]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
block: fix disk->part[] dereferencing race
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
165125e1 36static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
37
38/*
39 * For the allocated request tables
40 */
5ece6c52 41static struct kmem_cache *request_cachep;
1da177e4
LT
42
43/*
44 * For queue allocation
45 */
6728cb0e 46struct kmem_cache *blk_requestq_cachep;
1da177e4 47
1da177e4
LT
48/*
49 * Controlling structure to kblockd
50 */
ff856bad 51static struct workqueue_struct *kblockd_workqueue;
1da177e4 52
ff856bad
JA
53static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
26b8256e
JA
55static void drive_stat_acct(struct request *rq, int new_io)
56{
28f13702 57 struct hd_struct *part;
26b8256e
JA
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
e71bf0d0
TH
63 rcu_read_lock();
64
65 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
28f13702
JA
66 if (!new_io)
67 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
68 else {
26b8256e
JA
69 disk_round_stats(rq->rq_disk);
70 rq->rq_disk->in_flight++;
6f2576af
JM
71 if (part) {
72 part_round_stats(part);
73 part->in_flight++;
74 }
26b8256e 75 }
e71bf0d0
TH
76
77 rcu_read_unlock();
26b8256e
JA
78}
79
8324aa91 80void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
81{
82 int nr;
83
84 nr = q->nr_requests - (q->nr_requests / 8) + 1;
85 if (nr > q->nr_requests)
86 nr = q->nr_requests;
87 q->nr_congestion_on = nr;
88
89 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
90 if (nr < 1)
91 nr = 1;
92 q->nr_congestion_off = nr;
93}
94
1da177e4
LT
95/**
96 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
97 * @bdev: device
98 *
99 * Locates the passed device's request queue and returns the address of its
100 * backing_dev_info
101 *
102 * Will return NULL if the request queue cannot be located.
103 */
104struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
105{
106 struct backing_dev_info *ret = NULL;
165125e1 107 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
108
109 if (q)
110 ret = &q->backing_dev_info;
111 return ret;
112}
1da177e4
LT
113EXPORT_SYMBOL(blk_get_backing_dev_info);
114
2a4aa30c 115void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 116{
1afb20f3
FT
117 memset(rq, 0, sizeof(*rq));
118
1da177e4 119 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 120 INIT_LIST_HEAD(&rq->donelist);
63a71386
JA
121 rq->q = q;
122 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
63a71386 126 rq->tag = -1;
1da177e4 127 rq->ref_count = 1;
1da177e4 128}
2a4aa30c 129EXPORT_SYMBOL(blk_rq_init);
1da177e4 130
5bb23a68
N
131static void req_bio_endio(struct request *rq, struct bio *bio,
132 unsigned int nbytes, int error)
1da177e4 133{
165125e1 134 struct request_queue *q = rq->q;
797e7dbb 135
5bb23a68
N
136 if (&q->bar_rq != rq) {
137 if (error)
138 clear_bit(BIO_UPTODATE, &bio->bi_flags);
139 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
140 error = -EIO;
797e7dbb 141
5bb23a68 142 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 143 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 144 __func__, nbytes, bio->bi_size);
5bb23a68
N
145 nbytes = bio->bi_size;
146 }
797e7dbb 147
5bb23a68
N
148 bio->bi_size -= nbytes;
149 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
150
151 if (bio_integrity(bio))
152 bio_integrity_advance(bio, nbytes);
153
5bb23a68 154 if (bio->bi_size == 0)
6712ecf8 155 bio_endio(bio, error);
5bb23a68
N
156 } else {
157
158 /*
159 * Okay, this is the barrier request in progress, just
160 * record the error;
161 */
162 if (error && !q->orderr)
163 q->orderr = error;
164 }
1da177e4 165}
1da177e4 166
1da177e4
LT
167void blk_dump_rq_flags(struct request *rq, char *msg)
168{
169 int bit;
170
6728cb0e 171 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
172 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
173 rq->cmd_flags);
1da177e4 174
6728cb0e
JA
175 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
176 (unsigned long long)rq->sector,
177 rq->nr_sectors,
178 rq->current_nr_sectors);
179 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
180 rq->bio, rq->biotail,
181 rq->buffer, rq->data,
182 rq->data_len);
1da177e4 183
4aff5e23 184 if (blk_pc_request(rq)) {
6728cb0e 185 printk(KERN_INFO " cdb: ");
d34c87e4 186 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
187 printk("%02x ", rq->cmd[bit]);
188 printk("\n");
189 }
190}
1da177e4
LT
191EXPORT_SYMBOL(blk_dump_rq_flags);
192
1da177e4
LT
193/*
194 * "plug" the device if there are no outstanding requests: this will
195 * force the transfer to start only after we have put all the requests
196 * on the list.
197 *
198 * This is called with interrupts off and no requests on the queue and
199 * with the queue lock held.
200 */
165125e1 201void blk_plug_device(struct request_queue *q)
1da177e4
LT
202{
203 WARN_ON(!irqs_disabled());
204
205 /*
206 * don't plug a stopped queue, it must be paired with blk_start_queue()
207 * which will restart the queueing
208 */
7daac490 209 if (blk_queue_stopped(q))
1da177e4
LT
210 return;
211
e48ec690 212 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 213 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
214 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
215 }
1da177e4 216}
1da177e4
LT
217EXPORT_SYMBOL(blk_plug_device);
218
6c5e0c4d
JA
219/**
220 * blk_plug_device_unlocked - plug a device without queue lock held
221 * @q: The &struct request_queue to plug
222 *
223 * Description:
224 * Like @blk_plug_device(), but grabs the queue lock and disables
225 * interrupts.
226 **/
227void blk_plug_device_unlocked(struct request_queue *q)
228{
229 unsigned long flags;
230
231 spin_lock_irqsave(q->queue_lock, flags);
232 blk_plug_device(q);
233 spin_unlock_irqrestore(q->queue_lock, flags);
234}
235EXPORT_SYMBOL(blk_plug_device_unlocked);
236
1da177e4
LT
237/*
238 * remove the queue from the plugged list, if present. called with
239 * queue lock held and interrupts disabled.
240 */
165125e1 241int blk_remove_plug(struct request_queue *q)
1da177e4
LT
242{
243 WARN_ON(!irqs_disabled());
244
e48ec690 245 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
246 return 0;
247
248 del_timer(&q->unplug_timer);
249 return 1;
250}
1da177e4
LT
251EXPORT_SYMBOL(blk_remove_plug);
252
253/*
254 * remove the plug and let it rip..
255 */
165125e1 256void __generic_unplug_device(struct request_queue *q)
1da177e4 257{
7daac490 258 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
259 return;
260
261 if (!blk_remove_plug(q))
262 return;
263
22e2c507 264 q->request_fn(q);
1da177e4
LT
265}
266EXPORT_SYMBOL(__generic_unplug_device);
267
268/**
269 * generic_unplug_device - fire a request queue
165125e1 270 * @q: The &struct request_queue in question
1da177e4
LT
271 *
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
278 **/
165125e1 279void generic_unplug_device(struct request_queue *q)
1da177e4 280{
dbaf2c00
JA
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
285 }
1da177e4
LT
286}
287EXPORT_SYMBOL(generic_unplug_device);
288
289static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
291{
165125e1 292 struct request_queue *q = bdi->unplug_io_data;
1da177e4 293
2ad8b1ef 294 blk_unplug(q);
1da177e4
LT
295}
296
86db1e29 297void blk_unplug_work(struct work_struct *work)
1da177e4 298{
165125e1
JA
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
1da177e4 301
2056a782
JA
302 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
303 q->rq.count[READ] + q->rq.count[WRITE]);
304
1da177e4
LT
305 q->unplug_fn(q);
306}
307
86db1e29 308void blk_unplug_timeout(unsigned long data)
1da177e4 309{
165125e1 310 struct request_queue *q = (struct request_queue *)data;
1da177e4 311
2056a782
JA
312 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
313 q->rq.count[READ] + q->rq.count[WRITE]);
314
1da177e4
LT
315 kblockd_schedule_work(&q->unplug_work);
316}
317
2ad8b1ef
AB
318void blk_unplug(struct request_queue *q)
319{
320 /*
321 * devices don't necessarily have an ->unplug_fn defined
322 */
323 if (q->unplug_fn) {
324 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
325 q->rq.count[READ] + q->rq.count[WRITE]);
326
327 q->unplug_fn(q);
328 }
329}
330EXPORT_SYMBOL(blk_unplug);
331
1da177e4
LT
332/**
333 * blk_start_queue - restart a previously stopped queue
165125e1 334 * @q: The &struct request_queue in question
1da177e4
LT
335 *
336 * Description:
337 * blk_start_queue() will clear the stop flag on the queue, and call
338 * the request_fn for the queue if it was in a stopped state when
339 * entered. Also see blk_stop_queue(). Queue lock must be held.
340 **/
165125e1 341void blk_start_queue(struct request_queue *q)
1da177e4 342{
a038e253
PBG
343 WARN_ON(!irqs_disabled());
344
75ad23bc 345 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
346
347 /*
348 * one level of recursion is ok and is much faster than kicking
349 * the unplug handling
350 */
e48ec690 351 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
1da177e4 352 q->request_fn(q);
75ad23bc 353 queue_flag_clear(QUEUE_FLAG_REENTER, q);
1da177e4
LT
354 } else {
355 blk_plug_device(q);
356 kblockd_schedule_work(&q->unplug_work);
357 }
358}
1da177e4
LT
359EXPORT_SYMBOL(blk_start_queue);
360
361/**
362 * blk_stop_queue - stop a queue
165125e1 363 * @q: The &struct request_queue in question
1da177e4
LT
364 *
365 * Description:
366 * The Linux block layer assumes that a block driver will consume all
367 * entries on the request queue when the request_fn strategy is called.
368 * Often this will not happen, because of hardware limitations (queue
369 * depth settings). If a device driver gets a 'queue full' response,
370 * or if it simply chooses not to queue more I/O at one point, it can
371 * call this function to prevent the request_fn from being called until
372 * the driver has signalled it's ready to go again. This happens by calling
373 * blk_start_queue() to restart queue operations. Queue lock must be held.
374 **/
165125e1 375void blk_stop_queue(struct request_queue *q)
1da177e4
LT
376{
377 blk_remove_plug(q);
75ad23bc 378 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
379}
380EXPORT_SYMBOL(blk_stop_queue);
381
382/**
383 * blk_sync_queue - cancel any pending callbacks on a queue
384 * @q: the queue
385 *
386 * Description:
387 * The block layer may perform asynchronous callback activity
388 * on a queue, such as calling the unplug function after a timeout.
389 * A block device may call blk_sync_queue to ensure that any
390 * such activity is cancelled, thus allowing it to release resources
59c51591 391 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
392 * that its ->make_request_fn will not re-add plugging prior to calling
393 * this function.
394 *
395 */
396void blk_sync_queue(struct request_queue *q)
397{
398 del_timer_sync(&q->unplug_timer);
abbeb88d 399 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
400}
401EXPORT_SYMBOL(blk_sync_queue);
402
403/**
404 * blk_run_queue - run a single device queue
405 * @q: The queue to run
406 */
75ad23bc 407void __blk_run_queue(struct request_queue *q)
1da177e4 408{
1da177e4 409 blk_remove_plug(q);
dac07ec1
JA
410
411 /*
412 * Only recurse once to avoid overrunning the stack, let the unplug
413 * handling reinvoke the handler shortly if we already got there.
414 */
415 if (!elv_queue_empty(q)) {
e48ec690 416 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
dac07ec1 417 q->request_fn(q);
75ad23bc 418 queue_flag_clear(QUEUE_FLAG_REENTER, q);
dac07ec1
JA
419 } else {
420 blk_plug_device(q);
421 kblockd_schedule_work(&q->unplug_work);
422 }
423 }
75ad23bc
NP
424}
425EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 426
75ad23bc
NP
427/**
428 * blk_run_queue - run a single device queue
429 * @q: The queue to run
430 */
431void blk_run_queue(struct request_queue *q)
432{
433 unsigned long flags;
434
435 spin_lock_irqsave(q->queue_lock, flags);
436 __blk_run_queue(q);
1da177e4
LT
437 spin_unlock_irqrestore(q->queue_lock, flags);
438}
439EXPORT_SYMBOL(blk_run_queue);
440
165125e1 441void blk_put_queue(struct request_queue *q)
483f4afc
AV
442{
443 kobject_put(&q->kobj);
444}
483f4afc 445
6728cb0e 446void blk_cleanup_queue(struct request_queue *q)
483f4afc
AV
447{
448 mutex_lock(&q->sysfs_lock);
75ad23bc 449 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
450 mutex_unlock(&q->sysfs_lock);
451
452 if (q->elevator)
453 elevator_exit(q->elevator);
454
455 blk_put_queue(q);
456}
1da177e4
LT
457EXPORT_SYMBOL(blk_cleanup_queue);
458
165125e1 459static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
460{
461 struct request_list *rl = &q->rq;
462
463 rl->count[READ] = rl->count[WRITE] = 0;
464 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 465 rl->elvpriv = 0;
1da177e4
LT
466 init_waitqueue_head(&rl->wait[READ]);
467 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 468
1946089a
CL
469 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
470 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
471
472 if (!rl->rq_pool)
473 return -ENOMEM;
474
475 return 0;
476}
477
165125e1 478struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 479{
1946089a
CL
480 return blk_alloc_queue_node(gfp_mask, -1);
481}
482EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 483
165125e1 484struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 485{
165125e1 486 struct request_queue *q;
e0bf68dd 487 int err;
1946089a 488
8324aa91 489 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 490 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
491 if (!q)
492 return NULL;
493
e0bf68dd
PZ
494 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
495 q->backing_dev_info.unplug_io_data = q;
496 err = bdi_init(&q->backing_dev_info);
497 if (err) {
8324aa91 498 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
499 return NULL;
500 }
501
1da177e4 502 init_timer(&q->unplug_timer);
483f4afc 503
8324aa91 504 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 505
483f4afc 506 mutex_init(&q->sysfs_lock);
e7e72bf6 507 spin_lock_init(&q->__queue_lock);
483f4afc 508
1da177e4
LT
509 return q;
510}
1946089a 511EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
512
513/**
514 * blk_init_queue - prepare a request queue for use with a block device
515 * @rfn: The function to be called to process requests that have been
516 * placed on the queue.
517 * @lock: Request queue spin lock
518 *
519 * Description:
520 * If a block device wishes to use the standard request handling procedures,
521 * which sorts requests and coalesces adjacent requests, then it must
522 * call blk_init_queue(). The function @rfn will be called when there
523 * are requests on the queue that need to be processed. If the device
524 * supports plugging, then @rfn may not be called immediately when requests
525 * are available on the queue, but may be called at some time later instead.
526 * Plugged queues are generally unplugged when a buffer belonging to one
527 * of the requests on the queue is needed, or due to memory pressure.
528 *
529 * @rfn is not required, or even expected, to remove all requests off the
530 * queue, but only as many as it can handle at a time. If it does leave
531 * requests on the queue, it is responsible for arranging that the requests
532 * get dealt with eventually.
533 *
534 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
535 * request queue; this lock will be taken also from interrupt context, so irq
536 * disabling is needed for it.
1da177e4 537 *
710027a4 538 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
539 * it didn't succeed.
540 *
541 * Note:
542 * blk_init_queue() must be paired with a blk_cleanup_queue() call
543 * when the block device is deactivated (such as at module unload).
544 **/
1946089a 545
165125e1 546struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 547{
1946089a
CL
548 return blk_init_queue_node(rfn, lock, -1);
549}
550EXPORT_SYMBOL(blk_init_queue);
551
165125e1 552struct request_queue *
1946089a
CL
553blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
554{
165125e1 555 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
556
557 if (!q)
558 return NULL;
559
1946089a 560 q->node = node_id;
8669aafd 561 if (blk_init_free_list(q)) {
8324aa91 562 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
563 return NULL;
564 }
1da177e4 565
152587de
JA
566 /*
567 * if caller didn't supply a lock, they get per-queue locking with
568 * our embedded lock
569 */
e7e72bf6 570 if (!lock)
152587de 571 lock = &q->__queue_lock;
152587de 572
1da177e4 573 q->request_fn = rfn;
1da177e4
LT
574 q->prep_rq_fn = NULL;
575 q->unplug_fn = generic_unplug_device;
576 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
577 q->queue_lock = lock;
578
579 blk_queue_segment_boundary(q, 0xffffffff);
580
581 blk_queue_make_request(q, __make_request);
582 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
583
584 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
585 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
586
44ec9542
AS
587 q->sg_reserved_size = INT_MAX;
588
abf54393
FT
589 blk_set_cmd_filter_defaults(&q->cmd_filter);
590
1da177e4
LT
591 /*
592 * all done
593 */
594 if (!elevator_init(q, NULL)) {
595 blk_queue_congestion_threshold(q);
596 return q;
597 }
598
8669aafd 599 blk_put_queue(q);
1da177e4
LT
600 return NULL;
601}
1946089a 602EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 603
165125e1 604int blk_get_queue(struct request_queue *q)
1da177e4 605{
fde6ad22 606 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 607 kobject_get(&q->kobj);
1da177e4
LT
608 return 0;
609 }
610
611 return 1;
612}
1da177e4 613
165125e1 614static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 615{
4aff5e23 616 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 617 elv_put_request(q, rq);
1da177e4
LT
618 mempool_free(rq, q->rq.rq_pool);
619}
620
1ea25ecb 621static struct request *
165125e1 622blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
623{
624 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
625
626 if (!rq)
627 return NULL;
628
2a4aa30c 629 blk_rq_init(q, rq);
1afb20f3 630
49171e5c 631 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 632
cb98fc8b 633 if (priv) {
cb78b285 634 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
635 mempool_free(rq, q->rq.rq_pool);
636 return NULL;
637 }
4aff5e23 638 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 639 }
1da177e4 640
cb98fc8b 641 return rq;
1da177e4
LT
642}
643
644/*
645 * ioc_batching returns true if the ioc is a valid batching request and
646 * should be given priority access to a request.
647 */
165125e1 648static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
649{
650 if (!ioc)
651 return 0;
652
653 /*
654 * Make sure the process is able to allocate at least 1 request
655 * even if the batch times out, otherwise we could theoretically
656 * lose wakeups.
657 */
658 return ioc->nr_batch_requests == q->nr_batching ||
659 (ioc->nr_batch_requests > 0
660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
661}
662
663/*
664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665 * will cause the process to be a "batcher" on all queues in the system. This
666 * is the behaviour we want though - once it gets a wakeup it should be given
667 * a nice run.
668 */
165125e1 669static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
670{
671 if (!ioc || ioc_batching(q, ioc))
672 return;
673
674 ioc->nr_batch_requests = q->nr_batching;
675 ioc->last_waited = jiffies;
676}
677
165125e1 678static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
679{
680 struct request_list *rl = &q->rq;
681
682 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 683 blk_clear_queue_congested(q, rw);
1da177e4
LT
684
685 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
686 if (waitqueue_active(&rl->wait[rw]))
687 wake_up(&rl->wait[rw]);
688
689 blk_clear_queue_full(q, rw);
690 }
691}
692
693/*
694 * A request has just been released. Account for it, update the full and
695 * congestion status, wake up any waiters. Called under q->queue_lock.
696 */
165125e1 697static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
698{
699 struct request_list *rl = &q->rq;
700
701 rl->count[rw]--;
cb98fc8b
TH
702 if (priv)
703 rl->elvpriv--;
1da177e4
LT
704
705 __freed_request(q, rw);
706
707 if (unlikely(rl->starved[rw ^ 1]))
708 __freed_request(q, rw ^ 1);
1da177e4
LT
709}
710
711#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
712/*
d6344532
NP
713 * Get a free request, queue_lock must be held.
714 * Returns NULL on failure, with queue_lock held.
715 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 716 */
165125e1 717static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 718 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
719{
720 struct request *rq = NULL;
721 struct request_list *rl = &q->rq;
88ee5ef1 722 struct io_context *ioc = NULL;
7749a8d4 723 const int rw = rw_flags & 0x01;
88ee5ef1
JA
724 int may_queue, priv;
725
7749a8d4 726 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
727 if (may_queue == ELV_MQUEUE_NO)
728 goto rq_starved;
729
730 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
731 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 732 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
733 /*
734 * The queue will fill after this allocation, so set
735 * it as full, and mark this process as "batching".
736 * This process will be allowed to complete a batch of
737 * requests, others will be blocked.
738 */
739 if (!blk_queue_full(q, rw)) {
740 ioc_set_batching(q, ioc);
741 blk_set_queue_full(q, rw);
742 } else {
743 if (may_queue != ELV_MQUEUE_MUST
744 && !ioc_batching(q, ioc)) {
745 /*
746 * The queue is full and the allocating
747 * process is not a "batcher", and not
748 * exempted by the IO scheduler
749 */
750 goto out;
751 }
752 }
1da177e4 753 }
79e2de4b 754 blk_set_queue_congested(q, rw);
1da177e4
LT
755 }
756
082cf69e
JA
757 /*
758 * Only allow batching queuers to allocate up to 50% over the defined
759 * limit of requests, otherwise we could have thousands of requests
760 * allocated with any setting of ->nr_requests
761 */
fd782a4a 762 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 763 goto out;
fd782a4a 764
1da177e4
LT
765 rl->count[rw]++;
766 rl->starved[rw] = 0;
cb98fc8b 767
64521d1a 768 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
769 if (priv)
770 rl->elvpriv++;
771
1da177e4
LT
772 spin_unlock_irq(q->queue_lock);
773
7749a8d4 774 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 775 if (unlikely(!rq)) {
1da177e4
LT
776 /*
777 * Allocation failed presumably due to memory. Undo anything
778 * we might have messed up.
779 *
780 * Allocating task should really be put onto the front of the
781 * wait queue, but this is pretty rare.
782 */
783 spin_lock_irq(q->queue_lock);
cb98fc8b 784 freed_request(q, rw, priv);
1da177e4
LT
785
786 /*
787 * in the very unlikely event that allocation failed and no
788 * requests for this direction was pending, mark us starved
789 * so that freeing of a request in the other direction will
790 * notice us. another possible fix would be to split the
791 * rq mempool into READ and WRITE
792 */
793rq_starved:
794 if (unlikely(rl->count[rw] == 0))
795 rl->starved[rw] = 1;
796
1da177e4
LT
797 goto out;
798 }
799
88ee5ef1
JA
800 /*
801 * ioc may be NULL here, and ioc_batching will be false. That's
802 * OK, if the queue is under the request limit then requests need
803 * not count toward the nr_batch_requests limit. There will always
804 * be some limit enforced by BLK_BATCH_TIME.
805 */
1da177e4
LT
806 if (ioc_batching(q, ioc))
807 ioc->nr_batch_requests--;
6728cb0e 808
2056a782 809 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 810out:
1da177e4
LT
811 return rq;
812}
813
814/*
815 * No available requests for this queue, unplug the device and wait for some
816 * requests to become available.
d6344532
NP
817 *
818 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 819 */
165125e1 820static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 821 struct bio *bio)
1da177e4 822{
7749a8d4 823 const int rw = rw_flags & 0x01;
1da177e4
LT
824 struct request *rq;
825
7749a8d4 826 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
827 while (!rq) {
828 DEFINE_WAIT(wait);
05caf8db 829 struct io_context *ioc;
1da177e4
LT
830 struct request_list *rl = &q->rq;
831
832 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
833 TASK_UNINTERRUPTIBLE);
834
05caf8db 835 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 836
05caf8db
ZY
837 __generic_unplug_device(q);
838 spin_unlock_irq(q->queue_lock);
839 io_schedule();
1da177e4 840
05caf8db
ZY
841 /*
842 * After sleeping, we become a "batching" process and
843 * will be able to allocate at least one request, and
844 * up to a big batch of them for a small period time.
845 * See ioc_batching, ioc_set_batching
846 */
847 ioc = current_io_context(GFP_NOIO, q->node);
848 ioc_set_batching(q, ioc);
d6344532 849
05caf8db 850 spin_lock_irq(q->queue_lock);
1da177e4 851 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
852
853 rq = get_request(q, rw_flags, bio, GFP_NOIO);
854 };
1da177e4
LT
855
856 return rq;
857}
858
165125e1 859struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
860{
861 struct request *rq;
862
863 BUG_ON(rw != READ && rw != WRITE);
864
d6344532
NP
865 spin_lock_irq(q->queue_lock);
866 if (gfp_mask & __GFP_WAIT) {
22e2c507 867 rq = get_request_wait(q, rw, NULL);
d6344532 868 } else {
22e2c507 869 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
870 if (!rq)
871 spin_unlock_irq(q->queue_lock);
872 }
873 /* q->queue_lock is unlocked at this point */
1da177e4
LT
874
875 return rq;
876}
1da177e4
LT
877EXPORT_SYMBOL(blk_get_request);
878
dc72ef4a
JA
879/**
880 * blk_start_queueing - initiate dispatch of requests to device
881 * @q: request queue to kick into gear
882 *
883 * This is basically a helper to remove the need to know whether a queue
884 * is plugged or not if someone just wants to initiate dispatch of requests
885 * for this queue.
886 *
887 * The queue lock must be held with interrupts disabled.
888 */
165125e1 889void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
890{
891 if (!blk_queue_plugged(q))
892 q->request_fn(q);
893 else
894 __generic_unplug_device(q);
895}
896EXPORT_SYMBOL(blk_start_queueing);
897
1da177e4
LT
898/**
899 * blk_requeue_request - put a request back on queue
900 * @q: request queue where request should be inserted
901 * @rq: request to be inserted
902 *
903 * Description:
904 * Drivers often keep queueing requests until the hardware cannot accept
905 * more, when that condition happens we need to put the request back
906 * on the queue. Must be called with queue lock held.
907 */
165125e1 908void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 909{
2056a782
JA
910 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
911
1da177e4
LT
912 if (blk_rq_tagged(rq))
913 blk_queue_end_tag(q, rq);
914
915 elv_requeue_request(q, rq);
916}
1da177e4
LT
917EXPORT_SYMBOL(blk_requeue_request);
918
919/**
710027a4 920 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
921 * @q: request queue where request should be inserted
922 * @rq: request to be inserted
923 * @at_head: insert request at head or tail of queue
924 * @data: private data
1da177e4
LT
925 *
926 * Description:
927 * Many block devices need to execute commands asynchronously, so they don't
928 * block the whole kernel from preemption during request execution. This is
929 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
930 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
931 * be scheduled for actual execution by the request queue.
1da177e4
LT
932 *
933 * We have the option of inserting the head or the tail of the queue.
934 * Typically we use the tail for new ioctls and so forth. We use the head
935 * of the queue for things like a QUEUE_FULL message from a device, or a
936 * host that is unable to accept a particular command.
937 */
165125e1 938void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 939 int at_head, void *data)
1da177e4 940{
867d1191 941 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
942 unsigned long flags;
943
944 /*
945 * tell I/O scheduler that this isn't a regular read/write (ie it
946 * must not attempt merges on this) and that it acts as a soft
947 * barrier
948 */
4aff5e23
JA
949 rq->cmd_type = REQ_TYPE_SPECIAL;
950 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
951
952 rq->special = data;
953
954 spin_lock_irqsave(q->queue_lock, flags);
955
956 /*
957 * If command is tagged, release the tag
958 */
867d1191
TH
959 if (blk_rq_tagged(rq))
960 blk_queue_end_tag(q, rq);
1da177e4 961
b238b3d4 962 drive_stat_acct(rq, 1);
867d1191 963 __elv_add_request(q, rq, where, 0);
dc72ef4a 964 blk_start_queueing(q);
1da177e4
LT
965 spin_unlock_irqrestore(q->queue_lock, flags);
966}
1da177e4
LT
967EXPORT_SYMBOL(blk_insert_request);
968
1da177e4
LT
969/*
970 * add-request adds a request to the linked list.
971 * queue lock is held and interrupts disabled, as we muck with the
972 * request queue list.
973 */
6728cb0e 974static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 975{
b238b3d4 976 drive_stat_acct(req, 1);
1da177e4 977
1da177e4
LT
978 /*
979 * elevator indicated where it wants this request to be
980 * inserted at elevator_merge time
981 */
982 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
983}
6728cb0e 984
1da177e4
LT
985/*
986 * disk_round_stats() - Round off the performance stats on a struct
987 * disk_stats.
988 *
989 * The average IO queue length and utilisation statistics are maintained
990 * by observing the current state of the queue length and the amount of
991 * time it has been in this state for.
992 *
993 * Normally, that accounting is done on IO completion, but that can result
994 * in more than a second's worth of IO being accounted for within any one
995 * second, leading to >100% utilisation. To deal with that, we call this
996 * function to do a round-off before returning the results when reading
997 * /proc/diskstats. This accounts immediately for all queue usage up to
998 * the current jiffies and restarts the counters again.
999 */
1000void disk_round_stats(struct gendisk *disk)
1001{
1002 unsigned long now = jiffies;
1003
b2982649
KC
1004 if (now == disk->stamp)
1005 return;
1da177e4 1006
20e5c81f
KC
1007 if (disk->in_flight) {
1008 __disk_stat_add(disk, time_in_queue,
1009 disk->in_flight * (now - disk->stamp));
1010 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1011 }
1da177e4 1012 disk->stamp = now;
1da177e4 1013}
3eaf840e
JNN
1014EXPORT_SYMBOL_GPL(disk_round_stats);
1015
6f2576af
JM
1016void part_round_stats(struct hd_struct *part)
1017{
1018 unsigned long now = jiffies;
1019
1020 if (now == part->stamp)
1021 return;
1022
1023 if (part->in_flight) {
1024 __part_stat_add(part, time_in_queue,
1025 part->in_flight * (now - part->stamp));
1026 __part_stat_add(part, io_ticks, (now - part->stamp));
1027 }
1028 part->stamp = now;
1029}
1030
1da177e4
LT
1031/*
1032 * queue lock must be held
1033 */
165125e1 1034void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1035{
1da177e4
LT
1036 if (unlikely(!q))
1037 return;
1038 if (unlikely(--req->ref_count))
1039 return;
1040
8922e16c
TH
1041 elv_completed_request(q, req);
1042
1da177e4
LT
1043 /*
1044 * Request may not have originated from ll_rw_blk. if not,
1045 * it didn't come out of our reserved rq pools
1046 */
49171e5c 1047 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1048 int rw = rq_data_dir(req);
4aff5e23 1049 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1050
1da177e4 1051 BUG_ON(!list_empty(&req->queuelist));
9817064b 1052 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1053
1054 blk_free_request(q, req);
cb98fc8b 1055 freed_request(q, rw, priv);
1da177e4
LT
1056 }
1057}
6e39b69e
MC
1058EXPORT_SYMBOL_GPL(__blk_put_request);
1059
1da177e4
LT
1060void blk_put_request(struct request *req)
1061{
8922e16c 1062 unsigned long flags;
165125e1 1063 struct request_queue *q = req->q;
8922e16c 1064
52a93ba8
FT
1065 spin_lock_irqsave(q->queue_lock, flags);
1066 __blk_put_request(q, req);
1067 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1068}
1da177e4
LT
1069EXPORT_SYMBOL(blk_put_request);
1070
86db1e29 1071void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1072{
4aff5e23 1073 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1074
1075 /*
1076 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1077 */
1078 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1079 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1080
1081 /*
1082 * REQ_BARRIER implies no merging, but lets make it explicit
1083 */
fb2dce86 1084 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1085 req->cmd_flags |= REQ_DISCARD;
1086 if (bio_barrier(bio))
1087 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1088 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1089 } else if (unlikely(bio_barrier(bio)))
1090 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1091
b31dc66a 1092 if (bio_sync(bio))
4aff5e23 1093 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1094 if (bio_rw_meta(bio))
1095 req->cmd_flags |= REQ_RW_META;
b31dc66a 1096
52d9e675
TH
1097 req->errors = 0;
1098 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1099 req->ioprio = bio_prio(bio);
52d9e675 1100 req->start_time = jiffies;
bc1c56fd 1101 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1102}
1103
165125e1 1104static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1105{
450991bc 1106 struct request *req;
fb2dce86 1107 int el_ret, nr_sectors, barrier, discard, err;
51da90fc
JA
1108 const unsigned short prio = bio_prio(bio);
1109 const int sync = bio_sync(bio);
7749a8d4 1110 int rw_flags;
1da177e4 1111
1da177e4 1112 nr_sectors = bio_sectors(bio);
1da177e4
LT
1113
1114 /*
1115 * low level driver can indicate that it wants pages above a
1116 * certain limit bounced to low memory (ie for highmem, or even
1117 * ISA dma in theory)
1118 */
1119 blk_queue_bounce(q, &bio);
1120
1da177e4 1121 barrier = bio_barrier(bio);
e17fc0a1
DW
1122 if (unlikely(barrier) && bio_has_data(bio) &&
1123 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1124 err = -EOPNOTSUPP;
1125 goto end_io;
1126 }
1127
fb2dce86
DW
1128 discard = bio_discard(bio);
1129 if (unlikely(discard) && !q->prepare_discard_fn) {
1130 err = -EOPNOTSUPP;
1131 goto end_io;
1132 }
1133
1da177e4
LT
1134 spin_lock_irq(q->queue_lock);
1135
450991bc 1136 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1137 goto get_rq;
1138
1139 el_ret = elv_merge(q, &req, bio);
1140 switch (el_ret) {
6728cb0e
JA
1141 case ELEVATOR_BACK_MERGE:
1142 BUG_ON(!rq_mergeable(req));
1da177e4 1143
6728cb0e
JA
1144 if (!ll_back_merge_fn(q, req, bio))
1145 break;
1da177e4 1146
6728cb0e 1147 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1148
6728cb0e
JA
1149 req->biotail->bi_next = bio;
1150 req->biotail = bio;
1151 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1152 req->ioprio = ioprio_best(req->ioprio, prio);
1153 drive_stat_acct(req, 0);
1154 if (!attempt_back_merge(q, req))
1155 elv_merged_request(q, req, el_ret);
1156 goto out;
1da177e4 1157
6728cb0e
JA
1158 case ELEVATOR_FRONT_MERGE:
1159 BUG_ON(!rq_mergeable(req));
1da177e4 1160
6728cb0e
JA
1161 if (!ll_front_merge_fn(q, req, bio))
1162 break;
1da177e4 1163
6728cb0e 1164 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1165
6728cb0e
JA
1166 bio->bi_next = req->bio;
1167 req->bio = bio;
1da177e4 1168
6728cb0e
JA
1169 /*
1170 * may not be valid. if the low level driver said
1171 * it didn't need a bounce buffer then it better
1172 * not touch req->buffer either...
1173 */
1174 req->buffer = bio_data(bio);
1175 req->current_nr_sectors = bio_cur_sectors(bio);
1176 req->hard_cur_sectors = req->current_nr_sectors;
1177 req->sector = req->hard_sector = bio->bi_sector;
1178 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1179 req->ioprio = ioprio_best(req->ioprio, prio);
1180 drive_stat_acct(req, 0);
1181 if (!attempt_front_merge(q, req))
1182 elv_merged_request(q, req, el_ret);
1183 goto out;
1184
1185 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1186 default:
1187 ;
1da177e4
LT
1188 }
1189
450991bc 1190get_rq:
7749a8d4
JA
1191 /*
1192 * This sync check and mask will be re-done in init_request_from_bio(),
1193 * but we need to set it earlier to expose the sync flag to the
1194 * rq allocator and io schedulers.
1195 */
1196 rw_flags = bio_data_dir(bio);
1197 if (sync)
1198 rw_flags |= REQ_RW_SYNC;
1199
1da177e4 1200 /*
450991bc 1201 * Grab a free request. This is might sleep but can not fail.
d6344532 1202 * Returns with the queue unlocked.
450991bc 1203 */
7749a8d4 1204 req = get_request_wait(q, rw_flags, bio);
d6344532 1205
450991bc
NP
1206 /*
1207 * After dropping the lock and possibly sleeping here, our request
1208 * may now be mergeable after it had proven unmergeable (above).
1209 * We don't worry about that case for efficiency. It won't happen
1210 * often, and the elevators are able to handle it.
1da177e4 1211 */
52d9e675 1212 init_request_from_bio(req, bio);
1da177e4 1213
450991bc
NP
1214 spin_lock_irq(q->queue_lock);
1215 if (elv_queue_empty(q))
1216 blk_plug_device(q);
1da177e4
LT
1217 add_request(q, req);
1218out:
4a534f93 1219 if (sync)
1da177e4
LT
1220 __generic_unplug_device(q);
1221
1222 spin_unlock_irq(q->queue_lock);
1223 return 0;
1224
1225end_io:
6712ecf8 1226 bio_endio(bio, err);
1da177e4
LT
1227 return 0;
1228}
1229
1230/*
1231 * If bio->bi_dev is a partition, remap the location
1232 */
1233static inline void blk_partition_remap(struct bio *bio)
1234{
1235 struct block_device *bdev = bio->bi_bdev;
1236
bf2de6f5 1237 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1238 struct hd_struct *p = bdev->bd_part;
1239
1da177e4
LT
1240 bio->bi_sector += p->start_sect;
1241 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1242
1243 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1244 bdev->bd_dev, bio->bi_sector,
1245 bio->bi_sector - p->start_sect);
1da177e4
LT
1246 }
1247}
1248
1da177e4
LT
1249static void handle_bad_sector(struct bio *bio)
1250{
1251 char b[BDEVNAME_SIZE];
1252
1253 printk(KERN_INFO "attempt to access beyond end of device\n");
1254 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1255 bdevname(bio->bi_bdev, b),
1256 bio->bi_rw,
1257 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1258 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1259
1260 set_bit(BIO_EOF, &bio->bi_flags);
1261}
1262
c17bb495
AM
1263#ifdef CONFIG_FAIL_MAKE_REQUEST
1264
1265static DECLARE_FAULT_ATTR(fail_make_request);
1266
1267static int __init setup_fail_make_request(char *str)
1268{
1269 return setup_fault_attr(&fail_make_request, str);
1270}
1271__setup("fail_make_request=", setup_fail_make_request);
1272
1273static int should_fail_request(struct bio *bio)
1274{
1275 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1276 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1277 return should_fail(&fail_make_request, bio->bi_size);
1278
1279 return 0;
1280}
1281
1282static int __init fail_make_request_debugfs(void)
1283{
1284 return init_fault_attr_dentries(&fail_make_request,
1285 "fail_make_request");
1286}
1287
1288late_initcall(fail_make_request_debugfs);
1289
1290#else /* CONFIG_FAIL_MAKE_REQUEST */
1291
1292static inline int should_fail_request(struct bio *bio)
1293{
1294 return 0;
1295}
1296
1297#endif /* CONFIG_FAIL_MAKE_REQUEST */
1298
c07e2b41
JA
1299/*
1300 * Check whether this bio extends beyond the end of the device.
1301 */
1302static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1303{
1304 sector_t maxsector;
1305
1306 if (!nr_sectors)
1307 return 0;
1308
1309 /* Test device or partition size, when known. */
1310 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1311 if (maxsector) {
1312 sector_t sector = bio->bi_sector;
1313
1314 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1315 /*
1316 * This may well happen - the kernel calls bread()
1317 * without checking the size of the device, e.g., when
1318 * mounting a device.
1319 */
1320 handle_bad_sector(bio);
1321 return 1;
1322 }
1323 }
1324
1325 return 0;
1326}
1327
1da177e4 1328/**
710027a4 1329 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1330 * @bio: The bio describing the location in memory and on the device.
1331 *
1332 * generic_make_request() is used to make I/O requests of block
1333 * devices. It is passed a &struct bio, which describes the I/O that needs
1334 * to be done.
1335 *
1336 * generic_make_request() does not return any status. The
1337 * success/failure status of the request, along with notification of
1338 * completion, is delivered asynchronously through the bio->bi_end_io
1339 * function described (one day) else where.
1340 *
1341 * The caller of generic_make_request must make sure that bi_io_vec
1342 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1343 * set to describe the device address, and the
1344 * bi_end_io and optionally bi_private are set to describe how
1345 * completion notification should be signaled.
1346 *
1347 * generic_make_request and the drivers it calls may use bi_next if this
1348 * bio happens to be merged with someone else, and may change bi_dev and
1349 * bi_sector for remaps as it sees fit. So the values of these fields
1350 * should NOT be depended on after the call to generic_make_request.
1351 */
d89d8796 1352static inline void __generic_make_request(struct bio *bio)
1da177e4 1353{
165125e1 1354 struct request_queue *q;
5ddfe969 1355 sector_t old_sector;
1da177e4 1356 int ret, nr_sectors = bio_sectors(bio);
2056a782 1357 dev_t old_dev;
51fd77bd 1358 int err = -EIO;
1da177e4
LT
1359
1360 might_sleep();
1da177e4 1361
c07e2b41
JA
1362 if (bio_check_eod(bio, nr_sectors))
1363 goto end_io;
1da177e4
LT
1364
1365 /*
1366 * Resolve the mapping until finished. (drivers are
1367 * still free to implement/resolve their own stacking
1368 * by explicitly returning 0)
1369 *
1370 * NOTE: we don't repeat the blk_size check for each new device.
1371 * Stacking drivers are expected to know what they are doing.
1372 */
5ddfe969 1373 old_sector = -1;
2056a782 1374 old_dev = 0;
1da177e4
LT
1375 do {
1376 char b[BDEVNAME_SIZE];
1377
1378 q = bdev_get_queue(bio->bi_bdev);
1379 if (!q) {
1380 printk(KERN_ERR
1381 "generic_make_request: Trying to access "
1382 "nonexistent block-device %s (%Lu)\n",
1383 bdevname(bio->bi_bdev, b),
1384 (long long) bio->bi_sector);
1385end_io:
51fd77bd 1386 bio_endio(bio, err);
1da177e4
LT
1387 break;
1388 }
1389
4fa253f3 1390 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1391 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1392 bdevname(bio->bi_bdev, b),
1393 bio_sectors(bio),
1394 q->max_hw_sectors);
1395 goto end_io;
1396 }
1397
fde6ad22 1398 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1399 goto end_io;
1400
c17bb495
AM
1401 if (should_fail_request(bio))
1402 goto end_io;
1403
1da177e4
LT
1404 /*
1405 * If this device has partitions, remap block n
1406 * of partition p to block n+start(p) of the disk.
1407 */
1408 blk_partition_remap(bio);
1409
7ba1ba12
MP
1410 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1411 goto end_io;
1412
5ddfe969 1413 if (old_sector != -1)
4fa253f3 1414 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1415 old_sector);
2056a782
JA
1416
1417 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1418
5ddfe969 1419 old_sector = bio->bi_sector;
2056a782
JA
1420 old_dev = bio->bi_bdev->bd_dev;
1421
c07e2b41
JA
1422 if (bio_check_eod(bio, nr_sectors))
1423 goto end_io;
fb2dce86
DW
1424 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1425 (bio_discard(bio) && !q->prepare_discard_fn)) {
51fd77bd
JA
1426 err = -EOPNOTSUPP;
1427 goto end_io;
1428 }
5ddfe969 1429
1da177e4
LT
1430 ret = q->make_request_fn(q, bio);
1431 } while (ret);
1432}
1433
d89d8796
NB
1434/*
1435 * We only want one ->make_request_fn to be active at a time,
1436 * else stack usage with stacked devices could be a problem.
1437 * So use current->bio_{list,tail} to keep a list of requests
1438 * submited by a make_request_fn function.
1439 * current->bio_tail is also used as a flag to say if
1440 * generic_make_request is currently active in this task or not.
1441 * If it is NULL, then no make_request is active. If it is non-NULL,
1442 * then a make_request is active, and new requests should be added
1443 * at the tail
1444 */
1445void generic_make_request(struct bio *bio)
1446{
1447 if (current->bio_tail) {
1448 /* make_request is active */
1449 *(current->bio_tail) = bio;
1450 bio->bi_next = NULL;
1451 current->bio_tail = &bio->bi_next;
1452 return;
1453 }
1454 /* following loop may be a bit non-obvious, and so deserves some
1455 * explanation.
1456 * Before entering the loop, bio->bi_next is NULL (as all callers
1457 * ensure that) so we have a list with a single bio.
1458 * We pretend that we have just taken it off a longer list, so
1459 * we assign bio_list to the next (which is NULL) and bio_tail
1460 * to &bio_list, thus initialising the bio_list of new bios to be
1461 * added. __generic_make_request may indeed add some more bios
1462 * through a recursive call to generic_make_request. If it
1463 * did, we find a non-NULL value in bio_list and re-enter the loop
1464 * from the top. In this case we really did just take the bio
1465 * of the top of the list (no pretending) and so fixup bio_list and
1466 * bio_tail or bi_next, and call into __generic_make_request again.
1467 *
1468 * The loop was structured like this to make only one call to
1469 * __generic_make_request (which is important as it is large and
1470 * inlined) and to keep the structure simple.
1471 */
1472 BUG_ON(bio->bi_next);
1473 do {
1474 current->bio_list = bio->bi_next;
1475 if (bio->bi_next == NULL)
1476 current->bio_tail = &current->bio_list;
1477 else
1478 bio->bi_next = NULL;
1479 __generic_make_request(bio);
1480 bio = current->bio_list;
1481 } while (bio);
1482 current->bio_tail = NULL; /* deactivate */
1483}
1da177e4
LT
1484EXPORT_SYMBOL(generic_make_request);
1485
1486/**
710027a4 1487 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1488 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1489 * @bio: The &struct bio which describes the I/O
1490 *
1491 * submit_bio() is very similar in purpose to generic_make_request(), and
1492 * uses that function to do most of the work. Both are fairly rough
710027a4 1493 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1494 *
1495 */
1496void submit_bio(int rw, struct bio *bio)
1497{
1498 int count = bio_sectors(bio);
1499
22e2c507 1500 bio->bi_rw |= rw;
1da177e4 1501
bf2de6f5
JA
1502 /*
1503 * If it's a regular read/write or a barrier with data attached,
1504 * go through the normal accounting stuff before submission.
1505 */
a9c701e5 1506 if (bio_has_data(bio)) {
bf2de6f5
JA
1507 if (rw & WRITE) {
1508 count_vm_events(PGPGOUT, count);
1509 } else {
1510 task_io_account_read(bio->bi_size);
1511 count_vm_events(PGPGIN, count);
1512 }
1513
1514 if (unlikely(block_dump)) {
1515 char b[BDEVNAME_SIZE];
1516 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1517 current->comm, task_pid_nr(current),
bf2de6f5
JA
1518 (rw & WRITE) ? "WRITE" : "READ",
1519 (unsigned long long)bio->bi_sector,
6728cb0e 1520 bdevname(bio->bi_bdev, b));
bf2de6f5 1521 }
1da177e4
LT
1522 }
1523
1524 generic_make_request(bio);
1525}
1da177e4
LT
1526EXPORT_SYMBOL(submit_bio);
1527
3bcddeac
KU
1528/**
1529 * __end_that_request_first - end I/O on a request
1530 * @req: the request being processed
710027a4 1531 * @error: %0 for success, < %0 for error
3bcddeac
KU
1532 * @nr_bytes: number of bytes to complete
1533 *
1534 * Description:
1535 * Ends I/O on a number of bytes attached to @req, and sets it up
1536 * for the next range of segments (if any) in the cluster.
1537 *
1538 * Return:
710027a4
RD
1539 * %0 - we are done with this request, call end_that_request_last()
1540 * %1 - still buffers pending for this request
3bcddeac 1541 **/
5450d3e1 1542static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1543 int nr_bytes)
1544{
5450d3e1 1545 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1546 struct bio *bio;
1547
2056a782
JA
1548 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1549
1da177e4 1550 /*
710027a4 1551 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1552 * sense key with us all the way through
1553 */
1554 if (!blk_pc_request(req))
1555 req->errors = 0;
1556
6728cb0e
JA
1557 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1558 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1559 req->rq_disk ? req->rq_disk->disk_name : "?",
1560 (unsigned long long)req->sector);
1561 }
1562
d72d904a 1563 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1564 const int rw = rq_data_dir(req);
e71bf0d0 1565 struct hd_struct *part;
a362357b 1566
e71bf0d0
TH
1567 rcu_read_lock();
1568 part = disk_map_sector_rcu(req->rq_disk, req->sector);
28f13702
JA
1569 all_stat_add(req->rq_disk, part, sectors[rw],
1570 nr_bytes >> 9, req->sector);
e71bf0d0 1571 rcu_read_unlock();
d72d904a
JA
1572 }
1573
1da177e4
LT
1574 total_bytes = bio_nbytes = 0;
1575 while ((bio = req->bio) != NULL) {
1576 int nbytes;
1577
bf2de6f5
JA
1578 /*
1579 * For an empty barrier request, the low level driver must
1580 * store a potential error location in ->sector. We pass
1581 * that back up in ->bi_sector.
1582 */
1583 if (blk_empty_barrier(req))
1584 bio->bi_sector = req->sector;
1585
1da177e4
LT
1586 if (nr_bytes >= bio->bi_size) {
1587 req->bio = bio->bi_next;
1588 nbytes = bio->bi_size;
5bb23a68 1589 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1590 next_idx = 0;
1591 bio_nbytes = 0;
1592 } else {
1593 int idx = bio->bi_idx + next_idx;
1594
1595 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1596 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1597 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1598 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1599 break;
1600 }
1601
1602 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1603 BIO_BUG_ON(nbytes > bio->bi_size);
1604
1605 /*
1606 * not a complete bvec done
1607 */
1608 if (unlikely(nbytes > nr_bytes)) {
1609 bio_nbytes += nr_bytes;
1610 total_bytes += nr_bytes;
1611 break;
1612 }
1613
1614 /*
1615 * advance to the next vector
1616 */
1617 next_idx++;
1618 bio_nbytes += nbytes;
1619 }
1620
1621 total_bytes += nbytes;
1622 nr_bytes -= nbytes;
1623
6728cb0e
JA
1624 bio = req->bio;
1625 if (bio) {
1da177e4
LT
1626 /*
1627 * end more in this run, or just return 'not-done'
1628 */
1629 if (unlikely(nr_bytes <= 0))
1630 break;
1631 }
1632 }
1633
1634 /*
1635 * completely done
1636 */
1637 if (!req->bio)
1638 return 0;
1639
1640 /*
1641 * if the request wasn't completed, update state
1642 */
1643 if (bio_nbytes) {
5bb23a68 1644 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1645 bio->bi_idx += next_idx;
1646 bio_iovec(bio)->bv_offset += nr_bytes;
1647 bio_iovec(bio)->bv_len -= nr_bytes;
1648 }
1649
1650 blk_recalc_rq_sectors(req, total_bytes >> 9);
1651 blk_recalc_rq_segments(req);
1652 return 1;
1653}
1654
ff856bad
JA
1655/*
1656 * splice the completion data to a local structure and hand off to
1657 * process_completion_queue() to complete the requests
1658 */
1659static void blk_done_softirq(struct softirq_action *h)
1660{
626ab0e6 1661 struct list_head *cpu_list, local_list;
ff856bad
JA
1662
1663 local_irq_disable();
1664 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 1665 list_replace_init(cpu_list, &local_list);
ff856bad
JA
1666 local_irq_enable();
1667
1668 while (!list_empty(&local_list)) {
6728cb0e 1669 struct request *rq;
ff856bad 1670
6728cb0e 1671 rq = list_entry(local_list.next, struct request, donelist);
ff856bad
JA
1672 list_del_init(&rq->donelist);
1673 rq->q->softirq_done_fn(rq);
1674 }
1675}
1676
6728cb0e
JA
1677static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1678 unsigned long action, void *hcpu)
ff856bad
JA
1679{
1680 /*
1681 * If a CPU goes away, splice its entries to the current CPU
1682 * and trigger a run of the softirq
1683 */
8bb78442 1684 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
1685 int cpu = (unsigned long) hcpu;
1686
1687 local_irq_disable();
1688 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1689 &__get_cpu_var(blk_cpu_done));
1690 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1691 local_irq_enable();
1692 }
1693
1694 return NOTIFY_OK;
1695}
1696
1697
db47d475 1698static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
1699 .notifier_call = blk_cpu_notify,
1700};
1701
ff856bad
JA
1702/**
1703 * blk_complete_request - end I/O on a request
1704 * @req: the request being processed
1705 *
1706 * Description:
1707 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 1708 * unless the driver actually implements this in its completion callback
4fa253f3 1709 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
1710 * through a softirq handler. The user must have registered a completion
1711 * callback through blk_queue_softirq_done().
1712 **/
1713
1714void blk_complete_request(struct request *req)
1715{
1716 struct list_head *cpu_list;
1717 unsigned long flags;
1718
1719 BUG_ON(!req->q->softirq_done_fn);
6728cb0e 1720
ff856bad
JA
1721 local_irq_save(flags);
1722
1723 cpu_list = &__get_cpu_var(blk_cpu_done);
1724 list_add_tail(&req->donelist, cpu_list);
1725 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1726
1727 local_irq_restore(flags);
1728}
ff856bad 1729EXPORT_SYMBOL(blk_complete_request);
6728cb0e 1730
1da177e4
LT
1731/*
1732 * queue lock must be held
1733 */
5450d3e1 1734static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1735{
1736 struct gendisk *disk = req->rq_disk;
8ffdc655 1737
b8286239
KU
1738 if (blk_rq_tagged(req))
1739 blk_queue_end_tag(req->q, req);
1740
1741 if (blk_queued_rq(req))
1742 blkdev_dequeue_request(req);
1da177e4
LT
1743
1744 if (unlikely(laptop_mode) && blk_fs_request(req))
1745 laptop_io_completion();
1746
fd0ff8aa
JA
1747 /*
1748 * Account IO completion. bar_rq isn't accounted as a normal
1749 * IO on queueing nor completion. Accounting the containing
1750 * request is enough.
1751 */
1752 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1753 unsigned long duration = jiffies - req->start_time;
a362357b 1754 const int rw = rq_data_dir(req);
e71bf0d0
TH
1755 struct hd_struct *part;
1756
1757 rcu_read_lock();
1758
1759 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1760
28f13702
JA
1761 __all_stat_inc(disk, part, ios[rw], req->sector);
1762 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1da177e4
LT
1763 disk_round_stats(disk);
1764 disk->in_flight--;
6f2576af
JM
1765 if (part) {
1766 part_round_stats(part);
1767 part->in_flight--;
1768 }
e71bf0d0
TH
1769
1770 rcu_read_unlock();
1da177e4 1771 }
b8286239 1772
1da177e4 1773 if (req->end_io)
8ffdc655 1774 req->end_io(req, error);
b8286239
KU
1775 else {
1776 if (blk_bidi_rq(req))
1777 __blk_put_request(req->next_rq->q, req->next_rq);
1778
1da177e4 1779 __blk_put_request(req->q, req);
b8286239 1780 }
1da177e4
LT
1781}
1782
a0cd1285 1783static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1784 unsigned int nr_bytes)
1da177e4 1785{
9e6e39f2
KU
1786 int error = 0;
1787
1788 if (uptodate <= 0)
1789 error = uptodate ? uptodate : -EIO;
1790
1791 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1792}
1793
3b11313a
KU
1794/**
1795 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1796 * @rq: the request being processed
3b11313a
KU
1797 **/
1798unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1799{
1800 if (blk_fs_request(rq))
1801 return rq->hard_nr_sectors << 9;
1802
1803 return rq->data_len;
1804}
3b11313a
KU
1805EXPORT_SYMBOL_GPL(blk_rq_bytes);
1806
1807/**
1808 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1809 * @rq: the request being processed
3b11313a
KU
1810 **/
1811unsigned int blk_rq_cur_bytes(struct request *rq)
1812{
1813 if (blk_fs_request(rq))
1814 return rq->current_nr_sectors << 9;
1815
1816 if (rq->bio)
1817 return rq->bio->bi_size;
1818
1819 return rq->data_len;
1820}
1821EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1822
1823/**
1824 * end_queued_request - end all I/O on a queued request
1825 * @rq: the request being processed
710027a4 1826 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1827 *
1828 * Description:
1829 * Ends all I/O on a request, and removes it from the block layer queues.
710027a4 1830 * Not suitable for normal I/O completion, unless the driver still has
a0cd1285
JA
1831 * the request attached to the block layer.
1832 *
1833 **/
1834void end_queued_request(struct request *rq, int uptodate)
1835{
9e6e39f2 1836 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1837}
1838EXPORT_SYMBOL(end_queued_request);
1839
1840/**
1841 * end_dequeued_request - end all I/O on a dequeued request
1842 * @rq: the request being processed
710027a4 1843 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1844 *
1845 * Description:
1846 * Ends all I/O on a request. The request must already have been
1847 * dequeued using blkdev_dequeue_request(), as is normally the case
1848 * for most drivers.
1849 *
1850 **/
1851void end_dequeued_request(struct request *rq, int uptodate)
1852{
9e6e39f2 1853 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1854}
1855EXPORT_SYMBOL(end_dequeued_request);
1856
1857
1858/**
1859 * end_request - end I/O on the current segment of the request
8f731f7d 1860 * @req: the request being processed
710027a4 1861 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1862 *
1863 * Description:
1864 * Ends I/O on the current segment of a request. If that is the only
1865 * remaining segment, the request is also completed and freed.
1866 *
710027a4
RD
1867 * This is a remnant of how older block drivers handled I/O completions.
1868 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1869 * they have a residual value to account for. For that case this function
1870 * isn't really useful, unless the residual just happens to be the
1871 * full current segment. In other words, don't use this function in new
1872 * code. Either use end_request_completely(), or the
1873 * end_that_request_chunk() (along with end_that_request_last()) for
1874 * partial completions.
1875 *
1876 **/
1877void end_request(struct request *req, int uptodate)
1878{
9e6e39f2 1879 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1880}
1da177e4
LT
1881EXPORT_SYMBOL(end_request);
1882
336cdb40 1883/**
e19a3ab0
KU
1884 * blk_end_io - Generic end_io function to complete a request.
1885 * @rq: the request being processed
710027a4 1886 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1887 * @nr_bytes: number of bytes to complete @rq
1888 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1889 * @drv_callback: function called between completion of bios in the request
1890 * and completion of the request.
710027a4 1891 * If the callback returns non %0, this helper returns without
e19a3ab0 1892 * completion of the request.
336cdb40
KU
1893 *
1894 * Description:
e3a04fe3 1895 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1896 * If @rq has leftover, sets it up for the next range of segments.
1897 *
1898 * Return:
710027a4
RD
1899 * %0 - we are done with this request
1900 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1901 **/
22b13210
JA
1902static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1903 unsigned int bidi_bytes,
1904 int (drv_callback)(struct request *))
336cdb40
KU
1905{
1906 struct request_queue *q = rq->q;
1907 unsigned long flags = 0UL;
336cdb40 1908
fb2dce86 1909 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
5450d3e1 1910 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40 1911 return 1;
e3a04fe3
KU
1912
1913 /* Bidi request must be completed as a whole */
1914 if (blk_bidi_rq(rq) &&
5450d3e1 1915 __end_that_request_first(rq->next_rq, error, bidi_bytes))
e3a04fe3 1916 return 1;
336cdb40
KU
1917 }
1918
e19a3ab0
KU
1919 /* Special feature for tricky drivers */
1920 if (drv_callback && drv_callback(rq))
1921 return 1;
1922
336cdb40
KU
1923 add_disk_randomness(rq->rq_disk);
1924
1925 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1926 end_that_request_last(rq, error);
336cdb40
KU
1927 spin_unlock_irqrestore(q->queue_lock, flags);
1928
1929 return 0;
1930}
e19a3ab0
KU
1931
1932/**
1933 * blk_end_request - Helper function for drivers to complete the request.
1934 * @rq: the request being processed
710027a4 1935 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1936 * @nr_bytes: number of bytes to complete
1937 *
1938 * Description:
1939 * Ends I/O on a number of bytes attached to @rq.
1940 * If @rq has leftover, sets it up for the next range of segments.
1941 *
1942 * Return:
710027a4
RD
1943 * %0 - we are done with this request
1944 * %1 - still buffers pending for this request
e19a3ab0 1945 **/
22b13210 1946int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1947{
e3a04fe3 1948 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1949}
336cdb40
KU
1950EXPORT_SYMBOL_GPL(blk_end_request);
1951
1952/**
1953 * __blk_end_request - Helper function for drivers to complete the request.
1954 * @rq: the request being processed
710027a4 1955 * @error: %0 for success, < %0 for error
336cdb40
KU
1956 * @nr_bytes: number of bytes to complete
1957 *
1958 * Description:
1959 * Must be called with queue lock held unlike blk_end_request().
1960 *
1961 * Return:
710027a4
RD
1962 * %0 - we are done with this request
1963 * %1 - still buffers pending for this request
336cdb40 1964 **/
22b13210 1965int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1966{
fb2dce86 1967 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
051cc395
JA
1968 __end_that_request_first(rq, error, nr_bytes))
1969 return 1;
336cdb40
KU
1970
1971 add_disk_randomness(rq->rq_disk);
1972
b8286239 1973 end_that_request_last(rq, error);
336cdb40
KU
1974
1975 return 0;
1976}
1977EXPORT_SYMBOL_GPL(__blk_end_request);
1978
e3a04fe3
KU
1979/**
1980 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1981 * @rq: the bidi request being processed
710027a4 1982 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1983 * @nr_bytes: number of bytes to complete @rq
1984 * @bidi_bytes: number of bytes to complete @rq->next_rq
1985 *
1986 * Description:
1987 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1988 *
1989 * Return:
710027a4
RD
1990 * %0 - we are done with this request
1991 * %1 - still buffers pending for this request
e3a04fe3 1992 **/
22b13210
JA
1993int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1994 unsigned int bidi_bytes)
e3a04fe3
KU
1995{
1996 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1997}
1998EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1999
e19a3ab0
KU
2000/**
2001 * blk_end_request_callback - Special helper function for tricky drivers
2002 * @rq: the request being processed
710027a4 2003 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2004 * @nr_bytes: number of bytes to complete
2005 * @drv_callback: function called between completion of bios in the request
2006 * and completion of the request.
710027a4 2007 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2008 * completion of the request.
2009 *
2010 * Description:
2011 * Ends I/O on a number of bytes attached to @rq.
2012 * If @rq has leftover, sets it up for the next range of segments.
2013 *
2014 * This special helper function is used only for existing tricky drivers.
2015 * (e.g. cdrom_newpc_intr() of ide-cd)
2016 * This interface will be removed when such drivers are rewritten.
2017 * Don't use this interface in other places anymore.
2018 *
2019 * Return:
710027a4
RD
2020 * %0 - we are done with this request
2021 * %1 - this request is not freed yet.
2022 * this request still has pending buffers or
2023 * the driver doesn't want to finish this request yet.
e19a3ab0 2024 **/
22b13210
JA
2025int blk_end_request_callback(struct request *rq, int error,
2026 unsigned int nr_bytes,
e19a3ab0
KU
2027 int (drv_callback)(struct request *))
2028{
e3a04fe3 2029 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2030}
2031EXPORT_SYMBOL_GPL(blk_end_request_callback);
2032
86db1e29
JA
2033void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2034 struct bio *bio)
1da177e4 2035{
d628eaef
DW
2036 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2037 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2038 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2039
fb2dce86
DW
2040 if (bio_has_data(bio)) {
2041 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2042 rq->buffer = bio_data(bio);
2043 }
1da177e4
LT
2044 rq->current_nr_sectors = bio_cur_sectors(bio);
2045 rq->hard_cur_sectors = rq->current_nr_sectors;
2046 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2047 rq->data_len = bio->bi_size;
1da177e4
LT
2048
2049 rq->bio = rq->biotail = bio;
1da177e4 2050
66846572
N
2051 if (bio->bi_bdev)
2052 rq->rq_disk = bio->bi_bdev->bd_disk;
2053}
1da177e4
LT
2054
2055int kblockd_schedule_work(struct work_struct *work)
2056{
2057 return queue_work(kblockd_workqueue, work);
2058}
1da177e4
LT
2059EXPORT_SYMBOL(kblockd_schedule_work);
2060
19a75d83 2061void kblockd_flush_work(struct work_struct *work)
1da177e4 2062{
28e53bdd 2063 cancel_work_sync(work);
1da177e4 2064}
19a75d83 2065EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2066
2067int __init blk_dev_init(void)
2068{
ff856bad
JA
2069 int i;
2070
1da177e4
LT
2071 kblockd_workqueue = create_workqueue("kblockd");
2072 if (!kblockd_workqueue)
2073 panic("Failed to create kblockd\n");
2074
2075 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2076 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2077
8324aa91 2078 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2079 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2080
0a945022 2081 for_each_possible_cpu(i)
ff856bad
JA
2082 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2083
962cf36c 2084 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5a67e4c5 2085 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 2086
d38ecf93 2087 return 0;
1da177e4 2088}
1da177e4 2089