]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
block: fix empty barrier on write-through w/ ordered tag
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
5f3ea37c 31#include <trace/block.h>
1da177e4 32
8324aa91
JA
33#include "blk.h"
34
0bfc2455
IM
35DEFINE_TRACE(block_plug);
36DEFINE_TRACE(block_unplug_io);
37DEFINE_TRACE(block_unplug_timer);
38DEFINE_TRACE(block_getrq);
39DEFINE_TRACE(block_sleeprq);
40DEFINE_TRACE(block_rq_requeue);
41DEFINE_TRACE(block_bio_backmerge);
42DEFINE_TRACE(block_bio_frontmerge);
43DEFINE_TRACE(block_bio_queue);
44DEFINE_TRACE(block_rq_complete);
45DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
47
165125e1 48static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
5ece6c52 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
6728cb0e 58struct kmem_cache *blk_requestq_cachep;
1da177e4 59
1da177e4
LT
60/*
61 * Controlling structure to kblockd
62 */
ff856bad 63static struct workqueue_struct *kblockd_workqueue;
1da177e4 64
26b8256e
JA
65static void drive_stat_acct(struct request *rq, int new_io)
66{
28f13702 67 struct hd_struct *part;
26b8256e 68 int rw = rq_data_dir(rq);
c9959059 69 int cpu;
26b8256e
JA
70
71 if (!blk_fs_request(rq) || !rq->rq_disk)
72 return;
73
074a7aca 74 cpu = part_stat_lock();
e71bf0d0 75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 76
28f13702 77 if (!new_io)
074a7aca 78 part_stat_inc(cpu, part, merges[rw]);
28f13702 79 else {
074a7aca
TH
80 part_round_stats(cpu, part);
81 part_inc_in_flight(part);
26b8256e 82 }
e71bf0d0 83
074a7aca 84 part_stat_unlock();
26b8256e
JA
85}
86
8324aa91 87void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
88{
89 int nr;
90
91 nr = q->nr_requests - (q->nr_requests / 8) + 1;
92 if (nr > q->nr_requests)
93 nr = q->nr_requests;
94 q->nr_congestion_on = nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
97 if (nr < 1)
98 nr = 1;
99 q->nr_congestion_off = nr;
100}
101
1da177e4
LT
102/**
103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
104 * @bdev: device
105 *
106 * Locates the passed device's request queue and returns the address of its
107 * backing_dev_info
108 *
109 * Will return NULL if the request queue cannot be located.
110 */
111struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
112{
113 struct backing_dev_info *ret = NULL;
165125e1 114 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
115
116 if (q)
117 ret = &q->backing_dev_info;
118 return ret;
119}
1da177e4
LT
120EXPORT_SYMBOL(blk_get_backing_dev_info);
121
2a4aa30c 122void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 123{
1afb20f3
FT
124 memset(rq, 0, sizeof(*rq));
125
1da177e4 126 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 127 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 128 rq->cpu = -1;
63a71386
JA
129 rq->q = q;
130 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 133 rq->cmd = rq->__cmd;
63a71386 134 rq->tag = -1;
1da177e4 135 rq->ref_count = 1;
1da177e4 136}
2a4aa30c 137EXPORT_SYMBOL(blk_rq_init);
1da177e4 138
5bb23a68
N
139static void req_bio_endio(struct request *rq, struct bio *bio,
140 unsigned int nbytes, int error)
1da177e4 141{
165125e1 142 struct request_queue *q = rq->q;
797e7dbb 143
5bb23a68
N
144 if (&q->bar_rq != rq) {
145 if (error)
146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148 error = -EIO;
797e7dbb 149
5bb23a68 150 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 151 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 152 __func__, nbytes, bio->bi_size);
5bb23a68
N
153 nbytes = bio->bi_size;
154 }
797e7dbb 155
08bafc03
KM
156 if (unlikely(rq->cmd_flags & REQ_QUIET))
157 set_bit(BIO_QUIET, &bio->bi_flags);
158
5bb23a68
N
159 bio->bi_size -= nbytes;
160 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
161
162 if (bio_integrity(bio))
163 bio_integrity_advance(bio, nbytes);
164
5bb23a68 165 if (bio->bi_size == 0)
6712ecf8 166 bio_endio(bio, error);
5bb23a68
N
167 } else {
168
169 /*
170 * Okay, this is the barrier request in progress, just
171 * record the error;
172 */
173 if (error && !q->orderr)
174 q->orderr = error;
175 }
1da177e4 176}
1da177e4 177
1da177e4
LT
178void blk_dump_rq_flags(struct request *rq, char *msg)
179{
180 int bit;
181
6728cb0e 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
1da177e4 185
6728cb0e
JA
186 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
187 (unsigned long long)rq->sector,
188 rq->nr_sectors,
189 rq->current_nr_sectors);
190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
191 rq->bio, rq->biotail,
192 rq->buffer, rq->data,
193 rq->data_len);
1da177e4 194
4aff5e23 195 if (blk_pc_request(rq)) {
6728cb0e 196 printk(KERN_INFO " cdb: ");
d34c87e4 197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
1da177e4
LT
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
1da177e4
LT
204/*
205 * "plug" the device if there are no outstanding requests: this will
206 * force the transfer to start only after we have put all the requests
207 * on the list.
208 *
209 * This is called with interrupts off and no requests on the queue and
210 * with the queue lock held.
211 */
165125e1 212void blk_plug_device(struct request_queue *q)
1da177e4
LT
213{
214 WARN_ON(!irqs_disabled());
215
216 /*
217 * don't plug a stopped queue, it must be paired with blk_start_queue()
218 * which will restart the queueing
219 */
7daac490 220 if (blk_queue_stopped(q))
1da177e4
LT
221 return;
222
e48ec690 223 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 224 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 225 trace_block_plug(q);
2056a782 226 }
1da177e4 227}
1da177e4
LT
228EXPORT_SYMBOL(blk_plug_device);
229
6c5e0c4d
JA
230/**
231 * blk_plug_device_unlocked - plug a device without queue lock held
232 * @q: The &struct request_queue to plug
233 *
234 * Description:
235 * Like @blk_plug_device(), but grabs the queue lock and disables
236 * interrupts.
237 **/
238void blk_plug_device_unlocked(struct request_queue *q)
239{
240 unsigned long flags;
241
242 spin_lock_irqsave(q->queue_lock, flags);
243 blk_plug_device(q);
244 spin_unlock_irqrestore(q->queue_lock, flags);
245}
246EXPORT_SYMBOL(blk_plug_device_unlocked);
247
1da177e4
LT
248/*
249 * remove the queue from the plugged list, if present. called with
250 * queue lock held and interrupts disabled.
251 */
165125e1 252int blk_remove_plug(struct request_queue *q)
1da177e4
LT
253{
254 WARN_ON(!irqs_disabled());
255
e48ec690 256 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
257 return 0;
258
259 del_timer(&q->unplug_timer);
260 return 1;
261}
1da177e4
LT
262EXPORT_SYMBOL(blk_remove_plug);
263
264/*
265 * remove the plug and let it rip..
266 */
165125e1 267void __generic_unplug_device(struct request_queue *q)
1da177e4 268{
7daac490 269 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
270 return;
271
272 if (!blk_remove_plug(q))
273 return;
274
22e2c507 275 q->request_fn(q);
1da177e4 276}
1da177e4
LT
277
278/**
279 * generic_unplug_device - fire a request queue
165125e1 280 * @q: The &struct request_queue in question
1da177e4
LT
281 *
282 * Description:
283 * Linux uses plugging to build bigger requests queues before letting
284 * the device have at them. If a queue is plugged, the I/O scheduler
285 * is still adding and merging requests on the queue. Once the queue
286 * gets unplugged, the request_fn defined for the queue is invoked and
287 * transfers started.
288 **/
165125e1 289void generic_unplug_device(struct request_queue *q)
1da177e4 290{
dbaf2c00
JA
291 if (blk_queue_plugged(q)) {
292 spin_lock_irq(q->queue_lock);
293 __generic_unplug_device(q);
294 spin_unlock_irq(q->queue_lock);
295 }
1da177e4
LT
296}
297EXPORT_SYMBOL(generic_unplug_device);
298
299static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
300 struct page *page)
301{
165125e1 302 struct request_queue *q = bdi->unplug_io_data;
1da177e4 303
2ad8b1ef 304 blk_unplug(q);
1da177e4
LT
305}
306
86db1e29 307void blk_unplug_work(struct work_struct *work)
1da177e4 308{
165125e1
JA
309 struct request_queue *q =
310 container_of(work, struct request_queue, unplug_work);
1da177e4 311
5f3ea37c 312 trace_block_unplug_io(q);
1da177e4
LT
313 q->unplug_fn(q);
314}
315
86db1e29 316void blk_unplug_timeout(unsigned long data)
1da177e4 317{
165125e1 318 struct request_queue *q = (struct request_queue *)data;
1da177e4 319
5f3ea37c 320 trace_block_unplug_timer(q);
18887ad9 321 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
322}
323
2ad8b1ef
AB
324void blk_unplug(struct request_queue *q)
325{
326 /*
327 * devices don't necessarily have an ->unplug_fn defined
328 */
329 if (q->unplug_fn) {
5f3ea37c 330 trace_block_unplug_io(q);
2ad8b1ef
AB
331 q->unplug_fn(q);
332 }
333}
334EXPORT_SYMBOL(blk_unplug);
335
c7c22e4d
JA
336static void blk_invoke_request_fn(struct request_queue *q)
337{
80a4b58e
JA
338 if (unlikely(blk_queue_stopped(q)))
339 return;
340
c7c22e4d
JA
341 /*
342 * one level of recursion is ok and is much faster than kicking
343 * the unplug handling
344 */
345 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
346 q->request_fn(q);
347 queue_flag_clear(QUEUE_FLAG_REENTER, q);
348 } else {
349 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
350 kblockd_schedule_work(q, &q->unplug_work);
351 }
352}
353
1da177e4
LT
354/**
355 * blk_start_queue - restart a previously stopped queue
165125e1 356 * @q: The &struct request_queue in question
1da177e4
LT
357 *
358 * Description:
359 * blk_start_queue() will clear the stop flag on the queue, and call
360 * the request_fn for the queue if it was in a stopped state when
361 * entered. Also see blk_stop_queue(). Queue lock must be held.
362 **/
165125e1 363void blk_start_queue(struct request_queue *q)
1da177e4 364{
a038e253
PBG
365 WARN_ON(!irqs_disabled());
366
75ad23bc 367 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 368 blk_invoke_request_fn(q);
1da177e4 369}
1da177e4
LT
370EXPORT_SYMBOL(blk_start_queue);
371
372/**
373 * blk_stop_queue - stop a queue
165125e1 374 * @q: The &struct request_queue in question
1da177e4
LT
375 *
376 * Description:
377 * The Linux block layer assumes that a block driver will consume all
378 * entries on the request queue when the request_fn strategy is called.
379 * Often this will not happen, because of hardware limitations (queue
380 * depth settings). If a device driver gets a 'queue full' response,
381 * or if it simply chooses not to queue more I/O at one point, it can
382 * call this function to prevent the request_fn from being called until
383 * the driver has signalled it's ready to go again. This happens by calling
384 * blk_start_queue() to restart queue operations. Queue lock must be held.
385 **/
165125e1 386void blk_stop_queue(struct request_queue *q)
1da177e4
LT
387{
388 blk_remove_plug(q);
75ad23bc 389 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
390}
391EXPORT_SYMBOL(blk_stop_queue);
392
393/**
394 * blk_sync_queue - cancel any pending callbacks on a queue
395 * @q: the queue
396 *
397 * Description:
398 * The block layer may perform asynchronous callback activity
399 * on a queue, such as calling the unplug function after a timeout.
400 * A block device may call blk_sync_queue to ensure that any
401 * such activity is cancelled, thus allowing it to release resources
59c51591 402 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
403 * that its ->make_request_fn will not re-add plugging prior to calling
404 * this function.
405 *
406 */
407void blk_sync_queue(struct request_queue *q)
408{
409 del_timer_sync(&q->unplug_timer);
70ed28b9 410 del_timer_sync(&q->timeout);
64d01dc9 411 cancel_work_sync(&q->unplug_work);
1da177e4
LT
412}
413EXPORT_SYMBOL(blk_sync_queue);
414
415/**
80a4b58e 416 * __blk_run_queue - run a single device queue
1da177e4 417 * @q: The queue to run
80a4b58e
JA
418 *
419 * Description:
420 * See @blk_run_queue. This variant must be called with the queue lock
421 * held and interrupts disabled.
422 *
1da177e4 423 */
75ad23bc 424void __blk_run_queue(struct request_queue *q)
1da177e4 425{
1da177e4 426 blk_remove_plug(q);
dac07ec1
JA
427
428 /*
429 * Only recurse once to avoid overrunning the stack, let the unplug
430 * handling reinvoke the handler shortly if we already got there.
431 */
c7c22e4d
JA
432 if (!elv_queue_empty(q))
433 blk_invoke_request_fn(q);
75ad23bc
NP
434}
435EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 436
75ad23bc
NP
437/**
438 * blk_run_queue - run a single device queue
439 * @q: The queue to run
80a4b58e
JA
440 *
441 * Description:
442 * Invoke request handling on this queue, if it has pending work to do.
443 * May be used to restart queueing when a request has completed. Also
444 * See @blk_start_queueing.
445 *
75ad23bc
NP
446 */
447void blk_run_queue(struct request_queue *q)
448{
449 unsigned long flags;
450
451 spin_lock_irqsave(q->queue_lock, flags);
452 __blk_run_queue(q);
1da177e4
LT
453 spin_unlock_irqrestore(q->queue_lock, flags);
454}
455EXPORT_SYMBOL(blk_run_queue);
456
165125e1 457void blk_put_queue(struct request_queue *q)
483f4afc
AV
458{
459 kobject_put(&q->kobj);
460}
483f4afc 461
6728cb0e 462void blk_cleanup_queue(struct request_queue *q)
483f4afc 463{
e3335de9
JA
464 /*
465 * We know we have process context here, so we can be a little
466 * cautious and ensure that pending block actions on this device
467 * are done before moving on. Going into this function, we should
468 * not have processes doing IO to this device.
469 */
470 blk_sync_queue(q);
471
483f4afc 472 mutex_lock(&q->sysfs_lock);
75ad23bc 473 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
474 mutex_unlock(&q->sysfs_lock);
475
476 if (q->elevator)
477 elevator_exit(q->elevator);
478
479 blk_put_queue(q);
480}
1da177e4
LT
481EXPORT_SYMBOL(blk_cleanup_queue);
482
165125e1 483static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
484{
485 struct request_list *rl = &q->rq;
486
487 rl->count[READ] = rl->count[WRITE] = 0;
488 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 489 rl->elvpriv = 0;
1da177e4
LT
490 init_waitqueue_head(&rl->wait[READ]);
491 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 492
1946089a
CL
493 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
494 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
495
496 if (!rl->rq_pool)
497 return -ENOMEM;
498
499 return 0;
500}
501
165125e1 502struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 503{
1946089a
CL
504 return blk_alloc_queue_node(gfp_mask, -1);
505}
506EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 507
165125e1 508struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 509{
165125e1 510 struct request_queue *q;
e0bf68dd 511 int err;
1946089a 512
8324aa91 513 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 514 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
515 if (!q)
516 return NULL;
517
e0bf68dd
PZ
518 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
519 q->backing_dev_info.unplug_io_data = q;
520 err = bdi_init(&q->backing_dev_info);
521 if (err) {
8324aa91 522 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
523 return NULL;
524 }
525
1da177e4 526 init_timer(&q->unplug_timer);
242f9dcb
JA
527 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
528 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 529 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 530
8324aa91 531 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 532
483f4afc 533 mutex_init(&q->sysfs_lock);
e7e72bf6 534 spin_lock_init(&q->__queue_lock);
483f4afc 535
1da177e4
LT
536 return q;
537}
1946089a 538EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
539
540/**
541 * blk_init_queue - prepare a request queue for use with a block device
542 * @rfn: The function to be called to process requests that have been
543 * placed on the queue.
544 * @lock: Request queue spin lock
545 *
546 * Description:
547 * If a block device wishes to use the standard request handling procedures,
548 * which sorts requests and coalesces adjacent requests, then it must
549 * call blk_init_queue(). The function @rfn will be called when there
550 * are requests on the queue that need to be processed. If the device
551 * supports plugging, then @rfn may not be called immediately when requests
552 * are available on the queue, but may be called at some time later instead.
553 * Plugged queues are generally unplugged when a buffer belonging to one
554 * of the requests on the queue is needed, or due to memory pressure.
555 *
556 * @rfn is not required, or even expected, to remove all requests off the
557 * queue, but only as many as it can handle at a time. If it does leave
558 * requests on the queue, it is responsible for arranging that the requests
559 * get dealt with eventually.
560 *
561 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
562 * request queue; this lock will be taken also from interrupt context, so irq
563 * disabling is needed for it.
1da177e4 564 *
710027a4 565 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
566 * it didn't succeed.
567 *
568 * Note:
569 * blk_init_queue() must be paired with a blk_cleanup_queue() call
570 * when the block device is deactivated (such as at module unload).
571 **/
1946089a 572
165125e1 573struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 574{
1946089a
CL
575 return blk_init_queue_node(rfn, lock, -1);
576}
577EXPORT_SYMBOL(blk_init_queue);
578
165125e1 579struct request_queue *
1946089a
CL
580blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
581{
165125e1 582 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
583
584 if (!q)
585 return NULL;
586
1946089a 587 q->node = node_id;
8669aafd 588 if (blk_init_free_list(q)) {
8324aa91 589 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
590 return NULL;
591 }
1da177e4 592
152587de
JA
593 /*
594 * if caller didn't supply a lock, they get per-queue locking with
595 * our embedded lock
596 */
e7e72bf6 597 if (!lock)
152587de 598 lock = &q->__queue_lock;
152587de 599
1da177e4 600 q->request_fn = rfn;
1da177e4
LT
601 q->prep_rq_fn = NULL;
602 q->unplug_fn = generic_unplug_device;
4ee5eaf4
KU
603 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
604 1 << QUEUE_FLAG_STACKABLE);
1da177e4
LT
605 q->queue_lock = lock;
606
0e435ac2 607 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
1da177e4
LT
608
609 blk_queue_make_request(q, __make_request);
610 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
611
612 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
613 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
614
44ec9542
AS
615 q->sg_reserved_size = INT_MAX;
616
abf54393
FT
617 blk_set_cmd_filter_defaults(&q->cmd_filter);
618
1da177e4
LT
619 /*
620 * all done
621 */
622 if (!elevator_init(q, NULL)) {
623 blk_queue_congestion_threshold(q);
624 return q;
625 }
626
8669aafd 627 blk_put_queue(q);
1da177e4
LT
628 return NULL;
629}
1946089a 630EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 631
165125e1 632int blk_get_queue(struct request_queue *q)
1da177e4 633{
fde6ad22 634 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 635 kobject_get(&q->kobj);
1da177e4
LT
636 return 0;
637 }
638
639 return 1;
640}
1da177e4 641
165125e1 642static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 643{
4aff5e23 644 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 645 elv_put_request(q, rq);
1da177e4
LT
646 mempool_free(rq, q->rq.rq_pool);
647}
648
1ea25ecb 649static struct request *
165125e1 650blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
651{
652 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
653
654 if (!rq)
655 return NULL;
656
2a4aa30c 657 blk_rq_init(q, rq);
1afb20f3 658
49171e5c 659 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 660
cb98fc8b 661 if (priv) {
cb78b285 662 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
663 mempool_free(rq, q->rq.rq_pool);
664 return NULL;
665 }
4aff5e23 666 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 667 }
1da177e4 668
cb98fc8b 669 return rq;
1da177e4
LT
670}
671
672/*
673 * ioc_batching returns true if the ioc is a valid batching request and
674 * should be given priority access to a request.
675 */
165125e1 676static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
677{
678 if (!ioc)
679 return 0;
680
681 /*
682 * Make sure the process is able to allocate at least 1 request
683 * even if the batch times out, otherwise we could theoretically
684 * lose wakeups.
685 */
686 return ioc->nr_batch_requests == q->nr_batching ||
687 (ioc->nr_batch_requests > 0
688 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
689}
690
691/*
692 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
693 * will cause the process to be a "batcher" on all queues in the system. This
694 * is the behaviour we want though - once it gets a wakeup it should be given
695 * a nice run.
696 */
165125e1 697static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
698{
699 if (!ioc || ioc_batching(q, ioc))
700 return;
701
702 ioc->nr_batch_requests = q->nr_batching;
703 ioc->last_waited = jiffies;
704}
705
165125e1 706static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
707{
708 struct request_list *rl = &q->rq;
709
710 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 711 blk_clear_queue_congested(q, rw);
1da177e4
LT
712
713 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
714 if (waitqueue_active(&rl->wait[rw]))
715 wake_up(&rl->wait[rw]);
716
717 blk_clear_queue_full(q, rw);
718 }
719}
720
721/*
722 * A request has just been released. Account for it, update the full and
723 * congestion status, wake up any waiters. Called under q->queue_lock.
724 */
165125e1 725static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
726{
727 struct request_list *rl = &q->rq;
728
729 rl->count[rw]--;
cb98fc8b
TH
730 if (priv)
731 rl->elvpriv--;
1da177e4
LT
732
733 __freed_request(q, rw);
734
735 if (unlikely(rl->starved[rw ^ 1]))
736 __freed_request(q, rw ^ 1);
1da177e4
LT
737}
738
739#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
740/*
d6344532
NP
741 * Get a free request, queue_lock must be held.
742 * Returns NULL on failure, with queue_lock held.
743 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 744 */
165125e1 745static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 746 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
747{
748 struct request *rq = NULL;
749 struct request_list *rl = &q->rq;
88ee5ef1 750 struct io_context *ioc = NULL;
7749a8d4 751 const int rw = rw_flags & 0x01;
88ee5ef1
JA
752 int may_queue, priv;
753
7749a8d4 754 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
755 if (may_queue == ELV_MQUEUE_NO)
756 goto rq_starved;
757
758 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
759 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 760 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
761 /*
762 * The queue will fill after this allocation, so set
763 * it as full, and mark this process as "batching".
764 * This process will be allowed to complete a batch of
765 * requests, others will be blocked.
766 */
767 if (!blk_queue_full(q, rw)) {
768 ioc_set_batching(q, ioc);
769 blk_set_queue_full(q, rw);
770 } else {
771 if (may_queue != ELV_MQUEUE_MUST
772 && !ioc_batching(q, ioc)) {
773 /*
774 * The queue is full and the allocating
775 * process is not a "batcher", and not
776 * exempted by the IO scheduler
777 */
778 goto out;
779 }
780 }
1da177e4 781 }
79e2de4b 782 blk_set_queue_congested(q, rw);
1da177e4
LT
783 }
784
082cf69e
JA
785 /*
786 * Only allow batching queuers to allocate up to 50% over the defined
787 * limit of requests, otherwise we could have thousands of requests
788 * allocated with any setting of ->nr_requests
789 */
fd782a4a 790 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 791 goto out;
fd782a4a 792
1da177e4
LT
793 rl->count[rw]++;
794 rl->starved[rw] = 0;
cb98fc8b 795
64521d1a 796 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
797 if (priv)
798 rl->elvpriv++;
799
1da177e4
LT
800 spin_unlock_irq(q->queue_lock);
801
7749a8d4 802 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 803 if (unlikely(!rq)) {
1da177e4
LT
804 /*
805 * Allocation failed presumably due to memory. Undo anything
806 * we might have messed up.
807 *
808 * Allocating task should really be put onto the front of the
809 * wait queue, but this is pretty rare.
810 */
811 spin_lock_irq(q->queue_lock);
cb98fc8b 812 freed_request(q, rw, priv);
1da177e4
LT
813
814 /*
815 * in the very unlikely event that allocation failed and no
816 * requests for this direction was pending, mark us starved
817 * so that freeing of a request in the other direction will
818 * notice us. another possible fix would be to split the
819 * rq mempool into READ and WRITE
820 */
821rq_starved:
822 if (unlikely(rl->count[rw] == 0))
823 rl->starved[rw] = 1;
824
1da177e4
LT
825 goto out;
826 }
827
88ee5ef1
JA
828 /*
829 * ioc may be NULL here, and ioc_batching will be false. That's
830 * OK, if the queue is under the request limit then requests need
831 * not count toward the nr_batch_requests limit. There will always
832 * be some limit enforced by BLK_BATCH_TIME.
833 */
1da177e4
LT
834 if (ioc_batching(q, ioc))
835 ioc->nr_batch_requests--;
6728cb0e 836
5f3ea37c 837 trace_block_getrq(q, bio, rw);
1da177e4 838out:
1da177e4
LT
839 return rq;
840}
841
842/*
843 * No available requests for this queue, unplug the device and wait for some
844 * requests to become available.
d6344532
NP
845 *
846 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 847 */
165125e1 848static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 849 struct bio *bio)
1da177e4 850{
7749a8d4 851 const int rw = rw_flags & 0x01;
1da177e4
LT
852 struct request *rq;
853
7749a8d4 854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
855 while (!rq) {
856 DEFINE_WAIT(wait);
05caf8db 857 struct io_context *ioc;
1da177e4
LT
858 struct request_list *rl = &q->rq;
859
860 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
861 TASK_UNINTERRUPTIBLE);
862
5f3ea37c 863 trace_block_sleeprq(q, bio, rw);
1da177e4 864
05caf8db
ZY
865 __generic_unplug_device(q);
866 spin_unlock_irq(q->queue_lock);
867 io_schedule();
1da177e4 868
05caf8db
ZY
869 /*
870 * After sleeping, we become a "batching" process and
871 * will be able to allocate at least one request, and
872 * up to a big batch of them for a small period time.
873 * See ioc_batching, ioc_set_batching
874 */
875 ioc = current_io_context(GFP_NOIO, q->node);
876 ioc_set_batching(q, ioc);
d6344532 877
05caf8db 878 spin_lock_irq(q->queue_lock);
1da177e4 879 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
880
881 rq = get_request(q, rw_flags, bio, GFP_NOIO);
882 };
1da177e4
LT
883
884 return rq;
885}
886
165125e1 887struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
888{
889 struct request *rq;
890
891 BUG_ON(rw != READ && rw != WRITE);
892
d6344532
NP
893 spin_lock_irq(q->queue_lock);
894 if (gfp_mask & __GFP_WAIT) {
22e2c507 895 rq = get_request_wait(q, rw, NULL);
d6344532 896 } else {
22e2c507 897 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
898 if (!rq)
899 spin_unlock_irq(q->queue_lock);
900 }
901 /* q->queue_lock is unlocked at this point */
1da177e4
LT
902
903 return rq;
904}
1da177e4
LT
905EXPORT_SYMBOL(blk_get_request);
906
dc72ef4a
JA
907/**
908 * blk_start_queueing - initiate dispatch of requests to device
909 * @q: request queue to kick into gear
910 *
911 * This is basically a helper to remove the need to know whether a queue
912 * is plugged or not if someone just wants to initiate dispatch of requests
80a4b58e
JA
913 * for this queue. Should be used to start queueing on a device outside
914 * of ->request_fn() context. Also see @blk_run_queue.
dc72ef4a
JA
915 *
916 * The queue lock must be held with interrupts disabled.
917 */
165125e1 918void blk_start_queueing(struct request_queue *q)
dc72ef4a 919{
336c3d8c
EO
920 if (!blk_queue_plugged(q)) {
921 if (unlikely(blk_queue_stopped(q)))
922 return;
dc72ef4a 923 q->request_fn(q);
336c3d8c 924 } else
dc72ef4a
JA
925 __generic_unplug_device(q);
926}
927EXPORT_SYMBOL(blk_start_queueing);
928
1da177e4
LT
929/**
930 * blk_requeue_request - put a request back on queue
931 * @q: request queue where request should be inserted
932 * @rq: request to be inserted
933 *
934 * Description:
935 * Drivers often keep queueing requests until the hardware cannot accept
936 * more, when that condition happens we need to put the request back
937 * on the queue. Must be called with queue lock held.
938 */
165125e1 939void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 940{
242f9dcb
JA
941 blk_delete_timer(rq);
942 blk_clear_rq_complete(rq);
5f3ea37c 943 trace_block_rq_requeue(q, rq);
2056a782 944
1da177e4
LT
945 if (blk_rq_tagged(rq))
946 blk_queue_end_tag(q, rq);
947
948 elv_requeue_request(q, rq);
949}
1da177e4
LT
950EXPORT_SYMBOL(blk_requeue_request);
951
952/**
710027a4 953 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
954 * @q: request queue where request should be inserted
955 * @rq: request to be inserted
956 * @at_head: insert request at head or tail of queue
957 * @data: private data
1da177e4
LT
958 *
959 * Description:
960 * Many block devices need to execute commands asynchronously, so they don't
961 * block the whole kernel from preemption during request execution. This is
962 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
963 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
964 * be scheduled for actual execution by the request queue.
1da177e4
LT
965 *
966 * We have the option of inserting the head or the tail of the queue.
967 * Typically we use the tail for new ioctls and so forth. We use the head
968 * of the queue for things like a QUEUE_FULL message from a device, or a
969 * host that is unable to accept a particular command.
970 */
165125e1 971void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 972 int at_head, void *data)
1da177e4 973{
867d1191 974 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
975 unsigned long flags;
976
977 /*
978 * tell I/O scheduler that this isn't a regular read/write (ie it
979 * must not attempt merges on this) and that it acts as a soft
980 * barrier
981 */
4aff5e23
JA
982 rq->cmd_type = REQ_TYPE_SPECIAL;
983 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
984
985 rq->special = data;
986
987 spin_lock_irqsave(q->queue_lock, flags);
988
989 /*
990 * If command is tagged, release the tag
991 */
867d1191
TH
992 if (blk_rq_tagged(rq))
993 blk_queue_end_tag(q, rq);
1da177e4 994
b238b3d4 995 drive_stat_acct(rq, 1);
867d1191 996 __elv_add_request(q, rq, where, 0);
dc72ef4a 997 blk_start_queueing(q);
1da177e4
LT
998 spin_unlock_irqrestore(q->queue_lock, flags);
999}
1da177e4
LT
1000EXPORT_SYMBOL(blk_insert_request);
1001
1da177e4
LT
1002/*
1003 * add-request adds a request to the linked list.
1004 * queue lock is held and interrupts disabled, as we muck with the
1005 * request queue list.
1006 */
6728cb0e 1007static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1008{
b238b3d4 1009 drive_stat_acct(req, 1);
1da177e4 1010
1da177e4
LT
1011 /*
1012 * elevator indicated where it wants this request to be
1013 * inserted at elevator_merge time
1014 */
1015 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1016}
6728cb0e 1017
074a7aca
TH
1018static void part_round_stats_single(int cpu, struct hd_struct *part,
1019 unsigned long now)
1020{
1021 if (now == part->stamp)
1022 return;
1023
1024 if (part->in_flight) {
1025 __part_stat_add(cpu, part, time_in_queue,
1026 part->in_flight * (now - part->stamp));
1027 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1028 }
1029 part->stamp = now;
1030}
1031
1032/**
496aa8a9
RD
1033 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1034 * @cpu: cpu number for stats access
1035 * @part: target partition
1da177e4
LT
1036 *
1037 * The average IO queue length and utilisation statistics are maintained
1038 * by observing the current state of the queue length and the amount of
1039 * time it has been in this state for.
1040 *
1041 * Normally, that accounting is done on IO completion, but that can result
1042 * in more than a second's worth of IO being accounted for within any one
1043 * second, leading to >100% utilisation. To deal with that, we call this
1044 * function to do a round-off before returning the results when reading
1045 * /proc/diskstats. This accounts immediately for all queue usage up to
1046 * the current jiffies and restarts the counters again.
1047 */
c9959059 1048void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1049{
1050 unsigned long now = jiffies;
1051
074a7aca
TH
1052 if (part->partno)
1053 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1054 part_round_stats_single(cpu, part, now);
6f2576af 1055}
074a7aca 1056EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1057
1da177e4
LT
1058/*
1059 * queue lock must be held
1060 */
165125e1 1061void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1062{
1da177e4
LT
1063 if (unlikely(!q))
1064 return;
1065 if (unlikely(--req->ref_count))
1066 return;
1067
8922e16c
TH
1068 elv_completed_request(q, req);
1069
1da177e4
LT
1070 /*
1071 * Request may not have originated from ll_rw_blk. if not,
1072 * it didn't come out of our reserved rq pools
1073 */
49171e5c 1074 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1075 int rw = rq_data_dir(req);
4aff5e23 1076 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1077
1da177e4 1078 BUG_ON(!list_empty(&req->queuelist));
9817064b 1079 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1080
1081 blk_free_request(q, req);
cb98fc8b 1082 freed_request(q, rw, priv);
1da177e4
LT
1083 }
1084}
6e39b69e
MC
1085EXPORT_SYMBOL_GPL(__blk_put_request);
1086
1da177e4
LT
1087void blk_put_request(struct request *req)
1088{
8922e16c 1089 unsigned long flags;
165125e1 1090 struct request_queue *q = req->q;
8922e16c 1091
52a93ba8
FT
1092 spin_lock_irqsave(q->queue_lock, flags);
1093 __blk_put_request(q, req);
1094 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1095}
1da177e4
LT
1096EXPORT_SYMBOL(blk_put_request);
1097
86db1e29 1098void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1099{
c7c22e4d 1100 req->cpu = bio->bi_comp_cpu;
4aff5e23 1101 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1102
1103 /*
1104 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1105 */
6000a368
MC
1106 if (bio_rw_ahead(bio))
1107 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1108 REQ_FAILFAST_DRIVER);
1109 if (bio_failfast_dev(bio))
1110 req->cmd_flags |= REQ_FAILFAST_DEV;
1111 if (bio_failfast_transport(bio))
1112 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1113 if (bio_failfast_driver(bio))
1114 req->cmd_flags |= REQ_FAILFAST_DRIVER;
52d9e675
TH
1115
1116 /*
1117 * REQ_BARRIER implies no merging, but lets make it explicit
1118 */
fb2dce86 1119 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1120 req->cmd_flags |= REQ_DISCARD;
1121 if (bio_barrier(bio))
1122 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1123 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1124 } else if (unlikely(bio_barrier(bio)))
1125 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1126
b31dc66a 1127 if (bio_sync(bio))
4aff5e23 1128 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1129 if (bio_rw_meta(bio))
1130 req->cmd_flags |= REQ_RW_META;
b31dc66a 1131
52d9e675
TH
1132 req->errors = 0;
1133 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1134 req->ioprio = bio_prio(bio);
52d9e675 1135 req->start_time = jiffies;
bc1c56fd 1136 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1137}
1138
165125e1 1139static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1140{
450991bc 1141 struct request *req;
a7384677 1142 int el_ret, nr_sectors;
51da90fc
JA
1143 const unsigned short prio = bio_prio(bio);
1144 const int sync = bio_sync(bio);
7749a8d4 1145 int rw_flags;
1da177e4 1146
1da177e4 1147 nr_sectors = bio_sectors(bio);
1da177e4
LT
1148
1149 /*
1150 * low level driver can indicate that it wants pages above a
1151 * certain limit bounced to low memory (ie for highmem, or even
1152 * ISA dma in theory)
1153 */
1154 blk_queue_bounce(q, &bio);
1155
1da177e4
LT
1156 spin_lock_irq(q->queue_lock);
1157
a7384677 1158 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1da177e4
LT
1159 goto get_rq;
1160
1161 el_ret = elv_merge(q, &req, bio);
1162 switch (el_ret) {
6728cb0e
JA
1163 case ELEVATOR_BACK_MERGE:
1164 BUG_ON(!rq_mergeable(req));
1da177e4 1165
6728cb0e
JA
1166 if (!ll_back_merge_fn(q, req, bio))
1167 break;
1da177e4 1168
5f3ea37c 1169 trace_block_bio_backmerge(q, bio);
2056a782 1170
6728cb0e
JA
1171 req->biotail->bi_next = bio;
1172 req->biotail = bio;
1173 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1174 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1175 if (!blk_rq_cpu_valid(req))
1176 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1177 drive_stat_acct(req, 0);
1178 if (!attempt_back_merge(q, req))
1179 elv_merged_request(q, req, el_ret);
1180 goto out;
1da177e4 1181
6728cb0e
JA
1182 case ELEVATOR_FRONT_MERGE:
1183 BUG_ON(!rq_mergeable(req));
1da177e4 1184
6728cb0e
JA
1185 if (!ll_front_merge_fn(q, req, bio))
1186 break;
1da177e4 1187
5f3ea37c 1188 trace_block_bio_frontmerge(q, bio);
2056a782 1189
6728cb0e
JA
1190 bio->bi_next = req->bio;
1191 req->bio = bio;
1da177e4 1192
6728cb0e
JA
1193 /*
1194 * may not be valid. if the low level driver said
1195 * it didn't need a bounce buffer then it better
1196 * not touch req->buffer either...
1197 */
1198 req->buffer = bio_data(bio);
1199 req->current_nr_sectors = bio_cur_sectors(bio);
1200 req->hard_cur_sectors = req->current_nr_sectors;
1201 req->sector = req->hard_sector = bio->bi_sector;
1202 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1203 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1204 if (!blk_rq_cpu_valid(req))
1205 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1206 drive_stat_acct(req, 0);
1207 if (!attempt_front_merge(q, req))
1208 elv_merged_request(q, req, el_ret);
1209 goto out;
1210
1211 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1212 default:
1213 ;
1da177e4
LT
1214 }
1215
450991bc 1216get_rq:
7749a8d4
JA
1217 /*
1218 * This sync check and mask will be re-done in init_request_from_bio(),
1219 * but we need to set it earlier to expose the sync flag to the
1220 * rq allocator and io schedulers.
1221 */
1222 rw_flags = bio_data_dir(bio);
1223 if (sync)
1224 rw_flags |= REQ_RW_SYNC;
1225
1da177e4 1226 /*
450991bc 1227 * Grab a free request. This is might sleep but can not fail.
d6344532 1228 * Returns with the queue unlocked.
450991bc 1229 */
7749a8d4 1230 req = get_request_wait(q, rw_flags, bio);
d6344532 1231
450991bc
NP
1232 /*
1233 * After dropping the lock and possibly sleeping here, our request
1234 * may now be mergeable after it had proven unmergeable (above).
1235 * We don't worry about that case for efficiency. It won't happen
1236 * often, and the elevators are able to handle it.
1da177e4 1237 */
52d9e675 1238 init_request_from_bio(req, bio);
1da177e4 1239
450991bc 1240 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1241 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1242 bio_flagged(bio, BIO_CPU_AFFINE))
1243 req->cpu = blk_cpu_to_group(smp_processor_id());
450991bc
NP
1244 if (elv_queue_empty(q))
1245 blk_plug_device(q);
1da177e4
LT
1246 add_request(q, req);
1247out:
4a534f93 1248 if (sync)
1da177e4 1249 __generic_unplug_device(q);
1da177e4
LT
1250 spin_unlock_irq(q->queue_lock);
1251 return 0;
1da177e4
LT
1252}
1253
1254/*
1255 * If bio->bi_dev is a partition, remap the location
1256 */
1257static inline void blk_partition_remap(struct bio *bio)
1258{
1259 struct block_device *bdev = bio->bi_bdev;
1260
bf2de6f5 1261 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1262 struct hd_struct *p = bdev->bd_part;
1263
1da177e4
LT
1264 bio->bi_sector += p->start_sect;
1265 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1266
5f3ea37c 1267 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
c7149d6b
AB
1268 bdev->bd_dev, bio->bi_sector,
1269 bio->bi_sector - p->start_sect);
1da177e4
LT
1270 }
1271}
1272
1da177e4
LT
1273static void handle_bad_sector(struct bio *bio)
1274{
1275 char b[BDEVNAME_SIZE];
1276
1277 printk(KERN_INFO "attempt to access beyond end of device\n");
1278 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1279 bdevname(bio->bi_bdev, b),
1280 bio->bi_rw,
1281 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1282 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1283
1284 set_bit(BIO_EOF, &bio->bi_flags);
1285}
1286
c17bb495
AM
1287#ifdef CONFIG_FAIL_MAKE_REQUEST
1288
1289static DECLARE_FAULT_ATTR(fail_make_request);
1290
1291static int __init setup_fail_make_request(char *str)
1292{
1293 return setup_fault_attr(&fail_make_request, str);
1294}
1295__setup("fail_make_request=", setup_fail_make_request);
1296
1297static int should_fail_request(struct bio *bio)
1298{
eddb2e26
TH
1299 struct hd_struct *part = bio->bi_bdev->bd_part;
1300
1301 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1302 return should_fail(&fail_make_request, bio->bi_size);
1303
1304 return 0;
1305}
1306
1307static int __init fail_make_request_debugfs(void)
1308{
1309 return init_fault_attr_dentries(&fail_make_request,
1310 "fail_make_request");
1311}
1312
1313late_initcall(fail_make_request_debugfs);
1314
1315#else /* CONFIG_FAIL_MAKE_REQUEST */
1316
1317static inline int should_fail_request(struct bio *bio)
1318{
1319 return 0;
1320}
1321
1322#endif /* CONFIG_FAIL_MAKE_REQUEST */
1323
c07e2b41
JA
1324/*
1325 * Check whether this bio extends beyond the end of the device.
1326 */
1327static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1328{
1329 sector_t maxsector;
1330
1331 if (!nr_sectors)
1332 return 0;
1333
1334 /* Test device or partition size, when known. */
1335 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1336 if (maxsector) {
1337 sector_t sector = bio->bi_sector;
1338
1339 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1340 /*
1341 * This may well happen - the kernel calls bread()
1342 * without checking the size of the device, e.g., when
1343 * mounting a device.
1344 */
1345 handle_bad_sector(bio);
1346 return 1;
1347 }
1348 }
1349
1350 return 0;
1351}
1352
1da177e4 1353/**
710027a4 1354 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1355 * @bio: The bio describing the location in memory and on the device.
1356 *
1357 * generic_make_request() is used to make I/O requests of block
1358 * devices. It is passed a &struct bio, which describes the I/O that needs
1359 * to be done.
1360 *
1361 * generic_make_request() does not return any status. The
1362 * success/failure status of the request, along with notification of
1363 * completion, is delivered asynchronously through the bio->bi_end_io
1364 * function described (one day) else where.
1365 *
1366 * The caller of generic_make_request must make sure that bi_io_vec
1367 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1368 * set to describe the device address, and the
1369 * bi_end_io and optionally bi_private are set to describe how
1370 * completion notification should be signaled.
1371 *
1372 * generic_make_request and the drivers it calls may use bi_next if this
1373 * bio happens to be merged with someone else, and may change bi_dev and
1374 * bi_sector for remaps as it sees fit. So the values of these fields
1375 * should NOT be depended on after the call to generic_make_request.
1376 */
d89d8796 1377static inline void __generic_make_request(struct bio *bio)
1da177e4 1378{
165125e1 1379 struct request_queue *q;
5ddfe969 1380 sector_t old_sector;
1da177e4 1381 int ret, nr_sectors = bio_sectors(bio);
2056a782 1382 dev_t old_dev;
51fd77bd 1383 int err = -EIO;
1da177e4
LT
1384
1385 might_sleep();
1da177e4 1386
c07e2b41
JA
1387 if (bio_check_eod(bio, nr_sectors))
1388 goto end_io;
1da177e4
LT
1389
1390 /*
1391 * Resolve the mapping until finished. (drivers are
1392 * still free to implement/resolve their own stacking
1393 * by explicitly returning 0)
1394 *
1395 * NOTE: we don't repeat the blk_size check for each new device.
1396 * Stacking drivers are expected to know what they are doing.
1397 */
5ddfe969 1398 old_sector = -1;
2056a782 1399 old_dev = 0;
1da177e4
LT
1400 do {
1401 char b[BDEVNAME_SIZE];
1402
1403 q = bdev_get_queue(bio->bi_bdev);
a7384677 1404 if (unlikely(!q)) {
1da177e4
LT
1405 printk(KERN_ERR
1406 "generic_make_request: Trying to access "
1407 "nonexistent block-device %s (%Lu)\n",
1408 bdevname(bio->bi_bdev, b),
1409 (long long) bio->bi_sector);
a7384677 1410 goto end_io;
1da177e4
LT
1411 }
1412
4fa253f3 1413 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1414 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1415 bdevname(bio->bi_bdev, b),
1416 bio_sectors(bio),
1417 q->max_hw_sectors);
1418 goto end_io;
1419 }
1420
fde6ad22 1421 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1422 goto end_io;
1423
c17bb495
AM
1424 if (should_fail_request(bio))
1425 goto end_io;
1426
1da177e4
LT
1427 /*
1428 * If this device has partitions, remap block n
1429 * of partition p to block n+start(p) of the disk.
1430 */
1431 blk_partition_remap(bio);
1432
7ba1ba12
MP
1433 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1434 goto end_io;
1435
5ddfe969 1436 if (old_sector != -1)
5f3ea37c 1437 trace_block_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1438 old_sector);
2056a782 1439
5f3ea37c 1440 trace_block_bio_queue(q, bio);
2056a782 1441
5ddfe969 1442 old_sector = bio->bi_sector;
2056a782
JA
1443 old_dev = bio->bi_bdev->bd_dev;
1444
c07e2b41
JA
1445 if (bio_check_eod(bio, nr_sectors))
1446 goto end_io;
a7384677
TH
1447
1448 if (bio_discard(bio) && !q->prepare_discard_fn) {
51fd77bd
JA
1449 err = -EOPNOTSUPP;
1450 goto end_io;
1451 }
5ddfe969 1452
1da177e4
LT
1453 ret = q->make_request_fn(q, bio);
1454 } while (ret);
a7384677
TH
1455
1456 return;
1457
1458end_io:
1459 bio_endio(bio, err);
1da177e4
LT
1460}
1461
d89d8796
NB
1462/*
1463 * We only want one ->make_request_fn to be active at a time,
1464 * else stack usage with stacked devices could be a problem.
1465 * So use current->bio_{list,tail} to keep a list of requests
1466 * submited by a make_request_fn function.
1467 * current->bio_tail is also used as a flag to say if
1468 * generic_make_request is currently active in this task or not.
1469 * If it is NULL, then no make_request is active. If it is non-NULL,
1470 * then a make_request is active, and new requests should be added
1471 * at the tail
1472 */
1473void generic_make_request(struct bio *bio)
1474{
1475 if (current->bio_tail) {
1476 /* make_request is active */
1477 *(current->bio_tail) = bio;
1478 bio->bi_next = NULL;
1479 current->bio_tail = &bio->bi_next;
1480 return;
1481 }
1482 /* following loop may be a bit non-obvious, and so deserves some
1483 * explanation.
1484 * Before entering the loop, bio->bi_next is NULL (as all callers
1485 * ensure that) so we have a list with a single bio.
1486 * We pretend that we have just taken it off a longer list, so
1487 * we assign bio_list to the next (which is NULL) and bio_tail
1488 * to &bio_list, thus initialising the bio_list of new bios to be
1489 * added. __generic_make_request may indeed add some more bios
1490 * through a recursive call to generic_make_request. If it
1491 * did, we find a non-NULL value in bio_list and re-enter the loop
1492 * from the top. In this case we really did just take the bio
1493 * of the top of the list (no pretending) and so fixup bio_list and
1494 * bio_tail or bi_next, and call into __generic_make_request again.
1495 *
1496 * The loop was structured like this to make only one call to
1497 * __generic_make_request (which is important as it is large and
1498 * inlined) and to keep the structure simple.
1499 */
1500 BUG_ON(bio->bi_next);
1501 do {
1502 current->bio_list = bio->bi_next;
1503 if (bio->bi_next == NULL)
1504 current->bio_tail = &current->bio_list;
1505 else
1506 bio->bi_next = NULL;
1507 __generic_make_request(bio);
1508 bio = current->bio_list;
1509 } while (bio);
1510 current->bio_tail = NULL; /* deactivate */
1511}
1da177e4
LT
1512EXPORT_SYMBOL(generic_make_request);
1513
1514/**
710027a4 1515 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1516 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1517 * @bio: The &struct bio which describes the I/O
1518 *
1519 * submit_bio() is very similar in purpose to generic_make_request(), and
1520 * uses that function to do most of the work. Both are fairly rough
710027a4 1521 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1522 *
1523 */
1524void submit_bio(int rw, struct bio *bio)
1525{
1526 int count = bio_sectors(bio);
1527
22e2c507 1528 bio->bi_rw |= rw;
1da177e4 1529
bf2de6f5
JA
1530 /*
1531 * If it's a regular read/write or a barrier with data attached,
1532 * go through the normal accounting stuff before submission.
1533 */
a9c701e5 1534 if (bio_has_data(bio)) {
bf2de6f5
JA
1535 if (rw & WRITE) {
1536 count_vm_events(PGPGOUT, count);
1537 } else {
1538 task_io_account_read(bio->bi_size);
1539 count_vm_events(PGPGIN, count);
1540 }
1541
1542 if (unlikely(block_dump)) {
1543 char b[BDEVNAME_SIZE];
1544 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1545 current->comm, task_pid_nr(current),
bf2de6f5
JA
1546 (rw & WRITE) ? "WRITE" : "READ",
1547 (unsigned long long)bio->bi_sector,
6728cb0e 1548 bdevname(bio->bi_bdev, b));
bf2de6f5 1549 }
1da177e4
LT
1550 }
1551
1552 generic_make_request(bio);
1553}
1da177e4
LT
1554EXPORT_SYMBOL(submit_bio);
1555
82124d60
KU
1556/**
1557 * blk_rq_check_limits - Helper function to check a request for the queue limit
1558 * @q: the queue
1559 * @rq: the request being checked
1560 *
1561 * Description:
1562 * @rq may have been made based on weaker limitations of upper-level queues
1563 * in request stacking drivers, and it may violate the limitation of @q.
1564 * Since the block layer and the underlying device driver trust @rq
1565 * after it is inserted to @q, it should be checked against @q before
1566 * the insertion using this generic function.
1567 *
1568 * This function should also be useful for request stacking drivers
1569 * in some cases below, so export this fuction.
1570 * Request stacking drivers like request-based dm may change the queue
1571 * limits while requests are in the queue (e.g. dm's table swapping).
1572 * Such request stacking drivers should check those requests agaist
1573 * the new queue limits again when they dispatch those requests,
1574 * although such checkings are also done against the old queue limits
1575 * when submitting requests.
1576 */
1577int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1578{
1579 if (rq->nr_sectors > q->max_sectors ||
1580 rq->data_len > q->max_hw_sectors << 9) {
1581 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1582 return -EIO;
1583 }
1584
1585 /*
1586 * queue's settings related to segment counting like q->bounce_pfn
1587 * may differ from that of other stacking queues.
1588 * Recalculate it to check the request correctly on this queue's
1589 * limitation.
1590 */
1591 blk_recalc_rq_segments(rq);
1592 if (rq->nr_phys_segments > q->max_phys_segments ||
1593 rq->nr_phys_segments > q->max_hw_segments) {
1594 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1595 return -EIO;
1596 }
1597
1598 return 0;
1599}
1600EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1601
1602/**
1603 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1604 * @q: the queue to submit the request
1605 * @rq: the request being queued
1606 */
1607int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1608{
1609 unsigned long flags;
1610
1611 if (blk_rq_check_limits(q, rq))
1612 return -EIO;
1613
1614#ifdef CONFIG_FAIL_MAKE_REQUEST
1615 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1616 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1617 return -EIO;
1618#endif
1619
1620 spin_lock_irqsave(q->queue_lock, flags);
1621
1622 /*
1623 * Submitting request must be dequeued before calling this function
1624 * because it will be linked to another request_queue
1625 */
1626 BUG_ON(blk_queued_rq(rq));
1627
1628 drive_stat_acct(rq, 1);
1629 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1630
1631 spin_unlock_irqrestore(q->queue_lock, flags);
1632
1633 return 0;
1634}
1635EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1636
53a08807
TH
1637/**
1638 * blkdev_dequeue_request - dequeue request and start timeout timer
1639 * @req: request to dequeue
1640 *
1641 * Dequeue @req and start timeout timer on it. This hands off the
1642 * request to the driver.
1643 *
1644 * Block internal functions which don't want to start timer should
1645 * call elv_dequeue_request().
1646 */
1647void blkdev_dequeue_request(struct request *req)
1648{
1649 elv_dequeue_request(req->q, req);
1650
1651 /*
1652 * We are now handing the request to the hardware, add the
1653 * timeout handler.
1654 */
1655 blk_add_timer(req);
1656}
1657EXPORT_SYMBOL(blkdev_dequeue_request);
1658
3bcddeac
KU
1659/**
1660 * __end_that_request_first - end I/O on a request
1661 * @req: the request being processed
710027a4 1662 * @error: %0 for success, < %0 for error
3bcddeac
KU
1663 * @nr_bytes: number of bytes to complete
1664 *
1665 * Description:
1666 * Ends I/O on a number of bytes attached to @req, and sets it up
1667 * for the next range of segments (if any) in the cluster.
1668 *
1669 * Return:
710027a4
RD
1670 * %0 - we are done with this request, call end_that_request_last()
1671 * %1 - still buffers pending for this request
3bcddeac 1672 **/
5450d3e1 1673static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1674 int nr_bytes)
1675{
5450d3e1 1676 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1677 struct bio *bio;
1678
5f3ea37c 1679 trace_block_rq_complete(req->q, req);
2056a782 1680
1da177e4 1681 /*
710027a4 1682 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1683 * sense key with us all the way through
1684 */
1685 if (!blk_pc_request(req))
1686 req->errors = 0;
1687
6728cb0e
JA
1688 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1689 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1690 req->rq_disk ? req->rq_disk->disk_name : "?",
1691 (unsigned long long)req->sector);
1692 }
1693
d72d904a 1694 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1695 const int rw = rq_data_dir(req);
e71bf0d0 1696 struct hd_struct *part;
c9959059 1697 int cpu;
a362357b 1698
074a7aca 1699 cpu = part_stat_lock();
e71bf0d0 1700 part = disk_map_sector_rcu(req->rq_disk, req->sector);
074a7aca
TH
1701 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1702 part_stat_unlock();
d72d904a
JA
1703 }
1704
1da177e4
LT
1705 total_bytes = bio_nbytes = 0;
1706 while ((bio = req->bio) != NULL) {
1707 int nbytes;
1708
1709 if (nr_bytes >= bio->bi_size) {
1710 req->bio = bio->bi_next;
1711 nbytes = bio->bi_size;
5bb23a68 1712 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1713 next_idx = 0;
1714 bio_nbytes = 0;
1715 } else {
1716 int idx = bio->bi_idx + next_idx;
1717
1718 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1719 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1720 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1721 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1722 break;
1723 }
1724
1725 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1726 BIO_BUG_ON(nbytes > bio->bi_size);
1727
1728 /*
1729 * not a complete bvec done
1730 */
1731 if (unlikely(nbytes > nr_bytes)) {
1732 bio_nbytes += nr_bytes;
1733 total_bytes += nr_bytes;
1734 break;
1735 }
1736
1737 /*
1738 * advance to the next vector
1739 */
1740 next_idx++;
1741 bio_nbytes += nbytes;
1742 }
1743
1744 total_bytes += nbytes;
1745 nr_bytes -= nbytes;
1746
6728cb0e
JA
1747 bio = req->bio;
1748 if (bio) {
1da177e4
LT
1749 /*
1750 * end more in this run, or just return 'not-done'
1751 */
1752 if (unlikely(nr_bytes <= 0))
1753 break;
1754 }
1755 }
1756
1757 /*
1758 * completely done
1759 */
1760 if (!req->bio)
1761 return 0;
1762
1763 /*
1764 * if the request wasn't completed, update state
1765 */
1766 if (bio_nbytes) {
5bb23a68 1767 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1768 bio->bi_idx += next_idx;
1769 bio_iovec(bio)->bv_offset += nr_bytes;
1770 bio_iovec(bio)->bv_len -= nr_bytes;
1771 }
1772
1773 blk_recalc_rq_sectors(req, total_bytes >> 9);
1774 blk_recalc_rq_segments(req);
1775 return 1;
1776}
1777
1da177e4
LT
1778/*
1779 * queue lock must be held
1780 */
5450d3e1 1781static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1782{
1783 struct gendisk *disk = req->rq_disk;
8ffdc655 1784
b8286239
KU
1785 if (blk_rq_tagged(req))
1786 blk_queue_end_tag(req->q, req);
1787
1788 if (blk_queued_rq(req))
53a08807 1789 elv_dequeue_request(req->q, req);
1da177e4
LT
1790
1791 if (unlikely(laptop_mode) && blk_fs_request(req))
1792 laptop_io_completion();
1793
e78042e5
MA
1794 blk_delete_timer(req);
1795
fd0ff8aa
JA
1796 /*
1797 * Account IO completion. bar_rq isn't accounted as a normal
1798 * IO on queueing nor completion. Accounting the containing
1799 * request is enough.
1800 */
1801 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1802 unsigned long duration = jiffies - req->start_time;
a362357b 1803 const int rw = rq_data_dir(req);
e71bf0d0 1804 struct hd_struct *part;
c9959059 1805 int cpu;
e71bf0d0 1806
074a7aca 1807 cpu = part_stat_lock();
e71bf0d0 1808 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1809
074a7aca
TH
1810 part_stat_inc(cpu, part, ios[rw]);
1811 part_stat_add(cpu, part, ticks[rw], duration);
1812 part_round_stats(cpu, part);
1813 part_dec_in_flight(part);
e71bf0d0 1814
074a7aca 1815 part_stat_unlock();
1da177e4 1816 }
b8286239 1817
1da177e4 1818 if (req->end_io)
8ffdc655 1819 req->end_io(req, error);
b8286239
KU
1820 else {
1821 if (blk_bidi_rq(req))
1822 __blk_put_request(req->next_rq->q, req->next_rq);
1823
1da177e4 1824 __blk_put_request(req->q, req);
b8286239 1825 }
1da177e4
LT
1826}
1827
3b11313a
KU
1828/**
1829 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1830 * @rq: the request being processed
3b11313a
KU
1831 **/
1832unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1833{
1834 if (blk_fs_request(rq))
1835 return rq->hard_nr_sectors << 9;
1836
1837 return rq->data_len;
1838}
3b11313a
KU
1839EXPORT_SYMBOL_GPL(blk_rq_bytes);
1840
1841/**
1842 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1843 * @rq: the request being processed
3b11313a
KU
1844 **/
1845unsigned int blk_rq_cur_bytes(struct request *rq)
1846{
1847 if (blk_fs_request(rq))
1848 return rq->current_nr_sectors << 9;
1849
1850 if (rq->bio)
1851 return rq->bio->bi_size;
1852
1853 return rq->data_len;
1854}
1855EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285 1856
a0cd1285
JA
1857/**
1858 * end_request - end I/O on the current segment of the request
8f731f7d 1859 * @req: the request being processed
710027a4 1860 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1861 *
1862 * Description:
1863 * Ends I/O on the current segment of a request. If that is the only
1864 * remaining segment, the request is also completed and freed.
1865 *
710027a4
RD
1866 * This is a remnant of how older block drivers handled I/O completions.
1867 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1868 * they have a residual value to account for. For that case this function
1869 * isn't really useful, unless the residual just happens to be the
1870 * full current segment. In other words, don't use this function in new
d00e29fd 1871 * code. Use blk_end_request() or __blk_end_request() to end a request.
a0cd1285
JA
1872 **/
1873void end_request(struct request *req, int uptodate)
1874{
d00e29fd
KU
1875 int error = 0;
1876
1877 if (uptodate <= 0)
1878 error = uptodate ? uptodate : -EIO;
1879
1880 __blk_end_request(req, error, req->hard_cur_sectors << 9);
a0cd1285 1881}
1da177e4
LT
1882EXPORT_SYMBOL(end_request);
1883
32fab448
KU
1884static int end_that_request_data(struct request *rq, int error,
1885 unsigned int nr_bytes, unsigned int bidi_bytes)
1886{
1887 if (rq->bio) {
1888 if (__end_that_request_first(rq, error, nr_bytes))
1889 return 1;
1890
1891 /* Bidi request must be completed as a whole */
1892 if (blk_bidi_rq(rq) &&
1893 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1894 return 1;
1895 }
1896
1897 return 0;
1898}
1899
336cdb40 1900/**
e19a3ab0
KU
1901 * blk_end_io - Generic end_io function to complete a request.
1902 * @rq: the request being processed
710027a4 1903 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1904 * @nr_bytes: number of bytes to complete @rq
1905 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1906 * @drv_callback: function called between completion of bios in the request
1907 * and completion of the request.
710027a4 1908 * If the callback returns non %0, this helper returns without
e19a3ab0 1909 * completion of the request.
336cdb40
KU
1910 *
1911 * Description:
e3a04fe3 1912 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1913 * If @rq has leftover, sets it up for the next range of segments.
1914 *
1915 * Return:
710027a4
RD
1916 * %0 - we are done with this request
1917 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1918 **/
22b13210
JA
1919static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1920 unsigned int bidi_bytes,
1921 int (drv_callback)(struct request *))
336cdb40
KU
1922{
1923 struct request_queue *q = rq->q;
1924 unsigned long flags = 0UL;
336cdb40 1925
32fab448
KU
1926 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1927 return 1;
336cdb40 1928
e19a3ab0
KU
1929 /* Special feature for tricky drivers */
1930 if (drv_callback && drv_callback(rq))
1931 return 1;
1932
336cdb40
KU
1933 add_disk_randomness(rq->rq_disk);
1934
1935 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1936 end_that_request_last(rq, error);
336cdb40
KU
1937 spin_unlock_irqrestore(q->queue_lock, flags);
1938
1939 return 0;
1940}
e19a3ab0
KU
1941
1942/**
1943 * blk_end_request - Helper function for drivers to complete the request.
1944 * @rq: the request being processed
710027a4 1945 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1946 * @nr_bytes: number of bytes to complete
1947 *
1948 * Description:
1949 * Ends I/O on a number of bytes attached to @rq.
1950 * If @rq has leftover, sets it up for the next range of segments.
1951 *
1952 * Return:
710027a4
RD
1953 * %0 - we are done with this request
1954 * %1 - still buffers pending for this request
e19a3ab0 1955 **/
22b13210 1956int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1957{
e3a04fe3 1958 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1959}
336cdb40
KU
1960EXPORT_SYMBOL_GPL(blk_end_request);
1961
1962/**
1963 * __blk_end_request - Helper function for drivers to complete the request.
1964 * @rq: the request being processed
710027a4 1965 * @error: %0 for success, < %0 for error
336cdb40
KU
1966 * @nr_bytes: number of bytes to complete
1967 *
1968 * Description:
1969 * Must be called with queue lock held unlike blk_end_request().
1970 *
1971 * Return:
710027a4
RD
1972 * %0 - we are done with this request
1973 * %1 - still buffers pending for this request
336cdb40 1974 **/
22b13210 1975int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1976{
60540161 1977 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1978 return 1;
336cdb40
KU
1979
1980 add_disk_randomness(rq->rq_disk);
1981
b8286239 1982 end_that_request_last(rq, error);
336cdb40
KU
1983
1984 return 0;
1985}
1986EXPORT_SYMBOL_GPL(__blk_end_request);
1987
e3a04fe3
KU
1988/**
1989 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1990 * @rq: the bidi request being processed
710027a4 1991 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1992 * @nr_bytes: number of bytes to complete @rq
1993 * @bidi_bytes: number of bytes to complete @rq->next_rq
1994 *
1995 * Description:
1996 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1997 *
1998 * Return:
710027a4
RD
1999 * %0 - we are done with this request
2000 * %1 - still buffers pending for this request
e3a04fe3 2001 **/
22b13210
JA
2002int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2003 unsigned int bidi_bytes)
e3a04fe3
KU
2004{
2005 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2006}
2007EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2008
32fab448
KU
2009/**
2010 * blk_update_request - Special helper function for request stacking drivers
2011 * @rq: the request being processed
2012 * @error: %0 for success, < %0 for error
2013 * @nr_bytes: number of bytes to complete @rq
2014 *
2015 * Description:
2016 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2017 * the request structure even if @rq doesn't have leftover.
2018 * If @rq has leftover, sets it up for the next range of segments.
2019 *
2020 * This special helper function is only for request stacking drivers
2021 * (e.g. request-based dm) so that they can handle partial completion.
2022 * Actual device drivers should use blk_end_request instead.
2023 */
2024void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2025{
2026 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2027 /*
2028 * These members are not updated in end_that_request_data()
2029 * when all bios are completed.
2030 * Update them so that the request stacking driver can find
2031 * how many bytes remain in the request later.
2032 */
2033 rq->nr_sectors = rq->hard_nr_sectors = 0;
2034 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2035 }
2036}
2037EXPORT_SYMBOL_GPL(blk_update_request);
2038
e19a3ab0
KU
2039/**
2040 * blk_end_request_callback - Special helper function for tricky drivers
2041 * @rq: the request being processed
710027a4 2042 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2043 * @nr_bytes: number of bytes to complete
2044 * @drv_callback: function called between completion of bios in the request
2045 * and completion of the request.
710027a4 2046 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
2047 * completion of the request.
2048 *
2049 * Description:
2050 * Ends I/O on a number of bytes attached to @rq.
2051 * If @rq has leftover, sets it up for the next range of segments.
2052 *
2053 * This special helper function is used only for existing tricky drivers.
2054 * (e.g. cdrom_newpc_intr() of ide-cd)
2055 * This interface will be removed when such drivers are rewritten.
2056 * Don't use this interface in other places anymore.
2057 *
2058 * Return:
710027a4
RD
2059 * %0 - we are done with this request
2060 * %1 - this request is not freed yet.
2061 * this request still has pending buffers or
2062 * the driver doesn't want to finish this request yet.
e19a3ab0 2063 **/
22b13210
JA
2064int blk_end_request_callback(struct request *rq, int error,
2065 unsigned int nr_bytes,
e19a3ab0
KU
2066 int (drv_callback)(struct request *))
2067{
e3a04fe3 2068 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2069}
2070EXPORT_SYMBOL_GPL(blk_end_request_callback);
2071
86db1e29
JA
2072void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2073 struct bio *bio)
1da177e4 2074{
d628eaef
DW
2075 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2076 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 2077 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 2078
fb2dce86
DW
2079 if (bio_has_data(bio)) {
2080 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2081 rq->buffer = bio_data(bio);
2082 }
1da177e4
LT
2083 rq->current_nr_sectors = bio_cur_sectors(bio);
2084 rq->hard_cur_sectors = rq->current_nr_sectors;
2085 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 2086 rq->data_len = bio->bi_size;
1da177e4
LT
2087
2088 rq->bio = rq->biotail = bio;
1da177e4 2089
66846572
N
2090 if (bio->bi_bdev)
2091 rq->rq_disk = bio->bi_bdev->bd_disk;
2092}
1da177e4 2093
ef9e3fac
KU
2094/**
2095 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2096 * @q : the queue of the device being checked
2097 *
2098 * Description:
2099 * Check if underlying low-level drivers of a device are busy.
2100 * If the drivers want to export their busy state, they must set own
2101 * exporting function using blk_queue_lld_busy() first.
2102 *
2103 * Basically, this function is used only by request stacking drivers
2104 * to stop dispatching requests to underlying devices when underlying
2105 * devices are busy. This behavior helps more I/O merging on the queue
2106 * of the request stacking driver and prevents I/O throughput regression
2107 * on burst I/O load.
2108 *
2109 * Return:
2110 * 0 - Not busy (The request stacking driver should dispatch request)
2111 * 1 - Busy (The request stacking driver should stop dispatching request)
2112 */
2113int blk_lld_busy(struct request_queue *q)
2114{
2115 if (q->lld_busy_fn)
2116 return q->lld_busy_fn(q);
2117
2118 return 0;
2119}
2120EXPORT_SYMBOL_GPL(blk_lld_busy);
2121
18887ad9 2122int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2123{
2124 return queue_work(kblockd_workqueue, work);
2125}
1da177e4
LT
2126EXPORT_SYMBOL(kblockd_schedule_work);
2127
1da177e4
LT
2128int __init blk_dev_init(void)
2129{
2130 kblockd_workqueue = create_workqueue("kblockd");
2131 if (!kblockd_workqueue)
2132 panic("Failed to create kblockd\n");
2133
2134 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2135 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2136
8324aa91 2137 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2138 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2139
d38ecf93 2140 return 0;
1da177e4 2141}
1da177e4 2142