]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/kprobes_64.c
spi doesn't need class_device
[net-next-2.6.git] / arch / x86 / kernel / kprobes_64.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
73649dab
RL
29 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
30 * Added function return probes functionality
1da177e4
LT
31 */
32
1da177e4
LT
33#include <linux/kprobes.h>
34#include <linux/ptrace.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/slab.h>
37#include <linux/preempt.h>
c28f8966 38#include <linux/module.h>
1eeb66a1 39#include <linux/kdebug.h>
9ec4b1f3 40
1da177e4 41#include <asm/pgtable.h>
c28f8966 42#include <asm/uaccess.h>
19d36ccd 43#include <asm/alternative.h>
1da177e4 44
1da177e4 45void jprobe_return_end(void);
f709b122 46static void __kprobes arch_copy_kprobe(struct kprobe *p);
1da177e4 47
e7a510f9
AM
48DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
49DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4
LT
50
51/*
52 * returns non-zero if opcode modifies the interrupt flag.
53 */
3b60211c 54static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
1da177e4
LT
55{
56 switch (*insn) {
57 case 0xfa: /* cli */
58 case 0xfb: /* sti */
59 case 0xcf: /* iret/iretd */
60 case 0x9d: /* popf/popfd */
61 return 1;
62 }
63
64 if (*insn >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
65 return 1;
66 return 0;
67}
68
0f2fbdcb 69int __kprobes arch_prepare_kprobe(struct kprobe *p)
1da177e4
LT
70{
71 /* insn: must be on special executable page on x86_64. */
2dd960d6 72 p->ainsn.insn = get_insn_slot();
1da177e4
LT
73 if (!p->ainsn.insn) {
74 return -ENOMEM;
75 }
49a2a1b8 76 arch_copy_kprobe(p);
1da177e4
LT
77 return 0;
78}
79
80/*
81 * Determine if the instruction uses the %rip-relative addressing mode.
82 * If it does, return the address of the 32-bit displacement word.
83 * If not, return null.
84 */
3b60211c 85static s32 __kprobes *is_riprel(u8 *insn)
1da177e4
LT
86{
87#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
88 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
89 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
90 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
91 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
92 << (row % 64))
93 static const u64 onebyte_has_modrm[256 / 64] = {
94 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
95 /* ------------------------------- */
96 W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
97 W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
98 W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
99 W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
100 W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
101 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
102 W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
103 W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
104 W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
105 W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
106 W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
107 W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
108 W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
109 W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
110 W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
111 W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1) /* f0 */
112 /* ------------------------------- */
113 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
114 };
115 static const u64 twobyte_has_modrm[256 / 64] = {
116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
117 /* ------------------------------- */
118 W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
119 W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
120 W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
121 W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
122 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
123 W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
124 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
125 W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
126 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
127 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
128 W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
129 W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
130 W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
131 W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
132 W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
133 W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) /* ff */
134 /* ------------------------------- */
135 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
136 };
137#undef W
138 int need_modrm;
139
140 /* Skip legacy instruction prefixes. */
141 while (1) {
142 switch (*insn) {
143 case 0x66:
144 case 0x67:
145 case 0x2e:
146 case 0x3e:
147 case 0x26:
148 case 0x64:
149 case 0x65:
150 case 0x36:
151 case 0xf0:
152 case 0xf3:
153 case 0xf2:
154 ++insn;
155 continue;
156 }
157 break;
158 }
159
160 /* Skip REX instruction prefix. */
161 if ((*insn & 0xf0) == 0x40)
162 ++insn;
163
164 if (*insn == 0x0f) { /* Two-byte opcode. */
165 ++insn;
166 need_modrm = test_bit(*insn, twobyte_has_modrm);
167 } else { /* One-byte opcode. */
168 need_modrm = test_bit(*insn, onebyte_has_modrm);
169 }
170
171 if (need_modrm) {
172 u8 modrm = *++insn;
173 if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
174 /* Displacement follows ModRM byte. */
175 return (s32 *) ++insn;
176 }
177 }
178
179 /* No %rip-relative addressing mode here. */
180 return NULL;
181}
182
f709b122 183static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4
LT
184{
185 s32 *ripdisp;
186 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
187 ripdisp = is_riprel(p->ainsn.insn);
188 if (ripdisp) {
189 /*
190 * The copied instruction uses the %rip-relative
191 * addressing mode. Adjust the displacement for the
192 * difference between the original location of this
193 * instruction and the location of the copy that will
194 * actually be run. The tricky bit here is making sure
195 * that the sign extension happens correctly in this
196 * calculation, since we need a signed 32-bit result to
197 * be sign-extended to 64 bits when it's added to the
198 * %rip value and yield the same 64-bit result that the
199 * sign-extension of the original signed 32-bit
200 * displacement would have given.
201 */
202 s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
203 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
204 *ripdisp = disp;
205 }
7e1048b1 206 p->opcode = *p->addr;
1da177e4
LT
207}
208
0f2fbdcb 209void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 210{
19d36ccd 211 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
212}
213
0f2fbdcb 214void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 215{
19d36ccd 216 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
217}
218
0498b635 219void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 220{
7a7d1cf9 221 mutex_lock(&kprobe_mutex);
b4c6c34a 222 free_insn_slot(p->ainsn.insn, 0);
7a7d1cf9 223 mutex_unlock(&kprobe_mutex);
1da177e4
LT
224}
225
3b60211c 226static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 227{
e7a510f9
AM
228 kcb->prev_kprobe.kp = kprobe_running();
229 kcb->prev_kprobe.status = kcb->kprobe_status;
230 kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
231 kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
aa3d7e3d
PP
232}
233
3b60211c 234static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 235{
e7a510f9
AM
236 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
237 kcb->kprobe_status = kcb->prev_kprobe.status;
238 kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
239 kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
aa3d7e3d
PP
240}
241
3b60211c 242static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 243 struct kprobe_ctlblk *kcb)
aa3d7e3d 244{
e7a510f9
AM
245 __get_cpu_var(current_kprobe) = p;
246 kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
aa3d7e3d
PP
247 = (regs->eflags & (TF_MASK | IF_MASK));
248 if (is_IF_modifier(p->ainsn.insn))
e7a510f9 249 kcb->kprobe_saved_rflags &= ~IF_MASK;
aa3d7e3d
PP
250}
251
0f2fbdcb 252static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
253{
254 regs->eflags |= TF_MASK;
255 regs->eflags &= ~IF_MASK;
256 /*single step inline if the instruction is an int3*/
257 if (p->opcode == BREAKPOINT_INSTRUCTION)
258 regs->rip = (unsigned long)p->addr;
259 else
260 regs->rip = (unsigned long)p->ainsn.insn;
261}
262
991a51d8 263/* Called with kretprobe_lock held */
4c4308cb 264void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 265 struct pt_regs *regs)
73649dab
RL
266{
267 unsigned long *sara = (unsigned long *)regs->rsp;
ba8af12f 268
4c4308cb
CH
269 ri->ret_addr = (kprobe_opcode_t *) *sara;
270 /* Replace the return addr with trampoline addr */
271 *sara = (unsigned long) &kretprobe_trampoline;
73649dab
RL
272}
273
0f2fbdcb 274int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
275{
276 struct kprobe *p;
277 int ret = 0;
278 kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
d217d545
AM
279 struct kprobe_ctlblk *kcb;
280
281 /*
282 * We don't want to be preempted for the entire
283 * duration of kprobe processing
284 */
285 preempt_disable();
286 kcb = get_kprobe_ctlblk();
1da177e4 287
1da177e4
LT
288 /* Check we're not actually recursing */
289 if (kprobe_running()) {
1da177e4
LT
290 p = get_kprobe(addr);
291 if (p) {
e7a510f9 292 if (kcb->kprobe_status == KPROBE_HIT_SS &&
deac66ae 293 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
1da177e4 294 regs->eflags &= ~TF_MASK;
e7a510f9 295 regs->eflags |= kcb->kprobe_saved_rflags;
1da177e4 296 goto no_kprobe;
e7a510f9 297 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
aa3d7e3d
PP
298 /* TODO: Provide re-entrancy from
299 * post_kprobes_handler() and avoid exception
300 * stack corruption while single-stepping on
301 * the instruction of the new probe.
302 */
303 arch_disarm_kprobe(p);
304 regs->rip = (unsigned long)p->addr;
e7a510f9 305 reset_current_kprobe();
aa3d7e3d
PP
306 ret = 1;
307 } else {
308 /* We have reentered the kprobe_handler(), since
309 * another probe was hit while within the
310 * handler. We here save the original kprobe
311 * variables and just single step on instruction
312 * of the new probe without calling any user
313 * handlers.
314 */
e7a510f9
AM
315 save_previous_kprobe(kcb);
316 set_current_kprobe(p, regs, kcb);
bf8d5c52 317 kprobes_inc_nmissed_count(p);
aa3d7e3d 318 prepare_singlestep(p, regs);
e7a510f9 319 kcb->kprobe_status = KPROBE_REENTER;
aa3d7e3d 320 return 1;
1da177e4 321 }
1da177e4 322 } else {
eb3a7292
KA
323 if (*addr != BREAKPOINT_INSTRUCTION) {
324 /* The breakpoint instruction was removed by
325 * another cpu right after we hit, no further
326 * handling of this interrupt is appropriate
327 */
328 regs->rip = (unsigned long)addr;
329 ret = 1;
330 goto no_kprobe;
331 }
e7a510f9 332 p = __get_cpu_var(current_kprobe);
1da177e4
LT
333 if (p->break_handler && p->break_handler(p, regs)) {
334 goto ss_probe;
335 }
336 }
1da177e4
LT
337 goto no_kprobe;
338 }
339
1da177e4
LT
340 p = get_kprobe(addr);
341 if (!p) {
1da177e4
LT
342 if (*addr != BREAKPOINT_INSTRUCTION) {
343 /*
344 * The breakpoint instruction was removed right
345 * after we hit it. Another cpu has removed
346 * either a probepoint or a debugger breakpoint
347 * at this address. In either case, no further
348 * handling of this interrupt is appropriate.
bce06494
JK
349 * Back up over the (now missing) int3 and run
350 * the original instruction.
1da177e4 351 */
bce06494 352 regs->rip = (unsigned long)addr;
1da177e4
LT
353 ret = 1;
354 }
355 /* Not one of ours: let kernel handle it */
356 goto no_kprobe;
357 }
358
e7a510f9
AM
359 set_current_kprobe(p, regs, kcb);
360 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
361
362 if (p->pre_handler && p->pre_handler(p, regs))
363 /* handler has already set things up, so skip ss setup */
364 return 1;
365
366ss_probe:
367 prepare_singlestep(p, regs);
e7a510f9 368 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
369 return 1;
370
371no_kprobe:
d217d545 372 preempt_enable_no_resched();
1da177e4
LT
373 return ret;
374}
375
73649dab
RL
376/*
377 * For function-return probes, init_kprobes() establishes a probepoint
378 * here. When a retprobed function returns, this probe is hit and
379 * trampoline_probe_handler() runs, calling the kretprobe's handler.
380 */
381 void kretprobe_trampoline_holder(void)
382 {
383 asm volatile ( ".global kretprobe_trampoline\n"
384 "kretprobe_trampoline: \n"
385 "nop\n");
386 }
387
388/*
389 * Called when we hit the probe point at kretprobe_trampoline
390 */
0f2fbdcb 391int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
73649dab 392{
62c27be0 393 struct kretprobe_instance *ri = NULL;
99219a3f 394 struct hlist_head *head, empty_rp;
62c27be0 395 struct hlist_node *node, *tmp;
991a51d8 396 unsigned long flags, orig_ret_address = 0;
ba8af12f 397 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
73649dab 398
99219a3f 399 INIT_HLIST_HEAD(&empty_rp);
991a51d8 400 spin_lock_irqsave(&kretprobe_lock, flags);
62c27be0 401 head = kretprobe_inst_table_head(current);
73649dab 402
ba8af12f
RL
403 /*
404 * It is possible to have multiple instances associated with a given
405 * task either because an multiple functions in the call path
406 * have a return probe installed on them, and/or more then one return
407 * return probe was registered for a target function.
408 *
409 * We can handle this because:
410 * - instances are always inserted at the head of the list
411 * - when multiple return probes are registered for the same
62c27be0 412 * function, the first instance's ret_addr will point to the
ba8af12f
RL
413 * real return address, and all the rest will point to
414 * kretprobe_trampoline
415 */
416 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 417 if (ri->task != current)
ba8af12f 418 /* another task is sharing our hash bucket */
62c27be0 419 continue;
ba8af12f
RL
420
421 if (ri->rp && ri->rp->handler)
422 ri->rp->handler(ri, regs);
423
424 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 425 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
426
427 if (orig_ret_address != trampoline_address)
428 /*
429 * This is the real return address. Any other
430 * instances associated with this task are for
431 * other calls deeper on the call stack
432 */
433 break;
73649dab 434 }
ba8af12f 435
0f95b7fc 436 kretprobe_assert(ri, orig_ret_address, trampoline_address);
ba8af12f
RL
437 regs->rip = orig_ret_address;
438
e7a510f9 439 reset_current_kprobe();
991a51d8 440 spin_unlock_irqrestore(&kretprobe_lock, flags);
ba8af12f
RL
441 preempt_enable_no_resched();
442
99219a3f 443 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
444 hlist_del(&ri->hlist);
445 kfree(ri);
446 }
62c27be0 447 /*
448 * By returning a non-zero value, we are telling
449 * kprobe_handler() that we don't want the post_handler
d217d545 450 * to run (and have re-enabled preemption)
62c27be0 451 */
452 return 1;
73649dab
RL
453}
454
1da177e4
LT
455/*
456 * Called after single-stepping. p->addr is the address of the
457 * instruction whose first byte has been replaced by the "int 3"
458 * instruction. To avoid the SMP problems that can occur when we
459 * temporarily put back the original opcode to single-step, we
460 * single-stepped a copy of the instruction. The address of this
461 * copy is p->ainsn.insn.
462 *
463 * This function prepares to return from the post-single-step
464 * interrupt. We have to fix up the stack as follows:
465 *
466 * 0) Except in the case of absolute or indirect jump or call instructions,
467 * the new rip is relative to the copied instruction. We need to make
468 * it relative to the original instruction.
469 *
470 * 1) If the single-stepped instruction was pushfl, then the TF and IF
471 * flags are set in the just-pushed eflags, and may need to be cleared.
472 *
473 * 2) If the single-stepped instruction was a call, the return address
474 * that is atop the stack is the address following the copied instruction.
475 * We need to make it the address following the original instruction.
476 */
e7a510f9
AM
477static void __kprobes resume_execution(struct kprobe *p,
478 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4
LT
479{
480 unsigned long *tos = (unsigned long *)regs->rsp;
481 unsigned long next_rip = 0;
482 unsigned long copy_rip = (unsigned long)p->ainsn.insn;
483 unsigned long orig_rip = (unsigned long)p->addr;
484 kprobe_opcode_t *insn = p->ainsn.insn;
485
486 /*skip the REX prefix*/
487 if (*insn >= 0x40 && *insn <= 0x4f)
488 insn++;
489
490 switch (*insn) {
491 case 0x9c: /* pushfl */
492 *tos &= ~(TF_MASK | IF_MASK);
e7a510f9 493 *tos |= kcb->kprobe_old_rflags;
1da177e4 494 break;
0b9e2cac
PP
495 case 0xc3: /* ret/lret */
496 case 0xcb:
497 case 0xc2:
498 case 0xca:
499 regs->eflags &= ~TF_MASK;
500 /* rip is already adjusted, no more changes required*/
501 return;
1da177e4
LT
502 case 0xe8: /* call relative - Fix return addr */
503 *tos = orig_rip + (*tos - copy_rip);
504 break;
505 case 0xff:
dc49e344 506 if ((insn[1] & 0x30) == 0x10) {
1da177e4
LT
507 /* call absolute, indirect */
508 /* Fix return addr; rip is correct. */
509 next_rip = regs->rip;
510 *tos = orig_rip + (*tos - copy_rip);
dc49e344
SO
511 } else if (((insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
512 ((insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
1da177e4
LT
513 /* rip is correct. */
514 next_rip = regs->rip;
515 }
516 break;
517 case 0xea: /* jmp absolute -- rip is correct */
518 next_rip = regs->rip;
519 break;
520 default:
521 break;
522 }
523
524 regs->eflags &= ~TF_MASK;
525 if (next_rip) {
526 regs->rip = next_rip;
527 } else {
528 regs->rip = orig_rip + (regs->rip - copy_rip);
529 }
530}
531
0f2fbdcb 532int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 533{
e7a510f9
AM
534 struct kprobe *cur = kprobe_running();
535 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536
537 if (!cur)
1da177e4
LT
538 return 0;
539
e7a510f9
AM
540 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
541 kcb->kprobe_status = KPROBE_HIT_SSDONE;
542 cur->post_handler(cur, regs, 0);
aa3d7e3d 543 }
1da177e4 544
e7a510f9
AM
545 resume_execution(cur, regs, kcb);
546 regs->eflags |= kcb->kprobe_saved_rflags;
58dfe883
PZ
547#ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
548 if (raw_irqs_disabled_flags(regs->eflags))
549 trace_hardirqs_off();
550 else
551 trace_hardirqs_on();
552#endif
1da177e4 553
aa3d7e3d 554 /* Restore the original saved kprobes variables and continue. */
e7a510f9
AM
555 if (kcb->kprobe_status == KPROBE_REENTER) {
556 restore_previous_kprobe(kcb);
aa3d7e3d 557 goto out;
aa3d7e3d 558 }
e7a510f9 559 reset_current_kprobe();
aa3d7e3d 560out:
1da177e4
LT
561 preempt_enable_no_resched();
562
563 /*
564 * if somebody else is singlestepping across a probe point, eflags
565 * will have TF set, in which case, continue the remaining processing
566 * of do_debug, as if this is not a probe hit.
567 */
568 if (regs->eflags & TF_MASK)
569 return 0;
570
571 return 1;
572}
573
0f2fbdcb 574int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 575{
e7a510f9
AM
576 struct kprobe *cur = kprobe_running();
577 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
c28f8966 578 const struct exception_table_entry *fixup;
e7a510f9 579
c28f8966
PP
580 switch(kcb->kprobe_status) {
581 case KPROBE_HIT_SS:
582 case KPROBE_REENTER:
583 /*
584 * We are here because the instruction being single
585 * stepped caused a page fault. We reset the current
586 * kprobe and the rip points back to the probe address
587 * and allow the page fault handler to continue as a
588 * normal page fault.
589 */
590 regs->rip = (unsigned long)cur->addr;
e7a510f9 591 regs->eflags |= kcb->kprobe_old_rflags;
c28f8966
PP
592 if (kcb->kprobe_status == KPROBE_REENTER)
593 restore_previous_kprobe(kcb);
594 else
595 reset_current_kprobe();
1da177e4 596 preempt_enable_no_resched();
c28f8966
PP
597 break;
598 case KPROBE_HIT_ACTIVE:
599 case KPROBE_HIT_SSDONE:
600 /*
601 * We increment the nmissed count for accounting,
602 * we can also use npre/npostfault count for accouting
603 * these specific fault cases.
604 */
605 kprobes_inc_nmissed_count(cur);
606
607 /*
608 * We come here because instructions in the pre/post
609 * handler caused the page_fault, this could happen
610 * if handler tries to access user space by
611 * copy_from_user(), get_user() etc. Let the
612 * user-specified handler try to fix it first.
613 */
614 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
615 return 1;
616
617 /*
618 * In case the user-specified fault handler returned
619 * zero, try to fix up.
620 */
621 fixup = search_exception_tables(regs->rip);
622 if (fixup) {
623 regs->rip = fixup->fixup;
624 return 1;
625 }
626
627 /*
628 * fixup() could not handle it,
629 * Let do_page_fault() fix it.
630 */
631 break;
632 default:
633 break;
1da177e4
LT
634 }
635 return 0;
636}
637
638/*
639 * Wrapper routine for handling exceptions.
640 */
0f2fbdcb
PP
641int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
642 unsigned long val, void *data)
1da177e4
LT
643{
644 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
645 int ret = NOTIFY_DONE;
646
2326c770 647 if (args->regs && user_mode(args->regs))
648 return ret;
649
1da177e4
LT
650 switch (val) {
651 case DIE_INT3:
652 if (kprobe_handler(args->regs))
66ff2d06 653 ret = NOTIFY_STOP;
1da177e4
LT
654 break;
655 case DIE_DEBUG:
656 if (post_kprobe_handler(args->regs))
66ff2d06 657 ret = NOTIFY_STOP;
1da177e4
LT
658 break;
659 case DIE_GPF:
d217d545
AM
660 /* kprobe_running() needs smp_processor_id() */
661 preempt_disable();
1da177e4
LT
662 if (kprobe_running() &&
663 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 664 ret = NOTIFY_STOP;
d217d545 665 preempt_enable();
1da177e4
LT
666 break;
667 default:
668 break;
669 }
66ff2d06 670 return ret;
1da177e4
LT
671}
672
0f2fbdcb 673int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
674{
675 struct jprobe *jp = container_of(p, struct jprobe, kp);
676 unsigned long addr;
e7a510f9 677 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 678
e7a510f9
AM
679 kcb->jprobe_saved_regs = *regs;
680 kcb->jprobe_saved_rsp = (long *) regs->rsp;
681 addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
682 /*
683 * As Linus pointed out, gcc assumes that the callee
684 * owns the argument space and could overwrite it, e.g.
685 * tailcall optimization. So, to be absolutely safe
686 * we also save and restore enough stack bytes to cover
687 * the argument area.
688 */
e7a510f9
AM
689 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
690 MIN_STACK_SIZE(addr));
1da177e4 691 regs->eflags &= ~IF_MASK;
58dfe883 692 trace_hardirqs_off();
1da177e4
LT
693 regs->rip = (unsigned long)(jp->entry);
694 return 1;
695}
696
0f2fbdcb 697void __kprobes jprobe_return(void)
1da177e4 698{
e7a510f9
AM
699 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
700
1da177e4
LT
701 asm volatile (" xchg %%rbx,%%rsp \n"
702 " int3 \n"
703 " .globl jprobe_return_end \n"
704 " jprobe_return_end: \n"
705 " nop \n"::"b"
e7a510f9 706 (kcb->jprobe_saved_rsp):"memory");
1da177e4
LT
707}
708
0f2fbdcb 709int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 710{
e7a510f9 711 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 712 u8 *addr = (u8 *) (regs->rip - 1);
e7a510f9 713 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
1da177e4
LT
714 struct jprobe *jp = container_of(p, struct jprobe, kp);
715
716 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
e7a510f9 717 if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
1da177e4 718 struct pt_regs *saved_regs =
e7a510f9
AM
719 container_of(kcb->jprobe_saved_rsp,
720 struct pt_regs, rsp);
1da177e4 721 printk("current rsp %p does not match saved rsp %p\n",
e7a510f9 722 (long *)regs->rsp, kcb->jprobe_saved_rsp);
1da177e4
LT
723 printk("Saved registers for jprobe %p\n", jp);
724 show_registers(saved_regs);
725 printk("Current registers\n");
726 show_registers(regs);
727 BUG();
728 }
e7a510f9
AM
729 *regs = kcb->jprobe_saved_regs;
730 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
1da177e4 731 MIN_STACK_SIZE(stack_addr));
d217d545 732 preempt_enable_no_resched();
1da177e4
LT
733 return 1;
734 }
735 return 0;
736}
ba8af12f
RL
737
738static struct kprobe trampoline_p = {
739 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
740 .pre_handler = trampoline_probe_handler
741};
742
6772926b 743int __init arch_init_kprobes(void)
ba8af12f
RL
744{
745 return register_kprobe(&trampoline_p);
746}
bf8f6e5b
AM
747
748int __kprobes arch_trampoline_kprobe(struct kprobe *p)
749{
750 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
751 return 1;
752
753 return 0;
754}