]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
block: don't depend on consecutive minor space
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
165125e1 36static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
37
38/*
39 * For the allocated request tables
40 */
5ece6c52 41static struct kmem_cache *request_cachep;
1da177e4
LT
42
43/*
44 * For queue allocation
45 */
6728cb0e 46struct kmem_cache *blk_requestq_cachep;
1da177e4 47
1da177e4
LT
48/*
49 * Controlling structure to kblockd
50 */
ff856bad 51static struct workqueue_struct *kblockd_workqueue;
1da177e4 52
ff856bad
JA
53static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
26b8256e
JA
55static void drive_stat_acct(struct request *rq, int new_io)
56{
28f13702 57 struct hd_struct *part;
26b8256e
JA
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
310a2c10 63 part = disk_map_sector(rq->rq_disk, rq->sector);
28f13702
JA
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
26b8256e
JA
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
6f2576af
JM
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
72 }
26b8256e
JA
73 }
74}
75
8324aa91 76void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
77{
78 int nr;
79
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
89}
90
1da177e4
LT
91/**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
94 *
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
97 *
98 * Will return NULL if the request queue cannot be located.
99 */
100struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101{
102 struct backing_dev_info *ret = NULL;
165125e1 103 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
104
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
108}
1da177e4
LT
109EXPORT_SYMBOL(blk_get_backing_dev_info);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 116 INIT_LIST_HEAD(&rq->donelist);
63a71386
JA
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 121 rq->cmd = rq->__cmd;
63a71386 122 rq->tag = -1;
1da177e4 123 rq->ref_count = 1;
1da177e4 124}
2a4aa30c 125EXPORT_SYMBOL(blk_rq_init);
1da177e4 126
5bb23a68
N
127static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
1da177e4 129{
165125e1 130 struct request_queue *q = rq->q;
797e7dbb 131
5bb23a68
N
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
797e7dbb 137
5bb23a68 138 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 140 __func__, nbytes, bio->bi_size);
5bb23a68
N
141 nbytes = bio->bi_size;
142 }
797e7dbb 143
5bb23a68
N
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
146
147 if (bio_integrity(bio))
148 bio_integrity_advance(bio, nbytes);
149
5bb23a68 150 if (bio->bi_size == 0)
6712ecf8 151 bio_endio(bio, error);
5bb23a68
N
152 } else {
153
154 /*
155 * Okay, this is the barrier request in progress, just
156 * record the error;
157 */
158 if (error && !q->orderr)
159 q->orderr = error;
160 }
1da177e4 161}
1da177e4 162
1da177e4
LT
163void blk_dump_rq_flags(struct request *rq, char *msg)
164{
165 int bit;
166
6728cb0e 167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 rq->cmd_flags);
1da177e4 170
6728cb0e
JA
171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq->sector,
173 rq->nr_sectors,
174 rq->current_nr_sectors);
175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq->bio, rq->biotail,
177 rq->buffer, rq->data,
178 rq->data_len);
1da177e4 179
4aff5e23 180 if (blk_pc_request(rq)) {
6728cb0e 181 printk(KERN_INFO " cdb: ");
d34c87e4 182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
185 }
186}
1da177e4
LT
187EXPORT_SYMBOL(blk_dump_rq_flags);
188
1da177e4
LT
189/*
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
193 *
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
196 */
165125e1 197void blk_plug_device(struct request_queue *q)
1da177e4
LT
198{
199 WARN_ON(!irqs_disabled());
200
201 /*
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
204 */
7daac490 205 if (blk_queue_stopped(q))
1da177e4
LT
206 return;
207
e48ec690 208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 }
1da177e4 212}
1da177e4
LT
213EXPORT_SYMBOL(blk_plug_device);
214
6c5e0c4d
JA
215/**
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
218 *
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
222 **/
223void blk_plug_device_unlocked(struct request_queue *q)
224{
225 unsigned long flags;
226
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
230}
231EXPORT_SYMBOL(blk_plug_device_unlocked);
232
1da177e4
LT
233/*
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
236 */
165125e1 237int blk_remove_plug(struct request_queue *q)
1da177e4
LT
238{
239 WARN_ON(!irqs_disabled());
240
e48ec690 241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
242 return 0;
243
244 del_timer(&q->unplug_timer);
245 return 1;
246}
1da177e4
LT
247EXPORT_SYMBOL(blk_remove_plug);
248
249/*
250 * remove the plug and let it rip..
251 */
165125e1 252void __generic_unplug_device(struct request_queue *q)
1da177e4 253{
7daac490 254 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
255 return;
256
257 if (!blk_remove_plug(q))
258 return;
259
22e2c507 260 q->request_fn(q);
1da177e4
LT
261}
262EXPORT_SYMBOL(__generic_unplug_device);
263
264/**
265 * generic_unplug_device - fire a request queue
165125e1 266 * @q: The &struct request_queue in question
1da177e4
LT
267 *
268 * Description:
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
273 * transfers started.
274 **/
165125e1 275void generic_unplug_device(struct request_queue *q)
1da177e4 276{
dbaf2c00
JA
277 if (blk_queue_plugged(q)) {
278 spin_lock_irq(q->queue_lock);
279 __generic_unplug_device(q);
280 spin_unlock_irq(q->queue_lock);
281 }
1da177e4
LT
282}
283EXPORT_SYMBOL(generic_unplug_device);
284
285static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 struct page *page)
287{
165125e1 288 struct request_queue *q = bdi->unplug_io_data;
1da177e4 289
2ad8b1ef 290 blk_unplug(q);
1da177e4
LT
291}
292
86db1e29 293void blk_unplug_work(struct work_struct *work)
1da177e4 294{
165125e1
JA
295 struct request_queue *q =
296 container_of(work, struct request_queue, unplug_work);
1da177e4 297
2056a782
JA
298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 q->rq.count[READ] + q->rq.count[WRITE]);
300
1da177e4
LT
301 q->unplug_fn(q);
302}
303
86db1e29 304void blk_unplug_timeout(unsigned long data)
1da177e4 305{
165125e1 306 struct request_queue *q = (struct request_queue *)data;
1da177e4 307
2056a782
JA
308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 q->rq.count[READ] + q->rq.count[WRITE]);
310
1da177e4
LT
311 kblockd_schedule_work(&q->unplug_work);
312}
313
2ad8b1ef
AB
314void blk_unplug(struct request_queue *q)
315{
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 q->rq.count[READ] + q->rq.count[WRITE]);
322
323 q->unplug_fn(q);
324 }
325}
326EXPORT_SYMBOL(blk_unplug);
327
1da177e4
LT
328/**
329 * blk_start_queue - restart a previously stopped queue
165125e1 330 * @q: The &struct request_queue in question
1da177e4
LT
331 *
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 **/
165125e1 337void blk_start_queue(struct request_queue *q)
1da177e4 338{
a038e253
PBG
339 WARN_ON(!irqs_disabled());
340
75ad23bc 341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
342
343 /*
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
346 */
e48ec690 347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
1da177e4 348 q->request_fn(q);
75ad23bc 349 queue_flag_clear(QUEUE_FLAG_REENTER, q);
1da177e4
LT
350 } else {
351 blk_plug_device(q);
352 kblockd_schedule_work(&q->unplug_work);
353 }
354}
1da177e4
LT
355EXPORT_SYMBOL(blk_start_queue);
356
357/**
358 * blk_stop_queue - stop a queue
165125e1 359 * @q: The &struct request_queue in question
1da177e4
LT
360 *
361 * Description:
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
370 **/
165125e1 371void blk_stop_queue(struct request_queue *q)
1da177e4
LT
372{
373 blk_remove_plug(q);
75ad23bc 374 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
375}
376EXPORT_SYMBOL(blk_stop_queue);
377
378/**
379 * blk_sync_queue - cancel any pending callbacks on a queue
380 * @q: the queue
381 *
382 * Description:
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
59c51591 387 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
388 * that its ->make_request_fn will not re-add plugging prior to calling
389 * this function.
390 *
391 */
392void blk_sync_queue(struct request_queue *q)
393{
394 del_timer_sync(&q->unplug_timer);
abbeb88d 395 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
396}
397EXPORT_SYMBOL(blk_sync_queue);
398
399/**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
402 */
75ad23bc 403void __blk_run_queue(struct request_queue *q)
1da177e4 404{
1da177e4 405 blk_remove_plug(q);
dac07ec1
JA
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!elv_queue_empty(q)) {
e48ec690 412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
dac07ec1 413 q->request_fn(q);
75ad23bc 414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
dac07ec1
JA
415 } else {
416 blk_plug_device(q);
417 kblockd_schedule_work(&q->unplug_work);
418 }
419 }
75ad23bc
NP
420}
421EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 422
75ad23bc
NP
423/**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 */
427void blk_run_queue(struct request_queue *q)
428{
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
1da177e4
LT
433 spin_unlock_irqrestore(q->queue_lock, flags);
434}
435EXPORT_SYMBOL(blk_run_queue);
436
165125e1 437void blk_put_queue(struct request_queue *q)
483f4afc
AV
438{
439 kobject_put(&q->kobj);
440}
483f4afc 441
6728cb0e 442void blk_cleanup_queue(struct request_queue *q)
483f4afc
AV
443{
444 mutex_lock(&q->sysfs_lock);
75ad23bc 445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
446 mutex_unlock(&q->sysfs_lock);
447
448 if (q->elevator)
449 elevator_exit(q->elevator);
450
451 blk_put_queue(q);
452}
1da177e4
LT
453EXPORT_SYMBOL(blk_cleanup_queue);
454
165125e1 455static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
456{
457 struct request_list *rl = &q->rq;
458
459 rl->count[READ] = rl->count[WRITE] = 0;
460 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 461 rl->elvpriv = 0;
1da177e4
LT
462 init_waitqueue_head(&rl->wait[READ]);
463 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 464
1946089a
CL
465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
467
468 if (!rl->rq_pool)
469 return -ENOMEM;
470
471 return 0;
472}
473
165125e1 474struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 475{
1946089a
CL
476 return blk_alloc_queue_node(gfp_mask, -1);
477}
478EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 479
165125e1 480struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 481{
165125e1 482 struct request_queue *q;
e0bf68dd 483 int err;
1946089a 484
8324aa91 485 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 486 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
487 if (!q)
488 return NULL;
489
e0bf68dd
PZ
490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 q->backing_dev_info.unplug_io_data = q;
492 err = bdi_init(&q->backing_dev_info);
493 if (err) {
8324aa91 494 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
495 return NULL;
496 }
497
1da177e4 498 init_timer(&q->unplug_timer);
483f4afc 499
8324aa91 500 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 501
483f4afc 502 mutex_init(&q->sysfs_lock);
e7e72bf6 503 spin_lock_init(&q->__queue_lock);
483f4afc 504
1da177e4
LT
505 return q;
506}
1946089a 507EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
508
509/**
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
514 *
515 * Description:
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
524 *
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
529 *
530 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
1da177e4 533 *
710027a4 534 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
535 * it didn't succeed.
536 *
537 * Note:
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
540 **/
1946089a 541
165125e1 542struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 543{
1946089a
CL
544 return blk_init_queue_node(rfn, lock, -1);
545}
546EXPORT_SYMBOL(blk_init_queue);
547
165125e1 548struct request_queue *
1946089a
CL
549blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
550{
165125e1 551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
552
553 if (!q)
554 return NULL;
555
1946089a 556 q->node = node_id;
8669aafd 557 if (blk_init_free_list(q)) {
8324aa91 558 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
559 return NULL;
560 }
1da177e4 561
152587de
JA
562 /*
563 * if caller didn't supply a lock, they get per-queue locking with
564 * our embedded lock
565 */
e7e72bf6 566 if (!lock)
152587de 567 lock = &q->__queue_lock;
152587de 568
1da177e4 569 q->request_fn = rfn;
1da177e4
LT
570 q->prep_rq_fn = NULL;
571 q->unplug_fn = generic_unplug_device;
572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
573 q->queue_lock = lock;
574
575 blk_queue_segment_boundary(q, 0xffffffff);
576
577 blk_queue_make_request(q, __make_request);
578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
579
580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
582
44ec9542
AS
583 q->sg_reserved_size = INT_MAX;
584
abf54393
FT
585 blk_set_cmd_filter_defaults(&q->cmd_filter);
586
1da177e4
LT
587 /*
588 * all done
589 */
590 if (!elevator_init(q, NULL)) {
591 blk_queue_congestion_threshold(q);
592 return q;
593 }
594
8669aafd 595 blk_put_queue(q);
1da177e4
LT
596 return NULL;
597}
1946089a 598EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 599
165125e1 600int blk_get_queue(struct request_queue *q)
1da177e4 601{
fde6ad22 602 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 603 kobject_get(&q->kobj);
1da177e4
LT
604 return 0;
605 }
606
607 return 1;
608}
1da177e4 609
165125e1 610static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 611{
4aff5e23 612 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 613 elv_put_request(q, rq);
1da177e4
LT
614 mempool_free(rq, q->rq.rq_pool);
615}
616
1ea25ecb 617static struct request *
165125e1 618blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
619{
620 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
621
622 if (!rq)
623 return NULL;
624
2a4aa30c 625 blk_rq_init(q, rq);
1afb20f3 626
49171e5c 627 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 628
cb98fc8b 629 if (priv) {
cb78b285 630 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
631 mempool_free(rq, q->rq.rq_pool);
632 return NULL;
633 }
4aff5e23 634 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 635 }
1da177e4 636
cb98fc8b 637 return rq;
1da177e4
LT
638}
639
640/*
641 * ioc_batching returns true if the ioc is a valid batching request and
642 * should be given priority access to a request.
643 */
165125e1 644static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
645{
646 if (!ioc)
647 return 0;
648
649 /*
650 * Make sure the process is able to allocate at least 1 request
651 * even if the batch times out, otherwise we could theoretically
652 * lose wakeups.
653 */
654 return ioc->nr_batch_requests == q->nr_batching ||
655 (ioc->nr_batch_requests > 0
656 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
657}
658
659/*
660 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
661 * will cause the process to be a "batcher" on all queues in the system. This
662 * is the behaviour we want though - once it gets a wakeup it should be given
663 * a nice run.
664 */
165125e1 665static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
666{
667 if (!ioc || ioc_batching(q, ioc))
668 return;
669
670 ioc->nr_batch_requests = q->nr_batching;
671 ioc->last_waited = jiffies;
672}
673
165125e1 674static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
675{
676 struct request_list *rl = &q->rq;
677
678 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 679 blk_clear_queue_congested(q, rw);
1da177e4
LT
680
681 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
682 if (waitqueue_active(&rl->wait[rw]))
683 wake_up(&rl->wait[rw]);
684
685 blk_clear_queue_full(q, rw);
686 }
687}
688
689/*
690 * A request has just been released. Account for it, update the full and
691 * congestion status, wake up any waiters. Called under q->queue_lock.
692 */
165125e1 693static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
694{
695 struct request_list *rl = &q->rq;
696
697 rl->count[rw]--;
cb98fc8b
TH
698 if (priv)
699 rl->elvpriv--;
1da177e4
LT
700
701 __freed_request(q, rw);
702
703 if (unlikely(rl->starved[rw ^ 1]))
704 __freed_request(q, rw ^ 1);
1da177e4
LT
705}
706
707#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
708/*
d6344532
NP
709 * Get a free request, queue_lock must be held.
710 * Returns NULL on failure, with queue_lock held.
711 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 712 */
165125e1 713static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 714 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
715{
716 struct request *rq = NULL;
717 struct request_list *rl = &q->rq;
88ee5ef1 718 struct io_context *ioc = NULL;
7749a8d4 719 const int rw = rw_flags & 0x01;
88ee5ef1
JA
720 int may_queue, priv;
721
7749a8d4 722 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
723 if (may_queue == ELV_MQUEUE_NO)
724 goto rq_starved;
725
726 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
727 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 728 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
729 /*
730 * The queue will fill after this allocation, so set
731 * it as full, and mark this process as "batching".
732 * This process will be allowed to complete a batch of
733 * requests, others will be blocked.
734 */
735 if (!blk_queue_full(q, rw)) {
736 ioc_set_batching(q, ioc);
737 blk_set_queue_full(q, rw);
738 } else {
739 if (may_queue != ELV_MQUEUE_MUST
740 && !ioc_batching(q, ioc)) {
741 /*
742 * The queue is full and the allocating
743 * process is not a "batcher", and not
744 * exempted by the IO scheduler
745 */
746 goto out;
747 }
748 }
1da177e4 749 }
79e2de4b 750 blk_set_queue_congested(q, rw);
1da177e4
LT
751 }
752
082cf69e
JA
753 /*
754 * Only allow batching queuers to allocate up to 50% over the defined
755 * limit of requests, otherwise we could have thousands of requests
756 * allocated with any setting of ->nr_requests
757 */
fd782a4a 758 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 759 goto out;
fd782a4a 760
1da177e4
LT
761 rl->count[rw]++;
762 rl->starved[rw] = 0;
cb98fc8b 763
64521d1a 764 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
765 if (priv)
766 rl->elvpriv++;
767
1da177e4
LT
768 spin_unlock_irq(q->queue_lock);
769
7749a8d4 770 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 771 if (unlikely(!rq)) {
1da177e4
LT
772 /*
773 * Allocation failed presumably due to memory. Undo anything
774 * we might have messed up.
775 *
776 * Allocating task should really be put onto the front of the
777 * wait queue, but this is pretty rare.
778 */
779 spin_lock_irq(q->queue_lock);
cb98fc8b 780 freed_request(q, rw, priv);
1da177e4
LT
781
782 /*
783 * in the very unlikely event that allocation failed and no
784 * requests for this direction was pending, mark us starved
785 * so that freeing of a request in the other direction will
786 * notice us. another possible fix would be to split the
787 * rq mempool into READ and WRITE
788 */
789rq_starved:
790 if (unlikely(rl->count[rw] == 0))
791 rl->starved[rw] = 1;
792
1da177e4
LT
793 goto out;
794 }
795
88ee5ef1
JA
796 /*
797 * ioc may be NULL here, and ioc_batching will be false. That's
798 * OK, if the queue is under the request limit then requests need
799 * not count toward the nr_batch_requests limit. There will always
800 * be some limit enforced by BLK_BATCH_TIME.
801 */
1da177e4
LT
802 if (ioc_batching(q, ioc))
803 ioc->nr_batch_requests--;
6728cb0e 804
2056a782 805 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 806out:
1da177e4
LT
807 return rq;
808}
809
810/*
811 * No available requests for this queue, unplug the device and wait for some
812 * requests to become available.
d6344532
NP
813 *
814 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 815 */
165125e1 816static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 817 struct bio *bio)
1da177e4 818{
7749a8d4 819 const int rw = rw_flags & 0x01;
1da177e4
LT
820 struct request *rq;
821
7749a8d4 822 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
823 while (!rq) {
824 DEFINE_WAIT(wait);
05caf8db 825 struct io_context *ioc;
1da177e4
LT
826 struct request_list *rl = &q->rq;
827
828 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
829 TASK_UNINTERRUPTIBLE);
830
05caf8db 831 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 832
05caf8db
ZY
833 __generic_unplug_device(q);
834 spin_unlock_irq(q->queue_lock);
835 io_schedule();
1da177e4 836
05caf8db
ZY
837 /*
838 * After sleeping, we become a "batching" process and
839 * will be able to allocate at least one request, and
840 * up to a big batch of them for a small period time.
841 * See ioc_batching, ioc_set_batching
842 */
843 ioc = current_io_context(GFP_NOIO, q->node);
844 ioc_set_batching(q, ioc);
d6344532 845
05caf8db 846 spin_lock_irq(q->queue_lock);
1da177e4 847 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
848
849 rq = get_request(q, rw_flags, bio, GFP_NOIO);
850 };
1da177e4
LT
851
852 return rq;
853}
854
165125e1 855struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
856{
857 struct request *rq;
858
859 BUG_ON(rw != READ && rw != WRITE);
860
d6344532
NP
861 spin_lock_irq(q->queue_lock);
862 if (gfp_mask & __GFP_WAIT) {
22e2c507 863 rq = get_request_wait(q, rw, NULL);
d6344532 864 } else {
22e2c507 865 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
866 if (!rq)
867 spin_unlock_irq(q->queue_lock);
868 }
869 /* q->queue_lock is unlocked at this point */
1da177e4
LT
870
871 return rq;
872}
1da177e4
LT
873EXPORT_SYMBOL(blk_get_request);
874
dc72ef4a
JA
875/**
876 * blk_start_queueing - initiate dispatch of requests to device
877 * @q: request queue to kick into gear
878 *
879 * This is basically a helper to remove the need to know whether a queue
880 * is plugged or not if someone just wants to initiate dispatch of requests
881 * for this queue.
882 *
883 * The queue lock must be held with interrupts disabled.
884 */
165125e1 885void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
886{
887 if (!blk_queue_plugged(q))
888 q->request_fn(q);
889 else
890 __generic_unplug_device(q);
891}
892EXPORT_SYMBOL(blk_start_queueing);
893
1da177e4
LT
894/**
895 * blk_requeue_request - put a request back on queue
896 * @q: request queue where request should be inserted
897 * @rq: request to be inserted
898 *
899 * Description:
900 * Drivers often keep queueing requests until the hardware cannot accept
901 * more, when that condition happens we need to put the request back
902 * on the queue. Must be called with queue lock held.
903 */
165125e1 904void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 905{
2056a782
JA
906 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
907
1da177e4
LT
908 if (blk_rq_tagged(rq))
909 blk_queue_end_tag(q, rq);
910
911 elv_requeue_request(q, rq);
912}
1da177e4
LT
913EXPORT_SYMBOL(blk_requeue_request);
914
915/**
710027a4 916 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
917 * @q: request queue where request should be inserted
918 * @rq: request to be inserted
919 * @at_head: insert request at head or tail of queue
920 * @data: private data
1da177e4
LT
921 *
922 * Description:
923 * Many block devices need to execute commands asynchronously, so they don't
924 * block the whole kernel from preemption during request execution. This is
925 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
926 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
927 * be scheduled for actual execution by the request queue.
1da177e4
LT
928 *
929 * We have the option of inserting the head or the tail of the queue.
930 * Typically we use the tail for new ioctls and so forth. We use the head
931 * of the queue for things like a QUEUE_FULL message from a device, or a
932 * host that is unable to accept a particular command.
933 */
165125e1 934void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 935 int at_head, void *data)
1da177e4 936{
867d1191 937 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
938 unsigned long flags;
939
940 /*
941 * tell I/O scheduler that this isn't a regular read/write (ie it
942 * must not attempt merges on this) and that it acts as a soft
943 * barrier
944 */
4aff5e23
JA
945 rq->cmd_type = REQ_TYPE_SPECIAL;
946 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
947
948 rq->special = data;
949
950 spin_lock_irqsave(q->queue_lock, flags);
951
952 /*
953 * If command is tagged, release the tag
954 */
867d1191
TH
955 if (blk_rq_tagged(rq))
956 blk_queue_end_tag(q, rq);
1da177e4 957
b238b3d4 958 drive_stat_acct(rq, 1);
867d1191 959 __elv_add_request(q, rq, where, 0);
dc72ef4a 960 blk_start_queueing(q);
1da177e4
LT
961 spin_unlock_irqrestore(q->queue_lock, flags);
962}
1da177e4
LT
963EXPORT_SYMBOL(blk_insert_request);
964
1da177e4
LT
965/*
966 * add-request adds a request to the linked list.
967 * queue lock is held and interrupts disabled, as we muck with the
968 * request queue list.
969 */
6728cb0e 970static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 971{
b238b3d4 972 drive_stat_acct(req, 1);
1da177e4 973
1da177e4
LT
974 /*
975 * elevator indicated where it wants this request to be
976 * inserted at elevator_merge time
977 */
978 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
979}
6728cb0e 980
1da177e4
LT
981/*
982 * disk_round_stats() - Round off the performance stats on a struct
983 * disk_stats.
984 *
985 * The average IO queue length and utilisation statistics are maintained
986 * by observing the current state of the queue length and the amount of
987 * time it has been in this state for.
988 *
989 * Normally, that accounting is done on IO completion, but that can result
990 * in more than a second's worth of IO being accounted for within any one
991 * second, leading to >100% utilisation. To deal with that, we call this
992 * function to do a round-off before returning the results when reading
993 * /proc/diskstats. This accounts immediately for all queue usage up to
994 * the current jiffies and restarts the counters again.
995 */
996void disk_round_stats(struct gendisk *disk)
997{
998 unsigned long now = jiffies;
999
b2982649
KC
1000 if (now == disk->stamp)
1001 return;
1da177e4 1002
20e5c81f
KC
1003 if (disk->in_flight) {
1004 __disk_stat_add(disk, time_in_queue,
1005 disk->in_flight * (now - disk->stamp));
1006 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1007 }
1da177e4 1008 disk->stamp = now;
1da177e4 1009}
3eaf840e
JNN
1010EXPORT_SYMBOL_GPL(disk_round_stats);
1011
6f2576af
JM
1012void part_round_stats(struct hd_struct *part)
1013{
1014 unsigned long now = jiffies;
1015
1016 if (now == part->stamp)
1017 return;
1018
1019 if (part->in_flight) {
1020 __part_stat_add(part, time_in_queue,
1021 part->in_flight * (now - part->stamp));
1022 __part_stat_add(part, io_ticks, (now - part->stamp));
1023 }
1024 part->stamp = now;
1025}
1026
1da177e4
LT
1027/*
1028 * queue lock must be held
1029 */
165125e1 1030void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1031{
1da177e4
LT
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1036
8922e16c
TH
1037 elv_completed_request(q, req);
1038
1da177e4
LT
1039 /*
1040 * Request may not have originated from ll_rw_blk. if not,
1041 * it didn't come out of our reserved rq pools
1042 */
49171e5c 1043 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1044 int rw = rq_data_dir(req);
4aff5e23 1045 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1046
1da177e4 1047 BUG_ON(!list_empty(&req->queuelist));
9817064b 1048 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1049
1050 blk_free_request(q, req);
cb98fc8b 1051 freed_request(q, rw, priv);
1da177e4
LT
1052 }
1053}
6e39b69e
MC
1054EXPORT_SYMBOL_GPL(__blk_put_request);
1055
1da177e4
LT
1056void blk_put_request(struct request *req)
1057{
8922e16c 1058 unsigned long flags;
165125e1 1059 struct request_queue *q = req->q;
8922e16c 1060
52a93ba8
FT
1061 spin_lock_irqsave(q->queue_lock, flags);
1062 __blk_put_request(q, req);
1063 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1064}
1da177e4
LT
1065EXPORT_SYMBOL(blk_put_request);
1066
86db1e29 1067void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1068{
4aff5e23 1069 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1070
1071 /*
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1073 */
1074 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1075 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1076
1077 /*
1078 * REQ_BARRIER implies no merging, but lets make it explicit
1079 */
fb2dce86 1080 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1081 req->cmd_flags |= REQ_DISCARD;
1082 if (bio_barrier(bio))
1083 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1084 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1085 } else if (unlikely(bio_barrier(bio)))
1086 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1087
b31dc66a 1088 if (bio_sync(bio))
4aff5e23 1089 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1090 if (bio_rw_meta(bio))
1091 req->cmd_flags |= REQ_RW_META;
b31dc66a 1092
52d9e675
TH
1093 req->errors = 0;
1094 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1095 req->ioprio = bio_prio(bio);
52d9e675 1096 req->start_time = jiffies;
bc1c56fd 1097 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1098}
1099
165125e1 1100static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1101{
450991bc 1102 struct request *req;
fb2dce86 1103 int el_ret, nr_sectors, barrier, discard, err;
51da90fc
JA
1104 const unsigned short prio = bio_prio(bio);
1105 const int sync = bio_sync(bio);
7749a8d4 1106 int rw_flags;
1da177e4 1107
1da177e4 1108 nr_sectors = bio_sectors(bio);
1da177e4
LT
1109
1110 /*
1111 * low level driver can indicate that it wants pages above a
1112 * certain limit bounced to low memory (ie for highmem, or even
1113 * ISA dma in theory)
1114 */
1115 blk_queue_bounce(q, &bio);
1116
1da177e4 1117 barrier = bio_barrier(bio);
e17fc0a1
DW
1118 if (unlikely(barrier) && bio_has_data(bio) &&
1119 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1120 err = -EOPNOTSUPP;
1121 goto end_io;
1122 }
1123
fb2dce86
DW
1124 discard = bio_discard(bio);
1125 if (unlikely(discard) && !q->prepare_discard_fn) {
1126 err = -EOPNOTSUPP;
1127 goto end_io;
1128 }
1129
1da177e4
LT
1130 spin_lock_irq(q->queue_lock);
1131
450991bc 1132 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1133 goto get_rq;
1134
1135 el_ret = elv_merge(q, &req, bio);
1136 switch (el_ret) {
6728cb0e
JA
1137 case ELEVATOR_BACK_MERGE:
1138 BUG_ON(!rq_mergeable(req));
1da177e4 1139
6728cb0e
JA
1140 if (!ll_back_merge_fn(q, req, bio))
1141 break;
1da177e4 1142
6728cb0e 1143 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1144
6728cb0e
JA
1145 req->biotail->bi_next = bio;
1146 req->biotail = bio;
1147 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1148 req->ioprio = ioprio_best(req->ioprio, prio);
1149 drive_stat_acct(req, 0);
1150 if (!attempt_back_merge(q, req))
1151 elv_merged_request(q, req, el_ret);
1152 goto out;
1da177e4 1153
6728cb0e
JA
1154 case ELEVATOR_FRONT_MERGE:
1155 BUG_ON(!rq_mergeable(req));
1da177e4 1156
6728cb0e
JA
1157 if (!ll_front_merge_fn(q, req, bio))
1158 break;
1da177e4 1159
6728cb0e 1160 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1161
6728cb0e
JA
1162 bio->bi_next = req->bio;
1163 req->bio = bio;
1da177e4 1164
6728cb0e
JA
1165 /*
1166 * may not be valid. if the low level driver said
1167 * it didn't need a bounce buffer then it better
1168 * not touch req->buffer either...
1169 */
1170 req->buffer = bio_data(bio);
1171 req->current_nr_sectors = bio_cur_sectors(bio);
1172 req->hard_cur_sectors = req->current_nr_sectors;
1173 req->sector = req->hard_sector = bio->bi_sector;
1174 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1175 req->ioprio = ioprio_best(req->ioprio, prio);
1176 drive_stat_acct(req, 0);
1177 if (!attempt_front_merge(q, req))
1178 elv_merged_request(q, req, el_ret);
1179 goto out;
1180
1181 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1182 default:
1183 ;
1da177e4
LT
1184 }
1185
450991bc 1186get_rq:
7749a8d4
JA
1187 /*
1188 * This sync check and mask will be re-done in init_request_from_bio(),
1189 * but we need to set it earlier to expose the sync flag to the
1190 * rq allocator and io schedulers.
1191 */
1192 rw_flags = bio_data_dir(bio);
1193 if (sync)
1194 rw_flags |= REQ_RW_SYNC;
1195
1da177e4 1196 /*
450991bc 1197 * Grab a free request. This is might sleep but can not fail.
d6344532 1198 * Returns with the queue unlocked.
450991bc 1199 */
7749a8d4 1200 req = get_request_wait(q, rw_flags, bio);
d6344532 1201
450991bc
NP
1202 /*
1203 * After dropping the lock and possibly sleeping here, our request
1204 * may now be mergeable after it had proven unmergeable (above).
1205 * We don't worry about that case for efficiency. It won't happen
1206 * often, and the elevators are able to handle it.
1da177e4 1207 */
52d9e675 1208 init_request_from_bio(req, bio);
1da177e4 1209
450991bc
NP
1210 spin_lock_irq(q->queue_lock);
1211 if (elv_queue_empty(q))
1212 blk_plug_device(q);
1da177e4
LT
1213 add_request(q, req);
1214out:
4a534f93 1215 if (sync)
1da177e4
LT
1216 __generic_unplug_device(q);
1217
1218 spin_unlock_irq(q->queue_lock);
1219 return 0;
1220
1221end_io:
6712ecf8 1222 bio_endio(bio, err);
1da177e4
LT
1223 return 0;
1224}
1225
1226/*
1227 * If bio->bi_dev is a partition, remap the location
1228 */
1229static inline void blk_partition_remap(struct bio *bio)
1230{
1231 struct block_device *bdev = bio->bi_bdev;
1232
bf2de6f5 1233 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1234 struct hd_struct *p = bdev->bd_part;
1235
1da177e4
LT
1236 bio->bi_sector += p->start_sect;
1237 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1238
1239 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1240 bdev->bd_dev, bio->bi_sector,
1241 bio->bi_sector - p->start_sect);
1da177e4
LT
1242 }
1243}
1244
1da177e4
LT
1245static void handle_bad_sector(struct bio *bio)
1246{
1247 char b[BDEVNAME_SIZE];
1248
1249 printk(KERN_INFO "attempt to access beyond end of device\n");
1250 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1251 bdevname(bio->bi_bdev, b),
1252 bio->bi_rw,
1253 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1254 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1255
1256 set_bit(BIO_EOF, &bio->bi_flags);
1257}
1258
c17bb495
AM
1259#ifdef CONFIG_FAIL_MAKE_REQUEST
1260
1261static DECLARE_FAULT_ATTR(fail_make_request);
1262
1263static int __init setup_fail_make_request(char *str)
1264{
1265 return setup_fault_attr(&fail_make_request, str);
1266}
1267__setup("fail_make_request=", setup_fail_make_request);
1268
1269static int should_fail_request(struct bio *bio)
1270{
1271 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1272 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1273 return should_fail(&fail_make_request, bio->bi_size);
1274
1275 return 0;
1276}
1277
1278static int __init fail_make_request_debugfs(void)
1279{
1280 return init_fault_attr_dentries(&fail_make_request,
1281 "fail_make_request");
1282}
1283
1284late_initcall(fail_make_request_debugfs);
1285
1286#else /* CONFIG_FAIL_MAKE_REQUEST */
1287
1288static inline int should_fail_request(struct bio *bio)
1289{
1290 return 0;
1291}
1292
1293#endif /* CONFIG_FAIL_MAKE_REQUEST */
1294
c07e2b41
JA
1295/*
1296 * Check whether this bio extends beyond the end of the device.
1297 */
1298static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1299{
1300 sector_t maxsector;
1301
1302 if (!nr_sectors)
1303 return 0;
1304
1305 /* Test device or partition size, when known. */
1306 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1307 if (maxsector) {
1308 sector_t sector = bio->bi_sector;
1309
1310 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1311 /*
1312 * This may well happen - the kernel calls bread()
1313 * without checking the size of the device, e.g., when
1314 * mounting a device.
1315 */
1316 handle_bad_sector(bio);
1317 return 1;
1318 }
1319 }
1320
1321 return 0;
1322}
1323
1da177e4 1324/**
710027a4 1325 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1326 * @bio: The bio describing the location in memory and on the device.
1327 *
1328 * generic_make_request() is used to make I/O requests of block
1329 * devices. It is passed a &struct bio, which describes the I/O that needs
1330 * to be done.
1331 *
1332 * generic_make_request() does not return any status. The
1333 * success/failure status of the request, along with notification of
1334 * completion, is delivered asynchronously through the bio->bi_end_io
1335 * function described (one day) else where.
1336 *
1337 * The caller of generic_make_request must make sure that bi_io_vec
1338 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1339 * set to describe the device address, and the
1340 * bi_end_io and optionally bi_private are set to describe how
1341 * completion notification should be signaled.
1342 *
1343 * generic_make_request and the drivers it calls may use bi_next if this
1344 * bio happens to be merged with someone else, and may change bi_dev and
1345 * bi_sector for remaps as it sees fit. So the values of these fields
1346 * should NOT be depended on after the call to generic_make_request.
1347 */
d89d8796 1348static inline void __generic_make_request(struct bio *bio)
1da177e4 1349{
165125e1 1350 struct request_queue *q;
5ddfe969 1351 sector_t old_sector;
1da177e4 1352 int ret, nr_sectors = bio_sectors(bio);
2056a782 1353 dev_t old_dev;
51fd77bd 1354 int err = -EIO;
1da177e4
LT
1355
1356 might_sleep();
1da177e4 1357
c07e2b41
JA
1358 if (bio_check_eod(bio, nr_sectors))
1359 goto end_io;
1da177e4
LT
1360
1361 /*
1362 * Resolve the mapping until finished. (drivers are
1363 * still free to implement/resolve their own stacking
1364 * by explicitly returning 0)
1365 *
1366 * NOTE: we don't repeat the blk_size check for each new device.
1367 * Stacking drivers are expected to know what they are doing.
1368 */
5ddfe969 1369 old_sector = -1;
2056a782 1370 old_dev = 0;
1da177e4
LT
1371 do {
1372 char b[BDEVNAME_SIZE];
1373
1374 q = bdev_get_queue(bio->bi_bdev);
1375 if (!q) {
1376 printk(KERN_ERR
1377 "generic_make_request: Trying to access "
1378 "nonexistent block-device %s (%Lu)\n",
1379 bdevname(bio->bi_bdev, b),
1380 (long long) bio->bi_sector);
1381end_io:
51fd77bd 1382 bio_endio(bio, err);
1da177e4
LT
1383 break;
1384 }
1385
4fa253f3 1386 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1387 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1388 bdevname(bio->bi_bdev, b),
1389 bio_sectors(bio),
1390 q->max_hw_sectors);
1391 goto end_io;
1392 }
1393
fde6ad22 1394 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1395 goto end_io;
1396
c17bb495
AM
1397 if (should_fail_request(bio))
1398 goto end_io;
1399
1da177e4
LT
1400 /*
1401 * If this device has partitions, remap block n
1402 * of partition p to block n+start(p) of the disk.
1403 */
1404 blk_partition_remap(bio);
1405
7ba1ba12
MP
1406 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1407 goto end_io;
1408
5ddfe969 1409 if (old_sector != -1)
4fa253f3 1410 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1411 old_sector);
2056a782
JA
1412
1413 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1414
5ddfe969 1415 old_sector = bio->bi_sector;
2056a782
JA
1416 old_dev = bio->bi_bdev->bd_dev;
1417
c07e2b41
JA
1418 if (bio_check_eod(bio, nr_sectors))
1419 goto end_io;
fb2dce86
DW
1420 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1421 (bio_discard(bio) && !q->prepare_discard_fn)) {
51fd77bd
JA
1422 err = -EOPNOTSUPP;
1423 goto end_io;
1424 }
5ddfe969 1425
1da177e4
LT
1426 ret = q->make_request_fn(q, bio);
1427 } while (ret);
1428}
1429
d89d8796
NB
1430/*
1431 * We only want one ->make_request_fn to be active at a time,
1432 * else stack usage with stacked devices could be a problem.
1433 * So use current->bio_{list,tail} to keep a list of requests
1434 * submited by a make_request_fn function.
1435 * current->bio_tail is also used as a flag to say if
1436 * generic_make_request is currently active in this task or not.
1437 * If it is NULL, then no make_request is active. If it is non-NULL,
1438 * then a make_request is active, and new requests should be added
1439 * at the tail
1440 */
1441void generic_make_request(struct bio *bio)
1442{
1443 if (current->bio_tail) {
1444 /* make_request is active */
1445 *(current->bio_tail) = bio;
1446 bio->bi_next = NULL;
1447 current->bio_tail = &bio->bi_next;
1448 return;
1449 }
1450 /* following loop may be a bit non-obvious, and so deserves some
1451 * explanation.
1452 * Before entering the loop, bio->bi_next is NULL (as all callers
1453 * ensure that) so we have a list with a single bio.
1454 * We pretend that we have just taken it off a longer list, so
1455 * we assign bio_list to the next (which is NULL) and bio_tail
1456 * to &bio_list, thus initialising the bio_list of new bios to be
1457 * added. __generic_make_request may indeed add some more bios
1458 * through a recursive call to generic_make_request. If it
1459 * did, we find a non-NULL value in bio_list and re-enter the loop
1460 * from the top. In this case we really did just take the bio
1461 * of the top of the list (no pretending) and so fixup bio_list and
1462 * bio_tail or bi_next, and call into __generic_make_request again.
1463 *
1464 * The loop was structured like this to make only one call to
1465 * __generic_make_request (which is important as it is large and
1466 * inlined) and to keep the structure simple.
1467 */
1468 BUG_ON(bio->bi_next);
1469 do {
1470 current->bio_list = bio->bi_next;
1471 if (bio->bi_next == NULL)
1472 current->bio_tail = &current->bio_list;
1473 else
1474 bio->bi_next = NULL;
1475 __generic_make_request(bio);
1476 bio = current->bio_list;
1477 } while (bio);
1478 current->bio_tail = NULL; /* deactivate */
1479}
1da177e4
LT
1480EXPORT_SYMBOL(generic_make_request);
1481
1482/**
710027a4 1483 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1484 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1485 * @bio: The &struct bio which describes the I/O
1486 *
1487 * submit_bio() is very similar in purpose to generic_make_request(), and
1488 * uses that function to do most of the work. Both are fairly rough
710027a4 1489 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1490 *
1491 */
1492void submit_bio(int rw, struct bio *bio)
1493{
1494 int count = bio_sectors(bio);
1495
22e2c507 1496 bio->bi_rw |= rw;
1da177e4 1497
bf2de6f5
JA
1498 /*
1499 * If it's a regular read/write or a barrier with data attached,
1500 * go through the normal accounting stuff before submission.
1501 */
a9c701e5 1502 if (bio_has_data(bio)) {
bf2de6f5
JA
1503 if (rw & WRITE) {
1504 count_vm_events(PGPGOUT, count);
1505 } else {
1506 task_io_account_read(bio->bi_size);
1507 count_vm_events(PGPGIN, count);
1508 }
1509
1510 if (unlikely(block_dump)) {
1511 char b[BDEVNAME_SIZE];
1512 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1513 current->comm, task_pid_nr(current),
bf2de6f5
JA
1514 (rw & WRITE) ? "WRITE" : "READ",
1515 (unsigned long long)bio->bi_sector,
6728cb0e 1516 bdevname(bio->bi_bdev, b));
bf2de6f5 1517 }
1da177e4
LT
1518 }
1519
1520 generic_make_request(bio);
1521}
1da177e4
LT
1522EXPORT_SYMBOL(submit_bio);
1523
3bcddeac
KU
1524/**
1525 * __end_that_request_first - end I/O on a request
1526 * @req: the request being processed
710027a4 1527 * @error: %0 for success, < %0 for error
3bcddeac
KU
1528 * @nr_bytes: number of bytes to complete
1529 *
1530 * Description:
1531 * Ends I/O on a number of bytes attached to @req, and sets it up
1532 * for the next range of segments (if any) in the cluster.
1533 *
1534 * Return:
710027a4
RD
1535 * %0 - we are done with this request, call end_that_request_last()
1536 * %1 - still buffers pending for this request
3bcddeac 1537 **/
5450d3e1 1538static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1539 int nr_bytes)
1540{
5450d3e1 1541 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1542 struct bio *bio;
1543
2056a782
JA
1544 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1545
1da177e4 1546 /*
710027a4 1547 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1548 * sense key with us all the way through
1549 */
1550 if (!blk_pc_request(req))
1551 req->errors = 0;
1552
6728cb0e
JA
1553 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1554 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1555 req->rq_disk ? req->rq_disk->disk_name : "?",
1556 (unsigned long long)req->sector);
1557 }
1558
d72d904a 1559 if (blk_fs_request(req) && req->rq_disk) {
310a2c10
TH
1560 struct hd_struct *part =
1561 disk_map_sector(req->rq_disk, req->sector);
a362357b
JA
1562 const int rw = rq_data_dir(req);
1563
28f13702
JA
1564 all_stat_add(req->rq_disk, part, sectors[rw],
1565 nr_bytes >> 9, req->sector);
d72d904a
JA
1566 }
1567
1da177e4
LT
1568 total_bytes = bio_nbytes = 0;
1569 while ((bio = req->bio) != NULL) {
1570 int nbytes;
1571
bf2de6f5
JA
1572 /*
1573 * For an empty barrier request, the low level driver must
1574 * store a potential error location in ->sector. We pass
1575 * that back up in ->bi_sector.
1576 */
1577 if (blk_empty_barrier(req))
1578 bio->bi_sector = req->sector;
1579
1da177e4
LT
1580 if (nr_bytes >= bio->bi_size) {
1581 req->bio = bio->bi_next;
1582 nbytes = bio->bi_size;
5bb23a68 1583 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1584 next_idx = 0;
1585 bio_nbytes = 0;
1586 } else {
1587 int idx = bio->bi_idx + next_idx;
1588
1589 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1590 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1591 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1592 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1593 break;
1594 }
1595
1596 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1597 BIO_BUG_ON(nbytes > bio->bi_size);
1598
1599 /*
1600 * not a complete bvec done
1601 */
1602 if (unlikely(nbytes > nr_bytes)) {
1603 bio_nbytes += nr_bytes;
1604 total_bytes += nr_bytes;
1605 break;
1606 }
1607
1608 /*
1609 * advance to the next vector
1610 */
1611 next_idx++;
1612 bio_nbytes += nbytes;
1613 }
1614
1615 total_bytes += nbytes;
1616 nr_bytes -= nbytes;
1617
6728cb0e
JA
1618 bio = req->bio;
1619 if (bio) {
1da177e4
LT
1620 /*
1621 * end more in this run, or just return 'not-done'
1622 */
1623 if (unlikely(nr_bytes <= 0))
1624 break;
1625 }
1626 }
1627
1628 /*
1629 * completely done
1630 */
1631 if (!req->bio)
1632 return 0;
1633
1634 /*
1635 * if the request wasn't completed, update state
1636 */
1637 if (bio_nbytes) {
5bb23a68 1638 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1639 bio->bi_idx += next_idx;
1640 bio_iovec(bio)->bv_offset += nr_bytes;
1641 bio_iovec(bio)->bv_len -= nr_bytes;
1642 }
1643
1644 blk_recalc_rq_sectors(req, total_bytes >> 9);
1645 blk_recalc_rq_segments(req);
1646 return 1;
1647}
1648
ff856bad
JA
1649/*
1650 * splice the completion data to a local structure and hand off to
1651 * process_completion_queue() to complete the requests
1652 */
1653static void blk_done_softirq(struct softirq_action *h)
1654{
626ab0e6 1655 struct list_head *cpu_list, local_list;
ff856bad
JA
1656
1657 local_irq_disable();
1658 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 1659 list_replace_init(cpu_list, &local_list);
ff856bad
JA
1660 local_irq_enable();
1661
1662 while (!list_empty(&local_list)) {
6728cb0e 1663 struct request *rq;
ff856bad 1664
6728cb0e 1665 rq = list_entry(local_list.next, struct request, donelist);
ff856bad
JA
1666 list_del_init(&rq->donelist);
1667 rq->q->softirq_done_fn(rq);
1668 }
1669}
1670
6728cb0e
JA
1671static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1672 unsigned long action, void *hcpu)
ff856bad
JA
1673{
1674 /*
1675 * If a CPU goes away, splice its entries to the current CPU
1676 * and trigger a run of the softirq
1677 */
8bb78442 1678 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
1679 int cpu = (unsigned long) hcpu;
1680
1681 local_irq_disable();
1682 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1683 &__get_cpu_var(blk_cpu_done));
1684 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1685 local_irq_enable();
1686 }
1687
1688 return NOTIFY_OK;
1689}
1690
1691
db47d475 1692static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
1693 .notifier_call = blk_cpu_notify,
1694};
1695
ff856bad
JA
1696/**
1697 * blk_complete_request - end I/O on a request
1698 * @req: the request being processed
1699 *
1700 * Description:
1701 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 1702 * unless the driver actually implements this in its completion callback
4fa253f3 1703 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
1704 * through a softirq handler. The user must have registered a completion
1705 * callback through blk_queue_softirq_done().
1706 **/
1707
1708void blk_complete_request(struct request *req)
1709{
1710 struct list_head *cpu_list;
1711 unsigned long flags;
1712
1713 BUG_ON(!req->q->softirq_done_fn);
6728cb0e 1714
ff856bad
JA
1715 local_irq_save(flags);
1716
1717 cpu_list = &__get_cpu_var(blk_cpu_done);
1718 list_add_tail(&req->donelist, cpu_list);
1719 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1720
1721 local_irq_restore(flags);
1722}
ff856bad 1723EXPORT_SYMBOL(blk_complete_request);
6728cb0e 1724
1da177e4
LT
1725/*
1726 * queue lock must be held
1727 */
5450d3e1 1728static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1729{
1730 struct gendisk *disk = req->rq_disk;
8ffdc655 1731
b8286239
KU
1732 if (blk_rq_tagged(req))
1733 blk_queue_end_tag(req->q, req);
1734
1735 if (blk_queued_rq(req))
1736 blkdev_dequeue_request(req);
1da177e4
LT
1737
1738 if (unlikely(laptop_mode) && blk_fs_request(req))
1739 laptop_io_completion();
1740
fd0ff8aa
JA
1741 /*
1742 * Account IO completion. bar_rq isn't accounted as a normal
1743 * IO on queueing nor completion. Accounting the containing
1744 * request is enough.
1745 */
1746 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1747 unsigned long duration = jiffies - req->start_time;
a362357b 1748 const int rw = rq_data_dir(req);
310a2c10 1749 struct hd_struct *part = disk_map_sector(disk, req->sector);
a362357b 1750
28f13702
JA
1751 __all_stat_inc(disk, part, ios[rw], req->sector);
1752 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1da177e4
LT
1753 disk_round_stats(disk);
1754 disk->in_flight--;
6f2576af
JM
1755 if (part) {
1756 part_round_stats(part);
1757 part->in_flight--;
1758 }
1da177e4 1759 }
b8286239 1760
1da177e4 1761 if (req->end_io)
8ffdc655 1762 req->end_io(req, error);
b8286239
KU
1763 else {
1764 if (blk_bidi_rq(req))
1765 __blk_put_request(req->next_rq->q, req->next_rq);
1766
1da177e4 1767 __blk_put_request(req->q, req);
b8286239 1768 }
1da177e4
LT
1769}
1770
a0cd1285 1771static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1772 unsigned int nr_bytes)
1da177e4 1773{
9e6e39f2
KU
1774 int error = 0;
1775
1776 if (uptodate <= 0)
1777 error = uptodate ? uptodate : -EIO;
1778
1779 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1780}
1781
3b11313a
KU
1782/**
1783 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1784 * @rq: the request being processed
3b11313a
KU
1785 **/
1786unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1787{
1788 if (blk_fs_request(rq))
1789 return rq->hard_nr_sectors << 9;
1790
1791 return rq->data_len;
1792}
3b11313a
KU
1793EXPORT_SYMBOL_GPL(blk_rq_bytes);
1794
1795/**
1796 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1797 * @rq: the request being processed
3b11313a
KU
1798 **/
1799unsigned int blk_rq_cur_bytes(struct request *rq)
1800{
1801 if (blk_fs_request(rq))
1802 return rq->current_nr_sectors << 9;
1803
1804 if (rq->bio)
1805 return rq->bio->bi_size;
1806
1807 return rq->data_len;
1808}
1809EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1810
1811/**
1812 * end_queued_request - end all I/O on a queued request
1813 * @rq: the request being processed
710027a4 1814 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1815 *
1816 * Description:
1817 * Ends all I/O on a request, and removes it from the block layer queues.
710027a4 1818 * Not suitable for normal I/O completion, unless the driver still has
a0cd1285
JA
1819 * the request attached to the block layer.
1820 *
1821 **/
1822void end_queued_request(struct request *rq, int uptodate)
1823{
9e6e39f2 1824 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1825}
1826EXPORT_SYMBOL(end_queued_request);
1827
1828/**
1829 * end_dequeued_request - end all I/O on a dequeued request
1830 * @rq: the request being processed
710027a4 1831 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1832 *
1833 * Description:
1834 * Ends all I/O on a request. The request must already have been
1835 * dequeued using blkdev_dequeue_request(), as is normally the case
1836 * for most drivers.
1837 *
1838 **/
1839void end_dequeued_request(struct request *rq, int uptodate)
1840{
9e6e39f2 1841 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1842}
1843EXPORT_SYMBOL(end_dequeued_request);
1844
1845
1846/**
1847 * end_request - end I/O on the current segment of the request
8f731f7d 1848 * @req: the request being processed
710027a4 1849 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1850 *
1851 * Description:
1852 * Ends I/O on the current segment of a request. If that is the only
1853 * remaining segment, the request is also completed and freed.
1854 *
710027a4
RD
1855 * This is a remnant of how older block drivers handled I/O completions.
1856 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1857 * they have a residual value to account for. For that case this function
1858 * isn't really useful, unless the residual just happens to be the
1859 * full current segment. In other words, don't use this function in new
1860 * code. Either use end_request_completely(), or the
1861 * end_that_request_chunk() (along with end_that_request_last()) for
1862 * partial completions.
1863 *
1864 **/
1865void end_request(struct request *req, int uptodate)
1866{
9e6e39f2 1867 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1868}
1da177e4
LT
1869EXPORT_SYMBOL(end_request);
1870
336cdb40 1871/**
e19a3ab0
KU
1872 * blk_end_io - Generic end_io function to complete a request.
1873 * @rq: the request being processed
710027a4 1874 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1875 * @nr_bytes: number of bytes to complete @rq
1876 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1877 * @drv_callback: function called between completion of bios in the request
1878 * and completion of the request.
710027a4 1879 * If the callback returns non %0, this helper returns without
e19a3ab0 1880 * completion of the request.
336cdb40
KU
1881 *
1882 * Description:
e3a04fe3 1883 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1884 * If @rq has leftover, sets it up for the next range of segments.
1885 *
1886 * Return:
710027a4
RD
1887 * %0 - we are done with this request
1888 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1889 **/
22b13210
JA
1890static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1891 unsigned int bidi_bytes,
1892 int (drv_callback)(struct request *))
336cdb40
KU
1893{
1894 struct request_queue *q = rq->q;
1895 unsigned long flags = 0UL;
336cdb40 1896
fb2dce86 1897 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
5450d3e1 1898 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40 1899 return 1;
e3a04fe3
KU
1900
1901 /* Bidi request must be completed as a whole */
1902 if (blk_bidi_rq(rq) &&
5450d3e1 1903 __end_that_request_first(rq->next_rq, error, bidi_bytes))
e3a04fe3 1904 return 1;
336cdb40
KU
1905 }
1906
e19a3ab0
KU
1907 /* Special feature for tricky drivers */
1908 if (drv_callback && drv_callback(rq))
1909 return 1;
1910
336cdb40
KU
1911 add_disk_randomness(rq->rq_disk);
1912
1913 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1914 end_that_request_last(rq, error);
336cdb40
KU
1915 spin_unlock_irqrestore(q->queue_lock, flags);
1916
1917 return 0;
1918}
e19a3ab0
KU
1919
1920/**
1921 * blk_end_request - Helper function for drivers to complete the request.
1922 * @rq: the request being processed
710027a4 1923 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1924 * @nr_bytes: number of bytes to complete
1925 *
1926 * Description:
1927 * Ends I/O on a number of bytes attached to @rq.
1928 * If @rq has leftover, sets it up for the next range of segments.
1929 *
1930 * Return:
710027a4
RD
1931 * %0 - we are done with this request
1932 * %1 - still buffers pending for this request
e19a3ab0 1933 **/
22b13210 1934int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1935{
e3a04fe3 1936 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1937}
336cdb40
KU
1938EXPORT_SYMBOL_GPL(blk_end_request);
1939
1940/**
1941 * __blk_end_request - Helper function for drivers to complete the request.
1942 * @rq: the request being processed
710027a4 1943 * @error: %0 for success, < %0 for error
336cdb40
KU
1944 * @nr_bytes: number of bytes to complete
1945 *
1946 * Description:
1947 * Must be called with queue lock held unlike blk_end_request().
1948 *
1949 * Return:
710027a4
RD
1950 * %0 - we are done with this request
1951 * %1 - still buffers pending for this request
336cdb40 1952 **/
22b13210 1953int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1954{
fb2dce86 1955 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
051cc395
JA
1956 __end_that_request_first(rq, error, nr_bytes))
1957 return 1;
336cdb40
KU
1958
1959 add_disk_randomness(rq->rq_disk);
1960
b8286239 1961 end_that_request_last(rq, error);
336cdb40
KU
1962
1963 return 0;
1964}
1965EXPORT_SYMBOL_GPL(__blk_end_request);
1966
e3a04fe3
KU
1967/**
1968 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1969 * @rq: the bidi request being processed
710027a4 1970 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1971 * @nr_bytes: number of bytes to complete @rq
1972 * @bidi_bytes: number of bytes to complete @rq->next_rq
1973 *
1974 * Description:
1975 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1976 *
1977 * Return:
710027a4
RD
1978 * %0 - we are done with this request
1979 * %1 - still buffers pending for this request
e3a04fe3 1980 **/
22b13210
JA
1981int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1982 unsigned int bidi_bytes)
e3a04fe3
KU
1983{
1984 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1985}
1986EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1987
e19a3ab0
KU
1988/**
1989 * blk_end_request_callback - Special helper function for tricky drivers
1990 * @rq: the request being processed
710027a4 1991 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1992 * @nr_bytes: number of bytes to complete
1993 * @drv_callback: function called between completion of bios in the request
1994 * and completion of the request.
710027a4 1995 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
1996 * completion of the request.
1997 *
1998 * Description:
1999 * Ends I/O on a number of bytes attached to @rq.
2000 * If @rq has leftover, sets it up for the next range of segments.
2001 *
2002 * This special helper function is used only for existing tricky drivers.
2003 * (e.g. cdrom_newpc_intr() of ide-cd)
2004 * This interface will be removed when such drivers are rewritten.
2005 * Don't use this interface in other places anymore.
2006 *
2007 * Return:
710027a4
RD
2008 * %0 - we are done with this request
2009 * %1 - this request is not freed yet.
2010 * this request still has pending buffers or
2011 * the driver doesn't want to finish this request yet.
e19a3ab0 2012 **/
22b13210
JA
2013int blk_end_request_callback(struct request *rq, int error,
2014 unsigned int nr_bytes,
e19a3ab0
KU
2015 int (drv_callback)(struct request *))
2016{
e3a04fe3 2017 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2018}
2019EXPORT_SYMBOL_GPL(blk_end_request_callback);
2020
86db1e29
JA
2021void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2022 struct bio *bio)
1da177e4 2023{
d628eaef
DW
2024 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2025 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2026 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2027
fb2dce86
DW
2028 if (bio_has_data(bio)) {
2029 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2030 rq->buffer = bio_data(bio);
2031 }
1da177e4
LT
2032 rq->current_nr_sectors = bio_cur_sectors(bio);
2033 rq->hard_cur_sectors = rq->current_nr_sectors;
2034 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2035 rq->data_len = bio->bi_size;
1da177e4
LT
2036
2037 rq->bio = rq->biotail = bio;
1da177e4 2038
66846572
N
2039 if (bio->bi_bdev)
2040 rq->rq_disk = bio->bi_bdev->bd_disk;
2041}
1da177e4
LT
2042
2043int kblockd_schedule_work(struct work_struct *work)
2044{
2045 return queue_work(kblockd_workqueue, work);
2046}
1da177e4
LT
2047EXPORT_SYMBOL(kblockd_schedule_work);
2048
19a75d83 2049void kblockd_flush_work(struct work_struct *work)
1da177e4 2050{
28e53bdd 2051 cancel_work_sync(work);
1da177e4 2052}
19a75d83 2053EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2054
2055int __init blk_dev_init(void)
2056{
ff856bad
JA
2057 int i;
2058
1da177e4
LT
2059 kblockd_workqueue = create_workqueue("kblockd");
2060 if (!kblockd_workqueue)
2061 panic("Failed to create kblockd\n");
2062
2063 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2064 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2065
8324aa91 2066 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2067 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2068
0a945022 2069 for_each_possible_cpu(i)
ff856bad
JA
2070 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2071
962cf36c 2072 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5a67e4c5 2073 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 2074
d38ecf93 2075 return 0;
1da177e4 2076}
1da177e4 2077