]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/hpet.c
x86/hpet: Use the FSEC_PER_SEC constant for femto-second periods
[net-next-2.6.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0
IM
3#include <linux/interrupt.h>
4#include <linux/sysdev.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
5a0e3ad6 7#include <linux/slab.h>
5d0cf410
JS
8#include <linux/hpet.h>
9#include <linux/init.h>
58ac1e76 10#include <linux/cpu.h>
4588c1f0
IM
11#include <linux/pm.h>
12#include <linux/io.h>
5d0cf410 13
28769149 14#include <asm/fixmap.h>
06a24dec 15#include <asm/i8253.h>
4588c1f0 16#include <asm/hpet.h>
5d0cf410 17
4588c1f0 18#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 19
b10db7f0
PM
20/* FSEC = 10^-15
21 NSEC = 10^-9 */
4588c1f0 22#define FSEC_PER_NSEC 1000000L
5d0cf410 23
26afe5f2 24#define HPET_DEV_USED_BIT 2
25#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26#define HPET_DEV_VALID 0x8
27#define HPET_DEV_FSB_CAP 0x1000
28#define HPET_DEV_PERI_CAP 0x2000
29
30#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
e9e2cdb4
TG
32/*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
4588c1f0 35unsigned long hpet_address;
c8bc6f3c 36u8 hpet_blockid; /* OS timer block num */
73472a46 37u8 hpet_msi_disable;
30a564be 38u8 hpet_readback_cmp;
73472a46 39
e951e4af 40#ifdef CONFIG_PCI_MSI
3b71e9e3 41static unsigned long hpet_num_timers;
e951e4af 42#endif
4588c1f0 43static void __iomem *hpet_virt_address;
e9e2cdb4 44
58ac1e76 45struct hpet_dev {
4588c1f0
IM
46 struct clock_event_device evt;
47 unsigned int num;
48 int cpu;
49 unsigned int irq;
50 unsigned int flags;
51 char name[10];
58ac1e76 52};
53
5946fa3d 54inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
55{
56 return readl(hpet_virt_address + a);
57}
58
5946fa3d 59static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
60{
61 writel(d, hpet_virt_address + a);
62}
63
28769149 64#ifdef CONFIG_X86_64
28769149 65#include <asm/pgtable.h>
2387ce57 66#endif
28769149 67
06a24dec
TG
68static inline void hpet_set_mapping(void)
69{
70 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
2387ce57
YL
71#ifdef CONFIG_X86_64
72 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
73#endif
06a24dec
TG
74}
75
76static inline void hpet_clear_mapping(void)
77{
78 iounmap(hpet_virt_address);
79 hpet_virt_address = NULL;
80}
81
e9e2cdb4
TG
82/*
83 * HPET command line enable / disable
84 */
85static int boot_hpet_disable;
b17530bd 86int hpet_force_user;
b98103a5 87static int hpet_verbose;
e9e2cdb4 88
4588c1f0 89static int __init hpet_setup(char *str)
e9e2cdb4
TG
90{
91 if (str) {
92 if (!strncmp("disable", str, 7))
93 boot_hpet_disable = 1;
b17530bd
TG
94 if (!strncmp("force", str, 5))
95 hpet_force_user = 1;
b98103a5
AH
96 if (!strncmp("verbose", str, 7))
97 hpet_verbose = 1;
e9e2cdb4
TG
98 }
99 return 1;
100}
101__setup("hpet=", hpet_setup);
102
28769149
TG
103static int __init disable_hpet(char *str)
104{
105 boot_hpet_disable = 1;
106 return 1;
107}
108__setup("nohpet", disable_hpet);
109
e9e2cdb4
TG
110static inline int is_hpet_capable(void)
111{
4588c1f0 112 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
113}
114
115/*
116 * HPET timer interrupt enable / disable
117 */
118static int hpet_legacy_int_enabled;
119
120/**
121 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122 */
123int is_hpet_enabled(void)
124{
125 return is_hpet_capable() && hpet_legacy_int_enabled;
126}
1bdbdaac 127EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 128
b98103a5
AH
129static void _hpet_print_config(const char *function, int line)
130{
131 u32 i, timers, l, h;
132 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
133 l = hpet_readl(HPET_ID);
134 h = hpet_readl(HPET_PERIOD);
135 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
137 l = hpet_readl(HPET_CFG);
138 h = hpet_readl(HPET_STATUS);
139 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
140 l = hpet_readl(HPET_COUNTER);
141 h = hpet_readl(HPET_COUNTER+4);
142 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
143
144 for (i = 0; i < timers; i++) {
145 l = hpet_readl(HPET_Tn_CFG(i));
146 h = hpet_readl(HPET_Tn_CFG(i)+4);
147 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148 i, l, h);
149 l = hpet_readl(HPET_Tn_CMP(i));
150 h = hpet_readl(HPET_Tn_CMP(i)+4);
151 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152 i, l, h);
153 l = hpet_readl(HPET_Tn_ROUTE(i));
154 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
155 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156 i, l, h);
157 }
158}
159
160#define hpet_print_config() \
161do { \
162 if (hpet_verbose) \
163 _hpet_print_config(__FUNCTION__, __LINE__); \
164} while (0)
165
e9e2cdb4
TG
166/*
167 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
168 * timer 0 and timer 1 in case of RTC emulation.
169 */
170#ifdef CONFIG_HPET
f0ed4e69 171
5f79f2f2 172static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 173
5946fa3d 174static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
175{
176 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
177 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
178 unsigned int nrtimers, i;
e9e2cdb4
TG
179 struct hpet_data hd;
180
181 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
182
4588c1f0
IM
183 memset(&hd, 0, sizeof(hd));
184 hd.hd_phys_address = hpet_address;
185 hd.hd_address = hpet;
186 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
187 hpet_reserve_timer(&hd, 0);
188
189#ifdef CONFIG_HPET_EMULATE_RTC
190 hpet_reserve_timer(&hd, 1);
191#endif
5761d64b 192
64a76f66
DB
193 /*
194 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
195 * is wrong for i8259!) not the output IRQ. Many BIOS writers
196 * don't bother configuring *any* comparator interrupts.
197 */
e9e2cdb4
TG
198 hd.hd_irq[0] = HPET_LEGACY_8254;
199 hd.hd_irq[1] = HPET_LEGACY_RTC;
200
fc3fbc45 201 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
202 hd.hd_irq[i] = (readl(&timer->hpet_config) &
203 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 204 }
5761d64b 205
f0ed4e69 206 hpet_reserve_msi_timers(&hd);
26afe5f2 207
e9e2cdb4 208 hpet_alloc(&hd);
5761d64b 209
e9e2cdb4
TG
210}
211#else
5946fa3d 212static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
213#endif
214
215/*
216 * Common hpet info
217 */
218static unsigned long hpet_period;
219
610bf2f1 220static void hpet_legacy_set_mode(enum clock_event_mode mode,
e9e2cdb4 221 struct clock_event_device *evt);
610bf2f1 222static int hpet_legacy_next_event(unsigned long delta,
e9e2cdb4
TG
223 struct clock_event_device *evt);
224
225/*
226 * The hpet clock event device
227 */
228static struct clock_event_device hpet_clockevent = {
229 .name = "hpet",
230 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
610bf2f1
VP
231 .set_mode = hpet_legacy_set_mode,
232 .set_next_event = hpet_legacy_next_event,
e9e2cdb4
TG
233 .shift = 32,
234 .irq = 0,
59c69f2a 235 .rating = 50,
e9e2cdb4
TG
236};
237
8d6f0c82 238static void hpet_stop_counter(void)
e9e2cdb4
TG
239{
240 unsigned long cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
241 cfg &= ~HPET_CFG_ENABLE;
242 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
243}
244
245static void hpet_reset_counter(void)
246{
e9e2cdb4
TG
247 hpet_writel(0, HPET_COUNTER);
248 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
249}
250
251static void hpet_start_counter(void)
252{
5946fa3d 253 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
254 cfg |= HPET_CFG_ENABLE;
255 hpet_writel(cfg, HPET_CFG);
256}
257
8d6f0c82
AH
258static void hpet_restart_counter(void)
259{
260 hpet_stop_counter();
7a6f9cbb 261 hpet_reset_counter();
8d6f0c82
AH
262 hpet_start_counter();
263}
264
59c69f2a
VP
265static void hpet_resume_device(void)
266{
bfe0c1cc 267 force_hpet_resume();
59c69f2a
VP
268}
269
17622339 270static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
271{
272 hpet_resume_device();
8d6f0c82 273 hpet_restart_counter();
59c69f2a
VP
274}
275
610bf2f1 276static void hpet_enable_legacy_int(void)
e9e2cdb4 277{
5946fa3d 278 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
279
280 cfg |= HPET_CFG_LEGACY;
281 hpet_writel(cfg, HPET_CFG);
282 hpet_legacy_int_enabled = 1;
283}
284
610bf2f1
VP
285static void hpet_legacy_clockevent_register(void)
286{
610bf2f1
VP
287 /* Start HPET legacy interrupts */
288 hpet_enable_legacy_int();
289
290 /*
6fd592da
CM
291 * The mult factor is defined as (include/linux/clockchips.h)
292 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
293 * hpet_period is in units of femtoseconds (per cycle), so
294 * mult/2^shift = cyc/ns = 10^6/hpet_period
295 * mult = (10^6 * 2^shift)/hpet_period
296 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
610bf2f1 297 */
6fd592da
CM
298 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
299 hpet_period, hpet_clockevent.shift);
610bf2f1
VP
300 /* Calculate the min / max delta */
301 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
302 &hpet_clockevent);
7cfb0435
TG
303 /* 5 usec minimum reprogramming delta. */
304 hpet_clockevent.min_delta_ns = 5000;
610bf2f1
VP
305
306 /*
307 * Start hpet with the boot cpu mask and make it
308 * global after the IO_APIC has been initialized.
309 */
320ab2b0 310 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
610bf2f1
VP
311 clockevents_register_device(&hpet_clockevent);
312 global_clock_event = &hpet_clockevent;
313 printk(KERN_DEBUG "hpet clockevent registered\n");
314}
315
26afe5f2 316static int hpet_setup_msi_irq(unsigned int irq);
317
b40d575b 318static void hpet_set_mode(enum clock_event_mode mode,
319 struct clock_event_device *evt, int timer)
e9e2cdb4 320{
5946fa3d 321 unsigned int cfg, cmp, now;
e9e2cdb4
TG
322 uint64_t delta;
323
4588c1f0 324 switch (mode) {
e9e2cdb4 325 case CLOCK_EVT_MODE_PERIODIC:
c23e253e 326 hpet_stop_counter();
b40d575b 327 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
328 delta >>= evt->shift;
7a6f9cbb 329 now = hpet_readl(HPET_COUNTER);
5946fa3d 330 cmp = now + (unsigned int) delta;
b40d575b 331 cfg = hpet_readl(HPET_Tn_CFG(timer));
b13e2464
JS
332 /* Make sure we use edge triggered interrupts */
333 cfg &= ~HPET_TN_LEVEL;
e9e2cdb4
TG
334 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
335 HPET_TN_SETVAL | HPET_TN_32BIT;
b40d575b 336 hpet_writel(cfg, HPET_Tn_CFG(timer));
7a6f9cbb
AH
337 hpet_writel(cmp, HPET_Tn_CMP(timer));
338 udelay(1);
339 /*
340 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
341 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
342 * bit is automatically cleared after the first write.
343 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
344 * Publication # 24674)
345 */
5946fa3d 346 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
c23e253e 347 hpet_start_counter();
b98103a5 348 hpet_print_config();
e9e2cdb4
TG
349 break;
350
351 case CLOCK_EVT_MODE_ONESHOT:
b40d575b 352 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4
TG
353 cfg &= ~HPET_TN_PERIODIC;
354 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
b40d575b 355 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4
TG
356 break;
357
358 case CLOCK_EVT_MODE_UNUSED:
359 case CLOCK_EVT_MODE_SHUTDOWN:
b40d575b 360 cfg = hpet_readl(HPET_Tn_CFG(timer));
e9e2cdb4 361 cfg &= ~HPET_TN_ENABLE;
b40d575b 362 hpet_writel(cfg, HPET_Tn_CFG(timer));
e9e2cdb4 363 break;
18de5bc4
TG
364
365 case CLOCK_EVT_MODE_RESUME:
26afe5f2 366 if (timer == 0) {
367 hpet_enable_legacy_int();
368 } else {
369 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
370 hpet_setup_msi_irq(hdev->irq);
371 disable_irq(hdev->irq);
0de26520 372 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
26afe5f2 373 enable_irq(hdev->irq);
374 }
b98103a5 375 hpet_print_config();
18de5bc4 376 break;
e9e2cdb4
TG
377 }
378}
379
b40d575b 380static int hpet_next_event(unsigned long delta,
381 struct clock_event_device *evt, int timer)
e9e2cdb4 382{
f7676254 383 u32 cnt;
e9e2cdb4
TG
384
385 cnt = hpet_readl(HPET_COUNTER);
f7676254 386 cnt += (u32) delta;
b40d575b 387 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 388
72d43d9b 389 /*
18ed61da
TG
390 * We need to read back the CMP register on certain HPET
391 * implementations (ATI chipsets) which seem to delay the
392 * transfer of the compare register into the internal compare
393 * logic. With small deltas this might actually be too late as
394 * the counter could already be higher than the compare value
395 * at that point and we would wait for the next hpet interrupt
396 * forever. We found out that reading the CMP register back
397 * forces the transfer so we can rely on the comparison with
30a564be
TG
398 * the counter register below.
399 *
400 * That works fine on those ATI chipsets, but on newer Intel
401 * chipsets (ICH9...) this triggers due to an erratum: Reading
402 * the comparator immediately following a write is returning
403 * the old value.
404 *
405 * We restrict the read back to the affected ATI chipsets (set
406 * by quirks) and also run it with hpet=verbose for debugging
407 * purposes.
72d43d9b 408 */
30a564be
TG
409 if (hpet_readback_cmp || hpet_verbose) {
410 u32 cmp = hpet_readl(HPET_Tn_CMP(timer));
411
412 if (cmp != cnt)
413 printk_once(KERN_WARNING
414 "hpet: compare register read back failed.\n");
8da854cb 415 }
72d43d9b 416
5946fa3d 417 return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
e9e2cdb4
TG
418}
419
b40d575b 420static void hpet_legacy_set_mode(enum clock_event_mode mode,
421 struct clock_event_device *evt)
422{
423 hpet_set_mode(mode, evt, 0);
424}
425
426static int hpet_legacy_next_event(unsigned long delta,
427 struct clock_event_device *evt)
428{
429 return hpet_next_event(delta, evt, 0);
430}
431
58ac1e76 432/*
433 * HPET MSI Support
434 */
26afe5f2 435#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
436
437static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
438static struct hpet_dev *hpet_devs;
439
58ac1e76 440void hpet_msi_unmask(unsigned int irq)
441{
442 struct hpet_dev *hdev = get_irq_data(irq);
5946fa3d 443 unsigned int cfg;
58ac1e76 444
445 /* unmask it */
446 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447 cfg |= HPET_TN_FSB;
448 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449}
450
451void hpet_msi_mask(unsigned int irq)
452{
5946fa3d 453 unsigned int cfg;
58ac1e76 454 struct hpet_dev *hdev = get_irq_data(irq);
455
456 /* mask it */
457 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
458 cfg &= ~HPET_TN_FSB;
459 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
460}
461
462void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
463{
464 struct hpet_dev *hdev = get_irq_data(irq);
465
466 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
467 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
468}
469
470void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
471{
472 struct hpet_dev *hdev = get_irq_data(irq);
473
474 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
475 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
476 msg->address_hi = 0;
477}
478
26afe5f2 479static void hpet_msi_set_mode(enum clock_event_mode mode,
480 struct clock_event_device *evt)
481{
482 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
483 hpet_set_mode(mode, evt, hdev->num);
484}
485
486static int hpet_msi_next_event(unsigned long delta,
487 struct clock_event_device *evt)
488{
489 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
490 return hpet_next_event(delta, evt, hdev->num);
491}
492
493static int hpet_setup_msi_irq(unsigned int irq)
494{
c8bc6f3c 495 if (arch_setup_hpet_msi(irq, hpet_blockid)) {
26afe5f2 496 destroy_irq(irq);
497 return -EINVAL;
498 }
499 return 0;
500}
501
502static int hpet_assign_irq(struct hpet_dev *dev)
503{
504 unsigned int irq;
505
506 irq = create_irq();
507 if (!irq)
508 return -EINVAL;
509
510 set_irq_data(irq, dev);
511
512 if (hpet_setup_msi_irq(irq))
513 return -EINVAL;
514
515 dev->irq = irq;
516 return 0;
517}
518
519static irqreturn_t hpet_interrupt_handler(int irq, void *data)
520{
521 struct hpet_dev *dev = (struct hpet_dev *)data;
522 struct clock_event_device *hevt = &dev->evt;
523
524 if (!hevt->event_handler) {
525 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
526 dev->num);
527 return IRQ_HANDLED;
528 }
529
530 hevt->event_handler(hevt);
531 return IRQ_HANDLED;
532}
533
534static int hpet_setup_irq(struct hpet_dev *dev)
535{
536
537 if (request_irq(dev->irq, hpet_interrupt_handler,
507fa3a3
TG
538 IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
539 dev->name, dev))
26afe5f2 540 return -1;
541
542 disable_irq(dev->irq);
0de26520 543 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 544 enable_irq(dev->irq);
545
c81bba49
YL
546 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
547 dev->name, dev->irq);
548
26afe5f2 549 return 0;
550}
551
552/* This should be called in specific @cpu */
553static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
554{
555 struct clock_event_device *evt = &hdev->evt;
556 uint64_t hpet_freq;
557
558 WARN_ON(cpu != smp_processor_id());
559 if (!(hdev->flags & HPET_DEV_VALID))
560 return;
561
562 if (hpet_setup_msi_irq(hdev->irq))
563 return;
564
565 hdev->cpu = cpu;
566 per_cpu(cpu_hpet_dev, cpu) = hdev;
567 evt->name = hdev->name;
568 hpet_setup_irq(hdev);
569 evt->irq = hdev->irq;
570
571 evt->rating = 110;
572 evt->features = CLOCK_EVT_FEAT_ONESHOT;
573 if (hdev->flags & HPET_DEV_PERI_CAP)
574 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
575
576 evt->set_mode = hpet_msi_set_mode;
577 evt->set_next_event = hpet_msi_next_event;
578 evt->shift = 32;
579
580 /*
581 * The period is a femto seconds value. We need to calculate the
582 * scaled math multiplication factor for nanosecond to hpet tick
583 * conversion.
584 */
4936a3b9 585 hpet_freq = FSEC_PER_SEC;
26afe5f2 586 do_div(hpet_freq, hpet_period);
587 evt->mult = div_sc((unsigned long) hpet_freq,
588 NSEC_PER_SEC, evt->shift);
589 /* Calculate the max delta */
590 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
591 /* 5 usec minimum reprogramming delta. */
592 evt->min_delta_ns = 5000;
593
320ab2b0 594 evt->cpumask = cpumask_of(hdev->cpu);
26afe5f2 595 clockevents_register_device(evt);
596}
597
598#ifdef CONFIG_HPET
599/* Reserve at least one timer for userspace (/dev/hpet) */
600#define RESERVE_TIMERS 1
601#else
602#define RESERVE_TIMERS 0
603#endif
5f79f2f2
VP
604
605static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 606{
607 unsigned int id;
608 unsigned int num_timers;
609 unsigned int num_timers_used = 0;
610 int i;
611
73472a46
PV
612 if (hpet_msi_disable)
613 return;
614
39fe05e5
SL
615 if (boot_cpu_has(X86_FEATURE_ARAT))
616 return;
26afe5f2 617 id = hpet_readl(HPET_ID);
618
619 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
620 num_timers++; /* Value read out starts from 0 */
b98103a5 621 hpet_print_config();
26afe5f2 622
623 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
624 if (!hpet_devs)
625 return;
626
627 hpet_num_timers = num_timers;
628
629 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
630 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 631 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 632
633 /* Only consider HPET timer with MSI support */
634 if (!(cfg & HPET_TN_FSB_CAP))
635 continue;
636
637 hdev->flags = 0;
638 if (cfg & HPET_TN_PERIODIC_CAP)
639 hdev->flags |= HPET_DEV_PERI_CAP;
640 hdev->num = i;
641
642 sprintf(hdev->name, "hpet%d", i);
643 if (hpet_assign_irq(hdev))
644 continue;
645
646 hdev->flags |= HPET_DEV_FSB_CAP;
647 hdev->flags |= HPET_DEV_VALID;
648 num_timers_used++;
649 if (num_timers_used == num_possible_cpus())
650 break;
651 }
652
653 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
654 num_timers, num_timers_used);
655}
656
5f79f2f2
VP
657#ifdef CONFIG_HPET
658static void hpet_reserve_msi_timers(struct hpet_data *hd)
659{
660 int i;
661
662 if (!hpet_devs)
663 return;
664
665 for (i = 0; i < hpet_num_timers; i++) {
666 struct hpet_dev *hdev = &hpet_devs[i];
667
668 if (!(hdev->flags & HPET_DEV_VALID))
669 continue;
670
671 hd->hd_irq[hdev->num] = hdev->irq;
672 hpet_reserve_timer(hd, hdev->num);
673 }
674}
675#endif
676
26afe5f2 677static struct hpet_dev *hpet_get_unused_timer(void)
678{
679 int i;
680
681 if (!hpet_devs)
682 return NULL;
683
684 for (i = 0; i < hpet_num_timers; i++) {
685 struct hpet_dev *hdev = &hpet_devs[i];
686
687 if (!(hdev->flags & HPET_DEV_VALID))
688 continue;
689 if (test_and_set_bit(HPET_DEV_USED_BIT,
690 (unsigned long *)&hdev->flags))
691 continue;
692 return hdev;
693 }
694 return NULL;
695}
696
697struct hpet_work_struct {
698 struct delayed_work work;
699 struct completion complete;
700};
701
702static void hpet_work(struct work_struct *w)
703{
704 struct hpet_dev *hdev;
705 int cpu = smp_processor_id();
706 struct hpet_work_struct *hpet_work;
707
708 hpet_work = container_of(w, struct hpet_work_struct, work.work);
709
710 hdev = hpet_get_unused_timer();
711 if (hdev)
712 init_one_hpet_msi_clockevent(hdev, cpu);
713
714 complete(&hpet_work->complete);
715}
716
717static int hpet_cpuhp_notify(struct notifier_block *n,
718 unsigned long action, void *hcpu)
719{
720 unsigned long cpu = (unsigned long)hcpu;
721 struct hpet_work_struct work;
722 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
723
724 switch (action & 0xf) {
725 case CPU_ONLINE:
336f6c32 726 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
26afe5f2 727 init_completion(&work.complete);
728 /* FIXME: add schedule_work_on() */
729 schedule_delayed_work_on(cpu, &work.work, 0);
730 wait_for_completion(&work.complete);
336f6c32 731 destroy_timer_on_stack(&work.work.timer);
26afe5f2 732 break;
733 case CPU_DEAD:
734 if (hdev) {
735 free_irq(hdev->irq, hdev);
736 hdev->flags &= ~HPET_DEV_USED;
737 per_cpu(cpu_hpet_dev, cpu) = NULL;
738 }
739 break;
740 }
741 return NOTIFY_OK;
742}
743#else
744
ba374c9b
SN
745static int hpet_setup_msi_irq(unsigned int irq)
746{
747 return 0;
748}
5f79f2f2
VP
749static void hpet_msi_capability_lookup(unsigned int start_timer)
750{
751 return;
752}
753
754#ifdef CONFIG_HPET
755static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 756{
757 return;
758}
5f79f2f2 759#endif
26afe5f2 760
761static int hpet_cpuhp_notify(struct notifier_block *n,
762 unsigned long action, void *hcpu)
763{
764 return NOTIFY_OK;
765}
766
767#endif
768
6bb74df4
JS
769/*
770 * Clock source related code
771 */
8e19608e 772static cycle_t read_hpet(struct clocksource *cs)
6bb74df4
JS
773{
774 return (cycle_t)hpet_readl(HPET_COUNTER);
775}
776
28769149
TG
777#ifdef CONFIG_X86_64
778static cycle_t __vsyscall_fn vread_hpet(void)
779{
780 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
781}
782#endif
783
6bb74df4
JS
784static struct clocksource clocksource_hpet = {
785 .name = "hpet",
786 .rating = 250,
787 .read = read_hpet,
788 .mask = HPET_MASK,
6bb74df4 789 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 790 .resume = hpet_resume_counter,
28769149
TG
791#ifdef CONFIG_X86_64
792 .vread = vread_hpet,
793#endif
6bb74df4
JS
794};
795
610bf2f1 796static int hpet_clocksource_register(void)
e9e2cdb4 797{
6fd592da 798 u64 start, now;
f12a15be 799 u64 hpet_freq;
075bcd1f 800 cycle_t t1;
e9e2cdb4 801
e9e2cdb4 802 /* Start the counter */
8d6f0c82 803 hpet_restart_counter();
e9e2cdb4 804
075bcd1f 805 /* Verify whether hpet counter works */
8e19608e 806 t1 = hpet_readl(HPET_COUNTER);
075bcd1f
TG
807 rdtscll(start);
808
809 /*
810 * We don't know the TSC frequency yet, but waiting for
811 * 200000 TSC cycles is safe:
812 * 4 GHz == 50us
813 * 1 GHz == 200us
814 */
815 do {
816 rep_nop();
817 rdtscll(now);
818 } while ((now - start) < 200000UL);
819
8e19608e 820 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
821 printk(KERN_WARNING
822 "HPET counter not counting. HPET disabled\n");
610bf2f1 823 return -ENODEV;
075bcd1f
TG
824 }
825
6fd592da
CM
826 /*
827 * The definition of mult is (include/linux/clocksource.h)
828 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
829 * so we first need to convert hpet_period to ns/cyc units:
830 * mult/2^shift = ns/cyc = hpet_period/10^6
831 * mult = (hpet_period * 2^shift)/10^6
832 * mult = (hpet_period << shift)/FSEC_PER_NSEC
6bb74df4 833 */
6bb74df4 834
f12a15be
JS
835 /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
836 *
837 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
838 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
839 */
4936a3b9 840 hpet_freq = FSEC_PER_SEC;
f12a15be
JS
841 do_div(hpet_freq, hpet_period);
842 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
6bb74df4 843
610bf2f1
VP
844 return 0;
845}
846
b02a7f22
PM
847/**
848 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
849 */
850int __init hpet_enable(void)
851{
5946fa3d 852 unsigned int id;
a6825f1c 853 int i;
610bf2f1
VP
854
855 if (!is_hpet_capable())
856 return 0;
857
858 hpet_set_mapping();
859
860 /*
861 * Read the period and check for a sane value:
862 */
863 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
864
865 /*
866 * AMD SB700 based systems with spread spectrum enabled use a
867 * SMM based HPET emulation to provide proper frequency
868 * setting. The SMM code is initialized with the first HPET
869 * register access and takes some time to complete. During
870 * this time the config register reads 0xffffffff. We check
871 * for max. 1000 loops whether the config register reads a non
872 * 0xffffffff value to make sure that HPET is up and running
873 * before we go further. A counting loop is safe, as the HPET
874 * access takes thousands of CPU cycles. On non SB700 based
875 * machines this check is only done once and has no side
876 * effects.
877 */
878 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
879 if (i == 1000) {
880 printk(KERN_WARNING
881 "HPET config register value = 0xFFFFFFFF. "
882 "Disabling HPET\n");
883 goto out_nohpet;
884 }
885 }
886
610bf2f1
VP
887 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
888 goto out_nohpet;
889
890 /*
891 * Read the HPET ID register to retrieve the IRQ routing
892 * information and the number of channels
893 */
894 id = hpet_readl(HPET_ID);
b98103a5 895 hpet_print_config();
610bf2f1
VP
896
897#ifdef CONFIG_HPET_EMULATE_RTC
898 /*
899 * The legacy routing mode needs at least two channels, tick timer
900 * and the rtc emulation channel.
901 */
902 if (!(id & HPET_ID_NUMBER))
903 goto out_nohpet;
904#endif
905
906 if (hpet_clocksource_register())
907 goto out_nohpet;
908
e9e2cdb4 909 if (id & HPET_ID_LEGSUP) {
610bf2f1 910 hpet_legacy_clockevent_register();
e9e2cdb4
TG
911 return 1;
912 }
913 return 0;
5d0cf410 914
e9e2cdb4 915out_nohpet:
06a24dec 916 hpet_clear_mapping();
bacbe999 917 hpet_address = 0;
e9e2cdb4
TG
918 return 0;
919}
920
28769149
TG
921/*
922 * Needs to be late, as the reserve_timer code calls kalloc !
923 *
924 * Not a problem on i386 as hpet_enable is called from late_time_init,
925 * but on x86_64 it is necessary !
926 */
927static __init int hpet_late_init(void)
928{
26afe5f2 929 int cpu;
930
59c69f2a 931 if (boot_hpet_disable)
28769149
TG
932 return -ENODEV;
933
59c69f2a
VP
934 if (!hpet_address) {
935 if (!force_hpet_address)
936 return -ENODEV;
937
938 hpet_address = force_hpet_address;
939 hpet_enable();
59c69f2a
VP
940 }
941
39c04b55
JF
942 if (!hpet_virt_address)
943 return -ENODEV;
944
39fe05e5
SL
945 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
946 hpet_msi_capability_lookup(2);
947 else
948 hpet_msi_capability_lookup(0);
949
28769149 950 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 951 hpet_print_config();
59c69f2a 952
73472a46
PV
953 if (hpet_msi_disable)
954 return 0;
955
39fe05e5
SL
956 if (boot_cpu_has(X86_FEATURE_ARAT))
957 return 0;
958
26afe5f2 959 for_each_online_cpu(cpu) {
960 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
961 }
962
963 /* This notifier should be called after workqueue is ready */
964 hotcpu_notifier(hpet_cpuhp_notify, -20);
965
28769149
TG
966 return 0;
967}
968fs_initcall(hpet_late_init);
969
c86c7fbc
OH
970void hpet_disable(void)
971{
ff487808 972 if (is_hpet_capable() && hpet_virt_address) {
5946fa3d 973 unsigned int cfg = hpet_readl(HPET_CFG);
c86c7fbc
OH
974
975 if (hpet_legacy_int_enabled) {
976 cfg &= ~HPET_CFG_LEGACY;
977 hpet_legacy_int_enabled = 0;
978 }
979 cfg &= ~HPET_CFG_ENABLE;
980 hpet_writel(cfg, HPET_CFG);
981 }
982}
983
e9e2cdb4
TG
984#ifdef CONFIG_HPET_EMULATE_RTC
985
986/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
987 * is enabled, we support RTC interrupt functionality in software.
988 * RTC has 3 kinds of interrupts:
989 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
990 * is updated
991 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
992 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
993 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
994 * (1) and (2) above are implemented using polling at a frequency of
995 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
996 * overhead. (DEFAULT_RTC_INT_FREQ)
997 * For (3), we use interrupts at 64Hz or user specified periodic
998 * frequency, whichever is higher.
999 */
1000#include <linux/mc146818rtc.h>
1001#include <linux/rtc.h>
1bdbdaac 1002#include <asm/rtc.h>
e9e2cdb4
TG
1003
1004#define DEFAULT_RTC_INT_FREQ 64
1005#define DEFAULT_RTC_SHIFT 6
1006#define RTC_NUM_INTS 1
1007
1008static unsigned long hpet_rtc_flags;
7e2a31da 1009static int hpet_prev_update_sec;
e9e2cdb4
TG
1010static struct rtc_time hpet_alarm_time;
1011static unsigned long hpet_pie_count;
ff08f76d 1012static u32 hpet_t1_cmp;
5946fa3d
JB
1013static u32 hpet_default_delta;
1014static u32 hpet_pie_delta;
e9e2cdb4
TG
1015static unsigned long hpet_pie_limit;
1016
1bdbdaac
BW
1017static rtc_irq_handler irq_handler;
1018
ff08f76d
PE
1019/*
1020 * Check that the hpet counter c1 is ahead of the c2
1021 */
1022static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1023{
1024 return (s32)(c2 - c1) < 0;
1025}
1026
1bdbdaac
BW
1027/*
1028 * Registers a IRQ handler.
1029 */
1030int hpet_register_irq_handler(rtc_irq_handler handler)
1031{
1032 if (!is_hpet_enabled())
1033 return -ENODEV;
1034 if (irq_handler)
1035 return -EBUSY;
1036
1037 irq_handler = handler;
1038
1039 return 0;
1040}
1041EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1042
1043/*
1044 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1045 * and does cleanup.
1046 */
1047void hpet_unregister_irq_handler(rtc_irq_handler handler)
1048{
1049 if (!is_hpet_enabled())
1050 return;
1051
1052 irq_handler = NULL;
1053 hpet_rtc_flags = 0;
1054}
1055EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1056
e9e2cdb4
TG
1057/*
1058 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1059 * is not supported by all HPET implementations for timer 1.
1060 *
1061 * hpet_rtc_timer_init() is called when the rtc is initialized.
1062 */
1063int hpet_rtc_timer_init(void)
1064{
5946fa3d
JB
1065 unsigned int cfg, cnt, delta;
1066 unsigned long flags;
e9e2cdb4
TG
1067
1068 if (!is_hpet_enabled())
1069 return 0;
1070
1071 if (!hpet_default_delta) {
1072 uint64_t clc;
1073
1074 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1075 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1076 hpet_default_delta = clc;
e9e2cdb4
TG
1077 }
1078
1079 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1080 delta = hpet_default_delta;
1081 else
1082 delta = hpet_pie_delta;
1083
1084 local_irq_save(flags);
1085
1086 cnt = delta + hpet_readl(HPET_COUNTER);
1087 hpet_writel(cnt, HPET_T1_CMP);
1088 hpet_t1_cmp = cnt;
1089
1090 cfg = hpet_readl(HPET_T1_CFG);
1091 cfg &= ~HPET_TN_PERIODIC;
1092 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1093 hpet_writel(cfg, HPET_T1_CFG);
1094
1095 local_irq_restore(flags);
1096
1097 return 1;
1098}
1bdbdaac 1099EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4
TG
1100
1101/*
1102 * The functions below are called from rtc driver.
1103 * Return 0 if HPET is not being used.
1104 * Otherwise do the necessary changes and return 1.
1105 */
1106int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1107{
1108 if (!is_hpet_enabled())
1109 return 0;
1110
1111 hpet_rtc_flags &= ~bit_mask;
1112 return 1;
1113}
1bdbdaac 1114EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1115
1116int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1117{
1118 unsigned long oldbits = hpet_rtc_flags;
1119
1120 if (!is_hpet_enabled())
1121 return 0;
1122
1123 hpet_rtc_flags |= bit_mask;
1124
7e2a31da
DB
1125 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1126 hpet_prev_update_sec = -1;
1127
e9e2cdb4
TG
1128 if (!oldbits)
1129 hpet_rtc_timer_init();
1130
1131 return 1;
1132}
1bdbdaac 1133EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1134
1135int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1136 unsigned char sec)
1137{
1138 if (!is_hpet_enabled())
1139 return 0;
1140
1141 hpet_alarm_time.tm_hour = hrs;
1142 hpet_alarm_time.tm_min = min;
1143 hpet_alarm_time.tm_sec = sec;
1144
1145 return 1;
1146}
1bdbdaac 1147EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1148
1149int hpet_set_periodic_freq(unsigned long freq)
1150{
1151 uint64_t clc;
1152
1153 if (!is_hpet_enabled())
1154 return 0;
1155
1156 if (freq <= DEFAULT_RTC_INT_FREQ)
1157 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1158 else {
1159 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1160 do_div(clc, freq);
1161 clc >>= hpet_clockevent.shift;
5946fa3d 1162 hpet_pie_delta = clc;
b4a5e8a1 1163 hpet_pie_limit = 0;
e9e2cdb4
TG
1164 }
1165 return 1;
1166}
1bdbdaac 1167EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1168
1169int hpet_rtc_dropped_irq(void)
1170{
1171 return is_hpet_enabled();
1172}
1bdbdaac 1173EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1174
1175static void hpet_rtc_timer_reinit(void)
1176{
5946fa3d 1177 unsigned int cfg, delta;
e9e2cdb4
TG
1178 int lost_ints = -1;
1179
1180 if (unlikely(!hpet_rtc_flags)) {
1181 cfg = hpet_readl(HPET_T1_CFG);
1182 cfg &= ~HPET_TN_ENABLE;
1183 hpet_writel(cfg, HPET_T1_CFG);
1184 return;
1185 }
1186
1187 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1188 delta = hpet_default_delta;
1189 else
1190 delta = hpet_pie_delta;
1191
1192 /*
1193 * Increment the comparator value until we are ahead of the
1194 * current count.
1195 */
1196 do {
1197 hpet_t1_cmp += delta;
1198 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1199 lost_ints++;
ff08f76d 1200 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1201
1202 if (lost_ints) {
1203 if (hpet_rtc_flags & RTC_PIE)
1204 hpet_pie_count += lost_ints;
1205 if (printk_ratelimit())
7e2a31da 1206 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1207 lost_ints);
1208 }
1209}
1210
1211irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1212{
1213 struct rtc_time curr_time;
1214 unsigned long rtc_int_flag = 0;
1215
1216 hpet_rtc_timer_reinit();
1bdbdaac 1217 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1218
1219 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1220 get_rtc_time(&curr_time);
e9e2cdb4
TG
1221
1222 if (hpet_rtc_flags & RTC_UIE &&
1223 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1224 if (hpet_prev_update_sec >= 0)
1225 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1226 hpet_prev_update_sec = curr_time.tm_sec;
1227 }
1228
1229 if (hpet_rtc_flags & RTC_PIE &&
1230 ++hpet_pie_count >= hpet_pie_limit) {
1231 rtc_int_flag |= RTC_PF;
1232 hpet_pie_count = 0;
1233 }
1234
8ee291f8 1235 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1236 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1237 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1238 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1239 rtc_int_flag |= RTC_AF;
1240
1241 if (rtc_int_flag) {
1242 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1243 if (irq_handler)
1244 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1245 }
1246 return IRQ_HANDLED;
1247}
1bdbdaac 1248EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1249#endif