]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
blkio: Changes to IO controller additional stats patches
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
5bb23a68
N
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68
N
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
4aff5e23 187 if (blk_pc_request(rq)) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
1da177e4
LT
196/*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
165125e1 204void blk_plug_device(struct request_queue *q)
1da177e4
LT
205{
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
7daac490 212 if (blk_queue_stopped(q))
1da177e4
LT
213 return;
214
e48ec690 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 217 trace_block_plug(q);
2056a782 218 }
1da177e4 219}
1da177e4
LT
220EXPORT_SYMBOL(blk_plug_device);
221
6c5e0c4d
JA
222/**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230void blk_plug_device_unlocked(struct request_queue *q)
231{
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237}
238EXPORT_SYMBOL(blk_plug_device_unlocked);
239
1da177e4
LT
240/*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
165125e1 244int blk_remove_plug(struct request_queue *q)
1da177e4
LT
245{
246 WARN_ON(!irqs_disabled());
247
e48ec690 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253}
1da177e4
LT
254EXPORT_SYMBOL(blk_remove_plug);
255
256/*
257 * remove the plug and let it rip..
258 */
165125e1 259void __generic_unplug_device(struct request_queue *q)
1da177e4 260{
7daac490 261 if (unlikely(blk_queue_stopped(q)))
1da177e4 262 return;
a31a9738 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
264 return;
265
22e2c507 266 q->request_fn(q);
1da177e4 267}
1da177e4
LT
268
269/**
270 * generic_unplug_device - fire a request queue
165125e1 271 * @q: The &struct request_queue in question
1da177e4
LT
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
165125e1 280void generic_unplug_device(struct request_queue *q)
1da177e4 281{
dbaf2c00
JA
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
1da177e4
LT
287}
288EXPORT_SYMBOL(generic_unplug_device);
289
290static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292{
165125e1 293 struct request_queue *q = bdi->unplug_io_data;
1da177e4 294
2ad8b1ef 295 blk_unplug(q);
1da177e4
LT
296}
297
86db1e29 298void blk_unplug_work(struct work_struct *work)
1da177e4 299{
165125e1
JA
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
1da177e4 302
5f3ea37c 303 trace_block_unplug_io(q);
1da177e4
LT
304 q->unplug_fn(q);
305}
306
86db1e29 307void blk_unplug_timeout(unsigned long data)
1da177e4 308{
165125e1 309 struct request_queue *q = (struct request_queue *)data;
1da177e4 310
5f3ea37c 311 trace_block_unplug_timer(q);
18887ad9 312 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
313}
314
2ad8b1ef
AB
315void blk_unplug(struct request_queue *q)
316{
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
5f3ea37c 321 trace_block_unplug_io(q);
2ad8b1ef
AB
322 q->unplug_fn(q);
323 }
324}
325EXPORT_SYMBOL(blk_unplug);
326
1da177e4
LT
327/**
328 * blk_start_queue - restart a previously stopped queue
165125e1 329 * @q: The &struct request_queue in question
1da177e4
LT
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
165125e1 336void blk_start_queue(struct request_queue *q)
1da177e4 337{
a038e253
PBG
338 WARN_ON(!irqs_disabled());
339
75ad23bc 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 341 __blk_run_queue(q);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(blk_start_queue);
344
345/**
346 * blk_stop_queue - stop a queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
165125e1 359void blk_stop_queue(struct request_queue *q)
1da177e4
LT
360{
361 blk_remove_plug(q);
75ad23bc 362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
363}
364EXPORT_SYMBOL(blk_stop_queue);
365
366/**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
59c51591 375 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380void blk_sync_queue(struct request_queue *q)
381{
382 del_timer_sync(&q->unplug_timer);
70ed28b9 383 del_timer_sync(&q->timeout);
64d01dc9 384 cancel_work_sync(&q->unplug_work);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
31373d09 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 455 mutex_lock(&q->sysfs_lock);
75ad23bc 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463}
1da177e4
LT
464EXPORT_SYMBOL(blk_cleanup_queue);
465
165125e1 466static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
467{
468 struct request_list *rl = &q->rq;
469
1faa16d2
JA
470 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
471 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 472 rl->elvpriv = 0;
1faa16d2
JA
473 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
474 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 475
1946089a
CL
476 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
477 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
478
479 if (!rl->rq_pool)
480 return -ENOMEM;
481
482 return 0;
483}
484
165125e1 485struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 486{
1946089a
CL
487 return blk_alloc_queue_node(gfp_mask, -1);
488}
489EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 490
165125e1 491struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 492{
165125e1 493 struct request_queue *q;
e0bf68dd 494 int err;
1946089a 495
8324aa91 496 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 497 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
498 if (!q)
499 return NULL;
500
e0bf68dd
PZ
501 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
502 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
503 q->backing_dev_info.ra_pages =
504 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
505 q->backing_dev_info.state = 0;
506 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 507 q->backing_dev_info.name = "block";
0989a025 508
e0bf68dd
PZ
509 err = bdi_init(&q->backing_dev_info);
510 if (err) {
8324aa91 511 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
512 return NULL;
513 }
514
31373d09
MG
515 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
516 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 517 init_timer(&q->unplug_timer);
242f9dcb
JA
518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
519 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 520 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 521
8324aa91 522 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 523
483f4afc 524 mutex_init(&q->sysfs_lock);
e7e72bf6 525 spin_lock_init(&q->__queue_lock);
483f4afc 526
1da177e4
LT
527 return q;
528}
1946089a 529EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
530
531/**
532 * blk_init_queue - prepare a request queue for use with a block device
533 * @rfn: The function to be called to process requests that have been
534 * placed on the queue.
535 * @lock: Request queue spin lock
536 *
537 * Description:
538 * If a block device wishes to use the standard request handling procedures,
539 * which sorts requests and coalesces adjacent requests, then it must
540 * call blk_init_queue(). The function @rfn will be called when there
541 * are requests on the queue that need to be processed. If the device
542 * supports plugging, then @rfn may not be called immediately when requests
543 * are available on the queue, but may be called at some time later instead.
544 * Plugged queues are generally unplugged when a buffer belonging to one
545 * of the requests on the queue is needed, or due to memory pressure.
546 *
547 * @rfn is not required, or even expected, to remove all requests off the
548 * queue, but only as many as it can handle at a time. If it does leave
549 * requests on the queue, it is responsible for arranging that the requests
550 * get dealt with eventually.
551 *
552 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
553 * request queue; this lock will be taken also from interrupt context, so irq
554 * disabling is needed for it.
1da177e4 555 *
710027a4 556 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
557 * it didn't succeed.
558 *
559 * Note:
560 * blk_init_queue() must be paired with a blk_cleanup_queue() call
561 * when the block device is deactivated (such as at module unload).
562 **/
1946089a 563
165125e1 564struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 565{
1946089a
CL
566 return blk_init_queue_node(rfn, lock, -1);
567}
568EXPORT_SYMBOL(blk_init_queue);
569
165125e1 570struct request_queue *
1946089a
CL
571blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
572{
165125e1 573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
574
575 if (!q)
576 return NULL;
577
1946089a 578 q->node = node_id;
8669aafd 579 if (blk_init_free_list(q)) {
8324aa91 580 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
581 return NULL;
582 }
1da177e4
LT
583
584 q->request_fn = rfn;
1da177e4
LT
585 q->prep_rq_fn = NULL;
586 q->unplug_fn = generic_unplug_device;
bc58ba94 587 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
588 q->queue_lock = lock;
589
f3b144aa
JA
590 /*
591 * This also sets hw/phys segments, boundary and size
592 */
1da177e4 593 blk_queue_make_request(q, __make_request);
1da177e4 594
44ec9542
AS
595 q->sg_reserved_size = INT_MAX;
596
1da177e4
LT
597 /*
598 * all done
599 */
600 if (!elevator_init(q, NULL)) {
601 blk_queue_congestion_threshold(q);
602 return q;
603 }
604
8669aafd 605 blk_put_queue(q);
1da177e4
LT
606 return NULL;
607}
1946089a 608EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 609
165125e1 610int blk_get_queue(struct request_queue *q)
1da177e4 611{
fde6ad22 612 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 613 kobject_get(&q->kobj);
1da177e4
LT
614 return 0;
615 }
616
617 return 1;
618}
1da177e4 619
165125e1 620static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 621{
4aff5e23 622 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 623 elv_put_request(q, rq);
1da177e4
LT
624 mempool_free(rq, q->rq.rq_pool);
625}
626
1ea25ecb 627static struct request *
42dad764 628blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
629{
630 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
631
632 if (!rq)
633 return NULL;
634
2a4aa30c 635 blk_rq_init(q, rq);
1afb20f3 636
42dad764 637 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 638
cb98fc8b 639 if (priv) {
cb78b285 640 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
641 mempool_free(rq, q->rq.rq_pool);
642 return NULL;
643 }
4aff5e23 644 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 645 }
1da177e4 646
cb98fc8b 647 return rq;
1da177e4
LT
648}
649
650/*
651 * ioc_batching returns true if the ioc is a valid batching request and
652 * should be given priority access to a request.
653 */
165125e1 654static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
655{
656 if (!ioc)
657 return 0;
658
659 /*
660 * Make sure the process is able to allocate at least 1 request
661 * even if the batch times out, otherwise we could theoretically
662 * lose wakeups.
663 */
664 return ioc->nr_batch_requests == q->nr_batching ||
665 (ioc->nr_batch_requests > 0
666 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
667}
668
669/*
670 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
671 * will cause the process to be a "batcher" on all queues in the system. This
672 * is the behaviour we want though - once it gets a wakeup it should be given
673 * a nice run.
674 */
165125e1 675static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
676{
677 if (!ioc || ioc_batching(q, ioc))
678 return;
679
680 ioc->nr_batch_requests = q->nr_batching;
681 ioc->last_waited = jiffies;
682}
683
1faa16d2 684static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
685{
686 struct request_list *rl = &q->rq;
687
1faa16d2
JA
688 if (rl->count[sync] < queue_congestion_off_threshold(q))
689 blk_clear_queue_congested(q, sync);
1da177e4 690
1faa16d2
JA
691 if (rl->count[sync] + 1 <= q->nr_requests) {
692 if (waitqueue_active(&rl->wait[sync]))
693 wake_up(&rl->wait[sync]);
1da177e4 694
1faa16d2 695 blk_clear_queue_full(q, sync);
1da177e4
LT
696 }
697}
698
699/*
700 * A request has just been released. Account for it, update the full and
701 * congestion status, wake up any waiters. Called under q->queue_lock.
702 */
1faa16d2 703static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
704{
705 struct request_list *rl = &q->rq;
706
1faa16d2 707 rl->count[sync]--;
cb98fc8b
TH
708 if (priv)
709 rl->elvpriv--;
1da177e4 710
1faa16d2 711 __freed_request(q, sync);
1da177e4 712
1faa16d2
JA
713 if (unlikely(rl->starved[sync ^ 1]))
714 __freed_request(q, sync ^ 1);
1da177e4
LT
715}
716
1da177e4 717/*
d6344532
NP
718 * Get a free request, queue_lock must be held.
719 * Returns NULL on failure, with queue_lock held.
720 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 721 */
165125e1 722static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 723 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
724{
725 struct request *rq = NULL;
726 struct request_list *rl = &q->rq;
88ee5ef1 727 struct io_context *ioc = NULL;
1faa16d2 728 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
729 int may_queue, priv;
730
7749a8d4 731 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
732 if (may_queue == ELV_MQUEUE_NO)
733 goto rq_starved;
734
1faa16d2
JA
735 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
736 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 737 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
738 /*
739 * The queue will fill after this allocation, so set
740 * it as full, and mark this process as "batching".
741 * This process will be allowed to complete a batch of
742 * requests, others will be blocked.
743 */
1faa16d2 744 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 745 ioc_set_batching(q, ioc);
1faa16d2 746 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
747 } else {
748 if (may_queue != ELV_MQUEUE_MUST
749 && !ioc_batching(q, ioc)) {
750 /*
751 * The queue is full and the allocating
752 * process is not a "batcher", and not
753 * exempted by the IO scheduler
754 */
755 goto out;
756 }
757 }
1da177e4 758 }
1faa16d2 759 blk_set_queue_congested(q, is_sync);
1da177e4
LT
760 }
761
082cf69e
JA
762 /*
763 * Only allow batching queuers to allocate up to 50% over the defined
764 * limit of requests, otherwise we could have thousands of requests
765 * allocated with any setting of ->nr_requests
766 */
1faa16d2 767 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 768 goto out;
fd782a4a 769
1faa16d2
JA
770 rl->count[is_sync]++;
771 rl->starved[is_sync] = 0;
cb98fc8b 772
64521d1a 773 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
774 if (priv)
775 rl->elvpriv++;
776
42dad764
JM
777 if (blk_queue_io_stat(q))
778 rw_flags |= REQ_IO_STAT;
1da177e4
LT
779 spin_unlock_irq(q->queue_lock);
780
7749a8d4 781 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 782 if (unlikely(!rq)) {
1da177e4
LT
783 /*
784 * Allocation failed presumably due to memory. Undo anything
785 * we might have messed up.
786 *
787 * Allocating task should really be put onto the front of the
788 * wait queue, but this is pretty rare.
789 */
790 spin_lock_irq(q->queue_lock);
1faa16d2 791 freed_request(q, is_sync, priv);
1da177e4
LT
792
793 /*
794 * in the very unlikely event that allocation failed and no
795 * requests for this direction was pending, mark us starved
796 * so that freeing of a request in the other direction will
797 * notice us. another possible fix would be to split the
798 * rq mempool into READ and WRITE
799 */
800rq_starved:
1faa16d2
JA
801 if (unlikely(rl->count[is_sync] == 0))
802 rl->starved[is_sync] = 1;
1da177e4 803
1da177e4
LT
804 goto out;
805 }
806
88ee5ef1
JA
807 /*
808 * ioc may be NULL here, and ioc_batching will be false. That's
809 * OK, if the queue is under the request limit then requests need
810 * not count toward the nr_batch_requests limit. There will always
811 * be some limit enforced by BLK_BATCH_TIME.
812 */
1da177e4
LT
813 if (ioc_batching(q, ioc))
814 ioc->nr_batch_requests--;
6728cb0e 815
1faa16d2 816 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 817out:
1da177e4
LT
818 return rq;
819}
820
821/*
822 * No available requests for this queue, unplug the device and wait for some
823 * requests to become available.
d6344532
NP
824 *
825 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 826 */
165125e1 827static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 828 struct bio *bio)
1da177e4 829{
1faa16d2 830 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
831 struct request *rq;
832
7749a8d4 833 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
834 while (!rq) {
835 DEFINE_WAIT(wait);
05caf8db 836 struct io_context *ioc;
1da177e4
LT
837 struct request_list *rl = &q->rq;
838
1faa16d2 839 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
840 TASK_UNINTERRUPTIBLE);
841
1faa16d2 842 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 843
05caf8db
ZY
844 __generic_unplug_device(q);
845 spin_unlock_irq(q->queue_lock);
846 io_schedule();
1da177e4 847
05caf8db
ZY
848 /*
849 * After sleeping, we become a "batching" process and
850 * will be able to allocate at least one request, and
851 * up to a big batch of them for a small period time.
852 * See ioc_batching, ioc_set_batching
853 */
854 ioc = current_io_context(GFP_NOIO, q->node);
855 ioc_set_batching(q, ioc);
d6344532 856
05caf8db 857 spin_lock_irq(q->queue_lock);
1faa16d2 858 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
859
860 rq = get_request(q, rw_flags, bio, GFP_NOIO);
861 };
1da177e4
LT
862
863 return rq;
864}
865
165125e1 866struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
867{
868 struct request *rq;
869
870 BUG_ON(rw != READ && rw != WRITE);
871
d6344532
NP
872 spin_lock_irq(q->queue_lock);
873 if (gfp_mask & __GFP_WAIT) {
22e2c507 874 rq = get_request_wait(q, rw, NULL);
d6344532 875 } else {
22e2c507 876 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
877 if (!rq)
878 spin_unlock_irq(q->queue_lock);
879 }
880 /* q->queue_lock is unlocked at this point */
1da177e4
LT
881
882 return rq;
883}
1da177e4
LT
884EXPORT_SYMBOL(blk_get_request);
885
dc72ef4a 886/**
79eb63e9 887 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 888 * @q: target request queue
79eb63e9
BH
889 * @bio: The bio describing the memory mappings that will be submitted for IO.
890 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 891 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 892 *
79eb63e9
BH
893 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
894 * type commands. Where the struct request needs to be farther initialized by
895 * the caller. It is passed a &struct bio, which describes the memory info of
896 * the I/O transfer.
dc72ef4a 897 *
79eb63e9
BH
898 * The caller of blk_make_request must make sure that bi_io_vec
899 * are set to describe the memory buffers. That bio_data_dir() will return
900 * the needed direction of the request. (And all bio's in the passed bio-chain
901 * are properly set accordingly)
902 *
903 * If called under none-sleepable conditions, mapped bio buffers must not
904 * need bouncing, by calling the appropriate masked or flagged allocator,
905 * suitable for the target device. Otherwise the call to blk_queue_bounce will
906 * BUG.
53674ac5
JA
907 *
908 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
909 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
910 * anything but the first bio in the chain. Otherwise you risk waiting for IO
911 * completion of a bio that hasn't been submitted yet, thus resulting in a
912 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
913 * of bio_alloc(), as that avoids the mempool deadlock.
914 * If possible a big IO should be split into smaller parts when allocation
915 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 916 */
79eb63e9
BH
917struct request *blk_make_request(struct request_queue *q, struct bio *bio,
918 gfp_t gfp_mask)
dc72ef4a 919{
79eb63e9
BH
920 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
921
922 if (unlikely(!rq))
923 return ERR_PTR(-ENOMEM);
924
925 for_each_bio(bio) {
926 struct bio *bounce_bio = bio;
927 int ret;
928
929 blk_queue_bounce(q, &bounce_bio);
930 ret = blk_rq_append_bio(q, rq, bounce_bio);
931 if (unlikely(ret)) {
932 blk_put_request(rq);
933 return ERR_PTR(ret);
934 }
935 }
936
937 return rq;
dc72ef4a 938}
79eb63e9 939EXPORT_SYMBOL(blk_make_request);
dc72ef4a 940
1da177e4
LT
941/**
942 * blk_requeue_request - put a request back on queue
943 * @q: request queue where request should be inserted
944 * @rq: request to be inserted
945 *
946 * Description:
947 * Drivers often keep queueing requests until the hardware cannot accept
948 * more, when that condition happens we need to put the request back
949 * on the queue. Must be called with queue lock held.
950 */
165125e1 951void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 952{
242f9dcb
JA
953 blk_delete_timer(rq);
954 blk_clear_rq_complete(rq);
5f3ea37c 955 trace_block_rq_requeue(q, rq);
2056a782 956
1da177e4
LT
957 if (blk_rq_tagged(rq))
958 blk_queue_end_tag(q, rq);
959
ba396a6c
JB
960 BUG_ON(blk_queued_rq(rq));
961
1da177e4
LT
962 elv_requeue_request(q, rq);
963}
1da177e4
LT
964EXPORT_SYMBOL(blk_requeue_request);
965
966/**
710027a4 967 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
968 * @q: request queue where request should be inserted
969 * @rq: request to be inserted
970 * @at_head: insert request at head or tail of queue
971 * @data: private data
1da177e4
LT
972 *
973 * Description:
974 * Many block devices need to execute commands asynchronously, so they don't
975 * block the whole kernel from preemption during request execution. This is
976 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
977 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
978 * be scheduled for actual execution by the request queue.
1da177e4
LT
979 *
980 * We have the option of inserting the head or the tail of the queue.
981 * Typically we use the tail for new ioctls and so forth. We use the head
982 * of the queue for things like a QUEUE_FULL message from a device, or a
983 * host that is unable to accept a particular command.
984 */
165125e1 985void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 986 int at_head, void *data)
1da177e4 987{
867d1191 988 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
989 unsigned long flags;
990
991 /*
992 * tell I/O scheduler that this isn't a regular read/write (ie it
993 * must not attempt merges on this) and that it acts as a soft
994 * barrier
995 */
4aff5e23 996 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
997
998 rq->special = data;
999
1000 spin_lock_irqsave(q->queue_lock, flags);
1001
1002 /*
1003 * If command is tagged, release the tag
1004 */
867d1191
TH
1005 if (blk_rq_tagged(rq))
1006 blk_queue_end_tag(q, rq);
1da177e4 1007
b238b3d4 1008 drive_stat_acct(rq, 1);
867d1191 1009 __elv_add_request(q, rq, where, 0);
a7f55792 1010 __blk_run_queue(q);
1da177e4
LT
1011 spin_unlock_irqrestore(q->queue_lock, flags);
1012}
1da177e4
LT
1013EXPORT_SYMBOL(blk_insert_request);
1014
1da177e4
LT
1015/*
1016 * add-request adds a request to the linked list.
1017 * queue lock is held and interrupts disabled, as we muck with the
1018 * request queue list.
1019 */
6728cb0e 1020static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1021{
b238b3d4 1022 drive_stat_acct(req, 1);
1da177e4 1023
1da177e4
LT
1024 /*
1025 * elevator indicated where it wants this request to be
1026 * inserted at elevator_merge time
1027 */
1028 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1029}
6728cb0e 1030
074a7aca
TH
1031static void part_round_stats_single(int cpu, struct hd_struct *part,
1032 unsigned long now)
1033{
1034 if (now == part->stamp)
1035 return;
1036
316d315b 1037 if (part_in_flight(part)) {
074a7aca 1038 __part_stat_add(cpu, part, time_in_queue,
316d315b 1039 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1040 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1041 }
1042 part->stamp = now;
1043}
1044
1045/**
496aa8a9
RD
1046 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1047 * @cpu: cpu number for stats access
1048 * @part: target partition
1da177e4
LT
1049 *
1050 * The average IO queue length and utilisation statistics are maintained
1051 * by observing the current state of the queue length and the amount of
1052 * time it has been in this state for.
1053 *
1054 * Normally, that accounting is done on IO completion, but that can result
1055 * in more than a second's worth of IO being accounted for within any one
1056 * second, leading to >100% utilisation. To deal with that, we call this
1057 * function to do a round-off before returning the results when reading
1058 * /proc/diskstats. This accounts immediately for all queue usage up to
1059 * the current jiffies and restarts the counters again.
1060 */
c9959059 1061void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1062{
1063 unsigned long now = jiffies;
1064
074a7aca
TH
1065 if (part->partno)
1066 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1067 part_round_stats_single(cpu, part, now);
6f2576af 1068}
074a7aca 1069EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1070
1da177e4
LT
1071/*
1072 * queue lock must be held
1073 */
165125e1 1074void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1075{
1da177e4
LT
1076 if (unlikely(!q))
1077 return;
1078 if (unlikely(--req->ref_count))
1079 return;
1080
8922e16c
TH
1081 elv_completed_request(q, req);
1082
1cd96c24
BH
1083 /* this is a bio leak */
1084 WARN_ON(req->bio != NULL);
1085
1da177e4
LT
1086 /*
1087 * Request may not have originated from ll_rw_blk. if not,
1088 * it didn't come out of our reserved rq pools
1089 */
49171e5c 1090 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1091 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1092 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1093
1da177e4 1094 BUG_ON(!list_empty(&req->queuelist));
9817064b 1095 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1096
1097 blk_free_request(q, req);
1faa16d2 1098 freed_request(q, is_sync, priv);
1da177e4
LT
1099 }
1100}
6e39b69e
MC
1101EXPORT_SYMBOL_GPL(__blk_put_request);
1102
1da177e4
LT
1103void blk_put_request(struct request *req)
1104{
8922e16c 1105 unsigned long flags;
165125e1 1106 struct request_queue *q = req->q;
8922e16c 1107
52a93ba8
FT
1108 spin_lock_irqsave(q->queue_lock, flags);
1109 __blk_put_request(q, req);
1110 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1111}
1da177e4
LT
1112EXPORT_SYMBOL(blk_put_request);
1113
86db1e29 1114void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1115{
c7c22e4d 1116 req->cpu = bio->bi_comp_cpu;
4aff5e23 1117 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1118
1119 /*
a82afdfc
TH
1120 * Inherit FAILFAST from bio (for read-ahead, and explicit
1121 * FAILFAST). FAILFAST flags are identical for req and bio.
52d9e675 1122 */
1f98a13f 1123 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
a82afdfc
TH
1124 req->cmd_flags |= REQ_FAILFAST_MASK;
1125 else
1126 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
52d9e675 1127
1f98a13f 1128 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
e17fc0a1 1129 req->cmd_flags |= REQ_DISCARD;
1f98a13f 1130 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
e17fc0a1 1131 req->cmd_flags |= REQ_SOFTBARRIER;
1f98a13f 1132 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
e4025f6c 1133 req->cmd_flags |= REQ_HARDBARRIER;
52d9e675 1134
1f98a13f 1135 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
4aff5e23 1136 req->cmd_flags |= REQ_RW_SYNC;
1f98a13f 1137 if (bio_rw_flagged(bio, BIO_RW_META))
5404bc7a 1138 req->cmd_flags |= REQ_RW_META;
1f98a13f 1139 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
aeb6fafb 1140 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1141
52d9e675 1142 req->errors = 0;
a2dec7b3 1143 req->__sector = bio->bi_sector;
52d9e675 1144 req->ioprio = bio_prio(bio);
bc1c56fd 1145 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1146}
1147
644b2d99
JA
1148/*
1149 * Only disabling plugging for non-rotational devices if it does tagging
1150 * as well, otherwise we do need the proper merging
1151 */
1152static inline bool queue_should_plug(struct request_queue *q)
1153{
79da0644 1154 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1155}
1156
165125e1 1157static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1158{
450991bc 1159 struct request *req;
2e46e8b2
TH
1160 int el_ret;
1161 unsigned int bytes = bio->bi_size;
51da90fc 1162 const unsigned short prio = bio_prio(bio);
1f98a13f
JA
1163 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1164 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
80a761fd 1165 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1166 int rw_flags;
1da177e4 1167
6cafb12d 1168 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
db64f680
N
1169 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1170 bio_endio(bio, -EOPNOTSUPP);
1171 return 0;
1172 }
1da177e4
LT
1173 /*
1174 * low level driver can indicate that it wants pages above a
1175 * certain limit bounced to low memory (ie for highmem, or even
1176 * ISA dma in theory)
1177 */
1178 blk_queue_bounce(q, &bio);
1179
1da177e4
LT
1180 spin_lock_irq(q->queue_lock);
1181
1f98a13f 1182 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1da177e4
LT
1183 goto get_rq;
1184
1185 el_ret = elv_merge(q, &req, bio);
1186 switch (el_ret) {
6728cb0e
JA
1187 case ELEVATOR_BACK_MERGE:
1188 BUG_ON(!rq_mergeable(req));
1da177e4 1189
6728cb0e
JA
1190 if (!ll_back_merge_fn(q, req, bio))
1191 break;
1da177e4 1192
5f3ea37c 1193 trace_block_bio_backmerge(q, bio);
2056a782 1194
80a761fd
TH
1195 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1196 blk_rq_set_mixed_merge(req);
1197
6728cb0e
JA
1198 req->biotail->bi_next = bio;
1199 req->biotail = bio;
a2dec7b3 1200 req->__data_len += bytes;
6728cb0e 1201 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1202 if (!blk_rq_cpu_valid(req))
1203 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1204 drive_stat_acct(req, 0);
1205 if (!attempt_back_merge(q, req))
1206 elv_merged_request(q, req, el_ret);
1207 goto out;
1da177e4 1208
6728cb0e
JA
1209 case ELEVATOR_FRONT_MERGE:
1210 BUG_ON(!rq_mergeable(req));
1da177e4 1211
6728cb0e
JA
1212 if (!ll_front_merge_fn(q, req, bio))
1213 break;
1da177e4 1214
5f3ea37c 1215 trace_block_bio_frontmerge(q, bio);
2056a782 1216
80a761fd
TH
1217 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1218 blk_rq_set_mixed_merge(req);
1219 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1220 req->cmd_flags |= ff;
1221 }
1222
6728cb0e
JA
1223 bio->bi_next = req->bio;
1224 req->bio = bio;
1da177e4 1225
6728cb0e
JA
1226 /*
1227 * may not be valid. if the low level driver said
1228 * it didn't need a bounce buffer then it better
1229 * not touch req->buffer either...
1230 */
1231 req->buffer = bio_data(bio);
a2dec7b3
TH
1232 req->__sector = bio->bi_sector;
1233 req->__data_len += bytes;
6728cb0e 1234 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1235 if (!blk_rq_cpu_valid(req))
1236 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1237 drive_stat_acct(req, 0);
1238 if (!attempt_front_merge(q, req))
1239 elv_merged_request(q, req, el_ret);
1240 goto out;
1241
1242 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1243 default:
1244 ;
1da177e4
LT
1245 }
1246
450991bc 1247get_rq:
7749a8d4
JA
1248 /*
1249 * This sync check and mask will be re-done in init_request_from_bio(),
1250 * but we need to set it earlier to expose the sync flag to the
1251 * rq allocator and io schedulers.
1252 */
1253 rw_flags = bio_data_dir(bio);
1254 if (sync)
1255 rw_flags |= REQ_RW_SYNC;
1256
1da177e4 1257 /*
450991bc 1258 * Grab a free request. This is might sleep but can not fail.
d6344532 1259 * Returns with the queue unlocked.
450991bc 1260 */
7749a8d4 1261 req = get_request_wait(q, rw_flags, bio);
d6344532 1262
450991bc
NP
1263 /*
1264 * After dropping the lock and possibly sleeping here, our request
1265 * may now be mergeable after it had proven unmergeable (above).
1266 * We don't worry about that case for efficiency. It won't happen
1267 * often, and the elevators are able to handle it.
1da177e4 1268 */
52d9e675 1269 init_request_from_bio(req, bio);
1da177e4 1270
450991bc 1271 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1272 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1273 bio_flagged(bio, BIO_CPU_AFFINE))
1274 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1275 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1276 blk_plug_device(q);
1da177e4
LT
1277 add_request(q, req);
1278out:
644b2d99 1279 if (unplug || !queue_should_plug(q))
1da177e4 1280 __generic_unplug_device(q);
1da177e4
LT
1281 spin_unlock_irq(q->queue_lock);
1282 return 0;
1da177e4
LT
1283}
1284
1285/*
1286 * If bio->bi_dev is a partition, remap the location
1287 */
1288static inline void blk_partition_remap(struct bio *bio)
1289{
1290 struct block_device *bdev = bio->bi_bdev;
1291
bf2de6f5 1292 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1293 struct hd_struct *p = bdev->bd_part;
1294
1da177e4
LT
1295 bio->bi_sector += p->start_sect;
1296 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1297
5f3ea37c 1298 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1299 bdev->bd_dev,
c7149d6b 1300 bio->bi_sector - p->start_sect);
1da177e4
LT
1301 }
1302}
1303
1da177e4
LT
1304static void handle_bad_sector(struct bio *bio)
1305{
1306 char b[BDEVNAME_SIZE];
1307
1308 printk(KERN_INFO "attempt to access beyond end of device\n");
1309 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1310 bdevname(bio->bi_bdev, b),
1311 bio->bi_rw,
1312 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1313 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1314
1315 set_bit(BIO_EOF, &bio->bi_flags);
1316}
1317
c17bb495
AM
1318#ifdef CONFIG_FAIL_MAKE_REQUEST
1319
1320static DECLARE_FAULT_ATTR(fail_make_request);
1321
1322static int __init setup_fail_make_request(char *str)
1323{
1324 return setup_fault_attr(&fail_make_request, str);
1325}
1326__setup("fail_make_request=", setup_fail_make_request);
1327
1328static int should_fail_request(struct bio *bio)
1329{
eddb2e26
TH
1330 struct hd_struct *part = bio->bi_bdev->bd_part;
1331
1332 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1333 return should_fail(&fail_make_request, bio->bi_size);
1334
1335 return 0;
1336}
1337
1338static int __init fail_make_request_debugfs(void)
1339{
1340 return init_fault_attr_dentries(&fail_make_request,
1341 "fail_make_request");
1342}
1343
1344late_initcall(fail_make_request_debugfs);
1345
1346#else /* CONFIG_FAIL_MAKE_REQUEST */
1347
1348static inline int should_fail_request(struct bio *bio)
1349{
1350 return 0;
1351}
1352
1353#endif /* CONFIG_FAIL_MAKE_REQUEST */
1354
c07e2b41
JA
1355/*
1356 * Check whether this bio extends beyond the end of the device.
1357 */
1358static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1359{
1360 sector_t maxsector;
1361
1362 if (!nr_sectors)
1363 return 0;
1364
1365 /* Test device or partition size, when known. */
1366 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1367 if (maxsector) {
1368 sector_t sector = bio->bi_sector;
1369
1370 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1371 /*
1372 * This may well happen - the kernel calls bread()
1373 * without checking the size of the device, e.g., when
1374 * mounting a device.
1375 */
1376 handle_bad_sector(bio);
1377 return 1;
1378 }
1379 }
1380
1381 return 0;
1382}
1383
1da177e4 1384/**
710027a4 1385 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1386 * @bio: The bio describing the location in memory and on the device.
1387 *
1388 * generic_make_request() is used to make I/O requests of block
1389 * devices. It is passed a &struct bio, which describes the I/O that needs
1390 * to be done.
1391 *
1392 * generic_make_request() does not return any status. The
1393 * success/failure status of the request, along with notification of
1394 * completion, is delivered asynchronously through the bio->bi_end_io
1395 * function described (one day) else where.
1396 *
1397 * The caller of generic_make_request must make sure that bi_io_vec
1398 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1399 * set to describe the device address, and the
1400 * bi_end_io and optionally bi_private are set to describe how
1401 * completion notification should be signaled.
1402 *
1403 * generic_make_request and the drivers it calls may use bi_next if this
1404 * bio happens to be merged with someone else, and may change bi_dev and
1405 * bi_sector for remaps as it sees fit. So the values of these fields
1406 * should NOT be depended on after the call to generic_make_request.
1407 */
d89d8796 1408static inline void __generic_make_request(struct bio *bio)
1da177e4 1409{
165125e1 1410 struct request_queue *q;
5ddfe969 1411 sector_t old_sector;
1da177e4 1412 int ret, nr_sectors = bio_sectors(bio);
2056a782 1413 dev_t old_dev;
51fd77bd 1414 int err = -EIO;
1da177e4
LT
1415
1416 might_sleep();
1da177e4 1417
c07e2b41
JA
1418 if (bio_check_eod(bio, nr_sectors))
1419 goto end_io;
1da177e4
LT
1420
1421 /*
1422 * Resolve the mapping until finished. (drivers are
1423 * still free to implement/resolve their own stacking
1424 * by explicitly returning 0)
1425 *
1426 * NOTE: we don't repeat the blk_size check for each new device.
1427 * Stacking drivers are expected to know what they are doing.
1428 */
5ddfe969 1429 old_sector = -1;
2056a782 1430 old_dev = 0;
1da177e4
LT
1431 do {
1432 char b[BDEVNAME_SIZE];
1433
1434 q = bdev_get_queue(bio->bi_bdev);
a7384677 1435 if (unlikely(!q)) {
1da177e4
LT
1436 printk(KERN_ERR
1437 "generic_make_request: Trying to access "
1438 "nonexistent block-device %s (%Lu)\n",
1439 bdevname(bio->bi_bdev, b),
1440 (long long) bio->bi_sector);
a7384677 1441 goto end_io;
1da177e4
LT
1442 }
1443
67efc925
CH
1444 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1445 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1446 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1447 bdevname(bio->bi_bdev, b),
1448 bio_sectors(bio),
1449 queue_max_hw_sectors(q));
1da177e4
LT
1450 goto end_io;
1451 }
1452
fde6ad22 1453 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1454 goto end_io;
1455
c17bb495
AM
1456 if (should_fail_request(bio))
1457 goto end_io;
1458
1da177e4
LT
1459 /*
1460 * If this device has partitions, remap block n
1461 * of partition p to block n+start(p) of the disk.
1462 */
1463 blk_partition_remap(bio);
1464
7ba1ba12
MP
1465 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1466 goto end_io;
1467
5ddfe969 1468 if (old_sector != -1)
22a7c31a 1469 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1470
5ddfe969 1471 old_sector = bio->bi_sector;
2056a782
JA
1472 old_dev = bio->bi_bdev->bd_dev;
1473
c07e2b41
JA
1474 if (bio_check_eod(bio, nr_sectors))
1475 goto end_io;
a7384677 1476
1f98a13f 1477 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
c15227de 1478 !blk_queue_discard(q)) {
51fd77bd
JA
1479 err = -EOPNOTSUPP;
1480 goto end_io;
1481 }
5ddfe969 1482
01edede4
MK
1483 trace_block_bio_queue(q, bio);
1484
1da177e4
LT
1485 ret = q->make_request_fn(q, bio);
1486 } while (ret);
a7384677
TH
1487
1488 return;
1489
1490end_io:
1491 bio_endio(bio, err);
1da177e4
LT
1492}
1493
d89d8796
NB
1494/*
1495 * We only want one ->make_request_fn to be active at a time,
1496 * else stack usage with stacked devices could be a problem.
bddd87c7 1497 * So use current->bio_list to keep a list of requests
d89d8796 1498 * submited by a make_request_fn function.
bddd87c7 1499 * current->bio_list is also used as a flag to say if
d89d8796
NB
1500 * generic_make_request is currently active in this task or not.
1501 * If it is NULL, then no make_request is active. If it is non-NULL,
1502 * then a make_request is active, and new requests should be added
1503 * at the tail
1504 */
1505void generic_make_request(struct bio *bio)
1506{
bddd87c7
AM
1507 struct bio_list bio_list_on_stack;
1508
1509 if (current->bio_list) {
d89d8796 1510 /* make_request is active */
bddd87c7 1511 bio_list_add(current->bio_list, bio);
d89d8796
NB
1512 return;
1513 }
1514 /* following loop may be a bit non-obvious, and so deserves some
1515 * explanation.
1516 * Before entering the loop, bio->bi_next is NULL (as all callers
1517 * ensure that) so we have a list with a single bio.
1518 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1519 * we assign bio_list to a pointer to the bio_list_on_stack,
1520 * thus initialising the bio_list of new bios to be
d89d8796
NB
1521 * added. __generic_make_request may indeed add some more bios
1522 * through a recursive call to generic_make_request. If it
1523 * did, we find a non-NULL value in bio_list and re-enter the loop
1524 * from the top. In this case we really did just take the bio
bddd87c7
AM
1525 * of the top of the list (no pretending) and so remove it from
1526 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1527 *
1528 * The loop was structured like this to make only one call to
1529 * __generic_make_request (which is important as it is large and
1530 * inlined) and to keep the structure simple.
1531 */
1532 BUG_ON(bio->bi_next);
bddd87c7
AM
1533 bio_list_init(&bio_list_on_stack);
1534 current->bio_list = &bio_list_on_stack;
d89d8796 1535 do {
d89d8796 1536 __generic_make_request(bio);
bddd87c7 1537 bio = bio_list_pop(current->bio_list);
d89d8796 1538 } while (bio);
bddd87c7 1539 current->bio_list = NULL; /* deactivate */
d89d8796 1540}
1da177e4
LT
1541EXPORT_SYMBOL(generic_make_request);
1542
1543/**
710027a4 1544 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1545 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1546 * @bio: The &struct bio which describes the I/O
1547 *
1548 * submit_bio() is very similar in purpose to generic_make_request(), and
1549 * uses that function to do most of the work. Both are fairly rough
710027a4 1550 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1551 *
1552 */
1553void submit_bio(int rw, struct bio *bio)
1554{
1555 int count = bio_sectors(bio);
1556
22e2c507 1557 bio->bi_rw |= rw;
1da177e4 1558
bf2de6f5
JA
1559 /*
1560 * If it's a regular read/write or a barrier with data attached,
1561 * go through the normal accounting stuff before submission.
1562 */
a9c701e5 1563 if (bio_has_data(bio)) {
bf2de6f5
JA
1564 if (rw & WRITE) {
1565 count_vm_events(PGPGOUT, count);
1566 } else {
1567 task_io_account_read(bio->bi_size);
1568 count_vm_events(PGPGIN, count);
1569 }
1570
1571 if (unlikely(block_dump)) {
1572 char b[BDEVNAME_SIZE];
1573 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1574 current->comm, task_pid_nr(current),
bf2de6f5
JA
1575 (rw & WRITE) ? "WRITE" : "READ",
1576 (unsigned long long)bio->bi_sector,
6728cb0e 1577 bdevname(bio->bi_bdev, b));
bf2de6f5 1578 }
1da177e4
LT
1579 }
1580
1581 generic_make_request(bio);
1582}
1da177e4
LT
1583EXPORT_SYMBOL(submit_bio);
1584
82124d60
KU
1585/**
1586 * blk_rq_check_limits - Helper function to check a request for the queue limit
1587 * @q: the queue
1588 * @rq: the request being checked
1589 *
1590 * Description:
1591 * @rq may have been made based on weaker limitations of upper-level queues
1592 * in request stacking drivers, and it may violate the limitation of @q.
1593 * Since the block layer and the underlying device driver trust @rq
1594 * after it is inserted to @q, it should be checked against @q before
1595 * the insertion using this generic function.
1596 *
1597 * This function should also be useful for request stacking drivers
1598 * in some cases below, so export this fuction.
1599 * Request stacking drivers like request-based dm may change the queue
1600 * limits while requests are in the queue (e.g. dm's table swapping).
1601 * Such request stacking drivers should check those requests agaist
1602 * the new queue limits again when they dispatch those requests,
1603 * although such checkings are also done against the old queue limits
1604 * when submitting requests.
1605 */
1606int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1607{
ae03bf63
MP
1608 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1609 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1610 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1611 return -EIO;
1612 }
1613
1614 /*
1615 * queue's settings related to segment counting like q->bounce_pfn
1616 * may differ from that of other stacking queues.
1617 * Recalculate it to check the request correctly on this queue's
1618 * limitation.
1619 */
1620 blk_recalc_rq_segments(rq);
8a78362c 1621 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1622 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1623 return -EIO;
1624 }
1625
1626 return 0;
1627}
1628EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1629
1630/**
1631 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1632 * @q: the queue to submit the request
1633 * @rq: the request being queued
1634 */
1635int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1636{
1637 unsigned long flags;
1638
1639 if (blk_rq_check_limits(q, rq))
1640 return -EIO;
1641
1642#ifdef CONFIG_FAIL_MAKE_REQUEST
1643 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1644 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1645 return -EIO;
1646#endif
1647
1648 spin_lock_irqsave(q->queue_lock, flags);
1649
1650 /*
1651 * Submitting request must be dequeued before calling this function
1652 * because it will be linked to another request_queue
1653 */
1654 BUG_ON(blk_queued_rq(rq));
1655
1656 drive_stat_acct(rq, 1);
1657 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1658
1659 spin_unlock_irqrestore(q->queue_lock, flags);
1660
1661 return 0;
1662}
1663EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1664
80a761fd
TH
1665/**
1666 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1667 * @rq: request to examine
1668 *
1669 * Description:
1670 * A request could be merge of IOs which require different failure
1671 * handling. This function determines the number of bytes which
1672 * can be failed from the beginning of the request without
1673 * crossing into area which need to be retried further.
1674 *
1675 * Return:
1676 * The number of bytes to fail.
1677 *
1678 * Context:
1679 * queue_lock must be held.
1680 */
1681unsigned int blk_rq_err_bytes(const struct request *rq)
1682{
1683 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1684 unsigned int bytes = 0;
1685 struct bio *bio;
1686
1687 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1688 return blk_rq_bytes(rq);
1689
1690 /*
1691 * Currently the only 'mixing' which can happen is between
1692 * different fastfail types. We can safely fail portions
1693 * which have all the failfast bits that the first one has -
1694 * the ones which are at least as eager to fail as the first
1695 * one.
1696 */
1697 for (bio = rq->bio; bio; bio = bio->bi_next) {
1698 if ((bio->bi_rw & ff) != ff)
1699 break;
1700 bytes += bio->bi_size;
1701 }
1702
1703 /* this could lead to infinite loop */
1704 BUG_ON(blk_rq_bytes(rq) && !bytes);
1705 return bytes;
1706}
1707EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1708
bc58ba94
JA
1709static void blk_account_io_completion(struct request *req, unsigned int bytes)
1710{
c2553b58 1711 if (blk_do_io_stat(req)) {
bc58ba94
JA
1712 const int rw = rq_data_dir(req);
1713 struct hd_struct *part;
1714 int cpu;
1715
1716 cpu = part_stat_lock();
83096ebf 1717 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1718 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1719 part_stat_unlock();
1720 }
1721}
1722
1723static void blk_account_io_done(struct request *req)
1724{
bc58ba94
JA
1725 /*
1726 * Account IO completion. bar_rq isn't accounted as a normal
1727 * IO on queueing nor completion. Accounting the containing
1728 * request is enough.
1729 */
c2553b58 1730 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1731 unsigned long duration = jiffies - req->start_time;
1732 const int rw = rq_data_dir(req);
1733 struct hd_struct *part;
1734 int cpu;
1735
1736 cpu = part_stat_lock();
83096ebf 1737 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1738
1739 part_stat_inc(cpu, part, ios[rw]);
1740 part_stat_add(cpu, part, ticks[rw], duration);
1741 part_round_stats(cpu, part);
316d315b 1742 part_dec_in_flight(part, rw);
bc58ba94
JA
1743
1744 part_stat_unlock();
1745 }
1746}
1747
3bcddeac 1748/**
9934c8c0
TH
1749 * blk_peek_request - peek at the top of a request queue
1750 * @q: request queue to peek at
1751 *
1752 * Description:
1753 * Return the request at the top of @q. The returned request
1754 * should be started using blk_start_request() before LLD starts
1755 * processing it.
1756 *
1757 * Return:
1758 * Pointer to the request at the top of @q if available. Null
1759 * otherwise.
1760 *
1761 * Context:
1762 * queue_lock must be held.
1763 */
1764struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1765{
1766 struct request *rq;
1767 int ret;
1768
1769 while ((rq = __elv_next_request(q)) != NULL) {
1770 if (!(rq->cmd_flags & REQ_STARTED)) {
1771 /*
1772 * This is the first time the device driver
1773 * sees this request (possibly after
1774 * requeueing). Notify IO scheduler.
1775 */
1776 if (blk_sorted_rq(rq))
1777 elv_activate_rq(q, rq);
1778
1779 /*
1780 * just mark as started even if we don't start
1781 * it, a request that has been delayed should
1782 * not be passed by new incoming requests
1783 */
1784 rq->cmd_flags |= REQ_STARTED;
1785 trace_block_rq_issue(q, rq);
1786 }
1787
1788 if (!q->boundary_rq || q->boundary_rq == rq) {
1789 q->end_sector = rq_end_sector(rq);
1790 q->boundary_rq = NULL;
1791 }
1792
1793 if (rq->cmd_flags & REQ_DONTPREP)
1794 break;
1795
2e46e8b2 1796 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1797 /*
1798 * make sure space for the drain appears we
1799 * know we can do this because max_hw_segments
1800 * has been adjusted to be one fewer than the
1801 * device can handle
1802 */
1803 rq->nr_phys_segments++;
1804 }
1805
1806 if (!q->prep_rq_fn)
1807 break;
1808
1809 ret = q->prep_rq_fn(q, rq);
1810 if (ret == BLKPREP_OK) {
1811 break;
1812 } else if (ret == BLKPREP_DEFER) {
1813 /*
1814 * the request may have been (partially) prepped.
1815 * we need to keep this request in the front to
1816 * avoid resource deadlock. REQ_STARTED will
1817 * prevent other fs requests from passing this one.
1818 */
2e46e8b2 1819 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1820 !(rq->cmd_flags & REQ_DONTPREP)) {
1821 /*
1822 * remove the space for the drain we added
1823 * so that we don't add it again
1824 */
1825 --rq->nr_phys_segments;
1826 }
1827
1828 rq = NULL;
1829 break;
1830 } else if (ret == BLKPREP_KILL) {
1831 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1832 /*
1833 * Mark this request as started so we don't trigger
1834 * any debug logic in the end I/O path.
1835 */
1836 blk_start_request(rq);
40cbbb78 1837 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1838 } else {
1839 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1840 break;
1841 }
1842 }
1843
1844 return rq;
1845}
9934c8c0 1846EXPORT_SYMBOL(blk_peek_request);
158dbda0 1847
9934c8c0 1848void blk_dequeue_request(struct request *rq)
158dbda0 1849{
9934c8c0
TH
1850 struct request_queue *q = rq->q;
1851
158dbda0
TH
1852 BUG_ON(list_empty(&rq->queuelist));
1853 BUG_ON(ELV_ON_HASH(rq));
1854
1855 list_del_init(&rq->queuelist);
1856
1857 /*
1858 * the time frame between a request being removed from the lists
1859 * and to it is freed is accounted as io that is in progress at
1860 * the driver side.
1861 */
9195291e 1862 if (blk_account_rq(rq)) {
0a7ae2ff 1863 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1864 set_io_start_time_ns(rq);
1865 }
158dbda0
TH
1866}
1867
9934c8c0
TH
1868/**
1869 * blk_start_request - start request processing on the driver
1870 * @req: request to dequeue
1871 *
1872 * Description:
1873 * Dequeue @req and start timeout timer on it. This hands off the
1874 * request to the driver.
1875 *
1876 * Block internal functions which don't want to start timer should
1877 * call blk_dequeue_request().
1878 *
1879 * Context:
1880 * queue_lock must be held.
1881 */
1882void blk_start_request(struct request *req)
1883{
1884 blk_dequeue_request(req);
1885
1886 /*
5f49f631
TH
1887 * We are now handing the request to the hardware, initialize
1888 * resid_len to full count and add the timeout handler.
9934c8c0 1889 */
5f49f631 1890 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1891 if (unlikely(blk_bidi_rq(req)))
1892 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1893
9934c8c0
TH
1894 blk_add_timer(req);
1895}
1896EXPORT_SYMBOL(blk_start_request);
1897
1898/**
1899 * blk_fetch_request - fetch a request from a request queue
1900 * @q: request queue to fetch a request from
1901 *
1902 * Description:
1903 * Return the request at the top of @q. The request is started on
1904 * return and LLD can start processing it immediately.
1905 *
1906 * Return:
1907 * Pointer to the request at the top of @q if available. Null
1908 * otherwise.
1909 *
1910 * Context:
1911 * queue_lock must be held.
1912 */
1913struct request *blk_fetch_request(struct request_queue *q)
1914{
1915 struct request *rq;
1916
1917 rq = blk_peek_request(q);
1918 if (rq)
1919 blk_start_request(rq);
1920 return rq;
1921}
1922EXPORT_SYMBOL(blk_fetch_request);
1923
3bcddeac 1924/**
2e60e022 1925 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1926 * @req: the request being processed
710027a4 1927 * @error: %0 for success, < %0 for error
8ebf9756 1928 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1929 *
1930 * Description:
8ebf9756
RD
1931 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1932 * the request structure even if @req doesn't have leftover.
1933 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1934 *
1935 * This special helper function is only for request stacking drivers
1936 * (e.g. request-based dm) so that they can handle partial completion.
1937 * Actual device drivers should use blk_end_request instead.
1938 *
1939 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1940 * %false return from this function.
3bcddeac
KU
1941 *
1942 * Return:
2e60e022
TH
1943 * %false - this request doesn't have any more data
1944 * %true - this request has more data
3bcddeac 1945 **/
2e60e022 1946bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1947{
5450d3e1 1948 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1949 struct bio *bio;
1950
2e60e022
TH
1951 if (!req->bio)
1952 return false;
1953
5f3ea37c 1954 trace_block_rq_complete(req->q, req);
2056a782 1955
1da177e4 1956 /*
6f41469c
TH
1957 * For fs requests, rq is just carrier of independent bio's
1958 * and each partial completion should be handled separately.
1959 * Reset per-request error on each partial completion.
1960 *
1961 * TODO: tj: This is too subtle. It would be better to let
1962 * low level drivers do what they see fit.
1da177e4 1963 */
6f41469c 1964 if (blk_fs_request(req))
1da177e4
LT
1965 req->errors = 0;
1966
6728cb0e
JA
1967 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1968 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 1969 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 1970 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
1971 }
1972
bc58ba94 1973 blk_account_io_completion(req, nr_bytes);
d72d904a 1974
1da177e4
LT
1975 total_bytes = bio_nbytes = 0;
1976 while ((bio = req->bio) != NULL) {
1977 int nbytes;
1978
1979 if (nr_bytes >= bio->bi_size) {
1980 req->bio = bio->bi_next;
1981 nbytes = bio->bi_size;
5bb23a68 1982 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1983 next_idx = 0;
1984 bio_nbytes = 0;
1985 } else {
1986 int idx = bio->bi_idx + next_idx;
1987
af498d7f 1988 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 1989 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1990 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 1991 __func__, idx, bio->bi_vcnt);
1da177e4
LT
1992 break;
1993 }
1994
1995 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1996 BIO_BUG_ON(nbytes > bio->bi_size);
1997
1998 /*
1999 * not a complete bvec done
2000 */
2001 if (unlikely(nbytes > nr_bytes)) {
2002 bio_nbytes += nr_bytes;
2003 total_bytes += nr_bytes;
2004 break;
2005 }
2006
2007 /*
2008 * advance to the next vector
2009 */
2010 next_idx++;
2011 bio_nbytes += nbytes;
2012 }
2013
2014 total_bytes += nbytes;
2015 nr_bytes -= nbytes;
2016
6728cb0e
JA
2017 bio = req->bio;
2018 if (bio) {
1da177e4
LT
2019 /*
2020 * end more in this run, or just return 'not-done'
2021 */
2022 if (unlikely(nr_bytes <= 0))
2023 break;
2024 }
2025 }
2026
2027 /*
2028 * completely done
2029 */
2e60e022
TH
2030 if (!req->bio) {
2031 /*
2032 * Reset counters so that the request stacking driver
2033 * can find how many bytes remain in the request
2034 * later.
2035 */
a2dec7b3 2036 req->__data_len = 0;
2e60e022
TH
2037 return false;
2038 }
1da177e4
LT
2039
2040 /*
2041 * if the request wasn't completed, update state
2042 */
2043 if (bio_nbytes) {
5bb23a68 2044 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2045 bio->bi_idx += next_idx;
2046 bio_iovec(bio)->bv_offset += nr_bytes;
2047 bio_iovec(bio)->bv_len -= nr_bytes;
2048 }
2049
a2dec7b3 2050 req->__data_len -= total_bytes;
2e46e8b2
TH
2051 req->buffer = bio_data(req->bio);
2052
2053 /* update sector only for requests with clear definition of sector */
2054 if (blk_fs_request(req) || blk_discard_rq(req))
a2dec7b3 2055 req->__sector += total_bytes >> 9;
2e46e8b2 2056
80a761fd
TH
2057 /* mixed attributes always follow the first bio */
2058 if (req->cmd_flags & REQ_MIXED_MERGE) {
2059 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2060 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2061 }
2062
2e46e8b2
TH
2063 /*
2064 * If total number of sectors is less than the first segment
2065 * size, something has gone terribly wrong.
2066 */
2067 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2068 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2069 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2070 }
2071
2072 /* recalculate the number of segments */
1da177e4 2073 blk_recalc_rq_segments(req);
2e46e8b2 2074
2e60e022 2075 return true;
1da177e4 2076}
2e60e022 2077EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2078
2e60e022
TH
2079static bool blk_update_bidi_request(struct request *rq, int error,
2080 unsigned int nr_bytes,
2081 unsigned int bidi_bytes)
5efccd17 2082{
2e60e022
TH
2083 if (blk_update_request(rq, error, nr_bytes))
2084 return true;
5efccd17 2085
2e60e022
TH
2086 /* Bidi request must be completed as a whole */
2087 if (unlikely(blk_bidi_rq(rq)) &&
2088 blk_update_request(rq->next_rq, error, bidi_bytes))
2089 return true;
5efccd17 2090
2e60e022
TH
2091 add_disk_randomness(rq->rq_disk);
2092
2093 return false;
1da177e4
LT
2094}
2095
1da177e4
LT
2096/*
2097 * queue lock must be held
2098 */
2e60e022 2099static void blk_finish_request(struct request *req, int error)
1da177e4 2100{
b8286239
KU
2101 if (blk_rq_tagged(req))
2102 blk_queue_end_tag(req->q, req);
2103
ba396a6c 2104 BUG_ON(blk_queued_rq(req));
1da177e4
LT
2105
2106 if (unlikely(laptop_mode) && blk_fs_request(req))
31373d09 2107 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2108
e78042e5
MA
2109 blk_delete_timer(req);
2110
bc58ba94 2111 blk_account_io_done(req);
b8286239 2112
1da177e4 2113 if (req->end_io)
8ffdc655 2114 req->end_io(req, error);
b8286239
KU
2115 else {
2116 if (blk_bidi_rq(req))
2117 __blk_put_request(req->next_rq->q, req->next_rq);
2118
1da177e4 2119 __blk_put_request(req->q, req);
b8286239 2120 }
1da177e4
LT
2121}
2122
3b11313a 2123/**
2e60e022
TH
2124 * blk_end_bidi_request - Complete a bidi request
2125 * @rq: the request to complete
2126 * @error: %0 for success, < %0 for error
2127 * @nr_bytes: number of bytes to complete @rq
2128 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2129 *
2130 * Description:
e3a04fe3 2131 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2132 * Drivers that supports bidi can safely call this member for any
2133 * type of request, bidi or uni. In the later case @bidi_bytes is
2134 * just ignored.
336cdb40
KU
2135 *
2136 * Return:
2e60e022
TH
2137 * %false - we are done with this request
2138 * %true - still buffers pending for this request
a0cd1285 2139 **/
b1f74493 2140static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2141 unsigned int nr_bytes, unsigned int bidi_bytes)
2142{
336cdb40 2143 struct request_queue *q = rq->q;
2e60e022 2144 unsigned long flags;
32fab448 2145
2e60e022
TH
2146 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2147 return true;
32fab448 2148
336cdb40 2149 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2150 blk_finish_request(rq, error);
336cdb40
KU
2151 spin_unlock_irqrestore(q->queue_lock, flags);
2152
2e60e022 2153 return false;
32fab448
KU
2154}
2155
336cdb40 2156/**
2e60e022
TH
2157 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2158 * @rq: the request to complete
710027a4 2159 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2160 * @nr_bytes: number of bytes to complete @rq
2161 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2162 *
2163 * Description:
2e60e022
TH
2164 * Identical to blk_end_bidi_request() except that queue lock is
2165 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2166 *
2167 * Return:
2e60e022
TH
2168 * %false - we are done with this request
2169 * %true - still buffers pending for this request
336cdb40 2170 **/
b1f74493
FT
2171static bool __blk_end_bidi_request(struct request *rq, int error,
2172 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2173{
2e60e022
TH
2174 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2175 return true;
336cdb40 2176
2e60e022 2177 blk_finish_request(rq, error);
336cdb40 2178
2e60e022 2179 return false;
336cdb40 2180}
e19a3ab0
KU
2181
2182/**
2183 * blk_end_request - Helper function for drivers to complete the request.
2184 * @rq: the request being processed
710027a4 2185 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2186 * @nr_bytes: number of bytes to complete
2187 *
2188 * Description:
2189 * Ends I/O on a number of bytes attached to @rq.
2190 * If @rq has leftover, sets it up for the next range of segments.
2191 *
2192 * Return:
b1f74493
FT
2193 * %false - we are done with this request
2194 * %true - still buffers pending for this request
e19a3ab0 2195 **/
b1f74493 2196bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2197{
b1f74493 2198 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2199}
56ad1740 2200EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2201
2202/**
b1f74493
FT
2203 * blk_end_request_all - Helper function for drives to finish the request.
2204 * @rq: the request to finish
8ebf9756 2205 * @error: %0 for success, < %0 for error
336cdb40
KU
2206 *
2207 * Description:
b1f74493
FT
2208 * Completely finish @rq.
2209 */
2210void blk_end_request_all(struct request *rq, int error)
336cdb40 2211{
b1f74493
FT
2212 bool pending;
2213 unsigned int bidi_bytes = 0;
336cdb40 2214
b1f74493
FT
2215 if (unlikely(blk_bidi_rq(rq)))
2216 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2217
b1f74493
FT
2218 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2219 BUG_ON(pending);
2220}
56ad1740 2221EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2222
b1f74493
FT
2223/**
2224 * blk_end_request_cur - Helper function to finish the current request chunk.
2225 * @rq: the request to finish the current chunk for
8ebf9756 2226 * @error: %0 for success, < %0 for error
b1f74493
FT
2227 *
2228 * Description:
2229 * Complete the current consecutively mapped chunk from @rq.
2230 *
2231 * Return:
2232 * %false - we are done with this request
2233 * %true - still buffers pending for this request
2234 */
2235bool blk_end_request_cur(struct request *rq, int error)
2236{
2237 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2238}
56ad1740 2239EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2240
80a761fd
TH
2241/**
2242 * blk_end_request_err - Finish a request till the next failure boundary.
2243 * @rq: the request to finish till the next failure boundary for
2244 * @error: must be negative errno
2245 *
2246 * Description:
2247 * Complete @rq till the next failure boundary.
2248 *
2249 * Return:
2250 * %false - we are done with this request
2251 * %true - still buffers pending for this request
2252 */
2253bool blk_end_request_err(struct request *rq, int error)
2254{
2255 WARN_ON(error >= 0);
2256 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2257}
2258EXPORT_SYMBOL_GPL(blk_end_request_err);
2259
e3a04fe3 2260/**
b1f74493
FT
2261 * __blk_end_request - Helper function for drivers to complete the request.
2262 * @rq: the request being processed
2263 * @error: %0 for success, < %0 for error
2264 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2265 *
2266 * Description:
b1f74493 2267 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2268 *
2269 * Return:
b1f74493
FT
2270 * %false - we are done with this request
2271 * %true - still buffers pending for this request
e3a04fe3 2272 **/
b1f74493 2273bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2274{
b1f74493 2275 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2276}
56ad1740 2277EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2278
32fab448 2279/**
b1f74493
FT
2280 * __blk_end_request_all - Helper function for drives to finish the request.
2281 * @rq: the request to finish
8ebf9756 2282 * @error: %0 for success, < %0 for error
32fab448
KU
2283 *
2284 * Description:
b1f74493 2285 * Completely finish @rq. Must be called with queue lock held.
32fab448 2286 */
b1f74493 2287void __blk_end_request_all(struct request *rq, int error)
32fab448 2288{
b1f74493
FT
2289 bool pending;
2290 unsigned int bidi_bytes = 0;
2291
2292 if (unlikely(blk_bidi_rq(rq)))
2293 bidi_bytes = blk_rq_bytes(rq->next_rq);
2294
2295 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2296 BUG_ON(pending);
32fab448 2297}
56ad1740 2298EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2299
e19a3ab0 2300/**
b1f74493
FT
2301 * __blk_end_request_cur - Helper function to finish the current request chunk.
2302 * @rq: the request to finish the current chunk for
8ebf9756 2303 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2304 *
2305 * Description:
b1f74493
FT
2306 * Complete the current consecutively mapped chunk from @rq. Must
2307 * be called with queue lock held.
e19a3ab0
KU
2308 *
2309 * Return:
b1f74493
FT
2310 * %false - we are done with this request
2311 * %true - still buffers pending for this request
2312 */
2313bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2314{
b1f74493 2315 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2316}
56ad1740 2317EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2318
80a761fd
TH
2319/**
2320 * __blk_end_request_err - Finish a request till the next failure boundary.
2321 * @rq: the request to finish till the next failure boundary for
2322 * @error: must be negative errno
2323 *
2324 * Description:
2325 * Complete @rq till the next failure boundary. Must be called
2326 * with queue lock held.
2327 *
2328 * Return:
2329 * %false - we are done with this request
2330 * %true - still buffers pending for this request
2331 */
2332bool __blk_end_request_err(struct request *rq, int error)
2333{
2334 WARN_ON(error >= 0);
2335 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2336}
2337EXPORT_SYMBOL_GPL(__blk_end_request_err);
2338
86db1e29
JA
2339void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2340 struct bio *bio)
1da177e4 2341{
a82afdfc
TH
2342 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2343 rq->cmd_flags |= bio->bi_rw & REQ_RW;
1da177e4 2344
fb2dce86
DW
2345 if (bio_has_data(bio)) {
2346 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2347 rq->buffer = bio_data(bio);
2348 }
a2dec7b3 2349 rq->__data_len = bio->bi_size;
1da177e4 2350 rq->bio = rq->biotail = bio;
1da177e4 2351
66846572
N
2352 if (bio->bi_bdev)
2353 rq->rq_disk = bio->bi_bdev->bd_disk;
2354}
1da177e4 2355
2d4dc890
IL
2356#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2357/**
2358 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2359 * @rq: the request to be flushed
2360 *
2361 * Description:
2362 * Flush all pages in @rq.
2363 */
2364void rq_flush_dcache_pages(struct request *rq)
2365{
2366 struct req_iterator iter;
2367 struct bio_vec *bvec;
2368
2369 rq_for_each_segment(bvec, rq, iter)
2370 flush_dcache_page(bvec->bv_page);
2371}
2372EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2373#endif
2374
ef9e3fac
KU
2375/**
2376 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2377 * @q : the queue of the device being checked
2378 *
2379 * Description:
2380 * Check if underlying low-level drivers of a device are busy.
2381 * If the drivers want to export their busy state, they must set own
2382 * exporting function using blk_queue_lld_busy() first.
2383 *
2384 * Basically, this function is used only by request stacking drivers
2385 * to stop dispatching requests to underlying devices when underlying
2386 * devices are busy. This behavior helps more I/O merging on the queue
2387 * of the request stacking driver and prevents I/O throughput regression
2388 * on burst I/O load.
2389 *
2390 * Return:
2391 * 0 - Not busy (The request stacking driver should dispatch request)
2392 * 1 - Busy (The request stacking driver should stop dispatching request)
2393 */
2394int blk_lld_busy(struct request_queue *q)
2395{
2396 if (q->lld_busy_fn)
2397 return q->lld_busy_fn(q);
2398
2399 return 0;
2400}
2401EXPORT_SYMBOL_GPL(blk_lld_busy);
2402
b0fd271d
KU
2403/**
2404 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2405 * @rq: the clone request to be cleaned up
2406 *
2407 * Description:
2408 * Free all bios in @rq for a cloned request.
2409 */
2410void blk_rq_unprep_clone(struct request *rq)
2411{
2412 struct bio *bio;
2413
2414 while ((bio = rq->bio) != NULL) {
2415 rq->bio = bio->bi_next;
2416
2417 bio_put(bio);
2418 }
2419}
2420EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2421
2422/*
2423 * Copy attributes of the original request to the clone request.
2424 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2425 */
2426static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2427{
2428 dst->cpu = src->cpu;
2429 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2430 dst->cmd_type = src->cmd_type;
2431 dst->__sector = blk_rq_pos(src);
2432 dst->__data_len = blk_rq_bytes(src);
2433 dst->nr_phys_segments = src->nr_phys_segments;
2434 dst->ioprio = src->ioprio;
2435 dst->extra_len = src->extra_len;
2436}
2437
2438/**
2439 * blk_rq_prep_clone - Helper function to setup clone request
2440 * @rq: the request to be setup
2441 * @rq_src: original request to be cloned
2442 * @bs: bio_set that bios for clone are allocated from
2443 * @gfp_mask: memory allocation mask for bio
2444 * @bio_ctr: setup function to be called for each clone bio.
2445 * Returns %0 for success, non %0 for failure.
2446 * @data: private data to be passed to @bio_ctr
2447 *
2448 * Description:
2449 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2450 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2451 * are not copied, and copying such parts is the caller's responsibility.
2452 * Also, pages which the original bios are pointing to are not copied
2453 * and the cloned bios just point same pages.
2454 * So cloned bios must be completed before original bios, which means
2455 * the caller must complete @rq before @rq_src.
2456 */
2457int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2458 struct bio_set *bs, gfp_t gfp_mask,
2459 int (*bio_ctr)(struct bio *, struct bio *, void *),
2460 void *data)
2461{
2462 struct bio *bio, *bio_src;
2463
2464 if (!bs)
2465 bs = fs_bio_set;
2466
2467 blk_rq_init(NULL, rq);
2468
2469 __rq_for_each_bio(bio_src, rq_src) {
2470 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2471 if (!bio)
2472 goto free_and_out;
2473
2474 __bio_clone(bio, bio_src);
2475
2476 if (bio_integrity(bio_src) &&
7878cba9 2477 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2478 goto free_and_out;
2479
2480 if (bio_ctr && bio_ctr(bio, bio_src, data))
2481 goto free_and_out;
2482
2483 if (rq->bio) {
2484 rq->biotail->bi_next = bio;
2485 rq->biotail = bio;
2486 } else
2487 rq->bio = rq->biotail = bio;
2488 }
2489
2490 __blk_rq_prep_clone(rq, rq_src);
2491
2492 return 0;
2493
2494free_and_out:
2495 if (bio)
2496 bio_free(bio, bs);
2497 blk_rq_unprep_clone(rq);
2498
2499 return -ENOMEM;
2500}
2501EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2502
18887ad9 2503int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2504{
2505 return queue_work(kblockd_workqueue, work);
2506}
1da177e4
LT
2507EXPORT_SYMBOL(kblockd_schedule_work);
2508
1da177e4
LT
2509int __init blk_dev_init(void)
2510{
9eb55b03
NK
2511 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2512 sizeof(((struct request *)0)->cmd_flags));
2513
1da177e4
LT
2514 kblockd_workqueue = create_workqueue("kblockd");
2515 if (!kblockd_workqueue)
2516 panic("Failed to create kblockd\n");
2517
2518 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2519 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2520
8324aa91 2521 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2522 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2523
d38ecf93 2524 return 0;
1da177e4 2525}