]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
ata_piix: add more toshiba laptops to broken suspend list
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/highmem.h>
50#include <linux/spinlock.h>
51#include <linux/blkdev.h>
52#include <linux/delay.h>
53#include <linux/timer.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
67846b30 58#include <linux/jiffies.h>
378f058c 59#include <linux/scatterlist.h>
2dcb407e 60#include <linux/io.h>
1da177e4 61#include <scsi/scsi.h>
193515d5 62#include <scsi/scsi_cmnd.h>
1da177e4
LT
63#include <scsi/scsi_host.h>
64#include <linux/libata.h>
1da177e4
LT
65#include <asm/semaphore.h>
66#include <asm/byteorder.h>
67
68#include "libata.h"
69
fda0efc5 70
d7bb4cc7 71/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
72const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 75
3373efd8
TH
76static unsigned int ata_dev_init_params(struct ata_device *dev,
77 u16 heads, u16 sectors);
78static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
79static unsigned int ata_dev_set_feature(struct ata_device *dev,
80 u8 enable, u8 feature);
3373efd8 81static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 82static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 83
f3187195 84unsigned int ata_print_id = 1;
1da177e4
LT
85static struct workqueue_struct *ata_wq;
86
453b07ac
TH
87struct workqueue_struct *ata_aux_wq;
88
418dc1f5 89int atapi_enabled = 1;
1623c81e
JG
90module_param(atapi_enabled, int, 0444);
91MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
92
95de719a
AL
93int atapi_dmadir = 0;
94module_param(atapi_dmadir, int, 0444);
95MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
96
baf4fdfa
ML
97int atapi_passthru16 = 1;
98module_param(atapi_passthru16, int, 0444);
99MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
100
c3c013a2
JG
101int libata_fua = 0;
102module_param_named(fua, libata_fua, int, 0444);
103MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
104
2dcb407e 105static int ata_ignore_hpa;
1e999736
AC
106module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
107MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
108
b3a70601
AC
109static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
110module_param_named(dma, libata_dma_mask, int, 0444);
111MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
112
a8601e5f
AM
113static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
114module_param(ata_probe_timeout, int, 0444);
115MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
116
6ebe9d86 117int libata_noacpi = 0;
d7d0dad6 118module_param_named(noacpi, libata_noacpi, int, 0444);
6ebe9d86 119MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
11ef697b 120
1da177e4
LT
121MODULE_AUTHOR("Jeff Garzik");
122MODULE_DESCRIPTION("Library module for ATA devices");
123MODULE_LICENSE("GPL");
124MODULE_VERSION(DRV_VERSION);
125
0baab86b 126
1da177e4
LT
127/**
128 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
129 * @tf: Taskfile to convert
1da177e4 130 * @pmp: Port multiplier port
9977126c
TH
131 * @is_cmd: This FIS is for command
132 * @fis: Buffer into which data will output
1da177e4
LT
133 *
134 * Converts a standard ATA taskfile to a Serial ATA
135 * FIS structure (Register - Host to Device).
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
9977126c 140void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 141{
9977126c
TH
142 fis[0] = 0x27; /* Register - Host to Device FIS */
143 fis[1] = pmp & 0xf; /* Port multiplier number*/
144 if (is_cmd)
145 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
146
1da177e4
LT
147 fis[2] = tf->command;
148 fis[3] = tf->feature;
149
150 fis[4] = tf->lbal;
151 fis[5] = tf->lbam;
152 fis[6] = tf->lbah;
153 fis[7] = tf->device;
154
155 fis[8] = tf->hob_lbal;
156 fis[9] = tf->hob_lbam;
157 fis[10] = tf->hob_lbah;
158 fis[11] = tf->hob_feature;
159
160 fis[12] = tf->nsect;
161 fis[13] = tf->hob_nsect;
162 fis[14] = 0;
163 fis[15] = tf->ctl;
164
165 fis[16] = 0;
166 fis[17] = 0;
167 fis[18] = 0;
168 fis[19] = 0;
169}
170
171/**
172 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
173 * @fis: Buffer from which data will be input
174 * @tf: Taskfile to output
175 *
e12a1be6 176 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
177 *
178 * LOCKING:
179 * Inherited from caller.
180 */
181
057ace5e 182void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
183{
184 tf->command = fis[2]; /* status */
185 tf->feature = fis[3]; /* error */
186
187 tf->lbal = fis[4];
188 tf->lbam = fis[5];
189 tf->lbah = fis[6];
190 tf->device = fis[7];
191
192 tf->hob_lbal = fis[8];
193 tf->hob_lbam = fis[9];
194 tf->hob_lbah = fis[10];
195
196 tf->nsect = fis[12];
197 tf->hob_nsect = fis[13];
198}
199
8cbd6df1
AL
200static const u8 ata_rw_cmds[] = {
201 /* pio multi */
202 ATA_CMD_READ_MULTI,
203 ATA_CMD_WRITE_MULTI,
204 ATA_CMD_READ_MULTI_EXT,
205 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
206 0,
207 0,
208 0,
209 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
210 /* pio */
211 ATA_CMD_PIO_READ,
212 ATA_CMD_PIO_WRITE,
213 ATA_CMD_PIO_READ_EXT,
214 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
215 0,
216 0,
217 0,
218 0,
8cbd6df1
AL
219 /* dma */
220 ATA_CMD_READ,
221 ATA_CMD_WRITE,
222 ATA_CMD_READ_EXT,
9a3dccc4
TH
223 ATA_CMD_WRITE_EXT,
224 0,
225 0,
226 0,
227 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 228};
1da177e4
LT
229
230/**
8cbd6df1 231 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
232 * @tf: command to examine and configure
233 * @dev: device tf belongs to
1da177e4 234 *
2e9edbf8 235 * Examine the device configuration and tf->flags to calculate
8cbd6df1 236 * the proper read/write commands and protocol to use.
1da177e4
LT
237 *
238 * LOCKING:
239 * caller.
240 */
bd056d7e 241static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 242{
9a3dccc4 243 u8 cmd;
1da177e4 244
9a3dccc4 245 int index, fua, lba48, write;
2e9edbf8 246
9a3dccc4 247 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
248 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
249 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 250
8cbd6df1
AL
251 if (dev->flags & ATA_DFLAG_PIO) {
252 tf->protocol = ATA_PROT_PIO;
9a3dccc4 253 index = dev->multi_count ? 0 : 8;
9af5c9c9 254 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
255 /* Unable to use DMA due to host limitation */
256 tf->protocol = ATA_PROT_PIO;
0565c26d 257 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
258 } else {
259 tf->protocol = ATA_PROT_DMA;
9a3dccc4 260 index = 16;
8cbd6df1 261 }
1da177e4 262
9a3dccc4
TH
263 cmd = ata_rw_cmds[index + fua + lba48 + write];
264 if (cmd) {
265 tf->command = cmd;
266 return 0;
267 }
268 return -1;
1da177e4
LT
269}
270
35b649fe
TH
271/**
272 * ata_tf_read_block - Read block address from ATA taskfile
273 * @tf: ATA taskfile of interest
274 * @dev: ATA device @tf belongs to
275 *
276 * LOCKING:
277 * None.
278 *
279 * Read block address from @tf. This function can handle all
280 * three address formats - LBA, LBA48 and CHS. tf->protocol and
281 * flags select the address format to use.
282 *
283 * RETURNS:
284 * Block address read from @tf.
285 */
286u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
287{
288 u64 block = 0;
289
290 if (tf->flags & ATA_TFLAG_LBA) {
291 if (tf->flags & ATA_TFLAG_LBA48) {
292 block |= (u64)tf->hob_lbah << 40;
293 block |= (u64)tf->hob_lbam << 32;
294 block |= tf->hob_lbal << 24;
295 } else
296 block |= (tf->device & 0xf) << 24;
297
298 block |= tf->lbah << 16;
299 block |= tf->lbam << 8;
300 block |= tf->lbal;
301 } else {
302 u32 cyl, head, sect;
303
304 cyl = tf->lbam | (tf->lbah << 8);
305 head = tf->device & 0xf;
306 sect = tf->lbal;
307
308 block = (cyl * dev->heads + head) * dev->sectors + sect;
309 }
310
311 return block;
312}
313
bd056d7e
TH
314/**
315 * ata_build_rw_tf - Build ATA taskfile for given read/write request
316 * @tf: Target ATA taskfile
317 * @dev: ATA device @tf belongs to
318 * @block: Block address
319 * @n_block: Number of blocks
320 * @tf_flags: RW/FUA etc...
321 * @tag: tag
322 *
323 * LOCKING:
324 * None.
325 *
326 * Build ATA taskfile @tf for read/write request described by
327 * @block, @n_block, @tf_flags and @tag on @dev.
328 *
329 * RETURNS:
330 *
331 * 0 on success, -ERANGE if the request is too large for @dev,
332 * -EINVAL if the request is invalid.
333 */
334int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
335 u64 block, u32 n_block, unsigned int tf_flags,
336 unsigned int tag)
337{
338 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
339 tf->flags |= tf_flags;
340
6d1245bf 341 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
342 /* yay, NCQ */
343 if (!lba_48_ok(block, n_block))
344 return -ERANGE;
345
346 tf->protocol = ATA_PROT_NCQ;
347 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
348
349 if (tf->flags & ATA_TFLAG_WRITE)
350 tf->command = ATA_CMD_FPDMA_WRITE;
351 else
352 tf->command = ATA_CMD_FPDMA_READ;
353
354 tf->nsect = tag << 3;
355 tf->hob_feature = (n_block >> 8) & 0xff;
356 tf->feature = n_block & 0xff;
357
358 tf->hob_lbah = (block >> 40) & 0xff;
359 tf->hob_lbam = (block >> 32) & 0xff;
360 tf->hob_lbal = (block >> 24) & 0xff;
361 tf->lbah = (block >> 16) & 0xff;
362 tf->lbam = (block >> 8) & 0xff;
363 tf->lbal = block & 0xff;
364
365 tf->device = 1 << 6;
366 if (tf->flags & ATA_TFLAG_FUA)
367 tf->device |= 1 << 7;
368 } else if (dev->flags & ATA_DFLAG_LBA) {
369 tf->flags |= ATA_TFLAG_LBA;
370
371 if (lba_28_ok(block, n_block)) {
372 /* use LBA28 */
373 tf->device |= (block >> 24) & 0xf;
374 } else if (lba_48_ok(block, n_block)) {
375 if (!(dev->flags & ATA_DFLAG_LBA48))
376 return -ERANGE;
377
378 /* use LBA48 */
379 tf->flags |= ATA_TFLAG_LBA48;
380
381 tf->hob_nsect = (n_block >> 8) & 0xff;
382
383 tf->hob_lbah = (block >> 40) & 0xff;
384 tf->hob_lbam = (block >> 32) & 0xff;
385 tf->hob_lbal = (block >> 24) & 0xff;
386 } else
387 /* request too large even for LBA48 */
388 return -ERANGE;
389
390 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
391 return -EINVAL;
392
393 tf->nsect = n_block & 0xff;
394
395 tf->lbah = (block >> 16) & 0xff;
396 tf->lbam = (block >> 8) & 0xff;
397 tf->lbal = block & 0xff;
398
399 tf->device |= ATA_LBA;
400 } else {
401 /* CHS */
402 u32 sect, head, cyl, track;
403
404 /* The request -may- be too large for CHS addressing. */
405 if (!lba_28_ok(block, n_block))
406 return -ERANGE;
407
408 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
409 return -EINVAL;
410
411 /* Convert LBA to CHS */
412 track = (u32)block / dev->sectors;
413 cyl = track / dev->heads;
414 head = track % dev->heads;
415 sect = (u32)block % dev->sectors + 1;
416
417 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
418 (u32)block, track, cyl, head, sect);
419
420 /* Check whether the converted CHS can fit.
421 Cylinder: 0-65535
422 Head: 0-15
423 Sector: 1-255*/
424 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
425 return -ERANGE;
426
427 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
428 tf->lbal = sect;
429 tf->lbam = cyl;
430 tf->lbah = cyl >> 8;
431 tf->device |= head;
432 }
433
434 return 0;
435}
436
cb95d562
TH
437/**
438 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
439 * @pio_mask: pio_mask
440 * @mwdma_mask: mwdma_mask
441 * @udma_mask: udma_mask
442 *
443 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
444 * unsigned int xfer_mask.
445 *
446 * LOCKING:
447 * None.
448 *
449 * RETURNS:
450 * Packed xfer_mask.
451 */
452static unsigned int ata_pack_xfermask(unsigned int pio_mask,
453 unsigned int mwdma_mask,
454 unsigned int udma_mask)
455{
456 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
457 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
458 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
459}
460
c0489e4e
TH
461/**
462 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
463 * @xfer_mask: xfer_mask to unpack
464 * @pio_mask: resulting pio_mask
465 * @mwdma_mask: resulting mwdma_mask
466 * @udma_mask: resulting udma_mask
467 *
468 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
469 * Any NULL distination masks will be ignored.
470 */
471static void ata_unpack_xfermask(unsigned int xfer_mask,
472 unsigned int *pio_mask,
473 unsigned int *mwdma_mask,
474 unsigned int *udma_mask)
475{
476 if (pio_mask)
477 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
478 if (mwdma_mask)
479 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
480 if (udma_mask)
481 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
482}
483
cb95d562 484static const struct ata_xfer_ent {
be9a50c8 485 int shift, bits;
cb95d562
TH
486 u8 base;
487} ata_xfer_tbl[] = {
488 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
489 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
490 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
491 { -1, },
492};
493
494/**
495 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
496 * @xfer_mask: xfer_mask of interest
497 *
498 * Return matching XFER_* value for @xfer_mask. Only the highest
499 * bit of @xfer_mask is considered.
500 *
501 * LOCKING:
502 * None.
503 *
504 * RETURNS:
505 * Matching XFER_* value, 0 if no match found.
506 */
507static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
508{
509 int highbit = fls(xfer_mask) - 1;
510 const struct ata_xfer_ent *ent;
511
512 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
513 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
514 return ent->base + highbit - ent->shift;
515 return 0;
516}
517
518/**
519 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
520 * @xfer_mode: XFER_* of interest
521 *
522 * Return matching xfer_mask for @xfer_mode.
523 *
524 * LOCKING:
525 * None.
526 *
527 * RETURNS:
528 * Matching xfer_mask, 0 if no match found.
529 */
530static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
531{
532 const struct ata_xfer_ent *ent;
533
534 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
535 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
536 return 1 << (ent->shift + xfer_mode - ent->base);
537 return 0;
538}
539
540/**
541 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
542 * @xfer_mode: XFER_* of interest
543 *
544 * Return matching xfer_shift for @xfer_mode.
545 *
546 * LOCKING:
547 * None.
548 *
549 * RETURNS:
550 * Matching xfer_shift, -1 if no match found.
551 */
552static int ata_xfer_mode2shift(unsigned int xfer_mode)
553{
554 const struct ata_xfer_ent *ent;
555
556 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
557 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
558 return ent->shift;
559 return -1;
560}
561
1da177e4 562/**
1da7b0d0
TH
563 * ata_mode_string - convert xfer_mask to string
564 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
565 *
566 * Determine string which represents the highest speed
1da7b0d0 567 * (highest bit in @modemask).
1da177e4
LT
568 *
569 * LOCKING:
570 * None.
571 *
572 * RETURNS:
573 * Constant C string representing highest speed listed in
1da7b0d0 574 * @mode_mask, or the constant C string "<n/a>".
1da177e4 575 */
1da7b0d0 576static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 577{
75f554bc
TH
578 static const char * const xfer_mode_str[] = {
579 "PIO0",
580 "PIO1",
581 "PIO2",
582 "PIO3",
583 "PIO4",
b352e57d
AC
584 "PIO5",
585 "PIO6",
75f554bc
TH
586 "MWDMA0",
587 "MWDMA1",
588 "MWDMA2",
b352e57d
AC
589 "MWDMA3",
590 "MWDMA4",
75f554bc
TH
591 "UDMA/16",
592 "UDMA/25",
593 "UDMA/33",
594 "UDMA/44",
595 "UDMA/66",
596 "UDMA/100",
597 "UDMA/133",
598 "UDMA7",
599 };
1da7b0d0 600 int highbit;
1da177e4 601
1da7b0d0
TH
602 highbit = fls(xfer_mask) - 1;
603 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
604 return xfer_mode_str[highbit];
1da177e4 605 return "<n/a>";
1da177e4
LT
606}
607
4c360c81
TH
608static const char *sata_spd_string(unsigned int spd)
609{
610 static const char * const spd_str[] = {
611 "1.5 Gbps",
612 "3.0 Gbps",
613 };
614
615 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
616 return "<unknown>";
617 return spd_str[spd - 1];
618}
619
3373efd8 620void ata_dev_disable(struct ata_device *dev)
0b8efb0a 621{
09d7f9b0 622 if (ata_dev_enabled(dev)) {
9af5c9c9 623 if (ata_msg_drv(dev->link->ap))
09d7f9b0 624 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
4ae72a1e
TH
625 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
626 ATA_DNXFER_QUIET);
0b8efb0a
TH
627 dev->class++;
628 }
629}
630
ca77329f
KCA
631static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
632{
633 struct ata_link *link = dev->link;
634 struct ata_port *ap = link->ap;
635 u32 scontrol;
636 unsigned int err_mask;
637 int rc;
638
639 /*
640 * disallow DIPM for drivers which haven't set
641 * ATA_FLAG_IPM. This is because when DIPM is enabled,
642 * phy ready will be set in the interrupt status on
643 * state changes, which will cause some drivers to
644 * think there are errors - additionally drivers will
645 * need to disable hot plug.
646 */
647 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
648 ap->pm_policy = NOT_AVAILABLE;
649 return -EINVAL;
650 }
651
652 /*
653 * For DIPM, we will only enable it for the
654 * min_power setting.
655 *
656 * Why? Because Disks are too stupid to know that
657 * If the host rejects a request to go to SLUMBER
658 * they should retry at PARTIAL, and instead it
659 * just would give up. So, for medium_power to
660 * work at all, we need to only allow HIPM.
661 */
662 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
663 if (rc)
664 return rc;
665
666 switch (policy) {
667 case MIN_POWER:
668 /* no restrictions on IPM transitions */
669 scontrol &= ~(0x3 << 8);
670 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
671 if (rc)
672 return rc;
673
674 /* enable DIPM */
675 if (dev->flags & ATA_DFLAG_DIPM)
676 err_mask = ata_dev_set_feature(dev,
677 SETFEATURES_SATA_ENABLE, SATA_DIPM);
678 break;
679 case MEDIUM_POWER:
680 /* allow IPM to PARTIAL */
681 scontrol &= ~(0x1 << 8);
682 scontrol |= (0x2 << 8);
683 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
684 if (rc)
685 return rc;
686
f5456b63
KCA
687 /*
688 * we don't have to disable DIPM since IPM flags
689 * disallow transitions to SLUMBER, which effectively
690 * disable DIPM if it does not support PARTIAL
691 */
ca77329f
KCA
692 break;
693 case NOT_AVAILABLE:
694 case MAX_PERFORMANCE:
695 /* disable all IPM transitions */
696 scontrol |= (0x3 << 8);
697 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
698 if (rc)
699 return rc;
700
f5456b63
KCA
701 /*
702 * we don't have to disable DIPM since IPM flags
703 * disallow all transitions which effectively
704 * disable DIPM anyway.
705 */
ca77329f
KCA
706 break;
707 }
708
709 /* FIXME: handle SET FEATURES failure */
710 (void) err_mask;
711
712 return 0;
713}
714
715/**
716 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
717 * @dev: device to enable power management
718 * @policy: the link power management policy
ca77329f
KCA
719 *
720 * Enable SATA Interface power management. This will enable
721 * Device Interface Power Management (DIPM) for min_power
722 * policy, and then call driver specific callbacks for
723 * enabling Host Initiated Power management.
724 *
725 * Locking: Caller.
726 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
727 */
728void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
729{
730 int rc = 0;
731 struct ata_port *ap = dev->link->ap;
732
733 /* set HIPM first, then DIPM */
734 if (ap->ops->enable_pm)
735 rc = ap->ops->enable_pm(ap, policy);
736 if (rc)
737 goto enable_pm_out;
738 rc = ata_dev_set_dipm(dev, policy);
739
740enable_pm_out:
741 if (rc)
742 ap->pm_policy = MAX_PERFORMANCE;
743 else
744 ap->pm_policy = policy;
745 return /* rc */; /* hopefully we can use 'rc' eventually */
746}
747
1992a5ed 748#ifdef CONFIG_PM
ca77329f
KCA
749/**
750 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 751 * @dev: device to disable power management
ca77329f
KCA
752 *
753 * Disable SATA Interface power management. This will disable
754 * Device Interface Power Management (DIPM) without changing
755 * policy, call driver specific callbacks for disabling Host
756 * Initiated Power management.
757 *
758 * Locking: Caller.
759 * Returns: void
760 */
761static void ata_dev_disable_pm(struct ata_device *dev)
762{
763 struct ata_port *ap = dev->link->ap;
764
765 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
766 if (ap->ops->disable_pm)
767 ap->ops->disable_pm(ap);
768}
1992a5ed 769#endif /* CONFIG_PM */
ca77329f
KCA
770
771void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
772{
773 ap->pm_policy = policy;
774 ap->link.eh_info.action |= ATA_EHI_LPM;
775 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
776 ata_port_schedule_eh(ap);
777}
778
1992a5ed 779#ifdef CONFIG_PM
ca77329f
KCA
780static void ata_lpm_enable(struct ata_host *host)
781{
782 struct ata_link *link;
783 struct ata_port *ap;
784 struct ata_device *dev;
785 int i;
786
787 for (i = 0; i < host->n_ports; i++) {
788 ap = host->ports[i];
789 ata_port_for_each_link(link, ap) {
790 ata_link_for_each_dev(dev, link)
791 ata_dev_disable_pm(dev);
792 }
793 }
794}
795
796static void ata_lpm_disable(struct ata_host *host)
797{
798 int i;
799
800 for (i = 0; i < host->n_ports; i++) {
801 struct ata_port *ap = host->ports[i];
802 ata_lpm_schedule(ap, ap->pm_policy);
803 }
804}
1992a5ed 805#endif /* CONFIG_PM */
ca77329f
KCA
806
807
1da177e4 808/**
0d5ff566 809 * ata_devchk - PATA device presence detection
1da177e4
LT
810 * @ap: ATA channel to examine
811 * @device: Device to examine (starting at zero)
812 *
813 * This technique was originally described in
814 * Hale Landis's ATADRVR (www.ata-atapi.com), and
815 * later found its way into the ATA/ATAPI spec.
816 *
817 * Write a pattern to the ATA shadow registers,
818 * and if a device is present, it will respond by
819 * correctly storing and echoing back the
820 * ATA shadow register contents.
821 *
822 * LOCKING:
823 * caller.
824 */
825
0d5ff566 826static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1da177e4
LT
827{
828 struct ata_ioports *ioaddr = &ap->ioaddr;
829 u8 nsect, lbal;
830
831 ap->ops->dev_select(ap, device);
832
0d5ff566
TH
833 iowrite8(0x55, ioaddr->nsect_addr);
834 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 835
0d5ff566
TH
836 iowrite8(0xaa, ioaddr->nsect_addr);
837 iowrite8(0x55, ioaddr->lbal_addr);
1da177e4 838
0d5ff566
TH
839 iowrite8(0x55, ioaddr->nsect_addr);
840 iowrite8(0xaa, ioaddr->lbal_addr);
1da177e4 841
0d5ff566
TH
842 nsect = ioread8(ioaddr->nsect_addr);
843 lbal = ioread8(ioaddr->lbal_addr);
1da177e4
LT
844
845 if ((nsect == 0x55) && (lbal == 0xaa))
846 return 1; /* we found a device */
847
848 return 0; /* nothing found */
849}
850
1da177e4
LT
851/**
852 * ata_dev_classify - determine device type based on ATA-spec signature
853 * @tf: ATA taskfile register set for device to be identified
854 *
855 * Determine from taskfile register contents whether a device is
856 * ATA or ATAPI, as per "Signature and persistence" section
857 * of ATA/PI spec (volume 1, sect 5.14).
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
633273a3
TH
863 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
864 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 865 */
057ace5e 866unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
867{
868 /* Apple's open source Darwin code hints that some devices only
869 * put a proper signature into the LBA mid/high registers,
870 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
871 *
872 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
873 * signatures for ATA and ATAPI devices attached on SerialATA,
874 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
875 * spec has never mentioned about using different signatures
876 * for ATA/ATAPI devices. Then, Serial ATA II: Port
877 * Multiplier specification began to use 0x69/0x96 to identify
878 * port multpliers and 0x3c/0xc3 to identify SEMB device.
879 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
880 * 0x69/0x96 shortly and described them as reserved for
881 * SerialATA.
882 *
883 * We follow the current spec and consider that 0x69/0x96
884 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1da177e4 885 */
633273a3 886 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
887 DPRINTK("found ATA device by sig\n");
888 return ATA_DEV_ATA;
889 }
890
633273a3 891 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
892 DPRINTK("found ATAPI device by sig\n");
893 return ATA_DEV_ATAPI;
894 }
895
633273a3
TH
896 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
897 DPRINTK("found PMP device by sig\n");
898 return ATA_DEV_PMP;
899 }
900
901 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
2dcb407e 902 printk(KERN_INFO "ata: SEMB device ignored\n");
633273a3
TH
903 return ATA_DEV_SEMB_UNSUP; /* not yet */
904 }
905
1da177e4
LT
906 DPRINTK("unknown device\n");
907 return ATA_DEV_UNKNOWN;
908}
909
910/**
911 * ata_dev_try_classify - Parse returned ATA device signature
3f19859e
TH
912 * @dev: ATA device to classify (starting at zero)
913 * @present: device seems present
b4dc7623 914 * @r_err: Value of error register on completion
1da177e4
LT
915 *
916 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
917 * an ATA/ATAPI-defined set of values is placed in the ATA
918 * shadow registers, indicating the results of device detection
919 * and diagnostics.
920 *
921 * Select the ATA device, and read the values from the ATA shadow
922 * registers. Then parse according to the Error register value,
923 * and the spec-defined values examined by ata_dev_classify().
924 *
925 * LOCKING:
926 * caller.
b4dc7623
TH
927 *
928 * RETURNS:
929 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4 930 */
3f19859e
TH
931unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
932 u8 *r_err)
1da177e4 933{
3f19859e 934 struct ata_port *ap = dev->link->ap;
1da177e4
LT
935 struct ata_taskfile tf;
936 unsigned int class;
937 u8 err;
938
3f19859e 939 ap->ops->dev_select(ap, dev->devno);
1da177e4
LT
940
941 memset(&tf, 0, sizeof(tf));
942
1da177e4 943 ap->ops->tf_read(ap, &tf);
0169e284 944 err = tf.feature;
b4dc7623
TH
945 if (r_err)
946 *r_err = err;
1da177e4 947
93590859 948 /* see if device passed diags: if master then continue and warn later */
3f19859e 949 if (err == 0 && dev->devno == 0)
93590859 950 /* diagnostic fail : do nothing _YET_ */
3f19859e 951 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
93590859 952 else if (err == 1)
1da177e4 953 /* do nothing */ ;
3f19859e 954 else if ((dev->devno == 0) && (err == 0x81))
1da177e4
LT
955 /* do nothing */ ;
956 else
b4dc7623 957 return ATA_DEV_NONE;
1da177e4 958
b4dc7623 959 /* determine if device is ATA or ATAPI */
1da177e4 960 class = ata_dev_classify(&tf);
b4dc7623 961
d7fbee05
TH
962 if (class == ATA_DEV_UNKNOWN) {
963 /* If the device failed diagnostic, it's likely to
964 * have reported incorrect device signature too.
965 * Assume ATA device if the device seems present but
966 * device signature is invalid with diagnostic
967 * failure.
968 */
969 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
970 class = ATA_DEV_ATA;
971 else
972 class = ATA_DEV_NONE;
973 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
974 class = ATA_DEV_NONE;
975
b4dc7623 976 return class;
1da177e4
LT
977}
978
979/**
6a62a04d 980 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
981 * @id: IDENTIFY DEVICE results we will examine
982 * @s: string into which data is output
983 * @ofs: offset into identify device page
984 * @len: length of string to return. must be an even number.
985 *
986 * The strings in the IDENTIFY DEVICE page are broken up into
987 * 16-bit chunks. Run through the string, and output each
988 * 8-bit chunk linearly, regardless of platform.
989 *
990 * LOCKING:
991 * caller.
992 */
993
6a62a04d
TH
994void ata_id_string(const u16 *id, unsigned char *s,
995 unsigned int ofs, unsigned int len)
1da177e4
LT
996{
997 unsigned int c;
998
999 while (len > 0) {
1000 c = id[ofs] >> 8;
1001 *s = c;
1002 s++;
1003
1004 c = id[ofs] & 0xff;
1005 *s = c;
1006 s++;
1007
1008 ofs++;
1009 len -= 2;
1010 }
1011}
1012
0e949ff3 1013/**
6a62a04d 1014 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1015 * @id: IDENTIFY DEVICE results we will examine
1016 * @s: string into which data is output
1017 * @ofs: offset into identify device page
1018 * @len: length of string to return. must be an odd number.
1019 *
6a62a04d 1020 * This function is identical to ata_id_string except that it
0e949ff3
TH
1021 * trims trailing spaces and terminates the resulting string with
1022 * null. @len must be actual maximum length (even number) + 1.
1023 *
1024 * LOCKING:
1025 * caller.
1026 */
6a62a04d
TH
1027void ata_id_c_string(const u16 *id, unsigned char *s,
1028 unsigned int ofs, unsigned int len)
0e949ff3
TH
1029{
1030 unsigned char *p;
1031
1032 WARN_ON(!(len & 1));
1033
6a62a04d 1034 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1035
1036 p = s + strnlen(s, len - 1);
1037 while (p > s && p[-1] == ' ')
1038 p--;
1039 *p = '\0';
1040}
0baab86b 1041
db6f8759
TH
1042static u64 ata_id_n_sectors(const u16 *id)
1043{
1044 if (ata_id_has_lba(id)) {
1045 if (ata_id_has_lba48(id))
1046 return ata_id_u64(id, 100);
1047 else
1048 return ata_id_u32(id, 60);
1049 } else {
1050 if (ata_id_current_chs_valid(id))
1051 return ata_id_u32(id, 57);
1052 else
1053 return id[1] * id[3] * id[6];
1054 }
1055}
1056
1e999736
AC
1057static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1058{
1059 u64 sectors = 0;
1060
1061 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1062 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1063 sectors |= (tf->hob_lbal & 0xff) << 24;
1064 sectors |= (tf->lbah & 0xff) << 16;
1065 sectors |= (tf->lbam & 0xff) << 8;
1066 sectors |= (tf->lbal & 0xff);
1067
1068 return ++sectors;
1069}
1070
1071static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1072{
1073 u64 sectors = 0;
1074
1075 sectors |= (tf->device & 0x0f) << 24;
1076 sectors |= (tf->lbah & 0xff) << 16;
1077 sectors |= (tf->lbam & 0xff) << 8;
1078 sectors |= (tf->lbal & 0xff);
1079
1080 return ++sectors;
1081}
1082
1083/**
c728a914
TH
1084 * ata_read_native_max_address - Read native max address
1085 * @dev: target device
1086 * @max_sectors: out parameter for the result native max address
1e999736 1087 *
c728a914
TH
1088 * Perform an LBA48 or LBA28 native size query upon the device in
1089 * question.
1e999736 1090 *
c728a914
TH
1091 * RETURNS:
1092 * 0 on success, -EACCES if command is aborted by the drive.
1093 * -EIO on other errors.
1e999736 1094 */
c728a914 1095static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1096{
c728a914 1097 unsigned int err_mask;
1e999736 1098 struct ata_taskfile tf;
c728a914 1099 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1100
1101 ata_tf_init(dev, &tf);
1102
c728a914 1103 /* always clear all address registers */
1e999736 1104 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1105
c728a914
TH
1106 if (lba48) {
1107 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1108 tf.flags |= ATA_TFLAG_LBA48;
1109 } else
1110 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1111
1e999736 1112 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1113 tf.device |= ATA_LBA;
1114
2b789108 1115 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1116 if (err_mask) {
1117 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1118 "max address (err_mask=0x%x)\n", err_mask);
1119 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1120 return -EACCES;
1121 return -EIO;
1122 }
1e999736 1123
c728a914
TH
1124 if (lba48)
1125 *max_sectors = ata_tf_to_lba48(&tf);
1126 else
1127 *max_sectors = ata_tf_to_lba(&tf);
2dcb407e 1128 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1129 (*max_sectors)--;
c728a914 1130 return 0;
1e999736
AC
1131}
1132
1133/**
c728a914
TH
1134 * ata_set_max_sectors - Set max sectors
1135 * @dev: target device
6b38d1d1 1136 * @new_sectors: new max sectors value to set for the device
1e999736 1137 *
c728a914
TH
1138 * Set max sectors of @dev to @new_sectors.
1139 *
1140 * RETURNS:
1141 * 0 on success, -EACCES if command is aborted or denied (due to
1142 * previous non-volatile SET_MAX) by the drive. -EIO on other
1143 * errors.
1e999736 1144 */
05027adc 1145static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1146{
c728a914 1147 unsigned int err_mask;
1e999736 1148 struct ata_taskfile tf;
c728a914 1149 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1150
1151 new_sectors--;
1152
1153 ata_tf_init(dev, &tf);
1154
1e999736 1155 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1156
1157 if (lba48) {
1158 tf.command = ATA_CMD_SET_MAX_EXT;
1159 tf.flags |= ATA_TFLAG_LBA48;
1160
1161 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1162 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1163 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1164 } else {
c728a914
TH
1165 tf.command = ATA_CMD_SET_MAX;
1166
1e582ba4
TH
1167 tf.device |= (new_sectors >> 24) & 0xf;
1168 }
1169
1e999736 1170 tf.protocol |= ATA_PROT_NODATA;
c728a914 1171 tf.device |= ATA_LBA;
1e999736
AC
1172
1173 tf.lbal = (new_sectors >> 0) & 0xff;
1174 tf.lbam = (new_sectors >> 8) & 0xff;
1175 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1176
2b789108 1177 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1178 if (err_mask) {
1179 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1180 "max address (err_mask=0x%x)\n", err_mask);
1181 if (err_mask == AC_ERR_DEV &&
1182 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1183 return -EACCES;
1184 return -EIO;
1185 }
1186
c728a914 1187 return 0;
1e999736
AC
1188}
1189
1190/**
1191 * ata_hpa_resize - Resize a device with an HPA set
1192 * @dev: Device to resize
1193 *
1194 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1195 * it if required to the full size of the media. The caller must check
1196 * the drive has the HPA feature set enabled.
05027adc
TH
1197 *
1198 * RETURNS:
1199 * 0 on success, -errno on failure.
1e999736 1200 */
05027adc 1201static int ata_hpa_resize(struct ata_device *dev)
1e999736 1202{
05027adc
TH
1203 struct ata_eh_context *ehc = &dev->link->eh_context;
1204 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1205 u64 sectors = ata_id_n_sectors(dev->id);
1206 u64 native_sectors;
c728a914 1207 int rc;
a617c09f 1208
05027adc
TH
1209 /* do we need to do it? */
1210 if (dev->class != ATA_DEV_ATA ||
1211 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1212 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1213 return 0;
1e999736 1214
05027adc
TH
1215 /* read native max address */
1216 rc = ata_read_native_max_address(dev, &native_sectors);
1217 if (rc) {
1218 /* If HPA isn't going to be unlocked, skip HPA
1219 * resizing from the next try.
1220 */
1221 if (!ata_ignore_hpa) {
1222 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1223 "broken, will skip HPA handling\n");
1224 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1225
1226 /* we can continue if device aborted the command */
1227 if (rc == -EACCES)
1228 rc = 0;
1e999736 1229 }
37301a55 1230
05027adc
TH
1231 return rc;
1232 }
1233
1234 /* nothing to do? */
1235 if (native_sectors <= sectors || !ata_ignore_hpa) {
1236 if (!print_info || native_sectors == sectors)
1237 return 0;
1238
1239 if (native_sectors > sectors)
1240 ata_dev_printk(dev, KERN_INFO,
1241 "HPA detected: current %llu, native %llu\n",
1242 (unsigned long long)sectors,
1243 (unsigned long long)native_sectors);
1244 else if (native_sectors < sectors)
1245 ata_dev_printk(dev, KERN_WARNING,
1246 "native sectors (%llu) is smaller than "
1247 "sectors (%llu)\n",
1248 (unsigned long long)native_sectors,
1249 (unsigned long long)sectors);
1250 return 0;
1251 }
1252
1253 /* let's unlock HPA */
1254 rc = ata_set_max_sectors(dev, native_sectors);
1255 if (rc == -EACCES) {
1256 /* if device aborted the command, skip HPA resizing */
1257 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1258 "(%llu -> %llu), skipping HPA handling\n",
1259 (unsigned long long)sectors,
1260 (unsigned long long)native_sectors);
1261 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1262 return 0;
1263 } else if (rc)
1264 return rc;
1265
1266 /* re-read IDENTIFY data */
1267 rc = ata_dev_reread_id(dev, 0);
1268 if (rc) {
1269 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1270 "data after HPA resizing\n");
1271 return rc;
1272 }
1273
1274 if (print_info) {
1275 u64 new_sectors = ata_id_n_sectors(dev->id);
1276 ata_dev_printk(dev, KERN_INFO,
1277 "HPA unlocked: %llu -> %llu, native %llu\n",
1278 (unsigned long long)sectors,
1279 (unsigned long long)new_sectors,
1280 (unsigned long long)native_sectors);
1281 }
1282
1283 return 0;
1e999736
AC
1284}
1285
10305f0f
AC
1286/**
1287 * ata_id_to_dma_mode - Identify DMA mode from id block
1288 * @dev: device to identify
cc261267 1289 * @unknown: mode to assume if we cannot tell
10305f0f
AC
1290 *
1291 * Set up the timing values for the device based upon the identify
1292 * reported values for the DMA mode. This function is used by drivers
1293 * which rely upon firmware configured modes, but wish to report the
1294 * mode correctly when possible.
1295 *
1296 * In addition we emit similarly formatted messages to the default
1297 * ata_dev_set_mode handler, in order to provide consistency of
1298 * presentation.
1299 */
1300
1301void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1302{
1303 unsigned int mask;
1304 u8 mode;
1305
1306 /* Pack the DMA modes */
1307 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1308 if (dev->id[53] & 0x04)
1309 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1310
1311 /* Select the mode in use */
1312 mode = ata_xfer_mask2mode(mask);
1313
1314 if (mode != 0) {
1315 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1316 ata_mode_string(mask));
1317 } else {
1318 /* SWDMA perhaps ? */
1319 mode = unknown;
1320 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1321 }
1322
1323 /* Configure the device reporting */
1324 dev->xfer_mode = mode;
1325 dev->xfer_shift = ata_xfer_mode2shift(mode);
1326}
1327
0baab86b
EF
1328/**
1329 * ata_noop_dev_select - Select device 0/1 on ATA bus
1330 * @ap: ATA channel to manipulate
1331 * @device: ATA device (numbered from zero) to select
1332 *
1333 * This function performs no actual function.
1334 *
1335 * May be used as the dev_select() entry in ata_port_operations.
1336 *
1337 * LOCKING:
1338 * caller.
1339 */
2dcb407e 1340void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1341{
1342}
1343
0baab86b 1344
1da177e4
LT
1345/**
1346 * ata_std_dev_select - Select device 0/1 on ATA bus
1347 * @ap: ATA channel to manipulate
1348 * @device: ATA device (numbered from zero) to select
1349 *
1350 * Use the method defined in the ATA specification to
1351 * make either device 0, or device 1, active on the
0baab86b
EF
1352 * ATA channel. Works with both PIO and MMIO.
1353 *
1354 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
1355 *
1356 * LOCKING:
1357 * caller.
1358 */
1359
2dcb407e 1360void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1da177e4
LT
1361{
1362 u8 tmp;
1363
1364 if (device == 0)
1365 tmp = ATA_DEVICE_OBS;
1366 else
1367 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1368
0d5ff566 1369 iowrite8(tmp, ap->ioaddr.device_addr);
1da177e4
LT
1370 ata_pause(ap); /* needed; also flushes, for mmio */
1371}
1372
1373/**
1374 * ata_dev_select - Select device 0/1 on ATA bus
1375 * @ap: ATA channel to manipulate
1376 * @device: ATA device (numbered from zero) to select
1377 * @wait: non-zero to wait for Status register BSY bit to clear
1378 * @can_sleep: non-zero if context allows sleeping
1379 *
1380 * Use the method defined in the ATA specification to
1381 * make either device 0, or device 1, active on the
1382 * ATA channel.
1383 *
1384 * This is a high-level version of ata_std_dev_select(),
1385 * which additionally provides the services of inserting
1386 * the proper pauses and status polling, where needed.
1387 *
1388 * LOCKING:
1389 * caller.
1390 */
1391
1392void ata_dev_select(struct ata_port *ap, unsigned int device,
1393 unsigned int wait, unsigned int can_sleep)
1394{
88574551 1395 if (ata_msg_probe(ap))
44877b4e
TH
1396 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1397 "device %u, wait %u\n", device, wait);
1da177e4
LT
1398
1399 if (wait)
1400 ata_wait_idle(ap);
1401
1402 ap->ops->dev_select(ap, device);
1403
1404 if (wait) {
9af5c9c9 1405 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1da177e4
LT
1406 msleep(150);
1407 ata_wait_idle(ap);
1408 }
1409}
1410
1411/**
1412 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1413 * @id: IDENTIFY DEVICE page to dump
1da177e4 1414 *
0bd3300a
TH
1415 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1416 * page.
1da177e4
LT
1417 *
1418 * LOCKING:
1419 * caller.
1420 */
1421
0bd3300a 1422static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1423{
1424 DPRINTK("49==0x%04x "
1425 "53==0x%04x "
1426 "63==0x%04x "
1427 "64==0x%04x "
1428 "75==0x%04x \n",
0bd3300a
TH
1429 id[49],
1430 id[53],
1431 id[63],
1432 id[64],
1433 id[75]);
1da177e4
LT
1434 DPRINTK("80==0x%04x "
1435 "81==0x%04x "
1436 "82==0x%04x "
1437 "83==0x%04x "
1438 "84==0x%04x \n",
0bd3300a
TH
1439 id[80],
1440 id[81],
1441 id[82],
1442 id[83],
1443 id[84]);
1da177e4
LT
1444 DPRINTK("88==0x%04x "
1445 "93==0x%04x\n",
0bd3300a
TH
1446 id[88],
1447 id[93]);
1da177e4
LT
1448}
1449
cb95d562
TH
1450/**
1451 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1452 * @id: IDENTIFY data to compute xfer mask from
1453 *
1454 * Compute the xfermask for this device. This is not as trivial
1455 * as it seems if we must consider early devices correctly.
1456 *
1457 * FIXME: pre IDE drive timing (do we care ?).
1458 *
1459 * LOCKING:
1460 * None.
1461 *
1462 * RETURNS:
1463 * Computed xfermask
1464 */
1465static unsigned int ata_id_xfermask(const u16 *id)
1466{
1467 unsigned int pio_mask, mwdma_mask, udma_mask;
1468
1469 /* Usual case. Word 53 indicates word 64 is valid */
1470 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1471 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1472 pio_mask <<= 3;
1473 pio_mask |= 0x7;
1474 } else {
1475 /* If word 64 isn't valid then Word 51 high byte holds
1476 * the PIO timing number for the maximum. Turn it into
1477 * a mask.
1478 */
7a0f1c8a 1479 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1480 if (mode < 5) /* Valid PIO range */
2dcb407e 1481 pio_mask = (2 << mode) - 1;
46767aeb
AC
1482 else
1483 pio_mask = 1;
cb95d562
TH
1484
1485 /* But wait.. there's more. Design your standards by
1486 * committee and you too can get a free iordy field to
1487 * process. However its the speeds not the modes that
1488 * are supported... Note drivers using the timing API
1489 * will get this right anyway
1490 */
1491 }
1492
1493 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1494
b352e57d
AC
1495 if (ata_id_is_cfa(id)) {
1496 /*
1497 * Process compact flash extended modes
1498 */
1499 int pio = id[163] & 0x7;
1500 int dma = (id[163] >> 3) & 7;
1501
1502 if (pio)
1503 pio_mask |= (1 << 5);
1504 if (pio > 1)
1505 pio_mask |= (1 << 6);
1506 if (dma)
1507 mwdma_mask |= (1 << 3);
1508 if (dma > 1)
1509 mwdma_mask |= (1 << 4);
1510 }
1511
fb21f0d0
TH
1512 udma_mask = 0;
1513 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1514 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1515
1516 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1517}
1518
86e45b6b
TH
1519/**
1520 * ata_port_queue_task - Queue port_task
1521 * @ap: The ata_port to queue port_task for
e2a7f77a 1522 * @fn: workqueue function to be scheduled
65f27f38 1523 * @data: data for @fn to use
e2a7f77a 1524 * @delay: delay time for workqueue function
86e45b6b
TH
1525 *
1526 * Schedule @fn(@data) for execution after @delay jiffies using
1527 * port_task. There is one port_task per port and it's the
1528 * user(low level driver)'s responsibility to make sure that only
1529 * one task is active at any given time.
1530 *
1531 * libata core layer takes care of synchronization between
1532 * port_task and EH. ata_port_queue_task() may be ignored for EH
1533 * synchronization.
1534 *
1535 * LOCKING:
1536 * Inherited from caller.
1537 */
65f27f38 1538void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
86e45b6b
TH
1539 unsigned long delay)
1540{
65f27f38
DH
1541 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1542 ap->port_task_data = data;
86e45b6b 1543
45a66c1c
ON
1544 /* may fail if ata_port_flush_task() in progress */
1545 queue_delayed_work(ata_wq, &ap->port_task, delay);
86e45b6b
TH
1546}
1547
1548/**
1549 * ata_port_flush_task - Flush port_task
1550 * @ap: The ata_port to flush port_task for
1551 *
1552 * After this function completes, port_task is guranteed not to
1553 * be running or scheduled.
1554 *
1555 * LOCKING:
1556 * Kernel thread context (may sleep)
1557 */
1558void ata_port_flush_task(struct ata_port *ap)
1559{
86e45b6b
TH
1560 DPRINTK("ENTER\n");
1561
45a66c1c 1562 cancel_rearming_delayed_work(&ap->port_task);
86e45b6b 1563
0dd4b21f
BP
1564 if (ata_msg_ctl(ap))
1565 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
1566}
1567
7102d230 1568static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1569{
77853bf2 1570 struct completion *waiting = qc->private_data;
a2a7a662 1571
a2a7a662 1572 complete(waiting);
a2a7a662
TH
1573}
1574
1575/**
2432697b 1576 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1577 * @dev: Device to which the command is sent
1578 * @tf: Taskfile registers for the command and the result
d69cf37d 1579 * @cdb: CDB for packet command
a2a7a662 1580 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1581 * @sgl: sg list for the data buffer of the command
2432697b 1582 * @n_elem: Number of sg entries
2b789108 1583 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1584 *
1585 * Executes libata internal command with timeout. @tf contains
1586 * command on entry and result on return. Timeout and error
1587 * conditions are reported via return value. No recovery action
1588 * is taken after a command times out. It's caller's duty to
1589 * clean up after timeout.
1590 *
1591 * LOCKING:
1592 * None. Should be called with kernel context, might sleep.
551e8889
TH
1593 *
1594 * RETURNS:
1595 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1596 */
2432697b
TH
1597unsigned ata_exec_internal_sg(struct ata_device *dev,
1598 struct ata_taskfile *tf, const u8 *cdb,
87260216 1599 int dma_dir, struct scatterlist *sgl,
2b789108 1600 unsigned int n_elem, unsigned long timeout)
a2a7a662 1601{
9af5c9c9
TH
1602 struct ata_link *link = dev->link;
1603 struct ata_port *ap = link->ap;
a2a7a662
TH
1604 u8 command = tf->command;
1605 struct ata_queued_cmd *qc;
2ab7db1f 1606 unsigned int tag, preempted_tag;
dedaf2b0 1607 u32 preempted_sactive, preempted_qc_active;
da917d69 1608 int preempted_nr_active_links;
60be6b9a 1609 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1610 unsigned long flags;
77853bf2 1611 unsigned int err_mask;
d95a717f 1612 int rc;
a2a7a662 1613
ba6a1308 1614 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1615
e3180499 1616 /* no internal command while frozen */
b51e9e5d 1617 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1618 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1619 return AC_ERR_SYSTEM;
1620 }
1621
2ab7db1f 1622 /* initialize internal qc */
a2a7a662 1623
2ab7db1f
TH
1624 /* XXX: Tag 0 is used for drivers with legacy EH as some
1625 * drivers choke if any other tag is given. This breaks
1626 * ata_tag_internal() test for those drivers. Don't use new
1627 * EH stuff without converting to it.
1628 */
1629 if (ap->ops->error_handler)
1630 tag = ATA_TAG_INTERNAL;
1631 else
1632 tag = 0;
1633
6cec4a39 1634 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1635 BUG();
f69499f4 1636 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1637
1638 qc->tag = tag;
1639 qc->scsicmd = NULL;
1640 qc->ap = ap;
1641 qc->dev = dev;
1642 ata_qc_reinit(qc);
1643
9af5c9c9
TH
1644 preempted_tag = link->active_tag;
1645 preempted_sactive = link->sactive;
dedaf2b0 1646 preempted_qc_active = ap->qc_active;
da917d69 1647 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1648 link->active_tag = ATA_TAG_POISON;
1649 link->sactive = 0;
dedaf2b0 1650 ap->qc_active = 0;
da917d69 1651 ap->nr_active_links = 0;
2ab7db1f
TH
1652
1653 /* prepare & issue qc */
a2a7a662 1654 qc->tf = *tf;
d69cf37d
TH
1655 if (cdb)
1656 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1657 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1658 qc->dma_dir = dma_dir;
1659 if (dma_dir != DMA_NONE) {
2432697b 1660 unsigned int i, buflen = 0;
87260216 1661 struct scatterlist *sg;
2432697b 1662
87260216
JA
1663 for_each_sg(sgl, sg, n_elem, i)
1664 buflen += sg->length;
2432697b 1665
87260216 1666 ata_sg_init(qc, sgl, n_elem);
49c80429 1667 qc->nbytes = buflen;
a2a7a662
TH
1668 }
1669
77853bf2 1670 qc->private_data = &wait;
a2a7a662
TH
1671 qc->complete_fn = ata_qc_complete_internal;
1672
8e0e694a 1673 ata_qc_issue(qc);
a2a7a662 1674
ba6a1308 1675 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1676
2b789108
TH
1677 if (!timeout)
1678 timeout = ata_probe_timeout * 1000 / HZ;
1679
1680 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f
TH
1681
1682 ata_port_flush_task(ap);
41ade50c 1683
d95a717f 1684 if (!rc) {
ba6a1308 1685 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1686
1687 /* We're racing with irq here. If we lose, the
1688 * following test prevents us from completing the qc
d95a717f
TH
1689 * twice. If we win, the port is frozen and will be
1690 * cleaned up by ->post_internal_cmd().
a2a7a662 1691 */
77853bf2 1692 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1693 qc->err_mask |= AC_ERR_TIMEOUT;
1694
1695 if (ap->ops->error_handler)
1696 ata_port_freeze(ap);
1697 else
1698 ata_qc_complete(qc);
f15a1daf 1699
0dd4b21f
BP
1700 if (ata_msg_warn(ap))
1701 ata_dev_printk(dev, KERN_WARNING,
88574551 1702 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1703 }
1704
ba6a1308 1705 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1706 }
1707
d95a717f
TH
1708 /* do post_internal_cmd */
1709 if (ap->ops->post_internal_cmd)
1710 ap->ops->post_internal_cmd(qc);
1711
a51d644a
TH
1712 /* perform minimal error analysis */
1713 if (qc->flags & ATA_QCFLAG_FAILED) {
1714 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1715 qc->err_mask |= AC_ERR_DEV;
1716
1717 if (!qc->err_mask)
1718 qc->err_mask |= AC_ERR_OTHER;
1719
1720 if (qc->err_mask & ~AC_ERR_OTHER)
1721 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1722 }
1723
15869303 1724 /* finish up */
ba6a1308 1725 spin_lock_irqsave(ap->lock, flags);
15869303 1726
e61e0672 1727 *tf = qc->result_tf;
77853bf2
TH
1728 err_mask = qc->err_mask;
1729
1730 ata_qc_free(qc);
9af5c9c9
TH
1731 link->active_tag = preempted_tag;
1732 link->sactive = preempted_sactive;
dedaf2b0 1733 ap->qc_active = preempted_qc_active;
da917d69 1734 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1735
1f7dd3e9
TH
1736 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1737 * Until those drivers are fixed, we detect the condition
1738 * here, fail the command with AC_ERR_SYSTEM and reenable the
1739 * port.
1740 *
1741 * Note that this doesn't change any behavior as internal
1742 * command failure results in disabling the device in the
1743 * higher layer for LLDDs without new reset/EH callbacks.
1744 *
1745 * Kill the following code as soon as those drivers are fixed.
1746 */
198e0fed 1747 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1748 err_mask |= AC_ERR_SYSTEM;
1749 ata_port_probe(ap);
1750 }
1751
ba6a1308 1752 spin_unlock_irqrestore(ap->lock, flags);
15869303 1753
77853bf2 1754 return err_mask;
a2a7a662
TH
1755}
1756
2432697b 1757/**
33480a0e 1758 * ata_exec_internal - execute libata internal command
2432697b
TH
1759 * @dev: Device to which the command is sent
1760 * @tf: Taskfile registers for the command and the result
1761 * @cdb: CDB for packet command
1762 * @dma_dir: Data tranfer direction of the command
1763 * @buf: Data buffer of the command
1764 * @buflen: Length of data buffer
2b789108 1765 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1766 *
1767 * Wrapper around ata_exec_internal_sg() which takes simple
1768 * buffer instead of sg list.
1769 *
1770 * LOCKING:
1771 * None. Should be called with kernel context, might sleep.
1772 *
1773 * RETURNS:
1774 * Zero on success, AC_ERR_* mask on failure
1775 */
1776unsigned ata_exec_internal(struct ata_device *dev,
1777 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1778 int dma_dir, void *buf, unsigned int buflen,
1779 unsigned long timeout)
2432697b 1780{
33480a0e
TH
1781 struct scatterlist *psg = NULL, sg;
1782 unsigned int n_elem = 0;
2432697b 1783
33480a0e
TH
1784 if (dma_dir != DMA_NONE) {
1785 WARN_ON(!buf);
1786 sg_init_one(&sg, buf, buflen);
1787 psg = &sg;
1788 n_elem++;
1789 }
2432697b 1790
2b789108
TH
1791 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1792 timeout);
2432697b
TH
1793}
1794
977e6b9f
TH
1795/**
1796 * ata_do_simple_cmd - execute simple internal command
1797 * @dev: Device to which the command is sent
1798 * @cmd: Opcode to execute
1799 *
1800 * Execute a 'simple' command, that only consists of the opcode
1801 * 'cmd' itself, without filling any other registers
1802 *
1803 * LOCKING:
1804 * Kernel thread context (may sleep).
1805 *
1806 * RETURNS:
1807 * Zero on success, AC_ERR_* mask on failure
e58eb583 1808 */
77b08fb5 1809unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1810{
1811 struct ata_taskfile tf;
e58eb583
TH
1812
1813 ata_tf_init(dev, &tf);
1814
1815 tf.command = cmd;
1816 tf.flags |= ATA_TFLAG_DEVICE;
1817 tf.protocol = ATA_PROT_NODATA;
1818
2b789108 1819 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1820}
1821
1bc4ccff
AC
1822/**
1823 * ata_pio_need_iordy - check if iordy needed
1824 * @adev: ATA device
1825 *
1826 * Check if the current speed of the device requires IORDY. Used
1827 * by various controllers for chip configuration.
1828 */
a617c09f 1829
1bc4ccff
AC
1830unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1831{
432729f0
AC
1832 /* Controller doesn't support IORDY. Probably a pointless check
1833 as the caller should know this */
9af5c9c9 1834 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1835 return 0;
432729f0
AC
1836 /* PIO3 and higher it is mandatory */
1837 if (adev->pio_mode > XFER_PIO_2)
1838 return 1;
1839 /* We turn it on when possible */
1840 if (ata_id_has_iordy(adev->id))
1bc4ccff 1841 return 1;
432729f0
AC
1842 return 0;
1843}
2e9edbf8 1844
432729f0
AC
1845/**
1846 * ata_pio_mask_no_iordy - Return the non IORDY mask
1847 * @adev: ATA device
1848 *
1849 * Compute the highest mode possible if we are not using iordy. Return
1850 * -1 if no iordy mode is available.
1851 */
a617c09f 1852
432729f0
AC
1853static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1854{
1bc4ccff 1855 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1856 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1857 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1858 /* Is the speed faster than the drive allows non IORDY ? */
1859 if (pio) {
1860 /* This is cycle times not frequency - watch the logic! */
1861 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1862 return 3 << ATA_SHIFT_PIO;
1863 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1864 }
1865 }
432729f0 1866 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1867}
1868
1da177e4 1869/**
49016aca 1870 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1871 * @dev: target device
1872 * @p_class: pointer to class of the target device (may be changed)
bff04647 1873 * @flags: ATA_READID_* flags
fe635c7e 1874 * @id: buffer to read IDENTIFY data into
1da177e4 1875 *
49016aca
TH
1876 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1877 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1878 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1879 * for pre-ATA4 drives.
1da177e4 1880 *
50a99018 1881 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1882 * now we abort if we hit that case.
50a99018 1883 *
1da177e4 1884 * LOCKING:
49016aca
TH
1885 * Kernel thread context (may sleep)
1886 *
1887 * RETURNS:
1888 * 0 on success, -errno otherwise.
1da177e4 1889 */
a9beec95 1890int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1891 unsigned int flags, u16 *id)
1da177e4 1892{
9af5c9c9 1893 struct ata_port *ap = dev->link->ap;
49016aca 1894 unsigned int class = *p_class;
a0123703 1895 struct ata_taskfile tf;
49016aca
TH
1896 unsigned int err_mask = 0;
1897 const char *reason;
54936f8b 1898 int may_fallback = 1, tried_spinup = 0;
49016aca 1899 int rc;
1da177e4 1900
0dd4b21f 1901 if (ata_msg_ctl(ap))
44877b4e 1902 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 1903
49016aca 1904 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
49016aca 1905 retry:
3373efd8 1906 ata_tf_init(dev, &tf);
a0123703 1907
49016aca
TH
1908 switch (class) {
1909 case ATA_DEV_ATA:
a0123703 1910 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1911 break;
1912 case ATA_DEV_ATAPI:
a0123703 1913 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1914 break;
1915 default:
1916 rc = -ENODEV;
1917 reason = "unsupported class";
1918 goto err_out;
1da177e4
LT
1919 }
1920
a0123703 1921 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1922
1923 /* Some devices choke if TF registers contain garbage. Make
1924 * sure those are properly initialized.
1925 */
1926 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1927
1928 /* Device presence detection is unreliable on some
1929 * controllers. Always poll IDENTIFY if available.
1930 */
1931 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1932
3373efd8 1933 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2b789108 1934 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
a0123703 1935 if (err_mask) {
800b3996 1936 if (err_mask & AC_ERR_NODEV_HINT) {
55a8e2c8 1937 DPRINTK("ata%u.%d: NODEV after polling detection\n",
44877b4e 1938 ap->print_id, dev->devno);
55a8e2c8
TH
1939 return -ENOENT;
1940 }
1941
54936f8b
TH
1942 /* Device or controller might have reported the wrong
1943 * device class. Give a shot at the other IDENTIFY if
1944 * the current one is aborted by the device.
1945 */
1946 if (may_fallback &&
1947 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1948 may_fallback = 0;
1949
1950 if (class == ATA_DEV_ATA)
1951 class = ATA_DEV_ATAPI;
1952 else
1953 class = ATA_DEV_ATA;
1954 goto retry;
1955 }
1956
49016aca
TH
1957 rc = -EIO;
1958 reason = "I/O error";
1da177e4
LT
1959 goto err_out;
1960 }
1961
54936f8b
TH
1962 /* Falling back doesn't make sense if ID data was read
1963 * successfully at least once.
1964 */
1965 may_fallback = 0;
1966
49016aca 1967 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1968
49016aca 1969 /* sanity check */
a4f5749b 1970 rc = -EINVAL;
6070068b 1971 reason = "device reports invalid type";
a4f5749b
TH
1972
1973 if (class == ATA_DEV_ATA) {
1974 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1975 goto err_out;
1976 } else {
1977 if (ata_id_is_ata(id))
1978 goto err_out;
49016aca
TH
1979 }
1980
169439c2
ML
1981 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1982 tried_spinup = 1;
1983 /*
1984 * Drive powered-up in standby mode, and requires a specific
1985 * SET_FEATURES spin-up subcommand before it will accept
1986 * anything other than the original IDENTIFY command.
1987 */
218f3d30 1988 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1989 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1990 rc = -EIO;
1991 reason = "SPINUP failed";
1992 goto err_out;
1993 }
1994 /*
1995 * If the drive initially returned incomplete IDENTIFY info,
1996 * we now must reissue the IDENTIFY command.
1997 */
1998 if (id[2] == 0x37c8)
1999 goto retry;
2000 }
2001
bff04647 2002 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2003 /*
2004 * The exact sequence expected by certain pre-ATA4 drives is:
2005 * SRST RESET
50a99018
AC
2006 * IDENTIFY (optional in early ATA)
2007 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2008 * anything else..
2009 * Some drives were very specific about that exact sequence.
50a99018
AC
2010 *
2011 * Note that ATA4 says lba is mandatory so the second check
2012 * shoud never trigger.
49016aca
TH
2013 */
2014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2015 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2016 if (err_mask) {
2017 rc = -EIO;
2018 reason = "INIT_DEV_PARAMS failed";
2019 goto err_out;
2020 }
2021
2022 /* current CHS translation info (id[53-58]) might be
2023 * changed. reread the identify device info.
2024 */
bff04647 2025 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2026 goto retry;
2027 }
2028 }
2029
2030 *p_class = class;
fe635c7e 2031
49016aca
TH
2032 return 0;
2033
2034 err_out:
88574551 2035 if (ata_msg_warn(ap))
0dd4b21f 2036 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2037 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2038 return rc;
2039}
2040
3373efd8 2041static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2042{
9af5c9c9
TH
2043 struct ata_port *ap = dev->link->ap;
2044 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2045}
2046
a6e6ce8e
TH
2047static void ata_dev_config_ncq(struct ata_device *dev,
2048 char *desc, size_t desc_sz)
2049{
9af5c9c9 2050 struct ata_port *ap = dev->link->ap;
a6e6ce8e
TH
2051 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2052
2053 if (!ata_id_has_ncq(dev->id)) {
2054 desc[0] = '\0';
2055 return;
2056 }
75683fe7 2057 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6
AC
2058 snprintf(desc, desc_sz, "NCQ (not used)");
2059 return;
2060 }
a6e6ce8e 2061 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2062 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2063 dev->flags |= ATA_DFLAG_NCQ;
2064 }
2065
2066 if (hdepth >= ddepth)
2067 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2068 else
2069 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2070}
2071
49016aca 2072/**
ffeae418 2073 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2074 * @dev: Target device to configure
2075 *
2076 * Configure @dev according to @dev->id. Generic and low-level
2077 * driver specific fixups are also applied.
49016aca
TH
2078 *
2079 * LOCKING:
ffeae418
TH
2080 * Kernel thread context (may sleep)
2081 *
2082 * RETURNS:
2083 * 0 on success, -errno otherwise
49016aca 2084 */
efdaedc4 2085int ata_dev_configure(struct ata_device *dev)
49016aca 2086{
9af5c9c9
TH
2087 struct ata_port *ap = dev->link->ap;
2088 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2089 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2090 const u16 *id = dev->id;
ff8854b2 2091 unsigned int xfer_mask;
b352e57d 2092 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2093 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2094 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2095 int rc;
49016aca 2096
0dd4b21f 2097 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e
TH
2098 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2099 __FUNCTION__);
ffeae418 2100 return 0;
49016aca
TH
2101 }
2102
0dd4b21f 2103 if (ata_msg_probe(ap))
44877b4e 2104 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1da177e4 2105
75683fe7
TH
2106 /* set horkage */
2107 dev->horkage |= ata_dev_blacklisted(dev);
2108
6746544c
TH
2109 /* let ACPI work its magic */
2110 rc = ata_acpi_on_devcfg(dev);
2111 if (rc)
2112 return rc;
08573a86 2113
05027adc
TH
2114 /* massage HPA, do it early as it might change IDENTIFY data */
2115 rc = ata_hpa_resize(dev);
2116 if (rc)
2117 return rc;
2118
c39f5ebe 2119 /* print device capabilities */
0dd4b21f 2120 if (ata_msg_probe(ap))
88574551
TH
2121 ata_dev_printk(dev, KERN_DEBUG,
2122 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2123 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 2124 __FUNCTION__,
f15a1daf
TH
2125 id[49], id[82], id[83], id[84],
2126 id[85], id[86], id[87], id[88]);
c39f5ebe 2127
208a9933 2128 /* initialize to-be-configured parameters */
ea1dd4e1 2129 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2130 dev->max_sectors = 0;
2131 dev->cdb_len = 0;
2132 dev->n_sectors = 0;
2133 dev->cylinders = 0;
2134 dev->heads = 0;
2135 dev->sectors = 0;
2136
1da177e4
LT
2137 /*
2138 * common ATA, ATAPI feature tests
2139 */
2140
ff8854b2 2141 /* find max transfer mode; for printk only */
1148c3a7 2142 xfer_mask = ata_id_xfermask(id);
1da177e4 2143
0dd4b21f
BP
2144 if (ata_msg_probe(ap))
2145 ata_dump_id(id);
1da177e4 2146
ef143d57
AL
2147 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2148 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2149 sizeof(fwrevbuf));
2150
2151 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2152 sizeof(modelbuf));
2153
1da177e4
LT
2154 /* ATA-specific feature tests */
2155 if (dev->class == ATA_DEV_ATA) {
b352e57d
AC
2156 if (ata_id_is_cfa(id)) {
2157 if (id[162] & 1) /* CPRM may make this media unusable */
44877b4e
TH
2158 ata_dev_printk(dev, KERN_WARNING,
2159 "supports DRM functions and may "
2160 "not be fully accessable.\n");
b352e57d 2161 snprintf(revbuf, 7, "CFA");
2dcb407e
JG
2162 } else
2163 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
b352e57d 2164
1148c3a7 2165 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2166
3f64f565
EM
2167 if (dev->id[59] & 0x100)
2168 dev->multi_count = dev->id[59] & 0xff;
2169
1148c3a7 2170 if (ata_id_has_lba(id)) {
4c2d721a 2171 const char *lba_desc;
a6e6ce8e 2172 char ncq_desc[20];
8bf62ece 2173
4c2d721a
TH
2174 lba_desc = "LBA";
2175 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2176 if (ata_id_has_lba48(id)) {
8bf62ece 2177 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2178 lba_desc = "LBA48";
6fc49adb
TH
2179
2180 if (dev->n_sectors >= (1UL << 28) &&
2181 ata_id_has_flush_ext(id))
2182 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2183 }
8bf62ece 2184
a6e6ce8e
TH
2185 /* config NCQ */
2186 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2187
8bf62ece 2188 /* print device info to dmesg */
3f64f565
EM
2189 if (ata_msg_drv(ap) && print_info) {
2190 ata_dev_printk(dev, KERN_INFO,
2191 "%s: %s, %s, max %s\n",
2192 revbuf, modelbuf, fwrevbuf,
2193 ata_mode_string(xfer_mask));
2194 ata_dev_printk(dev, KERN_INFO,
2195 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2196 (unsigned long long)dev->n_sectors,
3f64f565
EM
2197 dev->multi_count, lba_desc, ncq_desc);
2198 }
ffeae418 2199 } else {
8bf62ece
AL
2200 /* CHS */
2201
2202 /* Default translation */
1148c3a7
TH
2203 dev->cylinders = id[1];
2204 dev->heads = id[3];
2205 dev->sectors = id[6];
8bf62ece 2206
1148c3a7 2207 if (ata_id_current_chs_valid(id)) {
8bf62ece 2208 /* Current CHS translation is valid. */
1148c3a7
TH
2209 dev->cylinders = id[54];
2210 dev->heads = id[55];
2211 dev->sectors = id[56];
8bf62ece
AL
2212 }
2213
2214 /* print device info to dmesg */
3f64f565 2215 if (ata_msg_drv(ap) && print_info) {
88574551 2216 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2217 "%s: %s, %s, max %s\n",
2218 revbuf, modelbuf, fwrevbuf,
2219 ata_mode_string(xfer_mask));
a84471fe 2220 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2221 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2222 (unsigned long long)dev->n_sectors,
2223 dev->multi_count, dev->cylinders,
2224 dev->heads, dev->sectors);
2225 }
07f6f7d0
AL
2226 }
2227
6e7846e9 2228 dev->cdb_len = 16;
1da177e4
LT
2229 }
2230
2231 /* ATAPI-specific feature tests */
2c13b7ce 2232 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2233 const char *cdb_intr_string = "";
2234 const char *atapi_an_string = "";
7d77b247 2235 u32 sntf;
08a556db 2236
1148c3a7 2237 rc = atapi_cdb_len(id);
1da177e4 2238 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2239 if (ata_msg_warn(ap))
88574551
TH
2240 ata_dev_printk(dev, KERN_WARNING,
2241 "unsupported CDB len\n");
ffeae418 2242 rc = -EINVAL;
1da177e4
LT
2243 goto err_out_nosup;
2244 }
6e7846e9 2245 dev->cdb_len = (unsigned int) rc;
1da177e4 2246
7d77b247
TH
2247 /* Enable ATAPI AN if both the host and device have
2248 * the support. If PMP is attached, SNTF is required
2249 * to enable ATAPI AN to discern between PHY status
2250 * changed notifications and ATAPI ANs.
9f45cbd3 2251 */
7d77b247
TH
2252 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2253 (!ap->nr_pmp_links ||
2254 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2255 unsigned int err_mask;
2256
9f45cbd3 2257 /* issue SET feature command to turn this on */
218f3d30
JG
2258 err_mask = ata_dev_set_feature(dev,
2259 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2260 if (err_mask)
9f45cbd3 2261 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2262 "failed to enable ATAPI AN "
2263 "(err_mask=0x%x)\n", err_mask);
2264 else {
9f45cbd3 2265 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2266 atapi_an_string = ", ATAPI AN";
2267 }
9f45cbd3
KCA
2268 }
2269
08a556db 2270 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2271 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2272 cdb_intr_string = ", CDB intr";
2273 }
312f7da2 2274
1da177e4 2275 /* print device info to dmesg */
5afc8142 2276 if (ata_msg_drv(ap) && print_info)
ef143d57 2277 ata_dev_printk(dev, KERN_INFO,
854c73a2 2278 "ATAPI: %s, %s, max %s%s%s\n",
ef143d57 2279 modelbuf, fwrevbuf,
12436c30 2280 ata_mode_string(xfer_mask),
854c73a2 2281 cdb_intr_string, atapi_an_string);
1da177e4
LT
2282 }
2283
914ed354
TH
2284 /* determine max_sectors */
2285 dev->max_sectors = ATA_MAX_SECTORS;
2286 if (dev->flags & ATA_DFLAG_LBA48)
2287 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2288
ca77329f
KCA
2289 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2290 if (ata_id_has_hipm(dev->id))
2291 dev->flags |= ATA_DFLAG_HIPM;
2292 if (ata_id_has_dipm(dev->id))
2293 dev->flags |= ATA_DFLAG_DIPM;
2294 }
2295
93590859
AC
2296 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2297 /* Let the user know. We don't want to disallow opens for
2298 rescue purposes, or in case the vendor is just a blithering
2299 idiot */
2dcb407e 2300 if (print_info) {
93590859
AC
2301 ata_dev_printk(dev, KERN_WARNING,
2302"Drive reports diagnostics failure. This may indicate a drive\n");
2303 ata_dev_printk(dev, KERN_WARNING,
2304"fault or invalid emulation. Contact drive vendor for information.\n");
2305 }
2306 }
2307
4b2f3ede 2308 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 2309 if (ata_dev_knobble(dev)) {
5afc8142 2310 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2311 ata_dev_printk(dev, KERN_INFO,
2312 "applying bridge limits\n");
5a529139 2313 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2314 dev->max_sectors = ATA_MAX_SECTORS;
2315 }
2316
f8d8e579 2317 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2318 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2319 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2320 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2321 }
f8d8e579 2322
75683fe7 2323 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2324 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2325 dev->max_sectors);
18d6e9d5 2326
ca77329f
KCA
2327 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2328 dev->horkage |= ATA_HORKAGE_IPM;
2329
2330 /* reset link pm_policy for this port to no pm */
2331 ap->pm_policy = MAX_PERFORMANCE;
2332 }
2333
4b2f3ede 2334 if (ap->ops->dev_config)
cd0d3bbc 2335 ap->ops->dev_config(dev);
4b2f3ede 2336
0dd4b21f
BP
2337 if (ata_msg_probe(ap))
2338 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2339 __FUNCTION__, ata_chk_status(ap));
ffeae418 2340 return 0;
1da177e4
LT
2341
2342err_out_nosup:
0dd4b21f 2343 if (ata_msg_probe(ap))
88574551
TH
2344 ata_dev_printk(dev, KERN_DEBUG,
2345 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 2346 return rc;
1da177e4
LT
2347}
2348
be0d18df 2349/**
2e41e8e6 2350 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2351 * @ap: port
2352 *
2e41e8e6 2353 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2354 * detection.
2355 */
2356
2357int ata_cable_40wire(struct ata_port *ap)
2358{
2359 return ATA_CBL_PATA40;
2360}
2361
2362/**
2e41e8e6 2363 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2364 * @ap: port
2365 *
2e41e8e6 2366 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2367 * detection.
2368 */
2369
2370int ata_cable_80wire(struct ata_port *ap)
2371{
2372 return ATA_CBL_PATA80;
2373}
2374
2375/**
2376 * ata_cable_unknown - return unknown PATA cable.
2377 * @ap: port
2378 *
2379 * Helper method for drivers which have no PATA cable detection.
2380 */
2381
2382int ata_cable_unknown(struct ata_port *ap)
2383{
2384 return ATA_CBL_PATA_UNK;
2385}
2386
2387/**
2388 * ata_cable_sata - return SATA cable type
2389 * @ap: port
2390 *
2391 * Helper method for drivers which have SATA cables
2392 */
2393
2394int ata_cable_sata(struct ata_port *ap)
2395{
2396 return ATA_CBL_SATA;
2397}
2398
1da177e4
LT
2399/**
2400 * ata_bus_probe - Reset and probe ATA bus
2401 * @ap: Bus to probe
2402 *
0cba632b
JG
2403 * Master ATA bus probing function. Initiates a hardware-dependent
2404 * bus reset, then attempts to identify any devices found on
2405 * the bus.
2406 *
1da177e4 2407 * LOCKING:
0cba632b 2408 * PCI/etc. bus probe sem.
1da177e4
LT
2409 *
2410 * RETURNS:
96072e69 2411 * Zero on success, negative errno otherwise.
1da177e4
LT
2412 */
2413
80289167 2414int ata_bus_probe(struct ata_port *ap)
1da177e4 2415{
28ca5c57 2416 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2417 int tries[ATA_MAX_DEVICES];
f58229f8 2418 int rc;
e82cbdb9 2419 struct ata_device *dev;
1da177e4 2420
28ca5c57 2421 ata_port_probe(ap);
c19ba8af 2422
f58229f8
TH
2423 ata_link_for_each_dev(dev, &ap->link)
2424 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2425
2426 retry:
cdeab114
TH
2427 ata_link_for_each_dev(dev, &ap->link) {
2428 /* If we issue an SRST then an ATA drive (not ATAPI)
2429 * may change configuration and be in PIO0 timing. If
2430 * we do a hard reset (or are coming from power on)
2431 * this is true for ATA or ATAPI. Until we've set a
2432 * suitable controller mode we should not touch the
2433 * bus as we may be talking too fast.
2434 */
2435 dev->pio_mode = XFER_PIO_0;
2436
2437 /* If the controller has a pio mode setup function
2438 * then use it to set the chipset to rights. Don't
2439 * touch the DMA setup as that will be dealt with when
2440 * configuring devices.
2441 */
2442 if (ap->ops->set_piomode)
2443 ap->ops->set_piomode(ap, dev);
2444 }
2445
2044470c 2446 /* reset and determine device classes */
52783c5d 2447 ap->ops->phy_reset(ap);
2061a47a 2448
f58229f8 2449 ata_link_for_each_dev(dev, &ap->link) {
52783c5d
TH
2450 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2451 dev->class != ATA_DEV_UNKNOWN)
2452 classes[dev->devno] = dev->class;
2453 else
2454 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2455
52783c5d 2456 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2457 }
1da177e4 2458
52783c5d 2459 ata_port_probe(ap);
2044470c 2460
f31f0cc2
JG
2461 /* read IDENTIFY page and configure devices. We have to do the identify
2462 specific sequence bass-ackwards so that PDIAG- is released by
2463 the slave device */
2464
f58229f8
TH
2465 ata_link_for_each_dev(dev, &ap->link) {
2466 if (tries[dev->devno])
2467 dev->class = classes[dev->devno];
ffeae418 2468
14d2bac1 2469 if (!ata_dev_enabled(dev))
ffeae418 2470 continue;
ffeae418 2471
bff04647
TH
2472 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2473 dev->id);
14d2bac1
TH
2474 if (rc)
2475 goto fail;
f31f0cc2
JG
2476 }
2477
be0d18df
AC
2478 /* Now ask for the cable type as PDIAG- should have been released */
2479 if (ap->ops->cable_detect)
2480 ap->cbl = ap->ops->cable_detect(ap);
2481
614fe29b
AC
2482 /* We may have SATA bridge glue hiding here irrespective of the
2483 reported cable types and sensed types */
2484 ata_link_for_each_dev(dev, &ap->link) {
2485 if (!ata_dev_enabled(dev))
2486 continue;
2487 /* SATA drives indicate we have a bridge. We don't know which
2488 end of the link the bridge is which is a problem */
2489 if (ata_id_is_sata(dev->id))
2490 ap->cbl = ATA_CBL_SATA;
2491 }
2492
f31f0cc2
JG
2493 /* After the identify sequence we can now set up the devices. We do
2494 this in the normal order so that the user doesn't get confused */
2495
f58229f8 2496 ata_link_for_each_dev(dev, &ap->link) {
f31f0cc2
JG
2497 if (!ata_dev_enabled(dev))
2498 continue;
14d2bac1 2499
9af5c9c9 2500 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2501 rc = ata_dev_configure(dev);
9af5c9c9 2502 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2503 if (rc)
2504 goto fail;
1da177e4
LT
2505 }
2506
e82cbdb9 2507 /* configure transfer mode */
0260731f 2508 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2509 if (rc)
51713d35 2510 goto fail;
1da177e4 2511
f58229f8
TH
2512 ata_link_for_each_dev(dev, &ap->link)
2513 if (ata_dev_enabled(dev))
e82cbdb9 2514 return 0;
1da177e4 2515
e82cbdb9
TH
2516 /* no device present, disable port */
2517 ata_port_disable(ap);
96072e69 2518 return -ENODEV;
14d2bac1
TH
2519
2520 fail:
4ae72a1e
TH
2521 tries[dev->devno]--;
2522
14d2bac1
TH
2523 switch (rc) {
2524 case -EINVAL:
4ae72a1e 2525 /* eeek, something went very wrong, give up */
14d2bac1
TH
2526 tries[dev->devno] = 0;
2527 break;
4ae72a1e
TH
2528
2529 case -ENODEV:
2530 /* give it just one more chance */
2531 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2532 case -EIO:
4ae72a1e
TH
2533 if (tries[dev->devno] == 1) {
2534 /* This is the last chance, better to slow
2535 * down than lose it.
2536 */
936fd732 2537 sata_down_spd_limit(&ap->link);
4ae72a1e
TH
2538 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2539 }
14d2bac1
TH
2540 }
2541
4ae72a1e 2542 if (!tries[dev->devno])
3373efd8 2543 ata_dev_disable(dev);
ec573755 2544
14d2bac1 2545 goto retry;
1da177e4
LT
2546}
2547
2548/**
0cba632b
JG
2549 * ata_port_probe - Mark port as enabled
2550 * @ap: Port for which we indicate enablement
1da177e4 2551 *
0cba632b
JG
2552 * Modify @ap data structure such that the system
2553 * thinks that the entire port is enabled.
2554 *
cca3974e 2555 * LOCKING: host lock, or some other form of
0cba632b 2556 * serialization.
1da177e4
LT
2557 */
2558
2559void ata_port_probe(struct ata_port *ap)
2560{
198e0fed 2561 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
2562}
2563
3be680b7
TH
2564/**
2565 * sata_print_link_status - Print SATA link status
936fd732 2566 * @link: SATA link to printk link status about
3be680b7
TH
2567 *
2568 * This function prints link speed and status of a SATA link.
2569 *
2570 * LOCKING:
2571 * None.
2572 */
936fd732 2573void sata_print_link_status(struct ata_link *link)
3be680b7 2574{
6d5f9732 2575 u32 sstatus, scontrol, tmp;
3be680b7 2576
936fd732 2577 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2578 return;
936fd732 2579 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2580
936fd732 2581 if (ata_link_online(link)) {
3be680b7 2582 tmp = (sstatus >> 4) & 0xf;
936fd732 2583 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2584 "SATA link up %s (SStatus %X SControl %X)\n",
2585 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2586 } else {
936fd732 2587 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2588 "SATA link down (SStatus %X SControl %X)\n",
2589 sstatus, scontrol);
3be680b7
TH
2590 }
2591}
2592
ebdfca6e
AC
2593/**
2594 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2595 * @adev: device
2596 *
2597 * Obtain the other device on the same cable, or if none is
2598 * present NULL is returned
2599 */
2e9edbf8 2600
3373efd8 2601struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2602{
9af5c9c9
TH
2603 struct ata_link *link = adev->link;
2604 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2605 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2606 return NULL;
2607 return pair;
2608}
2609
1da177e4 2610/**
780a87f7
JG
2611 * ata_port_disable - Disable port.
2612 * @ap: Port to be disabled.
1da177e4 2613 *
780a87f7
JG
2614 * Modify @ap data structure such that the system
2615 * thinks that the entire port is disabled, and should
2616 * never attempt to probe or communicate with devices
2617 * on this port.
2618 *
cca3974e 2619 * LOCKING: host lock, or some other form of
780a87f7 2620 * serialization.
1da177e4
LT
2621 */
2622
2623void ata_port_disable(struct ata_port *ap)
2624{
9af5c9c9
TH
2625 ap->link.device[0].class = ATA_DEV_NONE;
2626 ap->link.device[1].class = ATA_DEV_NONE;
198e0fed 2627 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
2628}
2629
1c3fae4d 2630/**
3c567b7d 2631 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2632 * @link: Link to adjust SATA spd limit for
1c3fae4d 2633 *
936fd732 2634 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2635 * function only adjusts the limit. The change must be applied
3c567b7d 2636 * using sata_set_spd().
1c3fae4d
TH
2637 *
2638 * LOCKING:
2639 * Inherited from caller.
2640 *
2641 * RETURNS:
2642 * 0 on success, negative errno on failure
2643 */
936fd732 2644int sata_down_spd_limit(struct ata_link *link)
1c3fae4d 2645{
81952c54
TH
2646 u32 sstatus, spd, mask;
2647 int rc, highbit;
1c3fae4d 2648
936fd732 2649 if (!sata_scr_valid(link))
008a7896
TH
2650 return -EOPNOTSUPP;
2651
2652 /* If SCR can be read, use it to determine the current SPD.
936fd732 2653 * If not, use cached value in link->sata_spd.
008a7896 2654 */
936fd732 2655 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
008a7896
TH
2656 if (rc == 0)
2657 spd = (sstatus >> 4) & 0xf;
2658 else
936fd732 2659 spd = link->sata_spd;
1c3fae4d 2660
936fd732 2661 mask = link->sata_spd_limit;
1c3fae4d
TH
2662 if (mask <= 1)
2663 return -EINVAL;
008a7896
TH
2664
2665 /* unconditionally mask off the highest bit */
1c3fae4d
TH
2666 highbit = fls(mask) - 1;
2667 mask &= ~(1 << highbit);
2668
008a7896
TH
2669 /* Mask off all speeds higher than or equal to the current
2670 * one. Force 1.5Gbps if current SPD is not available.
2671 */
2672 if (spd > 1)
2673 mask &= (1 << (spd - 1)) - 1;
2674 else
2675 mask &= 1;
2676
2677 /* were we already at the bottom? */
1c3fae4d
TH
2678 if (!mask)
2679 return -EINVAL;
2680
936fd732 2681 link->sata_spd_limit = mask;
1c3fae4d 2682
936fd732 2683 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2684 sata_spd_string(fls(mask)));
1c3fae4d
TH
2685
2686 return 0;
2687}
2688
936fd732 2689static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2690{
5270222f
TH
2691 struct ata_link *host_link = &link->ap->link;
2692 u32 limit, target, spd;
1c3fae4d 2693
5270222f
TH
2694 limit = link->sata_spd_limit;
2695
2696 /* Don't configure downstream link faster than upstream link.
2697 * It doesn't speed up anything and some PMPs choke on such
2698 * configuration.
2699 */
2700 if (!ata_is_host_link(link) && host_link->sata_spd)
2701 limit &= (1 << host_link->sata_spd) - 1;
2702
2703 if (limit == UINT_MAX)
2704 target = 0;
1c3fae4d 2705 else
5270222f 2706 target = fls(limit);
1c3fae4d
TH
2707
2708 spd = (*scontrol >> 4) & 0xf;
5270222f 2709 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2710
5270222f 2711 return spd != target;
1c3fae4d
TH
2712}
2713
2714/**
3c567b7d 2715 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2716 * @link: Link in question
1c3fae4d
TH
2717 *
2718 * Test whether the spd limit in SControl matches
936fd732 2719 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2720 * whether hardreset is necessary to apply SATA spd
2721 * configuration.
2722 *
2723 * LOCKING:
2724 * Inherited from caller.
2725 *
2726 * RETURNS:
2727 * 1 if SATA spd configuration is needed, 0 otherwise.
2728 */
936fd732 2729int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2730{
2731 u32 scontrol;
2732
936fd732 2733 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2734 return 1;
1c3fae4d 2735
936fd732 2736 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2737}
2738
2739/**
3c567b7d 2740 * sata_set_spd - set SATA spd according to spd limit
936fd732 2741 * @link: Link to set SATA spd for
1c3fae4d 2742 *
936fd732 2743 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2744 *
2745 * LOCKING:
2746 * Inherited from caller.
2747 *
2748 * RETURNS:
2749 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2750 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2751 */
936fd732 2752int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2753{
2754 u32 scontrol;
81952c54 2755 int rc;
1c3fae4d 2756
936fd732 2757 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2758 return rc;
1c3fae4d 2759
936fd732 2760 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2761 return 0;
2762
936fd732 2763 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2764 return rc;
2765
1c3fae4d
TH
2766 return 1;
2767}
2768
452503f9
AC
2769/*
2770 * This mode timing computation functionality is ported over from
2771 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2772 */
2773/*
b352e57d 2774 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2775 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2776 * for UDMA6, which is currently supported only by Maxtor drives.
2777 *
2778 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2779 */
2780
2781static const struct ata_timing ata_timing[] = {
2782
2783 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2784 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2785 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2786 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2787
b352e57d
AC
2788 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2789 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
452503f9
AC
2790 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2791 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2792 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2793
2794/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 2795
452503f9
AC
2796 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2797 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2798 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 2799
452503f9
AC
2800 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2801 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2802 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2803
b352e57d
AC
2804 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2805 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
452503f9
AC
2806 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2807 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2808
2809 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2810 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2811 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2812
2813/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2814
2815 { 0xFF }
2816};
2817
2dcb407e
JG
2818#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2819#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2820
2821static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2822{
2823 q->setup = EZ(t->setup * 1000, T);
2824 q->act8b = EZ(t->act8b * 1000, T);
2825 q->rec8b = EZ(t->rec8b * 1000, T);
2826 q->cyc8b = EZ(t->cyc8b * 1000, T);
2827 q->active = EZ(t->active * 1000, T);
2828 q->recover = EZ(t->recover * 1000, T);
2829 q->cycle = EZ(t->cycle * 1000, T);
2830 q->udma = EZ(t->udma * 1000, UT);
2831}
2832
2833void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2834 struct ata_timing *m, unsigned int what)
2835{
2836 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2837 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2838 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2839 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2840 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2841 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2842 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2843 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2844}
2845
2dcb407e 2846static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
452503f9
AC
2847{
2848 const struct ata_timing *t;
2849
2850 for (t = ata_timing; t->mode != speed; t++)
91190758 2851 if (t->mode == 0xFF)
452503f9 2852 return NULL;
2e9edbf8 2853 return t;
452503f9
AC
2854}
2855
2856int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2857 struct ata_timing *t, int T, int UT)
2858{
2859 const struct ata_timing *s;
2860 struct ata_timing p;
2861
2862 /*
2e9edbf8 2863 * Find the mode.
75b1f2f8 2864 */
452503f9
AC
2865
2866 if (!(s = ata_timing_find_mode(speed)))
2867 return -EINVAL;
2868
75b1f2f8
AL
2869 memcpy(t, s, sizeof(*s));
2870
452503f9
AC
2871 /*
2872 * If the drive is an EIDE drive, it can tell us it needs extended
2873 * PIO/MW_DMA cycle timing.
2874 */
2875
2876 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2877 memset(&p, 0, sizeof(p));
2dcb407e 2878 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
452503f9
AC
2879 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2880 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2dcb407e 2881 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
452503f9
AC
2882 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2883 }
2884 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2885 }
2886
2887 /*
2888 * Convert the timing to bus clock counts.
2889 */
2890
75b1f2f8 2891 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2892
2893 /*
c893a3ae
RD
2894 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2895 * S.M.A.R.T * and some other commands. We have to ensure that the
2896 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2897 */
2898
fd3367af 2899 if (speed > XFER_PIO_6) {
452503f9
AC
2900 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2901 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2902 }
2903
2904 /*
c893a3ae 2905 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2906 */
2907
2908 if (t->act8b + t->rec8b < t->cyc8b) {
2909 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2910 t->rec8b = t->cyc8b - t->act8b;
2911 }
2912
2913 if (t->active + t->recover < t->cycle) {
2914 t->active += (t->cycle - (t->active + t->recover)) / 2;
2915 t->recover = t->cycle - t->active;
2916 }
a617c09f 2917
4f701d1e
AC
2918 /* In a few cases quantisation may produce enough errors to
2919 leave t->cycle too low for the sum of active and recovery
2920 if so we must correct this */
2921 if (t->active + t->recover > t->cycle)
2922 t->cycle = t->active + t->recover;
452503f9
AC
2923
2924 return 0;
2925}
2926
cf176e1a
TH
2927/**
2928 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 2929 * @dev: Device to adjust xfer masks
458337db 2930 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
2931 *
2932 * Adjust xfer masks of @dev downward. Note that this function
2933 * does not apply the change. Invoking ata_set_mode() afterwards
2934 * will apply the limit.
2935 *
2936 * LOCKING:
2937 * Inherited from caller.
2938 *
2939 * RETURNS:
2940 * 0 on success, negative errno on failure
2941 */
458337db 2942int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 2943{
458337db
TH
2944 char buf[32];
2945 unsigned int orig_mask, xfer_mask;
2946 unsigned int pio_mask, mwdma_mask, udma_mask;
2947 int quiet, highbit;
cf176e1a 2948
458337db
TH
2949 quiet = !!(sel & ATA_DNXFER_QUIET);
2950 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 2951
458337db
TH
2952 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2953 dev->mwdma_mask,
2954 dev->udma_mask);
2955 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 2956
458337db
TH
2957 switch (sel) {
2958 case ATA_DNXFER_PIO:
2959 highbit = fls(pio_mask) - 1;
2960 pio_mask &= ~(1 << highbit);
2961 break;
2962
2963 case ATA_DNXFER_DMA:
2964 if (udma_mask) {
2965 highbit = fls(udma_mask) - 1;
2966 udma_mask &= ~(1 << highbit);
2967 if (!udma_mask)
2968 return -ENOENT;
2969 } else if (mwdma_mask) {
2970 highbit = fls(mwdma_mask) - 1;
2971 mwdma_mask &= ~(1 << highbit);
2972 if (!mwdma_mask)
2973 return -ENOENT;
2974 }
2975 break;
2976
2977 case ATA_DNXFER_40C:
2978 udma_mask &= ATA_UDMA_MASK_40C;
2979 break;
2980
2981 case ATA_DNXFER_FORCE_PIO0:
2982 pio_mask &= 1;
2983 case ATA_DNXFER_FORCE_PIO:
2984 mwdma_mask = 0;
2985 udma_mask = 0;
2986 break;
2987
458337db
TH
2988 default:
2989 BUG();
2990 }
2991
2992 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2993
2994 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2995 return -ENOENT;
2996
2997 if (!quiet) {
2998 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2999 snprintf(buf, sizeof(buf), "%s:%s",
3000 ata_mode_string(xfer_mask),
3001 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3002 else
3003 snprintf(buf, sizeof(buf), "%s",
3004 ata_mode_string(xfer_mask));
3005
3006 ata_dev_printk(dev, KERN_WARNING,
3007 "limiting speed to %s\n", buf);
3008 }
cf176e1a
TH
3009
3010 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3011 &dev->udma_mask);
3012
cf176e1a 3013 return 0;
cf176e1a
TH
3014}
3015
3373efd8 3016static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3017{
9af5c9c9 3018 struct ata_eh_context *ehc = &dev->link->eh_context;
83206a29
TH
3019 unsigned int err_mask;
3020 int rc;
1da177e4 3021
e8384607 3022 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3023 if (dev->xfer_shift == ATA_SHIFT_PIO)
3024 dev->flags |= ATA_DFLAG_PIO;
3025
3373efd8 3026 err_mask = ata_dev_set_xfermode(dev);
2dcb407e 3027
11750a40
AC
3028 /* Old CFA may refuse this command, which is just fine */
3029 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2dcb407e
JG
3030 err_mask &= ~AC_ERR_DEV;
3031
0bc2a79a
AC
3032 /* Some very old devices and some bad newer ones fail any kind of
3033 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3034 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3035 dev->pio_mode <= XFER_PIO_2)
3036 err_mask &= ~AC_ERR_DEV;
2dcb407e 3037
3acaf94b
AC
3038 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3039 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3040 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3041 dev->dma_mode == XFER_MW_DMA_0 &&
3042 (dev->id[63] >> 8) & 1)
3043 err_mask &= ~AC_ERR_DEV;
3044
83206a29 3045 if (err_mask) {
f15a1daf
TH
3046 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3047 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
3048 return -EIO;
3049 }
1da177e4 3050
baa1e78a 3051 ehc->i.flags |= ATA_EHI_POST_SETMODE;
422c9daa 3052 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
baa1e78a 3053 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
5eb45c02 3054 if (rc)
83206a29 3055 return rc;
48a8a14f 3056
23e71c3d
TH
3057 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3058 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3059
f15a1daf
TH
3060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3061 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 3062 return 0;
1da177e4
LT
3063}
3064
1da177e4 3065/**
04351821 3066 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3067 * @link: link on which timings will be programmed
e82cbdb9 3068 * @r_failed_dev: out paramter for failed device
1da177e4 3069 *
04351821
AC
3070 * Standard implementation of the function used to tune and set
3071 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3072 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3073 * returned in @r_failed_dev.
780a87f7 3074 *
1da177e4 3075 * LOCKING:
0cba632b 3076 * PCI/etc. bus probe sem.
e82cbdb9
TH
3077 *
3078 * RETURNS:
3079 * 0 on success, negative errno otherwise
1da177e4 3080 */
04351821 3081
0260731f 3082int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3083{
0260731f 3084 struct ata_port *ap = link->ap;
e8e0619f 3085 struct ata_device *dev;
f58229f8 3086 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3087
a6d5a51c 3088 /* step 1: calculate xfer_mask */
f58229f8 3089 ata_link_for_each_dev(dev, link) {
acf356b1 3090 unsigned int pio_mask, dma_mask;
b3a70601 3091 unsigned int mode_mask;
a6d5a51c 3092
e1211e3f 3093 if (!ata_dev_enabled(dev))
a6d5a51c
TH
3094 continue;
3095
b3a70601
AC
3096 mode_mask = ATA_DMA_MASK_ATA;
3097 if (dev->class == ATA_DEV_ATAPI)
3098 mode_mask = ATA_DMA_MASK_ATAPI;
3099 else if (ata_id_is_cfa(dev->id))
3100 mode_mask = ATA_DMA_MASK_CFA;
3101
3373efd8 3102 ata_dev_xfermask(dev);
1da177e4 3103
acf356b1
TH
3104 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3105 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3106
3107 if (libata_dma_mask & mode_mask)
3108 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3109 else
3110 dma_mask = 0;
3111
acf356b1
TH
3112 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3113 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3114
4f65977d 3115 found = 1;
5444a6f4
AC
3116 if (dev->dma_mode)
3117 used_dma = 1;
a6d5a51c 3118 }
4f65977d 3119 if (!found)
e82cbdb9 3120 goto out;
a6d5a51c
TH
3121
3122 /* step 2: always set host PIO timings */
f58229f8 3123 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3124 if (!ata_dev_enabled(dev))
3125 continue;
3126
3127 if (!dev->pio_mode) {
f15a1daf 3128 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3129 rc = -EINVAL;
e82cbdb9 3130 goto out;
e8e0619f
TH
3131 }
3132
3133 dev->xfer_mode = dev->pio_mode;
3134 dev->xfer_shift = ATA_SHIFT_PIO;
3135 if (ap->ops->set_piomode)
3136 ap->ops->set_piomode(ap, dev);
3137 }
1da177e4 3138
a6d5a51c 3139 /* step 3: set host DMA timings */
f58229f8 3140 ata_link_for_each_dev(dev, link) {
e8e0619f
TH
3141 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3142 continue;
3143
3144 dev->xfer_mode = dev->dma_mode;
3145 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3146 if (ap->ops->set_dmamode)
3147 ap->ops->set_dmamode(ap, dev);
3148 }
1da177e4
LT
3149
3150 /* step 4: update devices' xfer mode */
f58229f8 3151 ata_link_for_each_dev(dev, link) {
18d90deb 3152 /* don't update suspended devices' xfer mode */
9666f400 3153 if (!ata_dev_enabled(dev))
83206a29
TH
3154 continue;
3155
3373efd8 3156 rc = ata_dev_set_mode(dev);
5bbc53f4 3157 if (rc)
e82cbdb9 3158 goto out;
83206a29 3159 }
1da177e4 3160
e8e0619f
TH
3161 /* Record simplex status. If we selected DMA then the other
3162 * host channels are not permitted to do so.
5444a6f4 3163 */
cca3974e 3164 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3165 ap->host->simplex_claimed = ap;
5444a6f4 3166
e82cbdb9
TH
3167 out:
3168 if (rc)
3169 *r_failed_dev = dev;
3170 return rc;
1da177e4
LT
3171}
3172
04351821
AC
3173/**
3174 * ata_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3175 * @link: link on which timings will be programmed
04351821
AC
3176 * @r_failed_dev: out paramter for failed device
3177 *
3178 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3179 * ata_set_mode() fails, pointer to the failing device is
3180 * returned in @r_failed_dev.
3181 *
3182 * LOCKING:
3183 * PCI/etc. bus probe sem.
3184 *
3185 * RETURNS:
3186 * 0 on success, negative errno otherwise
3187 */
0260731f 3188int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
04351821 3189{
0260731f
TH
3190 struct ata_port *ap = link->ap;
3191
04351821
AC
3192 /* has private set_mode? */
3193 if (ap->ops->set_mode)
0260731f
TH
3194 return ap->ops->set_mode(link, r_failed_dev);
3195 return ata_do_set_mode(link, r_failed_dev);
04351821
AC
3196}
3197
1fdffbce
JG
3198/**
3199 * ata_tf_to_host - issue ATA taskfile to host controller
3200 * @ap: port to which command is being issued
3201 * @tf: ATA taskfile register set
3202 *
3203 * Issues ATA taskfile register set to ATA host controller,
3204 * with proper synchronization with interrupt handler and
3205 * other threads.
3206 *
3207 * LOCKING:
cca3974e 3208 * spin_lock_irqsave(host lock)
1fdffbce
JG
3209 */
3210
3211static inline void ata_tf_to_host(struct ata_port *ap,
3212 const struct ata_taskfile *tf)
3213{
3214 ap->ops->tf_load(ap, tf);
3215 ap->ops->exec_command(ap, tf);
3216}
3217
1da177e4
LT
3218/**
3219 * ata_busy_sleep - sleep until BSY clears, or timeout
3220 * @ap: port containing status register to be polled
3221 * @tmout_pat: impatience timeout
3222 * @tmout: overall timeout
3223 *
780a87f7
JG
3224 * Sleep until ATA Status register bit BSY clears,
3225 * or a timeout occurs.
3226 *
d1adc1bb
TH
3227 * LOCKING:
3228 * Kernel thread context (may sleep).
3229 *
3230 * RETURNS:
3231 * 0 on success, -errno otherwise.
1da177e4 3232 */
d1adc1bb
TH
3233int ata_busy_sleep(struct ata_port *ap,
3234 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
3235{
3236 unsigned long timer_start, timeout;
3237 u8 status;
3238
3239 status = ata_busy_wait(ap, ATA_BUSY, 300);
3240 timer_start = jiffies;
3241 timeout = timer_start + tmout_pat;
d1adc1bb
TH
3242 while (status != 0xff && (status & ATA_BUSY) &&
3243 time_before(jiffies, timeout)) {
1da177e4
LT
3244 msleep(50);
3245 status = ata_busy_wait(ap, ATA_BUSY, 3);
3246 }
3247
d1adc1bb 3248 if (status != 0xff && (status & ATA_BUSY))
f15a1daf 3249 ata_port_printk(ap, KERN_WARNING,
35aa7a43
JG
3250 "port is slow to respond, please be patient "
3251 "(Status 0x%x)\n", status);
1da177e4
LT
3252
3253 timeout = timer_start + tmout;
d1adc1bb
TH
3254 while (status != 0xff && (status & ATA_BUSY) &&
3255 time_before(jiffies, timeout)) {
1da177e4
LT
3256 msleep(50);
3257 status = ata_chk_status(ap);
3258 }
3259
d1adc1bb
TH
3260 if (status == 0xff)
3261 return -ENODEV;
3262
1da177e4 3263 if (status & ATA_BUSY) {
f15a1daf 3264 ata_port_printk(ap, KERN_ERR, "port failed to respond "
35aa7a43
JG
3265 "(%lu secs, Status 0x%x)\n",
3266 tmout / HZ, status);
d1adc1bb 3267 return -EBUSY;
1da177e4
LT
3268 }
3269
3270 return 0;
3271}
3272
88ff6eaf
TH
3273/**
3274 * ata_wait_after_reset - wait before checking status after reset
3275 * @ap: port containing status register to be polled
3276 * @deadline: deadline jiffies for the operation
3277 *
3278 * After reset, we need to pause a while before reading status.
3279 * Also, certain combination of controller and device report 0xff
3280 * for some duration (e.g. until SATA PHY is up and running)
3281 * which is interpreted as empty port in ATA world. This
3282 * function also waits for such devices to get out of 0xff
3283 * status.
3284 *
3285 * LOCKING:
3286 * Kernel thread context (may sleep).
3287 */
3288void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3289{
3290 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3291
3292 if (time_before(until, deadline))
3293 deadline = until;
3294
3295 /* Spec mandates ">= 2ms" before checking status. We wait
3296 * 150ms, because that was the magic delay used for ATAPI
3297 * devices in Hale Landis's ATADRVR, for the period of time
3298 * between when the ATA command register is written, and then
3299 * status is checked. Because waiting for "a while" before
3300 * checking status is fine, post SRST, we perform this magic
3301 * delay here as well.
3302 *
3303 * Old drivers/ide uses the 2mS rule and then waits for ready.
3304 */
3305 msleep(150);
3306
3307 /* Wait for 0xff to clear. Some SATA devices take a long time
3308 * to clear 0xff after reset. For example, HHD424020F7SV00
3309 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3310 * than that.
1974e201
TH
3311 *
3312 * Note that some PATA controllers (pata_ali) explode if
3313 * status register is read more than once when there's no
3314 * device attached.
88ff6eaf 3315 */
1974e201
TH
3316 if (ap->flags & ATA_FLAG_SATA) {
3317 while (1) {
3318 u8 status = ata_chk_status(ap);
88ff6eaf 3319
1974e201
TH
3320 if (status != 0xff || time_after(jiffies, deadline))
3321 return;
88ff6eaf 3322
1974e201
TH
3323 msleep(50);
3324 }
88ff6eaf
TH
3325 }
3326}
3327
d4b2bab4
TH
3328/**
3329 * ata_wait_ready - sleep until BSY clears, or timeout
3330 * @ap: port containing status register to be polled
3331 * @deadline: deadline jiffies for the operation
3332 *
3333 * Sleep until ATA Status register bit BSY clears, or timeout
3334 * occurs.
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep).
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
3342int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3343{
3344 unsigned long start = jiffies;
3345 int warned = 0;
3346
3347 while (1) {
3348 u8 status = ata_chk_status(ap);
3349 unsigned long now = jiffies;
3350
3351 if (!(status & ATA_BUSY))
3352 return 0;
936fd732 3353 if (!ata_link_online(&ap->link) && status == 0xff)
d4b2bab4
TH
3354 return -ENODEV;
3355 if (time_after(now, deadline))
3356 return -EBUSY;
3357
3358 if (!warned && time_after(now, start + 5 * HZ) &&
3359 (deadline - now > 3 * HZ)) {
3360 ata_port_printk(ap, KERN_WARNING,
3361 "port is slow to respond, please be patient "
3362 "(Status 0x%x)\n", status);
3363 warned = 1;
3364 }
3365
3366 msleep(50);
3367 }
3368}
3369
3370static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3371 unsigned long deadline)
1da177e4
LT
3372{
3373 struct ata_ioports *ioaddr = &ap->ioaddr;
3374 unsigned int dev0 = devmask & (1 << 0);
3375 unsigned int dev1 = devmask & (1 << 1);
9b89391c 3376 int rc, ret = 0;
1da177e4
LT
3377
3378 /* if device 0 was found in ata_devchk, wait for its
3379 * BSY bit to clear
3380 */
d4b2bab4
TH
3381 if (dev0) {
3382 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3383 if (rc) {
3384 if (rc != -ENODEV)
3385 return rc;
3386 ret = rc;
3387 }
d4b2bab4 3388 }
1da177e4 3389
e141d999
TH
3390 /* if device 1 was found in ata_devchk, wait for register
3391 * access briefly, then wait for BSY to clear.
1da177e4 3392 */
e141d999
TH
3393 if (dev1) {
3394 int i;
1da177e4
LT
3395
3396 ap->ops->dev_select(ap, 1);
e141d999
TH
3397
3398 /* Wait for register access. Some ATAPI devices fail
3399 * to set nsect/lbal after reset, so don't waste too
3400 * much time on it. We're gonna wait for !BSY anyway.
3401 */
3402 for (i = 0; i < 2; i++) {
3403 u8 nsect, lbal;
3404
3405 nsect = ioread8(ioaddr->nsect_addr);
3406 lbal = ioread8(ioaddr->lbal_addr);
3407 if ((nsect == 1) && (lbal == 1))
3408 break;
3409 msleep(50); /* give drive a breather */
3410 }
3411
d4b2bab4 3412 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3413 if (rc) {
3414 if (rc != -ENODEV)
3415 return rc;
3416 ret = rc;
3417 }
d4b2bab4 3418 }
1da177e4
LT
3419
3420 /* is all this really necessary? */
3421 ap->ops->dev_select(ap, 0);
3422 if (dev1)
3423 ap->ops->dev_select(ap, 1);
3424 if (dev0)
3425 ap->ops->dev_select(ap, 0);
d4b2bab4 3426
9b89391c 3427 return ret;
1da177e4
LT
3428}
3429
d4b2bab4
TH
3430static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3431 unsigned long deadline)
1da177e4
LT
3432{
3433 struct ata_ioports *ioaddr = &ap->ioaddr;
3434
44877b4e 3435 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
1da177e4
LT
3436
3437 /* software reset. causes dev0 to be selected */
0d5ff566
TH
3438 iowrite8(ap->ctl, ioaddr->ctl_addr);
3439 udelay(20); /* FIXME: flush */
3440 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3441 udelay(20); /* FIXME: flush */
3442 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4 3443
88ff6eaf
TH
3444 /* wait a while before checking status */
3445 ata_wait_after_reset(ap, deadline);
1da177e4 3446
2e9edbf8 3447 /* Before we perform post reset processing we want to see if
298a41ca
TH
3448 * the bus shows 0xFF because the odd clown forgets the D7
3449 * pulldown resistor.
3450 */
150981b0 3451 if (ata_chk_status(ap) == 0xFF)
9b89391c 3452 return -ENODEV;
09c7ad79 3453
d4b2bab4 3454 return ata_bus_post_reset(ap, devmask, deadline);
1da177e4
LT
3455}
3456
3457/**
3458 * ata_bus_reset - reset host port and associated ATA channel
3459 * @ap: port to reset
3460 *
3461 * This is typically the first time we actually start issuing
3462 * commands to the ATA channel. We wait for BSY to clear, then
3463 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3464 * result. Determine what devices, if any, are on the channel
3465 * by looking at the device 0/1 error register. Look at the signature
3466 * stored in each device's taskfile registers, to determine if
3467 * the device is ATA or ATAPI.
3468 *
3469 * LOCKING:
0cba632b 3470 * PCI/etc. bus probe sem.
cca3974e 3471 * Obtains host lock.
1da177e4
LT
3472 *
3473 * SIDE EFFECTS:
198e0fed 3474 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
3475 */
3476
3477void ata_bus_reset(struct ata_port *ap)
3478{
9af5c9c9 3479 struct ata_device *device = ap->link.device;
1da177e4
LT
3480 struct ata_ioports *ioaddr = &ap->ioaddr;
3481 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3482 u8 err;
aec5c3c1 3483 unsigned int dev0, dev1 = 0, devmask = 0;
9b89391c 3484 int rc;
1da177e4 3485
44877b4e 3486 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
1da177e4
LT
3487
3488 /* determine if device 0/1 are present */
3489 if (ap->flags & ATA_FLAG_SATA_RESET)
3490 dev0 = 1;
3491 else {
3492 dev0 = ata_devchk(ap, 0);
3493 if (slave_possible)
3494 dev1 = ata_devchk(ap, 1);
3495 }
3496
3497 if (dev0)
3498 devmask |= (1 << 0);
3499 if (dev1)
3500 devmask |= (1 << 1);
3501
3502 /* select device 0 again */
3503 ap->ops->dev_select(ap, 0);
3504
3505 /* issue bus reset */
9b89391c
TH
3506 if (ap->flags & ATA_FLAG_SRST) {
3507 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3508 if (rc && rc != -ENODEV)
aec5c3c1 3509 goto err_out;
9b89391c 3510 }
1da177e4
LT
3511
3512 /*
3513 * determine by signature whether we have ATA or ATAPI devices
3514 */
3f19859e 3515 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
1da177e4 3516 if ((slave_possible) && (err != 0x81))
3f19859e 3517 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
1da177e4 3518
1da177e4 3519 /* is double-select really necessary? */
9af5c9c9 3520 if (device[1].class != ATA_DEV_NONE)
1da177e4 3521 ap->ops->dev_select(ap, 1);
9af5c9c9 3522 if (device[0].class != ATA_DEV_NONE)
1da177e4
LT
3523 ap->ops->dev_select(ap, 0);
3524
3525 /* if no devices were detected, disable this port */
9af5c9c9
TH
3526 if ((device[0].class == ATA_DEV_NONE) &&
3527 (device[1].class == ATA_DEV_NONE))
1da177e4
LT
3528 goto err_out;
3529
3530 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3531 /* set up device control for ATA_FLAG_SATA_RESET */
0d5ff566 3532 iowrite8(ap->ctl, ioaddr->ctl_addr);
1da177e4
LT
3533 }
3534
3535 DPRINTK("EXIT\n");
3536 return;
3537
3538err_out:
f15a1daf 3539 ata_port_printk(ap, KERN_ERR, "disabling port\n");
ac8869d5 3540 ata_port_disable(ap);
1da177e4
LT
3541
3542 DPRINTK("EXIT\n");
3543}
3544
d7bb4cc7 3545/**
936fd732
TH
3546 * sata_link_debounce - debounce SATA phy status
3547 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3548 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3549 * @deadline: deadline jiffies for the operation
d7bb4cc7 3550 *
936fd732 3551* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3552 * holding the same value where DET is not 1 for @duration polled
3553 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3554 * beginning of the stable state. Because DET gets stuck at 1 on
3555 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3556 * until timeout then returns 0 if DET is stable at 1.
3557 *
d4b2bab4
TH
3558 * @timeout is further limited by @deadline. The sooner of the
3559 * two is used.
3560 *
d7bb4cc7
TH
3561 * LOCKING:
3562 * Kernel thread context (may sleep)
3563 *
3564 * RETURNS:
3565 * 0 on success, -errno on failure.
3566 */
936fd732
TH
3567int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3568 unsigned long deadline)
7a7921e8 3569{
d7bb4cc7 3570 unsigned long interval_msec = params[0];
d4b2bab4
TH
3571 unsigned long duration = msecs_to_jiffies(params[1]);
3572 unsigned long last_jiffies, t;
d7bb4cc7
TH
3573 u32 last, cur;
3574 int rc;
3575
d4b2bab4
TH
3576 t = jiffies + msecs_to_jiffies(params[2]);
3577 if (time_before(t, deadline))
3578 deadline = t;
3579
936fd732 3580 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3581 return rc;
3582 cur &= 0xf;
3583
3584 last = cur;
3585 last_jiffies = jiffies;
3586
3587 while (1) {
3588 msleep(interval_msec);
936fd732 3589 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3590 return rc;
3591 cur &= 0xf;
3592
3593 /* DET stable? */
3594 if (cur == last) {
d4b2bab4 3595 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7
TH
3596 continue;
3597 if (time_after(jiffies, last_jiffies + duration))
3598 return 0;
3599 continue;
3600 }
3601
3602 /* unstable, start over */
3603 last = cur;
3604 last_jiffies = jiffies;
3605
f1545154
TH
3606 /* Check deadline. If debouncing failed, return
3607 * -EPIPE to tell upper layer to lower link speed.
3608 */
d4b2bab4 3609 if (time_after(jiffies, deadline))
f1545154 3610 return -EPIPE;
d7bb4cc7
TH
3611 }
3612}
3613
3614/**
936fd732
TH
3615 * sata_link_resume - resume SATA link
3616 * @link: ATA link to resume SATA
d7bb4cc7 3617 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3618 * @deadline: deadline jiffies for the operation
d7bb4cc7 3619 *
936fd732 3620 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3621 *
3622 * LOCKING:
3623 * Kernel thread context (may sleep)
3624 *
3625 * RETURNS:
3626 * 0 on success, -errno on failure.
3627 */
936fd732
TH
3628int sata_link_resume(struct ata_link *link, const unsigned long *params,
3629 unsigned long deadline)
d7bb4cc7
TH
3630{
3631 u32 scontrol;
81952c54
TH
3632 int rc;
3633
936fd732 3634 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3635 return rc;
7a7921e8 3636
852ee16a 3637 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54 3638
936fd732 3639 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54 3640 return rc;
7a7921e8 3641
d7bb4cc7
TH
3642 /* Some PHYs react badly if SStatus is pounded immediately
3643 * after resuming. Delay 200ms before debouncing.
3644 */
3645 msleep(200);
7a7921e8 3646
936fd732 3647 return sata_link_debounce(link, params, deadline);
7a7921e8
TH
3648}
3649
f5914a46
TH
3650/**
3651 * ata_std_prereset - prepare for reset
cc0680a5 3652 * @link: ATA link to be reset
d4b2bab4 3653 * @deadline: deadline jiffies for the operation
f5914a46 3654 *
cc0680a5 3655 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3656 * prereset makes libata abort whole reset sequence and give up
3657 * that port, so prereset should be best-effort. It does its
3658 * best to prepare for reset sequence but if things go wrong, it
3659 * should just whine, not fail.
f5914a46
TH
3660 *
3661 * LOCKING:
3662 * Kernel thread context (may sleep)
3663 *
3664 * RETURNS:
3665 * 0 on success, -errno otherwise.
3666 */
cc0680a5 3667int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3668{
cc0680a5 3669 struct ata_port *ap = link->ap;
936fd732 3670 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3671 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3672 int rc;
3673
31daabda 3674 /* handle link resume */
28324304 3675 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
0c88758b 3676 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
28324304
TH
3677 ehc->i.action |= ATA_EH_HARDRESET;
3678
633273a3
TH
3679 /* Some PMPs don't work with only SRST, force hardreset if PMP
3680 * is supported.
3681 */
3682 if (ap->flags & ATA_FLAG_PMP)
3683 ehc->i.action |= ATA_EH_HARDRESET;
3684
f5914a46
TH
3685 /* if we're about to do hardreset, nothing more to do */
3686 if (ehc->i.action & ATA_EH_HARDRESET)
3687 return 0;
3688
936fd732 3689 /* if SATA, resume link */
a16abc0b 3690 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3691 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3692 /* whine about phy resume failure but proceed */
3693 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3694 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3695 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3696 }
3697
3698 /* Wait for !BSY if the controller can wait for the first D2H
3699 * Reg FIS and we don't know that no device is attached.
3700 */
0c88758b 3701 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
b8cffc6a 3702 rc = ata_wait_ready(ap, deadline);
6dffaf61 3703 if (rc && rc != -ENODEV) {
cc0680a5 3704 ata_link_printk(link, KERN_WARNING, "device not ready "
b8cffc6a
TH
3705 "(errno=%d), forcing hardreset\n", rc);
3706 ehc->i.action |= ATA_EH_HARDRESET;
3707 }
3708 }
f5914a46
TH
3709
3710 return 0;
3711}
3712
c2bd5804
TH
3713/**
3714 * ata_std_softreset - reset host port via ATA SRST
cc0680a5 3715 * @link: ATA link to reset
c2bd5804 3716 * @classes: resulting classes of attached devices
d4b2bab4 3717 * @deadline: deadline jiffies for the operation
c2bd5804 3718 *
52783c5d 3719 * Reset host port using ATA SRST.
c2bd5804
TH
3720 *
3721 * LOCKING:
3722 * Kernel thread context (may sleep)
3723 *
3724 * RETURNS:
3725 * 0 on success, -errno otherwise.
3726 */
cc0680a5 3727int ata_std_softreset(struct ata_link *link, unsigned int *classes,
d4b2bab4 3728 unsigned long deadline)
c2bd5804 3729{
cc0680a5 3730 struct ata_port *ap = link->ap;
c2bd5804 3731 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
d4b2bab4
TH
3732 unsigned int devmask = 0;
3733 int rc;
c2bd5804
TH
3734 u8 err;
3735
3736 DPRINTK("ENTER\n");
3737
936fd732 3738 if (ata_link_offline(link)) {
3a39746a
TH
3739 classes[0] = ATA_DEV_NONE;
3740 goto out;
3741 }
3742
c2bd5804
TH
3743 /* determine if device 0/1 are present */
3744 if (ata_devchk(ap, 0))
3745 devmask |= (1 << 0);
3746 if (slave_possible && ata_devchk(ap, 1))
3747 devmask |= (1 << 1);
3748
c2bd5804
TH
3749 /* select device 0 again */
3750 ap->ops->dev_select(ap, 0);
3751
3752 /* issue bus reset */
3753 DPRINTK("about to softreset, devmask=%x\n", devmask);
d4b2bab4 3754 rc = ata_bus_softreset(ap, devmask, deadline);
9b89391c 3755 /* if link is occupied, -ENODEV too is an error */
936fd732 3756 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
cc0680a5 3757 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
d4b2bab4 3758 return rc;
c2bd5804
TH
3759 }
3760
3761 /* determine by signature whether we have ATA or ATAPI devices */
3f19859e
TH
3762 classes[0] = ata_dev_try_classify(&link->device[0],
3763 devmask & (1 << 0), &err);
c2bd5804 3764 if (slave_possible && err != 0x81)
3f19859e
TH
3765 classes[1] = ata_dev_try_classify(&link->device[1],
3766 devmask & (1 << 1), &err);
c2bd5804 3767
3a39746a 3768 out:
c2bd5804
TH
3769 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3770 return 0;
3771}
3772
3773/**
cc0680a5
TH
3774 * sata_link_hardreset - reset link via SATA phy reset
3775 * @link: link to reset
b6103f6d 3776 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3777 * @deadline: deadline jiffies for the operation
c2bd5804 3778 *
cc0680a5 3779 * SATA phy-reset @link using DET bits of SControl register.
c2bd5804
TH
3780 *
3781 * LOCKING:
3782 * Kernel thread context (may sleep)
3783 *
3784 * RETURNS:
3785 * 0 on success, -errno otherwise.
3786 */
cc0680a5 3787int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
d4b2bab4 3788 unsigned long deadline)
c2bd5804 3789{
852ee16a 3790 u32 scontrol;
81952c54 3791 int rc;
852ee16a 3792
c2bd5804
TH
3793 DPRINTK("ENTER\n");
3794
936fd732 3795 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3796 /* SATA spec says nothing about how to reconfigure
3797 * spd. To be on the safe side, turn off phy during
3798 * reconfiguration. This works for at least ICH7 AHCI
3799 * and Sil3124.
3800 */
936fd732 3801 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3802 goto out;
81952c54 3803
a34b6fc0 3804 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3805
936fd732 3806 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3807 goto out;
1c3fae4d 3808
936fd732 3809 sata_set_spd(link);
1c3fae4d
TH
3810 }
3811
3812 /* issue phy wake/reset */
936fd732 3813 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3814 goto out;
81952c54 3815
852ee16a 3816 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3817
936fd732 3818 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3819 goto out;
c2bd5804 3820
1c3fae4d 3821 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3822 * 10.4.2 says at least 1 ms.
3823 */
3824 msleep(1);
3825
936fd732
TH
3826 /* bring link back */
3827 rc = sata_link_resume(link, timing, deadline);
b6103f6d
TH
3828 out:
3829 DPRINTK("EXIT, rc=%d\n", rc);
3830 return rc;
3831}
3832
3833/**
3834 * sata_std_hardreset - reset host port via SATA phy reset
cc0680a5 3835 * @link: link to reset
b6103f6d 3836 * @class: resulting class of attached device
d4b2bab4 3837 * @deadline: deadline jiffies for the operation
b6103f6d
TH
3838 *
3839 * SATA phy-reset host port using DET bits of SControl register,
3840 * wait for !BSY and classify the attached device.
3841 *
3842 * LOCKING:
3843 * Kernel thread context (may sleep)
3844 *
3845 * RETURNS:
3846 * 0 on success, -errno otherwise.
3847 */
cc0680a5 3848int sata_std_hardreset(struct ata_link *link, unsigned int *class,
d4b2bab4 3849 unsigned long deadline)
b6103f6d 3850{
cc0680a5 3851 struct ata_port *ap = link->ap;
936fd732 3852 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
b6103f6d
TH
3853 int rc;
3854
3855 DPRINTK("ENTER\n");
3856
3857 /* do hardreset */
cc0680a5 3858 rc = sata_link_hardreset(link, timing, deadline);
b6103f6d 3859 if (rc) {
cc0680a5 3860 ata_link_printk(link, KERN_ERR,
b6103f6d
TH
3861 "COMRESET failed (errno=%d)\n", rc);
3862 return rc;
3863 }
c2bd5804 3864
c2bd5804 3865 /* TODO: phy layer with polling, timeouts, etc. */
936fd732 3866 if (ata_link_offline(link)) {
c2bd5804
TH
3867 *class = ATA_DEV_NONE;
3868 DPRINTK("EXIT, link offline\n");
3869 return 0;
3870 }
3871
88ff6eaf
TH
3872 /* wait a while before checking status */
3873 ata_wait_after_reset(ap, deadline);
34fee227 3874
633273a3
TH
3875 /* If PMP is supported, we have to do follow-up SRST. Note
3876 * that some PMPs don't send D2H Reg FIS after hardreset at
3877 * all if the first port is empty. Wait for it just for a
3878 * second and request follow-up SRST.
3879 */
3880 if (ap->flags & ATA_FLAG_PMP) {
3881 ata_wait_ready(ap, jiffies + HZ);
3882 return -EAGAIN;
3883 }
3884
d4b2bab4 3885 rc = ata_wait_ready(ap, deadline);
9b89391c
TH
3886 /* link occupied, -ENODEV too is an error */
3887 if (rc) {
cc0680a5 3888 ata_link_printk(link, KERN_ERR,
d4b2bab4
TH
3889 "COMRESET failed (errno=%d)\n", rc);
3890 return rc;
c2bd5804
TH
3891 }
3892
3a39746a
TH
3893 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3894
3f19859e 3895 *class = ata_dev_try_classify(link->device, 1, NULL);
c2bd5804
TH
3896
3897 DPRINTK("EXIT, class=%u\n", *class);
3898 return 0;
3899}
3900
3901/**
3902 * ata_std_postreset - standard postreset callback
cc0680a5 3903 * @link: the target ata_link
c2bd5804
TH
3904 * @classes: classes of attached devices
3905 *
3906 * This function is invoked after a successful reset. Note that
3907 * the device might have been reset more than once using
3908 * different reset methods before postreset is invoked.
c2bd5804 3909 *
c2bd5804
TH
3910 * LOCKING:
3911 * Kernel thread context (may sleep)
3912 */
cc0680a5 3913void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3914{
cc0680a5 3915 struct ata_port *ap = link->ap;
dc2b3515
TH
3916 u32 serror;
3917
c2bd5804
TH
3918 DPRINTK("ENTER\n");
3919
c2bd5804 3920 /* print link status */
936fd732 3921 sata_print_link_status(link);
c2bd5804 3922
dc2b3515 3923 /* clear SError */
936fd732
TH
3924 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3925 sata_scr_write(link, SCR_ERROR, serror);
dc2b3515 3926
c2bd5804
TH
3927 /* is double-select really necessary? */
3928 if (classes[0] != ATA_DEV_NONE)
3929 ap->ops->dev_select(ap, 1);
3930 if (classes[1] != ATA_DEV_NONE)
3931 ap->ops->dev_select(ap, 0);
3932
3a39746a
TH
3933 /* bail out if no device is present */
3934 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3935 DPRINTK("EXIT, no device\n");
3936 return;
3937 }
3938
3939 /* set up device control */
0d5ff566
TH
3940 if (ap->ioaddr.ctl_addr)
3941 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
c2bd5804
TH
3942
3943 DPRINTK("EXIT\n");
3944}
3945
623a3128
TH
3946/**
3947 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3948 * @dev: device to compare against
3949 * @new_class: class of the new device
3950 * @new_id: IDENTIFY page of the new device
3951 *
3952 * Compare @new_class and @new_id against @dev and determine
3953 * whether @dev is the device indicated by @new_class and
3954 * @new_id.
3955 *
3956 * LOCKING:
3957 * None.
3958 *
3959 * RETURNS:
3960 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3961 */
3373efd8
TH
3962static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3963 const u16 *new_id)
623a3128
TH
3964{
3965 const u16 *old_id = dev->id;
a0cf733b
TH
3966 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3967 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3968
3969 if (dev->class != new_class) {
f15a1daf
TH
3970 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3971 dev->class, new_class);
623a3128
TH
3972 return 0;
3973 }
3974
a0cf733b
TH
3975 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3976 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3977 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3978 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3979
3980 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3981 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3982 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3983 return 0;
3984 }
3985
3986 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3987 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3988 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3989 return 0;
3990 }
3991
623a3128
TH
3992 return 1;
3993}
3994
3995/**
fe30911b 3996 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3997 * @dev: target ATA device
bff04647 3998 * @readid_flags: read ID flags
623a3128
TH
3999 *
4000 * Re-read IDENTIFY page and make sure @dev is still attached to
4001 * the port.
4002 *
4003 * LOCKING:
4004 * Kernel thread context (may sleep)
4005 *
4006 * RETURNS:
4007 * 0 on success, negative errno otherwise
4008 */
fe30911b 4009int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4010{
5eb45c02 4011 unsigned int class = dev->class;
9af5c9c9 4012 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4013 int rc;
4014
fe635c7e 4015 /* read ID data */
bff04647 4016 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4017 if (rc)
fe30911b 4018 return rc;
623a3128
TH
4019
4020 /* is the device still there? */
fe30911b
TH
4021 if (!ata_dev_same_device(dev, class, id))
4022 return -ENODEV;
623a3128 4023
fe635c7e 4024 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4025 return 0;
4026}
4027
4028/**
4029 * ata_dev_revalidate - Revalidate ATA device
4030 * @dev: device to revalidate
422c9daa 4031 * @new_class: new class code
fe30911b
TH
4032 * @readid_flags: read ID flags
4033 *
4034 * Re-read IDENTIFY page, make sure @dev is still attached to the
4035 * port and reconfigure it according to the new IDENTIFY page.
4036 *
4037 * LOCKING:
4038 * Kernel thread context (may sleep)
4039 *
4040 * RETURNS:
4041 * 0 on success, negative errno otherwise
4042 */
422c9daa
TH
4043int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4044 unsigned int readid_flags)
fe30911b 4045{
6ddcd3b0 4046 u64 n_sectors = dev->n_sectors;
fe30911b
TH
4047 int rc;
4048
4049 if (!ata_dev_enabled(dev))
4050 return -ENODEV;
4051
422c9daa
TH
4052 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4053 if (ata_class_enabled(new_class) &&
4054 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4055 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4056 dev->class, new_class);
4057 rc = -ENODEV;
4058 goto fail;
4059 }
4060
fe30911b
TH
4061 /* re-read ID */
4062 rc = ata_dev_reread_id(dev, readid_flags);
4063 if (rc)
4064 goto fail;
623a3128
TH
4065
4066 /* configure device according to the new ID */
efdaedc4 4067 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4068 if (rc)
4069 goto fail;
4070
4071 /* verify n_sectors hasn't changed */
b54eebd6
TH
4072 if (dev->class == ATA_DEV_ATA && n_sectors &&
4073 dev->n_sectors != n_sectors) {
6ddcd3b0
TH
4074 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4075 "%llu != %llu\n",
4076 (unsigned long long)n_sectors,
4077 (unsigned long long)dev->n_sectors);
8270bec4
TH
4078
4079 /* restore original n_sectors */
4080 dev->n_sectors = n_sectors;
4081
6ddcd3b0
TH
4082 rc = -ENODEV;
4083 goto fail;
4084 }
4085
4086 return 0;
623a3128
TH
4087
4088 fail:
f15a1daf 4089 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4090 return rc;
4091}
4092
6919a0a6
AC
4093struct ata_blacklist_entry {
4094 const char *model_num;
4095 const char *model_rev;
4096 unsigned long horkage;
4097};
4098
4099static const struct ata_blacklist_entry ata_device_blacklist [] = {
4100 /* Devices with DMA related problems under Linux */
4101 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4103 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4104 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4105 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4106 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4107 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4108 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4109 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4110 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4111 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4112 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4113 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4114 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4115 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4116 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4117 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4118 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4119 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4120 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4121 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4122 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4123 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4124 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4125 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4126 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4127 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4128 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4129 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4130 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a
TH
4131 /* Odd clown on sil3726/4726 PMPs */
4132 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4133 ATA_HORKAGE_SKIP_PM },
6919a0a6 4134
18d6e9d5 4135 /* Weird ATAPI devices */
40a1d531 4136 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
18d6e9d5 4137
6919a0a6
AC
4138 /* Devices we expect to fail diagnostics */
4139
4140 /* Devices where NCQ should be avoided */
4141 /* NCQ is slow */
2dcb407e 4142 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
09125ea6
TH
4143 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4144 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4145 /* NCQ is broken */
539cc7c7 4146 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4147 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
0b0a43e0
DM
4148 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4149 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
da6f0ec2 4150 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
539cc7c7 4151
36e337d0
RH
4152 /* Blacklist entries taken from Silicon Image 3124/3132
4153 Windows driver .inf file - also several Linux problem reports */
4154 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4155 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4156 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
bd9c5a39
TH
4157 /* Drives which do spurious command completion */
4158 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
2f8fcebb 4159 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
70edb185 4160 { "HDT722516DLA380", "V43OA96A", ATA_HORKAGE_NONCQ, },
e14cbfa6 4161 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
0c173174 4162 { "Hitachi HTS542525K9SA00", "BBFOC31P", ATA_HORKAGE_NONCQ, },
2f8fcebb 4163 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
7f567620 4164 { "WDC WD3200AAJS-00RYA0", "12.01B01", ATA_HORKAGE_NONCQ, },
a520f261 4165 { "FUJITSU MHV2080BH", "00840028", ATA_HORKAGE_NONCQ, },
7f567620 4166 { "ST9120822AS", "3.CLF", ATA_HORKAGE_NONCQ, },
3fb6589c 4167 { "ST9160821AS", "3.CLF", ATA_HORKAGE_NONCQ, },
954bb005 4168 { "ST9160821AS", "3.ALD", ATA_HORKAGE_NONCQ, },
13587960 4169 { "ST9160821AS", "3.CCD", ATA_HORKAGE_NONCQ, },
7f567620
TH
4170 { "ST3160812AS", "3.ADJ", ATA_HORKAGE_NONCQ, },
4171 { "ST980813AS", "3.ADB", ATA_HORKAGE_NONCQ, },
5d6aca8d 4172 { "SAMSUNG HD401LJ", "ZZ100-15", ATA_HORKAGE_NONCQ, },
12850ffe 4173 { "Maxtor 7V300F0", "VA111900", ATA_HORKAGE_NONCQ, },
6919a0a6 4174
16c55b03
TH
4175 /* devices which puke on READ_NATIVE_MAX */
4176 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4177 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4178 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4179 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4180
93328e11
AC
4181 /* Devices which report 1 sector over size HPA */
4182 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4183 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4184
6bbfd53d
AC
4185 /* Devices which get the IVB wrong */
4186 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4187 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
e9f33406
PM
4188 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4189 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4190 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
6bbfd53d 4191
6919a0a6
AC
4192 /* End Marker */
4193 { }
1da177e4 4194};
2e9edbf8 4195
741b7763 4196static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
539cc7c7
JG
4197{
4198 const char *p;
4199 int len;
4200
4201 /*
4202 * check for trailing wildcard: *\0
4203 */
4204 p = strchr(patt, wildchar);
4205 if (p && ((*(p + 1)) == 0))
4206 len = p - patt;
317b50b8 4207 else {
539cc7c7 4208 len = strlen(name);
317b50b8
AP
4209 if (!len) {
4210 if (!*patt)
4211 return 0;
4212 return -1;
4213 }
4214 }
539cc7c7
JG
4215
4216 return strncmp(patt, name, len);
4217}
4218
75683fe7 4219static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4220{
8bfa79fc
TH
4221 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4222 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4223 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4224
8bfa79fc
TH
4225 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4226 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4227
6919a0a6 4228 while (ad->model_num) {
539cc7c7 4229 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
6919a0a6
AC
4230 if (ad->model_rev == NULL)
4231 return ad->horkage;
539cc7c7 4232 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
6919a0a6 4233 return ad->horkage;
f4b15fef 4234 }
6919a0a6 4235 ad++;
f4b15fef 4236 }
1da177e4
LT
4237 return 0;
4238}
4239
6919a0a6
AC
4240static int ata_dma_blacklisted(const struct ata_device *dev)
4241{
4242 /* We don't support polling DMA.
4243 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4244 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4245 */
9af5c9c9 4246 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4247 (dev->flags & ATA_DFLAG_CDB_INTR))
4248 return 1;
75683fe7 4249 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4250}
4251
6bbfd53d
AC
4252/**
4253 * ata_is_40wire - check drive side detection
4254 * @dev: device
4255 *
4256 * Perform drive side detection decoding, allowing for device vendors
4257 * who can't follow the documentation.
4258 */
4259
4260static int ata_is_40wire(struct ata_device *dev)
4261{
4262 if (dev->horkage & ATA_HORKAGE_IVB)
4263 return ata_drive_40wire_relaxed(dev->id);
4264 return ata_drive_40wire(dev->id);
4265}
4266
a6d5a51c
TH
4267/**
4268 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4269 * @dev: Device to compute xfermask for
4270 *
acf356b1
TH
4271 * Compute supported xfermask of @dev and store it in
4272 * dev->*_mask. This function is responsible for applying all
4273 * known limits including host controller limits, device
4274 * blacklist, etc...
a6d5a51c
TH
4275 *
4276 * LOCKING:
4277 * None.
a6d5a51c 4278 */
3373efd8 4279static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4280{
9af5c9c9
TH
4281 struct ata_link *link = dev->link;
4282 struct ata_port *ap = link->ap;
cca3974e 4283 struct ata_host *host = ap->host;
a6d5a51c 4284 unsigned long xfer_mask;
1da177e4 4285
37deecb5 4286 /* controller modes available */
565083e1
TH
4287 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4288 ap->mwdma_mask, ap->udma_mask);
4289
8343f889 4290 /* drive modes available */
37deecb5
TH
4291 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4292 dev->mwdma_mask, dev->udma_mask);
4293 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4294
b352e57d
AC
4295 /*
4296 * CFA Advanced TrueIDE timings are not allowed on a shared
4297 * cable
4298 */
4299 if (ata_dev_pair(dev)) {
4300 /* No PIO5 or PIO6 */
4301 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4302 /* No MWDMA3 or MWDMA 4 */
4303 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4304 }
4305
37deecb5
TH
4306 if (ata_dma_blacklisted(dev)) {
4307 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4308 ata_dev_printk(dev, KERN_WARNING,
4309 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4310 }
a6d5a51c 4311
14d66ab7 4312 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4313 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4314 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4315 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4316 "other device, disabling DMA\n");
5444a6f4 4317 }
565083e1 4318
e424675f
JG
4319 if (ap->flags & ATA_FLAG_NO_IORDY)
4320 xfer_mask &= ata_pio_mask_no_iordy(dev);
4321
5444a6f4 4322 if (ap->ops->mode_filter)
a76b62ca 4323 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4324
8343f889
RH
4325 /* Apply cable rule here. Don't apply it early because when
4326 * we handle hot plug the cable type can itself change.
4327 * Check this last so that we know if the transfer rate was
4328 * solely limited by the cable.
4329 * Unknown or 80 wire cables reported host side are checked
4330 * drive side as well. Cases where we know a 40wire cable
4331 * is used safely for 80 are not checked here.
4332 */
4333 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4334 /* UDMA/44 or higher would be available */
2dcb407e 4335 if ((ap->cbl == ATA_CBL_PATA40) ||
6bbfd53d 4336 (ata_is_40wire(dev) &&
2dcb407e
JG
4337 (ap->cbl == ATA_CBL_PATA_UNK ||
4338 ap->cbl == ATA_CBL_PATA80))) {
4339 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4340 "limited to UDMA/33 due to 40-wire cable\n");
4341 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4342 }
4343
565083e1
TH
4344 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4345 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4346}
4347
1da177e4
LT
4348/**
4349 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4350 * @dev: Device to which command will be sent
4351 *
780a87f7
JG
4352 * Issue SET FEATURES - XFER MODE command to device @dev
4353 * on port @ap.
4354 *
1da177e4 4355 * LOCKING:
0cba632b 4356 * PCI/etc. bus probe sem.
83206a29
TH
4357 *
4358 * RETURNS:
4359 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4360 */
4361
3373efd8 4362static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4363{
a0123703 4364 struct ata_taskfile tf;
83206a29 4365 unsigned int err_mask;
1da177e4
LT
4366
4367 /* set up set-features taskfile */
4368 DPRINTK("set features - xfer mode\n");
4369
464cf177
TH
4370 /* Some controllers and ATAPI devices show flaky interrupt
4371 * behavior after setting xfer mode. Use polling instead.
4372 */
3373efd8 4373 ata_tf_init(dev, &tf);
a0123703
TH
4374 tf.command = ATA_CMD_SET_FEATURES;
4375 tf.feature = SETFEATURES_XFER;
464cf177 4376 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703
TH
4377 tf.protocol = ATA_PROT_NODATA;
4378 tf.nsect = dev->xfer_mode;
1da177e4 4379
2b789108 4380 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4381
4382 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4383 return err_mask;
4384}
9f45cbd3 4385/**
218f3d30 4386 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4387 * @dev: Device to which command will be sent
4388 * @enable: Whether to enable or disable the feature
218f3d30 4389 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4390 *
4391 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4392 * on port @ap with sector count
9f45cbd3
KCA
4393 *
4394 * LOCKING:
4395 * PCI/etc. bus probe sem.
4396 *
4397 * RETURNS:
4398 * 0 on success, AC_ERR_* mask otherwise.
4399 */
218f3d30
JG
4400static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4401 u8 feature)
9f45cbd3
KCA
4402{
4403 struct ata_taskfile tf;
4404 unsigned int err_mask;
4405
4406 /* set up set-features taskfile */
4407 DPRINTK("set features - SATA features\n");
4408
4409 ata_tf_init(dev, &tf);
4410 tf.command = ATA_CMD_SET_FEATURES;
4411 tf.feature = enable;
4412 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4413 tf.protocol = ATA_PROT_NODATA;
218f3d30 4414 tf.nsect = feature;
9f45cbd3 4415
2b789108 4416 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4417
83206a29
TH
4418 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4419 return err_mask;
1da177e4
LT
4420}
4421
8bf62ece
AL
4422/**
4423 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4424 * @dev: Device to which command will be sent
e2a7f77a
RD
4425 * @heads: Number of heads (taskfile parameter)
4426 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4427 *
4428 * LOCKING:
6aff8f1f
TH
4429 * Kernel thread context (may sleep)
4430 *
4431 * RETURNS:
4432 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4433 */
3373efd8
TH
4434static unsigned int ata_dev_init_params(struct ata_device *dev,
4435 u16 heads, u16 sectors)
8bf62ece 4436{
a0123703 4437 struct ata_taskfile tf;
6aff8f1f 4438 unsigned int err_mask;
8bf62ece
AL
4439
4440 /* Number of sectors per track 1-255. Number of heads 1-16 */
4441 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4442 return AC_ERR_INVALID;
8bf62ece
AL
4443
4444 /* set up init dev params taskfile */
4445 DPRINTK("init dev params \n");
4446
3373efd8 4447 ata_tf_init(dev, &tf);
a0123703
TH
4448 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4449 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 tf.protocol = ATA_PROT_NODATA;
4451 tf.nsect = sectors;
4452 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4453
2b789108 4454 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4455 /* A clean abort indicates an original or just out of spec drive
4456 and we should continue as we issue the setup based on the
4457 drive reported working geometry */
4458 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4459 err_mask = 0;
8bf62ece 4460
6aff8f1f
TH
4461 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4462 return err_mask;
8bf62ece
AL
4463}
4464
1da177e4 4465/**
0cba632b
JG
4466 * ata_sg_clean - Unmap DMA memory associated with command
4467 * @qc: Command containing DMA memory to be released
4468 *
4469 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4470 *
4471 * LOCKING:
cca3974e 4472 * spin_lock_irqsave(host lock)
1da177e4 4473 */
70e6ad0c 4474void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4475{
4476 struct ata_port *ap = qc->ap;
cedc9a47 4477 struct scatterlist *sg = qc->__sg;
1da177e4 4478 int dir = qc->dma_dir;
cedc9a47 4479 void *pad_buf = NULL;
1da177e4 4480
a4631474
TH
4481 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4482 WARN_ON(sg == NULL);
1da177e4
LT
4483
4484 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 4485 WARN_ON(qc->n_elem > 1);
1da177e4 4486
2c13b7ce 4487 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4488
cedc9a47
JG
4489 /* if we padded the buffer out to 32-bit bound, and data
4490 * xfer direction is from-device, we must copy from the
4491 * pad buffer back into the supplied buffer
4492 */
4493 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4494 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4495
4496 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 4497 if (qc->n_elem)
2f1f610b 4498 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47 4499 /* restore last sg */
87260216 4500 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
cedc9a47
JG
4501 if (pad_buf) {
4502 struct scatterlist *psg = &qc->pad_sgent;
45711f1a 4503 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4504 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 4505 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4506 }
4507 } else {
2e242fa9 4508 if (qc->n_elem)
2f1f610b 4509 dma_unmap_single(ap->dev,
e1410f2d
JG
4510 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4511 dir);
cedc9a47
JG
4512 /* restore sg */
4513 sg->length += qc->pad_len;
4514 if (pad_buf)
4515 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4516 pad_buf, qc->pad_len);
4517 }
1da177e4
LT
4518
4519 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 4520 qc->__sg = NULL;
1da177e4
LT
4521}
4522
4523/**
4524 * ata_fill_sg - Fill PCI IDE PRD table
4525 * @qc: Metadata associated with taskfile to be transferred
4526 *
780a87f7
JG
4527 * Fill PCI IDE PRD (scatter-gather) table with segments
4528 * associated with the current disk command.
4529 *
1da177e4 4530 * LOCKING:
cca3974e 4531 * spin_lock_irqsave(host lock)
1da177e4
LT
4532 *
4533 */
4534static void ata_fill_sg(struct ata_queued_cmd *qc)
4535{
1da177e4 4536 struct ata_port *ap = qc->ap;
cedc9a47
JG
4537 struct scatterlist *sg;
4538 unsigned int idx;
1da177e4 4539
a4631474 4540 WARN_ON(qc->__sg == NULL);
f131883e 4541 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
4542
4543 idx = 0;
cedc9a47 4544 ata_for_each_sg(sg, qc) {
1da177e4
LT
4545 u32 addr, offset;
4546 u32 sg_len, len;
4547
4548 /* determine if physical DMA addr spans 64K boundary.
4549 * Note h/w doesn't support 64-bit, so we unconditionally
4550 * truncate dma_addr_t to u32.
4551 */
4552 addr = (u32) sg_dma_address(sg);
4553 sg_len = sg_dma_len(sg);
4554
4555 while (sg_len) {
4556 offset = addr & 0xffff;
4557 len = sg_len;
4558 if ((offset + sg_len) > 0x10000)
4559 len = 0x10000 - offset;
4560
4561 ap->prd[idx].addr = cpu_to_le32(addr);
4562 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4563 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4564
4565 idx++;
4566 sg_len -= len;
4567 addr += len;
4568 }
4569 }
4570
4571 if (idx)
4572 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4573}
b9a4197e 4574
d26fc955
AC
4575/**
4576 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4577 * @qc: Metadata associated with taskfile to be transferred
4578 *
4579 * Fill PCI IDE PRD (scatter-gather) table with segments
4580 * associated with the current disk command. Perform the fill
4581 * so that we avoid writing any length 64K records for
4582 * controllers that don't follow the spec.
4583 *
4584 * LOCKING:
4585 * spin_lock_irqsave(host lock)
4586 *
4587 */
4588static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4589{
4590 struct ata_port *ap = qc->ap;
4591 struct scatterlist *sg;
4592 unsigned int idx;
4593
4594 WARN_ON(qc->__sg == NULL);
4595 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4596
4597 idx = 0;
4598 ata_for_each_sg(sg, qc) {
4599 u32 addr, offset;
4600 u32 sg_len, len, blen;
4601
2dcb407e 4602 /* determine if physical DMA addr spans 64K boundary.
d26fc955
AC
4603 * Note h/w doesn't support 64-bit, so we unconditionally
4604 * truncate dma_addr_t to u32.
4605 */
4606 addr = (u32) sg_dma_address(sg);
4607 sg_len = sg_dma_len(sg);
4608
4609 while (sg_len) {
4610 offset = addr & 0xffff;
4611 len = sg_len;
4612 if ((offset + sg_len) > 0x10000)
4613 len = 0x10000 - offset;
4614
4615 blen = len & 0xffff;
4616 ap->prd[idx].addr = cpu_to_le32(addr);
4617 if (blen == 0) {
4618 /* Some PATA chipsets like the CS5530 can't
4619 cope with 0x0000 meaning 64K as the spec says */
4620 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4621 blen = 0x8000;
4622 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4623 }
4624 ap->prd[idx].flags_len = cpu_to_le32(blen);
4625 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4626
4627 idx++;
4628 sg_len -= len;
4629 addr += len;
4630 }
4631 }
4632
4633 if (idx)
4634 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4635}
4636
1da177e4
LT
4637/**
4638 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4639 * @qc: Metadata associated with taskfile to check
4640 *
780a87f7
JG
4641 * Allow low-level driver to filter ATA PACKET commands, returning
4642 * a status indicating whether or not it is OK to use DMA for the
4643 * supplied PACKET command.
4644 *
1da177e4 4645 * LOCKING:
cca3974e 4646 * spin_lock_irqsave(host lock)
0cba632b 4647 *
1da177e4
LT
4648 * RETURNS: 0 when ATAPI DMA can be used
4649 * nonzero otherwise
4650 */
4651int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4652{
4653 struct ata_port *ap = qc->ap;
b9a4197e
TH
4654
4655 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4656 * few ATAPI devices choke on such DMA requests.
4657 */
4658 if (unlikely(qc->nbytes & 15))
4659 return 1;
6f23a31d 4660
1da177e4 4661 if (ap->ops->check_atapi_dma)
b9a4197e 4662 return ap->ops->check_atapi_dma(qc);
1da177e4 4663
b9a4197e 4664 return 0;
1da177e4 4665}
b9a4197e 4666
31cc23b3
TH
4667/**
4668 * ata_std_qc_defer - Check whether a qc needs to be deferred
4669 * @qc: ATA command in question
4670 *
4671 * Non-NCQ commands cannot run with any other command, NCQ or
4672 * not. As upper layer only knows the queue depth, we are
4673 * responsible for maintaining exclusion. This function checks
4674 * whether a new command @qc can be issued.
4675 *
4676 * LOCKING:
4677 * spin_lock_irqsave(host lock)
4678 *
4679 * RETURNS:
4680 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4681 */
4682int ata_std_qc_defer(struct ata_queued_cmd *qc)
4683{
4684 struct ata_link *link = qc->dev->link;
4685
4686 if (qc->tf.protocol == ATA_PROT_NCQ) {
4687 if (!ata_tag_valid(link->active_tag))
4688 return 0;
4689 } else {
4690 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4691 return 0;
4692 }
4693
4694 return ATA_DEFER_LINK;
4695}
4696
1da177e4
LT
4697/**
4698 * ata_qc_prep - Prepare taskfile for submission
4699 * @qc: Metadata associated with taskfile to be prepared
4700 *
780a87f7
JG
4701 * Prepare ATA taskfile for submission.
4702 *
1da177e4 4703 * LOCKING:
cca3974e 4704 * spin_lock_irqsave(host lock)
1da177e4
LT
4705 */
4706void ata_qc_prep(struct ata_queued_cmd *qc)
4707{
4708 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4709 return;
4710
4711 ata_fill_sg(qc);
4712}
4713
d26fc955
AC
4714/**
4715 * ata_dumb_qc_prep - Prepare taskfile for submission
4716 * @qc: Metadata associated with taskfile to be prepared
4717 *
4718 * Prepare ATA taskfile for submission.
4719 *
4720 * LOCKING:
4721 * spin_lock_irqsave(host lock)
4722 */
4723void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4724{
4725 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4726 return;
4727
4728 ata_fill_sg_dumb(qc);
4729}
4730
e46834cd
BK
4731void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4732
0cba632b
JG
4733/**
4734 * ata_sg_init_one - Associate command with memory buffer
4735 * @qc: Command to be associated
4736 * @buf: Memory buffer
4737 * @buflen: Length of memory buffer, in bytes.
4738 *
4739 * Initialize the data-related elements of queued_cmd @qc
4740 * to point to a single memory buffer, @buf of byte length @buflen.
4741 *
4742 * LOCKING:
cca3974e 4743 * spin_lock_irqsave(host lock)
0cba632b
JG
4744 */
4745
1da177e4
LT
4746void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4747{
1da177e4
LT
4748 qc->flags |= ATA_QCFLAG_SINGLE;
4749
cedc9a47 4750 qc->__sg = &qc->sgent;
1da177e4 4751 qc->n_elem = 1;
cedc9a47 4752 qc->orig_n_elem = 1;
1da177e4 4753 qc->buf_virt = buf;
233277ca 4754 qc->nbytes = buflen;
87260216 4755 qc->cursg = qc->__sg;
1da177e4 4756
61c0596c 4757 sg_init_one(&qc->sgent, buf, buflen);
1da177e4
LT
4758}
4759
0cba632b
JG
4760/**
4761 * ata_sg_init - Associate command with scatter-gather table.
4762 * @qc: Command to be associated
4763 * @sg: Scatter-gather table.
4764 * @n_elem: Number of elements in s/g table.
4765 *
4766 * Initialize the data-related elements of queued_cmd @qc
4767 * to point to a scatter-gather table @sg, containing @n_elem
4768 * elements.
4769 *
4770 * LOCKING:
cca3974e 4771 * spin_lock_irqsave(host lock)
0cba632b
JG
4772 */
4773
1da177e4
LT
4774void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4775 unsigned int n_elem)
4776{
4777 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 4778 qc->__sg = sg;
1da177e4 4779 qc->n_elem = n_elem;
cedc9a47 4780 qc->orig_n_elem = n_elem;
87260216 4781 qc->cursg = qc->__sg;
1da177e4
LT
4782}
4783
4784/**
0cba632b
JG
4785 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4786 * @qc: Command with memory buffer to be mapped.
4787 *
4788 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
4789 *
4790 * LOCKING:
cca3974e 4791 * spin_lock_irqsave(host lock)
1da177e4
LT
4792 *
4793 * RETURNS:
0cba632b 4794 * Zero on success, negative on error.
1da177e4
LT
4795 */
4796
4797static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4798{
4799 struct ata_port *ap = qc->ap;
4800 int dir = qc->dma_dir;
cedc9a47 4801 struct scatterlist *sg = qc->__sg;
1da177e4 4802 dma_addr_t dma_address;
2e242fa9 4803 int trim_sg = 0;
1da177e4 4804
cedc9a47
JG
4805 /* we must lengthen transfers to end on a 32-bit boundary */
4806 qc->pad_len = sg->length & 3;
4807 if (qc->pad_len) {
4808 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4809 struct scatterlist *psg = &qc->pad_sgent;
4810
a4631474 4811 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4812
4813 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4814
4815 if (qc->tf.flags & ATA_TFLAG_WRITE)
4816 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4817 qc->pad_len);
4818
4819 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4820 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4821 /* trim sg */
4822 sg->length -= qc->pad_len;
2e242fa9
TH
4823 if (sg->length == 0)
4824 trim_sg = 1;
cedc9a47
JG
4825
4826 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4827 sg->length, qc->pad_len);
4828 }
4829
2e242fa9
TH
4830 if (trim_sg) {
4831 qc->n_elem--;
e1410f2d
JG
4832 goto skip_map;
4833 }
4834
2f1f610b 4835 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 4836 sg->length, dir);
537a95d9
TH
4837 if (dma_mapping_error(dma_address)) {
4838 /* restore sg */
4839 sg->length += qc->pad_len;
1da177e4 4840 return -1;
537a95d9 4841 }
1da177e4
LT
4842
4843 sg_dma_address(sg) = dma_address;
32529e01 4844 sg_dma_len(sg) = sg->length;
1da177e4 4845
2e242fa9 4846skip_map:
1da177e4
LT
4847 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4848 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4849
4850 return 0;
4851}
4852
4853/**
0cba632b
JG
4854 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4855 * @qc: Command with scatter-gather table to be mapped.
4856 *
4857 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
4858 *
4859 * LOCKING:
cca3974e 4860 * spin_lock_irqsave(host lock)
1da177e4
LT
4861 *
4862 * RETURNS:
0cba632b 4863 * Zero on success, negative on error.
1da177e4
LT
4864 *
4865 */
4866
4867static int ata_sg_setup(struct ata_queued_cmd *qc)
4868{
4869 struct ata_port *ap = qc->ap;
cedc9a47 4870 struct scatterlist *sg = qc->__sg;
87260216 4871 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
e1410f2d 4872 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4 4873
44877b4e 4874 VPRINTK("ENTER, ata%u\n", ap->print_id);
a4631474 4875 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 4876
cedc9a47
JG
4877 /* we must lengthen transfers to end on a 32-bit boundary */
4878 qc->pad_len = lsg->length & 3;
4879 if (qc->pad_len) {
4880 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4881 struct scatterlist *psg = &qc->pad_sgent;
4882 unsigned int offset;
4883
a4631474 4884 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
4885
4886 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4887
4888 /*
4889 * psg->page/offset are used to copy to-be-written
4890 * data in this function or read data in ata_sg_clean.
4891 */
4892 offset = lsg->offset + lsg->length - qc->pad_len;
acd054a5 4893 sg_init_table(psg, 1);
642f1490
JA
4894 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4895 qc->pad_len, offset_in_page(offset));
cedc9a47
JG
4896
4897 if (qc->tf.flags & ATA_TFLAG_WRITE) {
45711f1a 4898 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
cedc9a47 4899 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 4900 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
4901 }
4902
4903 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4904 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4905 /* trim last sg */
4906 lsg->length -= qc->pad_len;
e1410f2d
JG
4907 if (lsg->length == 0)
4908 trim_sg = 1;
cedc9a47
JG
4909
4910 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4911 qc->n_elem - 1, lsg->length, qc->pad_len);
4912 }
4913
e1410f2d
JG
4914 pre_n_elem = qc->n_elem;
4915 if (trim_sg && pre_n_elem)
4916 pre_n_elem--;
4917
4918 if (!pre_n_elem) {
4919 n_elem = 0;
4920 goto skip_map;
4921 }
4922
1da177e4 4923 dir = qc->dma_dir;
2f1f610b 4924 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
4925 if (n_elem < 1) {
4926 /* restore last sg */
4927 lsg->length += qc->pad_len;
1da177e4 4928 return -1;
537a95d9 4929 }
1da177e4
LT
4930
4931 DPRINTK("%d sg elements mapped\n", n_elem);
4932
e1410f2d 4933skip_map:
1da177e4
LT
4934 qc->n_elem = n_elem;
4935
4936 return 0;
4937}
4938
0baab86b 4939/**
c893a3ae 4940 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
4941 * @buf: Buffer to swap
4942 * @buf_words: Number of 16-bit words in buffer.
4943 *
4944 * Swap halves of 16-bit words if needed to convert from
4945 * little-endian byte order to native cpu byte order, or
4946 * vice-versa.
4947 *
4948 * LOCKING:
6f0ef4fa 4949 * Inherited from caller.
0baab86b 4950 */
1da177e4
LT
4951void swap_buf_le16(u16 *buf, unsigned int buf_words)
4952{
4953#ifdef __BIG_ENDIAN
4954 unsigned int i;
4955
4956 for (i = 0; i < buf_words; i++)
4957 buf[i] = le16_to_cpu(buf[i]);
4958#endif /* __BIG_ENDIAN */
4959}
4960
6ae4cfb5 4961/**
0d5ff566 4962 * ata_data_xfer - Transfer data by PIO
a6b2c5d4 4963 * @adev: device to target
6ae4cfb5
AL
4964 * @buf: data buffer
4965 * @buflen: buffer length
344babaa 4966 * @write_data: read/write
6ae4cfb5
AL
4967 *
4968 * Transfer data from/to the device data register by PIO.
4969 *
4970 * LOCKING:
4971 * Inherited from caller.
6ae4cfb5 4972 */
0d5ff566
TH
4973void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4974 unsigned int buflen, int write_data)
1da177e4 4975{
9af5c9c9 4976 struct ata_port *ap = adev->link->ap;
6ae4cfb5 4977 unsigned int words = buflen >> 1;
1da177e4 4978
6ae4cfb5 4979 /* Transfer multiple of 2 bytes */
1da177e4 4980 if (write_data)
0d5ff566 4981 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
1da177e4 4982 else
0d5ff566 4983 ioread16_rep(ap->ioaddr.data_addr, buf, words);
6ae4cfb5
AL
4984
4985 /* Transfer trailing 1 byte, if any. */
4986 if (unlikely(buflen & 0x01)) {
4987 u16 align_buf[1] = { 0 };
4988 unsigned char *trailing_buf = buf + buflen - 1;
4989
4990 if (write_data) {
4991 memcpy(align_buf, trailing_buf, 1);
0d5ff566 4992 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
6ae4cfb5 4993 } else {
0d5ff566 4994 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
6ae4cfb5
AL
4995 memcpy(trailing_buf, align_buf, 1);
4996 }
4997 }
1da177e4
LT
4998}
4999
75e99585 5000/**
0d5ff566 5001 * ata_data_xfer_noirq - Transfer data by PIO
75e99585
AC
5002 * @adev: device to target
5003 * @buf: data buffer
5004 * @buflen: buffer length
5005 * @write_data: read/write
5006 *
88574551 5007 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
5008 * transfer with interrupts disabled.
5009 *
5010 * LOCKING:
5011 * Inherited from caller.
5012 */
0d5ff566
TH
5013void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5014 unsigned int buflen, int write_data)
75e99585
AC
5015{
5016 unsigned long flags;
5017 local_irq_save(flags);
0d5ff566 5018 ata_data_xfer(adev, buf, buflen, write_data);
75e99585
AC
5019 local_irq_restore(flags);
5020}
5021
5022
6ae4cfb5 5023/**
5a5dbd18 5024 * ata_pio_sector - Transfer a sector of data.
6ae4cfb5
AL
5025 * @qc: Command on going
5026 *
5a5dbd18 5027 * Transfer qc->sect_size bytes of data from/to the ATA device.
6ae4cfb5
AL
5028 *
5029 * LOCKING:
5030 * Inherited from caller.
5031 */
5032
1da177e4
LT
5033static void ata_pio_sector(struct ata_queued_cmd *qc)
5034{
5035 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
1da177e4
LT
5036 struct ata_port *ap = qc->ap;
5037 struct page *page;
5038 unsigned int offset;
5039 unsigned char *buf;
5040
5a5dbd18 5041 if (qc->curbytes == qc->nbytes - qc->sect_size)
14be71f4 5042 ap->hsm_task_state = HSM_ST_LAST;
1da177e4 5043
45711f1a 5044 page = sg_page(qc->cursg);
87260216 5045 offset = qc->cursg->offset + qc->cursg_ofs;
1da177e4
LT
5046
5047 /* get the current page and offset */
5048 page = nth_page(page, (offset >> PAGE_SHIFT));
5049 offset %= PAGE_SIZE;
5050
1da177e4
LT
5051 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5052
91b8b313
AL
5053 if (PageHighMem(page)) {
5054 unsigned long flags;
5055
a6b2c5d4 5056 /* FIXME: use a bounce buffer */
91b8b313
AL
5057 local_irq_save(flags);
5058 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5059
91b8b313 5060 /* do the actual data transfer */
5a5dbd18 5061 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
1da177e4 5062
91b8b313
AL
5063 kunmap_atomic(buf, KM_IRQ0);
5064 local_irq_restore(flags);
5065 } else {
5066 buf = page_address(page);
5a5dbd18 5067 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
91b8b313 5068 }
1da177e4 5069
5a5dbd18
ML
5070 qc->curbytes += qc->sect_size;
5071 qc->cursg_ofs += qc->sect_size;
1da177e4 5072
87260216
JA
5073 if (qc->cursg_ofs == qc->cursg->length) {
5074 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5075 qc->cursg_ofs = 0;
5076 }
1da177e4 5077}
1da177e4 5078
07f6f7d0 5079/**
5a5dbd18 5080 * ata_pio_sectors - Transfer one or many sectors.
07f6f7d0
AL
5081 * @qc: Command on going
5082 *
5a5dbd18 5083 * Transfer one or many sectors of data from/to the
07f6f7d0
AL
5084 * ATA device for the DRQ request.
5085 *
5086 * LOCKING:
5087 * Inherited from caller.
5088 */
1da177e4 5089
07f6f7d0
AL
5090static void ata_pio_sectors(struct ata_queued_cmd *qc)
5091{
5092 if (is_multi_taskfile(&qc->tf)) {
5093 /* READ/WRITE MULTIPLE */
5094 unsigned int nsect;
5095
587005de 5096 WARN_ON(qc->dev->multi_count == 0);
1da177e4 5097
5a5dbd18 5098 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
726f0785 5099 qc->dev->multi_count);
07f6f7d0
AL
5100 while (nsect--)
5101 ata_pio_sector(qc);
5102 } else
5103 ata_pio_sector(qc);
4cc980b3
AL
5104
5105 ata_altstatus(qc->ap); /* flush */
07f6f7d0
AL
5106}
5107
c71c1857
AL
5108/**
5109 * atapi_send_cdb - Write CDB bytes to hardware
5110 * @ap: Port to which ATAPI device is attached.
5111 * @qc: Taskfile currently active
5112 *
5113 * When device has indicated its readiness to accept
5114 * a CDB, this function is called. Send the CDB.
5115 *
5116 * LOCKING:
5117 * caller.
5118 */
5119
5120static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5121{
5122 /* send SCSI cdb */
5123 DPRINTK("send cdb\n");
db024d53 5124 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 5125
a6b2c5d4 5126 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
5127 ata_altstatus(ap); /* flush */
5128
5129 switch (qc->tf.protocol) {
5130 case ATA_PROT_ATAPI:
5131 ap->hsm_task_state = HSM_ST;
5132 break;
5133 case ATA_PROT_ATAPI_NODATA:
5134 ap->hsm_task_state = HSM_ST_LAST;
5135 break;
5136 case ATA_PROT_ATAPI_DMA:
5137 ap->hsm_task_state = HSM_ST_LAST;
5138 /* initiate bmdma */
5139 ap->ops->bmdma_start(qc);
5140 break;
5141 }
1da177e4
LT
5142}
5143
6ae4cfb5
AL
5144/**
5145 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5146 * @qc: Command on going
5147 * @bytes: number of bytes
5148 *
5149 * Transfer Transfer data from/to the ATAPI device.
5150 *
5151 * LOCKING:
5152 * Inherited from caller.
5153 *
5154 */
5155
1da177e4
LT
5156static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5157{
5158 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 5159 struct scatterlist *sg = qc->__sg;
0874ee76 5160 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
1da177e4
LT
5161 struct ata_port *ap = qc->ap;
5162 struct page *page;
5163 unsigned char *buf;
5164 unsigned int offset, count;
0874ee76 5165 int no_more_sg = 0;
1da177e4 5166
563a6e1f 5167 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 5168 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
5169
5170next_sg:
0874ee76 5171 if (unlikely(no_more_sg)) {
7fb6ec28 5172 /*
563a6e1f
AL
5173 * The end of qc->sg is reached and the device expects
5174 * more data to transfer. In order not to overrun qc->sg
5175 * and fulfill length specified in the byte count register,
5176 * - for read case, discard trailing data from the device
5177 * - for write case, padding zero data to the device
5178 */
5179 u16 pad_buf[1] = { 0 };
5180 unsigned int words = bytes >> 1;
5181 unsigned int i;
5182
5183 if (words) /* warning if bytes > 1 */
f15a1daf
TH
5184 ata_dev_printk(qc->dev, KERN_WARNING,
5185 "%u bytes trailing data\n", bytes);
563a6e1f
AL
5186
5187 for (i = 0; i < words; i++)
2dcb407e 5188 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
563a6e1f 5189
14be71f4 5190 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
5191 return;
5192 }
5193
87260216 5194 sg = qc->cursg;
1da177e4 5195
45711f1a 5196 page = sg_page(sg);
1da177e4
LT
5197 offset = sg->offset + qc->cursg_ofs;
5198
5199 /* get the current page and offset */
5200 page = nth_page(page, (offset >> PAGE_SHIFT));
5201 offset %= PAGE_SIZE;
5202
6952df03 5203 /* don't overrun current sg */
32529e01 5204 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
5205
5206 /* don't cross page boundaries */
5207 count = min(count, (unsigned int)PAGE_SIZE - offset);
5208
7282aa4b
AL
5209 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5210
91b8b313
AL
5211 if (PageHighMem(page)) {
5212 unsigned long flags;
5213
a6b2c5d4 5214 /* FIXME: use bounce buffer */
91b8b313
AL
5215 local_irq_save(flags);
5216 buf = kmap_atomic(page, KM_IRQ0);
083958d3 5217
91b8b313 5218 /* do the actual data transfer */
a6b2c5d4 5219 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 5220
91b8b313
AL
5221 kunmap_atomic(buf, KM_IRQ0);
5222 local_irq_restore(flags);
5223 } else {
5224 buf = page_address(page);
a6b2c5d4 5225 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 5226 }
1da177e4
LT
5227
5228 bytes -= count;
5229 qc->curbytes += count;
5230 qc->cursg_ofs += count;
5231
32529e01 5232 if (qc->cursg_ofs == sg->length) {
0874ee76
FT
5233 if (qc->cursg == lsg)
5234 no_more_sg = 1;
5235
87260216 5236 qc->cursg = sg_next(qc->cursg);
1da177e4
LT
5237 qc->cursg_ofs = 0;
5238 }
5239
563a6e1f 5240 if (bytes)
1da177e4 5241 goto next_sg;
1da177e4
LT
5242}
5243
6ae4cfb5
AL
5244/**
5245 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5246 * @qc: Command on going
5247 *
5248 * Transfer Transfer data from/to the ATAPI device.
5249 *
5250 * LOCKING:
5251 * Inherited from caller.
6ae4cfb5
AL
5252 */
5253
1da177e4
LT
5254static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5255{
5256 struct ata_port *ap = qc->ap;
5257 struct ata_device *dev = qc->dev;
5258 unsigned int ireason, bc_lo, bc_hi, bytes;
5259 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5260
eec4c3f3
AL
5261 /* Abuse qc->result_tf for temp storage of intermediate TF
5262 * here to save some kernel stack usage.
5263 * For normal completion, qc->result_tf is not relevant. For
5264 * error, qc->result_tf is later overwritten by ata_qc_complete().
5265 * So, the correctness of qc->result_tf is not affected.
5266 */
5267 ap->ops->tf_read(ap, &qc->result_tf);
5268 ireason = qc->result_tf.nsect;
5269 bc_lo = qc->result_tf.lbam;
5270 bc_hi = qc->result_tf.lbah;
1da177e4
LT
5271 bytes = (bc_hi << 8) | bc_lo;
5272
5273 /* shall be cleared to zero, indicating xfer of data */
5274 if (ireason & (1 << 0))
5275 goto err_out;
5276
5277 /* make sure transfer direction matches expected */
5278 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5279 if (do_write != i_write)
5280 goto err_out;
5281
44877b4e 5282 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
312f7da2 5283
1da177e4 5284 __atapi_pio_bytes(qc, bytes);
4cc980b3 5285 ata_altstatus(ap); /* flush */
1da177e4
LT
5286
5287 return;
5288
5289err_out:
f15a1daf 5290 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 5291 qc->err_mask |= AC_ERR_HSM;
14be71f4 5292 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
5293}
5294
5295/**
c234fb00
AL
5296 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5297 * @ap: the target ata_port
5298 * @qc: qc on going
1da177e4 5299 *
c234fb00
AL
5300 * RETURNS:
5301 * 1 if ok in workqueue, 0 otherwise.
1da177e4 5302 */
c234fb00
AL
5303
5304static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 5305{
c234fb00
AL
5306 if (qc->tf.flags & ATA_TFLAG_POLLING)
5307 return 1;
1da177e4 5308
c234fb00
AL
5309 if (ap->hsm_task_state == HSM_ST_FIRST) {
5310 if (qc->tf.protocol == ATA_PROT_PIO &&
5311 (qc->tf.flags & ATA_TFLAG_WRITE))
5312 return 1;
1da177e4 5313
c234fb00
AL
5314 if (is_atapi_taskfile(&qc->tf) &&
5315 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5316 return 1;
fe79e683
AL
5317 }
5318
c234fb00
AL
5319 return 0;
5320}
1da177e4 5321
c17ea20d
TH
5322/**
5323 * ata_hsm_qc_complete - finish a qc running on standard HSM
5324 * @qc: Command to complete
5325 * @in_wq: 1 if called from workqueue, 0 otherwise
5326 *
5327 * Finish @qc which is running on standard HSM.
5328 *
5329 * LOCKING:
cca3974e 5330 * If @in_wq is zero, spin_lock_irqsave(host lock).
c17ea20d
TH
5331 * Otherwise, none on entry and grabs host lock.
5332 */
5333static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5334{
5335 struct ata_port *ap = qc->ap;
5336 unsigned long flags;
5337
5338 if (ap->ops->error_handler) {
5339 if (in_wq) {
ba6a1308 5340 spin_lock_irqsave(ap->lock, flags);
c17ea20d 5341
cca3974e
JG
5342 /* EH might have kicked in while host lock is
5343 * released.
c17ea20d
TH
5344 */
5345 qc = ata_qc_from_tag(ap, qc->tag);
5346 if (qc) {
5347 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
83625006 5348 ap->ops->irq_on(ap);
c17ea20d
TH
5349 ata_qc_complete(qc);
5350 } else
5351 ata_port_freeze(ap);
5352 }
5353
ba6a1308 5354 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5355 } else {
5356 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5357 ata_qc_complete(qc);
5358 else
5359 ata_port_freeze(ap);
5360 }
5361 } else {
5362 if (in_wq) {
ba6a1308 5363 spin_lock_irqsave(ap->lock, flags);
83625006 5364 ap->ops->irq_on(ap);
c17ea20d 5365 ata_qc_complete(qc);
ba6a1308 5366 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
5367 } else
5368 ata_qc_complete(qc);
5369 }
5370}
5371
bb5cb290
AL
5372/**
5373 * ata_hsm_move - move the HSM to the next state.
5374 * @ap: the target ata_port
5375 * @qc: qc on going
5376 * @status: current device status
5377 * @in_wq: 1 if called from workqueue, 0 otherwise
5378 *
5379 * RETURNS:
5380 * 1 when poll next status needed, 0 otherwise.
5381 */
9a1004d0
TH
5382int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5383 u8 status, int in_wq)
e2cec771 5384{
bb5cb290
AL
5385 unsigned long flags = 0;
5386 int poll_next;
5387
6912ccd5
AL
5388 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5389
bb5cb290
AL
5390 /* Make sure ata_qc_issue_prot() does not throw things
5391 * like DMA polling into the workqueue. Notice that
5392 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5393 */
c234fb00 5394 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 5395
e2cec771 5396fsm_start:
999bb6f4 5397 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
44877b4e 5398 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
999bb6f4 5399
e2cec771
AL
5400 switch (ap->hsm_task_state) {
5401 case HSM_ST_FIRST:
bb5cb290
AL
5402 /* Send first data block or PACKET CDB */
5403
5404 /* If polling, we will stay in the work queue after
5405 * sending the data. Otherwise, interrupt handler
5406 * takes over after sending the data.
5407 */
5408 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5409
e2cec771 5410 /* check device status */
3655d1d3
AL
5411 if (unlikely((status & ATA_DRQ) == 0)) {
5412 /* handle BSY=0, DRQ=0 as error */
5413 if (likely(status & (ATA_ERR | ATA_DF)))
5414 /* device stops HSM for abort/error */
5415 qc->err_mask |= AC_ERR_DEV;
5416 else
5417 /* HSM violation. Let EH handle this */
5418 qc->err_mask |= AC_ERR_HSM;
5419
14be71f4 5420 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 5421 goto fsm_start;
1da177e4
LT
5422 }
5423
71601958
AL
5424 /* Device should not ask for data transfer (DRQ=1)
5425 * when it finds something wrong.
eee6c32f
AL
5426 * We ignore DRQ here and stop the HSM by
5427 * changing hsm_task_state to HSM_ST_ERR and
5428 * let the EH abort the command or reset the device.
71601958
AL
5429 */
5430 if (unlikely(status & (ATA_ERR | ATA_DF))) {
2d3b8eea
AL
5431 /* Some ATAPI tape drives forget to clear the ERR bit
5432 * when doing the next command (mostly request sense).
5433 * We ignore ERR here to workaround and proceed sending
5434 * the CDB.
5435 */
5436 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5437 ata_port_printk(ap, KERN_WARNING,
5438 "DRQ=1 with device error, "
5439 "dev_stat 0x%X\n", status);
5440 qc->err_mask |= AC_ERR_HSM;
5441 ap->hsm_task_state = HSM_ST_ERR;
5442 goto fsm_start;
5443 }
71601958 5444 }
1da177e4 5445
bb5cb290
AL
5446 /* Send the CDB (atapi) or the first data block (ata pio out).
5447 * During the state transition, interrupt handler shouldn't
5448 * be invoked before the data transfer is complete and
5449 * hsm_task_state is changed. Hence, the following locking.
5450 */
5451 if (in_wq)
ba6a1308 5452 spin_lock_irqsave(ap->lock, flags);
1da177e4 5453
bb5cb290
AL
5454 if (qc->tf.protocol == ATA_PROT_PIO) {
5455 /* PIO data out protocol.
5456 * send first data block.
5457 */
0565c26d 5458
bb5cb290
AL
5459 /* ata_pio_sectors() might change the state
5460 * to HSM_ST_LAST. so, the state is changed here
5461 * before ata_pio_sectors().
5462 */
5463 ap->hsm_task_state = HSM_ST;
5464 ata_pio_sectors(qc);
bb5cb290
AL
5465 } else
5466 /* send CDB */
5467 atapi_send_cdb(ap, qc);
5468
5469 if (in_wq)
ba6a1308 5470 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
5471
5472 /* if polling, ata_pio_task() handles the rest.
5473 * otherwise, interrupt handler takes over from here.
5474 */
e2cec771 5475 break;
1c848984 5476
e2cec771
AL
5477 case HSM_ST:
5478 /* complete command or read/write the data register */
5479 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5480 /* ATAPI PIO protocol */
5481 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
5482 /* No more data to transfer or device error.
5483 * Device error will be tagged in HSM_ST_LAST.
5484 */
e2cec771
AL
5485 ap->hsm_task_state = HSM_ST_LAST;
5486 goto fsm_start;
5487 }
1da177e4 5488
71601958
AL
5489 /* Device should not ask for data transfer (DRQ=1)
5490 * when it finds something wrong.
eee6c32f
AL
5491 * We ignore DRQ here and stop the HSM by
5492 * changing hsm_task_state to HSM_ST_ERR and
5493 * let the EH abort the command or reset the device.
71601958
AL
5494 */
5495 if (unlikely(status & (ATA_ERR | ATA_DF))) {
44877b4e
TH
5496 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5497 "device error, dev_stat 0x%X\n",
5498 status);
3655d1d3 5499 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
5500 ap->hsm_task_state = HSM_ST_ERR;
5501 goto fsm_start;
71601958 5502 }
1da177e4 5503
e2cec771 5504 atapi_pio_bytes(qc);
7fb6ec28 5505
e2cec771
AL
5506 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5507 /* bad ireason reported by device */
5508 goto fsm_start;
1da177e4 5509
e2cec771
AL
5510 } else {
5511 /* ATA PIO protocol */
5512 if (unlikely((status & ATA_DRQ) == 0)) {
5513 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
5514 if (likely(status & (ATA_ERR | ATA_DF)))
5515 /* device stops HSM for abort/error */
5516 qc->err_mask |= AC_ERR_DEV;
5517 else
55a8e2c8
TH
5518 /* HSM violation. Let EH handle this.
5519 * Phantom devices also trigger this
5520 * condition. Mark hint.
5521 */
5522 qc->err_mask |= AC_ERR_HSM |
5523 AC_ERR_NODEV_HINT;
3655d1d3 5524
e2cec771
AL
5525 ap->hsm_task_state = HSM_ST_ERR;
5526 goto fsm_start;
5527 }
1da177e4 5528
eee6c32f
AL
5529 /* For PIO reads, some devices may ask for
5530 * data transfer (DRQ=1) alone with ERR=1.
5531 * We respect DRQ here and transfer one
5532 * block of junk data before changing the
5533 * hsm_task_state to HSM_ST_ERR.
5534 *
5535 * For PIO writes, ERR=1 DRQ=1 doesn't make
5536 * sense since the data block has been
5537 * transferred to the device.
71601958
AL
5538 */
5539 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
5540 /* data might be corrputed */
5541 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
5542
5543 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5544 ata_pio_sectors(qc);
eee6c32f
AL
5545 status = ata_wait_idle(ap);
5546 }
5547
3655d1d3
AL
5548 if (status & (ATA_BUSY | ATA_DRQ))
5549 qc->err_mask |= AC_ERR_HSM;
5550
eee6c32f
AL
5551 /* ata_pio_sectors() might change the
5552 * state to HSM_ST_LAST. so, the state
5553 * is changed after ata_pio_sectors().
5554 */
5555 ap->hsm_task_state = HSM_ST_ERR;
5556 goto fsm_start;
71601958
AL
5557 }
5558
e2cec771
AL
5559 ata_pio_sectors(qc);
5560
5561 if (ap->hsm_task_state == HSM_ST_LAST &&
5562 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5563 /* all data read */
52a32205 5564 status = ata_wait_idle(ap);
e2cec771
AL
5565 goto fsm_start;
5566 }
5567 }
5568
bb5cb290 5569 poll_next = 1;
1da177e4
LT
5570 break;
5571
14be71f4 5572 case HSM_ST_LAST:
6912ccd5
AL
5573 if (unlikely(!ata_ok(status))) {
5574 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
5575 ap->hsm_task_state = HSM_ST_ERR;
5576 goto fsm_start;
5577 }
5578
5579 /* no more data to transfer */
4332a771 5580 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
44877b4e 5581 ap->print_id, qc->dev->devno, status);
e2cec771 5582
6912ccd5
AL
5583 WARN_ON(qc->err_mask);
5584
e2cec771 5585 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 5586
e2cec771 5587 /* complete taskfile transaction */
c17ea20d 5588 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5589
5590 poll_next = 0;
1da177e4
LT
5591 break;
5592
14be71f4 5593 case HSM_ST_ERR:
e2cec771
AL
5594 /* make sure qc->err_mask is available to
5595 * know what's wrong and recover
5596 */
5597 WARN_ON(qc->err_mask == 0);
5598
5599 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 5600
999bb6f4 5601 /* complete taskfile transaction */
c17ea20d 5602 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
5603
5604 poll_next = 0;
e2cec771
AL
5605 break;
5606 default:
bb5cb290 5607 poll_next = 0;
6912ccd5 5608 BUG();
1da177e4
LT
5609 }
5610
bb5cb290 5611 return poll_next;
1da177e4
LT
5612}
5613
65f27f38 5614static void ata_pio_task(struct work_struct *work)
8061f5f0 5615{
65f27f38
DH
5616 struct ata_port *ap =
5617 container_of(work, struct ata_port, port_task.work);
5618 struct ata_queued_cmd *qc = ap->port_task_data;
8061f5f0 5619 u8 status;
a1af3734 5620 int poll_next;
8061f5f0 5621
7fb6ec28 5622fsm_start:
a1af3734 5623 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 5624
a1af3734
AL
5625 /*
5626 * This is purely heuristic. This is a fast path.
5627 * Sometimes when we enter, BSY will be cleared in
5628 * a chk-status or two. If not, the drive is probably seeking
5629 * or something. Snooze for a couple msecs, then
5630 * chk-status again. If still busy, queue delayed work.
5631 */
5632 status = ata_busy_wait(ap, ATA_BUSY, 5);
5633 if (status & ATA_BUSY) {
5634 msleep(2);
5635 status = ata_busy_wait(ap, ATA_BUSY, 10);
5636 if (status & ATA_BUSY) {
31ce6dae 5637 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
5638 return;
5639 }
8061f5f0
TH
5640 }
5641
a1af3734
AL
5642 /* move the HSM */
5643 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 5644
a1af3734
AL
5645 /* another command or interrupt handler
5646 * may be running at this point.
5647 */
5648 if (poll_next)
7fb6ec28 5649 goto fsm_start;
8061f5f0
TH
5650}
5651
1da177e4
LT
5652/**
5653 * ata_qc_new - Request an available ATA command, for queueing
5654 * @ap: Port associated with device @dev
5655 * @dev: Device from whom we request an available command structure
5656 *
5657 * LOCKING:
0cba632b 5658 * None.
1da177e4
LT
5659 */
5660
5661static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5662{
5663 struct ata_queued_cmd *qc = NULL;
5664 unsigned int i;
5665
e3180499 5666 /* no command while frozen */
b51e9e5d 5667 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
5668 return NULL;
5669
2ab7db1f
TH
5670 /* the last tag is reserved for internal command. */
5671 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 5672 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 5673 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
5674 break;
5675 }
5676
5677 if (qc)
5678 qc->tag = i;
5679
5680 return qc;
5681}
5682
5683/**
5684 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
5685 * @dev: Device from whom we request an available command structure
5686 *
5687 * LOCKING:
0cba632b 5688 * None.
1da177e4
LT
5689 */
5690
3373efd8 5691struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 5692{
9af5c9c9 5693 struct ata_port *ap = dev->link->ap;
1da177e4
LT
5694 struct ata_queued_cmd *qc;
5695
5696 qc = ata_qc_new(ap);
5697 if (qc) {
1da177e4
LT
5698 qc->scsicmd = NULL;
5699 qc->ap = ap;
5700 qc->dev = dev;
1da177e4 5701
2c13b7ce 5702 ata_qc_reinit(qc);
1da177e4
LT
5703 }
5704
5705 return qc;
5706}
5707
1da177e4
LT
5708/**
5709 * ata_qc_free - free unused ata_queued_cmd
5710 * @qc: Command to complete
5711 *
5712 * Designed to free unused ata_queued_cmd object
5713 * in case something prevents using it.
5714 *
5715 * LOCKING:
cca3974e 5716 * spin_lock_irqsave(host lock)
1da177e4
LT
5717 */
5718void ata_qc_free(struct ata_queued_cmd *qc)
5719{
4ba946e9
TH
5720 struct ata_port *ap = qc->ap;
5721 unsigned int tag;
5722
a4631474 5723 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 5724
4ba946e9
TH
5725 qc->flags = 0;
5726 tag = qc->tag;
5727 if (likely(ata_tag_valid(tag))) {
4ba946e9 5728 qc->tag = ATA_TAG_POISON;
6cec4a39 5729 clear_bit(tag, &ap->qc_allocated);
4ba946e9 5730 }
1da177e4
LT
5731}
5732
76014427 5733void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 5734{
dedaf2b0 5735 struct ata_port *ap = qc->ap;
9af5c9c9 5736 struct ata_link *link = qc->dev->link;
dedaf2b0 5737
a4631474
TH
5738 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5739 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
5740
5741 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5742 ata_sg_clean(qc);
5743
7401abf2 5744 /* command should be marked inactive atomically with qc completion */
da917d69 5745 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5746 link->sactive &= ~(1 << qc->tag);
da917d69
TH
5747 if (!link->sactive)
5748 ap->nr_active_links--;
5749 } else {
9af5c9c9 5750 link->active_tag = ATA_TAG_POISON;
da917d69
TH
5751 ap->nr_active_links--;
5752 }
5753
5754 /* clear exclusive status */
5755 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5756 ap->excl_link == link))
5757 ap->excl_link = NULL;
7401abf2 5758
3f3791d3
AL
5759 /* atapi: mark qc as inactive to prevent the interrupt handler
5760 * from completing the command twice later, before the error handler
5761 * is called. (when rc != 0 and atapi request sense is needed)
5762 */
5763 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 5764 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 5765
1da177e4 5766 /* call completion callback */
77853bf2 5767 qc->complete_fn(qc);
1da177e4
LT
5768}
5769
39599a53
TH
5770static void fill_result_tf(struct ata_queued_cmd *qc)
5771{
5772 struct ata_port *ap = qc->ap;
5773
39599a53 5774 qc->result_tf.flags = qc->tf.flags;
4742d54f 5775 ap->ops->tf_read(ap, &qc->result_tf);
39599a53
TH
5776}
5777
f686bcb8
TH
5778/**
5779 * ata_qc_complete - Complete an active ATA command
5780 * @qc: Command to complete
5781 * @err_mask: ATA Status register contents
5782 *
5783 * Indicate to the mid and upper layers that an ATA
5784 * command has completed, with either an ok or not-ok status.
5785 *
5786 * LOCKING:
cca3974e 5787 * spin_lock_irqsave(host lock)
f686bcb8
TH
5788 */
5789void ata_qc_complete(struct ata_queued_cmd *qc)
5790{
5791 struct ata_port *ap = qc->ap;
5792
5793 /* XXX: New EH and old EH use different mechanisms to
5794 * synchronize EH with regular execution path.
5795 *
5796 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5797 * Normal execution path is responsible for not accessing a
5798 * failed qc. libata core enforces the rule by returning NULL
5799 * from ata_qc_from_tag() for failed qcs.
5800 *
5801 * Old EH depends on ata_qc_complete() nullifying completion
5802 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5803 * not synchronize with interrupt handler. Only PIO task is
5804 * taken care of.
5805 */
5806 if (ap->ops->error_handler) {
4dbfa39b
TH
5807 struct ata_device *dev = qc->dev;
5808 struct ata_eh_info *ehi = &dev->link->eh_info;
5809
b51e9e5d 5810 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
5811
5812 if (unlikely(qc->err_mask))
5813 qc->flags |= ATA_QCFLAG_FAILED;
5814
5815 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5816 if (!ata_tag_internal(qc->tag)) {
5817 /* always fill result TF for failed qc */
39599a53 5818 fill_result_tf(qc);
f686bcb8
TH
5819 ata_qc_schedule_eh(qc);
5820 return;
5821 }
5822 }
5823
5824 /* read result TF if requested */
5825 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5826 fill_result_tf(qc);
f686bcb8 5827
4dbfa39b
TH
5828 /* Some commands need post-processing after successful
5829 * completion.
5830 */
5831 switch (qc->tf.command) {
5832 case ATA_CMD_SET_FEATURES:
5833 if (qc->tf.feature != SETFEATURES_WC_ON &&
5834 qc->tf.feature != SETFEATURES_WC_OFF)
5835 break;
5836 /* fall through */
5837 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5838 case ATA_CMD_SET_MULTI: /* multi_count changed */
5839 /* revalidate device */
5840 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5841 ata_port_schedule_eh(ap);
5842 break;
054a5fba
TH
5843
5844 case ATA_CMD_SLEEP:
5845 dev->flags |= ATA_DFLAG_SLEEPING;
5846 break;
4dbfa39b
TH
5847 }
5848
f686bcb8
TH
5849 __ata_qc_complete(qc);
5850 } else {
5851 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5852 return;
5853
5854 /* read result TF if failed or requested */
5855 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5856 fill_result_tf(qc);
f686bcb8
TH
5857
5858 __ata_qc_complete(qc);
5859 }
5860}
5861
dedaf2b0
TH
5862/**
5863 * ata_qc_complete_multiple - Complete multiple qcs successfully
5864 * @ap: port in question
5865 * @qc_active: new qc_active mask
5866 * @finish_qc: LLDD callback invoked before completing a qc
5867 *
5868 * Complete in-flight commands. This functions is meant to be
5869 * called from low-level driver's interrupt routine to complete
5870 * requests normally. ap->qc_active and @qc_active is compared
5871 * and commands are completed accordingly.
5872 *
5873 * LOCKING:
cca3974e 5874 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5875 *
5876 * RETURNS:
5877 * Number of completed commands on success, -errno otherwise.
5878 */
5879int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5880 void (*finish_qc)(struct ata_queued_cmd *))
5881{
5882 int nr_done = 0;
5883 u32 done_mask;
5884 int i;
5885
5886 done_mask = ap->qc_active ^ qc_active;
5887
5888 if (unlikely(done_mask & qc_active)) {
5889 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5890 "(%08x->%08x)\n", ap->qc_active, qc_active);
5891 return -EINVAL;
5892 }
5893
5894 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5895 struct ata_queued_cmd *qc;
5896
5897 if (!(done_mask & (1 << i)))
5898 continue;
5899
5900 if ((qc = ata_qc_from_tag(ap, i))) {
5901 if (finish_qc)
5902 finish_qc(qc);
5903 ata_qc_complete(qc);
5904 nr_done++;
5905 }
5906 }
5907
5908 return nr_done;
5909}
5910
1da177e4
LT
5911static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5912{
5913 struct ata_port *ap = qc->ap;
5914
5915 switch (qc->tf.protocol) {
3dc1d881 5916 case ATA_PROT_NCQ:
1da177e4
LT
5917 case ATA_PROT_DMA:
5918 case ATA_PROT_ATAPI_DMA:
5919 return 1;
5920
5921 case ATA_PROT_ATAPI:
5922 case ATA_PROT_PIO:
1da177e4
LT
5923 if (ap->flags & ATA_FLAG_PIO_DMA)
5924 return 1;
5925
5926 /* fall through */
5927
5928 default:
5929 return 0;
5930 }
5931
5932 /* never reached */
5933}
5934
5935/**
5936 * ata_qc_issue - issue taskfile to device
5937 * @qc: command to issue to device
5938 *
5939 * Prepare an ATA command to submission to device.
5940 * This includes mapping the data into a DMA-able
5941 * area, filling in the S/G table, and finally
5942 * writing the taskfile to hardware, starting the command.
5943 *
5944 * LOCKING:
cca3974e 5945 * spin_lock_irqsave(host lock)
1da177e4 5946 */
8e0e694a 5947void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5948{
5949 struct ata_port *ap = qc->ap;
9af5c9c9 5950 struct ata_link *link = qc->dev->link;
1da177e4 5951
dedaf2b0
TH
5952 /* Make sure only one non-NCQ command is outstanding. The
5953 * check is skipped for old EH because it reuses active qc to
5954 * request ATAPI sense.
5955 */
9af5c9c9 5956 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0
TH
5957
5958 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 5959 WARN_ON(link->sactive & (1 << qc->tag));
da917d69
TH
5960
5961 if (!link->sactive)
5962 ap->nr_active_links++;
9af5c9c9 5963 link->sactive |= 1 << qc->tag;
dedaf2b0 5964 } else {
9af5c9c9 5965 WARN_ON(link->sactive);
da917d69
TH
5966
5967 ap->nr_active_links++;
9af5c9c9 5968 link->active_tag = qc->tag;
dedaf2b0
TH
5969 }
5970
e4a70e76 5971 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5972 ap->qc_active |= 1 << qc->tag;
e4a70e76 5973
1da177e4
LT
5974 if (ata_should_dma_map(qc)) {
5975 if (qc->flags & ATA_QCFLAG_SG) {
5976 if (ata_sg_setup(qc))
8e436af9 5977 goto sg_err;
1da177e4
LT
5978 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5979 if (ata_sg_setup_one(qc))
8e436af9 5980 goto sg_err;
1da177e4
LT
5981 }
5982 } else {
5983 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5984 }
5985
054a5fba
TH
5986 /* if device is sleeping, schedule softreset and abort the link */
5987 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5988 link->eh_info.action |= ATA_EH_SOFTRESET;
5989 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5990 ata_link_abort(link);
5991 return;
5992 }
5993
1da177e4
LT
5994 ap->ops->qc_prep(qc);
5995
8e0e694a
TH
5996 qc->err_mask |= ap->ops->qc_issue(qc);
5997 if (unlikely(qc->err_mask))
5998 goto err;
5999 return;
1da177e4 6000
8e436af9
TH
6001sg_err:
6002 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
6003 qc->err_mask |= AC_ERR_SYSTEM;
6004err:
6005 ata_qc_complete(qc);
1da177e4
LT
6006}
6007
6008/**
6009 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6010 * @qc: command to issue to device
6011 *
6012 * Using various libata functions and hooks, this function
6013 * starts an ATA command. ATA commands are grouped into
6014 * classes called "protocols", and issuing each type of protocol
6015 * is slightly different.
6016 *
0baab86b
EF
6017 * May be used as the qc_issue() entry in ata_port_operations.
6018 *
1da177e4 6019 * LOCKING:
cca3974e 6020 * spin_lock_irqsave(host lock)
1da177e4
LT
6021 *
6022 * RETURNS:
9a3d9eb0 6023 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
6024 */
6025
9a3d9eb0 6026unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
6027{
6028 struct ata_port *ap = qc->ap;
6029
e50362ec
AL
6030 /* Use polling pio if the LLD doesn't handle
6031 * interrupt driven pio and atapi CDB interrupt.
6032 */
6033 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6034 switch (qc->tf.protocol) {
6035 case ATA_PROT_PIO:
e3472cbe 6036 case ATA_PROT_NODATA:
e50362ec
AL
6037 case ATA_PROT_ATAPI:
6038 case ATA_PROT_ATAPI_NODATA:
6039 qc->tf.flags |= ATA_TFLAG_POLLING;
6040 break;
6041 case ATA_PROT_ATAPI_DMA:
6042 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 6043 /* see ata_dma_blacklisted() */
e50362ec
AL
6044 BUG();
6045 break;
6046 default:
6047 break;
6048 }
6049 }
6050
312f7da2 6051 /* select the device */
1da177e4
LT
6052 ata_dev_select(ap, qc->dev->devno, 1, 0);
6053
312f7da2 6054 /* start the command */
1da177e4
LT
6055 switch (qc->tf.protocol) {
6056 case ATA_PROT_NODATA:
312f7da2
AL
6057 if (qc->tf.flags & ATA_TFLAG_POLLING)
6058 ata_qc_set_polling(qc);
6059
e5338254 6060 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
6061 ap->hsm_task_state = HSM_ST_LAST;
6062
6063 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6064 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 6065
1da177e4
LT
6066 break;
6067
6068 case ATA_PROT_DMA:
587005de 6069 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6070
1da177e4
LT
6071 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6072 ap->ops->bmdma_setup(qc); /* set up bmdma */
6073 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 6074 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
6075 break;
6076
312f7da2
AL
6077 case ATA_PROT_PIO:
6078 if (qc->tf.flags & ATA_TFLAG_POLLING)
6079 ata_qc_set_polling(qc);
1da177e4 6080
e5338254 6081 ata_tf_to_host(ap, &qc->tf);
312f7da2 6082
54f00389
AL
6083 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6084 /* PIO data out protocol */
6085 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 6086 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6087
6088 /* always send first data block using
e27486db 6089 * the ata_pio_task() codepath.
54f00389 6090 */
312f7da2 6091 } else {
54f00389
AL
6092 /* PIO data in protocol */
6093 ap->hsm_task_state = HSM_ST;
6094
6095 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 6096 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
6097
6098 /* if polling, ata_pio_task() handles the rest.
6099 * otherwise, interrupt handler takes over from here.
6100 */
312f7da2
AL
6101 }
6102
1da177e4
LT
6103 break;
6104
1da177e4 6105 case ATA_PROT_ATAPI:
1da177e4 6106 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
6107 if (qc->tf.flags & ATA_TFLAG_POLLING)
6108 ata_qc_set_polling(qc);
6109
e5338254 6110 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 6111
312f7da2
AL
6112 ap->hsm_task_state = HSM_ST_FIRST;
6113
6114 /* send cdb by polling if no cdb interrupt */
6115 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6116 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 6117 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6118 break;
6119
6120 case ATA_PROT_ATAPI_DMA:
587005de 6121 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 6122
1da177e4
LT
6123 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6124 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
6125 ap->hsm_task_state = HSM_ST_FIRST;
6126
6127 /* send cdb by polling if no cdb interrupt */
6128 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 6129 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
6130 break;
6131
6132 default:
6133 WARN_ON(1);
9a3d9eb0 6134 return AC_ERR_SYSTEM;
1da177e4
LT
6135 }
6136
6137 return 0;
6138}
6139
1da177e4
LT
6140/**
6141 * ata_host_intr - Handle host interrupt for given (port, task)
6142 * @ap: Port on which interrupt arrived (possibly...)
6143 * @qc: Taskfile currently active in engine
6144 *
6145 * Handle host interrupt for given queued command. Currently,
6146 * only DMA interrupts are handled. All other commands are
6147 * handled via polling with interrupts disabled (nIEN bit).
6148 *
6149 * LOCKING:
cca3974e 6150 * spin_lock_irqsave(host lock)
1da177e4
LT
6151 *
6152 * RETURNS:
6153 * One if interrupt was handled, zero if not (shared irq).
6154 */
6155
2dcb407e
JG
6156inline unsigned int ata_host_intr(struct ata_port *ap,
6157 struct ata_queued_cmd *qc)
1da177e4 6158{
9af5c9c9 6159 struct ata_eh_info *ehi = &ap->link.eh_info;
312f7da2 6160 u8 status, host_stat = 0;
1da177e4 6161
312f7da2 6162 VPRINTK("ata%u: protocol %d task_state %d\n",
44877b4e 6163 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 6164
312f7da2
AL
6165 /* Check whether we are expecting interrupt in this state */
6166 switch (ap->hsm_task_state) {
6167 case HSM_ST_FIRST:
6912ccd5
AL
6168 /* Some pre-ATAPI-4 devices assert INTRQ
6169 * at this state when ready to receive CDB.
6170 */
1da177e4 6171
312f7da2
AL
6172 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6173 * The flag was turned on only for atapi devices.
6174 * No need to check is_atapi_taskfile(&qc->tf) again.
6175 */
6176 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 6177 goto idle_irq;
1da177e4 6178 break;
312f7da2
AL
6179 case HSM_ST_LAST:
6180 if (qc->tf.protocol == ATA_PROT_DMA ||
6181 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6182 /* check status of DMA engine */
6183 host_stat = ap->ops->bmdma_status(ap);
44877b4e
TH
6184 VPRINTK("ata%u: host_stat 0x%X\n",
6185 ap->print_id, host_stat);
312f7da2
AL
6186
6187 /* if it's not our irq... */
6188 if (!(host_stat & ATA_DMA_INTR))
6189 goto idle_irq;
6190
6191 /* before we do anything else, clear DMA-Start bit */
6192 ap->ops->bmdma_stop(qc);
a4f16610
AL
6193
6194 if (unlikely(host_stat & ATA_DMA_ERR)) {
6195 /* error when transfering data to/from memory */
6196 qc->err_mask |= AC_ERR_HOST_BUS;
6197 ap->hsm_task_state = HSM_ST_ERR;
6198 }
312f7da2
AL
6199 }
6200 break;
6201 case HSM_ST:
6202 break;
1da177e4
LT
6203 default:
6204 goto idle_irq;
6205 }
6206
312f7da2
AL
6207 /* check altstatus */
6208 status = ata_altstatus(ap);
6209 if (status & ATA_BUSY)
6210 goto idle_irq;
1da177e4 6211
312f7da2
AL
6212 /* check main status, clearing INTRQ */
6213 status = ata_chk_status(ap);
6214 if (unlikely(status & ATA_BUSY))
6215 goto idle_irq;
1da177e4 6216
312f7da2
AL
6217 /* ack bmdma irq events */
6218 ap->ops->irq_clear(ap);
1da177e4 6219
bb5cb290 6220 ata_hsm_move(ap, qc, status, 0);
ea54763f
TH
6221
6222 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6223 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6224 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6225
1da177e4
LT
6226 return 1; /* irq handled */
6227
6228idle_irq:
6229 ap->stats.idle_irq++;
6230
6231#ifdef ATA_IRQ_TRAP
6232 if ((ap->stats.idle_irq % 1000) == 0) {
6d32d30f
JG
6233 ata_chk_status(ap);
6234 ap->ops->irq_clear(ap);
f15a1daf 6235 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 6236 return 1;
1da177e4
LT
6237 }
6238#endif
6239 return 0; /* irq not handled */
6240}
6241
6242/**
6243 * ata_interrupt - Default ATA host interrupt handler
0cba632b 6244 * @irq: irq line (unused)
cca3974e 6245 * @dev_instance: pointer to our ata_host information structure
1da177e4 6246 *
0cba632b
JG
6247 * Default interrupt handler for PCI IDE devices. Calls
6248 * ata_host_intr() for each port that is not disabled.
6249 *
1da177e4 6250 * LOCKING:
cca3974e 6251 * Obtains host lock during operation.
1da177e4
LT
6252 *
6253 * RETURNS:
0cba632b 6254 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
6255 */
6256
2dcb407e 6257irqreturn_t ata_interrupt(int irq, void *dev_instance)
1da177e4 6258{
cca3974e 6259 struct ata_host *host = dev_instance;
1da177e4
LT
6260 unsigned int i;
6261 unsigned int handled = 0;
6262 unsigned long flags;
6263
6264 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
cca3974e 6265 spin_lock_irqsave(&host->lock, flags);
1da177e4 6266
cca3974e 6267 for (i = 0; i < host->n_ports; i++) {
1da177e4
LT
6268 struct ata_port *ap;
6269
cca3974e 6270 ap = host->ports[i];
c1389503 6271 if (ap &&
029f5468 6272 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
6273 struct ata_queued_cmd *qc;
6274
9af5c9c9 6275 qc = ata_qc_from_tag(ap, ap->link.active_tag);
312f7da2 6276 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 6277 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
6278 handled |= ata_host_intr(ap, qc);
6279 }
6280 }
6281
cca3974e 6282 spin_unlock_irqrestore(&host->lock, flags);
1da177e4
LT
6283
6284 return IRQ_RETVAL(handled);
6285}
6286
34bf2170
TH
6287/**
6288 * sata_scr_valid - test whether SCRs are accessible
936fd732 6289 * @link: ATA link to test SCR accessibility for
34bf2170 6290 *
936fd732 6291 * Test whether SCRs are accessible for @link.
34bf2170
TH
6292 *
6293 * LOCKING:
6294 * None.
6295 *
6296 * RETURNS:
6297 * 1 if SCRs are accessible, 0 otherwise.
6298 */
936fd732 6299int sata_scr_valid(struct ata_link *link)
34bf2170 6300{
936fd732
TH
6301 struct ata_port *ap = link->ap;
6302
a16abc0b 6303 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
6304}
6305
6306/**
6307 * sata_scr_read - read SCR register of the specified port
936fd732 6308 * @link: ATA link to read SCR for
34bf2170
TH
6309 * @reg: SCR to read
6310 * @val: Place to store read value
6311 *
936fd732 6312 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
6313 * guaranteed to succeed if @link is ap->link, the cable type of
6314 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6315 *
6316 * LOCKING:
633273a3 6317 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6318 *
6319 * RETURNS:
6320 * 0 on success, negative errno on failure.
6321 */
936fd732 6322int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 6323{
633273a3
TH
6324 if (ata_is_host_link(link)) {
6325 struct ata_port *ap = link->ap;
936fd732 6326
633273a3
TH
6327 if (sata_scr_valid(link))
6328 return ap->ops->scr_read(ap, reg, val);
6329 return -EOPNOTSUPP;
6330 }
6331
6332 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
6333}
6334
6335/**
6336 * sata_scr_write - write SCR register of the specified port
936fd732 6337 * @link: ATA link to write SCR for
34bf2170
TH
6338 * @reg: SCR to write
6339 * @val: value to write
6340 *
936fd732 6341 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
6342 * guaranteed to succeed if @link is ap->link, the cable type of
6343 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
6344 *
6345 * LOCKING:
633273a3 6346 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6347 *
6348 * RETURNS:
6349 * 0 on success, negative errno on failure.
6350 */
936fd732 6351int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 6352{
633273a3
TH
6353 if (ata_is_host_link(link)) {
6354 struct ata_port *ap = link->ap;
6355
6356 if (sata_scr_valid(link))
6357 return ap->ops->scr_write(ap, reg, val);
6358 return -EOPNOTSUPP;
6359 }
936fd732 6360
633273a3 6361 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6362}
6363
6364/**
6365 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 6366 * @link: ATA link to write SCR for
34bf2170
TH
6367 * @reg: SCR to write
6368 * @val: value to write
6369 *
6370 * This function is identical to sata_scr_write() except that this
6371 * function performs flush after writing to the register.
6372 *
6373 * LOCKING:
633273a3 6374 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
6375 *
6376 * RETURNS:
6377 * 0 on success, negative errno on failure.
6378 */
936fd732 6379int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 6380{
633273a3
TH
6381 if (ata_is_host_link(link)) {
6382 struct ata_port *ap = link->ap;
6383 int rc;
da3dbb17 6384
633273a3
TH
6385 if (sata_scr_valid(link)) {
6386 rc = ap->ops->scr_write(ap, reg, val);
6387 if (rc == 0)
6388 rc = ap->ops->scr_read(ap, reg, &val);
6389 return rc;
6390 }
6391 return -EOPNOTSUPP;
34bf2170 6392 }
633273a3
TH
6393
6394 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
6395}
6396
6397/**
936fd732
TH
6398 * ata_link_online - test whether the given link is online
6399 * @link: ATA link to test
34bf2170 6400 *
936fd732
TH
6401 * Test whether @link is online. Note that this function returns
6402 * 0 if online status of @link cannot be obtained, so
6403 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6404 *
6405 * LOCKING:
6406 * None.
6407 *
6408 * RETURNS:
6409 * 1 if the port online status is available and online.
6410 */
936fd732 6411int ata_link_online(struct ata_link *link)
34bf2170
TH
6412{
6413 u32 sstatus;
6414
936fd732
TH
6415 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6416 (sstatus & 0xf) == 0x3)
34bf2170
TH
6417 return 1;
6418 return 0;
6419}
6420
6421/**
936fd732
TH
6422 * ata_link_offline - test whether the given link is offline
6423 * @link: ATA link to test
34bf2170 6424 *
936fd732
TH
6425 * Test whether @link is offline. Note that this function
6426 * returns 0 if offline status of @link cannot be obtained, so
6427 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
6428 *
6429 * LOCKING:
6430 * None.
6431 *
6432 * RETURNS:
6433 * 1 if the port offline status is available and offline.
6434 */
936fd732 6435int ata_link_offline(struct ata_link *link)
34bf2170
TH
6436{
6437 u32 sstatus;
6438
936fd732
TH
6439 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6440 (sstatus & 0xf) != 0x3)
34bf2170
TH
6441 return 1;
6442 return 0;
6443}
0baab86b 6444
77b08fb5 6445int ata_flush_cache(struct ata_device *dev)
9b847548 6446{
977e6b9f 6447 unsigned int err_mask;
9b847548
JA
6448 u8 cmd;
6449
6450 if (!ata_try_flush_cache(dev))
6451 return 0;
6452
6fc49adb 6453 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
9b847548
JA
6454 cmd = ATA_CMD_FLUSH_EXT;
6455 else
6456 cmd = ATA_CMD_FLUSH;
6457
4f34337b
AC
6458 /* This is wrong. On a failed flush we get back the LBA of the lost
6459 sector and we should (assuming it wasn't aborted as unknown) issue
2dcb407e 6460 a further flush command to continue the writeback until it
4f34337b 6461 does not error */
977e6b9f
TH
6462 err_mask = ata_do_simple_cmd(dev, cmd);
6463 if (err_mask) {
6464 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6465 return -EIO;
6466 }
6467
6468 return 0;
9b847548
JA
6469}
6470
6ffa01d8 6471#ifdef CONFIG_PM
cca3974e
JG
6472static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6473 unsigned int action, unsigned int ehi_flags,
6474 int wait)
500530f6
TH
6475{
6476 unsigned long flags;
6477 int i, rc;
6478
cca3974e
JG
6479 for (i = 0; i < host->n_ports; i++) {
6480 struct ata_port *ap = host->ports[i];
e3667ebf 6481 struct ata_link *link;
500530f6
TH
6482
6483 /* Previous resume operation might still be in
6484 * progress. Wait for PM_PENDING to clear.
6485 */
6486 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6487 ata_port_wait_eh(ap);
6488 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6489 }
6490
6491 /* request PM ops to EH */
6492 spin_lock_irqsave(ap->lock, flags);
6493
6494 ap->pm_mesg = mesg;
6495 if (wait) {
6496 rc = 0;
6497 ap->pm_result = &rc;
6498 }
6499
6500 ap->pflags |= ATA_PFLAG_PM_PENDING;
e3667ebf
TH
6501 __ata_port_for_each_link(link, ap) {
6502 link->eh_info.action |= action;
6503 link->eh_info.flags |= ehi_flags;
6504 }
500530f6
TH
6505
6506 ata_port_schedule_eh(ap);
6507
6508 spin_unlock_irqrestore(ap->lock, flags);
6509
6510 /* wait and check result */
6511 if (wait) {
6512 ata_port_wait_eh(ap);
6513 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6514 if (rc)
6515 return rc;
6516 }
6517 }
6518
6519 return 0;
6520}
6521
6522/**
cca3974e
JG
6523 * ata_host_suspend - suspend host
6524 * @host: host to suspend
500530f6
TH
6525 * @mesg: PM message
6526 *
cca3974e 6527 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
6528 * function requests EH to perform PM operations and waits for EH
6529 * to finish.
6530 *
6531 * LOCKING:
6532 * Kernel thread context (may sleep).
6533 *
6534 * RETURNS:
6535 * 0 on success, -errno on failure.
6536 */
cca3974e 6537int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 6538{
9666f400 6539 int rc;
500530f6 6540
ca77329f
KCA
6541 /*
6542 * disable link pm on all ports before requesting
6543 * any pm activity
6544 */
6545 ata_lpm_enable(host);
6546
cca3974e 6547 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
9666f400
TH
6548 if (rc == 0)
6549 host->dev->power.power_state = mesg;
500530f6
TH
6550 return rc;
6551}
6552
6553/**
cca3974e
JG
6554 * ata_host_resume - resume host
6555 * @host: host to resume
500530f6 6556 *
cca3974e 6557 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
6558 * function requests EH to perform PM operations and returns.
6559 * Note that all resume operations are performed parallely.
6560 *
6561 * LOCKING:
6562 * Kernel thread context (may sleep).
6563 */
cca3974e 6564void ata_host_resume(struct ata_host *host)
500530f6 6565{
cca3974e
JG
6566 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6567 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6568 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
6569
6570 /* reenable link pm */
6571 ata_lpm_disable(host);
500530f6 6572}
6ffa01d8 6573#endif
500530f6 6574
c893a3ae
RD
6575/**
6576 * ata_port_start - Set port up for dma.
6577 * @ap: Port to initialize
6578 *
6579 * Called just after data structures for each port are
6580 * initialized. Allocates space for PRD table.
6581 *
6582 * May be used as the port_start() entry in ata_port_operations.
6583 *
6584 * LOCKING:
6585 * Inherited from caller.
6586 */
f0d36efd 6587int ata_port_start(struct ata_port *ap)
1da177e4 6588{
2f1f610b 6589 struct device *dev = ap->dev;
6037d6bb 6590 int rc;
1da177e4 6591
f0d36efd
TH
6592 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6593 GFP_KERNEL);
1da177e4
LT
6594 if (!ap->prd)
6595 return -ENOMEM;
6596
6037d6bb 6597 rc = ata_pad_alloc(ap, dev);
f0d36efd 6598 if (rc)
6037d6bb 6599 return rc;
1da177e4 6600
f0d36efd
TH
6601 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6602 (unsigned long long)ap->prd_dma);
1da177e4
LT
6603 return 0;
6604}
6605
3ef3b43d
TH
6606/**
6607 * ata_dev_init - Initialize an ata_device structure
6608 * @dev: Device structure to initialize
6609 *
6610 * Initialize @dev in preparation for probing.
6611 *
6612 * LOCKING:
6613 * Inherited from caller.
6614 */
6615void ata_dev_init(struct ata_device *dev)
6616{
9af5c9c9
TH
6617 struct ata_link *link = dev->link;
6618 struct ata_port *ap = link->ap;
72fa4b74
TH
6619 unsigned long flags;
6620
5a04bf4b 6621 /* SATA spd limit is bound to the first device */
9af5c9c9
TH
6622 link->sata_spd_limit = link->hw_sata_spd_limit;
6623 link->sata_spd = 0;
5a04bf4b 6624
72fa4b74
TH
6625 /* High bits of dev->flags are used to record warm plug
6626 * requests which occur asynchronously. Synchronize using
cca3974e 6627 * host lock.
72fa4b74 6628 */
ba6a1308 6629 spin_lock_irqsave(ap->lock, flags);
72fa4b74 6630 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 6631 dev->horkage = 0;
ba6a1308 6632 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 6633
72fa4b74
TH
6634 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6635 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
6636 dev->pio_mask = UINT_MAX;
6637 dev->mwdma_mask = UINT_MAX;
6638 dev->udma_mask = UINT_MAX;
6639}
6640
4fb37a25
TH
6641/**
6642 * ata_link_init - Initialize an ata_link structure
6643 * @ap: ATA port link is attached to
6644 * @link: Link structure to initialize
8989805d 6645 * @pmp: Port multiplier port number
4fb37a25
TH
6646 *
6647 * Initialize @link.
6648 *
6649 * LOCKING:
6650 * Kernel thread context (may sleep)
6651 */
fb7fd614 6652void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
6653{
6654 int i;
6655
6656 /* clear everything except for devices */
6657 memset(link, 0, offsetof(struct ata_link, device[0]));
6658
6659 link->ap = ap;
8989805d 6660 link->pmp = pmp;
4fb37a25
TH
6661 link->active_tag = ATA_TAG_POISON;
6662 link->hw_sata_spd_limit = UINT_MAX;
6663
6664 /* can't use iterator, ap isn't initialized yet */
6665 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6666 struct ata_device *dev = &link->device[i];
6667
6668 dev->link = link;
6669 dev->devno = dev - link->device;
6670 ata_dev_init(dev);
6671 }
6672}
6673
6674/**
6675 * sata_link_init_spd - Initialize link->sata_spd_limit
6676 * @link: Link to configure sata_spd_limit for
6677 *
6678 * Initialize @link->[hw_]sata_spd_limit to the currently
6679 * configured value.
6680 *
6681 * LOCKING:
6682 * Kernel thread context (may sleep).
6683 *
6684 * RETURNS:
6685 * 0 on success, -errno on failure.
6686 */
fb7fd614 6687int sata_link_init_spd(struct ata_link *link)
4fb37a25
TH
6688{
6689 u32 scontrol, spd;
6690 int rc;
6691
6692 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6693 if (rc)
6694 return rc;
6695
6696 spd = (scontrol >> 4) & 0xf;
6697 if (spd)
6698 link->hw_sata_spd_limit &= (1 << spd) - 1;
6699
6700 link->sata_spd_limit = link->hw_sata_spd_limit;
6701
6702 return 0;
6703}
6704
1da177e4 6705/**
f3187195
TH
6706 * ata_port_alloc - allocate and initialize basic ATA port resources
6707 * @host: ATA host this allocated port belongs to
1da177e4 6708 *
f3187195
TH
6709 * Allocate and initialize basic ATA port resources.
6710 *
6711 * RETURNS:
6712 * Allocate ATA port on success, NULL on failure.
0cba632b 6713 *
1da177e4 6714 * LOCKING:
f3187195 6715 * Inherited from calling layer (may sleep).
1da177e4 6716 */
f3187195 6717struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 6718{
f3187195 6719 struct ata_port *ap;
1da177e4 6720
f3187195
TH
6721 DPRINTK("ENTER\n");
6722
6723 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6724 if (!ap)
6725 return NULL;
6726
f4d6d004 6727 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 6728 ap->lock = &host->lock;
198e0fed 6729 ap->flags = ATA_FLAG_DISABLED;
f3187195 6730 ap->print_id = -1;
1da177e4 6731 ap->ctl = ATA_DEVCTL_OBS;
cca3974e 6732 ap->host = host;
f3187195 6733 ap->dev = host->dev;
1da177e4 6734 ap->last_ctl = 0xFF;
bd5d825c
BP
6735
6736#if defined(ATA_VERBOSE_DEBUG)
6737 /* turn on all debugging levels */
6738 ap->msg_enable = 0x00FF;
6739#elif defined(ATA_DEBUG)
6740 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 6741#else
0dd4b21f 6742 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 6743#endif
1da177e4 6744
65f27f38
DH
6745 INIT_DELAYED_WORK(&ap->port_task, NULL);
6746 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6747 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 6748 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 6749 init_waitqueue_head(&ap->eh_wait_q);
5ddf24c5
TH
6750 init_timer_deferrable(&ap->fastdrain_timer);
6751 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6752 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 6753
838df628 6754 ap->cbl = ATA_CBL_NONE;
838df628 6755
8989805d 6756 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
6757
6758#ifdef ATA_IRQ_TRAP
6759 ap->stats.unhandled_irq = 1;
6760 ap->stats.idle_irq = 1;
6761#endif
1da177e4 6762 return ap;
1da177e4
LT
6763}
6764
f0d36efd
TH
6765static void ata_host_release(struct device *gendev, void *res)
6766{
6767 struct ata_host *host = dev_get_drvdata(gendev);
6768 int i;
6769
1aa506e4
TH
6770 for (i = 0; i < host->n_ports; i++) {
6771 struct ata_port *ap = host->ports[i];
6772
4911487a
TH
6773 if (!ap)
6774 continue;
6775
6776 if (ap->scsi_host)
1aa506e4
TH
6777 scsi_host_put(ap->scsi_host);
6778
633273a3 6779 kfree(ap->pmp_link);
4911487a 6780 kfree(ap);
1aa506e4
TH
6781 host->ports[i] = NULL;
6782 }
6783
1aa56cca 6784 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
6785}
6786
f3187195
TH
6787/**
6788 * ata_host_alloc - allocate and init basic ATA host resources
6789 * @dev: generic device this host is associated with
6790 * @max_ports: maximum number of ATA ports associated with this host
6791 *
6792 * Allocate and initialize basic ATA host resources. LLD calls
6793 * this function to allocate a host, initializes it fully and
6794 * attaches it using ata_host_register().
6795 *
6796 * @max_ports ports are allocated and host->n_ports is
6797 * initialized to @max_ports. The caller is allowed to decrease
6798 * host->n_ports before calling ata_host_register(). The unused
6799 * ports will be automatically freed on registration.
6800 *
6801 * RETURNS:
6802 * Allocate ATA host on success, NULL on failure.
6803 *
6804 * LOCKING:
6805 * Inherited from calling layer (may sleep).
6806 */
6807struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6808{
6809 struct ata_host *host;
6810 size_t sz;
6811 int i;
6812
6813 DPRINTK("ENTER\n");
6814
6815 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6816 return NULL;
6817
6818 /* alloc a container for our list of ATA ports (buses) */
6819 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6820 /* alloc a container for our list of ATA ports (buses) */
6821 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6822 if (!host)
6823 goto err_out;
6824
6825 devres_add(dev, host);
6826 dev_set_drvdata(dev, host);
6827
6828 spin_lock_init(&host->lock);
6829 host->dev = dev;
6830 host->n_ports = max_ports;
6831
6832 /* allocate ports bound to this host */
6833 for (i = 0; i < max_ports; i++) {
6834 struct ata_port *ap;
6835
6836 ap = ata_port_alloc(host);
6837 if (!ap)
6838 goto err_out;
6839
6840 ap->port_no = i;
6841 host->ports[i] = ap;
6842 }
6843
6844 devres_remove_group(dev, NULL);
6845 return host;
6846
6847 err_out:
6848 devres_release_group(dev, NULL);
6849 return NULL;
6850}
6851
f5cda257
TH
6852/**
6853 * ata_host_alloc_pinfo - alloc host and init with port_info array
6854 * @dev: generic device this host is associated with
6855 * @ppi: array of ATA port_info to initialize host with
6856 * @n_ports: number of ATA ports attached to this host
6857 *
6858 * Allocate ATA host and initialize with info from @ppi. If NULL
6859 * terminated, @ppi may contain fewer entries than @n_ports. The
6860 * last entry will be used for the remaining ports.
6861 *
6862 * RETURNS:
6863 * Allocate ATA host on success, NULL on failure.
6864 *
6865 * LOCKING:
6866 * Inherited from calling layer (may sleep).
6867 */
6868struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6869 const struct ata_port_info * const * ppi,
6870 int n_ports)
6871{
6872 const struct ata_port_info *pi;
6873 struct ata_host *host;
6874 int i, j;
6875
6876 host = ata_host_alloc(dev, n_ports);
6877 if (!host)
6878 return NULL;
6879
6880 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6881 struct ata_port *ap = host->ports[i];
6882
6883 if (ppi[j])
6884 pi = ppi[j++];
6885
6886 ap->pio_mask = pi->pio_mask;
6887 ap->mwdma_mask = pi->mwdma_mask;
6888 ap->udma_mask = pi->udma_mask;
6889 ap->flags |= pi->flags;
0c88758b 6890 ap->link.flags |= pi->link_flags;
f5cda257
TH
6891 ap->ops = pi->port_ops;
6892
6893 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6894 host->ops = pi->port_ops;
6895 if (!host->private_data && pi->private_data)
6896 host->private_data = pi->private_data;
6897 }
6898
6899 return host;
6900}
6901
32ebbc0c
TH
6902static void ata_host_stop(struct device *gendev, void *res)
6903{
6904 struct ata_host *host = dev_get_drvdata(gendev);
6905 int i;
6906
6907 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6908
6909 for (i = 0; i < host->n_ports; i++) {
6910 struct ata_port *ap = host->ports[i];
6911
6912 if (ap->ops->port_stop)
6913 ap->ops->port_stop(ap);
6914 }
6915
6916 if (host->ops->host_stop)
6917 host->ops->host_stop(host);
6918}
6919
ecef7253
TH
6920/**
6921 * ata_host_start - start and freeze ports of an ATA host
6922 * @host: ATA host to start ports for
6923 *
6924 * Start and then freeze ports of @host. Started status is
6925 * recorded in host->flags, so this function can be called
6926 * multiple times. Ports are guaranteed to get started only
f3187195
TH
6927 * once. If host->ops isn't initialized yet, its set to the
6928 * first non-dummy port ops.
ecef7253
TH
6929 *
6930 * LOCKING:
6931 * Inherited from calling layer (may sleep).
6932 *
6933 * RETURNS:
6934 * 0 if all ports are started successfully, -errno otherwise.
6935 */
6936int ata_host_start(struct ata_host *host)
6937{
32ebbc0c
TH
6938 int have_stop = 0;
6939 void *start_dr = NULL;
ecef7253
TH
6940 int i, rc;
6941
6942 if (host->flags & ATA_HOST_STARTED)
6943 return 0;
6944
6945 for (i = 0; i < host->n_ports; i++) {
6946 struct ata_port *ap = host->ports[i];
6947
f3187195
TH
6948 if (!host->ops && !ata_port_is_dummy(ap))
6949 host->ops = ap->ops;
6950
32ebbc0c
TH
6951 if (ap->ops->port_stop)
6952 have_stop = 1;
6953 }
6954
6955 if (host->ops->host_stop)
6956 have_stop = 1;
6957
6958 if (have_stop) {
6959 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6960 if (!start_dr)
6961 return -ENOMEM;
6962 }
6963
6964 for (i = 0; i < host->n_ports; i++) {
6965 struct ata_port *ap = host->ports[i];
6966
ecef7253
TH
6967 if (ap->ops->port_start) {
6968 rc = ap->ops->port_start(ap);
6969 if (rc) {
6970 ata_port_printk(ap, KERN_ERR, "failed to "
6971 "start port (errno=%d)\n", rc);
6972 goto err_out;
6973 }
6974 }
6975
6976 ata_eh_freeze_port(ap);
6977 }
6978
32ebbc0c
TH
6979 if (start_dr)
6980 devres_add(host->dev, start_dr);
ecef7253
TH
6981 host->flags |= ATA_HOST_STARTED;
6982 return 0;
6983
6984 err_out:
6985 while (--i >= 0) {
6986 struct ata_port *ap = host->ports[i];
6987
6988 if (ap->ops->port_stop)
6989 ap->ops->port_stop(ap);
6990 }
32ebbc0c 6991 devres_free(start_dr);
ecef7253
TH
6992 return rc;
6993}
6994
b03732f0 6995/**
cca3974e
JG
6996 * ata_sas_host_init - Initialize a host struct
6997 * @host: host to initialize
6998 * @dev: device host is attached to
6999 * @flags: host flags
7000 * @ops: port_ops
b03732f0
BK
7001 *
7002 * LOCKING:
7003 * PCI/etc. bus probe sem.
7004 *
7005 */
f3187195 7006/* KILLME - the only user left is ipr */
cca3974e
JG
7007void ata_host_init(struct ata_host *host, struct device *dev,
7008 unsigned long flags, const struct ata_port_operations *ops)
b03732f0 7009{
cca3974e
JG
7010 spin_lock_init(&host->lock);
7011 host->dev = dev;
7012 host->flags = flags;
7013 host->ops = ops;
b03732f0
BK
7014}
7015
f3187195
TH
7016/**
7017 * ata_host_register - register initialized ATA host
7018 * @host: ATA host to register
7019 * @sht: template for SCSI host
7020 *
7021 * Register initialized ATA host. @host is allocated using
7022 * ata_host_alloc() and fully initialized by LLD. This function
7023 * starts ports, registers @host with ATA and SCSI layers and
7024 * probe registered devices.
7025 *
7026 * LOCKING:
7027 * Inherited from calling layer (may sleep).
7028 *
7029 * RETURNS:
7030 * 0 on success, -errno otherwise.
7031 */
7032int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7033{
7034 int i, rc;
7035
7036 /* host must have been started */
7037 if (!(host->flags & ATA_HOST_STARTED)) {
7038 dev_printk(KERN_ERR, host->dev,
7039 "BUG: trying to register unstarted host\n");
7040 WARN_ON(1);
7041 return -EINVAL;
7042 }
7043
7044 /* Blow away unused ports. This happens when LLD can't
7045 * determine the exact number of ports to allocate at
7046 * allocation time.
7047 */
7048 for (i = host->n_ports; host->ports[i]; i++)
7049 kfree(host->ports[i]);
7050
7051 /* give ports names and add SCSI hosts */
7052 for (i = 0; i < host->n_ports; i++)
7053 host->ports[i]->print_id = ata_print_id++;
7054
7055 rc = ata_scsi_add_hosts(host, sht);
7056 if (rc)
7057 return rc;
7058
fafbae87
TH
7059 /* associate with ACPI nodes */
7060 ata_acpi_associate(host);
7061
f3187195
TH
7062 /* set cable, sata_spd_limit and report */
7063 for (i = 0; i < host->n_ports; i++) {
7064 struct ata_port *ap = host->ports[i];
f3187195
TH
7065 unsigned long xfer_mask;
7066
7067 /* set SATA cable type if still unset */
7068 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7069 ap->cbl = ATA_CBL_SATA;
7070
7071 /* init sata_spd_limit to the current value */
4fb37a25 7072 sata_link_init_spd(&ap->link);
f3187195 7073
cbcdd875 7074 /* print per-port info to dmesg */
f3187195
TH
7075 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7076 ap->udma_mask);
7077
abf6e8ed 7078 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
7079 ata_port_printk(ap, KERN_INFO,
7080 "%cATA max %s %s\n",
a16abc0b 7081 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 7082 ata_mode_string(xfer_mask),
cbcdd875 7083 ap->link.eh_info.desc);
abf6e8ed
TH
7084 ata_ehi_clear_desc(&ap->link.eh_info);
7085 } else
f3187195
TH
7086 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7087 }
7088
7089 /* perform each probe synchronously */
7090 DPRINTK("probe begin\n");
7091 for (i = 0; i < host->n_ports; i++) {
7092 struct ata_port *ap = host->ports[i];
7093 int rc;
7094
7095 /* probe */
7096 if (ap->ops->error_handler) {
9af5c9c9 7097 struct ata_eh_info *ehi = &ap->link.eh_info;
f3187195
TH
7098 unsigned long flags;
7099
7100 ata_port_probe(ap);
7101
7102 /* kick EH for boot probing */
7103 spin_lock_irqsave(ap->lock, flags);
7104
f58229f8
TH
7105 ehi->probe_mask =
7106 (1 << ata_link_max_devices(&ap->link)) - 1;
f3187195
TH
7107 ehi->action |= ATA_EH_SOFTRESET;
7108 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7109
f4d6d004 7110 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
f3187195
TH
7111 ap->pflags |= ATA_PFLAG_LOADING;
7112 ata_port_schedule_eh(ap);
7113
7114 spin_unlock_irqrestore(ap->lock, flags);
7115
7116 /* wait for EH to finish */
7117 ata_port_wait_eh(ap);
7118 } else {
7119 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7120 rc = ata_bus_probe(ap);
7121 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7122
7123 if (rc) {
7124 /* FIXME: do something useful here?
7125 * Current libata behavior will
7126 * tear down everything when
7127 * the module is removed
7128 * or the h/w is unplugged.
7129 */
7130 }
7131 }
7132 }
7133
7134 /* probes are done, now scan each port's disk(s) */
7135 DPRINTK("host probe begin\n");
7136 for (i = 0; i < host->n_ports; i++) {
7137 struct ata_port *ap = host->ports[i];
7138
1ae46317 7139 ata_scsi_scan_host(ap, 1);
ca77329f 7140 ata_lpm_schedule(ap, ap->pm_policy);
f3187195
TH
7141 }
7142
7143 return 0;
7144}
7145
f5cda257
TH
7146/**
7147 * ata_host_activate - start host, request IRQ and register it
7148 * @host: target ATA host
7149 * @irq: IRQ to request
7150 * @irq_handler: irq_handler used when requesting IRQ
7151 * @irq_flags: irq_flags used when requesting IRQ
7152 * @sht: scsi_host_template to use when registering the host
7153 *
7154 * After allocating an ATA host and initializing it, most libata
7155 * LLDs perform three steps to activate the host - start host,
7156 * request IRQ and register it. This helper takes necessasry
7157 * arguments and performs the three steps in one go.
7158 *
3d46b2e2
PM
7159 * An invalid IRQ skips the IRQ registration and expects the host to
7160 * have set polling mode on the port. In this case, @irq_handler
7161 * should be NULL.
7162 *
f5cda257
TH
7163 * LOCKING:
7164 * Inherited from calling layer (may sleep).
7165 *
7166 * RETURNS:
7167 * 0 on success, -errno otherwise.
7168 */
7169int ata_host_activate(struct ata_host *host, int irq,
7170 irq_handler_t irq_handler, unsigned long irq_flags,
7171 struct scsi_host_template *sht)
7172{
cbcdd875 7173 int i, rc;
f5cda257
TH
7174
7175 rc = ata_host_start(host);
7176 if (rc)
7177 return rc;
7178
3d46b2e2
PM
7179 /* Special case for polling mode */
7180 if (!irq) {
7181 WARN_ON(irq_handler);
7182 return ata_host_register(host, sht);
7183 }
7184
f5cda257
TH
7185 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7186 dev_driver_string(host->dev), host);
7187 if (rc)
7188 return rc;
7189
cbcdd875
TH
7190 for (i = 0; i < host->n_ports; i++)
7191 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 7192
f5cda257
TH
7193 rc = ata_host_register(host, sht);
7194 /* if failed, just free the IRQ and leave ports alone */
7195 if (rc)
7196 devm_free_irq(host->dev, irq, host);
7197
7198 return rc;
7199}
7200
720ba126
TH
7201/**
7202 * ata_port_detach - Detach ATA port in prepration of device removal
7203 * @ap: ATA port to be detached
7204 *
7205 * Detach all ATA devices and the associated SCSI devices of @ap;
7206 * then, remove the associated SCSI host. @ap is guaranteed to
7207 * be quiescent on return from this function.
7208 *
7209 * LOCKING:
7210 * Kernel thread context (may sleep).
7211 */
741b7763 7212static void ata_port_detach(struct ata_port *ap)
720ba126
TH
7213{
7214 unsigned long flags;
41bda9c9 7215 struct ata_link *link;
f58229f8 7216 struct ata_device *dev;
720ba126
TH
7217
7218 if (!ap->ops->error_handler)
c3cf30a9 7219 goto skip_eh;
720ba126
TH
7220
7221 /* tell EH we're leaving & flush EH */
ba6a1308 7222 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 7223 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 7224 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7225
7226 ata_port_wait_eh(ap);
7227
7228 /* EH is now guaranteed to see UNLOADING, so no new device
7229 * will be attached. Disable all existing devices.
7230 */
ba6a1308 7231 spin_lock_irqsave(ap->lock, flags);
720ba126 7232
41bda9c9
TH
7233 ata_port_for_each_link(link, ap) {
7234 ata_link_for_each_dev(dev, link)
7235 ata_dev_disable(dev);
7236 }
720ba126 7237
ba6a1308 7238 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7239
7240 /* Final freeze & EH. All in-flight commands are aborted. EH
7241 * will be skipped and retrials will be terminated with bad
7242 * target.
7243 */
ba6a1308 7244 spin_lock_irqsave(ap->lock, flags);
720ba126 7245 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 7246 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
7247
7248 ata_port_wait_eh(ap);
45a66c1c 7249 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 7250
c3cf30a9 7251 skip_eh:
720ba126 7252 /* remove the associated SCSI host */
cca3974e 7253 scsi_remove_host(ap->scsi_host);
720ba126
TH
7254}
7255
0529c159
TH
7256/**
7257 * ata_host_detach - Detach all ports of an ATA host
7258 * @host: Host to detach
7259 *
7260 * Detach all ports of @host.
7261 *
7262 * LOCKING:
7263 * Kernel thread context (may sleep).
7264 */
7265void ata_host_detach(struct ata_host *host)
7266{
7267 int i;
7268
7269 for (i = 0; i < host->n_ports; i++)
7270 ata_port_detach(host->ports[i]);
7271}
7272
1da177e4
LT
7273/**
7274 * ata_std_ports - initialize ioaddr with standard port offsets.
7275 * @ioaddr: IO address structure to be initialized
0baab86b
EF
7276 *
7277 * Utility function which initializes data_addr, error_addr,
7278 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7279 * device_addr, status_addr, and command_addr to standard offsets
7280 * relative to cmd_addr.
7281 *
7282 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 7283 */
0baab86b 7284
1da177e4
LT
7285void ata_std_ports(struct ata_ioports *ioaddr)
7286{
7287 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7288 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7289 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7290 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7291 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7292 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7293 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7294 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7295 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7296 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7297}
7298
0baab86b 7299
374b1873
JG
7300#ifdef CONFIG_PCI
7301
1da177e4
LT
7302/**
7303 * ata_pci_remove_one - PCI layer callback for device removal
7304 * @pdev: PCI device that was removed
7305 *
b878ca5d
TH
7306 * PCI layer indicates to libata via this hook that hot-unplug or
7307 * module unload event has occurred. Detach all ports. Resource
7308 * release is handled via devres.
1da177e4
LT
7309 *
7310 * LOCKING:
7311 * Inherited from PCI layer (may sleep).
7312 */
f0d36efd 7313void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 7314{
2855568b 7315 struct device *dev = &pdev->dev;
cca3974e 7316 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 7317
b878ca5d 7318 ata_host_detach(host);
1da177e4
LT
7319}
7320
7321/* move to PCI subsystem */
057ace5e 7322int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
7323{
7324 unsigned long tmp = 0;
7325
7326 switch (bits->width) {
7327 case 1: {
7328 u8 tmp8 = 0;
7329 pci_read_config_byte(pdev, bits->reg, &tmp8);
7330 tmp = tmp8;
7331 break;
7332 }
7333 case 2: {
7334 u16 tmp16 = 0;
7335 pci_read_config_word(pdev, bits->reg, &tmp16);
7336 tmp = tmp16;
7337 break;
7338 }
7339 case 4: {
7340 u32 tmp32 = 0;
7341 pci_read_config_dword(pdev, bits->reg, &tmp32);
7342 tmp = tmp32;
7343 break;
7344 }
7345
7346 default:
7347 return -EINVAL;
7348 }
7349
7350 tmp &= bits->mask;
7351
7352 return (tmp == bits->val) ? 1 : 0;
7353}
9b847548 7354
6ffa01d8 7355#ifdef CONFIG_PM
3c5100c1 7356void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
7357{
7358 pci_save_state(pdev);
4c90d971 7359 pci_disable_device(pdev);
500530f6 7360
4c90d971 7361 if (mesg.event == PM_EVENT_SUSPEND)
500530f6 7362 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
7363}
7364
553c4aa6 7365int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 7366{
553c4aa6
TH
7367 int rc;
7368
9b847548
JA
7369 pci_set_power_state(pdev, PCI_D0);
7370 pci_restore_state(pdev);
553c4aa6 7371
b878ca5d 7372 rc = pcim_enable_device(pdev);
553c4aa6
TH
7373 if (rc) {
7374 dev_printk(KERN_ERR, &pdev->dev,
7375 "failed to enable device after resume (%d)\n", rc);
7376 return rc;
7377 }
7378
9b847548 7379 pci_set_master(pdev);
553c4aa6 7380 return 0;
500530f6
TH
7381}
7382
3c5100c1 7383int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 7384{
cca3974e 7385 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
7386 int rc = 0;
7387
cca3974e 7388 rc = ata_host_suspend(host, mesg);
500530f6
TH
7389 if (rc)
7390 return rc;
7391
3c5100c1 7392 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
7393
7394 return 0;
7395}
7396
7397int ata_pci_device_resume(struct pci_dev *pdev)
7398{
cca3974e 7399 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 7400 int rc;
500530f6 7401
553c4aa6
TH
7402 rc = ata_pci_device_do_resume(pdev);
7403 if (rc == 0)
7404 ata_host_resume(host);
7405 return rc;
9b847548 7406}
6ffa01d8
TH
7407#endif /* CONFIG_PM */
7408
1da177e4
LT
7409#endif /* CONFIG_PCI */
7410
7411
1da177e4
LT
7412static int __init ata_init(void)
7413{
a8601e5f 7414 ata_probe_timeout *= HZ;
1da177e4
LT
7415 ata_wq = create_workqueue("ata");
7416 if (!ata_wq)
7417 return -ENOMEM;
7418
453b07ac
TH
7419 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7420 if (!ata_aux_wq) {
7421 destroy_workqueue(ata_wq);
7422 return -ENOMEM;
7423 }
7424
1da177e4
LT
7425 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7426 return 0;
7427}
7428
7429static void __exit ata_exit(void)
7430{
7431 destroy_workqueue(ata_wq);
453b07ac 7432 destroy_workqueue(ata_aux_wq);
1da177e4
LT
7433}
7434
a4625085 7435subsys_initcall(ata_init);
1da177e4
LT
7436module_exit(ata_exit);
7437
67846b30 7438static unsigned long ratelimit_time;
34af946a 7439static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
7440
7441int ata_ratelimit(void)
7442{
7443 int rc;
7444 unsigned long flags;
7445
7446 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7447
7448 if (time_after(jiffies, ratelimit_time)) {
7449 rc = 1;
7450 ratelimit_time = jiffies + (HZ/5);
7451 } else
7452 rc = 0;
7453
7454 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7455
7456 return rc;
7457}
7458
c22daff4
TH
7459/**
7460 * ata_wait_register - wait until register value changes
7461 * @reg: IO-mapped register
7462 * @mask: Mask to apply to read register value
7463 * @val: Wait condition
7464 * @interval_msec: polling interval in milliseconds
7465 * @timeout_msec: timeout in milliseconds
7466 *
7467 * Waiting for some bits of register to change is a common
7468 * operation for ATA controllers. This function reads 32bit LE
7469 * IO-mapped register @reg and tests for the following condition.
7470 *
7471 * (*@reg & mask) != val
7472 *
7473 * If the condition is met, it returns; otherwise, the process is
7474 * repeated after @interval_msec until timeout.
7475 *
7476 * LOCKING:
7477 * Kernel thread context (may sleep)
7478 *
7479 * RETURNS:
7480 * The final register value.
7481 */
7482u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7483 unsigned long interval_msec,
7484 unsigned long timeout_msec)
7485{
7486 unsigned long timeout;
7487 u32 tmp;
7488
7489 tmp = ioread32(reg);
7490
7491 /* Calculate timeout _after_ the first read to make sure
7492 * preceding writes reach the controller before starting to
7493 * eat away the timeout.
7494 */
7495 timeout = jiffies + (timeout_msec * HZ) / 1000;
7496
7497 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7498 msleep(interval_msec);
7499 tmp = ioread32(reg);
7500 }
7501
7502 return tmp;
7503}
7504
dd5b06c4
TH
7505/*
7506 * Dummy port_ops
7507 */
7508static void ata_dummy_noret(struct ata_port *ap) { }
7509static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7510static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7511
7512static u8 ata_dummy_check_status(struct ata_port *ap)
7513{
7514 return ATA_DRDY;
7515}
7516
7517static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7518{
7519 return AC_ERR_SYSTEM;
7520}
7521
7522const struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
7523 .check_status = ata_dummy_check_status,
7524 .check_altstatus = ata_dummy_check_status,
7525 .dev_select = ata_noop_dev_select,
7526 .qc_prep = ata_noop_qc_prep,
7527 .qc_issue = ata_dummy_qc_issue,
7528 .freeze = ata_dummy_noret,
7529 .thaw = ata_dummy_noret,
7530 .error_handler = ata_dummy_noret,
7531 .post_internal_cmd = ata_dummy_qc_noret,
7532 .irq_clear = ata_dummy_noret,
7533 .port_start = ata_dummy_ret0,
7534 .port_stop = ata_dummy_noret,
7535};
7536
21b0ad4f
TH
7537const struct ata_port_info ata_dummy_port_info = {
7538 .port_ops = &ata_dummy_port_ops,
7539};
7540
1da177e4
LT
7541/*
7542 * libata is essentially a library of internal helper functions for
7543 * low-level ATA host controller drivers. As such, the API/ABI is
7544 * likely to change as new drivers are added and updated.
7545 * Do not depend on ABI/API stability.
7546 */
e9c83914
TH
7547EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7548EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7549EXPORT_SYMBOL_GPL(sata_deb_timing_long);
dd5b06c4 7550EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 7551EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1da177e4
LT
7552EXPORT_SYMBOL_GPL(ata_std_bios_param);
7553EXPORT_SYMBOL_GPL(ata_std_ports);
cca3974e 7554EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 7555EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 7556EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
ecef7253 7557EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 7558EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 7559EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 7560EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4
LT
7561EXPORT_SYMBOL_GPL(ata_sg_init);
7562EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 7563EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 7564EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 7565EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 7566EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
7567EXPORT_SYMBOL_GPL(ata_tf_load);
7568EXPORT_SYMBOL_GPL(ata_tf_read);
7569EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7570EXPORT_SYMBOL_GPL(ata_std_dev_select);
43727fbc 7571EXPORT_SYMBOL_GPL(sata_print_link_status);
1da177e4
LT
7572EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7573EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7574EXPORT_SYMBOL_GPL(ata_check_status);
7575EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
7576EXPORT_SYMBOL_GPL(ata_exec_command);
7577EXPORT_SYMBOL_GPL(ata_port_start);
d92e74d3 7578EXPORT_SYMBOL_GPL(ata_sff_port_start);
1da177e4 7579EXPORT_SYMBOL_GPL(ata_interrupt);
04351821 7580EXPORT_SYMBOL_GPL(ata_do_set_mode);
0d5ff566
TH
7581EXPORT_SYMBOL_GPL(ata_data_xfer);
7582EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
31cc23b3 7583EXPORT_SYMBOL_GPL(ata_std_qc_defer);
1da177e4 7584EXPORT_SYMBOL_GPL(ata_qc_prep);
d26fc955 7585EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
e46834cd 7586EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
7587EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7588EXPORT_SYMBOL_GPL(ata_bmdma_start);
7589EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7590EXPORT_SYMBOL_GPL(ata_bmdma_status);
7591EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
7592EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7593EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7594EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7595EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7596EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 7597EXPORT_SYMBOL_GPL(ata_port_probe);
10305f0f 7598EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 7599EXPORT_SYMBOL_GPL(sata_set_spd);
936fd732
TH
7600EXPORT_SYMBOL_GPL(sata_link_debounce);
7601EXPORT_SYMBOL_GPL(sata_link_resume);
1da177e4 7602EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 7603EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804 7604EXPORT_SYMBOL_GPL(ata_std_softreset);
cc0680a5 7605EXPORT_SYMBOL_GPL(sata_link_hardreset);
c2bd5804
TH
7606EXPORT_SYMBOL_GPL(sata_std_hardreset);
7607EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
7608EXPORT_SYMBOL_GPL(ata_dev_classify);
7609EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 7610EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 7611EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 7612EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 7613EXPORT_SYMBOL_GPL(ata_busy_sleep);
88ff6eaf 7614EXPORT_SYMBOL_GPL(ata_wait_after_reset);
d4b2bab4 7615EXPORT_SYMBOL_GPL(ata_wait_ready);
86e45b6b 7616EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
7617EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7618EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 7619EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 7620EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 7621EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4 7622EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
7623EXPORT_SYMBOL_GPL(sata_scr_valid);
7624EXPORT_SYMBOL_GPL(sata_scr_read);
7625EXPORT_SYMBOL_GPL(sata_scr_write);
7626EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
7627EXPORT_SYMBOL_GPL(ata_link_online);
7628EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 7629#ifdef CONFIG_PM
cca3974e
JG
7630EXPORT_SYMBOL_GPL(ata_host_suspend);
7631EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 7632#endif /* CONFIG_PM */
6a62a04d
TH
7633EXPORT_SYMBOL_GPL(ata_id_string);
7634EXPORT_SYMBOL_GPL(ata_id_c_string);
10305f0f 7635EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
1da177e4
LT
7636EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7637
1bc4ccff 7638EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
7639EXPORT_SYMBOL_GPL(ata_timing_compute);
7640EXPORT_SYMBOL_GPL(ata_timing_merge);
7641
1da177e4
LT
7642#ifdef CONFIG_PCI
7643EXPORT_SYMBOL_GPL(pci_test_config_bits);
d583bc18 7644EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
1626aeb8 7645EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
d583bc18 7646EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
1da177e4
LT
7647EXPORT_SYMBOL_GPL(ata_pci_init_one);
7648EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 7649#ifdef CONFIG_PM
500530f6
TH
7650EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7651EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
7652EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7653EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 7654#endif /* CONFIG_PM */
67951ade
AC
7655EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7656EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 7657#endif /* CONFIG_PCI */
9b847548 7658
31f88384 7659EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
3af9a77a
TH
7660EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7661EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7662EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7663EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7664
b64bbc39
TH
7665EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7666EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7667EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
7668EXPORT_SYMBOL_GPL(ata_port_desc);
7669#ifdef CONFIG_PCI
7670EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7671#endif /* CONFIG_PCI */
7b70fc03 7672EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 7673EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 7674EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 7675EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 7676EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
7677EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7678EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
7679EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7680EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 7681EXPORT_SYMBOL_GPL(ata_do_eh);
83625006 7682EXPORT_SYMBOL_GPL(ata_irq_on);
a619f981 7683EXPORT_SYMBOL_GPL(ata_dev_try_classify);
be0d18df
AC
7684
7685EXPORT_SYMBOL_GPL(ata_cable_40wire);
7686EXPORT_SYMBOL_GPL(ata_cable_80wire);
7687EXPORT_SYMBOL_GPL(ata_cable_unknown);
7688EXPORT_SYMBOL_GPL(ata_cable_sata);