]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/kprobes.c
x86: cosmetic fixes fault_{32|64}.c
[net-next-2.6.git] / arch / x86 / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/*
2 * Kernel Probes (KProbes)
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
d6be29b8
MH
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
1da177e4
LT
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
d6be29b8
MH
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
da07ab03
MH
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
d6be29b8
MH
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kprobes.h>
44#include <linux/ptrace.h>
1da177e4
LT
45#include <linux/string.h>
46#include <linux/slab.h>
47#include <linux/preempt.h>
c28f8966 48#include <linux/module.h>
1eeb66a1 49#include <linux/kdebug.h>
9ec4b1f3 50
8533bbe9
MH
51#include <asm/cacheflush.h>
52#include <asm/desc.h>
1da177e4 53#include <asm/pgtable.h>
c28f8966 54#include <asm/uaccess.h>
19d36ccd 55#include <asm/alternative.h>
1da177e4 56
1da177e4
LT
57void jprobe_return_end(void);
58
e7a510f9
AM
59DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
60DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
1da177e4 61
d6be29b8 62#ifdef CONFIG_X86_64
8533bbe9 63#define stack_addr(regs) ((unsigned long *)regs->sp)
d6be29b8
MH
64#else
65/*
66 * "&regs->sp" looks wrong, but it's correct for x86_32. x86_32 CPUs
67 * don't save the ss and esp registers if the CPU is already in kernel
68 * mode when it traps. So for kprobes, regs->sp and regs->ss are not
69 * the [nonexistent] saved stack pointer and ss register, but rather
70 * the top 8 bytes of the pre-int3 stack. So &regs->sp happens to
71 * point to the top of the pre-int3 stack.
72 */
73#define stack_addr(regs) ((unsigned long *)&regs->sp)
74#endif
8533bbe9
MH
75
76#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
77 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
78 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
79 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
80 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
81 << (row % 32))
82 /*
83 * Undefined/reserved opcodes, conditional jump, Opcode Extension
84 * Groups, and some special opcodes can not boost.
85 */
86static const u32 twobyte_is_boostable[256 / 32] = {
87 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
88 /* ---------------------------------------------- */
89 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
90 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
91 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
92 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
93 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
94 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
95 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
96 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
97 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
98 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
99 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
100 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
101 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
102 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
103 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
104 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
105 /* ----------------------------------------------- */
106 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
107};
108static const u32 onebyte_has_modrm[256 / 32] = {
109 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
110 /* ----------------------------------------------- */
111 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 00 */
112 W(0x10, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 10 */
113 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 20 */
114 W(0x30, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) , /* 30 */
115 W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
116 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
117 W(0x60, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0) | /* 60 */
118 W(0x70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 70 */
119 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
120 W(0x90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 90 */
121 W(0xa0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* a0 */
122 W(0xb0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* b0 */
123 W(0xc0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* c0 */
124 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
125 W(0xe0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* e0 */
126 W(0xf0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) /* f0 */
127 /* ----------------------------------------------- */
128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
129};
130static const u32 twobyte_has_modrm[256 / 32] = {
131 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
132 /* ----------------------------------------------- */
133 W(0x00, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1) | /* 0f */
134 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) , /* 1f */
135 W(0x20, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 2f */
136 W(0x30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 3f */
137 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 4f */
138 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 5f */
139 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 6f */
140 W(0x70, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1) , /* 7f */
141 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 8f */
142 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 9f */
143 W(0xa0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) | /* af */
144 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* bf */
145 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) | /* cf */
146 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* df */
147 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* ef */
148 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* ff */
149 /* ----------------------------------------------- */
150 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
151};
152#undef W
153
f438d914
MH
154struct kretprobe_blackpoint kretprobe_blacklist[] = {
155 {"__switch_to", }, /* This function switches only current task, but
156 doesn't switch kernel stack.*/
157 {NULL, NULL} /* Terminator */
158};
159const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
160
aa470140 161/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
e7b5e11e 162static void __kprobes set_jmp_op(void *from, void *to)
aa470140
MH
163{
164 struct __arch_jmp_op {
165 char op;
166 s32 raddr;
167 } __attribute__((packed)) * jop;
168 jop = (struct __arch_jmp_op *)from;
169 jop->raddr = (s32)((long)(to) - ((long)(from) + 5));
170 jop->op = RELATIVEJUMP_INSTRUCTION;
171}
172
9930927f
HH
173/*
174 * Check for the REX prefix which can only exist on X86_64
175 * X86_32 always returns 0
176 */
177static int __kprobes is_REX_prefix(kprobe_opcode_t *insn)
178{
179#ifdef CONFIG_X86_64
180 if ((*insn & 0xf0) == 0x40)
181 return 1;
182#endif
183 return 0;
184}
185
aa470140 186/*
d6be29b8
MH
187 * Returns non-zero if opcode is boostable.
188 * RIP relative instructions are adjusted at copying time in 64 bits mode
aa470140 189 */
e7b5e11e 190static int __kprobes can_boost(kprobe_opcode_t *opcodes)
aa470140 191{
aa470140
MH
192 kprobe_opcode_t opcode;
193 kprobe_opcode_t *orig_opcodes = opcodes;
194
195retry:
196 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
197 return 0;
198 opcode = *(opcodes++);
199
200 /* 2nd-byte opcode */
201 if (opcode == 0x0f) {
202 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
203 return 0;
8533bbe9
MH
204 return test_bit(*opcodes,
205 (unsigned long *)twobyte_is_boostable);
aa470140
MH
206 }
207
208 switch (opcode & 0xf0) {
d6be29b8 209#ifdef CONFIG_X86_64
aa470140
MH
210 case 0x40:
211 goto retry; /* REX prefix is boostable */
d6be29b8 212#endif
aa470140
MH
213 case 0x60:
214 if (0x63 < opcode && opcode < 0x67)
215 goto retry; /* prefixes */
216 /* can't boost Address-size override and bound */
217 return (opcode != 0x62 && opcode != 0x67);
218 case 0x70:
219 return 0; /* can't boost conditional jump */
220 case 0xc0:
221 /* can't boost software-interruptions */
222 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
223 case 0xd0:
224 /* can boost AA* and XLAT */
225 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
226 case 0xe0:
227 /* can boost in/out and absolute jmps */
228 return ((opcode & 0x04) || opcode == 0xea);
229 case 0xf0:
230 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
231 goto retry; /* lock/rep(ne) prefix */
232 /* clear and set flags are boostable */
233 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
234 default:
235 /* segment override prefixes are boostable */
236 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
237 goto retry; /* prefixes */
238 /* CS override prefix and call are not boostable */
239 return (opcode != 0x2e && opcode != 0x9a);
240 }
241}
242
1da177e4 243/*
d6be29b8 244 * Returns non-zero if opcode modifies the interrupt flag.
1da177e4 245 */
8645419c 246static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
1da177e4
LT
247{
248 switch (*insn) {
249 case 0xfa: /* cli */
250 case 0xfb: /* sti */
251 case 0xcf: /* iret/iretd */
252 case 0x9d: /* popf/popfd */
253 return 1;
254 }
9930927f 255
8533bbe9 256 /*
9930927f 257 * on X86_64, 0x40-0x4f are REX prefixes so we need to look
8533bbe9
MH
258 * at the next byte instead.. but of course not recurse infinitely
259 */
9930927f 260 if (is_REX_prefix(insn))
8533bbe9 261 return is_IF_modifier(++insn);
9930927f 262
1da177e4
LT
263 return 0;
264}
265
266/*
8533bbe9
MH
267 * Adjust the displacement if the instruction uses the %rip-relative
268 * addressing mode.
aa470140 269 * If it does, Return the address of the 32-bit displacement word.
1da177e4 270 * If not, return null.
31f80e45 271 * Only applicable to 64-bit x86.
1da177e4 272 */
8533bbe9 273static void __kprobes fix_riprel(struct kprobe *p)
1da177e4 274{
31f80e45 275#ifdef CONFIG_X86_64
8533bbe9
MH
276 u8 *insn = p->ainsn.insn;
277 s64 disp;
1da177e4
LT
278 int need_modrm;
279
280 /* Skip legacy instruction prefixes. */
281 while (1) {
282 switch (*insn) {
283 case 0x66:
284 case 0x67:
285 case 0x2e:
286 case 0x3e:
287 case 0x26:
288 case 0x64:
289 case 0x65:
290 case 0x36:
291 case 0xf0:
292 case 0xf3:
293 case 0xf2:
294 ++insn;
295 continue;
296 }
297 break;
298 }
299
300 /* Skip REX instruction prefix. */
9930927f 301 if (is_REX_prefix(insn))
1da177e4
LT
302 ++insn;
303
d6be29b8
MH
304 if (*insn == 0x0f) {
305 /* Two-byte opcode. */
1da177e4 306 ++insn;
8533bbe9
MH
307 need_modrm = test_bit(*insn,
308 (unsigned long *)twobyte_has_modrm);
d6be29b8
MH
309 } else
310 /* One-byte opcode. */
8533bbe9
MH
311 need_modrm = test_bit(*insn,
312 (unsigned long *)onebyte_has_modrm);
1da177e4
LT
313
314 if (need_modrm) {
315 u8 modrm = *++insn;
d6be29b8
MH
316 if ((modrm & 0xc7) == 0x05) {
317 /* %rip+disp32 addressing mode */
1da177e4 318 /* Displacement follows ModRM byte. */
8533bbe9
MH
319 ++insn;
320 /*
321 * The copied instruction uses the %rip-relative
322 * addressing mode. Adjust the displacement for the
323 * difference between the original location of this
324 * instruction and the location of the copy that will
325 * actually be run. The tricky bit here is making sure
326 * that the sign extension happens correctly in this
327 * calculation, since we need a signed 32-bit result to
328 * be sign-extended to 64 bits when it's added to the
329 * %rip value and yield the same 64-bit result that the
330 * sign-extension of the original signed 32-bit
331 * displacement would have given.
332 */
333 disp = (u8 *) p->addr + *((s32 *) insn) -
334 (u8 *) p->ainsn.insn;
335 BUG_ON((s64) (s32) disp != disp); /* Sanity check. */
336 *(s32 *)insn = (s32) disp;
1da177e4
LT
337 }
338 }
d6be29b8 339#endif
31f80e45 340}
1da177e4 341
f709b122 342static void __kprobes arch_copy_kprobe(struct kprobe *p)
1da177e4 343{
8533bbe9 344 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
31f80e45 345
8533bbe9 346 fix_riprel(p);
31f80e45 347
8533bbe9 348 if (can_boost(p->addr))
aa470140 349 p->ainsn.boostable = 0;
8533bbe9 350 else
aa470140 351 p->ainsn.boostable = -1;
8533bbe9 352
7e1048b1 353 p->opcode = *p->addr;
1da177e4
LT
354}
355
8533bbe9
MH
356int __kprobes arch_prepare_kprobe(struct kprobe *p)
357{
358 /* insn: must be on special executable page on x86. */
359 p->ainsn.insn = get_insn_slot();
360 if (!p->ainsn.insn)
361 return -ENOMEM;
362 arch_copy_kprobe(p);
363 return 0;
364}
365
0f2fbdcb 366void __kprobes arch_arm_kprobe(struct kprobe *p)
1da177e4 367{
19d36ccd 368 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
1da177e4
LT
369}
370
0f2fbdcb 371void __kprobes arch_disarm_kprobe(struct kprobe *p)
1da177e4 372{
19d36ccd 373 text_poke(p->addr, &p->opcode, 1);
7e1048b1
RL
374}
375
0498b635 376void __kprobes arch_remove_kprobe(struct kprobe *p)
7e1048b1 377{
7a7d1cf9 378 mutex_lock(&kprobe_mutex);
aa470140 379 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
7a7d1cf9 380 mutex_unlock(&kprobe_mutex);
1da177e4
LT
381}
382
3b60211c 383static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 384{
e7a510f9
AM
385 kcb->prev_kprobe.kp = kprobe_running();
386 kcb->prev_kprobe.status = kcb->kprobe_status;
8533bbe9
MH
387 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
388 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
aa3d7e3d
PP
389}
390
3b60211c 391static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
aa3d7e3d 392{
e7a510f9
AM
393 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
394 kcb->kprobe_status = kcb->prev_kprobe.status;
8533bbe9
MH
395 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
396 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
aa3d7e3d
PP
397}
398
3b60211c 399static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
e7a510f9 400 struct kprobe_ctlblk *kcb)
aa3d7e3d 401{
e7a510f9 402 __get_cpu_var(current_kprobe) = p;
8533bbe9 403 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
053de044 404 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
aa3d7e3d 405 if (is_IF_modifier(p->ainsn.insn))
053de044 406 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
aa3d7e3d
PP
407}
408
e7b5e11e 409static void __kprobes clear_btf(void)
1ecc798c
RM
410{
411 if (test_thread_flag(TIF_DEBUGCTLMSR))
d6be29b8 412 wrmsr(MSR_IA32_DEBUGCTLMSR, 0, 0);
1ecc798c
RM
413}
414
e7b5e11e 415static void __kprobes restore_btf(void)
1ecc798c
RM
416{
417 if (test_thread_flag(TIF_DEBUGCTLMSR))
d6be29b8 418 wrmsr(MSR_IA32_DEBUGCTLMSR, current->thread.debugctlmsr, 0);
1ecc798c
RM
419}
420
0f2fbdcb 421static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
1da177e4 422{
1ecc798c 423 clear_btf();
053de044
GOC
424 regs->flags |= X86_EFLAGS_TF;
425 regs->flags &= ~X86_EFLAGS_IF;
e7b5e11e 426 /* single step inline if the instruction is an int3 */
1da177e4 427 if (p->opcode == BREAKPOINT_INSTRUCTION)
65ea5b03 428 regs->ip = (unsigned long)p->addr;
1da177e4 429 else
65ea5b03 430 regs->ip = (unsigned long)p->ainsn.insn;
1da177e4
LT
431}
432
991a51d8 433/* Called with kretprobe_lock held */
4c4308cb 434void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
0f2fbdcb 435 struct pt_regs *regs)
73649dab 436{
8533bbe9 437 unsigned long *sara = stack_addr(regs);
ba8af12f 438
4c4308cb 439 ri->ret_addr = (kprobe_opcode_t *) *sara;
8533bbe9 440
4c4308cb
CH
441 /* Replace the return addr with trampoline addr */
442 *sara = (unsigned long) &kretprobe_trampoline;
73649dab 443}
40102d4a
HH
444/*
445 * We have reentered the kprobe_handler(), since another probe was hit while
446 * within the handler. We save the original kprobes variables and just single
447 * step on the instruction of the new probe without calling any user handlers.
448 */
59e87cdc
MH
449static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
450 struct kprobe_ctlblk *kcb)
40102d4a 451{
59e87cdc
MH
452 if (kcb->kprobe_status == KPROBE_HIT_SS &&
453 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
454 regs->flags &= ~X86_EFLAGS_TF;
455 regs->flags |= kcb->kprobe_saved_flags;
456 return 0;
457#ifdef CONFIG_X86_64
458 } else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
459 /* TODO: Provide re-entrancy from post_kprobes_handler() and
460 * avoid exception stack corruption while single-stepping on
461 * the instruction of the new probe.
462 */
463 arch_disarm_kprobe(p);
464 regs->ip = (unsigned long)p->addr;
465 reset_current_kprobe();
466 return 1;
467#endif
468 }
40102d4a
HH
469 save_previous_kprobe(kcb);
470 set_current_kprobe(p, regs, kcb);
471 kprobes_inc_nmissed_count(p);
472 prepare_singlestep(p, regs);
473 kcb->kprobe_status = KPROBE_REENTER;
59e87cdc 474 return 1;
40102d4a 475}
73649dab 476
8533bbe9
MH
477/*
478 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
479 * remain disabled thorough out this function.
480 */
481static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
482{
483 struct kprobe *p;
484 int ret = 0;
8533bbe9 485 kprobe_opcode_t *addr;
d217d545
AM
486 struct kprobe_ctlblk *kcb;
487
8533bbe9
MH
488 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
489
d217d545
AM
490 /*
491 * We don't want to be preempted for the entire
492 * duration of kprobe processing
493 */
494 preempt_disable();
495 kcb = get_kprobe_ctlblk();
1da177e4 496
1da177e4
LT
497 /* Check we're not actually recursing */
498 if (kprobe_running()) {
1da177e4
LT
499 p = get_kprobe(addr);
500 if (p) {
59e87cdc
MH
501 ret = reenter_kprobe(p, regs, kcb);
502 if (kcb->kprobe_status == KPROBE_REENTER)
503 return 1;
1da177e4 504 } else {
eb3a7292
KA
505 if (*addr != BREAKPOINT_INSTRUCTION) {
506 /* The breakpoint instruction was removed by
507 * another cpu right after we hit, no further
508 * handling of this interrupt is appropriate
509 */
65ea5b03 510 regs->ip = (unsigned long)addr;
eb3a7292
KA
511 ret = 1;
512 goto no_kprobe;
513 }
e7a510f9 514 p = __get_cpu_var(current_kprobe);
d6be29b8 515 if (p->break_handler && p->break_handler(p, regs))
1da177e4 516 goto ss_probe;
1da177e4 517 }
1da177e4
LT
518 goto no_kprobe;
519 }
520
1da177e4
LT
521 p = get_kprobe(addr);
522 if (!p) {
1da177e4
LT
523 if (*addr != BREAKPOINT_INSTRUCTION) {
524 /*
525 * The breakpoint instruction was removed right
526 * after we hit it. Another cpu has removed
527 * either a probepoint or a debugger breakpoint
528 * at this address. In either case, no further
529 * handling of this interrupt is appropriate.
bce06494
JK
530 * Back up over the (now missing) int3 and run
531 * the original instruction.
1da177e4 532 */
65ea5b03 533 regs->ip = (unsigned long)addr;
1da177e4
LT
534 ret = 1;
535 }
536 /* Not one of ours: let kernel handle it */
537 goto no_kprobe;
538 }
539
e7a510f9
AM
540 set_current_kprobe(p, regs, kcb);
541 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
542
543 if (p->pre_handler && p->pre_handler(p, regs))
544 /* handler has already set things up, so skip ss setup */
545 return 1;
546
547ss_probe:
aa470140
MH
548#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
549 if (p->ainsn.boostable == 1 && !p->post_handler) {
550 /* Boost up -- we can execute copied instructions directly */
551 reset_current_kprobe();
552 regs->ip = (unsigned long)p->ainsn.insn;
553 preempt_enable_no_resched();
554 return 1;
555 }
556#endif
1da177e4 557 prepare_singlestep(p, regs);
e7a510f9 558 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
559 return 1;
560
561no_kprobe:
d217d545 562 preempt_enable_no_resched();
1da177e4
LT
563 return ret;
564}
565
73649dab 566/*
da07ab03
MH
567 * When a retprobed function returns, this code saves registers and
568 * calls trampoline_handler() runs, which calls the kretprobe's handler.
73649dab 569 */
da07ab03 570 void __kprobes kretprobe_trampoline_holder(void)
73649dab 571 {
d6be29b8
MH
572 asm volatile (
573 ".global kretprobe_trampoline\n"
da07ab03 574 "kretprobe_trampoline: \n"
d6be29b8 575#ifdef CONFIG_X86_64
da07ab03
MH
576 /* We don't bother saving the ss register */
577 " pushq %rsp\n"
578 " pushfq\n"
579 /*
580 * Skip cs, ip, orig_ax.
581 * trampoline_handler() will plug in these values
582 */
583 " subq $24, %rsp\n"
584 " pushq %rdi\n"
585 " pushq %rsi\n"
586 " pushq %rdx\n"
587 " pushq %rcx\n"
588 " pushq %rax\n"
589 " pushq %r8\n"
590 " pushq %r9\n"
591 " pushq %r10\n"
592 " pushq %r11\n"
593 " pushq %rbx\n"
594 " pushq %rbp\n"
595 " pushq %r12\n"
596 " pushq %r13\n"
597 " pushq %r14\n"
598 " pushq %r15\n"
599 " movq %rsp, %rdi\n"
600 " call trampoline_handler\n"
601 /* Replace saved sp with true return address. */
602 " movq %rax, 152(%rsp)\n"
603 " popq %r15\n"
604 " popq %r14\n"
605 " popq %r13\n"
606 " popq %r12\n"
607 " popq %rbp\n"
608 " popq %rbx\n"
609 " popq %r11\n"
610 " popq %r10\n"
611 " popq %r9\n"
612 " popq %r8\n"
613 " popq %rax\n"
614 " popq %rcx\n"
615 " popq %rdx\n"
616 " popq %rsi\n"
617 " popq %rdi\n"
618 /* Skip orig_ax, ip, cs */
619 " addq $24, %rsp\n"
620 " popfq\n"
d6be29b8
MH
621#else
622 " pushf\n"
623 /*
624 * Skip cs, ip, orig_ax.
625 * trampoline_handler() will plug in these values
626 */
627 " subl $12, %esp\n"
628 " pushl %fs\n"
629 " pushl %ds\n"
630 " pushl %es\n"
631 " pushl %eax\n"
632 " pushl %ebp\n"
633 " pushl %edi\n"
634 " pushl %esi\n"
635 " pushl %edx\n"
636 " pushl %ecx\n"
637 " pushl %ebx\n"
638 " movl %esp, %eax\n"
639 " call trampoline_handler\n"
640 /* Move flags to cs */
641 " movl 52(%esp), %edx\n"
642 " movl %edx, 48(%esp)\n"
643 /* Replace saved flags with true return address. */
644 " movl %eax, 52(%esp)\n"
645 " popl %ebx\n"
646 " popl %ecx\n"
647 " popl %edx\n"
648 " popl %esi\n"
649 " popl %edi\n"
650 " popl %ebp\n"
651 " popl %eax\n"
652 /* Skip ip, orig_ax, es, ds, fs */
653 " addl $20, %esp\n"
654 " popf\n"
655#endif
da07ab03 656 " ret\n");
73649dab
RL
657 }
658
659/*
da07ab03 660 * Called from kretprobe_trampoline
73649dab 661 */
d6be29b8 662void * __kprobes trampoline_handler(struct pt_regs *regs)
73649dab 663{
62c27be0 664 struct kretprobe_instance *ri = NULL;
99219a3f 665 struct hlist_head *head, empty_rp;
62c27be0 666 struct hlist_node *node, *tmp;
991a51d8 667 unsigned long flags, orig_ret_address = 0;
d6be29b8 668 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
73649dab 669
99219a3f 670 INIT_HLIST_HEAD(&empty_rp);
991a51d8 671 spin_lock_irqsave(&kretprobe_lock, flags);
62c27be0 672 head = kretprobe_inst_table_head(current);
8533bbe9 673 /* fixup registers */
d6be29b8 674#ifdef CONFIG_X86_64
da07ab03 675 regs->cs = __KERNEL_CS;
d6be29b8
MH
676#else
677 regs->cs = __KERNEL_CS | get_kernel_rpl();
678#endif
da07ab03 679 regs->ip = trampoline_address;
8533bbe9 680 regs->orig_ax = ~0UL;
73649dab 681
ba8af12f
RL
682 /*
683 * It is possible to have multiple instances associated with a given
8533bbe9
MH
684 * task either because multiple functions in the call path have
685 * return probes installed on them, and/or more then one
ba8af12f
RL
686 * return probe was registered for a target function.
687 *
688 * We can handle this because:
8533bbe9 689 * - instances are always pushed into the head of the list
ba8af12f 690 * - when multiple return probes are registered for the same
8533bbe9
MH
691 * function, the (chronologically) first instance's ret_addr
692 * will be the real return address, and all the rest will
693 * point to kretprobe_trampoline.
ba8af12f
RL
694 */
695 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
62c27be0 696 if (ri->task != current)
ba8af12f 697 /* another task is sharing our hash bucket */
62c27be0 698 continue;
ba8af12f 699
da07ab03
MH
700 if (ri->rp && ri->rp->handler) {
701 __get_cpu_var(current_kprobe) = &ri->rp->kp;
702 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
ba8af12f 703 ri->rp->handler(ri, regs);
da07ab03
MH
704 __get_cpu_var(current_kprobe) = NULL;
705 }
ba8af12f
RL
706
707 orig_ret_address = (unsigned long)ri->ret_addr;
99219a3f 708 recycle_rp_inst(ri, &empty_rp);
ba8af12f
RL
709
710 if (orig_ret_address != trampoline_address)
711 /*
712 * This is the real return address. Any other
713 * instances associated with this task are for
714 * other calls deeper on the call stack
715 */
716 break;
73649dab 717 }
ba8af12f 718
0f95b7fc 719 kretprobe_assert(ri, orig_ret_address, trampoline_address);
ba8af12f 720
991a51d8 721 spin_unlock_irqrestore(&kretprobe_lock, flags);
ba8af12f 722
99219a3f 723 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
724 hlist_del(&ri->hlist);
725 kfree(ri);
726 }
da07ab03 727 return (void *)orig_ret_address;
73649dab
RL
728}
729
1da177e4
LT
730/*
731 * Called after single-stepping. p->addr is the address of the
732 * instruction whose first byte has been replaced by the "int 3"
733 * instruction. To avoid the SMP problems that can occur when we
734 * temporarily put back the original opcode to single-step, we
735 * single-stepped a copy of the instruction. The address of this
736 * copy is p->ainsn.insn.
737 *
738 * This function prepares to return from the post-single-step
739 * interrupt. We have to fix up the stack as follows:
740 *
741 * 0) Except in the case of absolute or indirect jump or call instructions,
65ea5b03 742 * the new ip is relative to the copied instruction. We need to make
1da177e4
LT
743 * it relative to the original instruction.
744 *
745 * 1) If the single-stepped instruction was pushfl, then the TF and IF
65ea5b03 746 * flags are set in the just-pushed flags, and may need to be cleared.
1da177e4
LT
747 *
748 * 2) If the single-stepped instruction was a call, the return address
749 * that is atop the stack is the address following the copied instruction.
750 * We need to make it the address following the original instruction.
aa470140
MH
751 *
752 * If this is the first time we've single-stepped the instruction at
753 * this probepoint, and the instruction is boostable, boost it: add a
754 * jump instruction after the copied instruction, that jumps to the next
755 * instruction after the probepoint.
1da177e4 756 */
e7a510f9
AM
757static void __kprobes resume_execution(struct kprobe *p,
758 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4 759{
8533bbe9
MH
760 unsigned long *tos = stack_addr(regs);
761 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
762 unsigned long orig_ip = (unsigned long)p->addr;
1da177e4
LT
763 kprobe_opcode_t *insn = p->ainsn.insn;
764
765 /*skip the REX prefix*/
9930927f 766 if (is_REX_prefix(insn))
1da177e4
LT
767 insn++;
768
053de044 769 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 770 switch (*insn) {
0b0122fa 771 case 0x9c: /* pushfl */
053de044 772 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
8533bbe9 773 *tos |= kcb->kprobe_old_flags;
1da177e4 774 break;
0b0122fa
MH
775 case 0xc2: /* iret/ret/lret */
776 case 0xc3:
0b9e2cac 777 case 0xca:
0b0122fa
MH
778 case 0xcb:
779 case 0xcf:
780 case 0xea: /* jmp absolute -- ip is correct */
781 /* ip is already adjusted, no more changes required */
aa470140 782 p->ainsn.boostable = 1;
0b0122fa
MH
783 goto no_change;
784 case 0xe8: /* call relative - Fix return addr */
8533bbe9 785 *tos = orig_ip + (*tos - copy_ip);
1da177e4 786 break;
e7b5e11e 787#ifdef CONFIG_X86_32
d6be29b8
MH
788 case 0x9a: /* call absolute -- same as call absolute, indirect */
789 *tos = orig_ip + (*tos - copy_ip);
790 goto no_change;
791#endif
1da177e4 792 case 0xff:
dc49e344 793 if ((insn[1] & 0x30) == 0x10) {
8533bbe9
MH
794 /*
795 * call absolute, indirect
796 * Fix return addr; ip is correct.
797 * But this is not boostable
798 */
799 *tos = orig_ip + (*tos - copy_ip);
0b0122fa 800 goto no_change;
8533bbe9
MH
801 } else if (((insn[1] & 0x31) == 0x20) ||
802 ((insn[1] & 0x31) == 0x21)) {
803 /*
804 * jmp near and far, absolute indirect
805 * ip is correct. And this is boostable
806 */
aa470140 807 p->ainsn.boostable = 1;
0b0122fa 808 goto no_change;
1da177e4 809 }
1da177e4
LT
810 default:
811 break;
812 }
813
aa470140 814 if (p->ainsn.boostable == 0) {
8533bbe9
MH
815 if ((regs->ip > copy_ip) &&
816 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
aa470140
MH
817 /*
818 * These instructions can be executed directly if it
819 * jumps back to correct address.
820 */
821 set_jmp_op((void *)regs->ip,
8533bbe9 822 (void *)orig_ip + (regs->ip - copy_ip));
aa470140
MH
823 p->ainsn.boostable = 1;
824 } else {
825 p->ainsn.boostable = -1;
826 }
827 }
828
8533bbe9 829 regs->ip += orig_ip - copy_ip;
65ea5b03 830
0b0122fa 831no_change:
1ecc798c 832 restore_btf();
1da177e4
LT
833}
834
8533bbe9
MH
835/*
836 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
837 * remain disabled thoroughout this function.
838 */
839static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 840{
e7a510f9
AM
841 struct kprobe *cur = kprobe_running();
842 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
843
844 if (!cur)
1da177e4
LT
845 return 0;
846
e7a510f9
AM
847 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
848 kcb->kprobe_status = KPROBE_HIT_SSDONE;
849 cur->post_handler(cur, regs, 0);
aa3d7e3d 850 }
1da177e4 851
e7a510f9 852 resume_execution(cur, regs, kcb);
8533bbe9 853 regs->flags |= kcb->kprobe_saved_flags;
65ea5b03 854 trace_hardirqs_fixup_flags(regs->flags);
1da177e4 855
8533bbe9 856 /* Restore back the original saved kprobes variables and continue. */
e7a510f9
AM
857 if (kcb->kprobe_status == KPROBE_REENTER) {
858 restore_previous_kprobe(kcb);
aa3d7e3d 859 goto out;
aa3d7e3d 860 }
e7a510f9 861 reset_current_kprobe();
aa3d7e3d 862out:
1da177e4
LT
863 preempt_enable_no_resched();
864
865 /*
65ea5b03 866 * if somebody else is singlestepping across a probe point, flags
1da177e4
LT
867 * will have TF set, in which case, continue the remaining processing
868 * of do_debug, as if this is not a probe hit.
869 */
053de044 870 if (regs->flags & X86_EFLAGS_TF)
1da177e4
LT
871 return 0;
872
873 return 1;
874}
875
0f2fbdcb 876int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 877{
e7a510f9
AM
878 struct kprobe *cur = kprobe_running();
879 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
880
d6be29b8 881 switch (kcb->kprobe_status) {
c28f8966
PP
882 case KPROBE_HIT_SS:
883 case KPROBE_REENTER:
884 /*
885 * We are here because the instruction being single
886 * stepped caused a page fault. We reset the current
65ea5b03 887 * kprobe and the ip points back to the probe address
c28f8966
PP
888 * and allow the page fault handler to continue as a
889 * normal page fault.
890 */
65ea5b03 891 regs->ip = (unsigned long)cur->addr;
8533bbe9 892 regs->flags |= kcb->kprobe_old_flags;
c28f8966
PP
893 if (kcb->kprobe_status == KPROBE_REENTER)
894 restore_previous_kprobe(kcb);
895 else
896 reset_current_kprobe();
1da177e4 897 preempt_enable_no_resched();
c28f8966
PP
898 break;
899 case KPROBE_HIT_ACTIVE:
900 case KPROBE_HIT_SSDONE:
901 /*
902 * We increment the nmissed count for accounting,
8533bbe9 903 * we can also use npre/npostfault count for accounting
c28f8966
PP
904 * these specific fault cases.
905 */
906 kprobes_inc_nmissed_count(cur);
907
908 /*
909 * We come here because instructions in the pre/post
910 * handler caused the page_fault, this could happen
911 * if handler tries to access user space by
912 * copy_from_user(), get_user() etc. Let the
913 * user-specified handler try to fix it first.
914 */
915 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
916 return 1;
917
918 /*
919 * In case the user-specified fault handler returned
920 * zero, try to fix up.
921 */
d6be29b8
MH
922 if (fixup_exception(regs))
923 return 1;
6d48583b 924
c28f8966 925 /*
8533bbe9 926 * fixup routine could not handle it,
c28f8966
PP
927 * Let do_page_fault() fix it.
928 */
929 break;
930 default:
931 break;
1da177e4
LT
932 }
933 return 0;
934}
935
936/*
937 * Wrapper routine for handling exceptions.
938 */
0f2fbdcb
PP
939int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
940 unsigned long val, void *data)
1da177e4
LT
941{
942 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
943 int ret = NOTIFY_DONE;
944
8533bbe9 945 if (args->regs && user_mode_vm(args->regs))
2326c770 946 return ret;
947
1da177e4
LT
948 switch (val) {
949 case DIE_INT3:
950 if (kprobe_handler(args->regs))
66ff2d06 951 ret = NOTIFY_STOP;
1da177e4
LT
952 break;
953 case DIE_DEBUG:
954 if (post_kprobe_handler(args->regs))
66ff2d06 955 ret = NOTIFY_STOP;
1da177e4
LT
956 break;
957 case DIE_GPF:
d217d545
AM
958 /* kprobe_running() needs smp_processor_id() */
959 preempt_disable();
1da177e4
LT
960 if (kprobe_running() &&
961 kprobe_fault_handler(args->regs, args->trapnr))
66ff2d06 962 ret = NOTIFY_STOP;
d217d545 963 preempt_enable();
1da177e4
LT
964 break;
965 default:
966 break;
967 }
66ff2d06 968 return ret;
1da177e4
LT
969}
970
0f2fbdcb 971int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
972{
973 struct jprobe *jp = container_of(p, struct jprobe, kp);
974 unsigned long addr;
e7a510f9 975 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 976
e7a510f9 977 kcb->jprobe_saved_regs = *regs;
8533bbe9
MH
978 kcb->jprobe_saved_sp = stack_addr(regs);
979 addr = (unsigned long)(kcb->jprobe_saved_sp);
980
1da177e4
LT
981 /*
982 * As Linus pointed out, gcc assumes that the callee
983 * owns the argument space and could overwrite it, e.g.
984 * tailcall optimization. So, to be absolutely safe
985 * we also save and restore enough stack bytes to cover
986 * the argument area.
987 */
e7a510f9 988 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
d6be29b8 989 MIN_STACK_SIZE(addr));
053de044 990 regs->flags &= ~X86_EFLAGS_IF;
58dfe883 991 trace_hardirqs_off();
65ea5b03 992 regs->ip = (unsigned long)(jp->entry);
1da177e4
LT
993 return 1;
994}
995
0f2fbdcb 996void __kprobes jprobe_return(void)
1da177e4 997{
e7a510f9
AM
998 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
999
d6be29b8
MH
1000 asm volatile (
1001#ifdef CONFIG_X86_64
1002 " xchg %%rbx,%%rsp \n"
1003#else
1004 " xchgl %%ebx,%%esp \n"
1005#endif
1006 " int3 \n"
1007 " .globl jprobe_return_end\n"
1008 " jprobe_return_end: \n"
1009 " nop \n"::"b"
1010 (kcb->jprobe_saved_sp):"memory");
1da177e4
LT
1011}
1012
0f2fbdcb 1013int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4 1014{
e7a510f9 1015 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
65ea5b03 1016 u8 *addr = (u8 *) (regs->ip - 1);
1da177e4
LT
1017 struct jprobe *jp = container_of(p, struct jprobe, kp);
1018
d6be29b8
MH
1019 if ((addr > (u8 *) jprobe_return) &&
1020 (addr < (u8 *) jprobe_return_end)) {
8533bbe9 1021 if (stack_addr(regs) != kcb->jprobe_saved_sp) {
29b6cd79 1022 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
d6be29b8
MH
1023 printk(KERN_ERR
1024 "current sp %p does not match saved sp %p\n",
8533bbe9 1025 stack_addr(regs), kcb->jprobe_saved_sp);
d6be29b8 1026 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1da177e4 1027 show_registers(saved_regs);
d6be29b8 1028 printk(KERN_ERR "Current registers\n");
1da177e4
LT
1029 show_registers(regs);
1030 BUG();
1031 }
e7a510f9 1032 *regs = kcb->jprobe_saved_regs;
8533bbe9
MH
1033 memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1034 kcb->jprobes_stack,
1035 MIN_STACK_SIZE(kcb->jprobe_saved_sp));
d217d545 1036 preempt_enable_no_resched();
1da177e4
LT
1037 return 1;
1038 }
1039 return 0;
1040}
ba8af12f 1041
6772926b 1042int __init arch_init_kprobes(void)
ba8af12f 1043{
da07ab03 1044 return 0;
ba8af12f 1045}
bf8f6e5b
AM
1046
1047int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1048{
bf8f6e5b
AM
1049 return 0;
1050}