IRQ
6448 * @sht: scsi_host_template to use when registering the host
6449 *
6450 * After allocating an ATA host and initializing it, most libata
6451 * LLDs perform three steps to activate the host - start host,
6452 * request IRQ and register it. This helper takes necessasry
6453 * arguments and performs the three steps in one go.
6454 *
6455 * LOCKING:
6456 * Inherited from calling layer (may sleep).
6457 *
6458 * RETURNS:
6459 * 0 on success, -errno otherwise.
6460 */
6461int ata_host_activate(struct ata_host *host, int irq,
6462 irq_handler_t irq_handler, unsigned long irq_flags,
6463 struct scsi_host_template *sht)
6464{
6465 int rc;
6466
6467 rc = ata_host_start(host);
6468 if (rc)
6469 return rc;
6470
6471 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6472 dev_driver_string(host->dev), host);
6473 if (rc)
6474 return rc;
6475
4031826b
TH
6476 /* Used to print device info at probe */
6477 host->irq = irq;
6478
f5cda257
TH
6479 rc = ata_host_register(host, sht);
6480 /* if failed, just free the IRQ and leave ports alone */
6481 if (rc)
6482 devm_free_irq(host->dev, irq, host);
6483
6484 return rc;
6485}
6486
720ba126
TH
6487/**
6488 * ata_port_detach - Detach ATA port in prepration of device removal
6489 * @ap: ATA port to be detached
6490 *
6491 * Detach all ATA devices and the associated SCSI devices of @ap;
6492 * then, remove the associated SCSI host. @ap is guaranteed to
6493 * be quiescent on return from this function.
6494 *
6495 * LOCKING:
6496 * Kernel thread context (may sleep).
6497 */
6498void ata_port_detach(struct ata_port *ap)
6499{
6500 unsigned long flags;
6501 int i;
6502
6503 if (!ap->ops->error_handler)
c3cf30a9 6504 goto skip_eh;
720ba126
TH
6505
6506 /* tell EH we're leaving & flush EH */
ba6a1308 6507 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6508 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 6509 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6510
6511 ata_port_wait_eh(ap);
6512
6513 /* EH is now guaranteed to see UNLOADING, so no new device
6514 * will be attached. Disable all existing devices.
6515 */
ba6a1308 6516 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
6517
6518 for (i = 0; i < ATA_MAX_DEVICES; i++)
6519 ata_dev_disable(&ap->device[i]);
6520
ba6a1308 6521 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6522
6523 /* Final freeze & EH. All in-flight commands are aborted. EH
6524 * will be skipped and retrials will be terminated with bad
6525 * target.
6526 */
ba6a1308 6527 spin_lock_irqsave(ap->lock, flags);
720ba126 6528 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 6529 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
6530
6531 ata_port_wait_eh(ap);
45a66c1c 6532 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6533
c3cf30a9 6534 skip_eh:
720ba126 6535 /* remove the associated SCSI host */
cca3974e 6536 scsi_remove_host(ap->scsi_host);
720ba126
TH
6537}
6538
0529c159
TH
6539/**
6540 * ata_host_detach - Detach all ports of an ATA host
6541 * @host: Host to detach
6542 *
6543 * Detach all ports of @host.
6544 *
6545 * LOCKING:
6546 * Kernel thread context (may sleep).
6547 */
6548void ata_host_detach(struct ata_host *host)
6549{
6550 int i;
6551
6552 for (i = 0; i < host->n_ports; i++)
6553 ata_port_detach(host->ports[i]);
6554}
6555
1da177e4
LT
6556/**
6557 * ata_std_ports - initialize ioaddr with standard port offsets.
6558 * @ioaddr: IO address structure to be initialized
0baab86b
EF
6559 *
6560 * Utility function which initializes data_addr, error_addr,
6561 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6562 * device_addr, status_addr, and command_addr to standard offsets
6563 * relative to cmd_addr.
6564 *
6565 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 6566 */
0baab86b 6567
1da177e4
LT
6568void ata_std_ports(struct ata_ioports *ioaddr)
6569{
6570 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6571 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6572 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6573 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6574 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6575 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6576 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6577 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6578 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6579 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6580}
6581
0baab86b 6582
374b1873
JG
6583#ifdef CONFIG_PCI
6584
1da177e4
LT
6585/**
6586 * ata_pci_remove_one - PCI layer callback for device removal
6587 * @pdev: PCI device that was removed
6588 *
b878ca5d
TH
6589 * PCI layer indicates to libata via this hook that hot-unplug or
6590 * module unload event has occurred. Detach all ports. Resource
6591 * release is handled via devres.
1da177e4
LT
6592 *
6593 * LOCKING:
6594 * Inherited from PCI layer (may sleep).
6595 */
f0d36efd 6596void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4
LT
6597{
6598 struct device *dev = pci_dev_to_dev(pdev);
cca3974e 6599 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6600
b878ca5d 6601 ata_host_detach(host);
1da177e4
LT
6602}
6603
6604/* move to PCI subsystem */
057ace5e 6605int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6606{
6607 unsigned long tmp = 0;
6608
6609 switch (bits->width) {
6610 case 1: {
6611 u8 tmp8 = 0;
6612 pci_read_config_byte(pdev, bits->reg, &tmp8);
6613 tmp = tmp8;
6614 break;
6615 }
6616 case 2: {
6617 u16 tmp16 = 0;
6618 pci_read_config_word(pdev, bits->reg, &tmp16);
6619 tmp = tmp16;
6620 break;
6621 }
6622 case 4: {
6623 u32 tmp32 = 0;
6624 pci_read_config_dword(pdev, bits->reg, &tmp32);
6625 tmp = tmp32;
6626 break;
6627 }
6628
6629 default:
6630 return -EINVAL;
6631 }
6632
6633 tmp &= bits->mask;
6634
6635 return (tmp == bits->val) ? 1 : 0;
6636}
9b847548 6637
6ffa01d8 6638#ifdef CONFIG_PM
3c5100c1 6639void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6640{
6641 pci_save_state(pdev);
4c90d971 6642 pci_disable_device(pdev);
500530f6 6643
4c90d971 6644 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 6645 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6646}
6647
553c4aa6 6648int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6649{
553c4aa6
TH
6650 int rc;
6651
9b847548
JA
6652 pci_set_power_state(pdev, PCI_D0);
6653 pci_restore_state(pdev);
553c4aa6 6654
b878ca5d 6655 rc = pcim_enable_device(pdev);
553c4aa6
TH
6656 if (rc) {
6657 dev_printk(KERN_ERR, &pdev->dev,
6658 "failed to enable device after resume (%d)\n", rc);
6659 return rc;
6660 }
6661
9b847548 6662 pci_set_master(pdev);
553c4aa6 6663 return 0;
500530f6
TH
6664}
6665
3c5100c1 6666int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6667{
cca3974e 6668 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6669 int rc = 0;
6670
cca3974e 6671 rc = ata_host_suspend(host, mesg);
500530f6
TH
6672 if (rc)
6673 return rc;
6674
3c5100c1 6675 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6676
6677 return 0;
6678}
6679
6680int ata_pci_device_resume(struct pci_dev *pdev)
6681{
cca3974e 6682 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6683 int rc;
500530f6 6684
553c4aa6
TH
6685 rc = ata_pci_device_do_resume(pdev);
6686 if (rc == 0)
6687 ata_host_resume(host);
6688 return rc;
9b847548 6689}
6ffa01d8
TH
6690#endif /* CONFIG_PM */
6691
1da177e4
LT
6692#endif /* CONFIG_PCI */
6693
6694
1da177e4
LT
6695static int __init ata_init(void)
6696{
a8601e5f 6697 ata_probe_timeout *= HZ;
1da177e4
LT
6698 ata_wq = create_workqueue("ata");
6699 if (!ata_wq)
6700 return -ENOMEM;
6701
453b07ac
TH
6702 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6703 if (!ata_aux_wq) {
6704 destroy_workqueue(ata_wq);
6705 return -ENOMEM;
6706 }
6707
1da177e4
LT
6708 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6709 return 0;
6710}
6711
6712static void __exit ata_exit(void)
6713{
6714 destroy_workqueue(ata_wq);
453b07ac 6715 destroy_workqueue(ata_aux_wq);
1da177e4
LT
6716}
6717
a4625085 6718subsys_initcall(ata_init);
1da177e4
LT
6719module_exit(ata_exit);
6720
67846b30 6721static unsigned long ratelimit_time;
34af946a 6722static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
6723
6724int ata_ratelimit(void)
6725{
6726 int rc;
6727 unsigned long flags;
6728
6729 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6730
6731 if (time_after(jiffies, ratelimit_time)) {
6732 rc = 1;
6733 ratelimit_time = jiffies + (HZ/5);
6734 } else
6735 rc = 0;
6736
6737 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6738
6739 return rc;
6740}
6741
c22daff4
TH
6742/**
6743 * ata_wait_register - wait until register value changes
6744 * @reg: IO-mapped register
6745 * @mask: Mask to apply to read register value
6746 * @val: Wait condition
6747 * @interval_msec: polling interval in milliseconds
6748 * @timeout_msec: timeout in milliseconds
6749 *
6750 * Waiting for some bits of register to change is a common
6751 * operation for ATA controllers. This function reads 32bit LE
6752 * IO-mapped register @reg and tests for the following condition.
6753 *
6754 * (*@reg & mask) != val
6755 *
6756 * If the condition is met, it returns; otherwise, the process is
6757 * repeated after @interval_msec until timeout.
6758 *
6759 * LOCKING:
6760 * Kernel thread context (may sleep)
6761 *
6762 * RETURNS:
6763 * The final register value.
6764 */
6765u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6766 unsigned long interval_msec,
6767 unsigned long timeout_msec)
6768{
6769 unsigned long timeout;
6770 u32 tmp;
6771
6772 tmp = ioread32(reg);
6773
6774 /* Calculate timeout _after_ the first read to make sure
6775 * preceding writes reach the controller before starting to
6776 * eat away the timeout.
6777 */
6778 timeout = jiffies + (timeout_msec * HZ) / 1000;
6779
6780 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6781 msleep(interval_msec);
6782 tmp = ioread32(reg);
6783 }
6784
6785 return tmp;
6786}
6787
dd5b06c4
TH
6788/*
6789 * Dummy port_ops
6790 */
6791static void ata_dummy_noret(struct ata_port *ap) { }
6792static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6793static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6794
6795static u8 ata_dummy_check_status(struct ata_port *ap)
6796{
6797 return ATA_DRDY;
6798}
6799
6800static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6801{
6802 return AC_ERR_SYSTEM;
6803}
6804
6805const struct ata_port_operations ata_dummy_port_ops = {
6806 .port_disable = ata_port_disable,
6807 .check_status = ata_dummy_check_status,
6808 .check_altstatus = ata_dummy_check_status,
6809 .dev_select = ata_noop_dev_select,
6810 .qc_prep = ata_noop_qc_prep,
6811 .qc_issue = ata_dummy_qc_issue,
6812 .freeze = ata_dummy_noret,
6813 .thaw = ata_dummy_noret,
6814 .error_handler = ata_dummy_noret,
6815 .post_internal_cmd = ata_dummy_qc_noret,
6816 .irq_clear = ata_dummy_noret,
6817 .port_start = ata_dummy_ret0,
6818 .port_stop = ata_dummy_noret,
6819};
6820
21b0ad4f
TH
6821const struct ata_port_info ata_dummy_port_info = {
6822 .port_ops = &ata_dummy_port_ops,
6823};
6824
1da177e4
LT
6825/*
6826 * libata is essentially a library of internal helper functions for
6827 * low-level ATA host controller drivers. As such, the API/ABI is
6828 * likely to change as new drivers are added and updated.
6829 * Do not depend on ABI/API stability.
6830 */
6831
e9c83914
TH
6832EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6833EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6834EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 6835EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6836EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
6837EXPORT_SYMBOL_GPL(ata_std_bios_param);
6838EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 6839EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6840EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6841EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 6842EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6843EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6844EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6845EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
6846EXPORT_SYMBOL_GPL(ata_sg_init);
6847EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 6848EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 6849EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6850EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 6851EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
6852EXPORT_SYMBOL_GPL(ata_tf_load);
6853EXPORT_SYMBOL_GPL(ata_tf_read);
6854EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6855EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 6856EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
6857EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6858EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6859EXPORT_SYMBOL_GPL(ata_check_status);
6860EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
6861EXPORT_SYMBOL_GPL(ata_exec_command);
6862EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 6863EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 6864EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 6865EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
6866EXPORT_SYMBOL_GPL(ata_data_xfer);
6867EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
1da177e4 6868EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 6869EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 6870EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
6871EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6872EXPORT_SYMBOL_GPL(ata_bmdma_start);
6873EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6874EXPORT_SYMBOL_GPL(ata_bmdma_status);
6875EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
6876EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6877EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6878EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6879EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6880EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 6881EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 6882EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6883EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
6884EXPORT_SYMBOL_GPL(sata_phy_debounce);
6885EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
6886EXPORT_SYMBOL_GPL(sata_phy_reset);
6887EXPORT_SYMBOL_GPL(__sata_phy_reset);
6888EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6889EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 6890EXPORT_SYMBOL_GPL(ata_std_softreset);
b6103f6d 6891EXPORT_SYMBOL_GPL(sata_port_hardreset);
c2bd5804
TH
6892EXPORT_SYMBOL_GPL(sata_std_hardreset);
6893EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6894EXPORT_SYMBOL_GPL(ata_dev_classify);
6895EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6896EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6897EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6898EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6899EXPORT_SYMBOL_GPL(ata_busy_sleep);
d4b2bab4 6900EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 6901EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6902EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6903EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6904EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6905EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6906EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 6907EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6908EXPORT_SYMBOL_GPL(sata_scr_valid);
6909EXPORT_SYMBOL_GPL(sata_scr_read);
6910EXPORT_SYMBOL_GPL(sata_scr_write);
6911EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6912EXPORT_SYMBOL_GPL(ata_port_online);
6913EXPORT_SYMBOL_GPL(ata_port_offline);
6ffa01d8 6914#ifdef CONFIG_PM
cca3974e
JG
6915EXPORT_SYMBOL_GPL(ata_host_suspend);
6916EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6917#endif /* CONFIG_PM */
6a62a04d
TH
6918EXPORT_SYMBOL_GPL(ata_id_string);
6919EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 6920EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6919a0a6 6921EXPORT_SYMBOL_GPL(ata_device_blacklisted);
1da177e4
LT
6922EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6923
1bc4ccff 6924EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6925EXPORT_SYMBOL_GPL(ata_timing_compute);
6926EXPORT_SYMBOL_GPL(ata_timing_merge);
6927
1da177e4
LT
6928#ifdef CONFIG_PCI
6929EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 6930EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 6931EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 6932EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
6933EXPORT_SYMBOL_GPL(ata_pci_init_one);
6934EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6935#ifdef CONFIG_PM
500530f6
TH
6936EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6937EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6938EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6939EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6940#endif /* CONFIG_PM */
67951ade
AC
6941EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6942EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6943#endif /* CONFIG_PCI */
9b847548 6944
ece1d636 6945EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6946EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6947EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6948EXPORT_SYMBOL_GPL(ata_port_freeze);
6949EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6950EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6951EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6952EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6953EXPORT_SYMBOL_GPL(ata_do_eh);
83625006
AI
6954EXPORT_SYMBOL_GPL(ata_irq_on);
6955EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6956EXPORT_SYMBOL_GPL(ata_irq_ack);
6957EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
a619f981 6958EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
6959
6960EXPORT_SYMBOL_GPL(ata_cable_40wire);
6961EXPORT_SYMBOL_GPL(ata_cable_80wire);
6962EXPORT_SYMBOL_GPL(ata_cable_unknown);
6963EXPORT_SYMBOL_GPL(ata_cable_sata);