]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
highmem: use bio_has_data() in the bounce path
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
165125e1 36static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
37
38/*
39 * For the allocated request tables
40 */
5ece6c52 41static struct kmem_cache *request_cachep;
1da177e4
LT
42
43/*
44 * For queue allocation
45 */
6728cb0e 46struct kmem_cache *blk_requestq_cachep;
1da177e4 47
1da177e4
LT
48/*
49 * Controlling structure to kblockd
50 */
ff856bad 51static struct workqueue_struct *kblockd_workqueue;
1da177e4 52
ff856bad
JA
53static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
26b8256e
JA
55static void drive_stat_acct(struct request *rq, int new_io)
56{
28f13702 57 struct hd_struct *part;
26b8256e
JA
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
28f13702
JA
63 part = get_part(rq->rq_disk, rq->sector);
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
26b8256e
JA
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
6f2576af
JM
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
72 }
26b8256e
JA
73 }
74}
75
8324aa91 76void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
77{
78 int nr;
79
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
89}
90
1da177e4
LT
91/**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
94 *
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
97 *
98 * Will return NULL if the request queue cannot be located.
99 */
100struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101{
102 struct backing_dev_info *ret = NULL;
165125e1 103 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
104
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
108}
1da177e4
LT
109EXPORT_SYMBOL(blk_get_backing_dev_info);
110
2a4aa30c 111void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 112{
1afb20f3
FT
113 memset(rq, 0, sizeof(*rq));
114
1da177e4 115 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 116 INIT_LIST_HEAD(&rq->donelist);
63a71386
JA
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 121 rq->cmd = rq->__cmd;
63a71386 122 rq->tag = -1;
1da177e4 123 rq->ref_count = 1;
1da177e4 124}
2a4aa30c 125EXPORT_SYMBOL(blk_rq_init);
1da177e4 126
5bb23a68
N
127static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
1da177e4 129{
165125e1 130 struct request_queue *q = rq->q;
797e7dbb 131
5bb23a68
N
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
797e7dbb 137
5bb23a68 138 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 140 __func__, nbytes, bio->bi_size);
5bb23a68
N
141 nbytes = bio->bi_size;
142 }
797e7dbb 143
5bb23a68
N
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
146
147 if (bio_integrity(bio))
148 bio_integrity_advance(bio, nbytes);
149
5bb23a68 150 if (bio->bi_size == 0)
6712ecf8 151 bio_endio(bio, error);
5bb23a68
N
152 } else {
153
154 /*
155 * Okay, this is the barrier request in progress, just
156 * record the error;
157 */
158 if (error && !q->orderr)
159 q->orderr = error;
160 }
1da177e4 161}
1da177e4 162
1da177e4
LT
163void blk_dump_rq_flags(struct request *rq, char *msg)
164{
165 int bit;
166
6728cb0e 167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 rq->cmd_flags);
1da177e4 170
6728cb0e
JA
171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq->sector,
173 rq->nr_sectors,
174 rq->current_nr_sectors);
175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq->bio, rq->biotail,
177 rq->buffer, rq->data,
178 rq->data_len);
1da177e4 179
4aff5e23 180 if (blk_pc_request(rq)) {
6728cb0e 181 printk(KERN_INFO " cdb: ");
d34c87e4 182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
185 }
186}
1da177e4
LT
187EXPORT_SYMBOL(blk_dump_rq_flags);
188
1da177e4
LT
189/*
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
193 *
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
196 */
165125e1 197void blk_plug_device(struct request_queue *q)
1da177e4
LT
198{
199 WARN_ON(!irqs_disabled());
200
201 /*
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
204 */
7daac490 205 if (blk_queue_stopped(q))
1da177e4
LT
206 return;
207
e48ec690 208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 }
1da177e4 212}
1da177e4
LT
213EXPORT_SYMBOL(blk_plug_device);
214
6c5e0c4d
JA
215/**
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
218 *
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
222 **/
223void blk_plug_device_unlocked(struct request_queue *q)
224{
225 unsigned long flags;
226
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
230}
231EXPORT_SYMBOL(blk_plug_device_unlocked);
232
1da177e4
LT
233/*
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
236 */
165125e1 237int blk_remove_plug(struct request_queue *q)
1da177e4
LT
238{
239 WARN_ON(!irqs_disabled());
240
e48ec690 241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
242 return 0;
243
244 del_timer(&q->unplug_timer);
245 return 1;
246}
1da177e4
LT
247EXPORT_SYMBOL(blk_remove_plug);
248
249/*
250 * remove the plug and let it rip..
251 */
165125e1 252void __generic_unplug_device(struct request_queue *q)
1da177e4 253{
7daac490 254 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
255 return;
256
257 if (!blk_remove_plug(q))
258 return;
259
22e2c507 260 q->request_fn(q);
1da177e4
LT
261}
262EXPORT_SYMBOL(__generic_unplug_device);
263
264/**
265 * generic_unplug_device - fire a request queue
165125e1 266 * @q: The &struct request_queue in question
1da177e4
LT
267 *
268 * Description:
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
273 * transfers started.
274 **/
165125e1 275void generic_unplug_device(struct request_queue *q)
1da177e4 276{
dbaf2c00
JA
277 if (blk_queue_plugged(q)) {
278 spin_lock_irq(q->queue_lock);
279 __generic_unplug_device(q);
280 spin_unlock_irq(q->queue_lock);
281 }
1da177e4
LT
282}
283EXPORT_SYMBOL(generic_unplug_device);
284
285static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 struct page *page)
287{
165125e1 288 struct request_queue *q = bdi->unplug_io_data;
1da177e4 289
2ad8b1ef 290 blk_unplug(q);
1da177e4
LT
291}
292
86db1e29 293void blk_unplug_work(struct work_struct *work)
1da177e4 294{
165125e1
JA
295 struct request_queue *q =
296 container_of(work, struct request_queue, unplug_work);
1da177e4 297
2056a782
JA
298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 q->rq.count[READ] + q->rq.count[WRITE]);
300
1da177e4
LT
301 q->unplug_fn(q);
302}
303
86db1e29 304void blk_unplug_timeout(unsigned long data)
1da177e4 305{
165125e1 306 struct request_queue *q = (struct request_queue *)data;
1da177e4 307
2056a782
JA
308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 q->rq.count[READ] + q->rq.count[WRITE]);
310
1da177e4
LT
311 kblockd_schedule_work(&q->unplug_work);
312}
313
2ad8b1ef
AB
314void blk_unplug(struct request_queue *q)
315{
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 q->rq.count[READ] + q->rq.count[WRITE]);
322
323 q->unplug_fn(q);
324 }
325}
326EXPORT_SYMBOL(blk_unplug);
327
1da177e4
LT
328/**
329 * blk_start_queue - restart a previously stopped queue
165125e1 330 * @q: The &struct request_queue in question
1da177e4
LT
331 *
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 **/
165125e1 337void blk_start_queue(struct request_queue *q)
1da177e4 338{
a038e253
PBG
339 WARN_ON(!irqs_disabled());
340
75ad23bc 341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
342
343 /*
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
346 */
e48ec690 347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
1da177e4 348 q->request_fn(q);
75ad23bc 349 queue_flag_clear(QUEUE_FLAG_REENTER, q);
1da177e4
LT
350 } else {
351 blk_plug_device(q);
352 kblockd_schedule_work(&q->unplug_work);
353 }
354}
1da177e4
LT
355EXPORT_SYMBOL(blk_start_queue);
356
357/**
358 * blk_stop_queue - stop a queue
165125e1 359 * @q: The &struct request_queue in question
1da177e4
LT
360 *
361 * Description:
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
370 **/
165125e1 371void blk_stop_queue(struct request_queue *q)
1da177e4
LT
372{
373 blk_remove_plug(q);
75ad23bc 374 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
375}
376EXPORT_SYMBOL(blk_stop_queue);
377
378/**
379 * blk_sync_queue - cancel any pending callbacks on a queue
380 * @q: the queue
381 *
382 * Description:
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
59c51591 387 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
388 * that its ->make_request_fn will not re-add plugging prior to calling
389 * this function.
390 *
391 */
392void blk_sync_queue(struct request_queue *q)
393{
394 del_timer_sync(&q->unplug_timer);
abbeb88d 395 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
396}
397EXPORT_SYMBOL(blk_sync_queue);
398
399/**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
402 */
75ad23bc 403void __blk_run_queue(struct request_queue *q)
1da177e4 404{
1da177e4 405 blk_remove_plug(q);
dac07ec1
JA
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!elv_queue_empty(q)) {
e48ec690 412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
dac07ec1 413 q->request_fn(q);
75ad23bc 414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
dac07ec1
JA
415 } else {
416 blk_plug_device(q);
417 kblockd_schedule_work(&q->unplug_work);
418 }
419 }
75ad23bc
NP
420}
421EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 422
75ad23bc
NP
423/**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 */
427void blk_run_queue(struct request_queue *q)
428{
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
1da177e4
LT
433 spin_unlock_irqrestore(q->queue_lock, flags);
434}
435EXPORT_SYMBOL(blk_run_queue);
436
165125e1 437void blk_put_queue(struct request_queue *q)
483f4afc
AV
438{
439 kobject_put(&q->kobj);
440}
483f4afc 441
6728cb0e 442void blk_cleanup_queue(struct request_queue *q)
483f4afc
AV
443{
444 mutex_lock(&q->sysfs_lock);
75ad23bc 445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
446 mutex_unlock(&q->sysfs_lock);
447
448 if (q->elevator)
449 elevator_exit(q->elevator);
450
451 blk_put_queue(q);
452}
1da177e4
LT
453EXPORT_SYMBOL(blk_cleanup_queue);
454
165125e1 455static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
456{
457 struct request_list *rl = &q->rq;
458
459 rl->count[READ] = rl->count[WRITE] = 0;
460 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 461 rl->elvpriv = 0;
1da177e4
LT
462 init_waitqueue_head(&rl->wait[READ]);
463 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 464
1946089a
CL
465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
467
468 if (!rl->rq_pool)
469 return -ENOMEM;
470
471 return 0;
472}
473
165125e1 474struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 475{
1946089a
CL
476 return blk_alloc_queue_node(gfp_mask, -1);
477}
478EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 479
165125e1 480struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 481{
165125e1 482 struct request_queue *q;
e0bf68dd 483 int err;
1946089a 484
8324aa91 485 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 486 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
487 if (!q)
488 return NULL;
489
e0bf68dd
PZ
490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 q->backing_dev_info.unplug_io_data = q;
492 err = bdi_init(&q->backing_dev_info);
493 if (err) {
8324aa91 494 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
495 return NULL;
496 }
497
1da177e4 498 init_timer(&q->unplug_timer);
483f4afc 499
8324aa91 500 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 501
483f4afc 502 mutex_init(&q->sysfs_lock);
e7e72bf6 503 spin_lock_init(&q->__queue_lock);
483f4afc 504
1da177e4
LT
505 return q;
506}
1946089a 507EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
508
509/**
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
514 *
515 * Description:
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
524 *
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
529 *
530 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
1da177e4
LT
533 *
534 * Function returns a pointer to the initialized request queue, or NULL if
535 * it didn't succeed.
536 *
537 * Note:
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
540 **/
1946089a 541
165125e1 542struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 543{
1946089a
CL
544 return blk_init_queue_node(rfn, lock, -1);
545}
546EXPORT_SYMBOL(blk_init_queue);
547
165125e1 548struct request_queue *
1946089a
CL
549blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
550{
165125e1 551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
552
553 if (!q)
554 return NULL;
555
1946089a 556 q->node = node_id;
8669aafd 557 if (blk_init_free_list(q)) {
8324aa91 558 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
559 return NULL;
560 }
1da177e4 561
152587de
JA
562 /*
563 * if caller didn't supply a lock, they get per-queue locking with
564 * our embedded lock
565 */
e7e72bf6 566 if (!lock)
152587de 567 lock = &q->__queue_lock;
152587de 568
1da177e4 569 q->request_fn = rfn;
1da177e4
LT
570 q->prep_rq_fn = NULL;
571 q->unplug_fn = generic_unplug_device;
572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
573 q->queue_lock = lock;
574
575 blk_queue_segment_boundary(q, 0xffffffff);
576
577 blk_queue_make_request(q, __make_request);
578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
579
580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
582
44ec9542
AS
583 q->sg_reserved_size = INT_MAX;
584
abf54393
FT
585 blk_set_cmd_filter_defaults(&q->cmd_filter);
586
1da177e4
LT
587 /*
588 * all done
589 */
590 if (!elevator_init(q, NULL)) {
591 blk_queue_congestion_threshold(q);
592 return q;
593 }
594
8669aafd 595 blk_put_queue(q);
1da177e4
LT
596 return NULL;
597}
1946089a 598EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 599
165125e1 600int blk_get_queue(struct request_queue *q)
1da177e4 601{
fde6ad22 602 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 603 kobject_get(&q->kobj);
1da177e4
LT
604 return 0;
605 }
606
607 return 1;
608}
1da177e4 609
165125e1 610static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 611{
4aff5e23 612 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 613 elv_put_request(q, rq);
1da177e4
LT
614 mempool_free(rq, q->rq.rq_pool);
615}
616
1ea25ecb 617static struct request *
165125e1 618blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
619{
620 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
621
622 if (!rq)
623 return NULL;
624
2a4aa30c 625 blk_rq_init(q, rq);
1afb20f3 626
1da177e4 627 /*
4aff5e23 628 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
629 * see bio.h and blkdev.h
630 */
49171e5c 631 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 632
cb98fc8b 633 if (priv) {
cb78b285 634 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
635 mempool_free(rq, q->rq.rq_pool);
636 return NULL;
637 }
4aff5e23 638 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 639 }
1da177e4 640
cb98fc8b 641 return rq;
1da177e4
LT
642}
643
644/*
645 * ioc_batching returns true if the ioc is a valid batching request and
646 * should be given priority access to a request.
647 */
165125e1 648static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
649{
650 if (!ioc)
651 return 0;
652
653 /*
654 * Make sure the process is able to allocate at least 1 request
655 * even if the batch times out, otherwise we could theoretically
656 * lose wakeups.
657 */
658 return ioc->nr_batch_requests == q->nr_batching ||
659 (ioc->nr_batch_requests > 0
660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
661}
662
663/*
664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665 * will cause the process to be a "batcher" on all queues in the system. This
666 * is the behaviour we want though - once it gets a wakeup it should be given
667 * a nice run.
668 */
165125e1 669static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
670{
671 if (!ioc || ioc_batching(q, ioc))
672 return;
673
674 ioc->nr_batch_requests = q->nr_batching;
675 ioc->last_waited = jiffies;
676}
677
165125e1 678static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
679{
680 struct request_list *rl = &q->rq;
681
682 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 683 blk_clear_queue_congested(q, rw);
1da177e4
LT
684
685 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
686 if (waitqueue_active(&rl->wait[rw]))
687 wake_up(&rl->wait[rw]);
688
689 blk_clear_queue_full(q, rw);
690 }
691}
692
693/*
694 * A request has just been released. Account for it, update the full and
695 * congestion status, wake up any waiters. Called under q->queue_lock.
696 */
165125e1 697static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
698{
699 struct request_list *rl = &q->rq;
700
701 rl->count[rw]--;
cb98fc8b
TH
702 if (priv)
703 rl->elvpriv--;
1da177e4
LT
704
705 __freed_request(q, rw);
706
707 if (unlikely(rl->starved[rw ^ 1]))
708 __freed_request(q, rw ^ 1);
1da177e4
LT
709}
710
711#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
712/*
d6344532
NP
713 * Get a free request, queue_lock must be held.
714 * Returns NULL on failure, with queue_lock held.
715 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 716 */
165125e1 717static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 718 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
719{
720 struct request *rq = NULL;
721 struct request_list *rl = &q->rq;
88ee5ef1 722 struct io_context *ioc = NULL;
7749a8d4 723 const int rw = rw_flags & 0x01;
88ee5ef1
JA
724 int may_queue, priv;
725
7749a8d4 726 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
727 if (may_queue == ELV_MQUEUE_NO)
728 goto rq_starved;
729
730 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
731 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 732 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
733 /*
734 * The queue will fill after this allocation, so set
735 * it as full, and mark this process as "batching".
736 * This process will be allowed to complete a batch of
737 * requests, others will be blocked.
738 */
739 if (!blk_queue_full(q, rw)) {
740 ioc_set_batching(q, ioc);
741 blk_set_queue_full(q, rw);
742 } else {
743 if (may_queue != ELV_MQUEUE_MUST
744 && !ioc_batching(q, ioc)) {
745 /*
746 * The queue is full and the allocating
747 * process is not a "batcher", and not
748 * exempted by the IO scheduler
749 */
750 goto out;
751 }
752 }
1da177e4 753 }
79e2de4b 754 blk_set_queue_congested(q, rw);
1da177e4
LT
755 }
756
082cf69e
JA
757 /*
758 * Only allow batching queuers to allocate up to 50% over the defined
759 * limit of requests, otherwise we could have thousands of requests
760 * allocated with any setting of ->nr_requests
761 */
fd782a4a 762 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 763 goto out;
fd782a4a 764
1da177e4
LT
765 rl->count[rw]++;
766 rl->starved[rw] = 0;
cb98fc8b 767
64521d1a 768 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
769 if (priv)
770 rl->elvpriv++;
771
1da177e4
LT
772 spin_unlock_irq(q->queue_lock);
773
7749a8d4 774 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 775 if (unlikely(!rq)) {
1da177e4
LT
776 /*
777 * Allocation failed presumably due to memory. Undo anything
778 * we might have messed up.
779 *
780 * Allocating task should really be put onto the front of the
781 * wait queue, but this is pretty rare.
782 */
783 spin_lock_irq(q->queue_lock);
cb98fc8b 784 freed_request(q, rw, priv);
1da177e4
LT
785
786 /*
787 * in the very unlikely event that allocation failed and no
788 * requests for this direction was pending, mark us starved
789 * so that freeing of a request in the other direction will
790 * notice us. another possible fix would be to split the
791 * rq mempool into READ and WRITE
792 */
793rq_starved:
794 if (unlikely(rl->count[rw] == 0))
795 rl->starved[rw] = 1;
796
1da177e4
LT
797 goto out;
798 }
799
88ee5ef1
JA
800 /*
801 * ioc may be NULL here, and ioc_batching will be false. That's
802 * OK, if the queue is under the request limit then requests need
803 * not count toward the nr_batch_requests limit. There will always
804 * be some limit enforced by BLK_BATCH_TIME.
805 */
1da177e4
LT
806 if (ioc_batching(q, ioc))
807 ioc->nr_batch_requests--;
6728cb0e 808
2056a782 809 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 810out:
1da177e4
LT
811 return rq;
812}
813
814/*
815 * No available requests for this queue, unplug the device and wait for some
816 * requests to become available.
d6344532
NP
817 *
818 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 819 */
165125e1 820static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 821 struct bio *bio)
1da177e4 822{
7749a8d4 823 const int rw = rw_flags & 0x01;
1da177e4
LT
824 struct request *rq;
825
7749a8d4 826 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
827 while (!rq) {
828 DEFINE_WAIT(wait);
05caf8db 829 struct io_context *ioc;
1da177e4
LT
830 struct request_list *rl = &q->rq;
831
832 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
833 TASK_UNINTERRUPTIBLE);
834
05caf8db 835 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 836
05caf8db
ZY
837 __generic_unplug_device(q);
838 spin_unlock_irq(q->queue_lock);
839 io_schedule();
1da177e4 840
05caf8db
ZY
841 /*
842 * After sleeping, we become a "batching" process and
843 * will be able to allocate at least one request, and
844 * up to a big batch of them for a small period time.
845 * See ioc_batching, ioc_set_batching
846 */
847 ioc = current_io_context(GFP_NOIO, q->node);
848 ioc_set_batching(q, ioc);
d6344532 849
05caf8db 850 spin_lock_irq(q->queue_lock);
1da177e4 851 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
852
853 rq = get_request(q, rw_flags, bio, GFP_NOIO);
854 };
1da177e4
LT
855
856 return rq;
857}
858
165125e1 859struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
860{
861 struct request *rq;
862
863 BUG_ON(rw != READ && rw != WRITE);
864
d6344532
NP
865 spin_lock_irq(q->queue_lock);
866 if (gfp_mask & __GFP_WAIT) {
22e2c507 867 rq = get_request_wait(q, rw, NULL);
d6344532 868 } else {
22e2c507 869 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
870 if (!rq)
871 spin_unlock_irq(q->queue_lock);
872 }
873 /* q->queue_lock is unlocked at this point */
1da177e4
LT
874
875 return rq;
876}
1da177e4
LT
877EXPORT_SYMBOL(blk_get_request);
878
dc72ef4a
JA
879/**
880 * blk_start_queueing - initiate dispatch of requests to device
881 * @q: request queue to kick into gear
882 *
883 * This is basically a helper to remove the need to know whether a queue
884 * is plugged or not if someone just wants to initiate dispatch of requests
885 * for this queue.
886 *
887 * The queue lock must be held with interrupts disabled.
888 */
165125e1 889void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
890{
891 if (!blk_queue_plugged(q))
892 q->request_fn(q);
893 else
894 __generic_unplug_device(q);
895}
896EXPORT_SYMBOL(blk_start_queueing);
897
1da177e4
LT
898/**
899 * blk_requeue_request - put a request back on queue
900 * @q: request queue where request should be inserted
901 * @rq: request to be inserted
902 *
903 * Description:
904 * Drivers often keep queueing requests until the hardware cannot accept
905 * more, when that condition happens we need to put the request back
906 * on the queue. Must be called with queue lock held.
907 */
165125e1 908void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 909{
2056a782
JA
910 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
911
1da177e4
LT
912 if (blk_rq_tagged(rq))
913 blk_queue_end_tag(q, rq);
914
915 elv_requeue_request(q, rq);
916}
1da177e4
LT
917EXPORT_SYMBOL(blk_requeue_request);
918
919/**
920 * blk_insert_request - insert a special request in to a request queue
921 * @q: request queue where request should be inserted
922 * @rq: request to be inserted
923 * @at_head: insert request at head or tail of queue
924 * @data: private data
1da177e4
LT
925 *
926 * Description:
927 * Many block devices need to execute commands asynchronously, so they don't
928 * block the whole kernel from preemption during request execution. This is
929 * accomplished normally by inserting aritficial requests tagged as
930 * REQ_SPECIAL in to the corresponding request queue, and letting them be
931 * scheduled for actual execution by the request queue.
932 *
933 * We have the option of inserting the head or the tail of the queue.
934 * Typically we use the tail for new ioctls and so forth. We use the head
935 * of the queue for things like a QUEUE_FULL message from a device, or a
936 * host that is unable to accept a particular command.
937 */
165125e1 938void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 939 int at_head, void *data)
1da177e4 940{
867d1191 941 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
942 unsigned long flags;
943
944 /*
945 * tell I/O scheduler that this isn't a regular read/write (ie it
946 * must not attempt merges on this) and that it acts as a soft
947 * barrier
948 */
4aff5e23
JA
949 rq->cmd_type = REQ_TYPE_SPECIAL;
950 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
951
952 rq->special = data;
953
954 spin_lock_irqsave(q->queue_lock, flags);
955
956 /*
957 * If command is tagged, release the tag
958 */
867d1191
TH
959 if (blk_rq_tagged(rq))
960 blk_queue_end_tag(q, rq);
1da177e4 961
b238b3d4 962 drive_stat_acct(rq, 1);
867d1191 963 __elv_add_request(q, rq, where, 0);
dc72ef4a 964 blk_start_queueing(q);
1da177e4
LT
965 spin_unlock_irqrestore(q->queue_lock, flags);
966}
1da177e4
LT
967EXPORT_SYMBOL(blk_insert_request);
968
1da177e4
LT
969/*
970 * add-request adds a request to the linked list.
971 * queue lock is held and interrupts disabled, as we muck with the
972 * request queue list.
973 */
6728cb0e 974static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 975{
b238b3d4 976 drive_stat_acct(req, 1);
1da177e4 977
1da177e4
LT
978 /*
979 * elevator indicated where it wants this request to be
980 * inserted at elevator_merge time
981 */
982 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
983}
6728cb0e 984
1da177e4
LT
985/*
986 * disk_round_stats() - Round off the performance stats on a struct
987 * disk_stats.
988 *
989 * The average IO queue length and utilisation statistics are maintained
990 * by observing the current state of the queue length and the amount of
991 * time it has been in this state for.
992 *
993 * Normally, that accounting is done on IO completion, but that can result
994 * in more than a second's worth of IO being accounted for within any one
995 * second, leading to >100% utilisation. To deal with that, we call this
996 * function to do a round-off before returning the results when reading
997 * /proc/diskstats. This accounts immediately for all queue usage up to
998 * the current jiffies and restarts the counters again.
999 */
1000void disk_round_stats(struct gendisk *disk)
1001{
1002 unsigned long now = jiffies;
1003
b2982649
KC
1004 if (now == disk->stamp)
1005 return;
1da177e4 1006
20e5c81f
KC
1007 if (disk->in_flight) {
1008 __disk_stat_add(disk, time_in_queue,
1009 disk->in_flight * (now - disk->stamp));
1010 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1011 }
1da177e4 1012 disk->stamp = now;
1da177e4 1013}
3eaf840e
JNN
1014EXPORT_SYMBOL_GPL(disk_round_stats);
1015
6f2576af
JM
1016void part_round_stats(struct hd_struct *part)
1017{
1018 unsigned long now = jiffies;
1019
1020 if (now == part->stamp)
1021 return;
1022
1023 if (part->in_flight) {
1024 __part_stat_add(part, time_in_queue,
1025 part->in_flight * (now - part->stamp));
1026 __part_stat_add(part, io_ticks, (now - part->stamp));
1027 }
1028 part->stamp = now;
1029}
1030
1da177e4
LT
1031/*
1032 * queue lock must be held
1033 */
165125e1 1034void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1035{
1da177e4
LT
1036 if (unlikely(!q))
1037 return;
1038 if (unlikely(--req->ref_count))
1039 return;
1040
8922e16c
TH
1041 elv_completed_request(q, req);
1042
1da177e4
LT
1043 /*
1044 * Request may not have originated from ll_rw_blk. if not,
1045 * it didn't come out of our reserved rq pools
1046 */
49171e5c 1047 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1048 int rw = rq_data_dir(req);
4aff5e23 1049 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1050
1da177e4 1051 BUG_ON(!list_empty(&req->queuelist));
9817064b 1052 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1053
1054 blk_free_request(q, req);
cb98fc8b 1055 freed_request(q, rw, priv);
1da177e4
LT
1056 }
1057}
6e39b69e
MC
1058EXPORT_SYMBOL_GPL(__blk_put_request);
1059
1da177e4
LT
1060void blk_put_request(struct request *req)
1061{
8922e16c 1062 unsigned long flags;
165125e1 1063 struct request_queue *q = req->q;
8922e16c 1064
52a93ba8
FT
1065 spin_lock_irqsave(q->queue_lock, flags);
1066 __blk_put_request(q, req);
1067 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1068}
1da177e4
LT
1069EXPORT_SYMBOL(blk_put_request);
1070
86db1e29 1071void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1072{
4aff5e23 1073 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1074
1075 /*
1076 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1077 */
1078 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1079 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1080
1081 /*
1082 * REQ_BARRIER implies no merging, but lets make it explicit
1083 */
1084 if (unlikely(bio_barrier(bio)))
4aff5e23 1085 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1086
b31dc66a 1087 if (bio_sync(bio))
4aff5e23 1088 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1089 if (bio_rw_meta(bio))
1090 req->cmd_flags |= REQ_RW_META;
b31dc66a 1091
52d9e675
TH
1092 req->errors = 0;
1093 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1094 req->ioprio = bio_prio(bio);
52d9e675 1095 req->start_time = jiffies;
bc1c56fd 1096 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1097}
1098
165125e1 1099static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1100{
450991bc 1101 struct request *req;
51da90fc
JA
1102 int el_ret, nr_sectors, barrier, err;
1103 const unsigned short prio = bio_prio(bio);
1104 const int sync = bio_sync(bio);
7749a8d4 1105 int rw_flags;
1da177e4 1106
1da177e4 1107 nr_sectors = bio_sectors(bio);
1da177e4
LT
1108
1109 /*
1110 * low level driver can indicate that it wants pages above a
1111 * certain limit bounced to low memory (ie for highmem, or even
1112 * ISA dma in theory)
1113 */
1114 blk_queue_bounce(q, &bio);
1115
1da177e4 1116 barrier = bio_barrier(bio);
797e7dbb 1117 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1118 err = -EOPNOTSUPP;
1119 goto end_io;
1120 }
1121
1da177e4
LT
1122 spin_lock_irq(q->queue_lock);
1123
450991bc 1124 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1125 goto get_rq;
1126
1127 el_ret = elv_merge(q, &req, bio);
1128 switch (el_ret) {
6728cb0e
JA
1129 case ELEVATOR_BACK_MERGE:
1130 BUG_ON(!rq_mergeable(req));
1da177e4 1131
6728cb0e
JA
1132 if (!ll_back_merge_fn(q, req, bio))
1133 break;
1da177e4 1134
6728cb0e 1135 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1136
6728cb0e
JA
1137 req->biotail->bi_next = bio;
1138 req->biotail = bio;
1139 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1140 req->ioprio = ioprio_best(req->ioprio, prio);
1141 drive_stat_acct(req, 0);
1142 if (!attempt_back_merge(q, req))
1143 elv_merged_request(q, req, el_ret);
1144 goto out;
1da177e4 1145
6728cb0e
JA
1146 case ELEVATOR_FRONT_MERGE:
1147 BUG_ON(!rq_mergeable(req));
1da177e4 1148
6728cb0e
JA
1149 if (!ll_front_merge_fn(q, req, bio))
1150 break;
1da177e4 1151
6728cb0e 1152 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1153
6728cb0e
JA
1154 bio->bi_next = req->bio;
1155 req->bio = bio;
1da177e4 1156
6728cb0e
JA
1157 /*
1158 * may not be valid. if the low level driver said
1159 * it didn't need a bounce buffer then it better
1160 * not touch req->buffer either...
1161 */
1162 req->buffer = bio_data(bio);
1163 req->current_nr_sectors = bio_cur_sectors(bio);
1164 req->hard_cur_sectors = req->current_nr_sectors;
1165 req->sector = req->hard_sector = bio->bi_sector;
1166 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1167 req->ioprio = ioprio_best(req->ioprio, prio);
1168 drive_stat_acct(req, 0);
1169 if (!attempt_front_merge(q, req))
1170 elv_merged_request(q, req, el_ret);
1171 goto out;
1172
1173 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1174 default:
1175 ;
1da177e4
LT
1176 }
1177
450991bc 1178get_rq:
7749a8d4
JA
1179 /*
1180 * This sync check and mask will be re-done in init_request_from_bio(),
1181 * but we need to set it earlier to expose the sync flag to the
1182 * rq allocator and io schedulers.
1183 */
1184 rw_flags = bio_data_dir(bio);
1185 if (sync)
1186 rw_flags |= REQ_RW_SYNC;
1187
1da177e4 1188 /*
450991bc 1189 * Grab a free request. This is might sleep but can not fail.
d6344532 1190 * Returns with the queue unlocked.
450991bc 1191 */
7749a8d4 1192 req = get_request_wait(q, rw_flags, bio);
d6344532 1193
450991bc
NP
1194 /*
1195 * After dropping the lock and possibly sleeping here, our request
1196 * may now be mergeable after it had proven unmergeable (above).
1197 * We don't worry about that case for efficiency. It won't happen
1198 * often, and the elevators are able to handle it.
1da177e4 1199 */
52d9e675 1200 init_request_from_bio(req, bio);
1da177e4 1201
450991bc
NP
1202 spin_lock_irq(q->queue_lock);
1203 if (elv_queue_empty(q))
1204 blk_plug_device(q);
1da177e4
LT
1205 add_request(q, req);
1206out:
4a534f93 1207 if (sync)
1da177e4
LT
1208 __generic_unplug_device(q);
1209
1210 spin_unlock_irq(q->queue_lock);
1211 return 0;
1212
1213end_io:
6712ecf8 1214 bio_endio(bio, err);
1da177e4
LT
1215 return 0;
1216}
1217
1218/*
1219 * If bio->bi_dev is a partition, remap the location
1220 */
1221static inline void blk_partition_remap(struct bio *bio)
1222{
1223 struct block_device *bdev = bio->bi_bdev;
1224
bf2de6f5 1225 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1226 struct hd_struct *p = bdev->bd_part;
1227
1da177e4
LT
1228 bio->bi_sector += p->start_sect;
1229 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1230
1231 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1232 bdev->bd_dev, bio->bi_sector,
1233 bio->bi_sector - p->start_sect);
1da177e4
LT
1234 }
1235}
1236
1da177e4
LT
1237static void handle_bad_sector(struct bio *bio)
1238{
1239 char b[BDEVNAME_SIZE];
1240
1241 printk(KERN_INFO "attempt to access beyond end of device\n");
1242 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1243 bdevname(bio->bi_bdev, b),
1244 bio->bi_rw,
1245 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1246 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1247
1248 set_bit(BIO_EOF, &bio->bi_flags);
1249}
1250
c17bb495
AM
1251#ifdef CONFIG_FAIL_MAKE_REQUEST
1252
1253static DECLARE_FAULT_ATTR(fail_make_request);
1254
1255static int __init setup_fail_make_request(char *str)
1256{
1257 return setup_fault_attr(&fail_make_request, str);
1258}
1259__setup("fail_make_request=", setup_fail_make_request);
1260
1261static int should_fail_request(struct bio *bio)
1262{
1263 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1264 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1265 return should_fail(&fail_make_request, bio->bi_size);
1266
1267 return 0;
1268}
1269
1270static int __init fail_make_request_debugfs(void)
1271{
1272 return init_fault_attr_dentries(&fail_make_request,
1273 "fail_make_request");
1274}
1275
1276late_initcall(fail_make_request_debugfs);
1277
1278#else /* CONFIG_FAIL_MAKE_REQUEST */
1279
1280static inline int should_fail_request(struct bio *bio)
1281{
1282 return 0;
1283}
1284
1285#endif /* CONFIG_FAIL_MAKE_REQUEST */
1286
c07e2b41
JA
1287/*
1288 * Check whether this bio extends beyond the end of the device.
1289 */
1290static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1291{
1292 sector_t maxsector;
1293
1294 if (!nr_sectors)
1295 return 0;
1296
1297 /* Test device or partition size, when known. */
1298 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1299 if (maxsector) {
1300 sector_t sector = bio->bi_sector;
1301
1302 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1303 /*
1304 * This may well happen - the kernel calls bread()
1305 * without checking the size of the device, e.g., when
1306 * mounting a device.
1307 */
1308 handle_bad_sector(bio);
1309 return 1;
1310 }
1311 }
1312
1313 return 0;
1314}
1315
1da177e4
LT
1316/**
1317 * generic_make_request: hand a buffer to its device driver for I/O
1318 * @bio: The bio describing the location in memory and on the device.
1319 *
1320 * generic_make_request() is used to make I/O requests of block
1321 * devices. It is passed a &struct bio, which describes the I/O that needs
1322 * to be done.
1323 *
1324 * generic_make_request() does not return any status. The
1325 * success/failure status of the request, along with notification of
1326 * completion, is delivered asynchronously through the bio->bi_end_io
1327 * function described (one day) else where.
1328 *
1329 * The caller of generic_make_request must make sure that bi_io_vec
1330 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1331 * set to describe the device address, and the
1332 * bi_end_io and optionally bi_private are set to describe how
1333 * completion notification should be signaled.
1334 *
1335 * generic_make_request and the drivers it calls may use bi_next if this
1336 * bio happens to be merged with someone else, and may change bi_dev and
1337 * bi_sector for remaps as it sees fit. So the values of these fields
1338 * should NOT be depended on after the call to generic_make_request.
1339 */
d89d8796 1340static inline void __generic_make_request(struct bio *bio)
1da177e4 1341{
165125e1 1342 struct request_queue *q;
5ddfe969 1343 sector_t old_sector;
1da177e4 1344 int ret, nr_sectors = bio_sectors(bio);
2056a782 1345 dev_t old_dev;
51fd77bd 1346 int err = -EIO;
1da177e4
LT
1347
1348 might_sleep();
1da177e4 1349
c07e2b41
JA
1350 if (bio_check_eod(bio, nr_sectors))
1351 goto end_io;
1da177e4
LT
1352
1353 /*
1354 * Resolve the mapping until finished. (drivers are
1355 * still free to implement/resolve their own stacking
1356 * by explicitly returning 0)
1357 *
1358 * NOTE: we don't repeat the blk_size check for each new device.
1359 * Stacking drivers are expected to know what they are doing.
1360 */
5ddfe969 1361 old_sector = -1;
2056a782 1362 old_dev = 0;
1da177e4
LT
1363 do {
1364 char b[BDEVNAME_SIZE];
1365
1366 q = bdev_get_queue(bio->bi_bdev);
1367 if (!q) {
1368 printk(KERN_ERR
1369 "generic_make_request: Trying to access "
1370 "nonexistent block-device %s (%Lu)\n",
1371 bdevname(bio->bi_bdev, b),
1372 (long long) bio->bi_sector);
1373end_io:
51fd77bd 1374 bio_endio(bio, err);
1da177e4
LT
1375 break;
1376 }
1377
4fa253f3 1378 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1379 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1380 bdevname(bio->bi_bdev, b),
1381 bio_sectors(bio),
1382 q->max_hw_sectors);
1383 goto end_io;
1384 }
1385
fde6ad22 1386 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1387 goto end_io;
1388
c17bb495
AM
1389 if (should_fail_request(bio))
1390 goto end_io;
1391
1da177e4
LT
1392 /*
1393 * If this device has partitions, remap block n
1394 * of partition p to block n+start(p) of the disk.
1395 */
1396 blk_partition_remap(bio);
1397
7ba1ba12
MP
1398 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1399 goto end_io;
1400
5ddfe969 1401 if (old_sector != -1)
4fa253f3 1402 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1403 old_sector);
2056a782
JA
1404
1405 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1406
5ddfe969 1407 old_sector = bio->bi_sector;
2056a782
JA
1408 old_dev = bio->bi_bdev->bd_dev;
1409
c07e2b41
JA
1410 if (bio_check_eod(bio, nr_sectors))
1411 goto end_io;
51fd77bd
JA
1412 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1413 err = -EOPNOTSUPP;
1414 goto end_io;
1415 }
5ddfe969 1416
1da177e4
LT
1417 ret = q->make_request_fn(q, bio);
1418 } while (ret);
1419}
1420
d89d8796
NB
1421/*
1422 * We only want one ->make_request_fn to be active at a time,
1423 * else stack usage with stacked devices could be a problem.
1424 * So use current->bio_{list,tail} to keep a list of requests
1425 * submited by a make_request_fn function.
1426 * current->bio_tail is also used as a flag to say if
1427 * generic_make_request is currently active in this task or not.
1428 * If it is NULL, then no make_request is active. If it is non-NULL,
1429 * then a make_request is active, and new requests should be added
1430 * at the tail
1431 */
1432void generic_make_request(struct bio *bio)
1433{
1434 if (current->bio_tail) {
1435 /* make_request is active */
1436 *(current->bio_tail) = bio;
1437 bio->bi_next = NULL;
1438 current->bio_tail = &bio->bi_next;
1439 return;
1440 }
1441 /* following loop may be a bit non-obvious, and so deserves some
1442 * explanation.
1443 * Before entering the loop, bio->bi_next is NULL (as all callers
1444 * ensure that) so we have a list with a single bio.
1445 * We pretend that we have just taken it off a longer list, so
1446 * we assign bio_list to the next (which is NULL) and bio_tail
1447 * to &bio_list, thus initialising the bio_list of new bios to be
1448 * added. __generic_make_request may indeed add some more bios
1449 * through a recursive call to generic_make_request. If it
1450 * did, we find a non-NULL value in bio_list and re-enter the loop
1451 * from the top. In this case we really did just take the bio
1452 * of the top of the list (no pretending) and so fixup bio_list and
1453 * bio_tail or bi_next, and call into __generic_make_request again.
1454 *
1455 * The loop was structured like this to make only one call to
1456 * __generic_make_request (which is important as it is large and
1457 * inlined) and to keep the structure simple.
1458 */
1459 BUG_ON(bio->bi_next);
1460 do {
1461 current->bio_list = bio->bi_next;
1462 if (bio->bi_next == NULL)
1463 current->bio_tail = &current->bio_list;
1464 else
1465 bio->bi_next = NULL;
1466 __generic_make_request(bio);
1467 bio = current->bio_list;
1468 } while (bio);
1469 current->bio_tail = NULL; /* deactivate */
1470}
1da177e4
LT
1471EXPORT_SYMBOL(generic_make_request);
1472
1473/**
1474 * submit_bio: submit a bio to the block device layer for I/O
1475 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1476 * @bio: The &struct bio which describes the I/O
1477 *
1478 * submit_bio() is very similar in purpose to generic_make_request(), and
1479 * uses that function to do most of the work. Both are fairly rough
1480 * interfaces, @bio must be presetup and ready for I/O.
1481 *
1482 */
1483void submit_bio(int rw, struct bio *bio)
1484{
1485 int count = bio_sectors(bio);
1486
22e2c507 1487 bio->bi_rw |= rw;
1da177e4 1488
bf2de6f5
JA
1489 /*
1490 * If it's a regular read/write or a barrier with data attached,
1491 * go through the normal accounting stuff before submission.
1492 */
a9c701e5 1493 if (bio_has_data(bio)) {
bf2de6f5
JA
1494
1495 if (rw & WRITE) {
1496 count_vm_events(PGPGOUT, count);
1497 } else {
1498 task_io_account_read(bio->bi_size);
1499 count_vm_events(PGPGIN, count);
1500 }
1501
1502 if (unlikely(block_dump)) {
1503 char b[BDEVNAME_SIZE];
1504 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1505 current->comm, task_pid_nr(current),
bf2de6f5
JA
1506 (rw & WRITE) ? "WRITE" : "READ",
1507 (unsigned long long)bio->bi_sector,
6728cb0e 1508 bdevname(bio->bi_bdev, b));
bf2de6f5 1509 }
1da177e4
LT
1510 }
1511
1512 generic_make_request(bio);
1513}
1da177e4
LT
1514EXPORT_SYMBOL(submit_bio);
1515
3bcddeac
KU
1516/**
1517 * __end_that_request_first - end I/O on a request
1518 * @req: the request being processed
5450d3e1 1519 * @error: 0 for success, < 0 for error
3bcddeac
KU
1520 * @nr_bytes: number of bytes to complete
1521 *
1522 * Description:
1523 * Ends I/O on a number of bytes attached to @req, and sets it up
1524 * for the next range of segments (if any) in the cluster.
1525 *
1526 * Return:
1527 * 0 - we are done with this request, call end_that_request_last()
1528 * 1 - still buffers pending for this request
1529 **/
5450d3e1 1530static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1531 int nr_bytes)
1532{
5450d3e1 1533 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1534 struct bio *bio;
1535
2056a782
JA
1536 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1537
1da177e4
LT
1538 /*
1539 * for a REQ_BLOCK_PC request, we want to carry any eventual
1540 * sense key with us all the way through
1541 */
1542 if (!blk_pc_request(req))
1543 req->errors = 0;
1544
6728cb0e
JA
1545 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1546 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1547 req->rq_disk ? req->rq_disk->disk_name : "?",
1548 (unsigned long long)req->sector);
1549 }
1550
d72d904a 1551 if (blk_fs_request(req) && req->rq_disk) {
28f13702 1552 struct hd_struct *part = get_part(req->rq_disk, req->sector);
a362357b
JA
1553 const int rw = rq_data_dir(req);
1554
28f13702
JA
1555 all_stat_add(req->rq_disk, part, sectors[rw],
1556 nr_bytes >> 9, req->sector);
d72d904a
JA
1557 }
1558
1da177e4
LT
1559 total_bytes = bio_nbytes = 0;
1560 while ((bio = req->bio) != NULL) {
1561 int nbytes;
1562
bf2de6f5
JA
1563 /*
1564 * For an empty barrier request, the low level driver must
1565 * store a potential error location in ->sector. We pass
1566 * that back up in ->bi_sector.
1567 */
1568 if (blk_empty_barrier(req))
1569 bio->bi_sector = req->sector;
1570
1da177e4
LT
1571 if (nr_bytes >= bio->bi_size) {
1572 req->bio = bio->bi_next;
1573 nbytes = bio->bi_size;
5bb23a68 1574 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1575 next_idx = 0;
1576 bio_nbytes = 0;
1577 } else {
1578 int idx = bio->bi_idx + next_idx;
1579
1580 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1581 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1582 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1583 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1584 break;
1585 }
1586
1587 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1588 BIO_BUG_ON(nbytes > bio->bi_size);
1589
1590 /*
1591 * not a complete bvec done
1592 */
1593 if (unlikely(nbytes > nr_bytes)) {
1594 bio_nbytes += nr_bytes;
1595 total_bytes += nr_bytes;
1596 break;
1597 }
1598
1599 /*
1600 * advance to the next vector
1601 */
1602 next_idx++;
1603 bio_nbytes += nbytes;
1604 }
1605
1606 total_bytes += nbytes;
1607 nr_bytes -= nbytes;
1608
6728cb0e
JA
1609 bio = req->bio;
1610 if (bio) {
1da177e4
LT
1611 /*
1612 * end more in this run, or just return 'not-done'
1613 */
1614 if (unlikely(nr_bytes <= 0))
1615 break;
1616 }
1617 }
1618
1619 /*
1620 * completely done
1621 */
1622 if (!req->bio)
1623 return 0;
1624
1625 /*
1626 * if the request wasn't completed, update state
1627 */
1628 if (bio_nbytes) {
5bb23a68 1629 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1630 bio->bi_idx += next_idx;
1631 bio_iovec(bio)->bv_offset += nr_bytes;
1632 bio_iovec(bio)->bv_len -= nr_bytes;
1633 }
1634
1635 blk_recalc_rq_sectors(req, total_bytes >> 9);
1636 blk_recalc_rq_segments(req);
1637 return 1;
1638}
1639
ff856bad
JA
1640/*
1641 * splice the completion data to a local structure and hand off to
1642 * process_completion_queue() to complete the requests
1643 */
1644static void blk_done_softirq(struct softirq_action *h)
1645{
626ab0e6 1646 struct list_head *cpu_list, local_list;
ff856bad
JA
1647
1648 local_irq_disable();
1649 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 1650 list_replace_init(cpu_list, &local_list);
ff856bad
JA
1651 local_irq_enable();
1652
1653 while (!list_empty(&local_list)) {
6728cb0e 1654 struct request *rq;
ff856bad 1655
6728cb0e 1656 rq = list_entry(local_list.next, struct request, donelist);
ff856bad
JA
1657 list_del_init(&rq->donelist);
1658 rq->q->softirq_done_fn(rq);
1659 }
1660}
1661
6728cb0e
JA
1662static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1663 unsigned long action, void *hcpu)
ff856bad
JA
1664{
1665 /*
1666 * If a CPU goes away, splice its entries to the current CPU
1667 * and trigger a run of the softirq
1668 */
8bb78442 1669 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
1670 int cpu = (unsigned long) hcpu;
1671
1672 local_irq_disable();
1673 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1674 &__get_cpu_var(blk_cpu_done));
1675 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1676 local_irq_enable();
1677 }
1678
1679 return NOTIFY_OK;
1680}
1681
1682
db47d475 1683static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
1684 .notifier_call = blk_cpu_notify,
1685};
1686
ff856bad
JA
1687/**
1688 * blk_complete_request - end I/O on a request
1689 * @req: the request being processed
1690 *
1691 * Description:
1692 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 1693 * unless the driver actually implements this in its completion callback
4fa253f3 1694 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
1695 * through a softirq handler. The user must have registered a completion
1696 * callback through blk_queue_softirq_done().
1697 **/
1698
1699void blk_complete_request(struct request *req)
1700{
1701 struct list_head *cpu_list;
1702 unsigned long flags;
1703
1704 BUG_ON(!req->q->softirq_done_fn);
6728cb0e 1705
ff856bad
JA
1706 local_irq_save(flags);
1707
1708 cpu_list = &__get_cpu_var(blk_cpu_done);
1709 list_add_tail(&req->donelist, cpu_list);
1710 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1711
1712 local_irq_restore(flags);
1713}
ff856bad 1714EXPORT_SYMBOL(blk_complete_request);
6728cb0e 1715
1da177e4
LT
1716/*
1717 * queue lock must be held
1718 */
5450d3e1 1719static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1720{
1721 struct gendisk *disk = req->rq_disk;
8ffdc655 1722
b8286239
KU
1723 if (blk_rq_tagged(req))
1724 blk_queue_end_tag(req->q, req);
1725
1726 if (blk_queued_rq(req))
1727 blkdev_dequeue_request(req);
1da177e4
LT
1728
1729 if (unlikely(laptop_mode) && blk_fs_request(req))
1730 laptop_io_completion();
1731
fd0ff8aa
JA
1732 /*
1733 * Account IO completion. bar_rq isn't accounted as a normal
1734 * IO on queueing nor completion. Accounting the containing
1735 * request is enough.
1736 */
1737 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1738 unsigned long duration = jiffies - req->start_time;
a362357b 1739 const int rw = rq_data_dir(req);
6f2576af 1740 struct hd_struct *part = get_part(disk, req->sector);
a362357b 1741
28f13702
JA
1742 __all_stat_inc(disk, part, ios[rw], req->sector);
1743 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1da177e4
LT
1744 disk_round_stats(disk);
1745 disk->in_flight--;
6f2576af
JM
1746 if (part) {
1747 part_round_stats(part);
1748 part->in_flight--;
1749 }
1da177e4 1750 }
b8286239 1751
1da177e4 1752 if (req->end_io)
8ffdc655 1753 req->end_io(req, error);
b8286239
KU
1754 else {
1755 if (blk_bidi_rq(req))
1756 __blk_put_request(req->next_rq->q, req->next_rq);
1757
1da177e4 1758 __blk_put_request(req->q, req);
b8286239 1759 }
1da177e4
LT
1760}
1761
a0cd1285 1762static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1763 unsigned int nr_bytes)
1da177e4 1764{
9e6e39f2
KU
1765 int error = 0;
1766
1767 if (uptodate <= 0)
1768 error = uptodate ? uptodate : -EIO;
1769
1770 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1771}
1772
3b11313a
KU
1773/**
1774 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1775 * @rq: the request being processed
3b11313a
KU
1776 **/
1777unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1778{
1779 if (blk_fs_request(rq))
1780 return rq->hard_nr_sectors << 9;
1781
1782 return rq->data_len;
1783}
3b11313a
KU
1784EXPORT_SYMBOL_GPL(blk_rq_bytes);
1785
1786/**
1787 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1788 * @rq: the request being processed
3b11313a
KU
1789 **/
1790unsigned int blk_rq_cur_bytes(struct request *rq)
1791{
1792 if (blk_fs_request(rq))
1793 return rq->current_nr_sectors << 9;
1794
1795 if (rq->bio)
1796 return rq->bio->bi_size;
1797
1798 return rq->data_len;
1799}
1800EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1801
1802/**
1803 * end_queued_request - end all I/O on a queued request
1804 * @rq: the request being processed
1805 * @uptodate: error value or 0/1 uptodate flag
1806 *
1807 * Description:
1808 * Ends all I/O on a request, and removes it from the block layer queues.
1809 * Not suitable for normal IO completion, unless the driver still has
1810 * the request attached to the block layer.
1811 *
1812 **/
1813void end_queued_request(struct request *rq, int uptodate)
1814{
9e6e39f2 1815 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1816}
1817EXPORT_SYMBOL(end_queued_request);
1818
1819/**
1820 * end_dequeued_request - end all I/O on a dequeued request
1821 * @rq: the request being processed
1822 * @uptodate: error value or 0/1 uptodate flag
1823 *
1824 * Description:
1825 * Ends all I/O on a request. The request must already have been
1826 * dequeued using blkdev_dequeue_request(), as is normally the case
1827 * for most drivers.
1828 *
1829 **/
1830void end_dequeued_request(struct request *rq, int uptodate)
1831{
9e6e39f2 1832 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1833}
1834EXPORT_SYMBOL(end_dequeued_request);
1835
1836
1837/**
1838 * end_request - end I/O on the current segment of the request
8f731f7d 1839 * @req: the request being processed
a0cd1285
JA
1840 * @uptodate: error value or 0/1 uptodate flag
1841 *
1842 * Description:
1843 * Ends I/O on the current segment of a request. If that is the only
1844 * remaining segment, the request is also completed and freed.
1845 *
1846 * This is a remnant of how older block drivers handled IO completions.
1847 * Modern drivers typically end IO on the full request in one go, unless
1848 * they have a residual value to account for. For that case this function
1849 * isn't really useful, unless the residual just happens to be the
1850 * full current segment. In other words, don't use this function in new
1851 * code. Either use end_request_completely(), or the
1852 * end_that_request_chunk() (along with end_that_request_last()) for
1853 * partial completions.
1854 *
1855 **/
1856void end_request(struct request *req, int uptodate)
1857{
9e6e39f2 1858 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1859}
1da177e4
LT
1860EXPORT_SYMBOL(end_request);
1861
336cdb40 1862/**
e19a3ab0
KU
1863 * blk_end_io - Generic end_io function to complete a request.
1864 * @rq: the request being processed
1865 * @error: 0 for success, < 0 for error
e3a04fe3
KU
1866 * @nr_bytes: number of bytes to complete @rq
1867 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1868 * @drv_callback: function called between completion of bios in the request
1869 * and completion of the request.
1870 * If the callback returns non 0, this helper returns without
1871 * completion of the request.
336cdb40
KU
1872 *
1873 * Description:
e3a04fe3 1874 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1875 * If @rq has leftover, sets it up for the next range of segments.
1876 *
1877 * Return:
1878 * 0 - we are done with this request
e19a3ab0 1879 * 1 - this request is not freed yet, it still has pending buffers.
336cdb40 1880 **/
22b13210
JA
1881static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1882 unsigned int bidi_bytes,
1883 int (drv_callback)(struct request *))
336cdb40
KU
1884{
1885 struct request_queue *q = rq->q;
1886 unsigned long flags = 0UL;
336cdb40 1887
051cc395 1888 if (bio_has_data(rq->bio)) {
5450d3e1 1889 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40 1890 return 1;
e3a04fe3
KU
1891
1892 /* Bidi request must be completed as a whole */
1893 if (blk_bidi_rq(rq) &&
5450d3e1 1894 __end_that_request_first(rq->next_rq, error, bidi_bytes))
e3a04fe3 1895 return 1;
336cdb40
KU
1896 }
1897
e19a3ab0
KU
1898 /* Special feature for tricky drivers */
1899 if (drv_callback && drv_callback(rq))
1900 return 1;
1901
336cdb40
KU
1902 add_disk_randomness(rq->rq_disk);
1903
1904 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1905 end_that_request_last(rq, error);
336cdb40
KU
1906 spin_unlock_irqrestore(q->queue_lock, flags);
1907
1908 return 0;
1909}
e19a3ab0
KU
1910
1911/**
1912 * blk_end_request - Helper function for drivers to complete the request.
1913 * @rq: the request being processed
1914 * @error: 0 for success, < 0 for error
1915 * @nr_bytes: number of bytes to complete
1916 *
1917 * Description:
1918 * Ends I/O on a number of bytes attached to @rq.
1919 * If @rq has leftover, sets it up for the next range of segments.
1920 *
1921 * Return:
1922 * 0 - we are done with this request
1923 * 1 - still buffers pending for this request
1924 **/
22b13210 1925int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1926{
e3a04fe3 1927 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1928}
336cdb40
KU
1929EXPORT_SYMBOL_GPL(blk_end_request);
1930
1931/**
1932 * __blk_end_request - Helper function for drivers to complete the request.
1933 * @rq: the request being processed
1934 * @error: 0 for success, < 0 for error
1935 * @nr_bytes: number of bytes to complete
1936 *
1937 * Description:
1938 * Must be called with queue lock held unlike blk_end_request().
1939 *
1940 * Return:
1941 * 0 - we are done with this request
1942 * 1 - still buffers pending for this request
1943 **/
22b13210 1944int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1945{
051cc395
JA
1946 if (bio_has_data(rq->bio) &&
1947 __end_that_request_first(rq, error, nr_bytes))
1948 return 1;
336cdb40
KU
1949
1950 add_disk_randomness(rq->rq_disk);
1951
b8286239 1952 end_that_request_last(rq, error);
336cdb40
KU
1953
1954 return 0;
1955}
1956EXPORT_SYMBOL_GPL(__blk_end_request);
1957
e3a04fe3
KU
1958/**
1959 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1960 * @rq: the bidi request being processed
1961 * @error: 0 for success, < 0 for error
1962 * @nr_bytes: number of bytes to complete @rq
1963 * @bidi_bytes: number of bytes to complete @rq->next_rq
1964 *
1965 * Description:
1966 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1967 *
1968 * Return:
1969 * 0 - we are done with this request
1970 * 1 - still buffers pending for this request
1971 **/
22b13210
JA
1972int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1973 unsigned int bidi_bytes)
e3a04fe3
KU
1974{
1975 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1976}
1977EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1978
e19a3ab0
KU
1979/**
1980 * blk_end_request_callback - Special helper function for tricky drivers
1981 * @rq: the request being processed
1982 * @error: 0 for success, < 0 for error
1983 * @nr_bytes: number of bytes to complete
1984 * @drv_callback: function called between completion of bios in the request
1985 * and completion of the request.
1986 * If the callback returns non 0, this helper returns without
1987 * completion of the request.
1988 *
1989 * Description:
1990 * Ends I/O on a number of bytes attached to @rq.
1991 * If @rq has leftover, sets it up for the next range of segments.
1992 *
1993 * This special helper function is used only for existing tricky drivers.
1994 * (e.g. cdrom_newpc_intr() of ide-cd)
1995 * This interface will be removed when such drivers are rewritten.
1996 * Don't use this interface in other places anymore.
1997 *
1998 * Return:
1999 * 0 - we are done with this request
2000 * 1 - this request is not freed yet.
2001 * this request still has pending buffers or
2002 * the driver doesn't want to finish this request yet.
2003 **/
22b13210
JA
2004int blk_end_request_callback(struct request *rq, int error,
2005 unsigned int nr_bytes,
e19a3ab0
KU
2006 int (drv_callback)(struct request *))
2007{
e3a04fe3 2008 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
2009}
2010EXPORT_SYMBOL_GPL(blk_end_request_callback);
2011
86db1e29
JA
2012void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2013 struct bio *bio)
1da177e4 2014{
4aff5e23
JA
2015 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2016 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
2017
2018 rq->nr_phys_segments = bio_phys_segments(q, bio);
2019 rq->nr_hw_segments = bio_hw_segments(q, bio);
2020 rq->current_nr_sectors = bio_cur_sectors(bio);
2021 rq->hard_cur_sectors = rq->current_nr_sectors;
2022 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2023 rq->buffer = bio_data(bio);
0e75f906 2024 rq->data_len = bio->bi_size;
1da177e4
LT
2025
2026 rq->bio = rq->biotail = bio;
1da177e4 2027
66846572
N
2028 if (bio->bi_bdev)
2029 rq->rq_disk = bio->bi_bdev->bd_disk;
2030}
1da177e4
LT
2031
2032int kblockd_schedule_work(struct work_struct *work)
2033{
2034 return queue_work(kblockd_workqueue, work);
2035}
1da177e4
LT
2036EXPORT_SYMBOL(kblockd_schedule_work);
2037
19a75d83 2038void kblockd_flush_work(struct work_struct *work)
1da177e4 2039{
28e53bdd 2040 cancel_work_sync(work);
1da177e4 2041}
19a75d83 2042EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
2043
2044int __init blk_dev_init(void)
2045{
ff856bad
JA
2046 int i;
2047
1da177e4
LT
2048 kblockd_workqueue = create_workqueue("kblockd");
2049 if (!kblockd_workqueue)
2050 panic("Failed to create kblockd\n");
2051
2052 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2053 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2054
8324aa91 2055 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2056 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2057
0a945022 2058 for_each_possible_cpu(i)
ff856bad
JA
2059 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2060
962cf36c 2061 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5a67e4c5 2062 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 2063
d38ecf93 2064 return 0;
1da177e4 2065}
1da177e4 2066