]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
Merge branch 'for-2.6.37/core' of git://git.kernel.dk/linux-2.6-block
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
7681bfee
YI
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
7681bfee
YI
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
074a7aca 73 part_round_stats(cpu, part);
316d315b 74 part_inc_in_flight(part, rw);
7681bfee 75 rq->part = part;
26b8256e 76 }
e71bf0d0 77
074a7aca 78 part_stat_unlock();
26b8256e
JA
79}
80
8324aa91 81void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
82{
83 int nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) + 1;
86 if (nr > q->nr_requests)
87 nr = q->nr_requests;
88 q->nr_congestion_on = nr;
89
90 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
91 if (nr < 1)
92 nr = 1;
93 q->nr_congestion_off = nr;
94}
95
1da177e4
LT
96/**
97 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * @bdev: device
99 *
100 * Locates the passed device's request queue and returns the address of its
101 * backing_dev_info
102 *
103 * Will return NULL if the request queue cannot be located.
104 */
105struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
106{
107 struct backing_dev_info *ret = NULL;
165125e1 108 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
109
110 if (q)
111 ret = &q->backing_dev_info;
112 return ret;
113}
1da177e4
LT
114EXPORT_SYMBOL(blk_get_backing_dev_info);
115
2a4aa30c 116void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 117{
1afb20f3
FT
118 memset(rq, 0, sizeof(*rq));
119
1da177e4 120 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 121 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 122 rq->cpu = -1;
63a71386 123 rq->q = q;
a2dec7b3 124 rq->__sector = (sector_t) -1;
2e662b65
JA
125 INIT_HLIST_NODE(&rq->hash);
126 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 127 rq->cmd = rq->__cmd;
e2494e1b 128 rq->cmd_len = BLK_MAX_CDB;
63a71386 129 rq->tag = -1;
1da177e4 130 rq->ref_count = 1;
b243ddcb 131 rq->start_time = jiffies;
9195291e 132 set_start_time_ns(rq);
7681bfee 133 rq->part = NULL;
1da177e4 134}
2a4aa30c 135EXPORT_SYMBOL(blk_rq_init);
1da177e4 136
5bb23a68
N
137static void req_bio_endio(struct request *rq, struct bio *bio,
138 unsigned int nbytes, int error)
1da177e4 139{
165125e1 140 struct request_queue *q = rq->q;
797e7dbb 141
5bb23a68
N
142 if (&q->bar_rq != rq) {
143 if (error)
144 clear_bit(BIO_UPTODATE, &bio->bi_flags);
145 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
146 error = -EIO;
797e7dbb 147
5bb23a68 148 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 149 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 150 __func__, nbytes, bio->bi_size);
5bb23a68
N
151 nbytes = bio->bi_size;
152 }
797e7dbb 153
08bafc03
KM
154 if (unlikely(rq->cmd_flags & REQ_QUIET))
155 set_bit(BIO_QUIET, &bio->bi_flags);
156
5bb23a68
N
157 bio->bi_size -= nbytes;
158 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
159
160 if (bio_integrity(bio))
161 bio_integrity_advance(bio, nbytes);
162
5bb23a68 163 if (bio->bi_size == 0)
6712ecf8 164 bio_endio(bio, error);
5bb23a68
N
165 } else {
166
167 /*
168 * Okay, this is the barrier request in progress, just
169 * record the error;
170 */
171 if (error && !q->orderr)
172 q->orderr = error;
173 }
1da177e4 174}
1da177e4 175
1da177e4
LT
176void blk_dump_rq_flags(struct request *rq, char *msg)
177{
178 int bit;
179
6728cb0e 180 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
181 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
182 rq->cmd_flags);
1da177e4 183
83096ebf
TH
184 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
185 (unsigned long long)blk_rq_pos(rq),
186 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 187 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 188 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 189
33659ebb 190 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 191 printk(KERN_INFO " cdb: ");
d34c87e4 192 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
193 printk("%02x ", rq->cmd[bit]);
194 printk("\n");
195 }
196}
1da177e4
LT
197EXPORT_SYMBOL(blk_dump_rq_flags);
198
1da177e4
LT
199/*
200 * "plug" the device if there are no outstanding requests: this will
201 * force the transfer to start only after we have put all the requests
202 * on the list.
203 *
204 * This is called with interrupts off and no requests on the queue and
205 * with the queue lock held.
206 */
165125e1 207void blk_plug_device(struct request_queue *q)
1da177e4
LT
208{
209 WARN_ON(!irqs_disabled());
210
211 /*
212 * don't plug a stopped queue, it must be paired with blk_start_queue()
213 * which will restart the queueing
214 */
7daac490 215 if (blk_queue_stopped(q))
1da177e4
LT
216 return;
217
e48ec690 218 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 219 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 220 trace_block_plug(q);
2056a782 221 }
1da177e4 222}
1da177e4
LT
223EXPORT_SYMBOL(blk_plug_device);
224
6c5e0c4d
JA
225/**
226 * blk_plug_device_unlocked - plug a device without queue lock held
227 * @q: The &struct request_queue to plug
228 *
229 * Description:
230 * Like @blk_plug_device(), but grabs the queue lock and disables
231 * interrupts.
232 **/
233void blk_plug_device_unlocked(struct request_queue *q)
234{
235 unsigned long flags;
236
237 spin_lock_irqsave(q->queue_lock, flags);
238 blk_plug_device(q);
239 spin_unlock_irqrestore(q->queue_lock, flags);
240}
241EXPORT_SYMBOL(blk_plug_device_unlocked);
242
1da177e4
LT
243/*
244 * remove the queue from the plugged list, if present. called with
245 * queue lock held and interrupts disabled.
246 */
165125e1 247int blk_remove_plug(struct request_queue *q)
1da177e4
LT
248{
249 WARN_ON(!irqs_disabled());
250
e48ec690 251 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
252 return 0;
253
254 del_timer(&q->unplug_timer);
255 return 1;
256}
1da177e4
LT
257EXPORT_SYMBOL(blk_remove_plug);
258
259/*
260 * remove the plug and let it rip..
261 */
165125e1 262void __generic_unplug_device(struct request_queue *q)
1da177e4 263{
7daac490 264 if (unlikely(blk_queue_stopped(q)))
1da177e4 265 return;
a31a9738 266 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
267 return;
268
22e2c507 269 q->request_fn(q);
1da177e4 270}
1da177e4
LT
271
272/**
273 * generic_unplug_device - fire a request queue
165125e1 274 * @q: The &struct request_queue in question
1da177e4
LT
275 *
276 * Description:
277 * Linux uses plugging to build bigger requests queues before letting
278 * the device have at them. If a queue is plugged, the I/O scheduler
279 * is still adding and merging requests on the queue. Once the queue
280 * gets unplugged, the request_fn defined for the queue is invoked and
281 * transfers started.
282 **/
165125e1 283void generic_unplug_device(struct request_queue *q)
1da177e4 284{
dbaf2c00
JA
285 if (blk_queue_plugged(q)) {
286 spin_lock_irq(q->queue_lock);
287 __generic_unplug_device(q);
288 spin_unlock_irq(q->queue_lock);
289 }
1da177e4
LT
290}
291EXPORT_SYMBOL(generic_unplug_device);
292
293static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
294 struct page *page)
295{
165125e1 296 struct request_queue *q = bdi->unplug_io_data;
1da177e4 297
2ad8b1ef 298 blk_unplug(q);
1da177e4
LT
299}
300
86db1e29 301void blk_unplug_work(struct work_struct *work)
1da177e4 302{
165125e1
JA
303 struct request_queue *q =
304 container_of(work, struct request_queue, unplug_work);
1da177e4 305
5f3ea37c 306 trace_block_unplug_io(q);
1da177e4
LT
307 q->unplug_fn(q);
308}
309
86db1e29 310void blk_unplug_timeout(unsigned long data)
1da177e4 311{
165125e1 312 struct request_queue *q = (struct request_queue *)data;
1da177e4 313
5f3ea37c 314 trace_block_unplug_timer(q);
18887ad9 315 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
316}
317
2ad8b1ef
AB
318void blk_unplug(struct request_queue *q)
319{
320 /*
321 * devices don't necessarily have an ->unplug_fn defined
322 */
323 if (q->unplug_fn) {
5f3ea37c 324 trace_block_unplug_io(q);
2ad8b1ef
AB
325 q->unplug_fn(q);
326 }
327}
328EXPORT_SYMBOL(blk_unplug);
329
1da177e4
LT
330/**
331 * blk_start_queue - restart a previously stopped queue
165125e1 332 * @q: The &struct request_queue in question
1da177e4
LT
333 *
334 * Description:
335 * blk_start_queue() will clear the stop flag on the queue, and call
336 * the request_fn for the queue if it was in a stopped state when
337 * entered. Also see blk_stop_queue(). Queue lock must be held.
338 **/
165125e1 339void blk_start_queue(struct request_queue *q)
1da177e4 340{
a038e253
PBG
341 WARN_ON(!irqs_disabled());
342
75ad23bc 343 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 344 __blk_run_queue(q);
1da177e4 345}
1da177e4
LT
346EXPORT_SYMBOL(blk_start_queue);
347
348/**
349 * blk_stop_queue - stop a queue
165125e1 350 * @q: The &struct request_queue in question
1da177e4
LT
351 *
352 * Description:
353 * The Linux block layer assumes that a block driver will consume all
354 * entries on the request queue when the request_fn strategy is called.
355 * Often this will not happen, because of hardware limitations (queue
356 * depth settings). If a device driver gets a 'queue full' response,
357 * or if it simply chooses not to queue more I/O at one point, it can
358 * call this function to prevent the request_fn from being called until
359 * the driver has signalled it's ready to go again. This happens by calling
360 * blk_start_queue() to restart queue operations. Queue lock must be held.
361 **/
165125e1 362void blk_stop_queue(struct request_queue *q)
1da177e4
LT
363{
364 blk_remove_plug(q);
75ad23bc 365 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
366}
367EXPORT_SYMBOL(blk_stop_queue);
368
369/**
370 * blk_sync_queue - cancel any pending callbacks on a queue
371 * @q: the queue
372 *
373 * Description:
374 * The block layer may perform asynchronous callback activity
375 * on a queue, such as calling the unplug function after a timeout.
376 * A block device may call blk_sync_queue to ensure that any
377 * such activity is cancelled, thus allowing it to release resources
59c51591 378 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
379 * that its ->make_request_fn will not re-add plugging prior to calling
380 * this function.
381 *
382 */
383void blk_sync_queue(struct request_queue *q)
384{
385 del_timer_sync(&q->unplug_timer);
70ed28b9 386 del_timer_sync(&q->timeout);
64d01dc9 387 cancel_work_sync(&q->unplug_work);
e43473b7 388 throtl_shutdown_timer_wq(q);
1da177e4
LT
389}
390EXPORT_SYMBOL(blk_sync_queue);
391
392/**
80a4b58e 393 * __blk_run_queue - run a single device queue
1da177e4 394 * @q: The queue to run
80a4b58e
JA
395 *
396 * Description:
397 * See @blk_run_queue. This variant must be called with the queue lock
398 * held and interrupts disabled.
399 *
1da177e4 400 */
75ad23bc 401void __blk_run_queue(struct request_queue *q)
1da177e4 402{
1da177e4 403 blk_remove_plug(q);
dac07ec1 404
a538cd03
TH
405 if (unlikely(blk_queue_stopped(q)))
406 return;
407
408 if (elv_queue_empty(q))
409 return;
410
dac07ec1
JA
411 /*
412 * Only recurse once to avoid overrunning the stack, let the unplug
413 * handling reinvoke the handler shortly if we already got there.
414 */
a538cd03
TH
415 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
416 q->request_fn(q);
417 queue_flag_clear(QUEUE_FLAG_REENTER, q);
418 } else {
419 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
420 kblockd_schedule_work(q, &q->unplug_work);
421 }
75ad23bc
NP
422}
423EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 424
75ad23bc
NP
425/**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
80a4b58e
JA
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 431 * May be used to restart queueing when a request has completed.
75ad23bc
NP
432 */
433void blk_run_queue(struct request_queue *q)
434{
435 unsigned long flags;
436
437 spin_lock_irqsave(q->queue_lock, flags);
438 __blk_run_queue(q);
1da177e4
LT
439 spin_unlock_irqrestore(q->queue_lock, flags);
440}
441EXPORT_SYMBOL(blk_run_queue);
442
165125e1 443void blk_put_queue(struct request_queue *q)
483f4afc
AV
444{
445 kobject_put(&q->kobj);
446}
483f4afc 447
6728cb0e 448void blk_cleanup_queue(struct request_queue *q)
483f4afc 449{
e3335de9
JA
450 /*
451 * We know we have process context here, so we can be a little
452 * cautious and ensure that pending block actions on this device
453 * are done before moving on. Going into this function, we should
454 * not have processes doing IO to this device.
455 */
456 blk_sync_queue(q);
457
31373d09 458 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 459 mutex_lock(&q->sysfs_lock);
75ad23bc 460 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
461 mutex_unlock(&q->sysfs_lock);
462
463 if (q->elevator)
464 elevator_exit(q->elevator);
465
e43473b7
VG
466 blk_throtl_exit(q);
467
483f4afc
AV
468 blk_put_queue(q);
469}
1da177e4
LT
470EXPORT_SYMBOL(blk_cleanup_queue);
471
165125e1 472static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
473{
474 struct request_list *rl = &q->rq;
475
1abec4fd
MS
476 if (unlikely(rl->rq_pool))
477 return 0;
478
1faa16d2
JA
479 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
480 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 481 rl->elvpriv = 0;
1faa16d2
JA
482 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
483 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 484
1946089a
CL
485 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
486 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
487
488 if (!rl->rq_pool)
489 return -ENOMEM;
490
491 return 0;
492}
493
165125e1 494struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 495{
1946089a
CL
496 return blk_alloc_queue_node(gfp_mask, -1);
497}
498EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 499
165125e1 500struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 501{
165125e1 502 struct request_queue *q;
e0bf68dd 503 int err;
1946089a 504
8324aa91 505 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 506 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
507 if (!q)
508 return NULL;
509
e0bf68dd
PZ
510 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
511 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
512 q->backing_dev_info.ra_pages =
513 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
514 q->backing_dev_info.state = 0;
515 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 516 q->backing_dev_info.name = "block";
0989a025 517
e0bf68dd
PZ
518 err = bdi_init(&q->backing_dev_info);
519 if (err) {
8324aa91 520 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
521 return NULL;
522 }
523
e43473b7
VG
524 if (blk_throtl_init(q)) {
525 kmem_cache_free(blk_requestq_cachep, q);
526 return NULL;
527 }
528
31373d09
MG
529 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
530 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 531 init_timer(&q->unplug_timer);
242f9dcb
JA
532 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
533 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 534 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 535
8324aa91 536 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 537
483f4afc 538 mutex_init(&q->sysfs_lock);
e7e72bf6 539 spin_lock_init(&q->__queue_lock);
483f4afc 540
1da177e4
LT
541 return q;
542}
1946089a 543EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
544
545/**
546 * blk_init_queue - prepare a request queue for use with a block device
547 * @rfn: The function to be called to process requests that have been
548 * placed on the queue.
549 * @lock: Request queue spin lock
550 *
551 * Description:
552 * If a block device wishes to use the standard request handling procedures,
553 * which sorts requests and coalesces adjacent requests, then it must
554 * call blk_init_queue(). The function @rfn will be called when there
555 * are requests on the queue that need to be processed. If the device
556 * supports plugging, then @rfn may not be called immediately when requests
557 * are available on the queue, but may be called at some time later instead.
558 * Plugged queues are generally unplugged when a buffer belonging to one
559 * of the requests on the queue is needed, or due to memory pressure.
560 *
561 * @rfn is not required, or even expected, to remove all requests off the
562 * queue, but only as many as it can handle at a time. If it does leave
563 * requests on the queue, it is responsible for arranging that the requests
564 * get dealt with eventually.
565 *
566 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
567 * request queue; this lock will be taken also from interrupt context, so irq
568 * disabling is needed for it.
1da177e4 569 *
710027a4 570 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
571 * it didn't succeed.
572 *
573 * Note:
574 * blk_init_queue() must be paired with a blk_cleanup_queue() call
575 * when the block device is deactivated (such as at module unload).
576 **/
1946089a 577
165125e1 578struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 579{
1946089a
CL
580 return blk_init_queue_node(rfn, lock, -1);
581}
582EXPORT_SYMBOL(blk_init_queue);
583
165125e1 584struct request_queue *
1946089a
CL
585blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
586{
c86d1b8a 587 struct request_queue *uninit_q, *q;
1da177e4 588
c86d1b8a
MS
589 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
590 if (!uninit_q)
591 return NULL;
592
593 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
594 if (!q)
595 blk_cleanup_queue(uninit_q);
596
597 return q;
01effb0d
MS
598}
599EXPORT_SYMBOL(blk_init_queue_node);
600
601struct request_queue *
602blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
603 spinlock_t *lock)
604{
605 return blk_init_allocated_queue_node(q, rfn, lock, -1);
606}
607EXPORT_SYMBOL(blk_init_allocated_queue);
608
609struct request_queue *
610blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
611 spinlock_t *lock, int node_id)
612{
1da177e4
LT
613 if (!q)
614 return NULL;
615
1946089a 616 q->node = node_id;
c86d1b8a 617 if (blk_init_free_list(q))
8669aafd 618 return NULL;
1da177e4
LT
619
620 q->request_fn = rfn;
1da177e4 621 q->prep_rq_fn = NULL;
28018c24 622 q->unprep_rq_fn = NULL;
1da177e4 623 q->unplug_fn = generic_unplug_device;
bc58ba94 624 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
625 q->queue_lock = lock;
626
f3b144aa
JA
627 /*
628 * This also sets hw/phys segments, boundary and size
629 */
1da177e4 630 blk_queue_make_request(q, __make_request);
1da177e4 631
44ec9542
AS
632 q->sg_reserved_size = INT_MAX;
633
1da177e4
LT
634 /*
635 * all done
636 */
637 if (!elevator_init(q, NULL)) {
638 blk_queue_congestion_threshold(q);
639 return q;
640 }
641
1da177e4
LT
642 return NULL;
643}
01effb0d 644EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 645
165125e1 646int blk_get_queue(struct request_queue *q)
1da177e4 647{
fde6ad22 648 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 649 kobject_get(&q->kobj);
1da177e4
LT
650 return 0;
651 }
652
653 return 1;
654}
1da177e4 655
165125e1 656static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 657{
4aff5e23 658 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 659 elv_put_request(q, rq);
1da177e4
LT
660 mempool_free(rq, q->rq.rq_pool);
661}
662
1ea25ecb 663static struct request *
42dad764 664blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
665{
666 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
667
668 if (!rq)
669 return NULL;
670
2a4aa30c 671 blk_rq_init(q, rq);
1afb20f3 672
42dad764 673 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 674
cb98fc8b 675 if (priv) {
cb78b285 676 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
677 mempool_free(rq, q->rq.rq_pool);
678 return NULL;
679 }
4aff5e23 680 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 681 }
1da177e4 682
cb98fc8b 683 return rq;
1da177e4
LT
684}
685
686/*
687 * ioc_batching returns true if the ioc is a valid batching request and
688 * should be given priority access to a request.
689 */
165125e1 690static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
691{
692 if (!ioc)
693 return 0;
694
695 /*
696 * Make sure the process is able to allocate at least 1 request
697 * even if the batch times out, otherwise we could theoretically
698 * lose wakeups.
699 */
700 return ioc->nr_batch_requests == q->nr_batching ||
701 (ioc->nr_batch_requests > 0
702 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
703}
704
705/*
706 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
707 * will cause the process to be a "batcher" on all queues in the system. This
708 * is the behaviour we want though - once it gets a wakeup it should be given
709 * a nice run.
710 */
165125e1 711static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
712{
713 if (!ioc || ioc_batching(q, ioc))
714 return;
715
716 ioc->nr_batch_requests = q->nr_batching;
717 ioc->last_waited = jiffies;
718}
719
1faa16d2 720static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
721{
722 struct request_list *rl = &q->rq;
723
1faa16d2
JA
724 if (rl->count[sync] < queue_congestion_off_threshold(q))
725 blk_clear_queue_congested(q, sync);
1da177e4 726
1faa16d2
JA
727 if (rl->count[sync] + 1 <= q->nr_requests) {
728 if (waitqueue_active(&rl->wait[sync]))
729 wake_up(&rl->wait[sync]);
1da177e4 730
1faa16d2 731 blk_clear_queue_full(q, sync);
1da177e4
LT
732 }
733}
734
735/*
736 * A request has just been released. Account for it, update the full and
737 * congestion status, wake up any waiters. Called under q->queue_lock.
738 */
1faa16d2 739static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
740{
741 struct request_list *rl = &q->rq;
742
1faa16d2 743 rl->count[sync]--;
cb98fc8b
TH
744 if (priv)
745 rl->elvpriv--;
1da177e4 746
1faa16d2 747 __freed_request(q, sync);
1da177e4 748
1faa16d2
JA
749 if (unlikely(rl->starved[sync ^ 1]))
750 __freed_request(q, sync ^ 1);
1da177e4
LT
751}
752
1da177e4 753/*
d6344532
NP
754 * Get a free request, queue_lock must be held.
755 * Returns NULL on failure, with queue_lock held.
756 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 757 */
165125e1 758static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 759 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
760{
761 struct request *rq = NULL;
762 struct request_list *rl = &q->rq;
88ee5ef1 763 struct io_context *ioc = NULL;
1faa16d2 764 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
765 int may_queue, priv;
766
7749a8d4 767 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
768 if (may_queue == ELV_MQUEUE_NO)
769 goto rq_starved;
770
1faa16d2
JA
771 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
772 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 773 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
774 /*
775 * The queue will fill after this allocation, so set
776 * it as full, and mark this process as "batching".
777 * This process will be allowed to complete a batch of
778 * requests, others will be blocked.
779 */
1faa16d2 780 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 781 ioc_set_batching(q, ioc);
1faa16d2 782 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
783 } else {
784 if (may_queue != ELV_MQUEUE_MUST
785 && !ioc_batching(q, ioc)) {
786 /*
787 * The queue is full and the allocating
788 * process is not a "batcher", and not
789 * exempted by the IO scheduler
790 */
791 goto out;
792 }
793 }
1da177e4 794 }
1faa16d2 795 blk_set_queue_congested(q, is_sync);
1da177e4
LT
796 }
797
082cf69e
JA
798 /*
799 * Only allow batching queuers to allocate up to 50% over the defined
800 * limit of requests, otherwise we could have thousands of requests
801 * allocated with any setting of ->nr_requests
802 */
1faa16d2 803 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 804 goto out;
fd782a4a 805
1faa16d2
JA
806 rl->count[is_sync]++;
807 rl->starved[is_sync] = 0;
cb98fc8b 808
64521d1a 809 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
7681bfee 810 if (priv) {
cb98fc8b
TH
811 rl->elvpriv++;
812
7681bfee
YI
813 /*
814 * Don't do stats for non-priv requests
815 */
816 if (blk_queue_io_stat(q))
817 rw_flags |= REQ_IO_STAT;
818 }
819
1da177e4
LT
820 spin_unlock_irq(q->queue_lock);
821
7749a8d4 822 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 823 if (unlikely(!rq)) {
1da177e4
LT
824 /*
825 * Allocation failed presumably due to memory. Undo anything
826 * we might have messed up.
827 *
828 * Allocating task should really be put onto the front of the
829 * wait queue, but this is pretty rare.
830 */
831 spin_lock_irq(q->queue_lock);
1faa16d2 832 freed_request(q, is_sync, priv);
1da177e4
LT
833
834 /*
835 * in the very unlikely event that allocation failed and no
836 * requests for this direction was pending, mark us starved
837 * so that freeing of a request in the other direction will
838 * notice us. another possible fix would be to split the
839 * rq mempool into READ and WRITE
840 */
841rq_starved:
1faa16d2
JA
842 if (unlikely(rl->count[is_sync] == 0))
843 rl->starved[is_sync] = 1;
1da177e4 844
1da177e4
LT
845 goto out;
846 }
847
88ee5ef1
JA
848 /*
849 * ioc may be NULL here, and ioc_batching will be false. That's
850 * OK, if the queue is under the request limit then requests need
851 * not count toward the nr_batch_requests limit. There will always
852 * be some limit enforced by BLK_BATCH_TIME.
853 */
1da177e4
LT
854 if (ioc_batching(q, ioc))
855 ioc->nr_batch_requests--;
6728cb0e 856
1faa16d2 857 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 858out:
1da177e4
LT
859 return rq;
860}
861
862/*
863 * No available requests for this queue, unplug the device and wait for some
864 * requests to become available.
d6344532
NP
865 *
866 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 867 */
165125e1 868static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 869 struct bio *bio)
1da177e4 870{
1faa16d2 871 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
872 struct request *rq;
873
7749a8d4 874 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
875 while (!rq) {
876 DEFINE_WAIT(wait);
05caf8db 877 struct io_context *ioc;
1da177e4
LT
878 struct request_list *rl = &q->rq;
879
1faa16d2 880 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
881 TASK_UNINTERRUPTIBLE);
882
1faa16d2 883 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 884
05caf8db
ZY
885 __generic_unplug_device(q);
886 spin_unlock_irq(q->queue_lock);
887 io_schedule();
1da177e4 888
05caf8db
ZY
889 /*
890 * After sleeping, we become a "batching" process and
891 * will be able to allocate at least one request, and
892 * up to a big batch of them for a small period time.
893 * See ioc_batching, ioc_set_batching
894 */
895 ioc = current_io_context(GFP_NOIO, q->node);
896 ioc_set_batching(q, ioc);
d6344532 897
05caf8db 898 spin_lock_irq(q->queue_lock);
1faa16d2 899 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
900
901 rq = get_request(q, rw_flags, bio, GFP_NOIO);
902 };
1da177e4
LT
903
904 return rq;
905}
906
165125e1 907struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
908{
909 struct request *rq;
910
911 BUG_ON(rw != READ && rw != WRITE);
912
d6344532
NP
913 spin_lock_irq(q->queue_lock);
914 if (gfp_mask & __GFP_WAIT) {
22e2c507 915 rq = get_request_wait(q, rw, NULL);
d6344532 916 } else {
22e2c507 917 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
918 if (!rq)
919 spin_unlock_irq(q->queue_lock);
920 }
921 /* q->queue_lock is unlocked at this point */
1da177e4
LT
922
923 return rq;
924}
1da177e4
LT
925EXPORT_SYMBOL(blk_get_request);
926
dc72ef4a 927/**
79eb63e9 928 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 929 * @q: target request queue
79eb63e9
BH
930 * @bio: The bio describing the memory mappings that will be submitted for IO.
931 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 932 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 933 *
79eb63e9
BH
934 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
935 * type commands. Where the struct request needs to be farther initialized by
936 * the caller. It is passed a &struct bio, which describes the memory info of
937 * the I/O transfer.
dc72ef4a 938 *
79eb63e9
BH
939 * The caller of blk_make_request must make sure that bi_io_vec
940 * are set to describe the memory buffers. That bio_data_dir() will return
941 * the needed direction of the request. (And all bio's in the passed bio-chain
942 * are properly set accordingly)
943 *
944 * If called under none-sleepable conditions, mapped bio buffers must not
945 * need bouncing, by calling the appropriate masked or flagged allocator,
946 * suitable for the target device. Otherwise the call to blk_queue_bounce will
947 * BUG.
53674ac5
JA
948 *
949 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
950 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
951 * anything but the first bio in the chain. Otherwise you risk waiting for IO
952 * completion of a bio that hasn't been submitted yet, thus resulting in a
953 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
954 * of bio_alloc(), as that avoids the mempool deadlock.
955 * If possible a big IO should be split into smaller parts when allocation
956 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 957 */
79eb63e9
BH
958struct request *blk_make_request(struct request_queue *q, struct bio *bio,
959 gfp_t gfp_mask)
dc72ef4a 960{
79eb63e9
BH
961 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
962
963 if (unlikely(!rq))
964 return ERR_PTR(-ENOMEM);
965
966 for_each_bio(bio) {
967 struct bio *bounce_bio = bio;
968 int ret;
969
970 blk_queue_bounce(q, &bounce_bio);
971 ret = blk_rq_append_bio(q, rq, bounce_bio);
972 if (unlikely(ret)) {
973 blk_put_request(rq);
974 return ERR_PTR(ret);
975 }
976 }
977
978 return rq;
dc72ef4a 979}
79eb63e9 980EXPORT_SYMBOL(blk_make_request);
dc72ef4a 981
1da177e4
LT
982/**
983 * blk_requeue_request - put a request back on queue
984 * @q: request queue where request should be inserted
985 * @rq: request to be inserted
986 *
987 * Description:
988 * Drivers often keep queueing requests until the hardware cannot accept
989 * more, when that condition happens we need to put the request back
990 * on the queue. Must be called with queue lock held.
991 */
165125e1 992void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 993{
242f9dcb
JA
994 blk_delete_timer(rq);
995 blk_clear_rq_complete(rq);
5f3ea37c 996 trace_block_rq_requeue(q, rq);
2056a782 997
1da177e4
LT
998 if (blk_rq_tagged(rq))
999 blk_queue_end_tag(q, rq);
1000
ba396a6c
JB
1001 BUG_ON(blk_queued_rq(rq));
1002
1da177e4
LT
1003 elv_requeue_request(q, rq);
1004}
1da177e4
LT
1005EXPORT_SYMBOL(blk_requeue_request);
1006
1007/**
710027a4 1008 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1009 * @q: request queue where request should be inserted
1010 * @rq: request to be inserted
1011 * @at_head: insert request at head or tail of queue
1012 * @data: private data
1da177e4
LT
1013 *
1014 * Description:
1015 * Many block devices need to execute commands asynchronously, so they don't
1016 * block the whole kernel from preemption during request execution. This is
1017 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1018 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1019 * be scheduled for actual execution by the request queue.
1da177e4
LT
1020 *
1021 * We have the option of inserting the head or the tail of the queue.
1022 * Typically we use the tail for new ioctls and so forth. We use the head
1023 * of the queue for things like a QUEUE_FULL message from a device, or a
1024 * host that is unable to accept a particular command.
1025 */
165125e1 1026void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1027 int at_head, void *data)
1da177e4 1028{
867d1191 1029 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1030 unsigned long flags;
1031
1032 /*
1033 * tell I/O scheduler that this isn't a regular read/write (ie it
1034 * must not attempt merges on this) and that it acts as a soft
1035 * barrier
1036 */
4aff5e23 1037 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1038
1039 rq->special = data;
1040
1041 spin_lock_irqsave(q->queue_lock, flags);
1042
1043 /*
1044 * If command is tagged, release the tag
1045 */
867d1191
TH
1046 if (blk_rq_tagged(rq))
1047 blk_queue_end_tag(q, rq);
1da177e4 1048
b238b3d4 1049 drive_stat_acct(rq, 1);
867d1191 1050 __elv_add_request(q, rq, where, 0);
a7f55792 1051 __blk_run_queue(q);
1da177e4
LT
1052 spin_unlock_irqrestore(q->queue_lock, flags);
1053}
1da177e4
LT
1054EXPORT_SYMBOL(blk_insert_request);
1055
1da177e4
LT
1056/*
1057 * add-request adds a request to the linked list.
1058 * queue lock is held and interrupts disabled, as we muck with the
1059 * request queue list.
1060 */
6728cb0e 1061static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1062{
b238b3d4 1063 drive_stat_acct(req, 1);
1da177e4 1064
1da177e4
LT
1065 /*
1066 * elevator indicated where it wants this request to be
1067 * inserted at elevator_merge time
1068 */
1069 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1070}
6728cb0e 1071
074a7aca
TH
1072static void part_round_stats_single(int cpu, struct hd_struct *part,
1073 unsigned long now)
1074{
1075 if (now == part->stamp)
1076 return;
1077
316d315b 1078 if (part_in_flight(part)) {
074a7aca 1079 __part_stat_add(cpu, part, time_in_queue,
316d315b 1080 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1081 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1082 }
1083 part->stamp = now;
1084}
1085
1086/**
496aa8a9
RD
1087 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1088 * @cpu: cpu number for stats access
1089 * @part: target partition
1da177e4
LT
1090 *
1091 * The average IO queue length and utilisation statistics are maintained
1092 * by observing the current state of the queue length and the amount of
1093 * time it has been in this state for.
1094 *
1095 * Normally, that accounting is done on IO completion, but that can result
1096 * in more than a second's worth of IO being accounted for within any one
1097 * second, leading to >100% utilisation. To deal with that, we call this
1098 * function to do a round-off before returning the results when reading
1099 * /proc/diskstats. This accounts immediately for all queue usage up to
1100 * the current jiffies and restarts the counters again.
1101 */
c9959059 1102void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1103{
1104 unsigned long now = jiffies;
1105
074a7aca
TH
1106 if (part->partno)
1107 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1108 part_round_stats_single(cpu, part, now);
6f2576af 1109}
074a7aca 1110EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1111
1da177e4
LT
1112/*
1113 * queue lock must be held
1114 */
165125e1 1115void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1116{
1da177e4
LT
1117 if (unlikely(!q))
1118 return;
1119 if (unlikely(--req->ref_count))
1120 return;
1121
8922e16c
TH
1122 elv_completed_request(q, req);
1123
1cd96c24
BH
1124 /* this is a bio leak */
1125 WARN_ON(req->bio != NULL);
1126
1da177e4
LT
1127 /*
1128 * Request may not have originated from ll_rw_blk. if not,
1129 * it didn't come out of our reserved rq pools
1130 */
49171e5c 1131 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1132 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1133 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1134
1da177e4 1135 BUG_ON(!list_empty(&req->queuelist));
9817064b 1136 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1137
1138 blk_free_request(q, req);
1faa16d2 1139 freed_request(q, is_sync, priv);
1da177e4
LT
1140 }
1141}
6e39b69e
MC
1142EXPORT_SYMBOL_GPL(__blk_put_request);
1143
1da177e4
LT
1144void blk_put_request(struct request *req)
1145{
8922e16c 1146 unsigned long flags;
165125e1 1147 struct request_queue *q = req->q;
8922e16c 1148
52a93ba8
FT
1149 spin_lock_irqsave(q->queue_lock, flags);
1150 __blk_put_request(q, req);
1151 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1152}
1da177e4
LT
1153EXPORT_SYMBOL(blk_put_request);
1154
66ac0280
CH
1155/**
1156 * blk_add_request_payload - add a payload to a request
1157 * @rq: request to update
1158 * @page: page backing the payload
1159 * @len: length of the payload.
1160 *
1161 * This allows to later add a payload to an already submitted request by
1162 * a block driver. The driver needs to take care of freeing the payload
1163 * itself.
1164 *
1165 * Note that this is a quite horrible hack and nothing but handling of
1166 * discard requests should ever use it.
1167 */
1168void blk_add_request_payload(struct request *rq, struct page *page,
1169 unsigned int len)
1170{
1171 struct bio *bio = rq->bio;
1172
1173 bio->bi_io_vec->bv_page = page;
1174 bio->bi_io_vec->bv_offset = 0;
1175 bio->bi_io_vec->bv_len = len;
1176
1177 bio->bi_size = len;
1178 bio->bi_vcnt = 1;
1179 bio->bi_phys_segments = 1;
1180
1181 rq->__data_len = rq->resid_len = len;
1182 rq->nr_phys_segments = 1;
1183 rq->buffer = bio_data(bio);
1184}
1185EXPORT_SYMBOL_GPL(blk_add_request_payload);
1186
86db1e29 1187void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1188{
c7c22e4d 1189 req->cpu = bio->bi_comp_cpu;
4aff5e23 1190 req->cmd_type = REQ_TYPE_FS;
52d9e675 1191
7b6d91da
CH
1192 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1193 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1194 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1195
52d9e675 1196 req->errors = 0;
a2dec7b3 1197 req->__sector = bio->bi_sector;
52d9e675 1198 req->ioprio = bio_prio(bio);
bc1c56fd 1199 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1200}
1201
644b2d99
JA
1202/*
1203 * Only disabling plugging for non-rotational devices if it does tagging
1204 * as well, otherwise we do need the proper merging
1205 */
1206static inline bool queue_should_plug(struct request_queue *q)
1207{
79da0644 1208 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1209}
1210
165125e1 1211static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1212{
450991bc 1213 struct request *req;
2e46e8b2
TH
1214 int el_ret;
1215 unsigned int bytes = bio->bi_size;
51da90fc 1216 const unsigned short prio = bio_prio(bio);
5e00d1b5
JS
1217 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1218 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1219 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1220 int rw_flags;
1da177e4 1221
7b6d91da 1222 if ((bio->bi_rw & REQ_HARDBARRIER) &&
db64f680
N
1223 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1224 bio_endio(bio, -EOPNOTSUPP);
1225 return 0;
1226 }
1da177e4
LT
1227 /*
1228 * low level driver can indicate that it wants pages above a
1229 * certain limit bounced to low memory (ie for highmem, or even
1230 * ISA dma in theory)
1231 */
1232 blk_queue_bounce(q, &bio);
1233
1da177e4
LT
1234 spin_lock_irq(q->queue_lock);
1235
7b6d91da 1236 if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q))
1da177e4
LT
1237 goto get_rq;
1238
1239 el_ret = elv_merge(q, &req, bio);
1240 switch (el_ret) {
6728cb0e
JA
1241 case ELEVATOR_BACK_MERGE:
1242 BUG_ON(!rq_mergeable(req));
1da177e4 1243
6728cb0e
JA
1244 if (!ll_back_merge_fn(q, req, bio))
1245 break;
1da177e4 1246
5f3ea37c 1247 trace_block_bio_backmerge(q, bio);
2056a782 1248
80a761fd
TH
1249 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1250 blk_rq_set_mixed_merge(req);
1251
6728cb0e
JA
1252 req->biotail->bi_next = bio;
1253 req->biotail = bio;
a2dec7b3 1254 req->__data_len += bytes;
6728cb0e 1255 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1256 if (!blk_rq_cpu_valid(req))
1257 req->cpu = bio->bi_comp_cpu;
6728cb0e 1258 drive_stat_acct(req, 0);
812d4026 1259 elv_bio_merged(q, req, bio);
6728cb0e
JA
1260 if (!attempt_back_merge(q, req))
1261 elv_merged_request(q, req, el_ret);
1262 goto out;
1da177e4 1263
6728cb0e
JA
1264 case ELEVATOR_FRONT_MERGE:
1265 BUG_ON(!rq_mergeable(req));
1da177e4 1266
6728cb0e
JA
1267 if (!ll_front_merge_fn(q, req, bio))
1268 break;
1da177e4 1269
5f3ea37c 1270 trace_block_bio_frontmerge(q, bio);
2056a782 1271
80a761fd
TH
1272 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1273 blk_rq_set_mixed_merge(req);
1274 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1275 req->cmd_flags |= ff;
1276 }
1277
6728cb0e
JA
1278 bio->bi_next = req->bio;
1279 req->bio = bio;
1da177e4 1280
6728cb0e
JA
1281 /*
1282 * may not be valid. if the low level driver said
1283 * it didn't need a bounce buffer then it better
1284 * not touch req->buffer either...
1285 */
1286 req->buffer = bio_data(bio);
a2dec7b3
TH
1287 req->__sector = bio->bi_sector;
1288 req->__data_len += bytes;
6728cb0e 1289 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1290 if (!blk_rq_cpu_valid(req))
1291 req->cpu = bio->bi_comp_cpu;
6728cb0e 1292 drive_stat_acct(req, 0);
812d4026 1293 elv_bio_merged(q, req, bio);
6728cb0e
JA
1294 if (!attempt_front_merge(q, req))
1295 elv_merged_request(q, req, el_ret);
1296 goto out;
1297
1298 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1299 default:
1300 ;
1da177e4
LT
1301 }
1302
450991bc 1303get_rq:
7749a8d4
JA
1304 /*
1305 * This sync check and mask will be re-done in init_request_from_bio(),
1306 * but we need to set it earlier to expose the sync flag to the
1307 * rq allocator and io schedulers.
1308 */
1309 rw_flags = bio_data_dir(bio);
1310 if (sync)
7b6d91da 1311 rw_flags |= REQ_SYNC;
7749a8d4 1312
1da177e4 1313 /*
450991bc 1314 * Grab a free request. This is might sleep but can not fail.
d6344532 1315 * Returns with the queue unlocked.
450991bc 1316 */
7749a8d4 1317 req = get_request_wait(q, rw_flags, bio);
d6344532 1318
450991bc
NP
1319 /*
1320 * After dropping the lock and possibly sleeping here, our request
1321 * may now be mergeable after it had proven unmergeable (above).
1322 * We don't worry about that case for efficiency. It won't happen
1323 * often, and the elevators are able to handle it.
1da177e4 1324 */
52d9e675 1325 init_request_from_bio(req, bio);
1da177e4 1326
450991bc 1327 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1328 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1329 bio_flagged(bio, BIO_CPU_AFFINE))
1330 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1331 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1332 blk_plug_device(q);
1da177e4
LT
1333 add_request(q, req);
1334out:
644b2d99 1335 if (unplug || !queue_should_plug(q))
1da177e4 1336 __generic_unplug_device(q);
1da177e4
LT
1337 spin_unlock_irq(q->queue_lock);
1338 return 0;
1da177e4
LT
1339}
1340
1341/*
1342 * If bio->bi_dev is a partition, remap the location
1343 */
1344static inline void blk_partition_remap(struct bio *bio)
1345{
1346 struct block_device *bdev = bio->bi_bdev;
1347
bf2de6f5 1348 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1349 struct hd_struct *p = bdev->bd_part;
1350
1da177e4
LT
1351 bio->bi_sector += p->start_sect;
1352 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1353
5f3ea37c 1354 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1355 bdev->bd_dev,
c7149d6b 1356 bio->bi_sector - p->start_sect);
1da177e4
LT
1357 }
1358}
1359
1da177e4
LT
1360static void handle_bad_sector(struct bio *bio)
1361{
1362 char b[BDEVNAME_SIZE];
1363
1364 printk(KERN_INFO "attempt to access beyond end of device\n");
1365 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1366 bdevname(bio->bi_bdev, b),
1367 bio->bi_rw,
1368 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1369 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1370
1371 set_bit(BIO_EOF, &bio->bi_flags);
1372}
1373
c17bb495
AM
1374#ifdef CONFIG_FAIL_MAKE_REQUEST
1375
1376static DECLARE_FAULT_ATTR(fail_make_request);
1377
1378static int __init setup_fail_make_request(char *str)
1379{
1380 return setup_fault_attr(&fail_make_request, str);
1381}
1382__setup("fail_make_request=", setup_fail_make_request);
1383
1384static int should_fail_request(struct bio *bio)
1385{
eddb2e26
TH
1386 struct hd_struct *part = bio->bi_bdev->bd_part;
1387
1388 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1389 return should_fail(&fail_make_request, bio->bi_size);
1390
1391 return 0;
1392}
1393
1394static int __init fail_make_request_debugfs(void)
1395{
1396 return init_fault_attr_dentries(&fail_make_request,
1397 "fail_make_request");
1398}
1399
1400late_initcall(fail_make_request_debugfs);
1401
1402#else /* CONFIG_FAIL_MAKE_REQUEST */
1403
1404static inline int should_fail_request(struct bio *bio)
1405{
1406 return 0;
1407}
1408
1409#endif /* CONFIG_FAIL_MAKE_REQUEST */
1410
c07e2b41
JA
1411/*
1412 * Check whether this bio extends beyond the end of the device.
1413 */
1414static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1415{
1416 sector_t maxsector;
1417
1418 if (!nr_sectors)
1419 return 0;
1420
1421 /* Test device or partition size, when known. */
1422 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1423 if (maxsector) {
1424 sector_t sector = bio->bi_sector;
1425
1426 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1427 /*
1428 * This may well happen - the kernel calls bread()
1429 * without checking the size of the device, e.g., when
1430 * mounting a device.
1431 */
1432 handle_bad_sector(bio);
1433 return 1;
1434 }
1435 }
1436
1437 return 0;
1438}
1439
1da177e4 1440/**
710027a4 1441 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1442 * @bio: The bio describing the location in memory and on the device.
1443 *
1444 * generic_make_request() is used to make I/O requests of block
1445 * devices. It is passed a &struct bio, which describes the I/O that needs
1446 * to be done.
1447 *
1448 * generic_make_request() does not return any status. The
1449 * success/failure status of the request, along with notification of
1450 * completion, is delivered asynchronously through the bio->bi_end_io
1451 * function described (one day) else where.
1452 *
1453 * The caller of generic_make_request must make sure that bi_io_vec
1454 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1455 * set to describe the device address, and the
1456 * bi_end_io and optionally bi_private are set to describe how
1457 * completion notification should be signaled.
1458 *
1459 * generic_make_request and the drivers it calls may use bi_next if this
1460 * bio happens to be merged with someone else, and may change bi_dev and
1461 * bi_sector for remaps as it sees fit. So the values of these fields
1462 * should NOT be depended on after the call to generic_make_request.
1463 */
d89d8796 1464static inline void __generic_make_request(struct bio *bio)
1da177e4 1465{
165125e1 1466 struct request_queue *q;
5ddfe969 1467 sector_t old_sector;
1da177e4 1468 int ret, nr_sectors = bio_sectors(bio);
2056a782 1469 dev_t old_dev;
51fd77bd 1470 int err = -EIO;
1da177e4
LT
1471
1472 might_sleep();
1da177e4 1473
c07e2b41
JA
1474 if (bio_check_eod(bio, nr_sectors))
1475 goto end_io;
1da177e4
LT
1476
1477 /*
1478 * Resolve the mapping until finished. (drivers are
1479 * still free to implement/resolve their own stacking
1480 * by explicitly returning 0)
1481 *
1482 * NOTE: we don't repeat the blk_size check for each new device.
1483 * Stacking drivers are expected to know what they are doing.
1484 */
5ddfe969 1485 old_sector = -1;
2056a782 1486 old_dev = 0;
1da177e4
LT
1487 do {
1488 char b[BDEVNAME_SIZE];
1489
1490 q = bdev_get_queue(bio->bi_bdev);
a7384677 1491 if (unlikely(!q)) {
1da177e4
LT
1492 printk(KERN_ERR
1493 "generic_make_request: Trying to access "
1494 "nonexistent block-device %s (%Lu)\n",
1495 bdevname(bio->bi_bdev, b),
1496 (long long) bio->bi_sector);
a7384677 1497 goto end_io;
1da177e4
LT
1498 }
1499
7b6d91da 1500 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1501 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1502 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1503 bdevname(bio->bi_bdev, b),
1504 bio_sectors(bio),
1505 queue_max_hw_sectors(q));
1da177e4
LT
1506 goto end_io;
1507 }
1508
fde6ad22 1509 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1510 goto end_io;
1511
c17bb495
AM
1512 if (should_fail_request(bio))
1513 goto end_io;
1514
1da177e4
LT
1515 /*
1516 * If this device has partitions, remap block n
1517 * of partition p to block n+start(p) of the disk.
1518 */
1519 blk_partition_remap(bio);
1520
7ba1ba12
MP
1521 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1522 goto end_io;
1523
5ddfe969 1524 if (old_sector != -1)
22a7c31a 1525 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1526
5ddfe969 1527 old_sector = bio->bi_sector;
2056a782
JA
1528 old_dev = bio->bi_bdev->bd_dev;
1529
c07e2b41
JA
1530 if (bio_check_eod(bio, nr_sectors))
1531 goto end_io;
a7384677 1532
8d57a98c
AH
1533 if ((bio->bi_rw & REQ_DISCARD) &&
1534 (!blk_queue_discard(q) ||
1535 ((bio->bi_rw & REQ_SECURE) &&
1536 !blk_queue_secdiscard(q)))) {
51fd77bd
JA
1537 err = -EOPNOTSUPP;
1538 goto end_io;
1539 }
5ddfe969 1540
e43473b7
VG
1541 blk_throtl_bio(q, &bio);
1542
1543 /*
1544 * If bio = NULL, bio has been throttled and will be submitted
1545 * later.
1546 */
1547 if (!bio)
1548 break;
1549
01edede4
MK
1550 trace_block_bio_queue(q, bio);
1551
1da177e4
LT
1552 ret = q->make_request_fn(q, bio);
1553 } while (ret);
a7384677
TH
1554
1555 return;
1556
1557end_io:
1558 bio_endio(bio, err);
1da177e4
LT
1559}
1560
d89d8796
NB
1561/*
1562 * We only want one ->make_request_fn to be active at a time,
1563 * else stack usage with stacked devices could be a problem.
bddd87c7 1564 * So use current->bio_list to keep a list of requests
d89d8796 1565 * submited by a make_request_fn function.
bddd87c7 1566 * current->bio_list is also used as a flag to say if
d89d8796
NB
1567 * generic_make_request is currently active in this task or not.
1568 * If it is NULL, then no make_request is active. If it is non-NULL,
1569 * then a make_request is active, and new requests should be added
1570 * at the tail
1571 */
1572void generic_make_request(struct bio *bio)
1573{
bddd87c7
AM
1574 struct bio_list bio_list_on_stack;
1575
1576 if (current->bio_list) {
d89d8796 1577 /* make_request is active */
bddd87c7 1578 bio_list_add(current->bio_list, bio);
d89d8796
NB
1579 return;
1580 }
1581 /* following loop may be a bit non-obvious, and so deserves some
1582 * explanation.
1583 * Before entering the loop, bio->bi_next is NULL (as all callers
1584 * ensure that) so we have a list with a single bio.
1585 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1586 * we assign bio_list to a pointer to the bio_list_on_stack,
1587 * thus initialising the bio_list of new bios to be
d89d8796
NB
1588 * added. __generic_make_request may indeed add some more bios
1589 * through a recursive call to generic_make_request. If it
1590 * did, we find a non-NULL value in bio_list and re-enter the loop
1591 * from the top. In this case we really did just take the bio
bddd87c7
AM
1592 * of the top of the list (no pretending) and so remove it from
1593 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1594 *
1595 * The loop was structured like this to make only one call to
1596 * __generic_make_request (which is important as it is large and
1597 * inlined) and to keep the structure simple.
1598 */
1599 BUG_ON(bio->bi_next);
bddd87c7
AM
1600 bio_list_init(&bio_list_on_stack);
1601 current->bio_list = &bio_list_on_stack;
d89d8796 1602 do {
d89d8796 1603 __generic_make_request(bio);
bddd87c7 1604 bio = bio_list_pop(current->bio_list);
d89d8796 1605 } while (bio);
bddd87c7 1606 current->bio_list = NULL; /* deactivate */
d89d8796 1607}
1da177e4
LT
1608EXPORT_SYMBOL(generic_make_request);
1609
1610/**
710027a4 1611 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1612 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1613 * @bio: The &struct bio which describes the I/O
1614 *
1615 * submit_bio() is very similar in purpose to generic_make_request(), and
1616 * uses that function to do most of the work. Both are fairly rough
710027a4 1617 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1618 *
1619 */
1620void submit_bio(int rw, struct bio *bio)
1621{
1622 int count = bio_sectors(bio);
1623
22e2c507 1624 bio->bi_rw |= rw;
1da177e4 1625
bf2de6f5
JA
1626 /*
1627 * If it's a regular read/write or a barrier with data attached,
1628 * go through the normal accounting stuff before submission.
1629 */
3ffb52e7 1630 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1631 if (rw & WRITE) {
1632 count_vm_events(PGPGOUT, count);
1633 } else {
1634 task_io_account_read(bio->bi_size);
1635 count_vm_events(PGPGIN, count);
1636 }
1637
1638 if (unlikely(block_dump)) {
1639 char b[BDEVNAME_SIZE];
8dcbdc74 1640 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1641 current->comm, task_pid_nr(current),
bf2de6f5
JA
1642 (rw & WRITE) ? "WRITE" : "READ",
1643 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1644 bdevname(bio->bi_bdev, b),
1645 count);
bf2de6f5 1646 }
1da177e4
LT
1647 }
1648
1649 generic_make_request(bio);
1650}
1da177e4
LT
1651EXPORT_SYMBOL(submit_bio);
1652
82124d60
KU
1653/**
1654 * blk_rq_check_limits - Helper function to check a request for the queue limit
1655 * @q: the queue
1656 * @rq: the request being checked
1657 *
1658 * Description:
1659 * @rq may have been made based on weaker limitations of upper-level queues
1660 * in request stacking drivers, and it may violate the limitation of @q.
1661 * Since the block layer and the underlying device driver trust @rq
1662 * after it is inserted to @q, it should be checked against @q before
1663 * the insertion using this generic function.
1664 *
1665 * This function should also be useful for request stacking drivers
1666 * in some cases below, so export this fuction.
1667 * Request stacking drivers like request-based dm may change the queue
1668 * limits while requests are in the queue (e.g. dm's table swapping).
1669 * Such request stacking drivers should check those requests agaist
1670 * the new queue limits again when they dispatch those requests,
1671 * although such checkings are also done against the old queue limits
1672 * when submitting requests.
1673 */
1674int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1675{
3383977f
S
1676 if (rq->cmd_flags & REQ_DISCARD)
1677 return 0;
1678
ae03bf63
MP
1679 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1680 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1681 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1682 return -EIO;
1683 }
1684
1685 /*
1686 * queue's settings related to segment counting like q->bounce_pfn
1687 * may differ from that of other stacking queues.
1688 * Recalculate it to check the request correctly on this queue's
1689 * limitation.
1690 */
1691 blk_recalc_rq_segments(rq);
8a78362c 1692 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1693 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1694 return -EIO;
1695 }
1696
1697 return 0;
1698}
1699EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1700
1701/**
1702 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1703 * @q: the queue to submit the request
1704 * @rq: the request being queued
1705 */
1706int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1707{
1708 unsigned long flags;
1709
1710 if (blk_rq_check_limits(q, rq))
1711 return -EIO;
1712
1713#ifdef CONFIG_FAIL_MAKE_REQUEST
1714 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1715 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1716 return -EIO;
1717#endif
1718
1719 spin_lock_irqsave(q->queue_lock, flags);
1720
1721 /*
1722 * Submitting request must be dequeued before calling this function
1723 * because it will be linked to another request_queue
1724 */
1725 BUG_ON(blk_queued_rq(rq));
1726
1727 drive_stat_acct(rq, 1);
1728 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1729
1730 spin_unlock_irqrestore(q->queue_lock, flags);
1731
1732 return 0;
1733}
1734EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1735
80a761fd
TH
1736/**
1737 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1738 * @rq: request to examine
1739 *
1740 * Description:
1741 * A request could be merge of IOs which require different failure
1742 * handling. This function determines the number of bytes which
1743 * can be failed from the beginning of the request without
1744 * crossing into area which need to be retried further.
1745 *
1746 * Return:
1747 * The number of bytes to fail.
1748 *
1749 * Context:
1750 * queue_lock must be held.
1751 */
1752unsigned int blk_rq_err_bytes(const struct request *rq)
1753{
1754 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1755 unsigned int bytes = 0;
1756 struct bio *bio;
1757
1758 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1759 return blk_rq_bytes(rq);
1760
1761 /*
1762 * Currently the only 'mixing' which can happen is between
1763 * different fastfail types. We can safely fail portions
1764 * which have all the failfast bits that the first one has -
1765 * the ones which are at least as eager to fail as the first
1766 * one.
1767 */
1768 for (bio = rq->bio; bio; bio = bio->bi_next) {
1769 if ((bio->bi_rw & ff) != ff)
1770 break;
1771 bytes += bio->bi_size;
1772 }
1773
1774 /* this could lead to infinite loop */
1775 BUG_ON(blk_rq_bytes(rq) && !bytes);
1776 return bytes;
1777}
1778EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1779
bc58ba94
JA
1780static void blk_account_io_completion(struct request *req, unsigned int bytes)
1781{
c2553b58 1782 if (blk_do_io_stat(req)) {
bc58ba94
JA
1783 const int rw = rq_data_dir(req);
1784 struct hd_struct *part;
1785 int cpu;
1786
1787 cpu = part_stat_lock();
7681bfee 1788 part = req->part;
bc58ba94
JA
1789 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1790 part_stat_unlock();
1791 }
1792}
1793
1794static void blk_account_io_done(struct request *req)
1795{
bc58ba94
JA
1796 /*
1797 * Account IO completion. bar_rq isn't accounted as a normal
1798 * IO on queueing nor completion. Accounting the containing
1799 * request is enough.
1800 */
c2553b58 1801 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1802 unsigned long duration = jiffies - req->start_time;
1803 const int rw = rq_data_dir(req);
1804 struct hd_struct *part;
1805 int cpu;
1806
1807 cpu = part_stat_lock();
7681bfee 1808 part = req->part;
bc58ba94
JA
1809
1810 part_stat_inc(cpu, part, ios[rw]);
1811 part_stat_add(cpu, part, ticks[rw], duration);
1812 part_round_stats(cpu, part);
316d315b 1813 part_dec_in_flight(part, rw);
bc58ba94
JA
1814
1815 part_stat_unlock();
1816 }
1817}
1818
3bcddeac 1819/**
9934c8c0
TH
1820 * blk_peek_request - peek at the top of a request queue
1821 * @q: request queue to peek at
1822 *
1823 * Description:
1824 * Return the request at the top of @q. The returned request
1825 * should be started using blk_start_request() before LLD starts
1826 * processing it.
1827 *
1828 * Return:
1829 * Pointer to the request at the top of @q if available. Null
1830 * otherwise.
1831 *
1832 * Context:
1833 * queue_lock must be held.
1834 */
1835struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1836{
1837 struct request *rq;
1838 int ret;
1839
1840 while ((rq = __elv_next_request(q)) != NULL) {
1841 if (!(rq->cmd_flags & REQ_STARTED)) {
1842 /*
1843 * This is the first time the device driver
1844 * sees this request (possibly after
1845 * requeueing). Notify IO scheduler.
1846 */
33659ebb 1847 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1848 elv_activate_rq(q, rq);
1849
1850 /*
1851 * just mark as started even if we don't start
1852 * it, a request that has been delayed should
1853 * not be passed by new incoming requests
1854 */
1855 rq->cmd_flags |= REQ_STARTED;
1856 trace_block_rq_issue(q, rq);
1857 }
1858
1859 if (!q->boundary_rq || q->boundary_rq == rq) {
1860 q->end_sector = rq_end_sector(rq);
1861 q->boundary_rq = NULL;
1862 }
1863
1864 if (rq->cmd_flags & REQ_DONTPREP)
1865 break;
1866
2e46e8b2 1867 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1868 /*
1869 * make sure space for the drain appears we
1870 * know we can do this because max_hw_segments
1871 * has been adjusted to be one fewer than the
1872 * device can handle
1873 */
1874 rq->nr_phys_segments++;
1875 }
1876
1877 if (!q->prep_rq_fn)
1878 break;
1879
1880 ret = q->prep_rq_fn(q, rq);
1881 if (ret == BLKPREP_OK) {
1882 break;
1883 } else if (ret == BLKPREP_DEFER) {
1884 /*
1885 * the request may have been (partially) prepped.
1886 * we need to keep this request in the front to
1887 * avoid resource deadlock. REQ_STARTED will
1888 * prevent other fs requests from passing this one.
1889 */
2e46e8b2 1890 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1891 !(rq->cmd_flags & REQ_DONTPREP)) {
1892 /*
1893 * remove the space for the drain we added
1894 * so that we don't add it again
1895 */
1896 --rq->nr_phys_segments;
1897 }
1898
1899 rq = NULL;
1900 break;
1901 } else if (ret == BLKPREP_KILL) {
1902 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1903 /*
1904 * Mark this request as started so we don't trigger
1905 * any debug logic in the end I/O path.
1906 */
1907 blk_start_request(rq);
40cbbb78 1908 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1909 } else {
1910 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1911 break;
1912 }
1913 }
1914
1915 return rq;
1916}
9934c8c0 1917EXPORT_SYMBOL(blk_peek_request);
158dbda0 1918
9934c8c0 1919void blk_dequeue_request(struct request *rq)
158dbda0 1920{
9934c8c0
TH
1921 struct request_queue *q = rq->q;
1922
158dbda0
TH
1923 BUG_ON(list_empty(&rq->queuelist));
1924 BUG_ON(ELV_ON_HASH(rq));
1925
1926 list_del_init(&rq->queuelist);
1927
1928 /*
1929 * the time frame between a request being removed from the lists
1930 * and to it is freed is accounted as io that is in progress at
1931 * the driver side.
1932 */
9195291e 1933 if (blk_account_rq(rq)) {
0a7ae2ff 1934 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1935 set_io_start_time_ns(rq);
1936 }
158dbda0
TH
1937}
1938
9934c8c0
TH
1939/**
1940 * blk_start_request - start request processing on the driver
1941 * @req: request to dequeue
1942 *
1943 * Description:
1944 * Dequeue @req and start timeout timer on it. This hands off the
1945 * request to the driver.
1946 *
1947 * Block internal functions which don't want to start timer should
1948 * call blk_dequeue_request().
1949 *
1950 * Context:
1951 * queue_lock must be held.
1952 */
1953void blk_start_request(struct request *req)
1954{
1955 blk_dequeue_request(req);
1956
1957 /*
5f49f631
TH
1958 * We are now handing the request to the hardware, initialize
1959 * resid_len to full count and add the timeout handler.
9934c8c0 1960 */
5f49f631 1961 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1962 if (unlikely(blk_bidi_rq(req)))
1963 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1964
9934c8c0
TH
1965 blk_add_timer(req);
1966}
1967EXPORT_SYMBOL(blk_start_request);
1968
1969/**
1970 * blk_fetch_request - fetch a request from a request queue
1971 * @q: request queue to fetch a request from
1972 *
1973 * Description:
1974 * Return the request at the top of @q. The request is started on
1975 * return and LLD can start processing it immediately.
1976 *
1977 * Return:
1978 * Pointer to the request at the top of @q if available. Null
1979 * otherwise.
1980 *
1981 * Context:
1982 * queue_lock must be held.
1983 */
1984struct request *blk_fetch_request(struct request_queue *q)
1985{
1986 struct request *rq;
1987
1988 rq = blk_peek_request(q);
1989 if (rq)
1990 blk_start_request(rq);
1991 return rq;
1992}
1993EXPORT_SYMBOL(blk_fetch_request);
1994
3bcddeac 1995/**
2e60e022 1996 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1997 * @req: the request being processed
710027a4 1998 * @error: %0 for success, < %0 for error
8ebf9756 1999 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2000 *
2001 * Description:
8ebf9756
RD
2002 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2003 * the request structure even if @req doesn't have leftover.
2004 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2005 *
2006 * This special helper function is only for request stacking drivers
2007 * (e.g. request-based dm) so that they can handle partial completion.
2008 * Actual device drivers should use blk_end_request instead.
2009 *
2010 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2011 * %false return from this function.
3bcddeac
KU
2012 *
2013 * Return:
2e60e022
TH
2014 * %false - this request doesn't have any more data
2015 * %true - this request has more data
3bcddeac 2016 **/
2e60e022 2017bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2018{
5450d3e1 2019 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2020 struct bio *bio;
2021
2e60e022
TH
2022 if (!req->bio)
2023 return false;
2024
5f3ea37c 2025 trace_block_rq_complete(req->q, req);
2056a782 2026
1da177e4 2027 /*
6f41469c
TH
2028 * For fs requests, rq is just carrier of independent bio's
2029 * and each partial completion should be handled separately.
2030 * Reset per-request error on each partial completion.
2031 *
2032 * TODO: tj: This is too subtle. It would be better to let
2033 * low level drivers do what they see fit.
1da177e4 2034 */
33659ebb 2035 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2036 req->errors = 0;
2037
33659ebb
CH
2038 if (error && req->cmd_type == REQ_TYPE_FS &&
2039 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 2040 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 2041 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 2042 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2043 }
2044
bc58ba94 2045 blk_account_io_completion(req, nr_bytes);
d72d904a 2046
1da177e4
LT
2047 total_bytes = bio_nbytes = 0;
2048 while ((bio = req->bio) != NULL) {
2049 int nbytes;
2050
2051 if (nr_bytes >= bio->bi_size) {
2052 req->bio = bio->bi_next;
2053 nbytes = bio->bi_size;
5bb23a68 2054 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2055 next_idx = 0;
2056 bio_nbytes = 0;
2057 } else {
2058 int idx = bio->bi_idx + next_idx;
2059
af498d7f 2060 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2061 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2062 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2063 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2064 break;
2065 }
2066
2067 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2068 BIO_BUG_ON(nbytes > bio->bi_size);
2069
2070 /*
2071 * not a complete bvec done
2072 */
2073 if (unlikely(nbytes > nr_bytes)) {
2074 bio_nbytes += nr_bytes;
2075 total_bytes += nr_bytes;
2076 break;
2077 }
2078
2079 /*
2080 * advance to the next vector
2081 */
2082 next_idx++;
2083 bio_nbytes += nbytes;
2084 }
2085
2086 total_bytes += nbytes;
2087 nr_bytes -= nbytes;
2088
6728cb0e
JA
2089 bio = req->bio;
2090 if (bio) {
1da177e4
LT
2091 /*
2092 * end more in this run, or just return 'not-done'
2093 */
2094 if (unlikely(nr_bytes <= 0))
2095 break;
2096 }
2097 }
2098
2099 /*
2100 * completely done
2101 */
2e60e022
TH
2102 if (!req->bio) {
2103 /*
2104 * Reset counters so that the request stacking driver
2105 * can find how many bytes remain in the request
2106 * later.
2107 */
a2dec7b3 2108 req->__data_len = 0;
2e60e022
TH
2109 return false;
2110 }
1da177e4
LT
2111
2112 /*
2113 * if the request wasn't completed, update state
2114 */
2115 if (bio_nbytes) {
5bb23a68 2116 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2117 bio->bi_idx += next_idx;
2118 bio_iovec(bio)->bv_offset += nr_bytes;
2119 bio_iovec(bio)->bv_len -= nr_bytes;
2120 }
2121
a2dec7b3 2122 req->__data_len -= total_bytes;
2e46e8b2
TH
2123 req->buffer = bio_data(req->bio);
2124
2125 /* update sector only for requests with clear definition of sector */
33659ebb 2126 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2127 req->__sector += total_bytes >> 9;
2e46e8b2 2128
80a761fd
TH
2129 /* mixed attributes always follow the first bio */
2130 if (req->cmd_flags & REQ_MIXED_MERGE) {
2131 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2132 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2133 }
2134
2e46e8b2
TH
2135 /*
2136 * If total number of sectors is less than the first segment
2137 * size, something has gone terribly wrong.
2138 */
2139 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2140 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2141 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2142 }
2143
2144 /* recalculate the number of segments */
1da177e4 2145 blk_recalc_rq_segments(req);
2e46e8b2 2146
2e60e022 2147 return true;
1da177e4 2148}
2e60e022 2149EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2150
2e60e022
TH
2151static bool blk_update_bidi_request(struct request *rq, int error,
2152 unsigned int nr_bytes,
2153 unsigned int bidi_bytes)
5efccd17 2154{
2e60e022
TH
2155 if (blk_update_request(rq, error, nr_bytes))
2156 return true;
5efccd17 2157
2e60e022
TH
2158 /* Bidi request must be completed as a whole */
2159 if (unlikely(blk_bidi_rq(rq)) &&
2160 blk_update_request(rq->next_rq, error, bidi_bytes))
2161 return true;
5efccd17 2162
e2e1a148
JA
2163 if (blk_queue_add_random(rq->q))
2164 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2165
2166 return false;
1da177e4
LT
2167}
2168
28018c24
JB
2169/**
2170 * blk_unprep_request - unprepare a request
2171 * @req: the request
2172 *
2173 * This function makes a request ready for complete resubmission (or
2174 * completion). It happens only after all error handling is complete,
2175 * so represents the appropriate moment to deallocate any resources
2176 * that were allocated to the request in the prep_rq_fn. The queue
2177 * lock is held when calling this.
2178 */
2179void blk_unprep_request(struct request *req)
2180{
2181 struct request_queue *q = req->q;
2182
2183 req->cmd_flags &= ~REQ_DONTPREP;
2184 if (q->unprep_rq_fn)
2185 q->unprep_rq_fn(q, req);
2186}
2187EXPORT_SYMBOL_GPL(blk_unprep_request);
2188
1da177e4
LT
2189/*
2190 * queue lock must be held
2191 */
2e60e022 2192static void blk_finish_request(struct request *req, int error)
1da177e4 2193{
b8286239
KU
2194 if (blk_rq_tagged(req))
2195 blk_queue_end_tag(req->q, req);
2196
ba396a6c 2197 BUG_ON(blk_queued_rq(req));
1da177e4 2198
33659ebb 2199 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2200 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2201
e78042e5
MA
2202 blk_delete_timer(req);
2203
28018c24
JB
2204 if (req->cmd_flags & REQ_DONTPREP)
2205 blk_unprep_request(req);
2206
2207
bc58ba94 2208 blk_account_io_done(req);
b8286239 2209
1da177e4 2210 if (req->end_io)
8ffdc655 2211 req->end_io(req, error);
b8286239
KU
2212 else {
2213 if (blk_bidi_rq(req))
2214 __blk_put_request(req->next_rq->q, req->next_rq);
2215
1da177e4 2216 __blk_put_request(req->q, req);
b8286239 2217 }
1da177e4
LT
2218}
2219
3b11313a 2220/**
2e60e022
TH
2221 * blk_end_bidi_request - Complete a bidi request
2222 * @rq: the request to complete
2223 * @error: %0 for success, < %0 for error
2224 * @nr_bytes: number of bytes to complete @rq
2225 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2226 *
2227 * Description:
e3a04fe3 2228 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2229 * Drivers that supports bidi can safely call this member for any
2230 * type of request, bidi or uni. In the later case @bidi_bytes is
2231 * just ignored.
336cdb40
KU
2232 *
2233 * Return:
2e60e022
TH
2234 * %false - we are done with this request
2235 * %true - still buffers pending for this request
a0cd1285 2236 **/
b1f74493 2237static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2238 unsigned int nr_bytes, unsigned int bidi_bytes)
2239{
336cdb40 2240 struct request_queue *q = rq->q;
2e60e022 2241 unsigned long flags;
32fab448 2242
2e60e022
TH
2243 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2244 return true;
32fab448 2245
336cdb40 2246 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2247 blk_finish_request(rq, error);
336cdb40
KU
2248 spin_unlock_irqrestore(q->queue_lock, flags);
2249
2e60e022 2250 return false;
32fab448
KU
2251}
2252
336cdb40 2253/**
2e60e022
TH
2254 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2255 * @rq: the request to complete
710027a4 2256 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2257 * @nr_bytes: number of bytes to complete @rq
2258 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2259 *
2260 * Description:
2e60e022
TH
2261 * Identical to blk_end_bidi_request() except that queue lock is
2262 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2263 *
2264 * Return:
2e60e022
TH
2265 * %false - we are done with this request
2266 * %true - still buffers pending for this request
336cdb40 2267 **/
b1f74493
FT
2268static bool __blk_end_bidi_request(struct request *rq, int error,
2269 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2270{
2e60e022
TH
2271 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2272 return true;
336cdb40 2273
2e60e022 2274 blk_finish_request(rq, error);
336cdb40 2275
2e60e022 2276 return false;
336cdb40 2277}
e19a3ab0
KU
2278
2279/**
2280 * blk_end_request - Helper function for drivers to complete the request.
2281 * @rq: the request being processed
710027a4 2282 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2283 * @nr_bytes: number of bytes to complete
2284 *
2285 * Description:
2286 * Ends I/O on a number of bytes attached to @rq.
2287 * If @rq has leftover, sets it up for the next range of segments.
2288 *
2289 * Return:
b1f74493
FT
2290 * %false - we are done with this request
2291 * %true - still buffers pending for this request
e19a3ab0 2292 **/
b1f74493 2293bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2294{
b1f74493 2295 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2296}
56ad1740 2297EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2298
2299/**
b1f74493
FT
2300 * blk_end_request_all - Helper function for drives to finish the request.
2301 * @rq: the request to finish
8ebf9756 2302 * @error: %0 for success, < %0 for error
336cdb40
KU
2303 *
2304 * Description:
b1f74493
FT
2305 * Completely finish @rq.
2306 */
2307void blk_end_request_all(struct request *rq, int error)
336cdb40 2308{
b1f74493
FT
2309 bool pending;
2310 unsigned int bidi_bytes = 0;
336cdb40 2311
b1f74493
FT
2312 if (unlikely(blk_bidi_rq(rq)))
2313 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2314
b1f74493
FT
2315 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2316 BUG_ON(pending);
2317}
56ad1740 2318EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2319
b1f74493
FT
2320/**
2321 * blk_end_request_cur - Helper function to finish the current request chunk.
2322 * @rq: the request to finish the current chunk for
8ebf9756 2323 * @error: %0 for success, < %0 for error
b1f74493
FT
2324 *
2325 * Description:
2326 * Complete the current consecutively mapped chunk from @rq.
2327 *
2328 * Return:
2329 * %false - we are done with this request
2330 * %true - still buffers pending for this request
2331 */
2332bool blk_end_request_cur(struct request *rq, int error)
2333{
2334 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2335}
56ad1740 2336EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2337
80a761fd
TH
2338/**
2339 * blk_end_request_err - Finish a request till the next failure boundary.
2340 * @rq: the request to finish till the next failure boundary for
2341 * @error: must be negative errno
2342 *
2343 * Description:
2344 * Complete @rq till the next failure boundary.
2345 *
2346 * Return:
2347 * %false - we are done with this request
2348 * %true - still buffers pending for this request
2349 */
2350bool blk_end_request_err(struct request *rq, int error)
2351{
2352 WARN_ON(error >= 0);
2353 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2354}
2355EXPORT_SYMBOL_GPL(blk_end_request_err);
2356
e3a04fe3 2357/**
b1f74493
FT
2358 * __blk_end_request - Helper function for drivers to complete the request.
2359 * @rq: the request being processed
2360 * @error: %0 for success, < %0 for error
2361 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2362 *
2363 * Description:
b1f74493 2364 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2365 *
2366 * Return:
b1f74493
FT
2367 * %false - we are done with this request
2368 * %true - still buffers pending for this request
e3a04fe3 2369 **/
b1f74493 2370bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2371{
b1f74493 2372 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2373}
56ad1740 2374EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2375
32fab448 2376/**
b1f74493
FT
2377 * __blk_end_request_all - Helper function for drives to finish the request.
2378 * @rq: the request to finish
8ebf9756 2379 * @error: %0 for success, < %0 for error
32fab448
KU
2380 *
2381 * Description:
b1f74493 2382 * Completely finish @rq. Must be called with queue lock held.
32fab448 2383 */
b1f74493 2384void __blk_end_request_all(struct request *rq, int error)
32fab448 2385{
b1f74493
FT
2386 bool pending;
2387 unsigned int bidi_bytes = 0;
2388
2389 if (unlikely(blk_bidi_rq(rq)))
2390 bidi_bytes = blk_rq_bytes(rq->next_rq);
2391
2392 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2393 BUG_ON(pending);
32fab448 2394}
56ad1740 2395EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2396
e19a3ab0 2397/**
b1f74493
FT
2398 * __blk_end_request_cur - Helper function to finish the current request chunk.
2399 * @rq: the request to finish the current chunk for
8ebf9756 2400 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2401 *
2402 * Description:
b1f74493
FT
2403 * Complete the current consecutively mapped chunk from @rq. Must
2404 * be called with queue lock held.
e19a3ab0
KU
2405 *
2406 * Return:
b1f74493
FT
2407 * %false - we are done with this request
2408 * %true - still buffers pending for this request
2409 */
2410bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2411{
b1f74493 2412 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2413}
56ad1740 2414EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2415
80a761fd
TH
2416/**
2417 * __blk_end_request_err - Finish a request till the next failure boundary.
2418 * @rq: the request to finish till the next failure boundary for
2419 * @error: must be negative errno
2420 *
2421 * Description:
2422 * Complete @rq till the next failure boundary. Must be called
2423 * with queue lock held.
2424 *
2425 * Return:
2426 * %false - we are done with this request
2427 * %true - still buffers pending for this request
2428 */
2429bool __blk_end_request_err(struct request *rq, int error)
2430{
2431 WARN_ON(error >= 0);
2432 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2433}
2434EXPORT_SYMBOL_GPL(__blk_end_request_err);
2435
86db1e29
JA
2436void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2437 struct bio *bio)
1da177e4 2438{
a82afdfc 2439 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2440 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2441
fb2dce86
DW
2442 if (bio_has_data(bio)) {
2443 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2444 rq->buffer = bio_data(bio);
2445 }
a2dec7b3 2446 rq->__data_len = bio->bi_size;
1da177e4 2447 rq->bio = rq->biotail = bio;
1da177e4 2448
66846572
N
2449 if (bio->bi_bdev)
2450 rq->rq_disk = bio->bi_bdev->bd_disk;
2451}
1da177e4 2452
2d4dc890
IL
2453#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2454/**
2455 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2456 * @rq: the request to be flushed
2457 *
2458 * Description:
2459 * Flush all pages in @rq.
2460 */
2461void rq_flush_dcache_pages(struct request *rq)
2462{
2463 struct req_iterator iter;
2464 struct bio_vec *bvec;
2465
2466 rq_for_each_segment(bvec, rq, iter)
2467 flush_dcache_page(bvec->bv_page);
2468}
2469EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2470#endif
2471
ef9e3fac
KU
2472/**
2473 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2474 * @q : the queue of the device being checked
2475 *
2476 * Description:
2477 * Check if underlying low-level drivers of a device are busy.
2478 * If the drivers want to export their busy state, they must set own
2479 * exporting function using blk_queue_lld_busy() first.
2480 *
2481 * Basically, this function is used only by request stacking drivers
2482 * to stop dispatching requests to underlying devices when underlying
2483 * devices are busy. This behavior helps more I/O merging on the queue
2484 * of the request stacking driver and prevents I/O throughput regression
2485 * on burst I/O load.
2486 *
2487 * Return:
2488 * 0 - Not busy (The request stacking driver should dispatch request)
2489 * 1 - Busy (The request stacking driver should stop dispatching request)
2490 */
2491int blk_lld_busy(struct request_queue *q)
2492{
2493 if (q->lld_busy_fn)
2494 return q->lld_busy_fn(q);
2495
2496 return 0;
2497}
2498EXPORT_SYMBOL_GPL(blk_lld_busy);
2499
b0fd271d
KU
2500/**
2501 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2502 * @rq: the clone request to be cleaned up
2503 *
2504 * Description:
2505 * Free all bios in @rq for a cloned request.
2506 */
2507void blk_rq_unprep_clone(struct request *rq)
2508{
2509 struct bio *bio;
2510
2511 while ((bio = rq->bio) != NULL) {
2512 rq->bio = bio->bi_next;
2513
2514 bio_put(bio);
2515 }
2516}
2517EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2518
2519/*
2520 * Copy attributes of the original request to the clone request.
2521 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2522 */
2523static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2524{
2525 dst->cpu = src->cpu;
2526 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
3383977f
S
2527 if (src->cmd_flags & REQ_DISCARD)
2528 dst->cmd_flags |= REQ_DISCARD;
b0fd271d
KU
2529 dst->cmd_type = src->cmd_type;
2530 dst->__sector = blk_rq_pos(src);
2531 dst->__data_len = blk_rq_bytes(src);
2532 dst->nr_phys_segments = src->nr_phys_segments;
2533 dst->ioprio = src->ioprio;
2534 dst->extra_len = src->extra_len;
2535}
2536
2537/**
2538 * blk_rq_prep_clone - Helper function to setup clone request
2539 * @rq: the request to be setup
2540 * @rq_src: original request to be cloned
2541 * @bs: bio_set that bios for clone are allocated from
2542 * @gfp_mask: memory allocation mask for bio
2543 * @bio_ctr: setup function to be called for each clone bio.
2544 * Returns %0 for success, non %0 for failure.
2545 * @data: private data to be passed to @bio_ctr
2546 *
2547 * Description:
2548 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2549 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2550 * are not copied, and copying such parts is the caller's responsibility.
2551 * Also, pages which the original bios are pointing to are not copied
2552 * and the cloned bios just point same pages.
2553 * So cloned bios must be completed before original bios, which means
2554 * the caller must complete @rq before @rq_src.
2555 */
2556int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2557 struct bio_set *bs, gfp_t gfp_mask,
2558 int (*bio_ctr)(struct bio *, struct bio *, void *),
2559 void *data)
2560{
2561 struct bio *bio, *bio_src;
2562
2563 if (!bs)
2564 bs = fs_bio_set;
2565
2566 blk_rq_init(NULL, rq);
2567
2568 __rq_for_each_bio(bio_src, rq_src) {
2569 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2570 if (!bio)
2571 goto free_and_out;
2572
2573 __bio_clone(bio, bio_src);
2574
2575 if (bio_integrity(bio_src) &&
7878cba9 2576 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2577 goto free_and_out;
2578
2579 if (bio_ctr && bio_ctr(bio, bio_src, data))
2580 goto free_and_out;
2581
2582 if (rq->bio) {
2583 rq->biotail->bi_next = bio;
2584 rq->biotail = bio;
2585 } else
2586 rq->bio = rq->biotail = bio;
2587 }
2588
2589 __blk_rq_prep_clone(rq, rq_src);
2590
2591 return 0;
2592
2593free_and_out:
2594 if (bio)
2595 bio_free(bio, bs);
2596 blk_rq_unprep_clone(rq);
2597
2598 return -ENOMEM;
2599}
2600EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2601
18887ad9 2602int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2603{
2604 return queue_work(kblockd_workqueue, work);
2605}
1da177e4
LT
2606EXPORT_SYMBOL(kblockd_schedule_work);
2607
e43473b7
VG
2608int kblockd_schedule_delayed_work(struct request_queue *q,
2609 struct delayed_work *dwork, unsigned long delay)
2610{
2611 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2612}
2613EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2614
1da177e4
LT
2615int __init blk_dev_init(void)
2616{
9eb55b03
NK
2617 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2618 sizeof(((struct request *)0)->cmd_flags));
2619
1da177e4
LT
2620 kblockd_workqueue = create_workqueue("kblockd");
2621 if (!kblockd_workqueue)
2622 panic("Failed to create kblockd\n");
2623
2624 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2625 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2626
8324aa91 2627 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2628 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2629
d38ecf93 2630 return 0;
1da177e4 2631}