]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/kprobes.c
x86: arch/x86/math-emu/errors.c: fix printk warnings
[net-next-2.6.git] / arch / x86 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
da07ab03
MH
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
d6be29b8
MH
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kprobes.h>
44#include <linux/ptrace.h>
1da177e4
LT
45#include <linux/string.h>
46#include <linux/slab.h>
47#include <linux/preempt.h>
c28f8966 48#include <linux/module.h>
1eeb66a1 49#include <linux/kdebug.h>
9ec4b1f3 50
8533bbe9
MH
51#include <asm/cacheflush.h>
52#include <asm/desc.h>
1da177e4 53#include <asm/pgtable.h>
c28f8966 54#include <asm/uaccess.h>
19d36ccd 55#include <asm/alternative.h>
1da177e4 56
1da177e4
LT
57void jprobe_return_end(void);
58
e7a510f9
AM
59DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
60DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 61
d6be29b8 62#ifdef CONFIG_X86_64
8533bbe9 63#define stack_addr(regs) ((unsigned long *)regs->sp)
d6be29b8
MH
64#else
65/*
66 * "&regs->sp" looks wrong, but it's correct for x86_32. x86_32 CPUs
67 * don't save the ss and esp registers if the CPU is already in kernel
68 * mode when it traps. So for kprobes, regs->sp and regs->ss are not
69 * the [nonexistent] saved stack pointer and ss register, but rather
70 * the top 8 bytes of the pre-int3 stack. So &regs->sp happens to
71 * point to the top of the pre-int3 stack.
72 */
73#define stack_addr(regs) ((unsigned long *)&regs->sp)
74#endif
8533bbe9
MH
75
76#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
81 << (row % 32))
82 /*
83 * Undefined/reserved opcodes, conditional jump, Opcode Extension
84 * Groups, and some special opcodes can not boost.
85 */
86static const u32 twobyte_is_boostable[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
90 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
92 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
96 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
97 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
102 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
103 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
104 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
105 /* ----------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
108static const u32 onebyte_has_modrm[256 / 32] = {
109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
110 /* ----------------------------------------------- */
111 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 00 */
112 W(0x10, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 10 */
113 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 20 */
114 W(0x30, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 30 */
115 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
116 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
117 W(0x60, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) | /* 60 */
118 W(0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 70 */
119 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
120 W(0x90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 90 */
121 W(0xa0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* a0 */
122 W(0xb0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* b0 */
123 W(0xc0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* c0 */
124 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
125 W(0xe0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* e0 */
126 W(0xf0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) /* f0 */
127 /* ----------------------------------------------- */
128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
129};
130static const u32 twobyte_has_modrm[256 / 32] = {
131 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
132 /* ----------------------------------------------- */
133 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) | /* 0f */
134 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) , /* 1f */
135 W(0x20, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 2f */
136 W(0x30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 3f */
137 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 4f */
138 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 5f */
139 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 6f */
140 W(0x70, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1) , /* 7f */
141 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 8f */
142 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 9f */
143 W(0xa0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) | /* af */
144 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* bf */
145 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* cf */
146 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* df */
147 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* ef */
148 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* ff */
149 /* ----------------------------------------------- */
150 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
151};
152#undef W
153
f438d914
MH
154struct kretprobe_blackpoint kretprobe_blacklist[] = {
155 {"__switch_to", }, /* This function switches only current task, but
156 doesn't switch kernel stack.*/
157 {NULL, NULL} /* Terminator */
158};
159const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
160
aa470140 161/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
e7b5e11e 162static void __kprobes set_jmp_op(void *from, void *to)
aa470140
MH
163{
164 struct __arch_jmp_op {
165 char op;
166 s32 raddr;
167 } __attribute__((packed)) * jop;
168 jop = (struct __arch_jmp_op *)from;
169 jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
170 jop->op = RELATIVEJUMP_INSTRUCTION;
171}
172
173/*
d6be29b8
MH
174 * Returns non-zero if opcode is boostable.
175 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 176 */
e7b5e11e 177static int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 178{
aa470140
MH
179 kprobe_opcode_t opcode;
180 kprobe_opcode_t *orig_opcodes = opcodes;
181
182retry:
183 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
184 return 0;
185 opcode = *(opcodes++);
186
187 /* 2nd-byte opcode */
188 if (opcode == 0x0f) {
189 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
190 return 0;
8533bbe9
MH
191 return test_bit(*opcodes,
192 (unsigned long *)twobyte_is_boostable);
aa470140
MH
193 }
194
195 switch (opcode & 0xf0) {
d6be29b8 196#ifdef CONFIG_X86_64
aa470140
MH
197 case 0x40:
198 goto retry; /* REX prefix is boostable */
d6be29b8 199#endif
aa470140
MH
200 case 0x60:
201 if (0x63 < opcode && opcode < 0x67)
202 goto retry; /* prefixes */
203 /* can't boost Address-size override and bound */
204 return (opcode != 0x62 && opcode != 0x67);
205 case 0x70:
206 return 0; /* can't boost conditional jump */
207 case 0xc0:
208 /* can't boost software-interruptions */
209 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
210 case 0xd0:
211 /* can boost AA* and XLAT */
212 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
213 case 0xe0:
214 /* can boost in/out and absolute jmps */
215 return ((opcode & 0x04) || opcode == 0xea);
216 case 0xf0:
217 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
218 goto retry; /* lock/rep(ne) prefix */
219 /* clear and set flags are boostable */
220 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
221 default:
222 /* segment override prefixes are boostable */
223 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
224 goto retry; /* prefixes */
225 /* CS override prefix and call are not boostable */
226 return (opcode != 0x2e && opcode != 0x9a);
227 }
228}
229
1da177e4 230/*
d6be29b8 231 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 232 */
8645419c 233static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4
LT
234{
235 switch (*insn) {
236 case 0xfa: /* cli */
237 case 0xfb: /* sti */
238 case 0xcf: /* iret/iretd */
239 case 0x9d: /* popf/popfd */
240 return 1;
241 }
d6be29b8 242#ifdef CONFIG_X86_64
8533bbe9
MH
243 /*
244 * on 64 bit x86, 0x40-0x4f are prefixes so we need to look
245 * at the next byte instead.. but of course not recurse infinitely
246 */
247 if (*insn >= 0x40 && *insn <= 0x4f)
248 return is_IF_modifier(++insn);
d6be29b8 249#endif
1da177e4
LT
250 return 0;
251}
252
d6be29b8 253#ifdef CONFIG_X86_64
1da177e4 254/*
8533bbe9
MH
255 * Adjust the displacement if the instruction uses the %rip-relative
256 * addressing mode.
aa470140 257 * If it does, Return the address of the 32-bit displacement word.
1da177e4
LT
258 * If not, return null.
259 */
8533bbe9 260static void __kprobes fix_riprel(struct kprobe *p)
1da177e4 261{
8533bbe9
MH
262 u8 *insn = p->ainsn.insn;
263 s64 disp;
1da177e4
LT
264 int need_modrm;
265
266 /* Skip legacy instruction prefixes. */
267 while (1) {
268 switch (*insn) {
269 case 0x66:
270 case 0x67:
271 case 0x2e:
272 case 0x3e:
273 case 0x26:
274 case 0x64:
275 case 0x65:
276 case 0x36:
277 case 0xf0:
278 case 0xf3:
279 case 0xf2:
280 ++insn;
281 continue;
282 }
283 break;
284 }
285
286 /* Skip REX instruction prefix. */
287 if ((*insn & 0xf0) == 0x40)
288 ++insn;
289
d6be29b8
MH
290 if (*insn == 0x0f) {
291 /* Two-byte opcode. */
1da177e4 292 ++insn;
8533bbe9
MH
293 need_modrm = test_bit(*insn,
294 (unsigned long *)twobyte_has_modrm);
d6be29b8
MH
295 } else
296 /* One-byte opcode. */
8533bbe9
MH
297 need_modrm = test_bit(*insn,
298 (unsigned long *)onebyte_has_modrm);
1da177e4
LT
299
300 if (need_modrm) {
301 u8 modrm = *++insn;
d6be29b8
MH
302 if ((modrm & 0xc7) == 0x05) {
303 /* %rip+disp32 addressing mode */
1da177e4 304 /* Displacement follows ModRM byte. */
8533bbe9
MH
305 ++insn;
306 /*
307 * The copied instruction uses the %rip-relative
308 * addressing mode. Adjust the displacement for the
309 * difference between the original location of this
310 * instruction and the location of the copy that will
311 * actually be run. The tricky bit here is making sure
312 * that the sign extension happens correctly in this
313 * calculation, since we need a signed 32-bit result to
314 * be sign-extended to 64 bits when it's added to the
315 * %rip value and yield the same 64-bit result that the
316 * sign-extension of the original signed 32-bit
317 * displacement would have given.
318 */
319 disp = (u8 *) p->addr + *((s32 *) insn) -
320 (u8 *) p->ainsn.insn;
321 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
322 *(s32 *)insn = (s32) disp;
1da177e4
LT
323 }
324 }
1da177e4 325}
d6be29b8 326#endif
1da177e4 327
f709b122 328static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 329{
8533bbe9 330 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
d6be29b8 331#ifdef CONFIG_X86_64
8533bbe9 332 fix_riprel(p);
d6be29b8 333#endif
8533bbe9 334 if (can_boost(p->addr))
aa470140 335 p->ainsn.boostable = 0;
8533bbe9 336 else
aa470140 337 p->ainsn.boostable = -1;
8533bbe9 338
7e1048b1 339 p->opcode = *p->addr;
1da177e4
LT
340}
341
8533bbe9
MH
342int __kprobes arch_prepare_kprobe(struct kprobe *p)
343{
344 /* insn: must be on special executable page on x86. */
345 p->ainsn.insn = get_insn_slot();
346 if (!p->ainsn.insn)
347 return -ENOMEM;
348 arch_copy_kprobe(p);
349 return 0;
350}
351
0f2fbdcb 352void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 353{
19d36ccd 354 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
355}
356
0f2fbdcb 357void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 358{
19d36ccd 359 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
360}
361
0498b635 362void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 363{
7a7d1cf9 364 mutex_lock(&kprobe_mutex);
aa470140 365 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
7a7d1cf9 366 mutex_unlock(&kprobe_mutex);
1da177e4
LT
367}
368
3b60211c 369static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 370{
e7a510f9
AM
371 kcb->prev_kprobe.kp = kprobe_running();
372 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
373 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
374 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
375}
376
3b60211c 377static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 378{
e7a510f9
AM
379 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
380 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
381 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
382 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
383}
384
3b60211c 385static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 386 struct kprobe_ctlblk *kcb)
aa3d7e3d 387{
e7a510f9 388 __get_cpu_var(current_kprobe) = p;
8533bbe9 389 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 390 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
aa3d7e3d 391 if (is_IF_modifier(p->ainsn.insn))
053de044 392 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
393}
394
e7b5e11e 395static void __kprobes clear_btf(void)
1ecc798c
RM
396{
397 if (test_thread_flag(TIF_DEBUGCTLMSR))
d6be29b8 398 wrmsr(MSR_IA32_DEBUGCTLMSR, 0, 0);
1ecc798c
RM
399}
400
e7b5e11e 401static void __kprobes restore_btf(void)
1ecc798c
RM
402{
403 if (test_thread_flag(TIF_DEBUGCTLMSR))
d6be29b8 404 wrmsr(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr, 0);
1ecc798c
RM
405}
406
0f2fbdcb 407static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4 408{
1ecc798c 409 clear_btf();
053de044
GOC
410 regs->flags |= X86_EFLAGS_TF;
411 regs->flags &= ~X86_EFLAGS_IF;
e7b5e11e 412 /* single step inline if the instruction is an int3 */
1da177e4 413 if (p->opcode == BREAKPOINT_INSTRUCTION)
65ea5b03 414 regs->ip = (unsigned long)p->addr;
1da177e4 415 else
65ea5b03 416 regs->ip = (unsigned long)p->ainsn.insn;
1da177e4
LT
417}
418
991a51d8 419/* Called with kretprobe_lock held */
4c4308cb 420void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 421 struct pt_regs *regs)
73649dab 422{
8533bbe9 423 unsigned long *sara = stack_addr(regs);
ba8af12f 424
4c4308cb 425 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 426
4c4308cb
CH
427 /* Replace the return addr with trampoline addr */
428 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 429}
40102d4a
HH
430/*
431 * We have reentered the kprobe_handler(), since another probe was hit while
432 * within the handler. We save the original kprobes variables and just single
433 * step on the instruction of the new probe without calling any user handlers.
434 */
59e87cdc
MH
435static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
436 struct kprobe_ctlblk *kcb)
40102d4a 437{
59e87cdc
MH
438 if (kcb->kprobe_status == KPROBE_HIT_SS &&
439 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
440 regs->flags &= ~X86_EFLAGS_TF;
441 regs->flags |= kcb->kprobe_saved_flags;
442 return 0;
443#ifdef CONFIG_X86_64
444 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
445 /* TODO: Provide re-entrancy from post_kprobes_handler() and
446 * avoid exception stack corruption while single-stepping on
447 * the instruction of the new probe.
448 */
449 arch_disarm_kprobe(p);
450 regs->ip = (unsigned long)p->addr;
451 reset_current_kprobe();
452 return 1;
453#endif
454 }
40102d4a
HH
455 save_previous_kprobe(kcb);
456 set_current_kprobe(p, regs, kcb);
457 kprobes_inc_nmissed_count(p);
458 prepare_singlestep(p, regs);
459 kcb->kprobe_status = KPROBE_REENTER;
59e87cdc 460 return 1;
40102d4a 461}
73649dab 462
8533bbe9
MH
463/*
464 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
465 * remain disabled thorough out this function.
466 */
467static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
468{
469 struct kprobe *p;
470 int ret = 0;
8533bbe9 471 kprobe_opcode_t *addr;
d217d545
AM
472 struct kprobe_ctlblk *kcb;
473
8533bbe9
MH
474 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
475
d217d545
AM
476 /*
477 * We don't want to be preempted for the entire
478 * duration of kprobe processing
479 */
480 preempt_disable();
481 kcb = get_kprobe_ctlblk();
1da177e4 482
1da177e4
LT
483 /* Check we're not actually recursing */
484 if (kprobe_running()) {
1da177e4
LT
485 p = get_kprobe(addr);
486 if (p) {
59e87cdc
MH
487 ret = reenter_kprobe(p, regs, kcb);
488 if (kcb->kprobe_status == KPROBE_REENTER)
489 return 1;
1da177e4 490 } else {
eb3a7292
KA
491 if (*addr != BREAKPOINT_INSTRUCTION) {
492 /* The breakpoint instruction was removed by
493 * another cpu right after we hit, no further
494 * handling of this interrupt is appropriate
495 */
65ea5b03 496 regs->ip = (unsigned long)addr;
eb3a7292
KA
497 ret = 1;
498 goto no_kprobe;
499 }
e7a510f9 500 p = __get_cpu_var(current_kprobe);
d6be29b8 501 if (p->break_handler && p->break_handler(p, regs))
1da177e4 502 goto ss_probe;
1da177e4 503 }
1da177e4
LT
504 goto no_kprobe;
505 }
506
1da177e4
LT
507 p = get_kprobe(addr);
508 if (!p) {
1da177e4
LT
509 if (*addr != BREAKPOINT_INSTRUCTION) {
510 /*
511 * The breakpoint instruction was removed right
512 * after we hit it. Another cpu has removed
513 * either a probepoint or a debugger breakpoint
514 * at this address. In either case, no further
515 * handling of this interrupt is appropriate.
bce06494
JK
516 * Back up over the (now missing) int3 and run
517 * the original instruction.
1da177e4 518 */
65ea5b03 519 regs->ip = (unsigned long)addr;
1da177e4
LT
520 ret = 1;
521 }
522 /* Not one of ours: let kernel handle it */
523 goto no_kprobe;
524 }
525
e7a510f9
AM
526 set_current_kprobe(p, regs, kcb);
527 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
528
529 if (p->pre_handler && p->pre_handler(p, regs))
530 /* handler has already set things up, so skip ss setup */
531 return 1;
532
533ss_probe:
aa470140
MH
534#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
535 if (p->ainsn.boostable == 1 && !p->post_handler) {
536 /* Boost up -- we can execute copied instructions directly */
537 reset_current_kprobe();
538 regs->ip = (unsigned long)p->ainsn.insn;
539 preempt_enable_no_resched();
540 return 1;
541 }
542#endif
1da177e4 543 prepare_singlestep(p, regs);
e7a510f9 544 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
545 return 1;
546
547no_kprobe:
d217d545 548 preempt_enable_no_resched();
1da177e4
LT
549 return ret;
550}
551
73649dab 552/*
da07ab03
MH
553 * When a retprobed function returns, this code saves registers and
554 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 555 */
da07ab03 556 void __kprobes kretprobe_trampoline_holder(void)
73649dab 557 {
d6be29b8
MH
558 asm volatile (
559 ".global kretprobe_trampoline\n"
da07ab03 560 "kretprobe_trampoline: \n"
d6be29b8 561#ifdef CONFIG_X86_64
da07ab03
MH
562 /* We don't bother saving the ss register */
563 " pushq %rsp\n"
564 " pushfq\n"
565 /*
566 * Skip cs, ip, orig_ax.
567 * trampoline_handler() will plug in these values
568 */
569 " subq $24, %rsp\n"
570 " pushq %rdi\n"
571 " pushq %rsi\n"
572 " pushq %rdx\n"
573 " pushq %rcx\n"
574 " pushq %rax\n"
575 " pushq %r8\n"
576 " pushq %r9\n"
577 " pushq %r10\n"
578 " pushq %r11\n"
579 " pushq %rbx\n"
580 " pushq %rbp\n"
581 " pushq %r12\n"
582 " pushq %r13\n"
583 " pushq %r14\n"
584 " pushq %r15\n"
585 " movq %rsp, %rdi\n"
586 " call trampoline_handler\n"
587 /* Replace saved sp with true return address. */
588 " movq %rax, 152(%rsp)\n"
589 " popq %r15\n"
590 " popq %r14\n"
591 " popq %r13\n"
592 " popq %r12\n"
593 " popq %rbp\n"
594 " popq %rbx\n"
595 " popq %r11\n"
596 " popq %r10\n"
597 " popq %r9\n"
598 " popq %r8\n"
599 " popq %rax\n"
600 " popq %rcx\n"
601 " popq %rdx\n"
602 " popq %rsi\n"
603 " popq %rdi\n"
604 /* Skip orig_ax, ip, cs */
605 " addq $24, %rsp\n"
606 " popfq\n"
d6be29b8
MH
607#else
608 " pushf\n"
609 /*
610 * Skip cs, ip, orig_ax.
611 * trampoline_handler() will plug in these values
612 */
613 " subl $12, %esp\n"
614 " pushl %fs\n"
615 " pushl %ds\n"
616 " pushl %es\n"
617 " pushl %eax\n"
618 " pushl %ebp\n"
619 " pushl %edi\n"
620 " pushl %esi\n"
621 " pushl %edx\n"
622 " pushl %ecx\n"
623 " pushl %ebx\n"
624 " movl %esp, %eax\n"
625 " call trampoline_handler\n"
626 /* Move flags to cs */
627 " movl 52(%esp), %edx\n"
628 " movl %edx, 48(%esp)\n"
629 /* Replace saved flags with true return address. */
630 " movl %eax, 52(%esp)\n"
631 " popl %ebx\n"
632 " popl %ecx\n"
633 " popl %edx\n"
634 " popl %esi\n"
635 " popl %edi\n"
636 " popl %ebp\n"
637 " popl %eax\n"
638 /* Skip ip, orig_ax, es, ds, fs */
639 " addl $20, %esp\n"
640 " popf\n"
641#endif
da07ab03 642 " ret\n");
73649dab
RL
643 }
644
645/*
da07ab03 646 * Called from kretprobe_trampoline
73649dab 647 */
d6be29b8 648void * __kprobes trampoline_handler(struct pt_regs *regs)
73649dab 649{
62c27be0 650 struct kretprobe_instance *ri = NULL;
99219a3f 651 struct hlist_head *head, empty_rp;
62c27be0 652 struct hlist_node *node, *tmp;
991a51d8 653 unsigned long flags, orig_ret_address = 0;
d6be29b8 654 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
73649dab 655
99219a3f 656 INIT_HLIST_HEAD(&empty_rp);
991a51d8 657 spin_lock_irqsave(&kretprobe_lock, flags);
62c27be0 658 head = kretprobe_inst_table_head(current);
8533bbe9 659 /* fixup registers */
d6be29b8 660#ifdef CONFIG_X86_64
da07ab03 661 regs->cs = __KERNEL_CS;
d6be29b8
MH
662#else
663 regs->cs = __KERNEL_CS | get_kernel_rpl();
664#endif
da07ab03 665 regs->ip = trampoline_address;
8533bbe9 666 regs->orig_ax = ~0UL;
73649dab 667
ba8af12f
RL
668 /*
669 * It is possible to have multiple instances associated with a given
8533bbe9
MH
670 * task either because multiple functions in the call path have
671 * return probes installed on them, and/or more then one
ba8af12f
RL
672 * return probe was registered for a target function.
673 *
674 * We can handle this because:
8533bbe9 675 * - instances are always pushed into the head of the list
ba8af12f 676 * - when multiple return probes are registered for the same
8533bbe9
MH
677 * function, the (chronologically) first instance's ret_addr
678 * will be the real return address, and all the rest will
679 * point to kretprobe_trampoline.
ba8af12f
RL
680 */
681 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 682 if (ri->task != current)
ba8af12f 683 /* another task is sharing our hash bucket */
62c27be0 684 continue;
ba8af12f 685
da07ab03
MH
686 if (ri->rp && ri->rp->handler) {
687 __get_cpu_var(current_kprobe) = &ri->rp->kp;
688 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ba8af12f 689 ri->rp->handler(ri, regs);
da07ab03
MH
690 __get_cpu_var(current_kprobe) = NULL;
691 }
ba8af12f
RL
692
693 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 694 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
695
696 if (orig_ret_address != trampoline_address)
697 /*
698 * This is the real return address. Any other
699 * instances associated with this task are for
700 * other calls deeper on the call stack
701 */
702 break;
73649dab 703 }
ba8af12f 704
0f95b7fc 705 kretprobe_assert(ri, orig_ret_address, trampoline_address);
ba8af12f 706
991a51d8 707 spin_unlock_irqrestore(&kretprobe_lock, flags);
ba8af12f 708
99219a3f 709 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
710 hlist_del(&ri->hlist);
711 kfree(ri);
712 }
da07ab03 713 return (void *)orig_ret_address;
73649dab
RL
714}
715
1da177e4
LT
716/*
717 * Called after single-stepping. p->addr is the address of the
718 * instruction whose first byte has been replaced by the "int 3"
719 * instruction. To avoid the SMP problems that can occur when we
720 * temporarily put back the original opcode to single-step, we
721 * single-stepped a copy of the instruction. The address of this
722 * copy is p->ainsn.insn.
723 *
724 * This function prepares to return from the post-single-step
725 * interrupt. We have to fix up the stack as follows:
726 *
727 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 728 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
729 * it relative to the original instruction.
730 *
731 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 732 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
733 *
734 * 2) If the single-stepped instruction was a call, the return address
735 * that is atop the stack is the address following the copied instruction.
736 * We need to make it the address following the original instruction.
aa470140
MH
737 *
738 * If this is the first time we've single-stepped the instruction at
739 * this probepoint, and the instruction is boostable, boost it: add a
740 * jump instruction after the copied instruction, that jumps to the next
741 * instruction after the probepoint.
1da177e4 742 */
e7a510f9
AM
743static void __kprobes resume_execution(struct kprobe *p,
744 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 745{
8533bbe9
MH
746 unsigned long *tos = stack_addr(regs);
747 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
748 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
749 kprobe_opcode_t *insn = p->ainsn.insn;
750
d6be29b8 751#ifdef CONFIG_X86_64
1da177e4
LT
752 /*skip the REX prefix*/
753 if (*insn >= 0x40 && *insn <= 0x4f)
754 insn++;
d6be29b8 755#endif
1da177e4 756
053de044 757 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 758 switch (*insn) {
0b0122fa 759 case 0x9c: /* pushfl */
053de044 760 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 761 *tos |= kcb->kprobe_old_flags;
1da177e4 762 break;
0b0122fa
MH
763 case 0xc2: /* iret/ret/lret */
764 case 0xc3:
0b9e2cac 765 case 0xca:
0b0122fa
MH
766 case 0xcb:
767 case 0xcf:
768 case 0xea: /* jmp absolute -- ip is correct */
769 /* ip is already adjusted, no more changes required */
aa470140 770 p->ainsn.boostable = 1;
0b0122fa
MH
771 goto no_change;
772 case 0xe8: /* call relative - Fix return addr */
8533bbe9 773 *tos = orig_ip + (*tos - copy_ip);
1da177e4 774 break;
e7b5e11e 775#ifdef CONFIG_X86_32
d6be29b8
MH
776 case 0x9a: /* call absolute -- same as call absolute, indirect */
777 *tos = orig_ip + (*tos - copy_ip);
778 goto no_change;
779#endif
1da177e4 780 case 0xff:
dc49e344 781 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
782 /*
783 * call absolute, indirect
784 * Fix return addr; ip is correct.
785 * But this is not boostable
786 */
787 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 788 goto no_change;
8533bbe9
MH
789 } else if (((insn[1] & 0x31) == 0x20) ||
790 ((insn[1] & 0x31) == 0x21)) {
791 /*
792 * jmp near and far, absolute indirect
793 * ip is correct. And this is boostable
794 */
aa470140 795 p->ainsn.boostable = 1;
0b0122fa 796 goto no_change;
1da177e4 797 }
1da177e4
LT
798 default:
799 break;
800 }
801
aa470140 802 if (p->ainsn.boostable == 0) {
8533bbe9
MH
803 if ((regs->ip > copy_ip) &&
804 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
805 /*
806 * These instructions can be executed directly if it
807 * jumps back to correct address.
808 */
809 set_jmp_op((void *)regs->ip,
8533bbe9 810 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
811 p->ainsn.boostable = 1;
812 } else {
813 p->ainsn.boostable = -1;
814 }
815 }
816
8533bbe9 817 regs->ip += orig_ip - copy_ip;
65ea5b03 818
0b0122fa 819no_change:
1ecc798c 820 restore_btf();
1da177e4
LT
821}
822
8533bbe9
MH
823/*
824 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
825 * remain disabled thoroughout this function.
826 */
827static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 828{
e7a510f9
AM
829 struct kprobe *cur = kprobe_running();
830 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
831
832 if (!cur)
1da177e4
LT
833 return 0;
834
e7a510f9
AM
835 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
836 kcb->kprobe_status = KPROBE_HIT_SSDONE;
837 cur->post_handler(cur, regs, 0);
aa3d7e3d 838 }
1da177e4 839
e7a510f9 840 resume_execution(cur, regs, kcb);
8533bbe9 841 regs->flags |= kcb->kprobe_saved_flags;
65ea5b03 842 trace_hardirqs_fixup_flags(regs->flags);
1da177e4 843
8533bbe9 844 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
845 if (kcb->kprobe_status == KPROBE_REENTER) {
846 restore_previous_kprobe(kcb);
aa3d7e3d 847 goto out;
aa3d7e3d 848 }
e7a510f9 849 reset_current_kprobe();
aa3d7e3d 850out:
1da177e4
LT
851 preempt_enable_no_resched();
852
853 /*
65ea5b03 854 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
855 * will have TF set, in which case, continue the remaining processing
856 * of do_debug, as if this is not a probe hit.
857 */
053de044 858 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
859 return 0;
860
861 return 1;
862}
863
0f2fbdcb 864int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 865{
e7a510f9
AM
866 struct kprobe *cur = kprobe_running();
867 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
868
d6be29b8 869 switch (kcb->kprobe_status) {
c28f8966
PP
870 case KPROBE_HIT_SS:
871 case KPROBE_REENTER:
872 /*
873 * We are here because the instruction being single
874 * stepped caused a page fault. We reset the current
65ea5b03 875 * kprobe and the ip points back to the probe address
c28f8966
PP
876 * and allow the page fault handler to continue as a
877 * normal page fault.
878 */
65ea5b03 879 regs->ip = (unsigned long)cur->addr;
8533bbe9 880 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
881 if (kcb->kprobe_status == KPROBE_REENTER)
882 restore_previous_kprobe(kcb);
883 else
884 reset_current_kprobe();
1da177e4 885 preempt_enable_no_resched();
c28f8966
PP
886 break;
887 case KPROBE_HIT_ACTIVE:
888 case KPROBE_HIT_SSDONE:
889 /*
890 * We increment the nmissed count for accounting,
8533bbe9 891 * we can also use npre/npostfault count for accounting
c28f8966
PP
892 * these specific fault cases.
893 */
894 kprobes_inc_nmissed_count(cur);
895
896 /*
897 * We come here because instructions in the pre/post
898 * handler caused the page_fault, this could happen
899 * if handler tries to access user space by
900 * copy_from_user(), get_user() etc. Let the
901 * user-specified handler try to fix it first.
902 */
903 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
904 return 1;
905
906 /*
907 * In case the user-specified fault handler returned
908 * zero, try to fix up.
909 */
d6be29b8
MH
910 if (fixup_exception(regs))
911 return 1;
6d48583b 912
c28f8966 913 /*
8533bbe9 914 * fixup routine could not handle it,
c28f8966
PP
915 * Let do_page_fault() fix it.
916 */
917 break;
918 default:
919 break;
1da177e4
LT
920 }
921 return 0;
922}
923
924/*
925 * Wrapper routine for handling exceptions.
926 */
0f2fbdcb
PP
927int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
928 unsigned long val, void *data)
1da177e4
LT
929{
930 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
931 int ret = NOTIFY_DONE;
932
8533bbe9 933 if (args->regs && user_mode_vm(args->regs))
2326c770 934 return ret;
935
1da177e4
LT
936 switch (val) {
937 case DIE_INT3:
938 if (kprobe_handler(args->regs))
66ff2d06 939 ret = NOTIFY_STOP;
1da177e4
LT
940 break;
941 case DIE_DEBUG:
942 if (post_kprobe_handler(args->regs))
66ff2d06 943 ret = NOTIFY_STOP;
1da177e4
LT
944 break;
945 case DIE_GPF:
d217d545
AM
946 /* kprobe_running() needs smp_processor_id() */
947 preempt_disable();
1da177e4
LT
948 if (kprobe_running() &&
949 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 950 ret = NOTIFY_STOP;
d217d545 951 preempt_enable();
1da177e4
LT
952 break;
953 default:
954 break;
955 }
66ff2d06 956 return ret;
1da177e4
LT
957}
958
0f2fbdcb 959int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
960{
961 struct jprobe *jp = container_of(p, struct jprobe, kp);
962 unsigned long addr;
e7a510f9 963 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 964
e7a510f9 965 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
966 kcb->jprobe_saved_sp = stack_addr(regs);
967 addr = (unsigned long)(kcb->jprobe_saved_sp);
968
1da177e4
LT
969 /*
970 * As Linus pointed out, gcc assumes that the callee
971 * owns the argument space and could overwrite it, e.g.
972 * tailcall optimization. So, to be absolutely safe
973 * we also save and restore enough stack bytes to cover
974 * the argument area.
975 */
e7a510f9 976 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 977 MIN_STACK_SIZE(addr));
053de044 978 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 979 trace_hardirqs_off();
65ea5b03 980 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
981 return 1;
982}
983
0f2fbdcb 984void __kprobes jprobe_return(void)
1da177e4 985{
e7a510f9
AM
986 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
987
d6be29b8
MH
988 asm volatile (
989#ifdef CONFIG_X86_64
990 " xchg %%rbx,%%rsp \n"
991#else
992 " xchgl %%ebx,%%esp \n"
993#endif
994 " int3 \n"
995 " .globl jprobe_return_end\n"
996 " jprobe_return_end: \n"
997 " nop \n"::"b"
998 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
999}
1000
0f2fbdcb 1001int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1002{
e7a510f9 1003 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1004 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1005 struct jprobe *jp = container_of(p, struct jprobe, kp);
1006
d6be29b8
MH
1007 if ((addr > (u8 *) jprobe_return) &&
1008 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1009 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1010 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1011 printk(KERN_ERR
1012 "current sp %p does not match saved sp %p\n",
8533bbe9 1013 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1014 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1da177e4 1015 show_registers(saved_regs);
d6be29b8 1016 printk(KERN_ERR "Current registers\n");
1da177e4
LT
1017 show_registers(regs);
1018 BUG();
1019 }
e7a510f9 1020 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1021 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1022 kcb->jprobes_stack,
1023 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1024 preempt_enable_no_resched();
1da177e4
LT
1025 return 1;
1026 }
1027 return 0;
1028}
ba8af12f 1029
6772926b 1030int __init arch_init_kprobes(void)
ba8af12f 1031{
da07ab03 1032 return 0;
ba8af12f 1033}
bf8f6e5b
AM
1034
1035int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1036{
bf8f6e5b
AM
1037 return 0;
1038}