]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/xen/mmu.c
vmap: cope with vm_unmap_aliases before vmalloc_init()
[net-next-2.6.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
3b827c1b
JF
45
46#include <asm/pgtable.h>
47#include <asm/tlbflush.h>
5deb30d1 48#include <asm/fixmap.h>
3b827c1b 49#include <asm/mmu_context.h>
f4f97b3e 50#include <asm/paravirt.h>
cbcd79c2 51#include <asm/linkage.h>
3b827c1b
JF
52
53#include <asm/xen/hypercall.h>
f4f97b3e 54#include <asm/xen/hypervisor.h>
3b827c1b
JF
55
56#include <xen/page.h>
57#include <xen/interface/xen.h>
58
f4f97b3e 59#include "multicalls.h"
3b827c1b 60#include "mmu.h"
994025ca
JF
61#include "debugfs.h"
62
63#define MMU_UPDATE_HISTO 30
64
65#ifdef CONFIG_XEN_DEBUG_FS
66
67static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
71
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
75
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
79
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
83
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
87
88 u32 prot_commit;
89 u32 prot_commit_batched;
90
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96} mmu_stats;
97
98static u8 zero_stats;
99
100static inline void check_zero(void)
101{
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
105 }
106}
107
108#define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
110
111#else /* !CONFIG_XEN_DEBUG_FS */
112
113#define ADD_STATS(elem, val) do { (void)(val); } while(0)
114
115#endif /* CONFIG_XEN_DEBUG_FS */
3b827c1b 116
d6182fbf
JF
117/*
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
120 */
121#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122
123
d451bb7a 124#define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
cf0923ea 125#define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
d451bb7a 126
cf0923ea 127/* Placeholder for holes in the address space */
cbcd79c2 128static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
cf0923ea
JF
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130
131 /* Array of pointers to pages containing p2m entries */
cbcd79c2 132static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
cf0923ea 133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
d451bb7a 134
d5edbc1f 135/* Arrays of p2m arrays expressed in mfns used for save/restore */
cbcd79c2 136static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
d5edbc1f 137
cbcd79c2
JF
138static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
d5edbc1f 140
d451bb7a
JF
141static inline unsigned p2m_top_index(unsigned long pfn)
142{
8006ec3e 143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
d451bb7a
JF
144 return pfn / P2M_ENTRIES_PER_PAGE;
145}
146
147static inline unsigned p2m_index(unsigned long pfn)
148{
149 return pfn % P2M_ENTRIES_PER_PAGE;
150}
151
d5edbc1f
JF
152/* Build the parallel p2m_top_mfn structures */
153void xen_setup_mfn_list_list(void)
154{
155 unsigned pfn, idx;
156
157 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
159
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 }
162
163 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 }
167
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173}
174
175/* Set up p2m_top to point to the domain-builder provided p2m pages */
d451bb7a
JF
176void __init xen_build_dynamic_phys_to_machine(void)
177{
d451bb7a 178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
8006ec3e 179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
d5edbc1f 180 unsigned pfn;
d451bb7a 181
8006ec3e 182 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d451bb7a
JF
183 unsigned topidx = p2m_top_index(pfn);
184
185 p2m_top[topidx] = &mfn_list[pfn];
186 }
187}
188
189unsigned long get_phys_to_machine(unsigned long pfn)
190{
191 unsigned topidx, idx;
192
8006ec3e
JF
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
195
d451bb7a 196 topidx = p2m_top_index(pfn);
d451bb7a
JF
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
199}
15ce6005 200EXPORT_SYMBOL_GPL(get_phys_to_machine);
d451bb7a 201
d5edbc1f 202static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
d451bb7a
JF
203{
204 unsigned long *p;
205 unsigned i;
206
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
209
210 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
212
cf0923ea 213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
d451bb7a 214 free_page((unsigned long)p);
d5edbc1f
JF
215 else
216 *mfnp = virt_to_mfn(p);
d451bb7a
JF
217}
218
219void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220{
221 unsigned topidx, idx;
222
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
8006ec3e
JF
225 return;
226 }
227
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
d451bb7a
JF
230 return;
231 }
232
233 topidx = p2m_top_index(pfn);
cf0923ea 234 if (p2m_top[topidx] == p2m_missing) {
d451bb7a
JF
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
d5edbc1f 238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
d451bb7a
JF
239 }
240
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
243}
244
ce803e70 245xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 246{
ce803e70 247 unsigned long address = (unsigned long)vaddr;
da7bfc50 248 unsigned int level;
9f32d21c
CL
249 pte_t *pte;
250 unsigned offset;
3b827c1b 251
9f32d21c
CL
252 /*
253 * if the PFN is in the linear mapped vaddr range, we can just use
254 * the (quick) virt_to_machine() p2m lookup
255 */
256 if (virt_addr_valid(vaddr))
257 return virt_to_machine(vaddr);
258
259 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 260
9f32d21c
CL
261 pte = lookup_address(address, &level);
262 BUG_ON(pte == NULL);
263 offset = address & ~PAGE_MASK;
ebd879e3 264 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b
JF
265}
266
267void make_lowmem_page_readonly(void *vaddr)
268{
269 pte_t *pte, ptev;
270 unsigned long address = (unsigned long)vaddr;
da7bfc50 271 unsigned int level;
3b827c1b 272
f0646e43 273 pte = lookup_address(address, &level);
3b827c1b
JF
274 BUG_ON(pte == NULL);
275
276 ptev = pte_wrprotect(*pte);
277
278 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
279 BUG();
280}
281
282void make_lowmem_page_readwrite(void *vaddr)
283{
284 pte_t *pte, ptev;
285 unsigned long address = (unsigned long)vaddr;
da7bfc50 286 unsigned int level;
3b827c1b 287
f0646e43 288 pte = lookup_address(address, &level);
3b827c1b
JF
289 BUG_ON(pte == NULL);
290
291 ptev = pte_mkwrite(*pte);
292
293 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
294 BUG();
295}
296
297
7708ad64 298static bool xen_page_pinned(void *ptr)
e2426cf8
JF
299{
300 struct page *page = virt_to_page(ptr);
301
302 return PagePinned(page);
303}
304
7708ad64 305static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 306{
d66bf8fc
JF
307 struct multicall_space mcs;
308 struct mmu_update *u;
3b827c1b 309
400d3494
JF
310 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
311
994025ca
JF
312 if (mcs.mc != NULL) {
313 ADD_STATS(mmu_update_extended, 1);
314 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
315
400d3494 316 mcs.mc->args[1]++;
994025ca
JF
317
318 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
319 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
320 else
321 ADD_STATS(mmu_update_histo[0], 1);
322 } else {
323 ADD_STATS(mmu_update, 1);
400d3494
JF
324 mcs = __xen_mc_entry(sizeof(*u));
325 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
994025ca 326 ADD_STATS(mmu_update_histo[1], 1);
400d3494 327 }
d66bf8fc 328
d66bf8fc 329 u = mcs.args;
400d3494
JF
330 *u = *update;
331}
332
333void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
334{
335 struct mmu_update u;
336
337 preempt_disable();
338
339 xen_mc_batch();
340
ce803e70
JF
341 /* ptr may be ioremapped for 64-bit pagetable setup */
342 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 343 u.val = pmd_val_ma(val);
7708ad64 344 xen_extend_mmu_update(&u);
d66bf8fc 345
994025ca
JF
346 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
347
d66bf8fc
JF
348 xen_mc_issue(PARAVIRT_LAZY_MMU);
349
350 preempt_enable();
3b827c1b
JF
351}
352
e2426cf8
JF
353void xen_set_pmd(pmd_t *ptr, pmd_t val)
354{
994025ca
JF
355 ADD_STATS(pmd_update, 1);
356
e2426cf8
JF
357 /* If page is not pinned, we can just update the entry
358 directly */
7708ad64 359 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
360 *ptr = val;
361 return;
362 }
363
994025ca
JF
364 ADD_STATS(pmd_update_pinned, 1);
365
e2426cf8
JF
366 xen_set_pmd_hyper(ptr, val);
367}
368
3b827c1b
JF
369/*
370 * Associate a virtual page frame with a given physical page frame
371 * and protection flags for that frame.
372 */
373void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
374{
836fe2f2 375 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
376}
377
378void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
379 pte_t *ptep, pte_t pteval)
380{
2bd50036
JF
381 /* updates to init_mm may be done without lock */
382 if (mm == &init_mm)
383 preempt_disable();
384
994025ca
JF
385 ADD_STATS(set_pte_at, 1);
386// ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
387 ADD_STATS(set_pte_at_current, mm == current->mm);
388 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
389
d66bf8fc 390 if (mm == current->mm || mm == &init_mm) {
8965c1c0 391 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
392 struct multicall_space mcs;
393 mcs = xen_mc_entry(0);
394
395 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
994025ca 396 ADD_STATS(set_pte_at_batched, 1);
d66bf8fc 397 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 398 goto out;
d66bf8fc
JF
399 } else
400 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 401 goto out;
d66bf8fc
JF
402 }
403 xen_set_pte(ptep, pteval);
2bd50036
JF
404
405out:
406 if (mm == &init_mm)
407 preempt_enable();
3b827c1b
JF
408}
409
e57778a1 410pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
947a69c9 411{
e57778a1
JF
412 /* Just return the pte as-is. We preserve the bits on commit */
413 return *ptep;
414}
415
416void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
417 pte_t *ptep, pte_t pte)
418{
400d3494 419 struct mmu_update u;
e57778a1 420
400d3494 421 xen_mc_batch();
947a69c9 422
9f32d21c 423 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 424 u.val = pte_val_ma(pte);
7708ad64 425 xen_extend_mmu_update(&u);
947a69c9 426
994025ca
JF
427 ADD_STATS(prot_commit, 1);
428 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
429
e57778a1 430 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
431}
432
ebb9cfe2
JF
433/* Assume pteval_t is equivalent to all the other *val_t types. */
434static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 435{
ebb9cfe2 436 if (val & _PAGE_PRESENT) {
59438c9f 437 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 438 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 439 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 440 }
947a69c9 441
ebb9cfe2 442 return val;
947a69c9
JF
443}
444
ebb9cfe2 445static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 446{
ebb9cfe2 447 if (val & _PAGE_PRESENT) {
59438c9f 448 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 449 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 450 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
947a69c9
JF
451 }
452
ebb9cfe2 453 return val;
947a69c9
JF
454}
455
ebb9cfe2 456pteval_t xen_pte_val(pte_t pte)
947a69c9 457{
ebb9cfe2 458 return pte_mfn_to_pfn(pte.pte);
947a69c9 459}
947a69c9 460
947a69c9
JF
461pgdval_t xen_pgd_val(pgd_t pgd)
462{
ebb9cfe2 463 return pte_mfn_to_pfn(pgd.pgd);
947a69c9
JF
464}
465
466pte_t xen_make_pte(pteval_t pte)
467{
ebb9cfe2
JF
468 pte = pte_pfn_to_mfn(pte);
469 return native_make_pte(pte);
947a69c9
JF
470}
471
472pgd_t xen_make_pgd(pgdval_t pgd)
473{
ebb9cfe2
JF
474 pgd = pte_pfn_to_mfn(pgd);
475 return native_make_pgd(pgd);
947a69c9
JF
476}
477
478pmdval_t xen_pmd_val(pmd_t pmd)
479{
ebb9cfe2 480 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 481}
28499143 482
e2426cf8 483void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 484{
400d3494 485 struct mmu_update u;
f4f97b3e 486
d66bf8fc
JF
487 preempt_disable();
488
400d3494
JF
489 xen_mc_batch();
490
ce803e70
JF
491 /* ptr may be ioremapped for 64-bit pagetable setup */
492 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 493 u.val = pud_val_ma(val);
7708ad64 494 xen_extend_mmu_update(&u);
d66bf8fc 495
994025ca
JF
496 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
497
d66bf8fc
JF
498 xen_mc_issue(PARAVIRT_LAZY_MMU);
499
500 preempt_enable();
f4f97b3e
JF
501}
502
e2426cf8
JF
503void xen_set_pud(pud_t *ptr, pud_t val)
504{
994025ca
JF
505 ADD_STATS(pud_update, 1);
506
e2426cf8
JF
507 /* If page is not pinned, we can just update the entry
508 directly */
7708ad64 509 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
510 *ptr = val;
511 return;
512 }
513
994025ca
JF
514 ADD_STATS(pud_update_pinned, 1);
515
e2426cf8
JF
516 xen_set_pud_hyper(ptr, val);
517}
518
f4f97b3e
JF
519void xen_set_pte(pte_t *ptep, pte_t pte)
520{
994025ca
JF
521 ADD_STATS(pte_update, 1);
522// ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
523 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
524
f6e58732 525#ifdef CONFIG_X86_PAE
f4f97b3e
JF
526 ptep->pte_high = pte.pte_high;
527 smp_wmb();
528 ptep->pte_low = pte.pte_low;
f6e58732
JF
529#else
530 *ptep = pte;
531#endif
f4f97b3e
JF
532}
533
f6e58732 534#ifdef CONFIG_X86_PAE
3b827c1b
JF
535void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
536{
f6e58732 537 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
538}
539
540void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
541{
542 ptep->pte_low = 0;
543 smp_wmb(); /* make sure low gets written first */
544 ptep->pte_high = 0;
545}
546
547void xen_pmd_clear(pmd_t *pmdp)
548{
e2426cf8 549 set_pmd(pmdp, __pmd(0));
3b827c1b 550}
f6e58732 551#endif /* CONFIG_X86_PAE */
3b827c1b 552
abf33038 553pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 554{
ebb9cfe2 555 pmd = pte_pfn_to_mfn(pmd);
947a69c9 556 return native_make_pmd(pmd);
3b827c1b 557}
3b827c1b 558
f6e58732
JF
559#if PAGETABLE_LEVELS == 4
560pudval_t xen_pud_val(pud_t pud)
561{
562 return pte_mfn_to_pfn(pud.pud);
563}
564
565pud_t xen_make_pud(pudval_t pud)
566{
567 pud = pte_pfn_to_mfn(pud);
568
569 return native_make_pud(pud);
570}
571
d6182fbf 572pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 573{
d6182fbf
JF
574 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
575 unsigned offset = pgd - pgd_page;
576 pgd_t *user_ptr = NULL;
f6e58732 577
d6182fbf
JF
578 if (offset < pgd_index(USER_LIMIT)) {
579 struct page *page = virt_to_page(pgd_page);
580 user_ptr = (pgd_t *)page->private;
581 if (user_ptr)
582 user_ptr += offset;
583 }
f6e58732 584
d6182fbf
JF
585 return user_ptr;
586}
587
588static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
589{
590 struct mmu_update u;
f6e58732
JF
591
592 u.ptr = virt_to_machine(ptr).maddr;
593 u.val = pgd_val_ma(val);
7708ad64 594 xen_extend_mmu_update(&u);
d6182fbf
JF
595}
596
597/*
598 * Raw hypercall-based set_pgd, intended for in early boot before
599 * there's a page structure. This implies:
600 * 1. The only existing pagetable is the kernel's
601 * 2. It is always pinned
602 * 3. It has no user pagetable attached to it
603 */
604void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
605{
606 preempt_disable();
607
608 xen_mc_batch();
609
610 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
611
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
613
614 preempt_enable();
615}
616
617void xen_set_pgd(pgd_t *ptr, pgd_t val)
618{
d6182fbf
JF
619 pgd_t *user_ptr = xen_get_user_pgd(ptr);
620
994025ca
JF
621 ADD_STATS(pgd_update, 1);
622
f6e58732
JF
623 /* If page is not pinned, we can just update the entry
624 directly */
7708ad64 625 if (!xen_page_pinned(ptr)) {
f6e58732 626 *ptr = val;
d6182fbf 627 if (user_ptr) {
7708ad64 628 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
629 *user_ptr = val;
630 }
f6e58732
JF
631 return;
632 }
633
994025ca
JF
634 ADD_STATS(pgd_update_pinned, 1);
635 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
636
d6182fbf
JF
637 /* If it's pinned, then we can at least batch the kernel and
638 user updates together. */
639 xen_mc_batch();
640
641 __xen_set_pgd_hyper(ptr, val);
642 if (user_ptr)
643 __xen_set_pgd_hyper(user_ptr, val);
644
645 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
646}
647#endif /* PAGETABLE_LEVELS == 4 */
648
f4f97b3e 649/*
5deb30d1
JF
650 * (Yet another) pagetable walker. This one is intended for pinning a
651 * pagetable. This means that it walks a pagetable and calls the
652 * callback function on each page it finds making up the page table,
653 * at every level. It walks the entire pagetable, but it only bothers
654 * pinning pte pages which are below limit. In the normal case this
655 * will be STACK_TOP_MAX, but at boot we need to pin up to
656 * FIXADDR_TOP.
657 *
658 * For 32-bit the important bit is that we don't pin beyond there,
659 * because then we start getting into Xen's ptes.
660 *
661 * For 64-bit, we must skip the Xen hole in the middle of the address
662 * space, just after the big x86-64 virtual hole.
663 */
eefb47f6
JF
664static int xen_pgd_walk(struct mm_struct *mm,
665 int (*func)(struct mm_struct *mm, struct page *,
666 enum pt_level),
7708ad64 667 unsigned long limit)
3b827c1b 668{
eefb47f6 669 pgd_t *pgd = mm->pgd;
f4f97b3e 670 int flush = 0;
5deb30d1
JF
671 unsigned hole_low, hole_high;
672 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
673 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 674
5deb30d1
JF
675 /* The limit is the last byte to be touched */
676 limit--;
677 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
678
679 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
680 return 0;
681
5deb30d1
JF
682 /*
683 * 64-bit has a great big hole in the middle of the address
684 * space, which contains the Xen mappings. On 32-bit these
685 * will end up making a zero-sized hole and so is a no-op.
686 */
d6182fbf 687 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
688 hole_high = pgd_index(PAGE_OFFSET);
689
690 pgdidx_limit = pgd_index(limit);
691#if PTRS_PER_PUD > 1
692 pudidx_limit = pud_index(limit);
693#else
694 pudidx_limit = 0;
695#endif
696#if PTRS_PER_PMD > 1
697 pmdidx_limit = pmd_index(limit);
698#else
699 pmdidx_limit = 0;
700#endif
701
5deb30d1 702 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 703 pud_t *pud;
3b827c1b 704
5deb30d1
JF
705 if (pgdidx >= hole_low && pgdidx < hole_high)
706 continue;
f4f97b3e 707
5deb30d1 708 if (!pgd_val(pgd[pgdidx]))
3b827c1b 709 continue;
f4f97b3e 710
5deb30d1 711 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
712
713 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 714 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 715
5deb30d1 716 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 717 pmd_t *pmd;
f4f97b3e 718
5deb30d1
JF
719 if (pgdidx == pgdidx_limit &&
720 pudidx > pudidx_limit)
721 goto out;
3b827c1b 722
5deb30d1 723 if (pud_none(pud[pudidx]))
3b827c1b 724 continue;
f4f97b3e 725
5deb30d1 726 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
727
728 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 729 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 730
5deb30d1
JF
731 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
732 struct page *pte;
733
734 if (pgdidx == pgdidx_limit &&
735 pudidx == pudidx_limit &&
736 pmdidx > pmdidx_limit)
737 goto out;
3b827c1b 738
5deb30d1 739 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
740 continue;
741
5deb30d1 742 pte = pmd_page(pmd[pmdidx]);
eefb47f6 743 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
744 }
745 }
746 }
11ad93e5 747
5deb30d1 748out:
11ad93e5
JF
749 /* Do the top level last, so that the callbacks can use it as
750 a cue to do final things like tlb flushes. */
eefb47f6 751 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
752
753 return flush;
3b827c1b
JF
754}
755
7708ad64
JF
756/* If we're using split pte locks, then take the page's lock and
757 return a pointer to it. Otherwise return NULL. */
eefb47f6 758static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
759{
760 spinlock_t *ptl = NULL;
761
f7d0b926 762#if USE_SPLIT_PTLOCKS
74260714 763 ptl = __pte_lockptr(page);
eefb47f6 764 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
765#endif
766
767 return ptl;
768}
769
7708ad64 770static void xen_pte_unlock(void *v)
74260714
JF
771{
772 spinlock_t *ptl = v;
773 spin_unlock(ptl);
774}
775
776static void xen_do_pin(unsigned level, unsigned long pfn)
777{
778 struct mmuext_op *op;
779 struct multicall_space mcs;
780
781 mcs = __xen_mc_entry(sizeof(*op));
782 op = mcs.args;
783 op->cmd = level;
784 op->arg1.mfn = pfn_to_mfn(pfn);
785 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
786}
787
eefb47f6
JF
788static int xen_pin_page(struct mm_struct *mm, struct page *page,
789 enum pt_level level)
f4f97b3e 790{
d60cd46b 791 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
792 int flush;
793
794 if (pgfl)
795 flush = 0; /* already pinned */
796 else if (PageHighMem(page))
797 /* kmaps need flushing if we found an unpinned
798 highpage */
799 flush = 1;
800 else {
801 void *pt = lowmem_page_address(page);
802 unsigned long pfn = page_to_pfn(page);
803 struct multicall_space mcs = __xen_mc_entry(0);
74260714 804 spinlock_t *ptl;
f4f97b3e
JF
805
806 flush = 0;
807
11ad93e5
JF
808 /*
809 * We need to hold the pagetable lock between the time
810 * we make the pagetable RO and when we actually pin
811 * it. If we don't, then other users may come in and
812 * attempt to update the pagetable by writing it,
813 * which will fail because the memory is RO but not
814 * pinned, so Xen won't do the trap'n'emulate.
815 *
816 * If we're using split pte locks, we can't hold the
817 * entire pagetable's worth of locks during the
818 * traverse, because we may wrap the preempt count (8
819 * bits). The solution is to mark RO and pin each PTE
820 * page while holding the lock. This means the number
821 * of locks we end up holding is never more than a
822 * batch size (~32 entries, at present).
823 *
824 * If we're not using split pte locks, we needn't pin
825 * the PTE pages independently, because we're
826 * protected by the overall pagetable lock.
827 */
74260714
JF
828 ptl = NULL;
829 if (level == PT_PTE)
eefb47f6 830 ptl = xen_pte_lock(page, mm);
74260714 831
f4f97b3e
JF
832 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
833 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
834 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
835
11ad93e5 836 if (ptl) {
74260714
JF
837 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
838
74260714
JF
839 /* Queue a deferred unlock for when this batch
840 is completed. */
7708ad64 841 xen_mc_callback(xen_pte_unlock, ptl);
74260714 842 }
f4f97b3e
JF
843 }
844
845 return flush;
846}
3b827c1b 847
f4f97b3e
JF
848/* This is called just after a mm has been created, but it has not
849 been used yet. We need to make sure that its pagetable is all
850 read-only, and can be pinned. */
eefb47f6 851static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 852{
f4f97b3e 853 xen_mc_batch();
3b827c1b 854
eefb47f6 855 if (xen_pgd_walk(mm, xen_pin_page, USER_LIMIT)) {
f87e4cac
JF
856 /* re-enable interrupts for kmap_flush_unused */
857 xen_mc_issue(0);
f4f97b3e 858 kmap_flush_unused();
db64fe02 859 vm_unmap_aliases();
f87e4cac
JF
860 xen_mc_batch();
861 }
f4f97b3e 862
d6182fbf
JF
863#ifdef CONFIG_X86_64
864 {
865 pgd_t *user_pgd = xen_get_user_pgd(pgd);
866
867 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
868
869 if (user_pgd) {
eefb47f6 870 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
871 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
872 }
873 }
874#else /* CONFIG_X86_32 */
5deb30d1
JF
875#ifdef CONFIG_X86_PAE
876 /* Need to make sure unshared kernel PMD is pinnable */
eefb47f6
JF
877 xen_pin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
878 PT_PMD);
5deb30d1 879#endif
28499143 880 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 881#endif /* CONFIG_X86_64 */
f4f97b3e 882 xen_mc_issue(0);
3b827c1b
JF
883}
884
eefb47f6
JF
885static void xen_pgd_pin(struct mm_struct *mm)
886{
887 __xen_pgd_pin(mm, mm->pgd);
888}
889
0e91398f
JF
890/*
891 * On save, we need to pin all pagetables to make sure they get their
892 * mfns turned into pfns. Search the list for any unpinned pgds and pin
893 * them (unpinned pgds are not currently in use, probably because the
894 * process is under construction or destruction).
eefb47f6
JF
895 *
896 * Expected to be called in stop_machine() ("equivalent to taking
897 * every spinlock in the system"), so the locking doesn't really
898 * matter all that much.
0e91398f
JF
899 */
900void xen_mm_pin_all(void)
901{
902 unsigned long flags;
903 struct page *page;
74260714 904
0e91398f 905 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 906
0e91398f
JF
907 list_for_each_entry(page, &pgd_list, lru) {
908 if (!PagePinned(page)) {
eefb47f6 909 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
910 SetPageSavePinned(page);
911 }
912 }
913
914 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
915}
916
c1f2f09e
EH
917/*
918 * The init_mm pagetable is really pinned as soon as its created, but
919 * that's before we have page structures to store the bits. So do all
920 * the book-keeping now.
921 */
eefb47f6
JF
922static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
923 enum pt_level level)
3b827c1b 924{
f4f97b3e
JF
925 SetPagePinned(page);
926 return 0;
927}
3b827c1b 928
f4f97b3e
JF
929void __init xen_mark_init_mm_pinned(void)
930{
eefb47f6 931 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 932}
3b827c1b 933
eefb47f6
JF
934static int xen_unpin_page(struct mm_struct *mm, struct page *page,
935 enum pt_level level)
f4f97b3e 936{
d60cd46b 937 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 938
f4f97b3e
JF
939 if (pgfl && !PageHighMem(page)) {
940 void *pt = lowmem_page_address(page);
941 unsigned long pfn = page_to_pfn(page);
74260714
JF
942 spinlock_t *ptl = NULL;
943 struct multicall_space mcs;
944
11ad93e5
JF
945 /*
946 * Do the converse to pin_page. If we're using split
947 * pte locks, we must be holding the lock for while
948 * the pte page is unpinned but still RO to prevent
949 * concurrent updates from seeing it in this
950 * partially-pinned state.
951 */
74260714 952 if (level == PT_PTE) {
eefb47f6 953 ptl = xen_pte_lock(page, mm);
74260714 954
11ad93e5
JF
955 if (ptl)
956 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
957 }
958
959 mcs = __xen_mc_entry(0);
f4f97b3e
JF
960
961 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
962 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
963 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
964
965 if (ptl) {
966 /* unlock when batch completed */
7708ad64 967 xen_mc_callback(xen_pte_unlock, ptl);
74260714 968 }
f4f97b3e
JF
969 }
970
971 return 0; /* never need to flush on unpin */
3b827c1b
JF
972}
973
f4f97b3e 974/* Release a pagetables pages back as normal RW */
eefb47f6 975static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 976{
f4f97b3e
JF
977 xen_mc_batch();
978
74260714 979 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 980
d6182fbf
JF
981#ifdef CONFIG_X86_64
982 {
983 pgd_t *user_pgd = xen_get_user_pgd(pgd);
984
985 if (user_pgd) {
986 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
eefb47f6 987 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
988 }
989 }
990#endif
991
5deb30d1
JF
992#ifdef CONFIG_X86_PAE
993 /* Need to make sure unshared kernel PMD is unpinned */
eefb47f6
JF
994 xen_unpin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
995 PT_PMD);
5deb30d1 996#endif
d6182fbf 997
eefb47f6 998 xen_pgd_walk(mm, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
999
1000 xen_mc_issue(0);
1001}
3b827c1b 1002
eefb47f6
JF
1003static void xen_pgd_unpin(struct mm_struct *mm)
1004{
1005 __xen_pgd_unpin(mm, mm->pgd);
1006}
1007
0e91398f
JF
1008/*
1009 * On resume, undo any pinning done at save, so that the rest of the
1010 * kernel doesn't see any unexpected pinned pagetables.
1011 */
1012void xen_mm_unpin_all(void)
1013{
1014 unsigned long flags;
1015 struct page *page;
1016
1017 spin_lock_irqsave(&pgd_lock, flags);
1018
1019 list_for_each_entry(page, &pgd_list, lru) {
1020 if (PageSavePinned(page)) {
1021 BUG_ON(!PagePinned(page));
eefb47f6 1022 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1023 ClearPageSavePinned(page);
1024 }
1025 }
1026
1027 spin_unlock_irqrestore(&pgd_lock, flags);
1028}
1029
3b827c1b
JF
1030void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1031{
f4f97b3e 1032 spin_lock(&next->page_table_lock);
eefb47f6 1033 xen_pgd_pin(next);
f4f97b3e 1034 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1035}
1036
1037void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1038{
f4f97b3e 1039 spin_lock(&mm->page_table_lock);
eefb47f6 1040 xen_pgd_pin(mm);
f4f97b3e 1041 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1042}
1043
3b827c1b 1044
f87e4cac
JF
1045#ifdef CONFIG_SMP
1046/* Another cpu may still have their %cr3 pointing at the pagetable, so
1047 we need to repoint it somewhere else before we can unpin it. */
1048static void drop_other_mm_ref(void *info)
1049{
1050 struct mm_struct *mm = info;
ce87b3d3 1051 struct mm_struct *active_mm;
3b827c1b 1052
ce87b3d3
JF
1053#ifdef CONFIG_X86_64
1054 active_mm = read_pda(active_mm);
1055#else
1056 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1057#endif
1058
1059 if (active_mm == mm)
f87e4cac 1060 leave_mm(smp_processor_id());
9f79991d
JF
1061
1062 /* If this cpu still has a stale cr3 reference, then make sure
1063 it has been flushed. */
1064 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1065 load_cr3(swapper_pg_dir);
1066 arch_flush_lazy_cpu_mode();
1067 }
f87e4cac 1068}
3b827c1b 1069
7708ad64 1070static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1071{
9f79991d
JF
1072 cpumask_t mask;
1073 unsigned cpu;
1074
f87e4cac
JF
1075 if (current->active_mm == mm) {
1076 if (current->mm == mm)
1077 load_cr3(swapper_pg_dir);
1078 else
1079 leave_mm(smp_processor_id());
9f79991d
JF
1080 arch_flush_lazy_cpu_mode();
1081 }
1082
1083 /* Get the "official" set of cpus referring to our pagetable. */
1084 mask = mm->cpu_vm_mask;
1085
1086 /* It's possible that a vcpu may have a stale reference to our
1087 cr3, because its in lazy mode, and it hasn't yet flushed
1088 its set of pending hypercalls yet. In this case, we can
1089 look at its actual current cr3 value, and force it to flush
1090 if needed. */
1091 for_each_online_cpu(cpu) {
1092 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1093 cpu_set(cpu, mask);
3b827c1b
JF
1094 }
1095
9f79991d 1096 if (!cpus_empty(mask))
3b16cf87 1097 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
f87e4cac
JF
1098}
1099#else
7708ad64 1100static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1101{
1102 if (current->active_mm == mm)
1103 load_cr3(swapper_pg_dir);
1104}
1105#endif
1106
1107/*
1108 * While a process runs, Xen pins its pagetables, which means that the
1109 * hypervisor forces it to be read-only, and it controls all updates
1110 * to it. This means that all pagetable updates have to go via the
1111 * hypervisor, which is moderately expensive.
1112 *
1113 * Since we're pulling the pagetable down, we switch to use init_mm,
1114 * unpin old process pagetable and mark it all read-write, which
1115 * allows further operations on it to be simple memory accesses.
1116 *
1117 * The only subtle point is that another CPU may be still using the
1118 * pagetable because of lazy tlb flushing. This means we need need to
1119 * switch all CPUs off this pagetable before we can unpin it.
1120 */
1121void xen_exit_mmap(struct mm_struct *mm)
1122{
1123 get_cpu(); /* make sure we don't move around */
7708ad64 1124 xen_drop_mm_ref(mm);
f87e4cac 1125 put_cpu();
3b827c1b 1126
f120f13e 1127 spin_lock(&mm->page_table_lock);
df912ea4
JF
1128
1129 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1130 if (xen_page_pinned(mm->pgd))
eefb47f6 1131 xen_pgd_unpin(mm);
74260714 1132
f120f13e 1133 spin_unlock(&mm->page_table_lock);
3b827c1b 1134}
994025ca
JF
1135
1136#ifdef CONFIG_XEN_DEBUG_FS
1137
1138static struct dentry *d_mmu_debug;
1139
1140static int __init xen_mmu_debugfs(void)
1141{
1142 struct dentry *d_xen = xen_init_debugfs();
1143
1144 if (d_xen == NULL)
1145 return -ENOMEM;
1146
1147 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1148
1149 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1150
1151 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1152 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1153 &mmu_stats.pgd_update_pinned);
1154 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1155 &mmu_stats.pgd_update_pinned);
1156
1157 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1158 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1159 &mmu_stats.pud_update_pinned);
1160 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1161 &mmu_stats.pud_update_pinned);
1162
1163 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1164 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1165 &mmu_stats.pmd_update_pinned);
1166 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1167 &mmu_stats.pmd_update_pinned);
1168
1169 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1170// debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1171// &mmu_stats.pte_update_pinned);
1172 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1173 &mmu_stats.pte_update_pinned);
1174
1175 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1176 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1177 &mmu_stats.mmu_update_extended);
1178 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1179 mmu_stats.mmu_update_histo, 20);
1180
1181 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1182 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1183 &mmu_stats.set_pte_at_batched);
1184 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1185 &mmu_stats.set_pte_at_current);
1186 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1187 &mmu_stats.set_pte_at_kernel);
1188
1189 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1190 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1191 &mmu_stats.prot_commit_batched);
1192
1193 return 0;
1194}
1195fs_initcall(xen_mmu_debugfs);
1196
1197#endif /* CONFIG_XEN_DEBUG_FS */