]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86_64/kernel/kprobes.c
kprobes: kretprobes simplifications
[net-next-2.6.git] / arch / x86_64 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
3 * arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar Roland McGrath <roland@redhat.com>
29 * Fixed to handle %rip-relative addressing mode correctly.
73649dab
RL
30 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
31 * Added function return probes functionality
1da177e4
LT
32 */
33
1da177e4
LT
34#include <linux/kprobes.h>
35#include <linux/ptrace.h>
1da177e4
LT
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/preempt.h>
c28f8966 39#include <linux/module.h>
1eeb66a1 40#include <linux/kdebug.h>
9ec4b1f3 41
7e1048b1 42#include <asm/cacheflush.h>
1da177e4 43#include <asm/pgtable.h>
c28f8966 44#include <asm/uaccess.h>
1da177e4 45
1da177e4 46void jprobe_return_end(void);
f709b122 47static void __kprobes arch_copy_kprobe(struct kprobe *p);
1da177e4 48
e7a510f9
AM
49DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
50DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4
LT
51
52/*
53 * returns non-zero if opcode modifies the interrupt flag.
54 */
3b60211c 55static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4
LT
56{
57 switch (*insn) {
58 case 0xfa: /* cli */
59 case 0xfb: /* sti */
60 case 0xcf: /* iret/iretd */
61 case 0x9d: /* popf/popfd */
62 return 1;
63 }
64
65 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
66 return 1;
67 return 0;
68}
69
0f2fbdcb 70int __kprobes arch_prepare_kprobe(struct kprobe *p)
1da177e4
LT
71{
72 /* insn: must be on special executable page on x86_64. */
2dd960d6 73 p->ainsn.insn = get_insn_slot();
1da177e4
LT
74 if (!p->ainsn.insn) {
75 return -ENOMEM;
76 }
49a2a1b8 77 arch_copy_kprobe(p);
1da177e4
LT
78 return 0;
79}
80
81/*
82 * Determine if the instruction uses the %rip-relative addressing mode.
83 * If it does, return the address of the 32-bit displacement word.
84 * If not, return null.
85 */
3b60211c 86static s32 __kprobes *is_riprel(u8 *insn)
1da177e4
LT
87{
88#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
89 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
90 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
91 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
92 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
93 << (row % 64))
94 static const u64 onebyte_has_modrm[256 / 64] = {
95 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
96 /* ------------------------------- */
97 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
98 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
99 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
100 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
101 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
102 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
103 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
104 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
105 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
106 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
107 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
108 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
109 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
110 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
111 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
112 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
113 /* ------------------------------- */
114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
115 };
116 static const u64 twobyte_has_modrm[256 / 64] = {
117 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
118 /* ------------------------------- */
119 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
120 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
121 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
122 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
123 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
124 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
125 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
126 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
127 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
128 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
129 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
130 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
131 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
132 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
133 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
134 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
135 /* ------------------------------- */
136 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
137 };
138#undef W
139 int need_modrm;
140
141 /* Skip legacy instruction prefixes. */
142 while (1) {
143 switch (*insn) {
144 case 0x66:
145 case 0x67:
146 case 0x2e:
147 case 0x3e:
148 case 0x26:
149 case 0x64:
150 case 0x65:
151 case 0x36:
152 case 0xf0:
153 case 0xf3:
154 case 0xf2:
155 ++insn;
156 continue;
157 }
158 break;
159 }
160
161 /* Skip REX instruction prefix. */
162 if ((*insn & 0xf0) == 0x40)
163 ++insn;
164
165 if (*insn == 0x0f) { /* Two-byte opcode. */
166 ++insn;
167 need_modrm = test_bit(*insn, twobyte_has_modrm);
168 } else { /* One-byte opcode. */
169 need_modrm = test_bit(*insn, onebyte_has_modrm);
170 }
171
172 if (need_modrm) {
173 u8 modrm = *++insn;
174 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
175 /* Displacement follows ModRM byte. */
176 return (s32 *) ++insn;
177 }
178 }
179
180 /* No %rip-relative addressing mode here. */
181 return NULL;
182}
183
f709b122 184static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4
LT
185{
186 s32 *ripdisp;
187 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
188 ripdisp = is_riprel(p->ainsn.insn);
189 if (ripdisp) {
190 /*
191 * The copied instruction uses the %rip-relative
192 * addressing mode. Adjust the displacement for the
193 * difference between the original location of this
194 * instruction and the location of the copy that will
195 * actually be run. The tricky bit here is making sure
196 * that the sign extension happens correctly in this
197 * calculation, since we need a signed 32-bit result to
198 * be sign-extended to 64 bits when it's added to the
199 * %rip value and yield the same 64-bit result that the
200 * sign-extension of the original signed 32-bit
201 * displacement would have given.
202 */
203 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
204 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
205 *ripdisp = disp;
206 }
7e1048b1 207 p->opcode = *p->addr;
1da177e4
LT
208}
209
0f2fbdcb 210void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 211{
7e1048b1
RL
212 *p->addr = BREAKPOINT_INSTRUCTION;
213 flush_icache_range((unsigned long) p->addr,
214 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
1da177e4
LT
215}
216
0f2fbdcb 217void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4
LT
218{
219 *p->addr = p->opcode;
7e1048b1
RL
220 flush_icache_range((unsigned long) p->addr,
221 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
222}
223
0498b635 224void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 225{
7a7d1cf9 226 mutex_lock(&kprobe_mutex);
b4c6c34a 227 free_insn_slot(p->ainsn.insn, 0);
7a7d1cf9 228 mutex_unlock(&kprobe_mutex);
1da177e4
LT
229}
230
3b60211c 231static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 232{
e7a510f9
AM
233 kcb->prev_kprobe.kp = kprobe_running();
234 kcb->prev_kprobe.status = kcb->kprobe_status;
235 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
236 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
aa3d7e3d
PP
237}
238
3b60211c 239static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 240{
e7a510f9
AM
241 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
242 kcb->kprobe_status = kcb->prev_kprobe.status;
243 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
244 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
aa3d7e3d
PP
245}
246
3b60211c 247static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 248 struct kprobe_ctlblk *kcb)
aa3d7e3d 249{
e7a510f9
AM
250 __get_cpu_var(current_kprobe) = p;
251 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
aa3d7e3d
PP
252 = (regs->eflags & (TF_MASK | IF_MASK));
253 if (is_IF_modifier(p->ainsn.insn))
e7a510f9 254 kcb->kprobe_saved_rflags &= ~IF_MASK;
aa3d7e3d
PP
255}
256
0f2fbdcb 257static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
258{
259 regs->eflags |= TF_MASK;
260 regs->eflags &= ~IF_MASK;
261 /*single step inline if the instruction is an int3*/
262 if (p->opcode == BREAKPOINT_INSTRUCTION)
263 regs->rip = (unsigned long)p->addr;
264 else
265 regs->rip = (unsigned long)p->ainsn.insn;
266}
267
991a51d8 268/* Called with kretprobe_lock held */
4c4308cb 269void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 270 struct pt_regs *regs)
73649dab
RL
271{
272 unsigned long *sara = (unsigned long *)regs->rsp;
ba8af12f 273
4c4308cb
CH
274 ri->ret_addr = (kprobe_opcode_t *) *sara;
275 /* Replace the return addr with trampoline addr */
276 *sara = (unsigned long) &kretprobe_trampoline;
73649dab
RL
277}
278
0f2fbdcb 279int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
280{
281 struct kprobe *p;
282 int ret = 0;
283 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
d217d545
AM
284 struct kprobe_ctlblk *kcb;
285
286 /*
287 * We don't want to be preempted for the entire
288 * duration of kprobe processing
289 */
290 preempt_disable();
291 kcb = get_kprobe_ctlblk();
1da177e4 292
1da177e4
LT
293 /* Check we're not actually recursing */
294 if (kprobe_running()) {
1da177e4
LT
295 p = get_kprobe(addr);
296 if (p) {
e7a510f9 297 if (kcb->kprobe_status == KPROBE_HIT_SS &&
deac66ae 298 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
1da177e4 299 regs->eflags &= ~TF_MASK;
e7a510f9 300 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 301 goto no_kprobe;
e7a510f9 302 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
aa3d7e3d
PP
303 /* TODO: Provide re-entrancy from
304 * post_kprobes_handler() and avoid exception
305 * stack corruption while single-stepping on
306 * the instruction of the new probe.
307 */
308 arch_disarm_kprobe(p);
309 regs->rip = (unsigned long)p->addr;
e7a510f9 310 reset_current_kprobe();
aa3d7e3d
PP
311 ret = 1;
312 } else {
313 /* We have reentered the kprobe_handler(), since
314 * another probe was hit while within the
315 * handler. We here save the original kprobe
316 * variables and just single step on instruction
317 * of the new probe without calling any user
318 * handlers.
319 */
e7a510f9
AM
320 save_previous_kprobe(kcb);
321 set_current_kprobe(p, regs, kcb);
bf8d5c52 322 kprobes_inc_nmissed_count(p);
aa3d7e3d 323 prepare_singlestep(p, regs);
e7a510f9 324 kcb->kprobe_status = KPROBE_REENTER;
aa3d7e3d 325 return 1;
1da177e4 326 }
1da177e4 327 } else {
eb3a7292
KA
328 if (*addr != BREAKPOINT_INSTRUCTION) {
329 /* The breakpoint instruction was removed by
330 * another cpu right after we hit, no further
331 * handling of this interrupt is appropriate
332 */
333 regs->rip = (unsigned long)addr;
334 ret = 1;
335 goto no_kprobe;
336 }
e7a510f9 337 p = __get_cpu_var(current_kprobe);
1da177e4
LT
338 if (p->break_handler && p->break_handler(p, regs)) {
339 goto ss_probe;
340 }
341 }
1da177e4
LT
342 goto no_kprobe;
343 }
344
1da177e4
LT
345 p = get_kprobe(addr);
346 if (!p) {
1da177e4
LT
347 if (*addr != BREAKPOINT_INSTRUCTION) {
348 /*
349 * The breakpoint instruction was removed right
350 * after we hit it. Another cpu has removed
351 * either a probepoint or a debugger breakpoint
352 * at this address. In either case, no further
353 * handling of this interrupt is appropriate.
bce06494
JK
354 * Back up over the (now missing) int3 and run
355 * the original instruction.
1da177e4 356 */
bce06494 357 regs->rip = (unsigned long)addr;
1da177e4
LT
358 ret = 1;
359 }
360 /* Not one of ours: let kernel handle it */
361 goto no_kprobe;
362 }
363
e7a510f9
AM
364 set_current_kprobe(p, regs, kcb);
365 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
366
367 if (p->pre_handler && p->pre_handler(p, regs))
368 /* handler has already set things up, so skip ss setup */
369 return 1;
370
371ss_probe:
372 prepare_singlestep(p, regs);
e7a510f9 373 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
374 return 1;
375
376no_kprobe:
d217d545 377 preempt_enable_no_resched();
1da177e4
LT
378 return ret;
379}
380
73649dab
RL
381/*
382 * For function-return probes, init_kprobes() establishes a probepoint
383 * here. When a retprobed function returns, this probe is hit and
384 * trampoline_probe_handler() runs, calling the kretprobe's handler.
385 */
386 void kretprobe_trampoline_holder(void)
387 {
388 asm volatile ( ".global kretprobe_trampoline\n"
389 "kretprobe_trampoline: \n"
390 "nop\n");
391 }
392
393/*
394 * Called when we hit the probe point at kretprobe_trampoline
395 */
0f2fbdcb 396int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
73649dab 397{
62c27be0 398 struct kretprobe_instance *ri = NULL;
99219a3f 399 struct hlist_head *head, empty_rp;
62c27be0 400 struct hlist_node *node, *tmp;
991a51d8 401 unsigned long flags, orig_ret_address = 0;
ba8af12f 402 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
73649dab 403
99219a3f 404 INIT_HLIST_HEAD(&empty_rp);
991a51d8 405 spin_lock_irqsave(&kretprobe_lock, flags);
62c27be0 406 head = kretprobe_inst_table_head(current);
73649dab 407
ba8af12f
RL
408 /*
409 * It is possible to have multiple instances associated with a given
410 * task either because an multiple functions in the call path
411 * have a return probe installed on them, and/or more then one return
412 * return probe was registered for a target function.
413 *
414 * We can handle this because:
415 * - instances are always inserted at the head of the list
416 * - when multiple return probes are registered for the same
62c27be0 417 * function, the first instance's ret_addr will point to the
ba8af12f
RL
418 * real return address, and all the rest will point to
419 * kretprobe_trampoline
420 */
421 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 422 if (ri->task != current)
ba8af12f 423 /* another task is sharing our hash bucket */
62c27be0 424 continue;
ba8af12f
RL
425
426 if (ri->rp && ri->rp->handler)
427 ri->rp->handler(ri, regs);
428
429 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 430 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
431
432 if (orig_ret_address != trampoline_address)
433 /*
434 * This is the real return address. Any other
435 * instances associated with this task are for
436 * other calls deeper on the call stack
437 */
438 break;
73649dab 439 }
ba8af12f 440
0f95b7fc 441 kretprobe_assert(ri, orig_ret_address, trampoline_address);
ba8af12f
RL
442 regs->rip = orig_ret_address;
443
e7a510f9 444 reset_current_kprobe();
991a51d8 445 spin_unlock_irqrestore(&kretprobe_lock, flags);
ba8af12f
RL
446 preempt_enable_no_resched();
447
99219a3f 448 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
449 hlist_del(&ri->hlist);
450 kfree(ri);
451 }
62c27be0 452 /*
453 * By returning a non-zero value, we are telling
454 * kprobe_handler() that we don't want the post_handler
d217d545 455 * to run (and have re-enabled preemption)
62c27be0 456 */
457 return 1;
73649dab
RL
458}
459
1da177e4
LT
460/*
461 * Called after single-stepping. p->addr is the address of the
462 * instruction whose first byte has been replaced by the "int 3"
463 * instruction. To avoid the SMP problems that can occur when we
464 * temporarily put back the original opcode to single-step, we
465 * single-stepped a copy of the instruction. The address of this
466 * copy is p->ainsn.insn.
467 *
468 * This function prepares to return from the post-single-step
469 * interrupt. We have to fix up the stack as follows:
470 *
471 * 0) Except in the case of absolute or indirect jump or call instructions,
472 * the new rip is relative to the copied instruction. We need to make
473 * it relative to the original instruction.
474 *
475 * 1) If the single-stepped instruction was pushfl, then the TF and IF
476 * flags are set in the just-pushed eflags, and may need to be cleared.
477 *
478 * 2) If the single-stepped instruction was a call, the return address
479 * that is atop the stack is the address following the copied instruction.
480 * We need to make it the address following the original instruction.
481 */
e7a510f9
AM
482static void __kprobes resume_execution(struct kprobe *p,
483 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4
LT
484{
485 unsigned long *tos = (unsigned long *)regs->rsp;
486 unsigned long next_rip = 0;
487 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
488 unsigned long orig_rip = (unsigned long)p->addr;
489 kprobe_opcode_t *insn = p->ainsn.insn;
490
491 /*skip the REX prefix*/
492 if (*insn >= 0x40 && *insn <= 0x4f)
493 insn++;
494
495 switch (*insn) {
496 case 0x9c: /* pushfl */
497 *tos &= ~(TF_MASK | IF_MASK);
e7a510f9 498 *tos |= kcb->kprobe_old_rflags;
1da177e4 499 break;
0b9e2cac
PP
500 case 0xc3: /* ret/lret */
501 case 0xcb:
502 case 0xc2:
503 case 0xca:
504 regs->eflags &= ~TF_MASK;
505 /* rip is already adjusted, no more changes required*/
506 return;
1da177e4
LT
507 case 0xe8: /* call relative - Fix return addr */
508 *tos = orig_rip + (*tos - copy_rip);
509 break;
510 case 0xff:
dc49e344 511 if ((insn[1] & 0x30) == 0x10) {
1da177e4
LT
512 /* call absolute, indirect */
513 /* Fix return addr; rip is correct. */
514 next_rip = regs->rip;
515 *tos = orig_rip + (*tos - copy_rip);
dc49e344
SO
516 } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
517 ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
1da177e4
LT
518 /* rip is correct. */
519 next_rip = regs->rip;
520 }
521 break;
522 case 0xea: /* jmp absolute -- rip is correct */
523 next_rip = regs->rip;
524 break;
525 default:
526 break;
527 }
528
529 regs->eflags &= ~TF_MASK;
530 if (next_rip) {
531 regs->rip = next_rip;
532 } else {
533 regs->rip = orig_rip + (regs->rip - copy_rip);
534 }
535}
536
0f2fbdcb 537int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 538{
e7a510f9
AM
539 struct kprobe *cur = kprobe_running();
540 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
541
542 if (!cur)
1da177e4
LT
543 return 0;
544
e7a510f9
AM
545 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
546 kcb->kprobe_status = KPROBE_HIT_SSDONE;
547 cur->post_handler(cur, regs, 0);
aa3d7e3d 548 }
1da177e4 549
e7a510f9
AM
550 resume_execution(cur, regs, kcb);
551 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 552
aa3d7e3d 553 /* Restore the original saved kprobes variables and continue. */
e7a510f9
AM
554 if (kcb->kprobe_status == KPROBE_REENTER) {
555 restore_previous_kprobe(kcb);
aa3d7e3d 556 goto out;
aa3d7e3d 557 }
e7a510f9 558 reset_current_kprobe();
aa3d7e3d 559out:
1da177e4
LT
560 preempt_enable_no_resched();
561
562 /*
563 * if somebody else is singlestepping across a probe point, eflags
564 * will have TF set, in which case, continue the remaining processing
565 * of do_debug, as if this is not a probe hit.
566 */
567 if (regs->eflags & TF_MASK)
568 return 0;
569
570 return 1;
571}
572
0f2fbdcb 573int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 574{
e7a510f9
AM
575 struct kprobe *cur = kprobe_running();
576 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
c28f8966 577 const struct exception_table_entry *fixup;
e7a510f9 578
c28f8966
PP
579 switch(kcb->kprobe_status) {
580 case KPROBE_HIT_SS:
581 case KPROBE_REENTER:
582 /*
583 * We are here because the instruction being single
584 * stepped caused a page fault. We reset the current
585 * kprobe and the rip points back to the probe address
586 * and allow the page fault handler to continue as a
587 * normal page fault.
588 */
589 regs->rip = (unsigned long)cur->addr;
e7a510f9 590 regs->eflags |= kcb->kprobe_old_rflags;
c28f8966
PP
591 if (kcb->kprobe_status == KPROBE_REENTER)
592 restore_previous_kprobe(kcb);
593 else
594 reset_current_kprobe();
1da177e4 595 preempt_enable_no_resched();
c28f8966
PP
596 break;
597 case KPROBE_HIT_ACTIVE:
598 case KPROBE_HIT_SSDONE:
599 /*
600 * We increment the nmissed count for accounting,
601 * we can also use npre/npostfault count for accouting
602 * these specific fault cases.
603 */
604 kprobes_inc_nmissed_count(cur);
605
606 /*
607 * We come here because instructions in the pre/post
608 * handler caused the page_fault, this could happen
609 * if handler tries to access user space by
610 * copy_from_user(), get_user() etc. Let the
611 * user-specified handler try to fix it first.
612 */
613 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
614 return 1;
615
616 /*
617 * In case the user-specified fault handler returned
618 * zero, try to fix up.
619 */
620 fixup = search_exception_tables(regs->rip);
621 if (fixup) {
622 regs->rip = fixup->fixup;
623 return 1;
624 }
625
626 /*
627 * fixup() could not handle it,
628 * Let do_page_fault() fix it.
629 */
630 break;
631 default:
632 break;
1da177e4
LT
633 }
634 return 0;
635}
636
637/*
638 * Wrapper routine for handling exceptions.
639 */
0f2fbdcb
PP
640int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
641 unsigned long val, void *data)
1da177e4
LT
642{
643 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
644 int ret = NOTIFY_DONE;
645
2326c770 646 if (args->regs && user_mode(args->regs))
647 return ret;
648
1da177e4
LT
649 switch (val) {
650 case DIE_INT3:
651 if (kprobe_handler(args->regs))
66ff2d06 652 ret = NOTIFY_STOP;
1da177e4
LT
653 break;
654 case DIE_DEBUG:
655 if (post_kprobe_handler(args->regs))
66ff2d06 656 ret = NOTIFY_STOP;
1da177e4
LT
657 break;
658 case DIE_GPF:
1da177e4 659 case DIE_PAGE_FAULT:
d217d545
AM
660 /* kprobe_running() needs smp_processor_id() */
661 preempt_disable();
1da177e4
LT
662 if (kprobe_running() &&
663 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 664 ret = NOTIFY_STOP;
d217d545 665 preempt_enable();
1da177e4
LT
666 break;
667 default:
668 break;
669 }
66ff2d06 670 return ret;
1da177e4
LT
671}
672
0f2fbdcb 673int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
674{
675 struct jprobe *jp = container_of(p, struct jprobe, kp);
676 unsigned long addr;
e7a510f9 677 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 678
e7a510f9
AM
679 kcb->jprobe_saved_regs = *regs;
680 kcb->jprobe_saved_rsp = (long *) regs->rsp;
681 addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
682 /*
683 * As Linus pointed out, gcc assumes that the callee
684 * owns the argument space and could overwrite it, e.g.
685 * tailcall optimization. So, to be absolutely safe
686 * we also save and restore enough stack bytes to cover
687 * the argument area.
688 */
e7a510f9
AM
689 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
690 MIN_STACK_SIZE(addr));
1da177e4
LT
691 regs->eflags &= ~IF_MASK;
692 regs->rip = (unsigned long)(jp->entry);
693 return 1;
694}
695
0f2fbdcb 696void __kprobes jprobe_return(void)
1da177e4 697{
e7a510f9
AM
698 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
699
1da177e4
LT
700 asm volatile (" xchg %%rbx,%%rsp \n"
701 " int3 \n"
702 " .globl jprobe_return_end \n"
703 " jprobe_return_end: \n"
704 " nop \n"::"b"
e7a510f9 705 (kcb->jprobe_saved_rsp):"memory");
1da177e4
LT
706}
707
0f2fbdcb 708int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 709{
e7a510f9 710 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 711 u8 *addr = (u8 *) (regs->rip - 1);
e7a510f9 712 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
713 struct jprobe *jp = container_of(p, struct jprobe, kp);
714
715 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
e7a510f9 716 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
1da177e4 717 struct pt_regs *saved_regs =
e7a510f9
AM
718 container_of(kcb->jprobe_saved_rsp,
719 struct pt_regs, rsp);
1da177e4 720 printk("current rsp %p does not match saved rsp %p\n",
e7a510f9 721 (long *)regs->rsp, kcb->jprobe_saved_rsp);
1da177e4
LT
722 printk("Saved registers for jprobe %p\n", jp);
723 show_registers(saved_regs);
724 printk("Current registers\n");
725 show_registers(regs);
726 BUG();
727 }
e7a510f9
AM
728 *regs = kcb->jprobe_saved_regs;
729 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
1da177e4 730 MIN_STACK_SIZE(stack_addr));
d217d545 731 preempt_enable_no_resched();
1da177e4
LT
732 return 1;
733 }
734 return 0;
735}
ba8af12f
RL
736
737static struct kprobe trampoline_p = {
738 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
739 .pre_handler = trampoline_probe_handler
740};
741
6772926b 742int __init arch_init_kprobes(void)
ba8af12f
RL
743{
744 return register_kprobe(&trampoline_p);
745}