]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
net-next: Add multiqueue support to vmxnet3 driver
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
d9027470 71#include "libata-transport.h"
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 95static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 96
f3187195 97unsigned int ata_print_id = 1;
1da177e4 98
33267325
TH
99struct ata_force_param {
100 const char *name;
101 unsigned int cbl;
102 int spd_limit;
103 unsigned long xfer_mask;
104 unsigned int horkage_on;
105 unsigned int horkage_off;
05944bdf 106 unsigned int lflags;
33267325
TH
107};
108
109struct ata_force_ent {
110 int port;
111 int device;
112 struct ata_force_param param;
113};
114
115static struct ata_force_ent *ata_force_tbl;
116static int ata_force_tbl_size;
117
118static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
119/* param_buf is thrown away after initialization, disallow read */
120module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
121MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
122
2486fa56 123static int atapi_enabled = 1;
1623c81e 124module_param(atapi_enabled, int, 0444);
ad5d8eac 125MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 126
c5c61bda 127static int atapi_dmadir = 0;
95de719a 128module_param(atapi_dmadir, int, 0444);
ad5d8eac 129MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 130
baf4fdfa
ML
131int atapi_passthru16 = 1;
132module_param(atapi_passthru16, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 134
c3c013a2
JG
135int libata_fua = 0;
136module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 138
2dcb407e 139static int ata_ignore_hpa;
1e999736
AC
140module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
142
b3a70601
AC
143static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144module_param_named(dma, libata_dma_mask, int, 0444);
145MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
146
87fbc5a0 147static int ata_probe_timeout;
a8601e5f
AM
148module_param(ata_probe_timeout, int, 0444);
149MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
150
6ebe9d86 151int libata_noacpi = 0;
d7d0dad6 152module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 153MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 154
ae8d4ee7
AC
155int libata_allow_tpm = 0;
156module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 157MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 158
e7ecd435
TH
159static int atapi_an;
160module_param(atapi_an, int, 0444);
161MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
162
1da177e4
LT
163MODULE_AUTHOR("Jeff Garzik");
164MODULE_DESCRIPTION("Library module for ATA devices");
165MODULE_LICENSE("GPL");
166MODULE_VERSION(DRV_VERSION);
167
0baab86b 168
9913ff8a
TH
169static bool ata_sstatus_online(u32 sstatus)
170{
171 return (sstatus & 0xf) == 0x3;
172}
173
1eca4365
TH
174/**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
aadffb68 182 *
1eca4365
TH
183 * RETURNS:
184 * Pointer to the next link.
aadffb68 185 */
1eca4365
TH
186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
aadffb68 188{
1eca4365
TH
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
aadffb68 192 /* NULL link indicates start of iteration */
1eca4365
TH
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
aadffb68 203
1eca4365
TH
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
b1c72916 213 return ap->slave_link;
1eca4365
TH
214 /* fall through */
215 case ATA_LITER_EDGE:
aadffb68 216 return NULL;
b1c72916 217 }
aadffb68 218
b1c72916
TH
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
1eca4365 223 /* we were over a PMP link */
aadffb68
TH
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
1eca4365
TH
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
aadffb68
TH
230 return NULL;
231}
232
1eca4365
TH
233/**
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
238 *
239 * LOCKING:
240 * Host lock or EH context.
241 *
242 * RETURNS:
243 * Pointer to the next device.
244 */
245struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
247{
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
262 }
263
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
277 }
278
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
284}
285
b1c72916
TH
286/**
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
289 *
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
293 *
294 * LOCKING:
295 * Don't care.
296 *
297 * RETURNS:
298 * Pointer to the found physical link.
299 */
300struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301{
302 struct ata_port *ap = dev->link->ap;
303
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
309}
310
33267325
TH
311/**
312 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 313 * @ap: ATA port of interest
33267325
TH
314 *
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
320 *
321 * LOCKING:
322 * EH context.
323 */
324void ata_force_cbl(struct ata_port *ap)
325{
326 int i;
327
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
333
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
336
337 ap->cbl = fe->param.cbl;
338 ata_port_printk(ap, KERN_NOTICE,
339 "FORCE: cable set to %s\n", fe->param.name);
340 return;
341 }
342}
343
344/**
05944bdf 345 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
346 * @link: ATA link of interest
347 *
05944bdf
TH
348 * Force link flags and SATA spd limit according to libata.force
349 * and whine about it. When only the port part is specified
350 * (e.g. 1:), the limit applies to all links connected to both
351 * the host link and all fan-out ports connected via PMP. If the
352 * device part is specified as 0 (e.g. 1.00:), it specifies the
353 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
354 * points to the host link whether PMP is attached or not. If the
355 * controller has slave link, device number 16 points to it.
33267325
TH
356 *
357 * LOCKING:
358 * EH context.
359 */
05944bdf 360static void ata_force_link_limits(struct ata_link *link)
33267325 361{
05944bdf 362 bool did_spd = false;
b1c72916
TH
363 int linkno = link->pmp;
364 int i;
33267325
TH
365
366 if (ata_is_host_link(link))
b1c72916 367 linkno += 15;
33267325
TH
368
369 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
370 const struct ata_force_ent *fe = &ata_force_tbl[i];
371
372 if (fe->port != -1 && fe->port != link->ap->print_id)
373 continue;
374
375 if (fe->device != -1 && fe->device != linkno)
376 continue;
377
05944bdf
TH
378 /* only honor the first spd limit */
379 if (!did_spd && fe->param.spd_limit) {
380 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
381 ata_link_printk(link, KERN_NOTICE,
382 "FORCE: PHY spd limit set to %s\n",
383 fe->param.name);
384 did_spd = true;
385 }
33267325 386
05944bdf
TH
387 /* let lflags stack */
388 if (fe->param.lflags) {
389 link->flags |= fe->param.lflags;
390 ata_link_printk(link, KERN_NOTICE,
391 "FORCE: link flag 0x%x forced -> 0x%x\n",
392 fe->param.lflags, link->flags);
393 }
33267325
TH
394 }
395}
396
397/**
398 * ata_force_xfermask - force xfermask according to libata.force
399 * @dev: ATA device of interest
400 *
401 * Force xfer_mask according to libata.force and whine about it.
402 * For consistency with link selection, device number 15 selects
403 * the first device connected to the host link.
404 *
405 * LOCKING:
406 * EH context.
407 */
408static void ata_force_xfermask(struct ata_device *dev)
409{
410 int devno = dev->link->pmp + dev->devno;
411 int alt_devno = devno;
412 int i;
413
b1c72916
TH
414 /* allow n.15/16 for devices attached to host port */
415 if (ata_is_host_link(dev->link))
416 alt_devno += 15;
33267325
TH
417
418 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
419 const struct ata_force_ent *fe = &ata_force_tbl[i];
420 unsigned long pio_mask, mwdma_mask, udma_mask;
421
422 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
423 continue;
424
425 if (fe->device != -1 && fe->device != devno &&
426 fe->device != alt_devno)
427 continue;
428
429 if (!fe->param.xfer_mask)
430 continue;
431
432 ata_unpack_xfermask(fe->param.xfer_mask,
433 &pio_mask, &mwdma_mask, &udma_mask);
434 if (udma_mask)
435 dev->udma_mask = udma_mask;
436 else if (mwdma_mask) {
437 dev->udma_mask = 0;
438 dev->mwdma_mask = mwdma_mask;
439 } else {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = 0;
442 dev->pio_mask = pio_mask;
443 }
444
445 ata_dev_printk(dev, KERN_NOTICE,
446 "FORCE: xfer_mask set to %s\n", fe->param.name);
447 return;
448 }
449}
450
451/**
452 * ata_force_horkage - force horkage according to libata.force
453 * @dev: ATA device of interest
454 *
455 * Force horkage according to libata.force and whine about it.
456 * For consistency with link selection, device number 15 selects
457 * the first device connected to the host link.
458 *
459 * LOCKING:
460 * EH context.
461 */
462static void ata_force_horkage(struct ata_device *dev)
463{
464 int devno = dev->link->pmp + dev->devno;
465 int alt_devno = devno;
466 int i;
467
b1c72916
TH
468 /* allow n.15/16 for devices attached to host port */
469 if (ata_is_host_link(dev->link))
470 alt_devno += 15;
33267325
TH
471
472 for (i = 0; i < ata_force_tbl_size; i++) {
473 const struct ata_force_ent *fe = &ata_force_tbl[i];
474
475 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
476 continue;
477
478 if (fe->device != -1 && fe->device != devno &&
479 fe->device != alt_devno)
480 continue;
481
482 if (!(~dev->horkage & fe->param.horkage_on) &&
483 !(dev->horkage & fe->param.horkage_off))
484 continue;
485
486 dev->horkage |= fe->param.horkage_on;
487 dev->horkage &= ~fe->param.horkage_off;
488
489 ata_dev_printk(dev, KERN_NOTICE,
490 "FORCE: horkage modified (%s)\n", fe->param.name);
491 }
492}
493
436d34b3
TH
494/**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
e52dcc48
TH
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 /* fall thru */
436d34b3
TH
527 default:
528 return ATAPI_MISC;
529 }
530}
531
1da177e4
LT
532/**
533 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
534 * @tf: Taskfile to convert
1da177e4 535 * @pmp: Port multiplier port
9977126c
TH
536 * @is_cmd: This FIS is for command
537 * @fis: Buffer into which data will output
1da177e4
LT
538 *
539 * Converts a standard ATA taskfile to a Serial ATA
540 * FIS structure (Register - Host to Device).
541 *
542 * LOCKING:
543 * Inherited from caller.
544 */
9977126c 545void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 546{
9977126c
TH
547 fis[0] = 0x27; /* Register - Host to Device FIS */
548 fis[1] = pmp & 0xf; /* Port multiplier number*/
549 if (is_cmd)
550 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551
1da177e4
LT
552 fis[2] = tf->command;
553 fis[3] = tf->feature;
554
555 fis[4] = tf->lbal;
556 fis[5] = tf->lbam;
557 fis[6] = tf->lbah;
558 fis[7] = tf->device;
559
560 fis[8] = tf->hob_lbal;
561 fis[9] = tf->hob_lbam;
562 fis[10] = tf->hob_lbah;
563 fis[11] = tf->hob_feature;
564
565 fis[12] = tf->nsect;
566 fis[13] = tf->hob_nsect;
567 fis[14] = 0;
568 fis[15] = tf->ctl;
569
570 fis[16] = 0;
571 fis[17] = 0;
572 fis[18] = 0;
573 fis[19] = 0;
574}
575
576/**
577 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
578 * @fis: Buffer from which data will be input
579 * @tf: Taskfile to output
580 *
e12a1be6 581 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
582 *
583 * LOCKING:
584 * Inherited from caller.
585 */
586
057ace5e 587void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
588{
589 tf->command = fis[2]; /* status */
590 tf->feature = fis[3]; /* error */
591
592 tf->lbal = fis[4];
593 tf->lbam = fis[5];
594 tf->lbah = fis[6];
595 tf->device = fis[7];
596
597 tf->hob_lbal = fis[8];
598 tf->hob_lbam = fis[9];
599 tf->hob_lbah = fis[10];
600
601 tf->nsect = fis[12];
602 tf->hob_nsect = fis[13];
603}
604
8cbd6df1
AL
605static const u8 ata_rw_cmds[] = {
606 /* pio multi */
607 ATA_CMD_READ_MULTI,
608 ATA_CMD_WRITE_MULTI,
609 ATA_CMD_READ_MULTI_EXT,
610 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
611 0,
612 0,
613 0,
614 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
615 /* pio */
616 ATA_CMD_PIO_READ,
617 ATA_CMD_PIO_WRITE,
618 ATA_CMD_PIO_READ_EXT,
619 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
620 0,
621 0,
622 0,
623 0,
8cbd6df1
AL
624 /* dma */
625 ATA_CMD_READ,
626 ATA_CMD_WRITE,
627 ATA_CMD_READ_EXT,
9a3dccc4
TH
628 ATA_CMD_WRITE_EXT,
629 0,
630 0,
631 0,
632 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 633};
1da177e4
LT
634
635/**
8cbd6df1 636 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
637 * @tf: command to examine and configure
638 * @dev: device tf belongs to
1da177e4 639 *
2e9edbf8 640 * Examine the device configuration and tf->flags to calculate
8cbd6df1 641 * the proper read/write commands and protocol to use.
1da177e4
LT
642 *
643 * LOCKING:
644 * caller.
645 */
bd056d7e 646static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 647{
9a3dccc4 648 u8 cmd;
1da177e4 649
9a3dccc4 650 int index, fua, lba48, write;
2e9edbf8 651
9a3dccc4 652 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
653 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
654 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 655
8cbd6df1
AL
656 if (dev->flags & ATA_DFLAG_PIO) {
657 tf->protocol = ATA_PROT_PIO;
9a3dccc4 658 index = dev->multi_count ? 0 : 8;
9af5c9c9 659 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
660 /* Unable to use DMA due to host limitation */
661 tf->protocol = ATA_PROT_PIO;
0565c26d 662 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
663 } else {
664 tf->protocol = ATA_PROT_DMA;
9a3dccc4 665 index = 16;
8cbd6df1 666 }
1da177e4 667
9a3dccc4
TH
668 cmd = ata_rw_cmds[index + fua + lba48 + write];
669 if (cmd) {
670 tf->command = cmd;
671 return 0;
672 }
673 return -1;
1da177e4
LT
674}
675
35b649fe
TH
676/**
677 * ata_tf_read_block - Read block address from ATA taskfile
678 * @tf: ATA taskfile of interest
679 * @dev: ATA device @tf belongs to
680 *
681 * LOCKING:
682 * None.
683 *
684 * Read block address from @tf. This function can handle all
685 * three address formats - LBA, LBA48 and CHS. tf->protocol and
686 * flags select the address format to use.
687 *
688 * RETURNS:
689 * Block address read from @tf.
690 */
691u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692{
693 u64 block = 0;
694
695 if (tf->flags & ATA_TFLAG_LBA) {
696 if (tf->flags & ATA_TFLAG_LBA48) {
697 block |= (u64)tf->hob_lbah << 40;
698 block |= (u64)tf->hob_lbam << 32;
44901a96 699 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
700 } else
701 block |= (tf->device & 0xf) << 24;
702
703 block |= tf->lbah << 16;
704 block |= tf->lbam << 8;
705 block |= tf->lbal;
706 } else {
707 u32 cyl, head, sect;
708
709 cyl = tf->lbam | (tf->lbah << 8);
710 head = tf->device & 0xf;
711 sect = tf->lbal;
712
ac8672ea
TH
713 if (!sect) {
714 ata_dev_printk(dev, KERN_WARNING, "device reported "
715 "invalid CHS sector 0\n");
716 sect = 1; /* oh well */
717 }
718
719 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
720 }
721
722 return block;
723}
724
bd056d7e
TH
725/**
726 * ata_build_rw_tf - Build ATA taskfile for given read/write request
727 * @tf: Target ATA taskfile
728 * @dev: ATA device @tf belongs to
729 * @block: Block address
730 * @n_block: Number of blocks
731 * @tf_flags: RW/FUA etc...
732 * @tag: tag
733 *
734 * LOCKING:
735 * None.
736 *
737 * Build ATA taskfile @tf for read/write request described by
738 * @block, @n_block, @tf_flags and @tag on @dev.
739 *
740 * RETURNS:
741 *
742 * 0 on success, -ERANGE if the request is too large for @dev,
743 * -EINVAL if the request is invalid.
744 */
745int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
746 u64 block, u32 n_block, unsigned int tf_flags,
747 unsigned int tag)
748{
749 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
750 tf->flags |= tf_flags;
751
6d1245bf 752 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
753 /* yay, NCQ */
754 if (!lba_48_ok(block, n_block))
755 return -ERANGE;
756
757 tf->protocol = ATA_PROT_NCQ;
758 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
759
760 if (tf->flags & ATA_TFLAG_WRITE)
761 tf->command = ATA_CMD_FPDMA_WRITE;
762 else
763 tf->command = ATA_CMD_FPDMA_READ;
764
765 tf->nsect = tag << 3;
766 tf->hob_feature = (n_block >> 8) & 0xff;
767 tf->feature = n_block & 0xff;
768
769 tf->hob_lbah = (block >> 40) & 0xff;
770 tf->hob_lbam = (block >> 32) & 0xff;
771 tf->hob_lbal = (block >> 24) & 0xff;
772 tf->lbah = (block >> 16) & 0xff;
773 tf->lbam = (block >> 8) & 0xff;
774 tf->lbal = block & 0xff;
775
776 tf->device = 1 << 6;
777 if (tf->flags & ATA_TFLAG_FUA)
778 tf->device |= 1 << 7;
779 } else if (dev->flags & ATA_DFLAG_LBA) {
780 tf->flags |= ATA_TFLAG_LBA;
781
782 if (lba_28_ok(block, n_block)) {
783 /* use LBA28 */
784 tf->device |= (block >> 24) & 0xf;
785 } else if (lba_48_ok(block, n_block)) {
786 if (!(dev->flags & ATA_DFLAG_LBA48))
787 return -ERANGE;
788
789 /* use LBA48 */
790 tf->flags |= ATA_TFLAG_LBA48;
791
792 tf->hob_nsect = (n_block >> 8) & 0xff;
793
794 tf->hob_lbah = (block >> 40) & 0xff;
795 tf->hob_lbam = (block >> 32) & 0xff;
796 tf->hob_lbal = (block >> 24) & 0xff;
797 } else
798 /* request too large even for LBA48 */
799 return -ERANGE;
800
801 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
802 return -EINVAL;
803
804 tf->nsect = n_block & 0xff;
805
806 tf->lbah = (block >> 16) & 0xff;
807 tf->lbam = (block >> 8) & 0xff;
808 tf->lbal = block & 0xff;
809
810 tf->device |= ATA_LBA;
811 } else {
812 /* CHS */
813 u32 sect, head, cyl, track;
814
815 /* The request -may- be too large for CHS addressing. */
816 if (!lba_28_ok(block, n_block))
817 return -ERANGE;
818
819 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
820 return -EINVAL;
821
822 /* Convert LBA to CHS */
823 track = (u32)block / dev->sectors;
824 cyl = track / dev->heads;
825 head = track % dev->heads;
826 sect = (u32)block % dev->sectors + 1;
827
828 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
829 (u32)block, track, cyl, head, sect);
830
831 /* Check whether the converted CHS can fit.
832 Cylinder: 0-65535
833 Head: 0-15
834 Sector: 1-255*/
835 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
836 return -ERANGE;
837
838 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
839 tf->lbal = sect;
840 tf->lbam = cyl;
841 tf->lbah = cyl >> 8;
842 tf->device |= head;
843 }
844
845 return 0;
846}
847
cb95d562
TH
848/**
849 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
850 * @pio_mask: pio_mask
851 * @mwdma_mask: mwdma_mask
852 * @udma_mask: udma_mask
853 *
854 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
855 * unsigned int xfer_mask.
856 *
857 * LOCKING:
858 * None.
859 *
860 * RETURNS:
861 * Packed xfer_mask.
862 */
7dc951ae
TH
863unsigned long ata_pack_xfermask(unsigned long pio_mask,
864 unsigned long mwdma_mask,
865 unsigned long udma_mask)
cb95d562
TH
866{
867 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
868 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
869 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
870}
871
c0489e4e
TH
872/**
873 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
874 * @xfer_mask: xfer_mask to unpack
875 * @pio_mask: resulting pio_mask
876 * @mwdma_mask: resulting mwdma_mask
877 * @udma_mask: resulting udma_mask
878 *
879 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
880 * Any NULL distination masks will be ignored.
881 */
7dc951ae
TH
882void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
883 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
884{
885 if (pio_mask)
886 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
887 if (mwdma_mask)
888 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
889 if (udma_mask)
890 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
891}
892
cb95d562 893static const struct ata_xfer_ent {
be9a50c8 894 int shift, bits;
cb95d562
TH
895 u8 base;
896} ata_xfer_tbl[] = {
70cd071e
TH
897 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
898 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
899 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
900 { -1, },
901};
902
903/**
904 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
905 * @xfer_mask: xfer_mask of interest
906 *
907 * Return matching XFER_* value for @xfer_mask. Only the highest
908 * bit of @xfer_mask is considered.
909 *
910 * LOCKING:
911 * None.
912 *
913 * RETURNS:
70cd071e 914 * Matching XFER_* value, 0xff if no match found.
cb95d562 915 */
7dc951ae 916u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
917{
918 int highbit = fls(xfer_mask) - 1;
919 const struct ata_xfer_ent *ent;
920
921 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
922 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
923 return ent->base + highbit - ent->shift;
70cd071e 924 return 0xff;
cb95d562
TH
925}
926
927/**
928 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
929 * @xfer_mode: XFER_* of interest
930 *
931 * Return matching xfer_mask for @xfer_mode.
932 *
933 * LOCKING:
934 * None.
935 *
936 * RETURNS:
937 * Matching xfer_mask, 0 if no match found.
938 */
7dc951ae 939unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
940{
941 const struct ata_xfer_ent *ent;
942
943 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
944 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
945 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
946 & ~((1 << ent->shift) - 1);
cb95d562
TH
947 return 0;
948}
949
950/**
951 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
952 * @xfer_mode: XFER_* of interest
953 *
954 * Return matching xfer_shift for @xfer_mode.
955 *
956 * LOCKING:
957 * None.
958 *
959 * RETURNS:
960 * Matching xfer_shift, -1 if no match found.
961 */
7dc951ae 962int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
963{
964 const struct ata_xfer_ent *ent;
965
966 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
967 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
968 return ent->shift;
969 return -1;
970}
971
1da177e4 972/**
1da7b0d0
TH
973 * ata_mode_string - convert xfer_mask to string
974 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
975 *
976 * Determine string which represents the highest speed
1da7b0d0 977 * (highest bit in @modemask).
1da177e4
LT
978 *
979 * LOCKING:
980 * None.
981 *
982 * RETURNS:
983 * Constant C string representing highest speed listed in
1da7b0d0 984 * @mode_mask, or the constant C string "<n/a>".
1da177e4 985 */
7dc951ae 986const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 987{
75f554bc
TH
988 static const char * const xfer_mode_str[] = {
989 "PIO0",
990 "PIO1",
991 "PIO2",
992 "PIO3",
993 "PIO4",
b352e57d
AC
994 "PIO5",
995 "PIO6",
75f554bc
TH
996 "MWDMA0",
997 "MWDMA1",
998 "MWDMA2",
b352e57d
AC
999 "MWDMA3",
1000 "MWDMA4",
75f554bc
TH
1001 "UDMA/16",
1002 "UDMA/25",
1003 "UDMA/33",
1004 "UDMA/44",
1005 "UDMA/66",
1006 "UDMA/100",
1007 "UDMA/133",
1008 "UDMA7",
1009 };
1da7b0d0 1010 int highbit;
1da177e4 1011
1da7b0d0
TH
1012 highbit = fls(xfer_mask) - 1;
1013 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1014 return xfer_mode_str[highbit];
1da177e4 1015 return "<n/a>";
1da177e4
LT
1016}
1017
d9027470 1018const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1019{
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
8522ee25 1023 "6.0 Gbps",
4c360c81
TH
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029}
1030
1da177e4
LT
1031/**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
633273a3
TH
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1044 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1045 */
057ace5e 1046unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1047{
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1da177e4 1068 */
633273a3 1069 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1070 DPRINTK("found ATA device by sig\n");
1071 return ATA_DEV_ATA;
1072 }
1073
633273a3 1074 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1075 DPRINTK("found ATAPI device by sig\n");
1076 return ATA_DEV_ATAPI;
1077 }
1078
633273a3
TH
1079 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1080 DPRINTK("found PMP device by sig\n");
1081 return ATA_DEV_PMP;
1082 }
1083
1084 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1085 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1086 return ATA_DEV_SEMB;
633273a3
TH
1087 }
1088
1da177e4
LT
1089 DPRINTK("unknown device\n");
1090 return ATA_DEV_UNKNOWN;
1091}
1092
1da177e4 1093/**
6a62a04d 1094 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1095 * @id: IDENTIFY DEVICE results we will examine
1096 * @s: string into which data is output
1097 * @ofs: offset into identify device page
1098 * @len: length of string to return. must be an even number.
1099 *
1100 * The strings in the IDENTIFY DEVICE page are broken up into
1101 * 16-bit chunks. Run through the string, and output each
1102 * 8-bit chunk linearly, regardless of platform.
1103 *
1104 * LOCKING:
1105 * caller.
1106 */
1107
6a62a04d
TH
1108void ata_id_string(const u16 *id, unsigned char *s,
1109 unsigned int ofs, unsigned int len)
1da177e4
LT
1110{
1111 unsigned int c;
1112
963e4975
AC
1113 BUG_ON(len & 1);
1114
1da177e4
LT
1115 while (len > 0) {
1116 c = id[ofs] >> 8;
1117 *s = c;
1118 s++;
1119
1120 c = id[ofs] & 0xff;
1121 *s = c;
1122 s++;
1123
1124 ofs++;
1125 len -= 2;
1126 }
1127}
1128
0e949ff3 1129/**
6a62a04d 1130 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1131 * @id: IDENTIFY DEVICE results we will examine
1132 * @s: string into which data is output
1133 * @ofs: offset into identify device page
1134 * @len: length of string to return. must be an odd number.
1135 *
6a62a04d 1136 * This function is identical to ata_id_string except that it
0e949ff3
TH
1137 * trims trailing spaces and terminates the resulting string with
1138 * null. @len must be actual maximum length (even number) + 1.
1139 *
1140 * LOCKING:
1141 * caller.
1142 */
6a62a04d
TH
1143void ata_id_c_string(const u16 *id, unsigned char *s,
1144 unsigned int ofs, unsigned int len)
0e949ff3
TH
1145{
1146 unsigned char *p;
1147
6a62a04d 1148 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1149
1150 p = s + strnlen(s, len - 1);
1151 while (p > s && p[-1] == ' ')
1152 p--;
1153 *p = '\0';
1154}
0baab86b 1155
db6f8759
TH
1156static u64 ata_id_n_sectors(const u16 *id)
1157{
1158 if (ata_id_has_lba(id)) {
1159 if (ata_id_has_lba48(id))
968e594a 1160 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1161 else
968e594a 1162 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1163 } else {
1164 if (ata_id_current_chs_valid(id))
968e594a
RH
1165 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1166 id[ATA_ID_CUR_SECTORS];
db6f8759 1167 else
968e594a
RH
1168 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1169 id[ATA_ID_SECTORS];
db6f8759
TH
1170 }
1171}
1172
a5987e0a 1173u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1174{
1175 u64 sectors = 0;
1176
1177 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1178 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1179 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1180 sectors |= (tf->lbah & 0xff) << 16;
1181 sectors |= (tf->lbam & 0xff) << 8;
1182 sectors |= (tf->lbal & 0xff);
1183
a5987e0a 1184 return sectors;
1e999736
AC
1185}
1186
a5987e0a 1187u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1188{
1189 u64 sectors = 0;
1190
1191 sectors |= (tf->device & 0x0f) << 24;
1192 sectors |= (tf->lbah & 0xff) << 16;
1193 sectors |= (tf->lbam & 0xff) << 8;
1194 sectors |= (tf->lbal & 0xff);
1195
a5987e0a 1196 return sectors;
1e999736
AC
1197}
1198
1199/**
c728a914
TH
1200 * ata_read_native_max_address - Read native max address
1201 * @dev: target device
1202 * @max_sectors: out parameter for the result native max address
1e999736 1203 *
c728a914
TH
1204 * Perform an LBA48 or LBA28 native size query upon the device in
1205 * question.
1e999736 1206 *
c728a914
TH
1207 * RETURNS:
1208 * 0 on success, -EACCES if command is aborted by the drive.
1209 * -EIO on other errors.
1e999736 1210 */
c728a914 1211static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1212{
c728a914 1213 unsigned int err_mask;
1e999736 1214 struct ata_taskfile tf;
c728a914 1215 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1216
1217 ata_tf_init(dev, &tf);
1218
c728a914 1219 /* always clear all address registers */
1e999736 1220 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1221
c728a914
TH
1222 if (lba48) {
1223 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1224 tf.flags |= ATA_TFLAG_LBA48;
1225 } else
1226 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1227
1e999736 1228 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1229 tf.device |= ATA_LBA;
1230
2b789108 1231 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1232 if (err_mask) {
1233 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1234 "max address (err_mask=0x%x)\n", err_mask);
1235 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1236 return -EACCES;
1237 return -EIO;
1238 }
1e999736 1239
c728a914 1240 if (lba48)
a5987e0a 1241 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1242 else
a5987e0a 1243 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1244 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1245 (*max_sectors)--;
c728a914 1246 return 0;
1e999736
AC
1247}
1248
1249/**
c728a914
TH
1250 * ata_set_max_sectors - Set max sectors
1251 * @dev: target device
6b38d1d1 1252 * @new_sectors: new max sectors value to set for the device
1e999736 1253 *
c728a914
TH
1254 * Set max sectors of @dev to @new_sectors.
1255 *
1256 * RETURNS:
1257 * 0 on success, -EACCES if command is aborted or denied (due to
1258 * previous non-volatile SET_MAX) by the drive. -EIO on other
1259 * errors.
1e999736 1260 */
05027adc 1261static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1262{
c728a914 1263 unsigned int err_mask;
1e999736 1264 struct ata_taskfile tf;
c728a914 1265 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1266
1267 new_sectors--;
1268
1269 ata_tf_init(dev, &tf);
1270
1e999736 1271 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1272
1273 if (lba48) {
1274 tf.command = ATA_CMD_SET_MAX_EXT;
1275 tf.flags |= ATA_TFLAG_LBA48;
1276
1277 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1278 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1279 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1280 } else {
c728a914
TH
1281 tf.command = ATA_CMD_SET_MAX;
1282
1e582ba4
TH
1283 tf.device |= (new_sectors >> 24) & 0xf;
1284 }
1285
1e999736 1286 tf.protocol |= ATA_PROT_NODATA;
c728a914 1287 tf.device |= ATA_LBA;
1e999736
AC
1288
1289 tf.lbal = (new_sectors >> 0) & 0xff;
1290 tf.lbam = (new_sectors >> 8) & 0xff;
1291 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1292
2b789108 1293 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1294 if (err_mask) {
1295 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1296 "max address (err_mask=0x%x)\n", err_mask);
1297 if (err_mask == AC_ERR_DEV &&
1298 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299 return -EACCES;
1300 return -EIO;
1301 }
1302
c728a914 1303 return 0;
1e999736
AC
1304}
1305
1306/**
1307 * ata_hpa_resize - Resize a device with an HPA set
1308 * @dev: Device to resize
1309 *
1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 * it if required to the full size of the media. The caller must check
1312 * the drive has the HPA feature set enabled.
05027adc
TH
1313 *
1314 * RETURNS:
1315 * 0 on success, -errno on failure.
1e999736 1316 */
05027adc 1317static int ata_hpa_resize(struct ata_device *dev)
1e999736 1318{
05027adc
TH
1319 struct ata_eh_context *ehc = &dev->link->eh_context;
1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1322 u64 sectors = ata_id_n_sectors(dev->id);
1323 u64 native_sectors;
c728a914 1324 int rc;
a617c09f 1325
05027adc
TH
1326 /* do we need to do it? */
1327 if (dev->class != ATA_DEV_ATA ||
1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1330 return 0;
1e999736 1331
05027adc
TH
1332 /* read native max address */
1333 rc = ata_read_native_max_address(dev, &native_sectors);
1334 if (rc) {
dda7aba1
TH
1335 /* If device aborted the command or HPA isn't going to
1336 * be unlocked, skip HPA resizing.
05027adc 1337 */
445d211b 1338 if (rc == -EACCES || !unlock_hpa) {
05027adc 1339 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1340 "broken, skipping HPA handling\n");
05027adc
TH
1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1342
1343 /* we can continue if device aborted the command */
1344 if (rc == -EACCES)
1345 rc = 0;
1e999736 1346 }
37301a55 1347
05027adc
TH
1348 return rc;
1349 }
5920dadf 1350 dev->n_native_sectors = native_sectors;
05027adc
TH
1351
1352 /* nothing to do? */
445d211b 1353 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1354 if (!print_info || native_sectors == sectors)
1355 return 0;
1356
1357 if (native_sectors > sectors)
1358 ata_dev_printk(dev, KERN_INFO,
1359 "HPA detected: current %llu, native %llu\n",
1360 (unsigned long long)sectors,
1361 (unsigned long long)native_sectors);
1362 else if (native_sectors < sectors)
1363 ata_dev_printk(dev, KERN_WARNING,
1364 "native sectors (%llu) is smaller than "
1365 "sectors (%llu)\n",
1366 (unsigned long long)native_sectors,
1367 (unsigned long long)sectors);
1368 return 0;
1369 }
1370
1371 /* let's unlock HPA */
1372 rc = ata_set_max_sectors(dev, native_sectors);
1373 if (rc == -EACCES) {
1374 /* if device aborted the command, skip HPA resizing */
1375 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1376 "(%llu -> %llu), skipping HPA handling\n",
1377 (unsigned long long)sectors,
1378 (unsigned long long)native_sectors);
1379 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1380 return 0;
1381 } else if (rc)
1382 return rc;
1383
1384 /* re-read IDENTIFY data */
1385 rc = ata_dev_reread_id(dev, 0);
1386 if (rc) {
1387 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1388 "data after HPA resizing\n");
1389 return rc;
1390 }
1391
1392 if (print_info) {
1393 u64 new_sectors = ata_id_n_sectors(dev->id);
1394 ata_dev_printk(dev, KERN_INFO,
1395 "HPA unlocked: %llu -> %llu, native %llu\n",
1396 (unsigned long long)sectors,
1397 (unsigned long long)new_sectors,
1398 (unsigned long long)native_sectors);
1399 }
1400
1401 return 0;
1e999736
AC
1402}
1403
1da177e4
LT
1404/**
1405 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1406 * @id: IDENTIFY DEVICE page to dump
1da177e4 1407 *
0bd3300a
TH
1408 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1409 * page.
1da177e4
LT
1410 *
1411 * LOCKING:
1412 * caller.
1413 */
1414
0bd3300a 1415static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1416{
1417 DPRINTK("49==0x%04x "
1418 "53==0x%04x "
1419 "63==0x%04x "
1420 "64==0x%04x "
1421 "75==0x%04x \n",
0bd3300a
TH
1422 id[49],
1423 id[53],
1424 id[63],
1425 id[64],
1426 id[75]);
1da177e4
LT
1427 DPRINTK("80==0x%04x "
1428 "81==0x%04x "
1429 "82==0x%04x "
1430 "83==0x%04x "
1431 "84==0x%04x \n",
0bd3300a
TH
1432 id[80],
1433 id[81],
1434 id[82],
1435 id[83],
1436 id[84]);
1da177e4
LT
1437 DPRINTK("88==0x%04x "
1438 "93==0x%04x\n",
0bd3300a
TH
1439 id[88],
1440 id[93]);
1da177e4
LT
1441}
1442
cb95d562
TH
1443/**
1444 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1445 * @id: IDENTIFY data to compute xfer mask from
1446 *
1447 * Compute the xfermask for this device. This is not as trivial
1448 * as it seems if we must consider early devices correctly.
1449 *
1450 * FIXME: pre IDE drive timing (do we care ?).
1451 *
1452 * LOCKING:
1453 * None.
1454 *
1455 * RETURNS:
1456 * Computed xfermask
1457 */
7dc951ae 1458unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1459{
7dc951ae 1460 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1461
1462 /* Usual case. Word 53 indicates word 64 is valid */
1463 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1464 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1465 pio_mask <<= 3;
1466 pio_mask |= 0x7;
1467 } else {
1468 /* If word 64 isn't valid then Word 51 high byte holds
1469 * the PIO timing number for the maximum. Turn it into
1470 * a mask.
1471 */
7a0f1c8a 1472 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1473 if (mode < 5) /* Valid PIO range */
2dcb407e 1474 pio_mask = (2 << mode) - 1;
46767aeb
AC
1475 else
1476 pio_mask = 1;
cb95d562
TH
1477
1478 /* But wait.. there's more. Design your standards by
1479 * committee and you too can get a free iordy field to
1480 * process. However its the speeds not the modes that
1481 * are supported... Note drivers using the timing API
1482 * will get this right anyway
1483 */
1484 }
1485
1486 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1487
b352e57d
AC
1488 if (ata_id_is_cfa(id)) {
1489 /*
1490 * Process compact flash extended modes
1491 */
62afe5d7
SS
1492 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1493 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1494
1495 if (pio)
1496 pio_mask |= (1 << 5);
1497 if (pio > 1)
1498 pio_mask |= (1 << 6);
1499 if (dma)
1500 mwdma_mask |= (1 << 3);
1501 if (dma > 1)
1502 mwdma_mask |= (1 << 4);
1503 }
1504
fb21f0d0
TH
1505 udma_mask = 0;
1506 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1507 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1508
1509 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1510}
1511
7102d230 1512static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1513{
77853bf2 1514 struct completion *waiting = qc->private_data;
a2a7a662 1515
a2a7a662 1516 complete(waiting);
a2a7a662
TH
1517}
1518
1519/**
2432697b 1520 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1521 * @dev: Device to which the command is sent
1522 * @tf: Taskfile registers for the command and the result
d69cf37d 1523 * @cdb: CDB for packet command
a2a7a662 1524 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1525 * @sgl: sg list for the data buffer of the command
2432697b 1526 * @n_elem: Number of sg entries
2b789108 1527 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1528 *
1529 * Executes libata internal command with timeout. @tf contains
1530 * command on entry and result on return. Timeout and error
1531 * conditions are reported via return value. No recovery action
1532 * is taken after a command times out. It's caller's duty to
1533 * clean up after timeout.
1534 *
1535 * LOCKING:
1536 * None. Should be called with kernel context, might sleep.
551e8889
TH
1537 *
1538 * RETURNS:
1539 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1540 */
2432697b
TH
1541unsigned ata_exec_internal_sg(struct ata_device *dev,
1542 struct ata_taskfile *tf, const u8 *cdb,
87260216 1543 int dma_dir, struct scatterlist *sgl,
2b789108 1544 unsigned int n_elem, unsigned long timeout)
a2a7a662 1545{
9af5c9c9
TH
1546 struct ata_link *link = dev->link;
1547 struct ata_port *ap = link->ap;
a2a7a662 1548 u8 command = tf->command;
87fbc5a0 1549 int auto_timeout = 0;
a2a7a662 1550 struct ata_queued_cmd *qc;
2ab7db1f 1551 unsigned int tag, preempted_tag;
dedaf2b0 1552 u32 preempted_sactive, preempted_qc_active;
da917d69 1553 int preempted_nr_active_links;
60be6b9a 1554 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1555 unsigned long flags;
77853bf2 1556 unsigned int err_mask;
d95a717f 1557 int rc;
a2a7a662 1558
ba6a1308 1559 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1560
e3180499 1561 /* no internal command while frozen */
b51e9e5d 1562 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1563 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1564 return AC_ERR_SYSTEM;
1565 }
1566
2ab7db1f 1567 /* initialize internal qc */
a2a7a662 1568
2ab7db1f
TH
1569 /* XXX: Tag 0 is used for drivers with legacy EH as some
1570 * drivers choke if any other tag is given. This breaks
1571 * ata_tag_internal() test for those drivers. Don't use new
1572 * EH stuff without converting to it.
1573 */
1574 if (ap->ops->error_handler)
1575 tag = ATA_TAG_INTERNAL;
1576 else
1577 tag = 0;
1578
8a8bc223
TH
1579 if (test_and_set_bit(tag, &ap->qc_allocated))
1580 BUG();
f69499f4 1581 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1582
1583 qc->tag = tag;
1584 qc->scsicmd = NULL;
1585 qc->ap = ap;
1586 qc->dev = dev;
1587 ata_qc_reinit(qc);
1588
9af5c9c9
TH
1589 preempted_tag = link->active_tag;
1590 preempted_sactive = link->sactive;
dedaf2b0 1591 preempted_qc_active = ap->qc_active;
da917d69 1592 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1593 link->active_tag = ATA_TAG_POISON;
1594 link->sactive = 0;
dedaf2b0 1595 ap->qc_active = 0;
da917d69 1596 ap->nr_active_links = 0;
2ab7db1f
TH
1597
1598 /* prepare & issue qc */
a2a7a662 1599 qc->tf = *tf;
d69cf37d
TH
1600 if (cdb)
1601 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1602 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1603 qc->dma_dir = dma_dir;
1604 if (dma_dir != DMA_NONE) {
2432697b 1605 unsigned int i, buflen = 0;
87260216 1606 struct scatterlist *sg;
2432697b 1607
87260216
JA
1608 for_each_sg(sgl, sg, n_elem, i)
1609 buflen += sg->length;
2432697b 1610
87260216 1611 ata_sg_init(qc, sgl, n_elem);
49c80429 1612 qc->nbytes = buflen;
a2a7a662
TH
1613 }
1614
77853bf2 1615 qc->private_data = &wait;
a2a7a662
TH
1616 qc->complete_fn = ata_qc_complete_internal;
1617
8e0e694a 1618 ata_qc_issue(qc);
a2a7a662 1619
ba6a1308 1620 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1621
87fbc5a0
TH
1622 if (!timeout) {
1623 if (ata_probe_timeout)
1624 timeout = ata_probe_timeout * 1000;
1625 else {
1626 timeout = ata_internal_cmd_timeout(dev, command);
1627 auto_timeout = 1;
1628 }
1629 }
2b789108 1630
c0c362b6
TH
1631 if (ap->ops->error_handler)
1632 ata_eh_release(ap);
1633
2b789108 1634 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1635
c0c362b6
TH
1636 if (ap->ops->error_handler)
1637 ata_eh_acquire(ap);
1638
c429137a 1639 ata_sff_flush_pio_task(ap);
41ade50c 1640
d95a717f 1641 if (!rc) {
ba6a1308 1642 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1643
1644 /* We're racing with irq here. If we lose, the
1645 * following test prevents us from completing the qc
d95a717f
TH
1646 * twice. If we win, the port is frozen and will be
1647 * cleaned up by ->post_internal_cmd().
a2a7a662 1648 */
77853bf2 1649 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1650 qc->err_mask |= AC_ERR_TIMEOUT;
1651
1652 if (ap->ops->error_handler)
1653 ata_port_freeze(ap);
1654 else
1655 ata_qc_complete(qc);
f15a1daf 1656
0dd4b21f
BP
1657 if (ata_msg_warn(ap))
1658 ata_dev_printk(dev, KERN_WARNING,
88574551 1659 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1660 }
1661
ba6a1308 1662 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1663 }
1664
d95a717f
TH
1665 /* do post_internal_cmd */
1666 if (ap->ops->post_internal_cmd)
1667 ap->ops->post_internal_cmd(qc);
1668
a51d644a
TH
1669 /* perform minimal error analysis */
1670 if (qc->flags & ATA_QCFLAG_FAILED) {
1671 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1672 qc->err_mask |= AC_ERR_DEV;
1673
1674 if (!qc->err_mask)
1675 qc->err_mask |= AC_ERR_OTHER;
1676
1677 if (qc->err_mask & ~AC_ERR_OTHER)
1678 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1679 }
1680
15869303 1681 /* finish up */
ba6a1308 1682 spin_lock_irqsave(ap->lock, flags);
15869303 1683
e61e0672 1684 *tf = qc->result_tf;
77853bf2
TH
1685 err_mask = qc->err_mask;
1686
1687 ata_qc_free(qc);
9af5c9c9
TH
1688 link->active_tag = preempted_tag;
1689 link->sactive = preempted_sactive;
dedaf2b0 1690 ap->qc_active = preempted_qc_active;
da917d69 1691 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1692
ba6a1308 1693 spin_unlock_irqrestore(ap->lock, flags);
15869303 1694
87fbc5a0
TH
1695 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1696 ata_internal_cmd_timed_out(dev, command);
1697
77853bf2 1698 return err_mask;
a2a7a662
TH
1699}
1700
2432697b 1701/**
33480a0e 1702 * ata_exec_internal - execute libata internal command
2432697b
TH
1703 * @dev: Device to which the command is sent
1704 * @tf: Taskfile registers for the command and the result
1705 * @cdb: CDB for packet command
1706 * @dma_dir: Data tranfer direction of the command
1707 * @buf: Data buffer of the command
1708 * @buflen: Length of data buffer
2b789108 1709 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1710 *
1711 * Wrapper around ata_exec_internal_sg() which takes simple
1712 * buffer instead of sg list.
1713 *
1714 * LOCKING:
1715 * None. Should be called with kernel context, might sleep.
1716 *
1717 * RETURNS:
1718 * Zero on success, AC_ERR_* mask on failure
1719 */
1720unsigned ata_exec_internal(struct ata_device *dev,
1721 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1722 int dma_dir, void *buf, unsigned int buflen,
1723 unsigned long timeout)
2432697b 1724{
33480a0e
TH
1725 struct scatterlist *psg = NULL, sg;
1726 unsigned int n_elem = 0;
2432697b 1727
33480a0e
TH
1728 if (dma_dir != DMA_NONE) {
1729 WARN_ON(!buf);
1730 sg_init_one(&sg, buf, buflen);
1731 psg = &sg;
1732 n_elem++;
1733 }
2432697b 1734
2b789108
TH
1735 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1736 timeout);
2432697b
TH
1737}
1738
977e6b9f
TH
1739/**
1740 * ata_do_simple_cmd - execute simple internal command
1741 * @dev: Device to which the command is sent
1742 * @cmd: Opcode to execute
1743 *
1744 * Execute a 'simple' command, that only consists of the opcode
1745 * 'cmd' itself, without filling any other registers
1746 *
1747 * LOCKING:
1748 * Kernel thread context (may sleep).
1749 *
1750 * RETURNS:
1751 * Zero on success, AC_ERR_* mask on failure
e58eb583 1752 */
77b08fb5 1753unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1754{
1755 struct ata_taskfile tf;
e58eb583
TH
1756
1757 ata_tf_init(dev, &tf);
1758
1759 tf.command = cmd;
1760 tf.flags |= ATA_TFLAG_DEVICE;
1761 tf.protocol = ATA_PROT_NODATA;
1762
2b789108 1763 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1764}
1765
1bc4ccff
AC
1766/**
1767 * ata_pio_need_iordy - check if iordy needed
1768 * @adev: ATA device
1769 *
1770 * Check if the current speed of the device requires IORDY. Used
1771 * by various controllers for chip configuration.
1772 */
1bc4ccff
AC
1773unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1774{
0d9e6659
TH
1775 /* Don't set IORDY if we're preparing for reset. IORDY may
1776 * lead to controller lock up on certain controllers if the
1777 * port is not occupied. See bko#11703 for details.
1778 */
1779 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1780 return 0;
1781 /* Controller doesn't support IORDY. Probably a pointless
1782 * check as the caller should know this.
1783 */
9af5c9c9 1784 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1785 return 0;
5c18c4d2
DD
1786 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1787 if (ata_id_is_cfa(adev->id)
1788 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1789 return 0;
432729f0
AC
1790 /* PIO3 and higher it is mandatory */
1791 if (adev->pio_mode > XFER_PIO_2)
1792 return 1;
1793 /* We turn it on when possible */
1794 if (ata_id_has_iordy(adev->id))
1bc4ccff 1795 return 1;
432729f0
AC
1796 return 0;
1797}
2e9edbf8 1798
432729f0
AC
1799/**
1800 * ata_pio_mask_no_iordy - Return the non IORDY mask
1801 * @adev: ATA device
1802 *
1803 * Compute the highest mode possible if we are not using iordy. Return
1804 * -1 if no iordy mode is available.
1805 */
432729f0
AC
1806static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1807{
1bc4ccff 1808 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1809 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1810 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1811 /* Is the speed faster than the drive allows non IORDY ? */
1812 if (pio) {
1813 /* This is cycle times not frequency - watch the logic! */
1814 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1815 return 3 << ATA_SHIFT_PIO;
1816 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1817 }
1818 }
432729f0 1819 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1820}
1821
963e4975
AC
1822/**
1823 * ata_do_dev_read_id - default ID read method
1824 * @dev: device
1825 * @tf: proposed taskfile
1826 * @id: data buffer
1827 *
1828 * Issue the identify taskfile and hand back the buffer containing
1829 * identify data. For some RAID controllers and for pre ATA devices
1830 * this function is wrapped or replaced by the driver
1831 */
1832unsigned int ata_do_dev_read_id(struct ata_device *dev,
1833 struct ata_taskfile *tf, u16 *id)
1834{
1835 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1836 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1837}
1838
1da177e4 1839/**
49016aca 1840 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1841 * @dev: target device
1842 * @p_class: pointer to class of the target device (may be changed)
bff04647 1843 * @flags: ATA_READID_* flags
fe635c7e 1844 * @id: buffer to read IDENTIFY data into
1da177e4 1845 *
49016aca
TH
1846 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1847 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1848 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1849 * for pre-ATA4 drives.
1da177e4 1850 *
50a99018 1851 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1852 * now we abort if we hit that case.
50a99018 1853 *
1da177e4 1854 * LOCKING:
49016aca
TH
1855 * Kernel thread context (may sleep)
1856 *
1857 * RETURNS:
1858 * 0 on success, -errno otherwise.
1da177e4 1859 */
a9beec95 1860int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1861 unsigned int flags, u16 *id)
1da177e4 1862{
9af5c9c9 1863 struct ata_port *ap = dev->link->ap;
49016aca 1864 unsigned int class = *p_class;
a0123703 1865 struct ata_taskfile tf;
49016aca
TH
1866 unsigned int err_mask = 0;
1867 const char *reason;
79b42bab 1868 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1869 int may_fallback = 1, tried_spinup = 0;
49016aca 1870 int rc;
1da177e4 1871
0dd4b21f 1872 if (ata_msg_ctl(ap))
7f5e4e8d 1873 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 1874
963e4975 1875retry:
3373efd8 1876 ata_tf_init(dev, &tf);
a0123703 1877
49016aca 1878 switch (class) {
79b42bab
TH
1879 case ATA_DEV_SEMB:
1880 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1881 case ATA_DEV_ATA:
a0123703 1882 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1883 break;
1884 case ATA_DEV_ATAPI:
a0123703 1885 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1886 break;
1887 default:
1888 rc = -ENODEV;
1889 reason = "unsupported class";
1890 goto err_out;
1da177e4
LT
1891 }
1892
a0123703 1893 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1894
1895 /* Some devices choke if TF registers contain garbage. Make
1896 * sure those are properly initialized.
1897 */
1898 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1899
1900 /* Device presence detection is unreliable on some
1901 * controllers. Always poll IDENTIFY if available.
1902 */
1903 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1904
963e4975
AC
1905 if (ap->ops->read_id)
1906 err_mask = ap->ops->read_id(dev, &tf, id);
1907 else
1908 err_mask = ata_do_dev_read_id(dev, &tf, id);
1909
a0123703 1910 if (err_mask) {
800b3996 1911 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
1912 ata_dev_printk(dev, KERN_DEBUG,
1913 "NODEV after polling detection\n");
55a8e2c8
TH
1914 return -ENOENT;
1915 }
1916
79b42bab
TH
1917 if (is_semb) {
1918 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
1919 "device w/ SEMB sig, disabled\n");
1920 /* SEMB is not supported yet */
1921 *p_class = ATA_DEV_SEMB_UNSUP;
1922 return 0;
1923 }
1924
1ffc151f
TH
1925 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1926 /* Device or controller might have reported
1927 * the wrong device class. Give a shot at the
1928 * other IDENTIFY if the current one is
1929 * aborted by the device.
1930 */
1931 if (may_fallback) {
1932 may_fallback = 0;
1933
1934 if (class == ATA_DEV_ATA)
1935 class = ATA_DEV_ATAPI;
1936 else
1937 class = ATA_DEV_ATA;
1938 goto retry;
1939 }
1940
1941 /* Control reaches here iff the device aborted
1942 * both flavors of IDENTIFYs which happens
1943 * sometimes with phantom devices.
1944 */
1945 ata_dev_printk(dev, KERN_DEBUG,
1946 "both IDENTIFYs aborted, assuming NODEV\n");
1947 return -ENOENT;
54936f8b
TH
1948 }
1949
49016aca
TH
1950 rc = -EIO;
1951 reason = "I/O error";
1da177e4
LT
1952 goto err_out;
1953 }
1954
43c9c591
TH
1955 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1956 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
1957 "class=%d may_fallback=%d tried_spinup=%d\n",
1958 class, may_fallback, tried_spinup);
1959 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1960 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1961 }
1962
54936f8b
TH
1963 /* Falling back doesn't make sense if ID data was read
1964 * successfully at least once.
1965 */
1966 may_fallback = 0;
1967
49016aca 1968 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1969
49016aca 1970 /* sanity check */
a4f5749b 1971 rc = -EINVAL;
6070068b 1972 reason = "device reports invalid type";
a4f5749b
TH
1973
1974 if (class == ATA_DEV_ATA) {
1975 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1976 goto err_out;
1977 } else {
1978 if (ata_id_is_ata(id))
1979 goto err_out;
49016aca
TH
1980 }
1981
169439c2
ML
1982 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1983 tried_spinup = 1;
1984 /*
1985 * Drive powered-up in standby mode, and requires a specific
1986 * SET_FEATURES spin-up subcommand before it will accept
1987 * anything other than the original IDENTIFY command.
1988 */
218f3d30 1989 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1990 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1991 rc = -EIO;
1992 reason = "SPINUP failed";
1993 goto err_out;
1994 }
1995 /*
1996 * If the drive initially returned incomplete IDENTIFY info,
1997 * we now must reissue the IDENTIFY command.
1998 */
1999 if (id[2] == 0x37c8)
2000 goto retry;
2001 }
2002
bff04647 2003 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2004 /*
2005 * The exact sequence expected by certain pre-ATA4 drives is:
2006 * SRST RESET
50a99018
AC
2007 * IDENTIFY (optional in early ATA)
2008 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2009 * anything else..
2010 * Some drives were very specific about that exact sequence.
50a99018
AC
2011 *
2012 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2013 * should never trigger.
49016aca
TH
2014 */
2015 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2016 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2017 if (err_mask) {
2018 rc = -EIO;
2019 reason = "INIT_DEV_PARAMS failed";
2020 goto err_out;
2021 }
2022
2023 /* current CHS translation info (id[53-58]) might be
2024 * changed. reread the identify device info.
2025 */
bff04647 2026 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2027 goto retry;
2028 }
2029 }
2030
2031 *p_class = class;
fe635c7e 2032
49016aca
TH
2033 return 0;
2034
2035 err_out:
88574551 2036 if (ata_msg_warn(ap))
0dd4b21f 2037 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2038 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2039 return rc;
2040}
2041
9062712f
TH
2042static int ata_do_link_spd_horkage(struct ata_device *dev)
2043{
2044 struct ata_link *plink = ata_dev_phys_link(dev);
2045 u32 target, target_limit;
2046
2047 if (!sata_scr_valid(plink))
2048 return 0;
2049
2050 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2051 target = 1;
2052 else
2053 return 0;
2054
2055 target_limit = (1 << target) - 1;
2056
2057 /* if already on stricter limit, no need to push further */
2058 if (plink->sata_spd_limit <= target_limit)
2059 return 0;
2060
2061 plink->sata_spd_limit = target_limit;
2062
2063 /* Request another EH round by returning -EAGAIN if link is
2064 * going faster than the target speed. Forward progress is
2065 * guaranteed by setting sata_spd_limit to target_limit above.
2066 */
2067 if (plink->sata_spd > target) {
2068 ata_dev_printk(dev, KERN_INFO,
2069 "applying link speed limit horkage to %s\n",
2070 sata_spd_string(target));
2071 return -EAGAIN;
2072 }
2073 return 0;
2074}
2075
3373efd8 2076static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2077{
9af5c9c9 2078 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2079
2080 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2081 return 0;
2082
9af5c9c9 2083 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2084}
2085
388539f3 2086static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2087 char *desc, size_t desc_sz)
2088{
9af5c9c9 2089 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2090 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2091 unsigned int err_mask;
2092 char *aa_desc = "";
a6e6ce8e
TH
2093
2094 if (!ata_id_has_ncq(dev->id)) {
2095 desc[0] = '\0';
388539f3 2096 return 0;
a6e6ce8e 2097 }
75683fe7 2098 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2099 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2100 return 0;
6919a0a6 2101 }
a6e6ce8e 2102 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2103 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2104 dev->flags |= ATA_DFLAG_NCQ;
2105 }
2106
388539f3
SL
2107 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2108 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2109 ata_id_has_fpdma_aa(dev->id)) {
2110 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2111 SATA_FPDMA_AA);
2112 if (err_mask) {
2113 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2114 "(error_mask=0x%x)\n", err_mask);
2115 if (err_mask != AC_ERR_DEV) {
2116 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2117 return -EIO;
2118 }
2119 } else
2120 aa_desc = ", AA";
2121 }
2122
a6e6ce8e 2123 if (hdepth >= ddepth)
388539f3 2124 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2125 else
388539f3
SL
2126 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2127 ddepth, aa_desc);
2128 return 0;
a6e6ce8e
TH
2129}
2130
49016aca 2131/**
ffeae418 2132 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2133 * @dev: Target device to configure
2134 *
2135 * Configure @dev according to @dev->id. Generic and low-level
2136 * driver specific fixups are also applied.
49016aca
TH
2137 *
2138 * LOCKING:
ffeae418
TH
2139 * Kernel thread context (may sleep)
2140 *
2141 * RETURNS:
2142 * 0 on success, -errno otherwise
49016aca 2143 */
efdaedc4 2144int ata_dev_configure(struct ata_device *dev)
49016aca 2145{
9af5c9c9
TH
2146 struct ata_port *ap = dev->link->ap;
2147 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2148 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2149 const u16 *id = dev->id;
7dc951ae 2150 unsigned long xfer_mask;
b352e57d 2151 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2152 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2153 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2154 int rc;
49016aca 2155
0dd4b21f 2156 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2157 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2158 __func__);
ffeae418 2159 return 0;
49016aca
TH
2160 }
2161
0dd4b21f 2162 if (ata_msg_probe(ap))
7f5e4e8d 2163 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2164
75683fe7
TH
2165 /* set horkage */
2166 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2167 ata_force_horkage(dev);
75683fe7 2168
50af2fa1
TH
2169 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2170 ata_dev_printk(dev, KERN_INFO,
2171 "unsupported device, disabling\n");
2172 ata_dev_disable(dev);
2173 return 0;
2174 }
2175
2486fa56
TH
2176 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2177 dev->class == ATA_DEV_ATAPI) {
2178 ata_dev_printk(dev, KERN_WARNING,
2179 "WARNING: ATAPI is %s, device ignored.\n",
2180 atapi_enabled ? "not supported with this driver"
2181 : "disabled");
2182 ata_dev_disable(dev);
2183 return 0;
2184 }
2185
9062712f
TH
2186 rc = ata_do_link_spd_horkage(dev);
2187 if (rc)
2188 return rc;
2189
6746544c
TH
2190 /* let ACPI work its magic */
2191 rc = ata_acpi_on_devcfg(dev);
2192 if (rc)
2193 return rc;
08573a86 2194
05027adc
TH
2195 /* massage HPA, do it early as it might change IDENTIFY data */
2196 rc = ata_hpa_resize(dev);
2197 if (rc)
2198 return rc;
2199
c39f5ebe 2200 /* print device capabilities */
0dd4b21f 2201 if (ata_msg_probe(ap))
88574551
TH
2202 ata_dev_printk(dev, KERN_DEBUG,
2203 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2204 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2205 __func__,
f15a1daf
TH
2206 id[49], id[82], id[83], id[84],
2207 id[85], id[86], id[87], id[88]);
c39f5ebe 2208
208a9933 2209 /* initialize to-be-configured parameters */
ea1dd4e1 2210 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2211 dev->max_sectors = 0;
2212 dev->cdb_len = 0;
2213 dev->n_sectors = 0;
2214 dev->cylinders = 0;
2215 dev->heads = 0;
2216 dev->sectors = 0;
e18086d6 2217 dev->multi_count = 0;
208a9933 2218
1da177e4
LT
2219 /*
2220 * common ATA, ATAPI feature tests
2221 */
2222
ff8854b2 2223 /* find max transfer mode; for printk only */
1148c3a7 2224 xfer_mask = ata_id_xfermask(id);
1da177e4 2225
0dd4b21f
BP
2226 if (ata_msg_probe(ap))
2227 ata_dump_id(id);
1da177e4 2228
ef143d57
AL
2229 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2230 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2231 sizeof(fwrevbuf));
2232
2233 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2234 sizeof(modelbuf));
2235
1da177e4
LT
2236 /* ATA-specific feature tests */
2237 if (dev->class == ATA_DEV_ATA) {
b352e57d 2238 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2239 /* CPRM may make this media unusable */
2240 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2241 ata_dev_printk(dev, KERN_WARNING,
2242 "supports DRM functions and may "
2243 "not be fully accessable.\n");
b352e57d 2244 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2245 } else {
2dcb407e 2246 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2247 /* Warn the user if the device has TPM extensions */
2248 if (ata_id_has_tpm(id))
2249 ata_dev_printk(dev, KERN_WARNING,
2250 "supports DRM functions and may "
2251 "not be fully accessable.\n");
2252 }
b352e57d 2253
1148c3a7 2254 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2255
e18086d6
ML
2256 /* get current R/W Multiple count setting */
2257 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2258 unsigned int max = dev->id[47] & 0xff;
2259 unsigned int cnt = dev->id[59] & 0xff;
2260 /* only recognize/allow powers of two here */
2261 if (is_power_of_2(max) && is_power_of_2(cnt))
2262 if (cnt <= max)
2263 dev->multi_count = cnt;
2264 }
3f64f565 2265
1148c3a7 2266 if (ata_id_has_lba(id)) {
4c2d721a 2267 const char *lba_desc;
388539f3 2268 char ncq_desc[24];
8bf62ece 2269
4c2d721a
TH
2270 lba_desc = "LBA";
2271 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2272 if (ata_id_has_lba48(id)) {
8bf62ece 2273 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2274 lba_desc = "LBA48";
6fc49adb
TH
2275
2276 if (dev->n_sectors >= (1UL << 28) &&
2277 ata_id_has_flush_ext(id))
2278 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2279 }
8bf62ece 2280
a6e6ce8e 2281 /* config NCQ */
388539f3
SL
2282 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2283 if (rc)
2284 return rc;
a6e6ce8e 2285
8bf62ece 2286 /* print device info to dmesg */
3f64f565
EM
2287 if (ata_msg_drv(ap) && print_info) {
2288 ata_dev_printk(dev, KERN_INFO,
2289 "%s: %s, %s, max %s\n",
2290 revbuf, modelbuf, fwrevbuf,
2291 ata_mode_string(xfer_mask));
2292 ata_dev_printk(dev, KERN_INFO,
2293 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2294 (unsigned long long)dev->n_sectors,
3f64f565
EM
2295 dev->multi_count, lba_desc, ncq_desc);
2296 }
ffeae418 2297 } else {
8bf62ece
AL
2298 /* CHS */
2299
2300 /* Default translation */
1148c3a7
TH
2301 dev->cylinders = id[1];
2302 dev->heads = id[3];
2303 dev->sectors = id[6];
8bf62ece 2304
1148c3a7 2305 if (ata_id_current_chs_valid(id)) {
8bf62ece 2306 /* Current CHS translation is valid. */
1148c3a7
TH
2307 dev->cylinders = id[54];
2308 dev->heads = id[55];
2309 dev->sectors = id[56];
8bf62ece
AL
2310 }
2311
2312 /* print device info to dmesg */
3f64f565 2313 if (ata_msg_drv(ap) && print_info) {
88574551 2314 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2315 "%s: %s, %s, max %s\n",
2316 revbuf, modelbuf, fwrevbuf,
2317 ata_mode_string(xfer_mask));
a84471fe 2318 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2319 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2320 (unsigned long long)dev->n_sectors,
2321 dev->multi_count, dev->cylinders,
2322 dev->heads, dev->sectors);
2323 }
07f6f7d0
AL
2324 }
2325
6e7846e9 2326 dev->cdb_len = 16;
1da177e4
LT
2327 }
2328
2329 /* ATAPI-specific feature tests */
2c13b7ce 2330 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2331 const char *cdb_intr_string = "";
2332 const char *atapi_an_string = "";
91163006 2333 const char *dma_dir_string = "";
7d77b247 2334 u32 sntf;
08a556db 2335
1148c3a7 2336 rc = atapi_cdb_len(id);
1da177e4 2337 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2338 if (ata_msg_warn(ap))
88574551
TH
2339 ata_dev_printk(dev, KERN_WARNING,
2340 "unsupported CDB len\n");
ffeae418 2341 rc = -EINVAL;
1da177e4
LT
2342 goto err_out_nosup;
2343 }
6e7846e9 2344 dev->cdb_len = (unsigned int) rc;
1da177e4 2345
7d77b247
TH
2346 /* Enable ATAPI AN if both the host and device have
2347 * the support. If PMP is attached, SNTF is required
2348 * to enable ATAPI AN to discern between PHY status
2349 * changed notifications and ATAPI ANs.
9f45cbd3 2350 */
e7ecd435
TH
2351 if (atapi_an &&
2352 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2353 (!sata_pmp_attached(ap) ||
7d77b247 2354 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2355 unsigned int err_mask;
2356
9f45cbd3 2357 /* issue SET feature command to turn this on */
218f3d30
JG
2358 err_mask = ata_dev_set_feature(dev,
2359 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2360 if (err_mask)
9f45cbd3 2361 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2362 "failed to enable ATAPI AN "
2363 "(err_mask=0x%x)\n", err_mask);
2364 else {
9f45cbd3 2365 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2366 atapi_an_string = ", ATAPI AN";
2367 }
9f45cbd3
KCA
2368 }
2369
08a556db 2370 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2371 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2372 cdb_intr_string = ", CDB intr";
2373 }
312f7da2 2374
91163006
TH
2375 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2376 dev->flags |= ATA_DFLAG_DMADIR;
2377 dma_dir_string = ", DMADIR";
2378 }
2379
1da177e4 2380 /* print device info to dmesg */
5afc8142 2381 if (ata_msg_drv(ap) && print_info)
ef143d57 2382 ata_dev_printk(dev, KERN_INFO,
91163006 2383 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2384 modelbuf, fwrevbuf,
12436c30 2385 ata_mode_string(xfer_mask),
91163006
TH
2386 cdb_intr_string, atapi_an_string,
2387 dma_dir_string);
1da177e4
LT
2388 }
2389
914ed354
TH
2390 /* determine max_sectors */
2391 dev->max_sectors = ATA_MAX_SECTORS;
2392 if (dev->flags & ATA_DFLAG_LBA48)
2393 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2394
c5038fc0
AC
2395 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2396 200 sectors */
3373efd8 2397 if (ata_dev_knobble(dev)) {
5afc8142 2398 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2399 ata_dev_printk(dev, KERN_INFO,
2400 "applying bridge limits\n");
5a529139 2401 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2402 dev->max_sectors = ATA_MAX_SECTORS;
2403 }
2404
f8d8e579 2405 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2406 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2407 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2408 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2409 }
f8d8e579 2410
75683fe7 2411 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2412 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2413 dev->max_sectors);
18d6e9d5 2414
4b2f3ede 2415 if (ap->ops->dev_config)
cd0d3bbc 2416 ap->ops->dev_config(dev);
4b2f3ede 2417
c5038fc0
AC
2418 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2419 /* Let the user know. We don't want to disallow opens for
2420 rescue purposes, or in case the vendor is just a blithering
2421 idiot. Do this after the dev_config call as some controllers
2422 with buggy firmware may want to avoid reporting false device
2423 bugs */
2424
2425 if (print_info) {
2426 ata_dev_printk(dev, KERN_WARNING,
2427"Drive reports diagnostics failure. This may indicate a drive\n");
2428 ata_dev_printk(dev, KERN_WARNING,
2429"fault or invalid emulation. Contact drive vendor for information.\n");
2430 }
2431 }
2432
ac70a964
TH
2433 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2434 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2435 "firmware update to be fully functional.\n");
2436 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2437 "or visit http://ata.wiki.kernel.org.\n");
2438 }
2439
ffeae418 2440 return 0;
1da177e4
LT
2441
2442err_out_nosup:
0dd4b21f 2443 if (ata_msg_probe(ap))
88574551 2444 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2445 "%s: EXIT, err\n", __func__);
ffeae418 2446 return rc;
1da177e4
LT
2447}
2448
be0d18df 2449/**
2e41e8e6 2450 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2451 * @ap: port
2452 *
2e41e8e6 2453 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2454 * detection.
2455 */
2456
2457int ata_cable_40wire(struct ata_port *ap)
2458{
2459 return ATA_CBL_PATA40;
2460}
2461
2462/**
2e41e8e6 2463 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2464 * @ap: port
2465 *
2e41e8e6 2466 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2467 * detection.
2468 */
2469
2470int ata_cable_80wire(struct ata_port *ap)
2471{
2472 return ATA_CBL_PATA80;
2473}
2474
2475/**
2476 * ata_cable_unknown - return unknown PATA cable.
2477 * @ap: port
2478 *
2479 * Helper method for drivers which have no PATA cable detection.
2480 */
2481
2482int ata_cable_unknown(struct ata_port *ap)
2483{
2484 return ATA_CBL_PATA_UNK;
2485}
2486
c88f90c3
TH
2487/**
2488 * ata_cable_ignore - return ignored PATA cable.
2489 * @ap: port
2490 *
2491 * Helper method for drivers which don't use cable type to limit
2492 * transfer mode.
2493 */
2494int ata_cable_ignore(struct ata_port *ap)
2495{
2496 return ATA_CBL_PATA_IGN;
2497}
2498
be0d18df
AC
2499/**
2500 * ata_cable_sata - return SATA cable type
2501 * @ap: port
2502 *
2503 * Helper method for drivers which have SATA cables
2504 */
2505
2506int ata_cable_sata(struct ata_port *ap)
2507{
2508 return ATA_CBL_SATA;
2509}
2510
1da177e4
LT
2511/**
2512 * ata_bus_probe - Reset and probe ATA bus
2513 * @ap: Bus to probe
2514 *
0cba632b
JG
2515 * Master ATA bus probing function. Initiates a hardware-dependent
2516 * bus reset, then attempts to identify any devices found on
2517 * the bus.
2518 *
1da177e4 2519 * LOCKING:
0cba632b 2520 * PCI/etc. bus probe sem.
1da177e4
LT
2521 *
2522 * RETURNS:
96072e69 2523 * Zero on success, negative errno otherwise.
1da177e4
LT
2524 */
2525
80289167 2526int ata_bus_probe(struct ata_port *ap)
1da177e4 2527{
28ca5c57 2528 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2529 int tries[ATA_MAX_DEVICES];
f58229f8 2530 int rc;
e82cbdb9 2531 struct ata_device *dev;
1da177e4 2532
1eca4365 2533 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2534 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2535
2536 retry:
1eca4365 2537 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2538 /* If we issue an SRST then an ATA drive (not ATAPI)
2539 * may change configuration and be in PIO0 timing. If
2540 * we do a hard reset (or are coming from power on)
2541 * this is true for ATA or ATAPI. Until we've set a
2542 * suitable controller mode we should not touch the
2543 * bus as we may be talking too fast.
2544 */
2545 dev->pio_mode = XFER_PIO_0;
2546
2547 /* If the controller has a pio mode setup function
2548 * then use it to set the chipset to rights. Don't
2549 * touch the DMA setup as that will be dealt with when
2550 * configuring devices.
2551 */
2552 if (ap->ops->set_piomode)
2553 ap->ops->set_piomode(ap, dev);
2554 }
2555
2044470c 2556 /* reset and determine device classes */
52783c5d 2557 ap->ops->phy_reset(ap);
2061a47a 2558
1eca4365 2559 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2560 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2561 classes[dev->devno] = dev->class;
2562 else
2563 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2564
52783c5d 2565 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2566 }
1da177e4 2567
f31f0cc2
JG
2568 /* read IDENTIFY page and configure devices. We have to do the identify
2569 specific sequence bass-ackwards so that PDIAG- is released by
2570 the slave device */
2571
1eca4365 2572 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2573 if (tries[dev->devno])
2574 dev->class = classes[dev->devno];
ffeae418 2575
14d2bac1 2576 if (!ata_dev_enabled(dev))
ffeae418 2577 continue;
ffeae418 2578
bff04647
TH
2579 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2580 dev->id);
14d2bac1
TH
2581 if (rc)
2582 goto fail;
f31f0cc2
JG
2583 }
2584
be0d18df
AC
2585 /* Now ask for the cable type as PDIAG- should have been released */
2586 if (ap->ops->cable_detect)
2587 ap->cbl = ap->ops->cable_detect(ap);
2588
1eca4365
TH
2589 /* We may have SATA bridge glue hiding here irrespective of
2590 * the reported cable types and sensed types. When SATA
2591 * drives indicate we have a bridge, we don't know which end
2592 * of the link the bridge is which is a problem.
2593 */
2594 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2595 if (ata_id_is_sata(dev->id))
2596 ap->cbl = ATA_CBL_SATA;
614fe29b 2597
f31f0cc2
JG
2598 /* After the identify sequence we can now set up the devices. We do
2599 this in the normal order so that the user doesn't get confused */
2600
1eca4365 2601 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2602 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2603 rc = ata_dev_configure(dev);
9af5c9c9 2604 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2605 if (rc)
2606 goto fail;
1da177e4
LT
2607 }
2608
e82cbdb9 2609 /* configure transfer mode */
0260731f 2610 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2611 if (rc)
51713d35 2612 goto fail;
1da177e4 2613
1eca4365
TH
2614 ata_for_each_dev(dev, &ap->link, ENABLED)
2615 return 0;
1da177e4 2616
96072e69 2617 return -ENODEV;
14d2bac1
TH
2618
2619 fail:
4ae72a1e
TH
2620 tries[dev->devno]--;
2621
14d2bac1
TH
2622 switch (rc) {
2623 case -EINVAL:
4ae72a1e 2624 /* eeek, something went very wrong, give up */
14d2bac1
TH
2625 tries[dev->devno] = 0;
2626 break;
4ae72a1e
TH
2627
2628 case -ENODEV:
2629 /* give it just one more chance */
2630 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2631 case -EIO:
4ae72a1e
TH
2632 if (tries[dev->devno] == 1) {
2633 /* This is the last chance, better to slow
2634 * down than lose it.
2635 */
a07d499b 2636 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2637 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2638 }
14d2bac1
TH
2639 }
2640
4ae72a1e 2641 if (!tries[dev->devno])
3373efd8 2642 ata_dev_disable(dev);
ec573755 2643
14d2bac1 2644 goto retry;
1da177e4
LT
2645}
2646
3be680b7
TH
2647/**
2648 * sata_print_link_status - Print SATA link status
936fd732 2649 * @link: SATA link to printk link status about
3be680b7
TH
2650 *
2651 * This function prints link speed and status of a SATA link.
2652 *
2653 * LOCKING:
2654 * None.
2655 */
6bdb4fc9 2656static void sata_print_link_status(struct ata_link *link)
3be680b7 2657{
6d5f9732 2658 u32 sstatus, scontrol, tmp;
3be680b7 2659
936fd732 2660 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2661 return;
936fd732 2662 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2663
b1c72916 2664 if (ata_phys_link_online(link)) {
3be680b7 2665 tmp = (sstatus >> 4) & 0xf;
936fd732 2666 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2667 "SATA link up %s (SStatus %X SControl %X)\n",
2668 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2669 } else {
936fd732 2670 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2671 "SATA link down (SStatus %X SControl %X)\n",
2672 sstatus, scontrol);
3be680b7
TH
2673 }
2674}
2675
ebdfca6e
AC
2676/**
2677 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2678 * @adev: device
2679 *
2680 * Obtain the other device on the same cable, or if none is
2681 * present NULL is returned
2682 */
2e9edbf8 2683
3373efd8 2684struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2685{
9af5c9c9
TH
2686 struct ata_link *link = adev->link;
2687 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2688 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2689 return NULL;
2690 return pair;
2691}
2692
1c3fae4d 2693/**
3c567b7d 2694 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2695 * @link: Link to adjust SATA spd limit for
a07d499b 2696 * @spd_limit: Additional limit
1c3fae4d 2697 *
936fd732 2698 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2699 * function only adjusts the limit. The change must be applied
3c567b7d 2700 * using sata_set_spd().
1c3fae4d 2701 *
a07d499b
TH
2702 * If @spd_limit is non-zero, the speed is limited to equal to or
2703 * lower than @spd_limit if such speed is supported. If
2704 * @spd_limit is slower than any supported speed, only the lowest
2705 * supported speed is allowed.
2706 *
1c3fae4d
TH
2707 * LOCKING:
2708 * Inherited from caller.
2709 *
2710 * RETURNS:
2711 * 0 on success, negative errno on failure
2712 */
a07d499b 2713int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2714{
81952c54 2715 u32 sstatus, spd, mask;
a07d499b 2716 int rc, bit;
1c3fae4d 2717
936fd732 2718 if (!sata_scr_valid(link))
008a7896
TH
2719 return -EOPNOTSUPP;
2720
2721 /* If SCR can be read, use it to determine the current SPD.
936fd732 2722 * If not, use cached value in link->sata_spd.
008a7896 2723 */
936fd732 2724 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2725 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2726 spd = (sstatus >> 4) & 0xf;
2727 else
936fd732 2728 spd = link->sata_spd;
1c3fae4d 2729
936fd732 2730 mask = link->sata_spd_limit;
1c3fae4d
TH
2731 if (mask <= 1)
2732 return -EINVAL;
008a7896
TH
2733
2734 /* unconditionally mask off the highest bit */
a07d499b
TH
2735 bit = fls(mask) - 1;
2736 mask &= ~(1 << bit);
1c3fae4d 2737
008a7896
TH
2738 /* Mask off all speeds higher than or equal to the current
2739 * one. Force 1.5Gbps if current SPD is not available.
2740 */
2741 if (spd > 1)
2742 mask &= (1 << (spd - 1)) - 1;
2743 else
2744 mask &= 1;
2745
2746 /* were we already at the bottom? */
1c3fae4d
TH
2747 if (!mask)
2748 return -EINVAL;
2749
a07d499b
TH
2750 if (spd_limit) {
2751 if (mask & ((1 << spd_limit) - 1))
2752 mask &= (1 << spd_limit) - 1;
2753 else {
2754 bit = ffs(mask) - 1;
2755 mask = 1 << bit;
2756 }
2757 }
2758
936fd732 2759 link->sata_spd_limit = mask;
1c3fae4d 2760
936fd732 2761 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2762 sata_spd_string(fls(mask)));
1c3fae4d
TH
2763
2764 return 0;
2765}
2766
936fd732 2767static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2768{
5270222f
TH
2769 struct ata_link *host_link = &link->ap->link;
2770 u32 limit, target, spd;
1c3fae4d 2771
5270222f
TH
2772 limit = link->sata_spd_limit;
2773
2774 /* Don't configure downstream link faster than upstream link.
2775 * It doesn't speed up anything and some PMPs choke on such
2776 * configuration.
2777 */
2778 if (!ata_is_host_link(link) && host_link->sata_spd)
2779 limit &= (1 << host_link->sata_spd) - 1;
2780
2781 if (limit == UINT_MAX)
2782 target = 0;
1c3fae4d 2783 else
5270222f 2784 target = fls(limit);
1c3fae4d
TH
2785
2786 spd = (*scontrol >> 4) & 0xf;
5270222f 2787 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2788
5270222f 2789 return spd != target;
1c3fae4d
TH
2790}
2791
2792/**
3c567b7d 2793 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2794 * @link: Link in question
1c3fae4d
TH
2795 *
2796 * Test whether the spd limit in SControl matches
936fd732 2797 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2798 * whether hardreset is necessary to apply SATA spd
2799 * configuration.
2800 *
2801 * LOCKING:
2802 * Inherited from caller.
2803 *
2804 * RETURNS:
2805 * 1 if SATA spd configuration is needed, 0 otherwise.
2806 */
1dc55e87 2807static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2808{
2809 u32 scontrol;
2810
936fd732 2811 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2812 return 1;
1c3fae4d 2813
936fd732 2814 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2815}
2816
2817/**
3c567b7d 2818 * sata_set_spd - set SATA spd according to spd limit
936fd732 2819 * @link: Link to set SATA spd for
1c3fae4d 2820 *
936fd732 2821 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2822 *
2823 * LOCKING:
2824 * Inherited from caller.
2825 *
2826 * RETURNS:
2827 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2828 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2829 */
936fd732 2830int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2831{
2832 u32 scontrol;
81952c54 2833 int rc;
1c3fae4d 2834
936fd732 2835 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2836 return rc;
1c3fae4d 2837
936fd732 2838 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2839 return 0;
2840
936fd732 2841 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2842 return rc;
2843
1c3fae4d
TH
2844 return 1;
2845}
2846
452503f9
AC
2847/*
2848 * This mode timing computation functionality is ported over from
2849 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2850 */
2851/*
b352e57d 2852 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2853 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2854 * for UDMA6, which is currently supported only by Maxtor drives.
2855 *
2856 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2857 */
2858
2859static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2860/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2861 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2862 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2863 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2864 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2865 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2866 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2867 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2868
2869 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2870 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2871 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2872
2873 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2874 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2875 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2876 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2877 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2878
2879/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2880 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2881 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2882 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2883 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2884 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2885 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2886 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2887
2888 { 0xFF }
2889};
2890
2dcb407e
JG
2891#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2892#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2893
2894static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2895{
3ada9c12
DD
2896 q->setup = EZ(t->setup * 1000, T);
2897 q->act8b = EZ(t->act8b * 1000, T);
2898 q->rec8b = EZ(t->rec8b * 1000, T);
2899 q->cyc8b = EZ(t->cyc8b * 1000, T);
2900 q->active = EZ(t->active * 1000, T);
2901 q->recover = EZ(t->recover * 1000, T);
2902 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2903 q->cycle = EZ(t->cycle * 1000, T);
2904 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
2905}
2906
2907void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2908 struct ata_timing *m, unsigned int what)
2909{
2910 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2911 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2912 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2913 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2914 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2915 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 2916 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
2917 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2918 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2919}
2920
6357357c 2921const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2922{
70cd071e
TH
2923 const struct ata_timing *t = ata_timing;
2924
2925 while (xfer_mode > t->mode)
2926 t++;
452503f9 2927
70cd071e
TH
2928 if (xfer_mode == t->mode)
2929 return t;
2930 return NULL;
452503f9
AC
2931}
2932
2933int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2934 struct ata_timing *t, int T, int UT)
2935{
9e8808a9 2936 const u16 *id = adev->id;
452503f9
AC
2937 const struct ata_timing *s;
2938 struct ata_timing p;
2939
2940 /*
2e9edbf8 2941 * Find the mode.
75b1f2f8 2942 */
452503f9
AC
2943
2944 if (!(s = ata_timing_find_mode(speed)))
2945 return -EINVAL;
2946
75b1f2f8
AL
2947 memcpy(t, s, sizeof(*s));
2948
452503f9
AC
2949 /*
2950 * If the drive is an EIDE drive, it can tell us it needs extended
2951 * PIO/MW_DMA cycle timing.
2952 */
2953
9e8808a9 2954 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 2955 memset(&p, 0, sizeof(p));
9e8808a9 2956
2dcb407e 2957 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
2958 if (speed <= XFER_PIO_2)
2959 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2960 else if ((speed <= XFER_PIO_4) ||
2961 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2962 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2963 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2964 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2965
452503f9
AC
2966 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2967 }
2968
2969 /*
2970 * Convert the timing to bus clock counts.
2971 */
2972
75b1f2f8 2973 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2974
2975 /*
c893a3ae
RD
2976 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2977 * S.M.A.R.T * and some other commands. We have to ensure that the
2978 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2979 */
2980
fd3367af 2981 if (speed > XFER_PIO_6) {
452503f9
AC
2982 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2983 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2984 }
2985
2986 /*
c893a3ae 2987 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2988 */
2989
2990 if (t->act8b + t->rec8b < t->cyc8b) {
2991 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2992 t->rec8b = t->cyc8b - t->act8b;
2993 }
2994
2995 if (t->active + t->recover < t->cycle) {
2996 t->active += (t->cycle - (t->active + t->recover)) / 2;
2997 t->recover = t->cycle - t->active;
2998 }
a617c09f 2999
4f701d1e
AC
3000 /* In a few cases quantisation may produce enough errors to
3001 leave t->cycle too low for the sum of active and recovery
3002 if so we must correct this */
3003 if (t->active + t->recover > t->cycle)
3004 t->cycle = t->active + t->recover;
452503f9
AC
3005
3006 return 0;
3007}
3008
a0f79b92
TH
3009/**
3010 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3011 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3012 * @cycle: cycle duration in ns
3013 *
3014 * Return matching xfer mode for @cycle. The returned mode is of
3015 * the transfer type specified by @xfer_shift. If @cycle is too
3016 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3017 * than the fastest known mode, the fasted mode is returned.
3018 *
3019 * LOCKING:
3020 * None.
3021 *
3022 * RETURNS:
3023 * Matching xfer_mode, 0xff if no match found.
3024 */
3025u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3026{
3027 u8 base_mode = 0xff, last_mode = 0xff;
3028 const struct ata_xfer_ent *ent;
3029 const struct ata_timing *t;
3030
3031 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3032 if (ent->shift == xfer_shift)
3033 base_mode = ent->base;
3034
3035 for (t = ata_timing_find_mode(base_mode);
3036 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3037 unsigned short this_cycle;
3038
3039 switch (xfer_shift) {
3040 case ATA_SHIFT_PIO:
3041 case ATA_SHIFT_MWDMA:
3042 this_cycle = t->cycle;
3043 break;
3044 case ATA_SHIFT_UDMA:
3045 this_cycle = t->udma;
3046 break;
3047 default:
3048 return 0xff;
3049 }
3050
3051 if (cycle > this_cycle)
3052 break;
3053
3054 last_mode = t->mode;
3055 }
3056
3057 return last_mode;
3058}
3059
cf176e1a
TH
3060/**
3061 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3062 * @dev: Device to adjust xfer masks
458337db 3063 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3064 *
3065 * Adjust xfer masks of @dev downward. Note that this function
3066 * does not apply the change. Invoking ata_set_mode() afterwards
3067 * will apply the limit.
3068 *
3069 * LOCKING:
3070 * Inherited from caller.
3071 *
3072 * RETURNS:
3073 * 0 on success, negative errno on failure
3074 */
458337db 3075int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3076{
458337db 3077 char buf[32];
7dc951ae
TH
3078 unsigned long orig_mask, xfer_mask;
3079 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3080 int quiet, highbit;
cf176e1a 3081
458337db
TH
3082 quiet = !!(sel & ATA_DNXFER_QUIET);
3083 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3084
458337db
TH
3085 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3086 dev->mwdma_mask,
3087 dev->udma_mask);
3088 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3089
458337db
TH
3090 switch (sel) {
3091 case ATA_DNXFER_PIO:
3092 highbit = fls(pio_mask) - 1;
3093 pio_mask &= ~(1 << highbit);
3094 break;
3095
3096 case ATA_DNXFER_DMA:
3097 if (udma_mask) {
3098 highbit = fls(udma_mask) - 1;
3099 udma_mask &= ~(1 << highbit);
3100 if (!udma_mask)
3101 return -ENOENT;
3102 } else if (mwdma_mask) {
3103 highbit = fls(mwdma_mask) - 1;
3104 mwdma_mask &= ~(1 << highbit);
3105 if (!mwdma_mask)
3106 return -ENOENT;
3107 }
3108 break;
3109
3110 case ATA_DNXFER_40C:
3111 udma_mask &= ATA_UDMA_MASK_40C;
3112 break;
3113
3114 case ATA_DNXFER_FORCE_PIO0:
3115 pio_mask &= 1;
3116 case ATA_DNXFER_FORCE_PIO:
3117 mwdma_mask = 0;
3118 udma_mask = 0;
3119 break;
3120
458337db
TH
3121 default:
3122 BUG();
3123 }
3124
3125 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3126
3127 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3128 return -ENOENT;
3129
3130 if (!quiet) {
3131 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3132 snprintf(buf, sizeof(buf), "%s:%s",
3133 ata_mode_string(xfer_mask),
3134 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3135 else
3136 snprintf(buf, sizeof(buf), "%s",
3137 ata_mode_string(xfer_mask));
3138
3139 ata_dev_printk(dev, KERN_WARNING,
3140 "limiting speed to %s\n", buf);
3141 }
cf176e1a
TH
3142
3143 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3144 &dev->udma_mask);
3145
cf176e1a 3146 return 0;
cf176e1a
TH
3147}
3148
3373efd8 3149static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3150{
d0cb43b3 3151 struct ata_port *ap = dev->link->ap;
9af5c9c9 3152 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3153 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3154 const char *dev_err_whine = "";
3155 int ign_dev_err = 0;
d0cb43b3 3156 unsigned int err_mask = 0;
83206a29 3157 int rc;
1da177e4 3158
e8384607 3159 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3160 if (dev->xfer_shift == ATA_SHIFT_PIO)
3161 dev->flags |= ATA_DFLAG_PIO;
3162
d0cb43b3
TH
3163 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3164 dev_err_whine = " (SET_XFERMODE skipped)";
3165 else {
3166 if (nosetxfer)
3167 ata_dev_printk(dev, KERN_WARNING,
3168 "NOSETXFER but PATA detected - can't "
3169 "skip SETXFER, might malfunction\n");
3170 err_mask = ata_dev_set_xfermode(dev);
3171 }
2dcb407e 3172
4055dee7
TH
3173 if (err_mask & ~AC_ERR_DEV)
3174 goto fail;
3175
3176 /* revalidate */
3177 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3178 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3179 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3180 if (rc)
3181 return rc;
3182
b93fda12
AC
3183 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3184 /* Old CFA may refuse this command, which is just fine */
3185 if (ata_id_is_cfa(dev->id))
3186 ign_dev_err = 1;
3187 /* Catch several broken garbage emulations plus some pre
3188 ATA devices */
3189 if (ata_id_major_version(dev->id) == 0 &&
3190 dev->pio_mode <= XFER_PIO_2)
3191 ign_dev_err = 1;
3192 /* Some very old devices and some bad newer ones fail
3193 any kind of SET_XFERMODE request but support PIO0-2
3194 timings and no IORDY */
3195 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3196 ign_dev_err = 1;
3197 }
3acaf94b
AC
3198 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3199 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3200 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3201 dev->dma_mode == XFER_MW_DMA_0 &&
3202 (dev->id[63] >> 8) & 1)
4055dee7 3203 ign_dev_err = 1;
3acaf94b 3204
4055dee7
TH
3205 /* if the device is actually configured correctly, ignore dev err */
3206 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3207 ign_dev_err = 1;
1da177e4 3208
4055dee7
TH
3209 if (err_mask & AC_ERR_DEV) {
3210 if (!ign_dev_err)
3211 goto fail;
3212 else
3213 dev_err_whine = " (device error ignored)";
3214 }
48a8a14f 3215
23e71c3d
TH
3216 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3217 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3218
4055dee7
TH
3219 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3220 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3221 dev_err_whine);
3222
83206a29 3223 return 0;
4055dee7
TH
3224
3225 fail:
3226 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3227 "(err_mask=0x%x)\n", err_mask);
3228 return -EIO;
1da177e4
LT
3229}
3230
1da177e4 3231/**
04351821 3232 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3233 * @link: link on which timings will be programmed
1967b7ff 3234 * @r_failed_dev: out parameter for failed device
1da177e4 3235 *
04351821
AC
3236 * Standard implementation of the function used to tune and set
3237 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3238 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3239 * returned in @r_failed_dev.
780a87f7 3240 *
1da177e4 3241 * LOCKING:
0cba632b 3242 * PCI/etc. bus probe sem.
e82cbdb9
TH
3243 *
3244 * RETURNS:
3245 * 0 on success, negative errno otherwise
1da177e4 3246 */
04351821 3247
0260731f 3248int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3249{
0260731f 3250 struct ata_port *ap = link->ap;
e8e0619f 3251 struct ata_device *dev;
f58229f8 3252 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3253
a6d5a51c 3254 /* step 1: calculate xfer_mask */
1eca4365 3255 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3256 unsigned long pio_mask, dma_mask;
b3a70601 3257 unsigned int mode_mask;
a6d5a51c 3258
b3a70601
AC
3259 mode_mask = ATA_DMA_MASK_ATA;
3260 if (dev->class == ATA_DEV_ATAPI)
3261 mode_mask = ATA_DMA_MASK_ATAPI;
3262 else if (ata_id_is_cfa(dev->id))
3263 mode_mask = ATA_DMA_MASK_CFA;
3264
3373efd8 3265 ata_dev_xfermask(dev);
33267325 3266 ata_force_xfermask(dev);
1da177e4 3267
acf356b1
TH
3268 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3269 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3270
3271 if (libata_dma_mask & mode_mask)
3272 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3273 else
3274 dma_mask = 0;
3275
acf356b1
TH
3276 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3277 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3278
4f65977d 3279 found = 1;
b15b3eba 3280 if (ata_dma_enabled(dev))
5444a6f4 3281 used_dma = 1;
a6d5a51c 3282 }
4f65977d 3283 if (!found)
e82cbdb9 3284 goto out;
a6d5a51c
TH
3285
3286 /* step 2: always set host PIO timings */
1eca4365 3287 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3288 if (dev->pio_mode == 0xff) {
f15a1daf 3289 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3290 rc = -EINVAL;
e82cbdb9 3291 goto out;
e8e0619f
TH
3292 }
3293
3294 dev->xfer_mode = dev->pio_mode;
3295 dev->xfer_shift = ATA_SHIFT_PIO;
3296 if (ap->ops->set_piomode)
3297 ap->ops->set_piomode(ap, dev);
3298 }
1da177e4 3299
a6d5a51c 3300 /* step 3: set host DMA timings */
1eca4365
TH
3301 ata_for_each_dev(dev, link, ENABLED) {
3302 if (!ata_dma_enabled(dev))
e8e0619f
TH
3303 continue;
3304
3305 dev->xfer_mode = dev->dma_mode;
3306 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3307 if (ap->ops->set_dmamode)
3308 ap->ops->set_dmamode(ap, dev);
3309 }
1da177e4
LT
3310
3311 /* step 4: update devices' xfer mode */
1eca4365 3312 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3313 rc = ata_dev_set_mode(dev);
5bbc53f4 3314 if (rc)
e82cbdb9 3315 goto out;
83206a29 3316 }
1da177e4 3317
e8e0619f
TH
3318 /* Record simplex status. If we selected DMA then the other
3319 * host channels are not permitted to do so.
5444a6f4 3320 */
cca3974e 3321 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3322 ap->host->simplex_claimed = ap;
5444a6f4 3323
e82cbdb9
TH
3324 out:
3325 if (rc)
3326 *r_failed_dev = dev;
3327 return rc;
1da177e4
LT
3328}
3329
aa2731ad
TH
3330/**
3331 * ata_wait_ready - wait for link to become ready
3332 * @link: link to be waited on
3333 * @deadline: deadline jiffies for the operation
3334 * @check_ready: callback to check link readiness
3335 *
3336 * Wait for @link to become ready. @check_ready should return
3337 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3338 * link doesn't seem to be occupied, other errno for other error
3339 * conditions.
3340 *
3341 * Transient -ENODEV conditions are allowed for
3342 * ATA_TMOUT_FF_WAIT.
3343 *
3344 * LOCKING:
3345 * EH context.
3346 *
3347 * RETURNS:
3348 * 0 if @linke is ready before @deadline; otherwise, -errno.
3349 */
3350int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3351 int (*check_ready)(struct ata_link *link))
3352{
3353 unsigned long start = jiffies;
b48d58f5 3354 unsigned long nodev_deadline;
aa2731ad
TH
3355 int warned = 0;
3356
b48d58f5
TH
3357 /* choose which 0xff timeout to use, read comment in libata.h */
3358 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3359 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3360 else
3361 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3362
b1c72916
TH
3363 /* Slave readiness can't be tested separately from master. On
3364 * M/S emulation configuration, this function should be called
3365 * only on the master and it will handle both master and slave.
3366 */
3367 WARN_ON(link == link->ap->slave_link);
3368
aa2731ad
TH
3369 if (time_after(nodev_deadline, deadline))
3370 nodev_deadline = deadline;
3371
3372 while (1) {
3373 unsigned long now = jiffies;
3374 int ready, tmp;
3375
3376 ready = tmp = check_ready(link);
3377 if (ready > 0)
3378 return 0;
3379
b48d58f5
TH
3380 /*
3381 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3382 * is online. Also, some SATA devices take a long
b48d58f5
TH
3383 * time to clear 0xff after reset. Wait for
3384 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3385 * offline.
aa2731ad
TH
3386 *
3387 * Note that some PATA controllers (pata_ali) explode
3388 * if status register is read more than once when
3389 * there's no device attached.
3390 */
3391 if (ready == -ENODEV) {
3392 if (ata_link_online(link))
3393 ready = 0;
3394 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3395 !ata_link_offline(link) &&
3396 time_before(now, nodev_deadline))
3397 ready = 0;
3398 }
3399
3400 if (ready)
3401 return ready;
3402 if (time_after(now, deadline))
3403 return -EBUSY;
3404
3405 if (!warned && time_after(now, start + 5 * HZ) &&
3406 (deadline - now > 3 * HZ)) {
3407 ata_link_printk(link, KERN_WARNING,
3408 "link is slow to respond, please be patient "
3409 "(ready=%d)\n", tmp);
3410 warned = 1;
3411 }
3412
97750ceb 3413 ata_msleep(link->ap, 50);
aa2731ad
TH
3414 }
3415}
3416
3417/**
3418 * ata_wait_after_reset - wait for link to become ready after reset
3419 * @link: link to be waited on
3420 * @deadline: deadline jiffies for the operation
3421 * @check_ready: callback to check link readiness
3422 *
3423 * Wait for @link to become ready after reset.
3424 *
3425 * LOCKING:
3426 * EH context.
3427 *
3428 * RETURNS:
3429 * 0 if @linke is ready before @deadline; otherwise, -errno.
3430 */
2b4221bb 3431int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3432 int (*check_ready)(struct ata_link *link))
3433{
97750ceb 3434 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3435
3436 return ata_wait_ready(link, deadline, check_ready);
3437}
3438
d7bb4cc7 3439/**
936fd732
TH
3440 * sata_link_debounce - debounce SATA phy status
3441 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3442 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3443 * @deadline: deadline jiffies for the operation
d7bb4cc7 3444 *
1152b261 3445 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3446 * holding the same value where DET is not 1 for @duration polled
3447 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3448 * beginning of the stable state. Because DET gets stuck at 1 on
3449 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3450 * until timeout then returns 0 if DET is stable at 1.
3451 *
d4b2bab4
TH
3452 * @timeout is further limited by @deadline. The sooner of the
3453 * two is used.
3454 *
d7bb4cc7
TH
3455 * LOCKING:
3456 * Kernel thread context (may sleep)
3457 *
3458 * RETURNS:
3459 * 0 on success, -errno on failure.
3460 */
936fd732
TH
3461int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3462 unsigned long deadline)
7a7921e8 3463{
341c2c95
TH
3464 unsigned long interval = params[0];
3465 unsigned long duration = params[1];
d4b2bab4 3466 unsigned long last_jiffies, t;
d7bb4cc7
TH
3467 u32 last, cur;
3468 int rc;
3469
341c2c95 3470 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3471 if (time_before(t, deadline))
3472 deadline = t;
3473
936fd732 3474 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3475 return rc;
3476 cur &= 0xf;
3477
3478 last = cur;
3479 last_jiffies = jiffies;
3480
3481 while (1) {
97750ceb 3482 ata_msleep(link->ap, interval);
936fd732 3483 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3484 return rc;
3485 cur &= 0xf;
3486
3487 /* DET stable? */
3488 if (cur == last) {
d4b2bab4 3489 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3490 continue;
341c2c95
TH
3491 if (time_after(jiffies,
3492 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3493 return 0;
3494 continue;
3495 }
3496
3497 /* unstable, start over */
3498 last = cur;
3499 last_jiffies = jiffies;
3500
f1545154
TH
3501 /* Check deadline. If debouncing failed, return
3502 * -EPIPE to tell upper layer to lower link speed.
3503 */
d4b2bab4 3504 if (time_after(jiffies, deadline))
f1545154 3505 return -EPIPE;
d7bb4cc7
TH
3506 }
3507}
3508
3509/**
936fd732
TH
3510 * sata_link_resume - resume SATA link
3511 * @link: ATA link to resume SATA
d7bb4cc7 3512 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3513 * @deadline: deadline jiffies for the operation
d7bb4cc7 3514 *
936fd732 3515 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3516 *
3517 * LOCKING:
3518 * Kernel thread context (may sleep)
3519 *
3520 * RETURNS:
3521 * 0 on success, -errno on failure.
3522 */
936fd732
TH
3523int sata_link_resume(struct ata_link *link, const unsigned long *params,
3524 unsigned long deadline)
d7bb4cc7 3525{
5040ab67 3526 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3527 u32 scontrol, serror;
81952c54
TH
3528 int rc;
3529
936fd732 3530 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3531 return rc;
7a7921e8 3532
5040ab67
TH
3533 /*
3534 * Writes to SControl sometimes get ignored under certain
3535 * controllers (ata_piix SIDPR). Make sure DET actually is
3536 * cleared.
3537 */
3538 do {
3539 scontrol = (scontrol & 0x0f0) | 0x300;
3540 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3541 return rc;
3542 /*
3543 * Some PHYs react badly if SStatus is pounded
3544 * immediately after resuming. Delay 200ms before
3545 * debouncing.
3546 */
97750ceb 3547 ata_msleep(link->ap, 200);
81952c54 3548
5040ab67
TH
3549 /* is SControl restored correctly? */
3550 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3551 return rc;
3552 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3553
5040ab67
TH
3554 if ((scontrol & 0xf0f) != 0x300) {
3555 ata_link_printk(link, KERN_ERR,
3556 "failed to resume link (SControl %X)\n",
3557 scontrol);
3558 return 0;
3559 }
3560
3561 if (tries < ATA_LINK_RESUME_TRIES)
3562 ata_link_printk(link, KERN_WARNING,
3563 "link resume succeeded after %d retries\n",
3564 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3565
ac371987
TH
3566 if ((rc = sata_link_debounce(link, params, deadline)))
3567 return rc;
3568
f046519f 3569 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3570 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3571 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3572
f046519f 3573 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3574}
3575
1152b261
TH
3576/**
3577 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3578 * @link: ATA link to manipulate SControl for
3579 * @policy: LPM policy to configure
3580 * @spm_wakeup: initiate LPM transition to active state
3581 *
3582 * Manipulate the IPM field of the SControl register of @link
3583 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3584 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3585 * the link. This function also clears PHYRDY_CHG before
3586 * returning.
3587 *
3588 * LOCKING:
3589 * EH context.
3590 *
3591 * RETURNS:
3592 * 0 on succes, -errno otherwise.
3593 */
3594int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3595 bool spm_wakeup)
3596{
3597 struct ata_eh_context *ehc = &link->eh_context;
3598 bool woken_up = false;
3599 u32 scontrol;
3600 int rc;
3601
3602 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3603 if (rc)
3604 return rc;
3605
3606 switch (policy) {
3607 case ATA_LPM_MAX_POWER:
3608 /* disable all LPM transitions */
3609 scontrol |= (0x3 << 8);
3610 /* initiate transition to active state */
3611 if (spm_wakeup) {
3612 scontrol |= (0x4 << 12);
3613 woken_up = true;
3614 }
3615 break;
3616 case ATA_LPM_MED_POWER:
3617 /* allow LPM to PARTIAL */
3618 scontrol &= ~(0x1 << 8);
3619 scontrol |= (0x2 << 8);
3620 break;
3621 case ATA_LPM_MIN_POWER:
3622 /* no restrictions on LPM transitions */
3623 scontrol &= ~(0x3 << 8);
3624 break;
3625 default:
3626 WARN_ON(1);
3627 }
3628
3629 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3630 if (rc)
3631 return rc;
3632
3633 /* give the link time to transit out of LPM state */
3634 if (woken_up)
3635 msleep(10);
3636
3637 /* clear PHYRDY_CHG from SError */
3638 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3639 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3640}
3641
f5914a46 3642/**
0aa1113d 3643 * ata_std_prereset - prepare for reset
cc0680a5 3644 * @link: ATA link to be reset
d4b2bab4 3645 * @deadline: deadline jiffies for the operation
f5914a46 3646 *
cc0680a5 3647 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3648 * prereset makes libata abort whole reset sequence and give up
3649 * that port, so prereset should be best-effort. It does its
3650 * best to prepare for reset sequence but if things go wrong, it
3651 * should just whine, not fail.
f5914a46
TH
3652 *
3653 * LOCKING:
3654 * Kernel thread context (may sleep)
3655 *
3656 * RETURNS:
3657 * 0 on success, -errno otherwise.
3658 */
0aa1113d 3659int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3660{
cc0680a5 3661 struct ata_port *ap = link->ap;
936fd732 3662 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3663 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3664 int rc;
3665
f5914a46
TH
3666 /* if we're about to do hardreset, nothing more to do */
3667 if (ehc->i.action & ATA_EH_HARDRESET)
3668 return 0;
3669
936fd732 3670 /* if SATA, resume link */
a16abc0b 3671 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3672 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3673 /* whine about phy resume failure but proceed */
3674 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3675 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3676 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3677 }
3678
45db2f6c 3679 /* no point in trying softreset on offline link */
b1c72916 3680 if (ata_phys_link_offline(link))
45db2f6c
TH
3681 ehc->i.action &= ~ATA_EH_SOFTRESET;
3682
f5914a46
TH
3683 return 0;
3684}
3685
c2bd5804 3686/**
624d5c51
TH
3687 * sata_link_hardreset - reset link via SATA phy reset
3688 * @link: link to reset
3689 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3690 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3691 * @online: optional out parameter indicating link onlineness
3692 * @check_ready: optional callback to check link readiness
c2bd5804 3693 *
624d5c51 3694 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3695 * After hardreset, link readiness is waited upon using
3696 * ata_wait_ready() if @check_ready is specified. LLDs are
3697 * allowed to not specify @check_ready and wait itself after this
3698 * function returns. Device classification is LLD's
3699 * responsibility.
3700 *
3701 * *@online is set to one iff reset succeeded and @link is online
3702 * after reset.
c2bd5804
TH
3703 *
3704 * LOCKING:
3705 * Kernel thread context (may sleep)
3706 *
3707 * RETURNS:
3708 * 0 on success, -errno otherwise.
3709 */
624d5c51 3710int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3711 unsigned long deadline,
3712 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3713{
624d5c51 3714 u32 scontrol;
81952c54 3715 int rc;
852ee16a 3716
c2bd5804
TH
3717 DPRINTK("ENTER\n");
3718
9dadd45b
TH
3719 if (online)
3720 *online = false;
3721
936fd732 3722 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3723 /* SATA spec says nothing about how to reconfigure
3724 * spd. To be on the safe side, turn off phy during
3725 * reconfiguration. This works for at least ICH7 AHCI
3726 * and Sil3124.
3727 */
936fd732 3728 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3729 goto out;
81952c54 3730
a34b6fc0 3731 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3732
936fd732 3733 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3734 goto out;
1c3fae4d 3735
936fd732 3736 sata_set_spd(link);
1c3fae4d
TH
3737 }
3738
3739 /* issue phy wake/reset */
936fd732 3740 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3741 goto out;
81952c54 3742
852ee16a 3743 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3744
936fd732 3745 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3746 goto out;
c2bd5804 3747
1c3fae4d 3748 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3749 * 10.4.2 says at least 1 ms.
3750 */
97750ceb 3751 ata_msleep(link->ap, 1);
c2bd5804 3752
936fd732
TH
3753 /* bring link back */
3754 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3755 if (rc)
3756 goto out;
3757 /* if link is offline nothing more to do */
b1c72916 3758 if (ata_phys_link_offline(link))
9dadd45b
TH
3759 goto out;
3760
3761 /* Link is online. From this point, -ENODEV too is an error. */
3762 if (online)
3763 *online = true;
3764
071f44b1 3765 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3766 /* If PMP is supported, we have to do follow-up SRST.
3767 * Some PMPs don't send D2H Reg FIS after hardreset if
3768 * the first port is empty. Wait only for
3769 * ATA_TMOUT_PMP_SRST_WAIT.
3770 */
3771 if (check_ready) {
3772 unsigned long pmp_deadline;
3773
341c2c95
TH
3774 pmp_deadline = ata_deadline(jiffies,
3775 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3776 if (time_after(pmp_deadline, deadline))
3777 pmp_deadline = deadline;
3778 ata_wait_ready(link, pmp_deadline, check_ready);
3779 }
3780 rc = -EAGAIN;
3781 goto out;
3782 }
3783
3784 rc = 0;
3785 if (check_ready)
3786 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3787 out:
0cbf0711
TH
3788 if (rc && rc != -EAGAIN) {
3789 /* online is set iff link is online && reset succeeded */
3790 if (online)
3791 *online = false;
9dadd45b
TH
3792 ata_link_printk(link, KERN_ERR,
3793 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3794 }
b6103f6d
TH
3795 DPRINTK("EXIT, rc=%d\n", rc);
3796 return rc;
3797}
3798
57c9efdf
TH
3799/**
3800 * sata_std_hardreset - COMRESET w/o waiting or classification
3801 * @link: link to reset
3802 * @class: resulting class of attached device
3803 * @deadline: deadline jiffies for the operation
3804 *
3805 * Standard SATA COMRESET w/o waiting or classification.
3806 *
3807 * LOCKING:
3808 * Kernel thread context (may sleep)
3809 *
3810 * RETURNS:
3811 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3812 */
3813int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3814 unsigned long deadline)
3815{
3816 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3817 bool online;
3818 int rc;
3819
3820 /* do hardreset */
3821 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3822 return online ? -EAGAIN : rc;
3823}
3824
c2bd5804 3825/**
203c75b8 3826 * ata_std_postreset - standard postreset callback
cc0680a5 3827 * @link: the target ata_link
c2bd5804
TH
3828 * @classes: classes of attached devices
3829 *
3830 * This function is invoked after a successful reset. Note that
3831 * the device might have been reset more than once using
3832 * different reset methods before postreset is invoked.
c2bd5804 3833 *
c2bd5804
TH
3834 * LOCKING:
3835 * Kernel thread context (may sleep)
3836 */
203c75b8 3837void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3838{
f046519f
TH
3839 u32 serror;
3840
c2bd5804
TH
3841 DPRINTK("ENTER\n");
3842
f046519f
TH
3843 /* reset complete, clear SError */
3844 if (!sata_scr_read(link, SCR_ERROR, &serror))
3845 sata_scr_write(link, SCR_ERROR, serror);
3846
c2bd5804 3847 /* print link status */
936fd732 3848 sata_print_link_status(link);
c2bd5804 3849
c2bd5804
TH
3850 DPRINTK("EXIT\n");
3851}
3852
623a3128
TH
3853/**
3854 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3855 * @dev: device to compare against
3856 * @new_class: class of the new device
3857 * @new_id: IDENTIFY page of the new device
3858 *
3859 * Compare @new_class and @new_id against @dev and determine
3860 * whether @dev is the device indicated by @new_class and
3861 * @new_id.
3862 *
3863 * LOCKING:
3864 * None.
3865 *
3866 * RETURNS:
3867 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3868 */
3373efd8
TH
3869static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3870 const u16 *new_id)
623a3128
TH
3871{
3872 const u16 *old_id = dev->id;
a0cf733b
TH
3873 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3874 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3875
3876 if (dev->class != new_class) {
f15a1daf
TH
3877 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3878 dev->class, new_class);
623a3128
TH
3879 return 0;
3880 }
3881
a0cf733b
TH
3882 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3883 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3884 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3885 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3886
3887 if (strcmp(model[0], model[1])) {
f15a1daf
TH
3888 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3889 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
3890 return 0;
3891 }
3892
3893 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
3894 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3895 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
3896 return 0;
3897 }
3898
623a3128
TH
3899 return 1;
3900}
3901
3902/**
fe30911b 3903 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3904 * @dev: target ATA device
bff04647 3905 * @readid_flags: read ID flags
623a3128
TH
3906 *
3907 * Re-read IDENTIFY page and make sure @dev is still attached to
3908 * the port.
3909 *
3910 * LOCKING:
3911 * Kernel thread context (may sleep)
3912 *
3913 * RETURNS:
3914 * 0 on success, negative errno otherwise
3915 */
fe30911b 3916int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3917{
5eb45c02 3918 unsigned int class = dev->class;
9af5c9c9 3919 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3920 int rc;
3921
fe635c7e 3922 /* read ID data */
bff04647 3923 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3924 if (rc)
fe30911b 3925 return rc;
623a3128
TH
3926
3927 /* is the device still there? */
fe30911b
TH
3928 if (!ata_dev_same_device(dev, class, id))
3929 return -ENODEV;
623a3128 3930
fe635c7e 3931 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3932 return 0;
3933}
3934
3935/**
3936 * ata_dev_revalidate - Revalidate ATA device
3937 * @dev: device to revalidate
422c9daa 3938 * @new_class: new class code
fe30911b
TH
3939 * @readid_flags: read ID flags
3940 *
3941 * Re-read IDENTIFY page, make sure @dev is still attached to the
3942 * port and reconfigure it according to the new IDENTIFY page.
3943 *
3944 * LOCKING:
3945 * Kernel thread context (may sleep)
3946 *
3947 * RETURNS:
3948 * 0 on success, negative errno otherwise
3949 */
422c9daa
TH
3950int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3951 unsigned int readid_flags)
fe30911b 3952{
6ddcd3b0 3953 u64 n_sectors = dev->n_sectors;
5920dadf 3954 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
3955 int rc;
3956
3957 if (!ata_dev_enabled(dev))
3958 return -ENODEV;
3959
422c9daa
TH
3960 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3961 if (ata_class_enabled(new_class) &&
f0d0613d
BP
3962 new_class != ATA_DEV_ATA &&
3963 new_class != ATA_DEV_ATAPI &&
3964 new_class != ATA_DEV_SEMB) {
422c9daa
TH
3965 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
3966 dev->class, new_class);
3967 rc = -ENODEV;
3968 goto fail;
3969 }
3970
fe30911b
TH
3971 /* re-read ID */
3972 rc = ata_dev_reread_id(dev, readid_flags);
3973 if (rc)
3974 goto fail;
623a3128
TH
3975
3976 /* configure device according to the new ID */
efdaedc4 3977 rc = ata_dev_configure(dev);
6ddcd3b0
TH
3978 if (rc)
3979 goto fail;
3980
3981 /* verify n_sectors hasn't changed */
445d211b
TH
3982 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3983 dev->n_sectors == n_sectors)
3984 return 0;
3985
3986 /* n_sectors has changed */
3987 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
3988 (unsigned long long)n_sectors,
3989 (unsigned long long)dev->n_sectors);
3990
3991 /*
3992 * Something could have caused HPA to be unlocked
3993 * involuntarily. If n_native_sectors hasn't changed and the
3994 * new size matches it, keep the device.
3995 */
3996 if (dev->n_native_sectors == n_native_sectors &&
3997 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3998 ata_dev_printk(dev, KERN_WARNING,
3999 "new n_sectors matches native, probably "
68939ce5
TH
4000 "late HPA unlock, n_sectors updated\n");
4001 /* use the larger n_sectors */
445d211b 4002 return 0;
6ddcd3b0
TH
4003 }
4004
445d211b
TH
4005 /*
4006 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4007 * unlocking HPA in those cases.
4008 *
4009 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4010 */
4011 if (dev->n_native_sectors == n_native_sectors &&
4012 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4013 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4014 ata_dev_printk(dev, KERN_WARNING,
4015 "old n_sectors matches native, probably "
4016 "late HPA lock, will try to unlock HPA\n");
4017 /* try unlocking HPA */
4018 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4019 rc = -EIO;
4020 } else
4021 rc = -ENODEV;
623a3128 4022
445d211b
TH
4023 /* restore original n_[native_]sectors and fail */
4024 dev->n_native_sectors = n_native_sectors;
4025 dev->n_sectors = n_sectors;
623a3128 4026 fail:
f15a1daf 4027 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4028 return rc;
4029}
4030
6919a0a6
AC
4031struct ata_blacklist_entry {
4032 const char *model_num;
4033 const char *model_rev;
4034 unsigned long horkage;
4035};
4036
4037static const struct ata_blacklist_entry ata_device_blacklist [] = {
4038 /* Devices with DMA related problems under Linux */
4039 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4040 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4041 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4042 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4043 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4044 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4045 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4046 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4047 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4048 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4049 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4050 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4051 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4052 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4053 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4054 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4055 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4056 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4057 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4058 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4059 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4060 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4061 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4062 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4063 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4064 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4065 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4066 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4067 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4068 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4069
18d6e9d5 4070 /* Weird ATAPI devices */
40a1d531 4071 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4072 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4073
6919a0a6
AC
4074 /* Devices we expect to fail diagnostics */
4075
4076 /* Devices where NCQ should be avoided */
4077 /* NCQ is slow */
2dcb407e 4078 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4079 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4080 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4081 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4082 /* NCQ is broken */
539cc7c7 4083 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4084 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4085 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4086 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4087 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4088
ac70a964 4089 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4090 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4091 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4092
4d1f9082 4093 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4094 ATA_HORKAGE_FIRMWARE_WARN },
4095
4d1f9082 4096 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4097 ATA_HORKAGE_FIRMWARE_WARN },
4098
4d1f9082 4099 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4100 ATA_HORKAGE_FIRMWARE_WARN },
4101
36e337d0
RH
4102 /* Blacklist entries taken from Silicon Image 3124/3132
4103 Windows driver .inf file - also several Linux problem reports */
4104 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4105 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4106 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4107
68b0ddb2
TH
4108 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4109 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4110
16c55b03
TH
4111 /* devices which puke on READ_NATIVE_MAX */
4112 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4113 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4114 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4115 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4116
7831387b
TH
4117 /* this one allows HPA unlocking but fails IOs on the area */
4118 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4119
93328e11
AC
4120 /* Devices which report 1 sector over size HPA */
4121 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4122 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4123 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4124
6bbfd53d
AC
4125 /* Devices which get the IVB wrong */
4126 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4127 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4128 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4129
9ce8e307
JA
4130 /* Devices that do not need bridging limits applied */
4131 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4132
9062712f
TH
4133 /* Devices which aren't very happy with higher link speeds */
4134 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4135
d0cb43b3
TH
4136 /*
4137 * Devices which choke on SETXFER. Applies only if both the
4138 * device and controller are SATA.
4139 */
4140 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4141
6919a0a6
AC
4142 /* End Marker */
4143 { }
1da177e4 4144};
2e9edbf8 4145
bce036ce
ML
4146/**
4147 * glob_match - match a text string against a glob-style pattern
4148 * @text: the string to be examined
4149 * @pattern: the glob-style pattern to be matched against
4150 *
4151 * Either/both of text and pattern can be empty strings.
4152 *
4153 * Match text against a glob-style pattern, with wildcards and simple sets:
4154 *
4155 * ? matches any single character.
4156 * * matches any run of characters.
4157 * [xyz] matches a single character from the set: x, y, or z.
2f9e4d16
ML
4158 * [a-d] matches a single character from the range: a, b, c, or d.
4159 * [a-d0-9] matches a single character from either range.
bce036ce 4160 *
2f9e4d16
ML
4161 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4162 * Behaviour with malformed patterns is undefined, though generally reasonable.
bce036ce 4163 *
3d2be54b 4164 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
bce036ce
ML
4165 *
4166 * This function uses one level of recursion per '*' in pattern.
4167 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4168 * this will not cause stack problems for any reasonable use here.
4169 *
4170 * RETURNS:
4171 * 0 on match, 1 otherwise.
4172 */
4173static int glob_match (const char *text, const char *pattern)
539cc7c7 4174{
bce036ce
ML
4175 do {
4176 /* Match single character or a '?' wildcard */
4177 if (*text == *pattern || *pattern == '?') {
4178 if (!*pattern++)
4179 return 0; /* End of both strings: match */
4180 } else {
4181 /* Match single char against a '[' bracketed ']' pattern set */
4182 if (!*text || *pattern != '[')
4183 break; /* Not a pattern set */
2f9e4d16
ML
4184 while (*++pattern && *pattern != ']' && *text != *pattern) {
4185 if (*pattern == '-' && *(pattern - 1) != '[')
4186 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4187 ++pattern;
4188 break;
4189 }
4190 }
bce036ce
ML
4191 if (!*pattern || *pattern == ']')
4192 return 1; /* No match */
4193 while (*pattern && *pattern++ != ']');
4194 }
4195 } while (*++text && *pattern);
4196
4197 /* Match any run of chars against a '*' wildcard */
4198 if (*pattern == '*') {
4199 if (!*++pattern)
4200 return 0; /* Match: avoid recursion at end of pattern */
4201 /* Loop to handle additional pattern chars after the wildcard */
4202 while (*text) {
4203 if (glob_match(text, pattern) == 0)
4204 return 0; /* Remainder matched */
4205 ++text; /* Absorb (match) this char and try again */
317b50b8
AP
4206 }
4207 }
bce036ce
ML
4208 if (!*text && !*pattern)
4209 return 0; /* End of both strings: match */
4210 return 1; /* No match */
539cc7c7 4211}
bce036ce 4212
75683fe7 4213static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4214{
8bfa79fc
TH
4215 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4216 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4217 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4218
8bfa79fc
TH
4219 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4220 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4221
6919a0a6 4222 while (ad->model_num) {
bce036ce 4223 if (!glob_match(model_num, ad->model_num)) {
6919a0a6
AC
4224 if (ad->model_rev == NULL)
4225 return ad->horkage;
bce036ce 4226 if (!glob_match(model_rev, ad->model_rev))
6919a0a6 4227 return ad->horkage;
f4b15fef 4228 }
6919a0a6 4229 ad++;
f4b15fef 4230 }
1da177e4
LT
4231 return 0;
4232}
4233
6919a0a6
AC
4234static int ata_dma_blacklisted(const struct ata_device *dev)
4235{
4236 /* We don't support polling DMA.
4237 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4238 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4239 */
9af5c9c9 4240 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4241 (dev->flags & ATA_DFLAG_CDB_INTR))
4242 return 1;
75683fe7 4243 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4244}
4245
6bbfd53d
AC
4246/**
4247 * ata_is_40wire - check drive side detection
4248 * @dev: device
4249 *
4250 * Perform drive side detection decoding, allowing for device vendors
4251 * who can't follow the documentation.
4252 */
4253
4254static int ata_is_40wire(struct ata_device *dev)
4255{
4256 if (dev->horkage & ATA_HORKAGE_IVB)
4257 return ata_drive_40wire_relaxed(dev->id);
4258 return ata_drive_40wire(dev->id);
4259}
4260
15a5551c
AC
4261/**
4262 * cable_is_40wire - 40/80/SATA decider
4263 * @ap: port to consider
4264 *
4265 * This function encapsulates the policy for speed management
4266 * in one place. At the moment we don't cache the result but
4267 * there is a good case for setting ap->cbl to the result when
4268 * we are called with unknown cables (and figuring out if it
4269 * impacts hotplug at all).
4270 *
4271 * Return 1 if the cable appears to be 40 wire.
4272 */
4273
4274static int cable_is_40wire(struct ata_port *ap)
4275{
4276 struct ata_link *link;
4277 struct ata_device *dev;
4278
4a9c7b33 4279 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4280 if (ap->cbl == ATA_CBL_PATA40)
4281 return 1;
4a9c7b33
TH
4282
4283 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4284 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4285 return 0;
4a9c7b33
TH
4286
4287 /* If the system is known to be 40 wire short cable (eg
4288 * laptop), then we allow 80 wire modes even if the drive
4289 * isn't sure.
4290 */
f792068e
AC
4291 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4292 return 0;
4a9c7b33
TH
4293
4294 /* If the controller doesn't know, we scan.
4295 *
4296 * Note: We look for all 40 wire detects at this point. Any
4297 * 80 wire detect is taken to be 80 wire cable because
4298 * - in many setups only the one drive (slave if present) will
4299 * give a valid detect
4300 * - if you have a non detect capable drive you don't want it
4301 * to colour the choice
4302 */
1eca4365
TH
4303 ata_for_each_link(link, ap, EDGE) {
4304 ata_for_each_dev(dev, link, ENABLED) {
4305 if (!ata_is_40wire(dev))
15a5551c
AC
4306 return 0;
4307 }
4308 }
4309 return 1;
4310}
4311
a6d5a51c
TH
4312/**
4313 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4314 * @dev: Device to compute xfermask for
4315 *
acf356b1
TH
4316 * Compute supported xfermask of @dev and store it in
4317 * dev->*_mask. This function is responsible for applying all
4318 * known limits including host controller limits, device
4319 * blacklist, etc...
a6d5a51c
TH
4320 *
4321 * LOCKING:
4322 * None.
a6d5a51c 4323 */
3373efd8 4324static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4325{
9af5c9c9
TH
4326 struct ata_link *link = dev->link;
4327 struct ata_port *ap = link->ap;
cca3974e 4328 struct ata_host *host = ap->host;
a6d5a51c 4329 unsigned long xfer_mask;
1da177e4 4330
37deecb5 4331 /* controller modes available */
565083e1
TH
4332 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4333 ap->mwdma_mask, ap->udma_mask);
4334
8343f889 4335 /* drive modes available */
37deecb5
TH
4336 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4337 dev->mwdma_mask, dev->udma_mask);
4338 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4339
b352e57d
AC
4340 /*
4341 * CFA Advanced TrueIDE timings are not allowed on a shared
4342 * cable
4343 */
4344 if (ata_dev_pair(dev)) {
4345 /* No PIO5 or PIO6 */
4346 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4347 /* No MWDMA3 or MWDMA 4 */
4348 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4349 }
4350
37deecb5
TH
4351 if (ata_dma_blacklisted(dev)) {
4352 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4353 ata_dev_printk(dev, KERN_WARNING,
4354 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4355 }
a6d5a51c 4356
14d66ab7 4357 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4358 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4359 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4360 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4361 "other device, disabling DMA\n");
5444a6f4 4362 }
565083e1 4363
e424675f
JG
4364 if (ap->flags & ATA_FLAG_NO_IORDY)
4365 xfer_mask &= ata_pio_mask_no_iordy(dev);
4366
5444a6f4 4367 if (ap->ops->mode_filter)
a76b62ca 4368 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4369
8343f889
RH
4370 /* Apply cable rule here. Don't apply it early because when
4371 * we handle hot plug the cable type can itself change.
4372 * Check this last so that we know if the transfer rate was
4373 * solely limited by the cable.
4374 * Unknown or 80 wire cables reported host side are checked
4375 * drive side as well. Cases where we know a 40wire cable
4376 * is used safely for 80 are not checked here.
4377 */
4378 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4379 /* UDMA/44 or higher would be available */
15a5551c 4380 if (cable_is_40wire(ap)) {
2dcb407e 4381 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4382 "limited to UDMA/33 due to 40-wire cable\n");
4383 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4384 }
4385
565083e1
TH
4386 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4387 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4388}
4389
1da177e4
LT
4390/**
4391 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4392 * @dev: Device to which command will be sent
4393 *
780a87f7
JG
4394 * Issue SET FEATURES - XFER MODE command to device @dev
4395 * on port @ap.
4396 *
1da177e4 4397 * LOCKING:
0cba632b 4398 * PCI/etc. bus probe sem.
83206a29
TH
4399 *
4400 * RETURNS:
4401 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4402 */
4403
3373efd8 4404static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4405{
a0123703 4406 struct ata_taskfile tf;
83206a29 4407 unsigned int err_mask;
1da177e4
LT
4408
4409 /* set up set-features taskfile */
4410 DPRINTK("set features - xfer mode\n");
4411
464cf177
TH
4412 /* Some controllers and ATAPI devices show flaky interrupt
4413 * behavior after setting xfer mode. Use polling instead.
4414 */
3373efd8 4415 ata_tf_init(dev, &tf);
a0123703
TH
4416 tf.command = ATA_CMD_SET_FEATURES;
4417 tf.feature = SETFEATURES_XFER;
464cf177 4418 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4419 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4420 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4421 if (ata_pio_need_iordy(dev))
4422 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4423 /* If the device has IORDY and the controller does not - turn it off */
4424 else if (ata_id_has_iordy(dev->id))
11b7becc 4425 tf.nsect = 0x01;
b9f8ab2d
AC
4426 else /* In the ancient relic department - skip all of this */
4427 return 0;
1da177e4 4428
2b789108 4429 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4430
4431 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4432 return err_mask;
4433}
1152b261 4434
9f45cbd3 4435/**
218f3d30 4436 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4437 * @dev: Device to which command will be sent
4438 * @enable: Whether to enable or disable the feature
218f3d30 4439 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4440 *
4441 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4442 * on port @ap with sector count
9f45cbd3
KCA
4443 *
4444 * LOCKING:
4445 * PCI/etc. bus probe sem.
4446 *
4447 * RETURNS:
4448 * 0 on success, AC_ERR_* mask otherwise.
4449 */
1152b261 4450unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4451{
4452 struct ata_taskfile tf;
4453 unsigned int err_mask;
4454
4455 /* set up set-features taskfile */
4456 DPRINTK("set features - SATA features\n");
4457
4458 ata_tf_init(dev, &tf);
4459 tf.command = ATA_CMD_SET_FEATURES;
4460 tf.feature = enable;
4461 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4462 tf.protocol = ATA_PROT_NODATA;
218f3d30 4463 tf.nsect = feature;
9f45cbd3 4464
2b789108 4465 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4466
83206a29
TH
4467 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4468 return err_mask;
1da177e4
LT
4469}
4470
8bf62ece
AL
4471/**
4472 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4473 * @dev: Device to which command will be sent
e2a7f77a
RD
4474 * @heads: Number of heads (taskfile parameter)
4475 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4476 *
4477 * LOCKING:
6aff8f1f
TH
4478 * Kernel thread context (may sleep)
4479 *
4480 * RETURNS:
4481 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4482 */
3373efd8
TH
4483static unsigned int ata_dev_init_params(struct ata_device *dev,
4484 u16 heads, u16 sectors)
8bf62ece 4485{
a0123703 4486 struct ata_taskfile tf;
6aff8f1f 4487 unsigned int err_mask;
8bf62ece
AL
4488
4489 /* Number of sectors per track 1-255. Number of heads 1-16 */
4490 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4491 return AC_ERR_INVALID;
8bf62ece
AL
4492
4493 /* set up init dev params taskfile */
4494 DPRINTK("init dev params \n");
4495
3373efd8 4496 ata_tf_init(dev, &tf);
a0123703
TH
4497 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4498 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4499 tf.protocol = ATA_PROT_NODATA;
4500 tf.nsect = sectors;
4501 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4502
2b789108 4503 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4504 /* A clean abort indicates an original or just out of spec drive
4505 and we should continue as we issue the setup based on the
4506 drive reported working geometry */
4507 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4508 err_mask = 0;
8bf62ece 4509
6aff8f1f
TH
4510 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4511 return err_mask;
8bf62ece
AL
4512}
4513
1da177e4 4514/**
0cba632b
JG
4515 * ata_sg_clean - Unmap DMA memory associated with command
4516 * @qc: Command containing DMA memory to be released
4517 *
4518 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4519 *
4520 * LOCKING:
cca3974e 4521 * spin_lock_irqsave(host lock)
1da177e4 4522 */
70e6ad0c 4523void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4524{
4525 struct ata_port *ap = qc->ap;
ff2aeb1e 4526 struct scatterlist *sg = qc->sg;
1da177e4
LT
4527 int dir = qc->dma_dir;
4528
efcb3cf7 4529 WARN_ON_ONCE(sg == NULL);
1da177e4 4530
dde20207 4531 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4532
dde20207 4533 if (qc->n_elem)
5825627c 4534 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4535
4536 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4537 qc->sg = NULL;
1da177e4
LT
4538}
4539
1da177e4 4540/**
5895ef9a 4541 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4542 * @qc: Metadata associated with taskfile to check
4543 *
780a87f7
JG
4544 * Allow low-level driver to filter ATA PACKET commands, returning
4545 * a status indicating whether or not it is OK to use DMA for the
4546 * supplied PACKET command.
4547 *
1da177e4 4548 * LOCKING:
624d5c51
TH
4549 * spin_lock_irqsave(host lock)
4550 *
4551 * RETURNS: 0 when ATAPI DMA can be used
4552 * nonzero otherwise
4553 */
5895ef9a 4554int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4555{
4556 struct ata_port *ap = qc->ap;
71601958 4557
624d5c51
TH
4558 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4559 * few ATAPI devices choke on such DMA requests.
4560 */
6a87e42e
TH
4561 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4562 unlikely(qc->nbytes & 15))
624d5c51 4563 return 1;
e2cec771 4564
624d5c51
TH
4565 if (ap->ops->check_atapi_dma)
4566 return ap->ops->check_atapi_dma(qc);
e2cec771 4567
624d5c51
TH
4568 return 0;
4569}
1da177e4 4570
624d5c51
TH
4571/**
4572 * ata_std_qc_defer - Check whether a qc needs to be deferred
4573 * @qc: ATA command in question
4574 *
4575 * Non-NCQ commands cannot run with any other command, NCQ or
4576 * not. As upper layer only knows the queue depth, we are
4577 * responsible for maintaining exclusion. This function checks
4578 * whether a new command @qc can be issued.
4579 *
4580 * LOCKING:
4581 * spin_lock_irqsave(host lock)
4582 *
4583 * RETURNS:
4584 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4585 */
4586int ata_std_qc_defer(struct ata_queued_cmd *qc)
4587{
4588 struct ata_link *link = qc->dev->link;
e2cec771 4589
624d5c51
TH
4590 if (qc->tf.protocol == ATA_PROT_NCQ) {
4591 if (!ata_tag_valid(link->active_tag))
4592 return 0;
4593 } else {
4594 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4595 return 0;
4596 }
e2cec771 4597
624d5c51
TH
4598 return ATA_DEFER_LINK;
4599}
6912ccd5 4600
624d5c51 4601void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4602
624d5c51
TH
4603/**
4604 * ata_sg_init - Associate command with scatter-gather table.
4605 * @qc: Command to be associated
4606 * @sg: Scatter-gather table.
4607 * @n_elem: Number of elements in s/g table.
4608 *
4609 * Initialize the data-related elements of queued_cmd @qc
4610 * to point to a scatter-gather table @sg, containing @n_elem
4611 * elements.
4612 *
4613 * LOCKING:
4614 * spin_lock_irqsave(host lock)
4615 */
4616void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4617 unsigned int n_elem)
4618{
4619 qc->sg = sg;
4620 qc->n_elem = n_elem;
4621 qc->cursg = qc->sg;
4622}
bb5cb290 4623
624d5c51
TH
4624/**
4625 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4626 * @qc: Command with scatter-gather table to be mapped.
4627 *
4628 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4629 *
4630 * LOCKING:
4631 * spin_lock_irqsave(host lock)
4632 *
4633 * RETURNS:
4634 * Zero on success, negative on error.
4635 *
4636 */
4637static int ata_sg_setup(struct ata_queued_cmd *qc)
4638{
4639 struct ata_port *ap = qc->ap;
4640 unsigned int n_elem;
1da177e4 4641
624d5c51 4642 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4643
624d5c51
TH
4644 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4645 if (n_elem < 1)
4646 return -1;
bb5cb290 4647
624d5c51 4648 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4649 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4650 qc->n_elem = n_elem;
4651 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4652
624d5c51 4653 return 0;
1da177e4
LT
4654}
4655
624d5c51
TH
4656/**
4657 * swap_buf_le16 - swap halves of 16-bit words in place
4658 * @buf: Buffer to swap
4659 * @buf_words: Number of 16-bit words in buffer.
4660 *
4661 * Swap halves of 16-bit words if needed to convert from
4662 * little-endian byte order to native cpu byte order, or
4663 * vice-versa.
4664 *
4665 * LOCKING:
4666 * Inherited from caller.
4667 */
4668void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4669{
624d5c51
TH
4670#ifdef __BIG_ENDIAN
4671 unsigned int i;
8061f5f0 4672
624d5c51
TH
4673 for (i = 0; i < buf_words; i++)
4674 buf[i] = le16_to_cpu(buf[i]);
4675#endif /* __BIG_ENDIAN */
8061f5f0
TH
4676}
4677
8a8bc223
TH
4678/**
4679 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4680 * @ap: target port
8a8bc223
TH
4681 *
4682 * LOCKING:
4683 * None.
4684 */
4685
4686static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4687{
4688 struct ata_queued_cmd *qc = NULL;
4689 unsigned int i;
4690
4691 /* no command while frozen */
4692 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4693 return NULL;
4694
4695 /* the last tag is reserved for internal command. */
4696 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4697 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4698 qc = __ata_qc_from_tag(ap, i);
4699 break;
4700 }
4701
4702 if (qc)
4703 qc->tag = i;
4704
4705 return qc;
4706}
4707
1da177e4
LT
4708/**
4709 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4710 * @dev: Device from whom we request an available command structure
4711 *
4712 * LOCKING:
0cba632b 4713 * None.
1da177e4
LT
4714 */
4715
8a8bc223 4716struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4717{
9af5c9c9 4718 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4719 struct ata_queued_cmd *qc;
4720
8a8bc223 4721 qc = ata_qc_new(ap);
1da177e4 4722 if (qc) {
1da177e4
LT
4723 qc->scsicmd = NULL;
4724 qc->ap = ap;
4725 qc->dev = dev;
1da177e4 4726
2c13b7ce 4727 ata_qc_reinit(qc);
1da177e4
LT
4728 }
4729
4730 return qc;
4731}
4732
8a8bc223
TH
4733/**
4734 * ata_qc_free - free unused ata_queued_cmd
4735 * @qc: Command to complete
4736 *
4737 * Designed to free unused ata_queued_cmd object
4738 * in case something prevents using it.
4739 *
4740 * LOCKING:
4741 * spin_lock_irqsave(host lock)
4742 */
4743void ata_qc_free(struct ata_queued_cmd *qc)
4744{
a1104016 4745 struct ata_port *ap;
8a8bc223
TH
4746 unsigned int tag;
4747
efcb3cf7 4748 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4749 ap = qc->ap;
8a8bc223
TH
4750
4751 qc->flags = 0;
4752 tag = qc->tag;
4753 if (likely(ata_tag_valid(tag))) {
4754 qc->tag = ATA_TAG_POISON;
4755 clear_bit(tag, &ap->qc_allocated);
4756 }
4757}
4758
76014427 4759void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4760{
a1104016
JL
4761 struct ata_port *ap;
4762 struct ata_link *link;
dedaf2b0 4763
efcb3cf7
TH
4764 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4765 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4766 ap = qc->ap;
4767 link = qc->dev->link;
1da177e4
LT
4768
4769 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4770 ata_sg_clean(qc);
4771
7401abf2 4772 /* command should be marked inactive atomically with qc completion */
da917d69 4773 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4774 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4775 if (!link->sactive)
4776 ap->nr_active_links--;
4777 } else {
9af5c9c9 4778 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4779 ap->nr_active_links--;
4780 }
4781
4782 /* clear exclusive status */
4783 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4784 ap->excl_link == link))
4785 ap->excl_link = NULL;
7401abf2 4786
3f3791d3
AL
4787 /* atapi: mark qc as inactive to prevent the interrupt handler
4788 * from completing the command twice later, before the error handler
4789 * is called. (when rc != 0 and atapi request sense is needed)
4790 */
4791 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4792 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4793
1da177e4 4794 /* call completion callback */
77853bf2 4795 qc->complete_fn(qc);
1da177e4
LT
4796}
4797
39599a53
TH
4798static void fill_result_tf(struct ata_queued_cmd *qc)
4799{
4800 struct ata_port *ap = qc->ap;
4801
39599a53 4802 qc->result_tf.flags = qc->tf.flags;
22183bf5 4803 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4804}
4805
00115e0f
TH
4806static void ata_verify_xfer(struct ata_queued_cmd *qc)
4807{
4808 struct ata_device *dev = qc->dev;
4809
4810 if (ata_tag_internal(qc->tag))
4811 return;
4812
4813 if (ata_is_nodata(qc->tf.protocol))
4814 return;
4815
4816 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4817 return;
4818
4819 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4820}
4821
f686bcb8
TH
4822/**
4823 * ata_qc_complete - Complete an active ATA command
4824 * @qc: Command to complete
f686bcb8 4825 *
1aadf5c3
TH
4826 * Indicate to the mid and upper layers that an ATA command has
4827 * completed, with either an ok or not-ok status.
4828 *
4829 * Refrain from calling this function multiple times when
4830 * successfully completing multiple NCQ commands.
4831 * ata_qc_complete_multiple() should be used instead, which will
4832 * properly update IRQ expect state.
f686bcb8
TH
4833 *
4834 * LOCKING:
cca3974e 4835 * spin_lock_irqsave(host lock)
f686bcb8
TH
4836 */
4837void ata_qc_complete(struct ata_queued_cmd *qc)
4838{
4839 struct ata_port *ap = qc->ap;
4840
4841 /* XXX: New EH and old EH use different mechanisms to
4842 * synchronize EH with regular execution path.
4843 *
4844 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4845 * Normal execution path is responsible for not accessing a
4846 * failed qc. libata core enforces the rule by returning NULL
4847 * from ata_qc_from_tag() for failed qcs.
4848 *
4849 * Old EH depends on ata_qc_complete() nullifying completion
4850 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4851 * not synchronize with interrupt handler. Only PIO task is
4852 * taken care of.
4853 */
4854 if (ap->ops->error_handler) {
4dbfa39b
TH
4855 struct ata_device *dev = qc->dev;
4856 struct ata_eh_info *ehi = &dev->link->eh_info;
4857
f686bcb8
TH
4858 if (unlikely(qc->err_mask))
4859 qc->flags |= ATA_QCFLAG_FAILED;
4860
4861 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
4862 /* always fill result TF for failed qc */
4863 fill_result_tf(qc);
4864
4865 if (!ata_tag_internal(qc->tag))
f686bcb8 4866 ata_qc_schedule_eh(qc);
f4b31db9
TH
4867 else
4868 __ata_qc_complete(qc);
4869 return;
f686bcb8
TH
4870 }
4871
4dc738ed
TH
4872 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4873
f686bcb8
TH
4874 /* read result TF if requested */
4875 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4876 fill_result_tf(qc);
f686bcb8 4877
4dbfa39b
TH
4878 /* Some commands need post-processing after successful
4879 * completion.
4880 */
4881 switch (qc->tf.command) {
4882 case ATA_CMD_SET_FEATURES:
4883 if (qc->tf.feature != SETFEATURES_WC_ON &&
4884 qc->tf.feature != SETFEATURES_WC_OFF)
4885 break;
4886 /* fall through */
4887 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4888 case ATA_CMD_SET_MULTI: /* multi_count changed */
4889 /* revalidate device */
4890 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4891 ata_port_schedule_eh(ap);
4892 break;
054a5fba
TH
4893
4894 case ATA_CMD_SLEEP:
4895 dev->flags |= ATA_DFLAG_SLEEPING;
4896 break;
4dbfa39b
TH
4897 }
4898
00115e0f
TH
4899 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4900 ata_verify_xfer(qc);
4901
f686bcb8
TH
4902 __ata_qc_complete(qc);
4903 } else {
4904 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4905 return;
4906
4907 /* read result TF if failed or requested */
4908 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4909 fill_result_tf(qc);
f686bcb8
TH
4910
4911 __ata_qc_complete(qc);
4912 }
4913}
4914
dedaf2b0
TH
4915/**
4916 * ata_qc_complete_multiple - Complete multiple qcs successfully
4917 * @ap: port in question
4918 * @qc_active: new qc_active mask
dedaf2b0
TH
4919 *
4920 * Complete in-flight commands. This functions is meant to be
4921 * called from low-level driver's interrupt routine to complete
4922 * requests normally. ap->qc_active and @qc_active is compared
4923 * and commands are completed accordingly.
4924 *
1aadf5c3
TH
4925 * Always use this function when completing multiple NCQ commands
4926 * from IRQ handlers instead of calling ata_qc_complete()
4927 * multiple times to keep IRQ expect status properly in sync.
4928 *
dedaf2b0 4929 * LOCKING:
cca3974e 4930 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4931 *
4932 * RETURNS:
4933 * Number of completed commands on success, -errno otherwise.
4934 */
79f97dad 4935int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
4936{
4937 int nr_done = 0;
4938 u32 done_mask;
dedaf2b0
TH
4939
4940 done_mask = ap->qc_active ^ qc_active;
4941
4942 if (unlikely(done_mask & qc_active)) {
4943 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4944 "(%08x->%08x)\n", ap->qc_active, qc_active);
4945 return -EINVAL;
4946 }
4947
43768180 4948 while (done_mask) {
dedaf2b0 4949 struct ata_queued_cmd *qc;
43768180 4950 unsigned int tag = __ffs(done_mask);
dedaf2b0 4951
43768180
JA
4952 qc = ata_qc_from_tag(ap, tag);
4953 if (qc) {
dedaf2b0
TH
4954 ata_qc_complete(qc);
4955 nr_done++;
4956 }
43768180 4957 done_mask &= ~(1 << tag);
dedaf2b0
TH
4958 }
4959
4960 return nr_done;
4961}
4962
1da177e4
LT
4963/**
4964 * ata_qc_issue - issue taskfile to device
4965 * @qc: command to issue to device
4966 *
4967 * Prepare an ATA command to submission to device.
4968 * This includes mapping the data into a DMA-able
4969 * area, filling in the S/G table, and finally
4970 * writing the taskfile to hardware, starting the command.
4971 *
4972 * LOCKING:
cca3974e 4973 * spin_lock_irqsave(host lock)
1da177e4 4974 */
8e0e694a 4975void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4976{
4977 struct ata_port *ap = qc->ap;
9af5c9c9 4978 struct ata_link *link = qc->dev->link;
405e66b3 4979 u8 prot = qc->tf.protocol;
1da177e4 4980
dedaf2b0
TH
4981 /* Make sure only one non-NCQ command is outstanding. The
4982 * check is skipped for old EH because it reuses active qc to
4983 * request ATAPI sense.
4984 */
efcb3cf7 4985 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 4986
1973a023 4987 if (ata_is_ncq(prot)) {
efcb3cf7 4988 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
4989
4990 if (!link->sactive)
4991 ap->nr_active_links++;
9af5c9c9 4992 link->sactive |= 1 << qc->tag;
dedaf2b0 4993 } else {
efcb3cf7 4994 WARN_ON_ONCE(link->sactive);
da917d69
TH
4995
4996 ap->nr_active_links++;
9af5c9c9 4997 link->active_tag = qc->tag;
dedaf2b0
TH
4998 }
4999
e4a70e76 5000 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5001 ap->qc_active |= 1 << qc->tag;
e4a70e76 5002
60f5d6ef
TH
5003 /*
5004 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5005 * non-zero sg if the command is a data command.
5006 */
60f5d6ef
TH
5007 if (WARN_ON_ONCE(ata_is_data(prot) &&
5008 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5009 goto sys_err;
f92a2636 5010
405e66b3 5011 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5012 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5013 if (ata_sg_setup(qc))
60f5d6ef 5014 goto sys_err;
1da177e4 5015
cf480626 5016 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5017 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5018 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5019 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5020 ata_link_abort(link);
5021 return;
5022 }
5023
1da177e4
LT
5024 ap->ops->qc_prep(qc);
5025
8e0e694a
TH
5026 qc->err_mask |= ap->ops->qc_issue(qc);
5027 if (unlikely(qc->err_mask))
5028 goto err;
5029 return;
1da177e4 5030
60f5d6ef 5031sys_err:
8e0e694a
TH
5032 qc->err_mask |= AC_ERR_SYSTEM;
5033err:
5034 ata_qc_complete(qc);
1da177e4
LT
5035}
5036
34bf2170
TH
5037/**
5038 * sata_scr_valid - test whether SCRs are accessible
936fd732 5039 * @link: ATA link to test SCR accessibility for
34bf2170 5040 *
936fd732 5041 * Test whether SCRs are accessible for @link.
34bf2170
TH
5042 *
5043 * LOCKING:
5044 * None.
5045 *
5046 * RETURNS:
5047 * 1 if SCRs are accessible, 0 otherwise.
5048 */
936fd732 5049int sata_scr_valid(struct ata_link *link)
34bf2170 5050{
936fd732
TH
5051 struct ata_port *ap = link->ap;
5052
a16abc0b 5053 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5054}
5055
5056/**
5057 * sata_scr_read - read SCR register of the specified port
936fd732 5058 * @link: ATA link to read SCR for
34bf2170
TH
5059 * @reg: SCR to read
5060 * @val: Place to store read value
5061 *
936fd732 5062 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5063 * guaranteed to succeed if @link is ap->link, the cable type of
5064 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5065 *
5066 * LOCKING:
633273a3 5067 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5068 *
5069 * RETURNS:
5070 * 0 on success, negative errno on failure.
5071 */
936fd732 5072int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5073{
633273a3 5074 if (ata_is_host_link(link)) {
633273a3 5075 if (sata_scr_valid(link))
82ef04fb 5076 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5077 return -EOPNOTSUPP;
5078 }
5079
5080 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5081}
5082
5083/**
5084 * sata_scr_write - write SCR register of the specified port
936fd732 5085 * @link: ATA link to write SCR for
34bf2170
TH
5086 * @reg: SCR to write
5087 * @val: value to write
5088 *
936fd732 5089 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5090 * guaranteed to succeed if @link is ap->link, the cable type of
5091 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5092 *
5093 * LOCKING:
633273a3 5094 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5095 *
5096 * RETURNS:
5097 * 0 on success, negative errno on failure.
5098 */
936fd732 5099int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5100{
633273a3 5101 if (ata_is_host_link(link)) {
633273a3 5102 if (sata_scr_valid(link))
82ef04fb 5103 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5104 return -EOPNOTSUPP;
5105 }
936fd732 5106
633273a3 5107 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5108}
5109
5110/**
5111 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5112 * @link: ATA link to write SCR for
34bf2170
TH
5113 * @reg: SCR to write
5114 * @val: value to write
5115 *
5116 * This function is identical to sata_scr_write() except that this
5117 * function performs flush after writing to the register.
5118 *
5119 * LOCKING:
633273a3 5120 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5121 *
5122 * RETURNS:
5123 * 0 on success, negative errno on failure.
5124 */
936fd732 5125int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5126{
633273a3 5127 if (ata_is_host_link(link)) {
633273a3 5128 int rc;
da3dbb17 5129
633273a3 5130 if (sata_scr_valid(link)) {
82ef04fb 5131 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5132 if (rc == 0)
82ef04fb 5133 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5134 return rc;
5135 }
5136 return -EOPNOTSUPP;
34bf2170 5137 }
633273a3
TH
5138
5139 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5140}
5141
5142/**
b1c72916 5143 * ata_phys_link_online - test whether the given link is online
936fd732 5144 * @link: ATA link to test
34bf2170 5145 *
936fd732
TH
5146 * Test whether @link is online. Note that this function returns
5147 * 0 if online status of @link cannot be obtained, so
5148 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5149 *
5150 * LOCKING:
5151 * None.
5152 *
5153 * RETURNS:
b5b3fa38 5154 * True if the port online status is available and online.
34bf2170 5155 */
b1c72916 5156bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5157{
5158 u32 sstatus;
5159
936fd732 5160 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5161 ata_sstatus_online(sstatus))
b5b3fa38
TH
5162 return true;
5163 return false;
34bf2170
TH
5164}
5165
5166/**
b1c72916 5167 * ata_phys_link_offline - test whether the given link is offline
936fd732 5168 * @link: ATA link to test
34bf2170 5169 *
936fd732
TH
5170 * Test whether @link is offline. Note that this function
5171 * returns 0 if offline status of @link cannot be obtained, so
5172 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5173 *
5174 * LOCKING:
5175 * None.
5176 *
5177 * RETURNS:
b5b3fa38 5178 * True if the port offline status is available and offline.
34bf2170 5179 */
b1c72916 5180bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5181{
5182 u32 sstatus;
5183
936fd732 5184 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5185 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5186 return true;
5187 return false;
34bf2170 5188}
0baab86b 5189
b1c72916
TH
5190/**
5191 * ata_link_online - test whether the given link is online
5192 * @link: ATA link to test
5193 *
5194 * Test whether @link is online. This is identical to
5195 * ata_phys_link_online() when there's no slave link. When
5196 * there's a slave link, this function should only be called on
5197 * the master link and will return true if any of M/S links is
5198 * online.
5199 *
5200 * LOCKING:
5201 * None.
5202 *
5203 * RETURNS:
5204 * True if the port online status is available and online.
5205 */
5206bool ata_link_online(struct ata_link *link)
5207{
5208 struct ata_link *slave = link->ap->slave_link;
5209
5210 WARN_ON(link == slave); /* shouldn't be called on slave link */
5211
5212 return ata_phys_link_online(link) ||
5213 (slave && ata_phys_link_online(slave));
5214}
5215
5216/**
5217 * ata_link_offline - test whether the given link is offline
5218 * @link: ATA link to test
5219 *
5220 * Test whether @link is offline. This is identical to
5221 * ata_phys_link_offline() when there's no slave link. When
5222 * there's a slave link, this function should only be called on
5223 * the master link and will return true if both M/S links are
5224 * offline.
5225 *
5226 * LOCKING:
5227 * None.
5228 *
5229 * RETURNS:
5230 * True if the port offline status is available and offline.
5231 */
5232bool ata_link_offline(struct ata_link *link)
5233{
5234 struct ata_link *slave = link->ap->slave_link;
5235
5236 WARN_ON(link == slave); /* shouldn't be called on slave link */
5237
5238 return ata_phys_link_offline(link) &&
5239 (!slave || ata_phys_link_offline(slave));
5240}
5241
6ffa01d8 5242#ifdef CONFIG_PM
cca3974e
JG
5243static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5244 unsigned int action, unsigned int ehi_flags,
5245 int wait)
500530f6
TH
5246{
5247 unsigned long flags;
5248 int i, rc;
5249
cca3974e
JG
5250 for (i = 0; i < host->n_ports; i++) {
5251 struct ata_port *ap = host->ports[i];
e3667ebf 5252 struct ata_link *link;
500530f6
TH
5253
5254 /* Previous resume operation might still be in
5255 * progress. Wait for PM_PENDING to clear.
5256 */
5257 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5258 ata_port_wait_eh(ap);
5259 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5260 }
5261
5262 /* request PM ops to EH */
5263 spin_lock_irqsave(ap->lock, flags);
5264
5265 ap->pm_mesg = mesg;
5266 if (wait) {
5267 rc = 0;
5268 ap->pm_result = &rc;
5269 }
5270
5271 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5272 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5273 link->eh_info.action |= action;
5274 link->eh_info.flags |= ehi_flags;
5275 }
500530f6
TH
5276
5277 ata_port_schedule_eh(ap);
5278
5279 spin_unlock_irqrestore(ap->lock, flags);
5280
5281 /* wait and check result */
5282 if (wait) {
5283 ata_port_wait_eh(ap);
5284 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5285 if (rc)
5286 return rc;
5287 }
5288 }
5289
5290 return 0;
5291}
5292
5293/**
cca3974e
JG
5294 * ata_host_suspend - suspend host
5295 * @host: host to suspend
500530f6
TH
5296 * @mesg: PM message
5297 *
cca3974e 5298 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5299 * function requests EH to perform PM operations and waits for EH
5300 * to finish.
5301 *
5302 * LOCKING:
5303 * Kernel thread context (may sleep).
5304 *
5305 * RETURNS:
5306 * 0 on success, -errno on failure.
5307 */
cca3974e 5308int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5309{
e2f3d75f 5310 unsigned int ehi_flags = ATA_EHI_QUIET;
9666f400 5311 int rc;
500530f6 5312
e2f3d75f
TH
5313 /*
5314 * On some hardware, device fails to respond after spun down
5315 * for suspend. As the device won't be used before being
5316 * resumed, we don't need to touch the device. Ask EH to skip
5317 * the usual stuff and proceed directly to suspend.
5318 *
5319 * http://thread.gmane.org/gmane.linux.ide/46764
5320 */
5321 if (mesg.event == PM_EVENT_SUSPEND)
5322 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5323
5324 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
72ad6ec4
JG
5325 if (rc == 0)
5326 host->dev->power.power_state = mesg;
500530f6
TH
5327 return rc;
5328}
5329
5330/**
cca3974e
JG
5331 * ata_host_resume - resume host
5332 * @host: host to resume
500530f6 5333 *
cca3974e 5334 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5335 * function requests EH to perform PM operations and returns.
5336 * Note that all resume operations are performed parallely.
5337 *
5338 * LOCKING:
5339 * Kernel thread context (may sleep).
5340 */
cca3974e 5341void ata_host_resume(struct ata_host *host)
500530f6 5342{
cf480626 5343 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5344 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5345 host->dev->power.power_state = PMSG_ON;
500530f6 5346}
6ffa01d8 5347#endif
500530f6 5348
3ef3b43d
TH
5349/**
5350 * ata_dev_init - Initialize an ata_device structure
5351 * @dev: Device structure to initialize
5352 *
5353 * Initialize @dev in preparation for probing.
5354 *
5355 * LOCKING:
5356 * Inherited from caller.
5357 */
5358void ata_dev_init(struct ata_device *dev)
5359{
b1c72916 5360 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5361 struct ata_port *ap = link->ap;
72fa4b74
TH
5362 unsigned long flags;
5363
b1c72916 5364 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5365 link->sata_spd_limit = link->hw_sata_spd_limit;
5366 link->sata_spd = 0;
5a04bf4b 5367
72fa4b74
TH
5368 /* High bits of dev->flags are used to record warm plug
5369 * requests which occur asynchronously. Synchronize using
cca3974e 5370 * host lock.
72fa4b74 5371 */
ba6a1308 5372 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5373 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5374 dev->horkage = 0;
ba6a1308 5375 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5376
99cf610a
TH
5377 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5378 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5379 dev->pio_mask = UINT_MAX;
5380 dev->mwdma_mask = UINT_MAX;
5381 dev->udma_mask = UINT_MAX;
5382}
5383
4fb37a25
TH
5384/**
5385 * ata_link_init - Initialize an ata_link structure
5386 * @ap: ATA port link is attached to
5387 * @link: Link structure to initialize
8989805d 5388 * @pmp: Port multiplier port number
4fb37a25
TH
5389 *
5390 * Initialize @link.
5391 *
5392 * LOCKING:
5393 * Kernel thread context (may sleep)
5394 */
fb7fd614 5395void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5396{
5397 int i;
5398
5399 /* clear everything except for devices */
d9027470
GG
5400 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5401 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5402
5403 link->ap = ap;
8989805d 5404 link->pmp = pmp;
4fb37a25
TH
5405 link->active_tag = ATA_TAG_POISON;
5406 link->hw_sata_spd_limit = UINT_MAX;
5407
5408 /* can't use iterator, ap isn't initialized yet */
5409 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5410 struct ata_device *dev = &link->device[i];
5411
5412 dev->link = link;
5413 dev->devno = dev - link->device;
110f66d2
TH
5414#ifdef CONFIG_ATA_ACPI
5415 dev->gtf_filter = ata_acpi_gtf_filter;
5416#endif
4fb37a25
TH
5417 ata_dev_init(dev);
5418 }
5419}
5420
5421/**
5422 * sata_link_init_spd - Initialize link->sata_spd_limit
5423 * @link: Link to configure sata_spd_limit for
5424 *
5425 * Initialize @link->[hw_]sata_spd_limit to the currently
5426 * configured value.
5427 *
5428 * LOCKING:
5429 * Kernel thread context (may sleep).
5430 *
5431 * RETURNS:
5432 * 0 on success, -errno on failure.
5433 */
fb7fd614 5434int sata_link_init_spd(struct ata_link *link)
4fb37a25 5435{
33267325 5436 u8 spd;
4fb37a25
TH
5437 int rc;
5438
d127ea7b 5439 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5440 if (rc)
5441 return rc;
5442
d127ea7b 5443 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5444 if (spd)
5445 link->hw_sata_spd_limit &= (1 << spd) - 1;
5446
05944bdf 5447 ata_force_link_limits(link);
33267325 5448
4fb37a25
TH
5449 link->sata_spd_limit = link->hw_sata_spd_limit;
5450
5451 return 0;
5452}
5453
1da177e4 5454/**
f3187195
TH
5455 * ata_port_alloc - allocate and initialize basic ATA port resources
5456 * @host: ATA host this allocated port belongs to
1da177e4 5457 *
f3187195
TH
5458 * Allocate and initialize basic ATA port resources.
5459 *
5460 * RETURNS:
5461 * Allocate ATA port on success, NULL on failure.
0cba632b 5462 *
1da177e4 5463 * LOCKING:
f3187195 5464 * Inherited from calling layer (may sleep).
1da177e4 5465 */
f3187195 5466struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5467{
f3187195 5468 struct ata_port *ap;
1da177e4 5469
f3187195
TH
5470 DPRINTK("ENTER\n");
5471
5472 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5473 if (!ap)
5474 return NULL;
d9027470 5475
f4d6d004 5476 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5477 ap->lock = &host->lock;
f3187195 5478 ap->print_id = -1;
cca3974e 5479 ap->host = host;
f3187195 5480 ap->dev = host->dev;
bd5d825c
BP
5481
5482#if defined(ATA_VERBOSE_DEBUG)
5483 /* turn on all debugging levels */
5484 ap->msg_enable = 0x00FF;
5485#elif defined(ATA_DEBUG)
5486 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5487#else
0dd4b21f 5488 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5489#endif
1da177e4 5490
ad72cf98 5491 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5492 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5493 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5494 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5495 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5496 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5497 init_timer_deferrable(&ap->fastdrain_timer);
5498 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5499 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5500
838df628 5501 ap->cbl = ATA_CBL_NONE;
838df628 5502
8989805d 5503 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5504
5505#ifdef ATA_IRQ_TRAP
5506 ap->stats.unhandled_irq = 1;
5507 ap->stats.idle_irq = 1;
5508#endif
270390e1
TH
5509 ata_sff_port_init(ap);
5510
1da177e4 5511 return ap;
1da177e4
LT
5512}
5513
f0d36efd
TH
5514static void ata_host_release(struct device *gendev, void *res)
5515{
5516 struct ata_host *host = dev_get_drvdata(gendev);
5517 int i;
5518
1aa506e4
TH
5519 for (i = 0; i < host->n_ports; i++) {
5520 struct ata_port *ap = host->ports[i];
5521
4911487a
TH
5522 if (!ap)
5523 continue;
5524
5525 if (ap->scsi_host)
1aa506e4
TH
5526 scsi_host_put(ap->scsi_host);
5527
633273a3 5528 kfree(ap->pmp_link);
b1c72916 5529 kfree(ap->slave_link);
4911487a 5530 kfree(ap);
1aa506e4
TH
5531 host->ports[i] = NULL;
5532 }
5533
1aa56cca 5534 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5535}
5536
f3187195
TH
5537/**
5538 * ata_host_alloc - allocate and init basic ATA host resources
5539 * @dev: generic device this host is associated with
5540 * @max_ports: maximum number of ATA ports associated with this host
5541 *
5542 * Allocate and initialize basic ATA host resources. LLD calls
5543 * this function to allocate a host, initializes it fully and
5544 * attaches it using ata_host_register().
5545 *
5546 * @max_ports ports are allocated and host->n_ports is
5547 * initialized to @max_ports. The caller is allowed to decrease
5548 * host->n_ports before calling ata_host_register(). The unused
5549 * ports will be automatically freed on registration.
5550 *
5551 * RETURNS:
5552 * Allocate ATA host on success, NULL on failure.
5553 *
5554 * LOCKING:
5555 * Inherited from calling layer (may sleep).
5556 */
5557struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5558{
5559 struct ata_host *host;
5560 size_t sz;
5561 int i;
5562
5563 DPRINTK("ENTER\n");
5564
5565 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5566 return NULL;
5567
5568 /* alloc a container for our list of ATA ports (buses) */
5569 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5570 /* alloc a container for our list of ATA ports (buses) */
5571 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5572 if (!host)
5573 goto err_out;
5574
5575 devres_add(dev, host);
5576 dev_set_drvdata(dev, host);
5577
5578 spin_lock_init(&host->lock);
c0c362b6 5579 mutex_init(&host->eh_mutex);
f3187195
TH
5580 host->dev = dev;
5581 host->n_ports = max_ports;
5582
5583 /* allocate ports bound to this host */
5584 for (i = 0; i < max_ports; i++) {
5585 struct ata_port *ap;
5586
5587 ap = ata_port_alloc(host);
5588 if (!ap)
5589 goto err_out;
5590
5591 ap->port_no = i;
5592 host->ports[i] = ap;
5593 }
5594
5595 devres_remove_group(dev, NULL);
5596 return host;
5597
5598 err_out:
5599 devres_release_group(dev, NULL);
5600 return NULL;
5601}
5602
f5cda257
TH
5603/**
5604 * ata_host_alloc_pinfo - alloc host and init with port_info array
5605 * @dev: generic device this host is associated with
5606 * @ppi: array of ATA port_info to initialize host with
5607 * @n_ports: number of ATA ports attached to this host
5608 *
5609 * Allocate ATA host and initialize with info from @ppi. If NULL
5610 * terminated, @ppi may contain fewer entries than @n_ports. The
5611 * last entry will be used for the remaining ports.
5612 *
5613 * RETURNS:
5614 * Allocate ATA host on success, NULL on failure.
5615 *
5616 * LOCKING:
5617 * Inherited from calling layer (may sleep).
5618 */
5619struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5620 const struct ata_port_info * const * ppi,
5621 int n_ports)
5622{
5623 const struct ata_port_info *pi;
5624 struct ata_host *host;
5625 int i, j;
5626
5627 host = ata_host_alloc(dev, n_ports);
5628 if (!host)
5629 return NULL;
5630
5631 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5632 struct ata_port *ap = host->ports[i];
5633
5634 if (ppi[j])
5635 pi = ppi[j++];
5636
5637 ap->pio_mask = pi->pio_mask;
5638 ap->mwdma_mask = pi->mwdma_mask;
5639 ap->udma_mask = pi->udma_mask;
5640 ap->flags |= pi->flags;
0c88758b 5641 ap->link.flags |= pi->link_flags;
f5cda257
TH
5642 ap->ops = pi->port_ops;
5643
5644 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5645 host->ops = pi->port_ops;
f5cda257
TH
5646 }
5647
5648 return host;
5649}
5650
b1c72916
TH
5651/**
5652 * ata_slave_link_init - initialize slave link
5653 * @ap: port to initialize slave link for
5654 *
5655 * Create and initialize slave link for @ap. This enables slave
5656 * link handling on the port.
5657 *
5658 * In libata, a port contains links and a link contains devices.
5659 * There is single host link but if a PMP is attached to it,
5660 * there can be multiple fan-out links. On SATA, there's usually
5661 * a single device connected to a link but PATA and SATA
5662 * controllers emulating TF based interface can have two - master
5663 * and slave.
5664 *
5665 * However, there are a few controllers which don't fit into this
5666 * abstraction too well - SATA controllers which emulate TF
5667 * interface with both master and slave devices but also have
5668 * separate SCR register sets for each device. These controllers
5669 * need separate links for physical link handling
5670 * (e.g. onlineness, link speed) but should be treated like a
5671 * traditional M/S controller for everything else (e.g. command
5672 * issue, softreset).
5673 *
5674 * slave_link is libata's way of handling this class of
5675 * controllers without impacting core layer too much. For
5676 * anything other than physical link handling, the default host
5677 * link is used for both master and slave. For physical link
5678 * handling, separate @ap->slave_link is used. All dirty details
5679 * are implemented inside libata core layer. From LLD's POV, the
5680 * only difference is that prereset, hardreset and postreset are
5681 * called once more for the slave link, so the reset sequence
5682 * looks like the following.
5683 *
5684 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5685 * softreset(M) -> postreset(M) -> postreset(S)
5686 *
5687 * Note that softreset is called only for the master. Softreset
5688 * resets both M/S by definition, so SRST on master should handle
5689 * both (the standard method will work just fine).
5690 *
5691 * LOCKING:
5692 * Should be called before host is registered.
5693 *
5694 * RETURNS:
5695 * 0 on success, -errno on failure.
5696 */
5697int ata_slave_link_init(struct ata_port *ap)
5698{
5699 struct ata_link *link;
5700
5701 WARN_ON(ap->slave_link);
5702 WARN_ON(ap->flags & ATA_FLAG_PMP);
5703
5704 link = kzalloc(sizeof(*link), GFP_KERNEL);
5705 if (!link)
5706 return -ENOMEM;
5707
5708 ata_link_init(ap, link, 1);
5709 ap->slave_link = link;
5710 return 0;
5711}
5712
32ebbc0c
TH
5713static void ata_host_stop(struct device *gendev, void *res)
5714{
5715 struct ata_host *host = dev_get_drvdata(gendev);
5716 int i;
5717
5718 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5719
5720 for (i = 0; i < host->n_ports; i++) {
5721 struct ata_port *ap = host->ports[i];
5722
5723 if (ap->ops->port_stop)
5724 ap->ops->port_stop(ap);
5725 }
5726
5727 if (host->ops->host_stop)
5728 host->ops->host_stop(host);
5729}
5730
029cfd6b
TH
5731/**
5732 * ata_finalize_port_ops - finalize ata_port_operations
5733 * @ops: ata_port_operations to finalize
5734 *
5735 * An ata_port_operations can inherit from another ops and that
5736 * ops can again inherit from another. This can go on as many
5737 * times as necessary as long as there is no loop in the
5738 * inheritance chain.
5739 *
5740 * Ops tables are finalized when the host is started. NULL or
5741 * unspecified entries are inherited from the closet ancestor
5742 * which has the method and the entry is populated with it.
5743 * After finalization, the ops table directly points to all the
5744 * methods and ->inherits is no longer necessary and cleared.
5745 *
5746 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5747 *
5748 * LOCKING:
5749 * None.
5750 */
5751static void ata_finalize_port_ops(struct ata_port_operations *ops)
5752{
2da67659 5753 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5754 const struct ata_port_operations *cur;
5755 void **begin = (void **)ops;
5756 void **end = (void **)&ops->inherits;
5757 void **pp;
5758
5759 if (!ops || !ops->inherits)
5760 return;
5761
5762 spin_lock(&lock);
5763
5764 for (cur = ops->inherits; cur; cur = cur->inherits) {
5765 void **inherit = (void **)cur;
5766
5767 for (pp = begin; pp < end; pp++, inherit++)
5768 if (!*pp)
5769 *pp = *inherit;
5770 }
5771
5772 for (pp = begin; pp < end; pp++)
5773 if (IS_ERR(*pp))
5774 *pp = NULL;
5775
5776 ops->inherits = NULL;
5777
5778 spin_unlock(&lock);
5779}
5780
ecef7253
TH
5781/**
5782 * ata_host_start - start and freeze ports of an ATA host
5783 * @host: ATA host to start ports for
5784 *
5785 * Start and then freeze ports of @host. Started status is
5786 * recorded in host->flags, so this function can be called
5787 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5788 * once. If host->ops isn't initialized yet, its set to the
5789 * first non-dummy port ops.
ecef7253
TH
5790 *
5791 * LOCKING:
5792 * Inherited from calling layer (may sleep).
5793 *
5794 * RETURNS:
5795 * 0 if all ports are started successfully, -errno otherwise.
5796 */
5797int ata_host_start(struct ata_host *host)
5798{
32ebbc0c
TH
5799 int have_stop = 0;
5800 void *start_dr = NULL;
ecef7253
TH
5801 int i, rc;
5802
5803 if (host->flags & ATA_HOST_STARTED)
5804 return 0;
5805
029cfd6b
TH
5806 ata_finalize_port_ops(host->ops);
5807
ecef7253
TH
5808 for (i = 0; i < host->n_ports; i++) {
5809 struct ata_port *ap = host->ports[i];
5810
029cfd6b
TH
5811 ata_finalize_port_ops(ap->ops);
5812
f3187195
TH
5813 if (!host->ops && !ata_port_is_dummy(ap))
5814 host->ops = ap->ops;
5815
32ebbc0c
TH
5816 if (ap->ops->port_stop)
5817 have_stop = 1;
5818 }
5819
5820 if (host->ops->host_stop)
5821 have_stop = 1;
5822
5823 if (have_stop) {
5824 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5825 if (!start_dr)
5826 return -ENOMEM;
5827 }
5828
5829 for (i = 0; i < host->n_ports; i++) {
5830 struct ata_port *ap = host->ports[i];
5831
ecef7253
TH
5832 if (ap->ops->port_start) {
5833 rc = ap->ops->port_start(ap);
5834 if (rc) {
0f9fe9b7 5835 if (rc != -ENODEV)
0f757743
AM
5836 dev_printk(KERN_ERR, host->dev,
5837 "failed to start port %d "
5838 "(errno=%d)\n", i, rc);
ecef7253
TH
5839 goto err_out;
5840 }
5841 }
ecef7253
TH
5842 ata_eh_freeze_port(ap);
5843 }
5844
32ebbc0c
TH
5845 if (start_dr)
5846 devres_add(host->dev, start_dr);
ecef7253
TH
5847 host->flags |= ATA_HOST_STARTED;
5848 return 0;
5849
5850 err_out:
5851 while (--i >= 0) {
5852 struct ata_port *ap = host->ports[i];
5853
5854 if (ap->ops->port_stop)
5855 ap->ops->port_stop(ap);
5856 }
32ebbc0c 5857 devres_free(start_dr);
ecef7253
TH
5858 return rc;
5859}
5860
b03732f0 5861/**
cca3974e
JG
5862 * ata_sas_host_init - Initialize a host struct
5863 * @host: host to initialize
5864 * @dev: device host is attached to
5865 * @flags: host flags
5866 * @ops: port_ops
b03732f0
BK
5867 *
5868 * LOCKING:
5869 * PCI/etc. bus probe sem.
5870 *
5871 */
f3187195 5872/* KILLME - the only user left is ipr */
cca3974e 5873void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5874 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5875{
cca3974e 5876 spin_lock_init(&host->lock);
c0c362b6 5877 mutex_init(&host->eh_mutex);
cca3974e
JG
5878 host->dev = dev;
5879 host->flags = flags;
5880 host->ops = ops;
b03732f0
BK
5881}
5882
79318057
AV
5883
5884static void async_port_probe(void *data, async_cookie_t cookie)
5885{
5886 int rc;
5887 struct ata_port *ap = data;
886ad09f
AV
5888
5889 /*
5890 * If we're not allowed to scan this host in parallel,
5891 * we need to wait until all previous scans have completed
5892 * before going further.
fa853a48
AV
5893 * Jeff Garzik says this is only within a controller, so we
5894 * don't need to wait for port 0, only for later ports.
886ad09f 5895 */
fa853a48 5896 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
5897 async_synchronize_cookie(cookie);
5898
79318057
AV
5899 /* probe */
5900 if (ap->ops->error_handler) {
5901 struct ata_eh_info *ehi = &ap->link.eh_info;
5902 unsigned long flags;
5903
79318057
AV
5904 /* kick EH for boot probing */
5905 spin_lock_irqsave(ap->lock, flags);
5906
5907 ehi->probe_mask |= ATA_ALL_DEVICES;
6b7ae954 5908 ehi->action |= ATA_EH_RESET;
79318057
AV
5909 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5910
5911 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5912 ap->pflags |= ATA_PFLAG_LOADING;
5913 ata_port_schedule_eh(ap);
5914
5915 spin_unlock_irqrestore(ap->lock, flags);
5916
5917 /* wait for EH to finish */
5918 ata_port_wait_eh(ap);
5919 } else {
5920 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5921 rc = ata_bus_probe(ap);
5922 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5923
5924 if (rc) {
5925 /* FIXME: do something useful here?
5926 * Current libata behavior will
5927 * tear down everything when
5928 * the module is removed
5929 * or the h/w is unplugged.
5930 */
5931 }
5932 }
f29d3b23
AV
5933
5934 /* in order to keep device order, we need to synchronize at this point */
5935 async_synchronize_cookie(cookie);
5936
5937 ata_scsi_scan_host(ap, 1);
5938
79318057 5939}
f3187195
TH
5940/**
5941 * ata_host_register - register initialized ATA host
5942 * @host: ATA host to register
5943 * @sht: template for SCSI host
5944 *
5945 * Register initialized ATA host. @host is allocated using
5946 * ata_host_alloc() and fully initialized by LLD. This function
5947 * starts ports, registers @host with ATA and SCSI layers and
5948 * probe registered devices.
5949 *
5950 * LOCKING:
5951 * Inherited from calling layer (may sleep).
5952 *
5953 * RETURNS:
5954 * 0 on success, -errno otherwise.
5955 */
5956int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5957{
5958 int i, rc;
5959
5960 /* host must have been started */
5961 if (!(host->flags & ATA_HOST_STARTED)) {
5962 dev_printk(KERN_ERR, host->dev,
5963 "BUG: trying to register unstarted host\n");
5964 WARN_ON(1);
5965 return -EINVAL;
5966 }
5967
5968 /* Blow away unused ports. This happens when LLD can't
5969 * determine the exact number of ports to allocate at
5970 * allocation time.
5971 */
5972 for (i = host->n_ports; host->ports[i]; i++)
5973 kfree(host->ports[i]);
5974
5975 /* give ports names and add SCSI hosts */
5976 for (i = 0; i < host->n_ports; i++)
5977 host->ports[i]->print_id = ata_print_id++;
5978
d9027470
GG
5979
5980 /* Create associated sysfs transport objects */
5981 for (i = 0; i < host->n_ports; i++) {
5982 rc = ata_tport_add(host->dev,host->ports[i]);
5983 if (rc) {
5984 goto err_tadd;
5985 }
5986 }
5987
f3187195
TH
5988 rc = ata_scsi_add_hosts(host, sht);
5989 if (rc)
d9027470 5990 goto err_tadd;
f3187195 5991
fafbae87
TH
5992 /* associate with ACPI nodes */
5993 ata_acpi_associate(host);
5994
f3187195
TH
5995 /* set cable, sata_spd_limit and report */
5996 for (i = 0; i < host->n_ports; i++) {
5997 struct ata_port *ap = host->ports[i];
f3187195
TH
5998 unsigned long xfer_mask;
5999
6000 /* set SATA cable type if still unset */
6001 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6002 ap->cbl = ATA_CBL_SATA;
6003
6004 /* init sata_spd_limit to the current value */
4fb37a25 6005 sata_link_init_spd(&ap->link);
b1c72916
TH
6006 if (ap->slave_link)
6007 sata_link_init_spd(ap->slave_link);
f3187195 6008
cbcdd875 6009 /* print per-port info to dmesg */
f3187195
TH
6010 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6011 ap->udma_mask);
6012
abf6e8ed 6013 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6014 ata_port_printk(ap, KERN_INFO,
6015 "%cATA max %s %s\n",
a16abc0b 6016 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6017 ata_mode_string(xfer_mask),
cbcdd875 6018 ap->link.eh_info.desc);
abf6e8ed
TH
6019 ata_ehi_clear_desc(&ap->link.eh_info);
6020 } else
f3187195
TH
6021 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6022 }
6023
f6005354 6024 /* perform each probe asynchronously */
f3187195
TH
6025 for (i = 0; i < host->n_ports; i++) {
6026 struct ata_port *ap = host->ports[i];
79318057 6027 async_schedule(async_port_probe, ap);
f3187195 6028 }
f3187195
TH
6029
6030 return 0;
d9027470
GG
6031
6032 err_tadd:
6033 while (--i >= 0) {
6034 ata_tport_delete(host->ports[i]);
6035 }
6036 return rc;
6037
f3187195
TH
6038}
6039
f5cda257
TH
6040/**
6041 * ata_host_activate - start host, request IRQ and register it
6042 * @host: target ATA host
6043 * @irq: IRQ to request
6044 * @irq_handler: irq_handler used when requesting IRQ
6045 * @irq_flags: irq_flags used when requesting IRQ
6046 * @sht: scsi_host_template to use when registering the host
6047 *
6048 * After allocating an ATA host and initializing it, most libata
6049 * LLDs perform three steps to activate the host - start host,
6050 * request IRQ and register it. This helper takes necessasry
6051 * arguments and performs the three steps in one go.
6052 *
3d46b2e2
PM
6053 * An invalid IRQ skips the IRQ registration and expects the host to
6054 * have set polling mode on the port. In this case, @irq_handler
6055 * should be NULL.
6056 *
f5cda257
TH
6057 * LOCKING:
6058 * Inherited from calling layer (may sleep).
6059 *
6060 * RETURNS:
6061 * 0 on success, -errno otherwise.
6062 */
6063int ata_host_activate(struct ata_host *host, int irq,
6064 irq_handler_t irq_handler, unsigned long irq_flags,
6065 struct scsi_host_template *sht)
6066{
cbcdd875 6067 int i, rc;
f5cda257
TH
6068
6069 rc = ata_host_start(host);
6070 if (rc)
6071 return rc;
6072
3d46b2e2
PM
6073 /* Special case for polling mode */
6074 if (!irq) {
6075 WARN_ON(irq_handler);
6076 return ata_host_register(host, sht);
6077 }
6078
f5cda257
TH
6079 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6080 dev_driver_string(host->dev), host);
6081 if (rc)
6082 return rc;
6083
cbcdd875
TH
6084 for (i = 0; i < host->n_ports; i++)
6085 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6086
f5cda257
TH
6087 rc = ata_host_register(host, sht);
6088 /* if failed, just free the IRQ and leave ports alone */
6089 if (rc)
6090 devm_free_irq(host->dev, irq, host);
6091
6092 return rc;
6093}
6094
720ba126
TH
6095/**
6096 * ata_port_detach - Detach ATA port in prepration of device removal
6097 * @ap: ATA port to be detached
6098 *
6099 * Detach all ATA devices and the associated SCSI devices of @ap;
6100 * then, remove the associated SCSI host. @ap is guaranteed to
6101 * be quiescent on return from this function.
6102 *
6103 * LOCKING:
6104 * Kernel thread context (may sleep).
6105 */
741b7763 6106static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6107{
6108 unsigned long flags;
720ba126
TH
6109
6110 if (!ap->ops->error_handler)
c3cf30a9 6111 goto skip_eh;
720ba126
TH
6112
6113 /* tell EH we're leaving & flush EH */
ba6a1308 6114 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6115 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6116 ata_port_schedule_eh(ap);
ba6a1308 6117 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6118
ece180d1 6119 /* wait till EH commits suicide */
720ba126
TH
6120 ata_port_wait_eh(ap);
6121
ece180d1
TH
6122 /* it better be dead now */
6123 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6124
45a66c1c 6125 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6126
c3cf30a9 6127 skip_eh:
d9027470
GG
6128 if (ap->pmp_link) {
6129 int i;
6130 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6131 ata_tlink_delete(&ap->pmp_link[i]);
6132 }
6133 ata_tport_delete(ap);
6134
720ba126 6135 /* remove the associated SCSI host */
cca3974e 6136 scsi_remove_host(ap->scsi_host);
720ba126
TH
6137}
6138
0529c159
TH
6139/**
6140 * ata_host_detach - Detach all ports of an ATA host
6141 * @host: Host to detach
6142 *
6143 * Detach all ports of @host.
6144 *
6145 * LOCKING:
6146 * Kernel thread context (may sleep).
6147 */
6148void ata_host_detach(struct ata_host *host)
6149{
6150 int i;
6151
6152 for (i = 0; i < host->n_ports; i++)
6153 ata_port_detach(host->ports[i]);
562f0c2d
TH
6154
6155 /* the host is dead now, dissociate ACPI */
6156 ata_acpi_dissociate(host);
0529c159
TH
6157}
6158
374b1873
JG
6159#ifdef CONFIG_PCI
6160
1da177e4
LT
6161/**
6162 * ata_pci_remove_one - PCI layer callback for device removal
6163 * @pdev: PCI device that was removed
6164 *
b878ca5d
TH
6165 * PCI layer indicates to libata via this hook that hot-unplug or
6166 * module unload event has occurred. Detach all ports. Resource
6167 * release is handled via devres.
1da177e4
LT
6168 *
6169 * LOCKING:
6170 * Inherited from PCI layer (may sleep).
6171 */
f0d36efd 6172void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6173{
2855568b 6174 struct device *dev = &pdev->dev;
cca3974e 6175 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6176
b878ca5d 6177 ata_host_detach(host);
1da177e4
LT
6178}
6179
6180/* move to PCI subsystem */
057ace5e 6181int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6182{
6183 unsigned long tmp = 0;
6184
6185 switch (bits->width) {
6186 case 1: {
6187 u8 tmp8 = 0;
6188 pci_read_config_byte(pdev, bits->reg, &tmp8);
6189 tmp = tmp8;
6190 break;
6191 }
6192 case 2: {
6193 u16 tmp16 = 0;
6194 pci_read_config_word(pdev, bits->reg, &tmp16);
6195 tmp = tmp16;
6196 break;
6197 }
6198 case 4: {
6199 u32 tmp32 = 0;
6200 pci_read_config_dword(pdev, bits->reg, &tmp32);
6201 tmp = tmp32;
6202 break;
6203 }
6204
6205 default:
6206 return -EINVAL;
6207 }
6208
6209 tmp &= bits->mask;
6210
6211 return (tmp == bits->val) ? 1 : 0;
6212}
9b847548 6213
6ffa01d8 6214#ifdef CONFIG_PM
3c5100c1 6215void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6216{
6217 pci_save_state(pdev);
4c90d971 6218 pci_disable_device(pdev);
500530f6 6219
3a2d5b70 6220 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6221 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6222}
6223
553c4aa6 6224int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6225{
553c4aa6
TH
6226 int rc;
6227
9b847548
JA
6228 pci_set_power_state(pdev, PCI_D0);
6229 pci_restore_state(pdev);
553c4aa6 6230
b878ca5d 6231 rc = pcim_enable_device(pdev);
553c4aa6
TH
6232 if (rc) {
6233 dev_printk(KERN_ERR, &pdev->dev,
6234 "failed to enable device after resume (%d)\n", rc);
6235 return rc;
6236 }
6237
9b847548 6238 pci_set_master(pdev);
553c4aa6 6239 return 0;
500530f6
TH
6240}
6241
3c5100c1 6242int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6243{
cca3974e 6244 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6245 int rc = 0;
6246
cca3974e 6247 rc = ata_host_suspend(host, mesg);
500530f6
TH
6248 if (rc)
6249 return rc;
6250
3c5100c1 6251 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6252
6253 return 0;
6254}
6255
6256int ata_pci_device_resume(struct pci_dev *pdev)
6257{
cca3974e 6258 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6259 int rc;
500530f6 6260
553c4aa6
TH
6261 rc = ata_pci_device_do_resume(pdev);
6262 if (rc == 0)
6263 ata_host_resume(host);
6264 return rc;
9b847548 6265}
6ffa01d8
TH
6266#endif /* CONFIG_PM */
6267
1da177e4
LT
6268#endif /* CONFIG_PCI */
6269
33267325
TH
6270static int __init ata_parse_force_one(char **cur,
6271 struct ata_force_ent *force_ent,
6272 const char **reason)
6273{
6274 /* FIXME: Currently, there's no way to tag init const data and
6275 * using __initdata causes build failure on some versions of
6276 * gcc. Once __initdataconst is implemented, add const to the
6277 * following structure.
6278 */
6279 static struct ata_force_param force_tbl[] __initdata = {
6280 { "40c", .cbl = ATA_CBL_PATA40 },
6281 { "80c", .cbl = ATA_CBL_PATA80 },
6282 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6283 { "unk", .cbl = ATA_CBL_PATA_UNK },
6284 { "ign", .cbl = ATA_CBL_PATA_IGN },
6285 { "sata", .cbl = ATA_CBL_SATA },
6286 { "1.5Gbps", .spd_limit = 1 },
6287 { "3.0Gbps", .spd_limit = 2 },
6288 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6289 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
43c9c591 6290 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6291 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6292 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6293 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6294 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6295 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6296 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6297 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6298 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6299 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6300 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6301 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6302 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6303 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6304 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6305 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6306 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6307 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6308 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6309 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6310 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6311 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6312 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6313 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6314 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6315 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6316 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6317 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6318 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6319 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6320 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6321 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6322 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6323 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6324 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6325 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6326 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6327 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6328 };
6329 char *start = *cur, *p = *cur;
6330 char *id, *val, *endp;
6331 const struct ata_force_param *match_fp = NULL;
6332 int nr_matches = 0, i;
6333
6334 /* find where this param ends and update *cur */
6335 while (*p != '\0' && *p != ',')
6336 p++;
6337
6338 if (*p == '\0')
6339 *cur = p;
6340 else
6341 *cur = p + 1;
6342
6343 *p = '\0';
6344
6345 /* parse */
6346 p = strchr(start, ':');
6347 if (!p) {
6348 val = strstrip(start);
6349 goto parse_val;
6350 }
6351 *p = '\0';
6352
6353 id = strstrip(start);
6354 val = strstrip(p + 1);
6355
6356 /* parse id */
6357 p = strchr(id, '.');
6358 if (p) {
6359 *p++ = '\0';
6360 force_ent->device = simple_strtoul(p, &endp, 10);
6361 if (p == endp || *endp != '\0') {
6362 *reason = "invalid device";
6363 return -EINVAL;
6364 }
6365 }
6366
6367 force_ent->port = simple_strtoul(id, &endp, 10);
6368 if (p == endp || *endp != '\0') {
6369 *reason = "invalid port/link";
6370 return -EINVAL;
6371 }
6372
6373 parse_val:
6374 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6375 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6376 const struct ata_force_param *fp = &force_tbl[i];
6377
6378 if (strncasecmp(val, fp->name, strlen(val)))
6379 continue;
6380
6381 nr_matches++;
6382 match_fp = fp;
6383
6384 if (strcasecmp(val, fp->name) == 0) {
6385 nr_matches = 1;
6386 break;
6387 }
6388 }
6389
6390 if (!nr_matches) {
6391 *reason = "unknown value";
6392 return -EINVAL;
6393 }
6394 if (nr_matches > 1) {
6395 *reason = "ambigious value";
6396 return -EINVAL;
6397 }
6398
6399 force_ent->param = *match_fp;
6400
6401 return 0;
6402}
6403
6404static void __init ata_parse_force_param(void)
6405{
6406 int idx = 0, size = 1;
6407 int last_port = -1, last_device = -1;
6408 char *p, *cur, *next;
6409
6410 /* calculate maximum number of params and allocate force_tbl */
6411 for (p = ata_force_param_buf; *p; p++)
6412 if (*p == ',')
6413 size++;
6414
6415 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6416 if (!ata_force_tbl) {
6417 printk(KERN_WARNING "ata: failed to extend force table, "
6418 "libata.force ignored\n");
6419 return;
6420 }
6421
6422 /* parse and populate the table */
6423 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6424 const char *reason = "";
6425 struct ata_force_ent te = { .port = -1, .device = -1 };
6426
6427 next = cur;
6428 if (ata_parse_force_one(&next, &te, &reason)) {
6429 printk(KERN_WARNING "ata: failed to parse force "
6430 "parameter \"%s\" (%s)\n",
6431 cur, reason);
6432 continue;
6433 }
6434
6435 if (te.port == -1) {
6436 te.port = last_port;
6437 te.device = last_device;
6438 }
6439
6440 ata_force_tbl[idx++] = te;
6441
6442 last_port = te.port;
6443 last_device = te.device;
6444 }
6445
6446 ata_force_tbl_size = idx;
6447}
1da177e4 6448
1da177e4
LT
6449static int __init ata_init(void)
6450{
d9027470 6451 int rc;
270390e1 6452
33267325
TH
6453 ata_parse_force_param();
6454
270390e1 6455 rc = ata_sff_init();
ad72cf98
TH
6456 if (rc) {
6457 kfree(ata_force_tbl);
6458 return rc;
6459 }
453b07ac 6460
d9027470
GG
6461 libata_transport_init();
6462 ata_scsi_transport_template = ata_attach_transport();
6463 if (!ata_scsi_transport_template) {
6464 ata_sff_exit();
6465 rc = -ENOMEM;
6466 goto err_out;
6467 }
6468
1da177e4
LT
6469 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6470 return 0;
d9027470
GG
6471
6472err_out:
6473 return rc;
1da177e4
LT
6474}
6475
6476static void __exit ata_exit(void)
6477{
d9027470
GG
6478 ata_release_transport(ata_scsi_transport_template);
6479 libata_transport_exit();
270390e1 6480 ata_sff_exit();
33267325 6481 kfree(ata_force_tbl);
1da177e4
LT
6482}
6483
a4625085 6484subsys_initcall(ata_init);
1da177e4
LT
6485module_exit(ata_exit);
6486
9990b6f3 6487static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6488
6489int ata_ratelimit(void)
6490{
9990b6f3 6491 return __ratelimit(&ratelimit);
67846b30
JG
6492}
6493
c0c362b6
TH
6494/**
6495 * ata_msleep - ATA EH owner aware msleep
6496 * @ap: ATA port to attribute the sleep to
6497 * @msecs: duration to sleep in milliseconds
6498 *
6499 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6500 * ownership is released before going to sleep and reacquired
6501 * after the sleep is complete. IOW, other ports sharing the
6502 * @ap->host will be allowed to own the EH while this task is
6503 * sleeping.
6504 *
6505 * LOCKING:
6506 * Might sleep.
6507 */
97750ceb
TH
6508void ata_msleep(struct ata_port *ap, unsigned int msecs)
6509{
c0c362b6
TH
6510 bool owns_eh = ap && ap->host->eh_owner == current;
6511
6512 if (owns_eh)
6513 ata_eh_release(ap);
6514
97750ceb 6515 msleep(msecs);
c0c362b6
TH
6516
6517 if (owns_eh)
6518 ata_eh_acquire(ap);
97750ceb
TH
6519}
6520
c22daff4
TH
6521/**
6522 * ata_wait_register - wait until register value changes
97750ceb 6523 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6524 * @reg: IO-mapped register
6525 * @mask: Mask to apply to read register value
6526 * @val: Wait condition
341c2c95
TH
6527 * @interval: polling interval in milliseconds
6528 * @timeout: timeout in milliseconds
c22daff4
TH
6529 *
6530 * Waiting for some bits of register to change is a common
6531 * operation for ATA controllers. This function reads 32bit LE
6532 * IO-mapped register @reg and tests for the following condition.
6533 *
6534 * (*@reg & mask) != val
6535 *
6536 * If the condition is met, it returns; otherwise, the process is
6537 * repeated after @interval_msec until timeout.
6538 *
6539 * LOCKING:
6540 * Kernel thread context (may sleep)
6541 *
6542 * RETURNS:
6543 * The final register value.
6544 */
97750ceb 6545u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6546 unsigned long interval, unsigned long timeout)
c22daff4 6547{
341c2c95 6548 unsigned long deadline;
c22daff4
TH
6549 u32 tmp;
6550
6551 tmp = ioread32(reg);
6552
6553 /* Calculate timeout _after_ the first read to make sure
6554 * preceding writes reach the controller before starting to
6555 * eat away the timeout.
6556 */
341c2c95 6557 deadline = ata_deadline(jiffies, timeout);
c22daff4 6558
341c2c95 6559 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6560 ata_msleep(ap, interval);
c22daff4
TH
6561 tmp = ioread32(reg);
6562 }
6563
6564 return tmp;
6565}
6566
dd5b06c4
TH
6567/*
6568 * Dummy port_ops
6569 */
182d7bba 6570static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6571{
182d7bba 6572 return AC_ERR_SYSTEM;
dd5b06c4
TH
6573}
6574
182d7bba 6575static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6576{
182d7bba 6577 /* truly dummy */
dd5b06c4
TH
6578}
6579
029cfd6b 6580struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6581 .qc_prep = ata_noop_qc_prep,
6582 .qc_issue = ata_dummy_qc_issue,
182d7bba 6583 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6584};
6585
21b0ad4f
TH
6586const struct ata_port_info ata_dummy_port_info = {
6587 .port_ops = &ata_dummy_port_ops,
6588};
6589
1da177e4
LT
6590/*
6591 * libata is essentially a library of internal helper functions for
6592 * low-level ATA host controller drivers. As such, the API/ABI is
6593 * likely to change as new drivers are added and updated.
6594 * Do not depend on ABI/API stability.
6595 */
e9c83914
TH
6596EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6597EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6598EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6599EXPORT_SYMBOL_GPL(ata_base_port_ops);
6600EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6601EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6602EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6603EXPORT_SYMBOL_GPL(ata_link_next);
6604EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6605EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6606EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6607EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6608EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6609EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6610EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6611EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6612EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6613EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6614EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6615EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6616EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6617EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6618EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6619EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6620EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6621EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6622EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6623EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6624EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6625EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6626EXPORT_SYMBOL_GPL(ata_mode_string);
6627EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6628EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6629EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6630EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6631EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6632EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6633EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6634EXPORT_SYMBOL_GPL(sata_link_debounce);
6635EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 6636EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 6637EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6638EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6639EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6640EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6641EXPORT_SYMBOL_GPL(ata_dev_classify);
6642EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6643EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 6644EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 6645EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6646EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6647EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6648EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6649EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6650EXPORT_SYMBOL_GPL(sata_scr_valid);
6651EXPORT_SYMBOL_GPL(sata_scr_read);
6652EXPORT_SYMBOL_GPL(sata_scr_write);
6653EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6654EXPORT_SYMBOL_GPL(ata_link_online);
6655EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6656#ifdef CONFIG_PM
cca3974e
JG
6657EXPORT_SYMBOL_GPL(ata_host_suspend);
6658EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6659#endif /* CONFIG_PM */
6a62a04d
TH
6660EXPORT_SYMBOL_GPL(ata_id_string);
6661EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6662EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6663EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6664
1bc4ccff 6665EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6666EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6667EXPORT_SYMBOL_GPL(ata_timing_compute);
6668EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6669EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6670
1da177e4
LT
6671#ifdef CONFIG_PCI
6672EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6673EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6674#ifdef CONFIG_PM
500530f6
TH
6675EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6676EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6677EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6678EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6679#endif /* CONFIG_PM */
1da177e4 6680#endif /* CONFIG_PCI */
9b847548 6681
b64bbc39
TH
6682EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6683EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6684EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6685EXPORT_SYMBOL_GPL(ata_port_desc);
6686#ifdef CONFIG_PCI
6687EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6688#endif /* CONFIG_PCI */
7b70fc03 6689EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6690EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6691EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6692EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6693EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6694EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6695EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6696EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6697EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6698EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6699EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6700EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6701
6702EXPORT_SYMBOL_GPL(ata_cable_40wire);
6703EXPORT_SYMBOL_GPL(ata_cable_80wire);
6704EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6705EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6706EXPORT_SYMBOL_GPL(ata_cable_sata);