]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
Merge branches 'tracing/hw-branch-tracing' and 'tracing/branch-tracer' into tracing...
[net-next-2.6.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
fe27cb35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
1da177e4
LT
36
37#include <linux/acpi.h>
38#include <acpi/processor.h>
39
fe27cb35 40#include <asm/io.h>
dde9f7ba 41#include <asm/msr.h>
fe27cb35
VP
42#include <asm/processor.h>
43#include <asm/cpufeature.h>
44#include <asm/delay.h>
45#include <asm/uaccess.h>
46
1da177e4
LT
47#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
48
49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
51MODULE_LICENSE("GPL");
52
dde9f7ba
VP
53enum {
54 UNDEFINED_CAPABLE = 0,
55 SYSTEM_INTEL_MSR_CAPABLE,
56 SYSTEM_IO_CAPABLE,
57};
58
59#define INTEL_MSR_RANGE (0xffff)
dfde5d62 60#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 61
fe27cb35 62struct acpi_cpufreq_data {
64be7eed
VP
63 struct acpi_processor_performance *acpi_data;
64 struct cpufreq_frequency_table *freq_table;
dfde5d62 65 unsigned int max_freq;
64be7eed
VP
66 unsigned int resume;
67 unsigned int cpu_feature;
1da177e4
LT
68};
69
ea348f3e 70static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
71
50109292
FY
72/* acpi_perf_data is a pointer to percpu data. */
73static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
74
75static struct cpufreq_driver acpi_cpufreq_driver;
76
d395bf12
VP
77static unsigned int acpi_pstate_strict;
78
dde9f7ba
VP
79static int check_est_cpu(unsigned int cpuid)
80{
92cb7612 81 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
82
83 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 84 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
85 return 0;
86
87 return 1;
88}
89
dde9f7ba 90static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 91{
64be7eed
VP
92 struct acpi_processor_performance *perf;
93 int i;
fe27cb35
VP
94
95 perf = data->acpi_data;
96
95dd7227 97 for (i=0; i<perf->state_count; i++) {
fe27cb35
VP
98 if (value == perf->states[i].status)
99 return data->freq_table[i].frequency;
100 }
101 return 0;
102}
103
dde9f7ba
VP
104static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
105{
106 int i;
a6f6e6e6 107 struct acpi_processor_performance *perf;
dde9f7ba
VP
108
109 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
110 perf = data->acpi_data;
111
95dd7227 112 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 113 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
114 return data->freq_table[i].frequency;
115 }
116 return data->freq_table[0].frequency;
117}
118
dde9f7ba
VP
119static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
120{
121 switch (data->cpu_feature) {
64be7eed 122 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 123 return extract_msr(val, data);
64be7eed 124 case SYSTEM_IO_CAPABLE:
dde9f7ba 125 return extract_io(val, data);
64be7eed 126 default:
dde9f7ba
VP
127 return 0;
128 }
129}
130
dde9f7ba
VP
131struct msr_addr {
132 u32 reg;
133};
134
fe27cb35
VP
135struct io_addr {
136 u16 port;
137 u8 bit_width;
138};
139
dde9f7ba
VP
140typedef union {
141 struct msr_addr msr;
142 struct io_addr io;
143} drv_addr_union;
144
fe27cb35 145struct drv_cmd {
dde9f7ba 146 unsigned int type;
fe27cb35 147 cpumask_t mask;
dde9f7ba 148 drv_addr_union addr;
fe27cb35
VP
149 u32 val;
150};
151
152static void do_drv_read(struct drv_cmd *cmd)
1da177e4 153{
dde9f7ba
VP
154 u32 h;
155
156 switch (cmd->type) {
64be7eed 157 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
158 rdmsr(cmd->addr.msr.reg, cmd->val, h);
159 break;
64be7eed 160 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
161 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
162 &cmd->val,
163 (u32)cmd->addr.io.bit_width);
dde9f7ba 164 break;
64be7eed 165 default:
dde9f7ba
VP
166 break;
167 }
fe27cb35 168}
1da177e4 169
fe27cb35
VP
170static void do_drv_write(struct drv_cmd *cmd)
171{
13424f65 172 u32 lo, hi;
dde9f7ba
VP
173
174 switch (cmd->type) {
64be7eed 175 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
176 rdmsr(cmd->addr.msr.reg, lo, hi);
177 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
178 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 179 break;
64be7eed 180 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
181 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
182 cmd->val,
183 (u32)cmd->addr.io.bit_width);
dde9f7ba 184 break;
64be7eed 185 default:
dde9f7ba
VP
186 break;
187 }
fe27cb35 188}
1da177e4 189
95dd7227 190static void drv_read(struct drv_cmd *cmd)
fe27cb35 191{
64be7eed 192 cpumask_t saved_mask = current->cpus_allowed;
fe27cb35
VP
193 cmd->val = 0;
194
fc0e4748 195 set_cpus_allowed_ptr(current, &cmd->mask);
fe27cb35 196 do_drv_read(cmd);
fc0e4748 197 set_cpus_allowed_ptr(current, &saved_mask);
fe27cb35
VP
198}
199
200static void drv_write(struct drv_cmd *cmd)
201{
64be7eed
VP
202 cpumask_t saved_mask = current->cpus_allowed;
203 unsigned int i;
fe27cb35 204
334ef7a7 205 for_each_cpu_mask_nr(i, cmd->mask) {
0bc3cc03 206 set_cpus_allowed_ptr(current, &cpumask_of_cpu(i));
fe27cb35 207 do_drv_write(cmd);
1da177e4
LT
208 }
209
fc0e4748 210 set_cpus_allowed_ptr(current, &saved_mask);
fe27cb35
VP
211 return;
212}
1da177e4 213
fc0e4748 214static u32 get_cur_val(const cpumask_t *mask)
fe27cb35 215{
64be7eed
VP
216 struct acpi_processor_performance *perf;
217 struct drv_cmd cmd;
1da177e4 218
fc0e4748 219 if (unlikely(cpus_empty(*mask)))
fe27cb35 220 return 0;
1da177e4 221
fc0e4748 222 switch (per_cpu(drv_data, first_cpu(*mask))->cpu_feature) {
dde9f7ba
VP
223 case SYSTEM_INTEL_MSR_CAPABLE:
224 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
225 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
226 break;
227 case SYSTEM_IO_CAPABLE:
228 cmd.type = SYSTEM_IO_CAPABLE;
fc0e4748 229 perf = per_cpu(drv_data, first_cpu(*mask))->acpi_data;
dde9f7ba
VP
230 cmd.addr.io.port = perf->control_register.address;
231 cmd.addr.io.bit_width = perf->control_register.bit_width;
232 break;
233 default:
234 return 0;
235 }
236
fc0e4748 237 cmd.mask = *mask;
1da177e4 238
fe27cb35 239 drv_read(&cmd);
1da177e4 240
fe27cb35
VP
241 dprintk("get_cur_val = %u\n", cmd.val);
242
243 return cmd.val;
244}
1da177e4 245
dfde5d62
VP
246/*
247 * Return the measured active (C0) frequency on this CPU since last call
248 * to this function.
249 * Input: cpu number
250 * Return: Average CPU frequency in terms of max frequency (zero on error)
251 *
252 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
253 * over a period of time, while CPU is in C0 state.
254 * IA32_MPERF counts at the rate of max advertised frequency
255 * IA32_APERF counts at the rate of actual CPU frequency
256 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
257 * no meaning should be associated with absolute values of these MSRs.
258 */
bf0b90e3 259static unsigned int get_measured_perf(struct cpufreq_policy *policy,
260 unsigned int cpu)
dfde5d62
VP
261{
262 union {
263 struct {
264 u32 lo;
265 u32 hi;
266 } split;
267 u64 whole;
268 } aperf_cur, mperf_cur;
269
270 cpumask_t saved_mask;
271 unsigned int perf_percent;
272 unsigned int retval;
273
274 saved_mask = current->cpus_allowed;
0bc3cc03 275 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
dfde5d62
VP
276 if (get_cpu() != cpu) {
277 /* We were not able to run on requested processor */
278 put_cpu();
279 return 0;
280 }
281
282 rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
283 rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
284
285 wrmsr(MSR_IA32_APERF, 0,0);
286 wrmsr(MSR_IA32_MPERF, 0,0);
287
288#ifdef __i386__
289 /*
290 * We dont want to do 64 bit divide with 32 bit kernel
291 * Get an approximate value. Return failure in case we cannot get
292 * an approximate value.
293 */
294 if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
295 int shift_count;
296 u32 h;
297
298 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
299 shift_count = fls(h);
300
301 aperf_cur.whole >>= shift_count;
302 mperf_cur.whole >>= shift_count;
303 }
304
305 if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
306 int shift_count = 7;
307 aperf_cur.split.lo >>= shift_count;
308 mperf_cur.split.lo >>= shift_count;
309 }
310
95dd7227 311 if (aperf_cur.split.lo && mperf_cur.split.lo)
dfde5d62 312 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
95dd7227 313 else
dfde5d62 314 perf_percent = 0;
dfde5d62
VP
315
316#else
317 if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
318 int shift_count = 7;
319 aperf_cur.whole >>= shift_count;
320 mperf_cur.whole >>= shift_count;
321 }
322
95dd7227 323 if (aperf_cur.whole && mperf_cur.whole)
dfde5d62 324 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
95dd7227 325 else
dfde5d62 326 perf_percent = 0;
dfde5d62
VP
327
328#endif
329
bf0b90e3 330 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
dfde5d62
VP
331
332 put_cpu();
fc0e4748 333 set_cpus_allowed_ptr(current, &saved_mask);
dfde5d62
VP
334
335 dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
336 return retval;
337}
338
fe27cb35
VP
339static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
340{
ea348f3e 341 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 342 unsigned int freq;
e56a727b 343 unsigned int cached_freq;
fe27cb35
VP
344
345 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
346
347 if (unlikely(data == NULL ||
64be7eed 348 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 349 return 0;
1da177e4
LT
350 }
351
e56a727b 352 cached_freq = data->freq_table[data->acpi_data->state].frequency;
0bc3cc03 353 freq = extract_freq(get_cur_val(&cpumask_of_cpu(cpu)), data);
e56a727b
VP
354 if (freq != cached_freq) {
355 /*
356 * The dreaded BIOS frequency change behind our back.
357 * Force set the frequency on next target call.
358 */
359 data->resume = 1;
360 }
361
fe27cb35 362 dprintk("cur freq = %u\n", freq);
1da177e4 363
fe27cb35 364 return freq;
1da177e4
LT
365}
366
fc0e4748 367static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
64be7eed 368 struct acpi_cpufreq_data *data)
fe27cb35 369{
64be7eed
VP
370 unsigned int cur_freq;
371 unsigned int i;
1da177e4 372
95dd7227 373 for (i=0; i<100; i++) {
fe27cb35
VP
374 cur_freq = extract_freq(get_cur_val(mask), data);
375 if (cur_freq == freq)
376 return 1;
377 udelay(10);
378 }
379 return 0;
380}
381
382static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 383 unsigned int target_freq, unsigned int relation)
1da177e4 384{
ea348f3e 385 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
386 struct acpi_processor_performance *perf;
387 struct cpufreq_freqs freqs;
388 cpumask_t online_policy_cpus;
389 struct drv_cmd cmd;
8edc59d9
VP
390 unsigned int next_state = 0; /* Index into freq_table */
391 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
392 unsigned int i;
393 int result = 0;
fe27cb35
VP
394
395 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
396
397 if (unlikely(data == NULL ||
95dd7227 398 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
399 return -ENODEV;
400 }
1da177e4 401
fe27cb35 402 perf = data->acpi_data;
1da177e4 403 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
404 data->freq_table,
405 target_freq,
406 relation, &next_state);
09b4d1ee 407 if (unlikely(result))
fe27cb35 408 return -ENODEV;
09b4d1ee 409
7e1f19e5 410#ifdef CONFIG_HOTPLUG_CPU
09b4d1ee
VP
411 /* cpufreq holds the hotplug lock, so we are safe from here on */
412 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
7e1f19e5
AM
413#else
414 online_policy_cpus = policy->cpus;
415#endif
1da177e4 416
fe27cb35 417 next_perf_state = data->freq_table[next_state].index;
7650b281 418 if (perf->state == next_perf_state) {
fe27cb35 419 if (unlikely(data->resume)) {
64be7eed
VP
420 dprintk("Called after resume, resetting to P%d\n",
421 next_perf_state);
fe27cb35
VP
422 data->resume = 0;
423 } else {
64be7eed
VP
424 dprintk("Already at target state (P%d)\n",
425 next_perf_state);
fe27cb35
VP
426 return 0;
427 }
09b4d1ee
VP
428 }
429
64be7eed
VP
430 switch (data->cpu_feature) {
431 case SYSTEM_INTEL_MSR_CAPABLE:
432 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
433 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 434 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
435 break;
436 case SYSTEM_IO_CAPABLE:
437 cmd.type = SYSTEM_IO_CAPABLE;
438 cmd.addr.io.port = perf->control_register.address;
439 cmd.addr.io.bit_width = perf->control_register.bit_width;
440 cmd.val = (u32) perf->states[next_perf_state].control;
441 break;
442 default:
443 return -ENODEV;
444 }
09b4d1ee 445
fe27cb35 446 cpus_clear(cmd.mask);
09b4d1ee 447
fe27cb35
VP
448 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
449 cmd.mask = online_policy_cpus;
450 else
451 cpu_set(policy->cpu, cmd.mask);
09b4d1ee 452
8edc59d9
VP
453 freqs.old = perf->states[perf->state].core_frequency * 1000;
454 freqs.new = data->freq_table[next_state].frequency;
334ef7a7 455 for_each_cpu_mask_nr(i, cmd.mask) {
fe27cb35
VP
456 freqs.cpu = i;
457 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 458 }
1da177e4 459
fe27cb35 460 drv_write(&cmd);
09b4d1ee 461
fe27cb35 462 if (acpi_pstate_strict) {
fc0e4748 463 if (!check_freqs(&cmd.mask, freqs.new, data)) {
fe27cb35 464 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 465 policy->cpu);
fe27cb35 466 return -EAGAIN;
09b4d1ee
VP
467 }
468 }
469
334ef7a7 470 for_each_cpu_mask_nr(i, cmd.mask) {
fe27cb35
VP
471 freqs.cpu = i;
472 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
473 }
474 perf->state = next_perf_state;
475
476 return result;
1da177e4
LT
477}
478
64be7eed 479static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 480{
ea348f3e 481 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
482
483 dprintk("acpi_cpufreq_verify\n");
484
fe27cb35 485 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
486}
487
1da177e4 488static unsigned long
64be7eed 489acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 490{
64be7eed 491 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 492
1da177e4
LT
493 if (cpu_khz) {
494 /* search the closest match to cpu_khz */
495 unsigned int i;
496 unsigned long freq;
09b4d1ee 497 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 498
95dd7227 499 for (i=0; i<(perf->state_count-1); i++) {
1da177e4 500 freq = freqn;
95dd7227 501 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 502 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 503 perf->state = i;
64be7eed 504 return freq;
1da177e4
LT
505 }
506 }
95dd7227 507 perf->state = perf->state_count-1;
64be7eed 508 return freqn;
09b4d1ee 509 } else {
1da177e4 510 /* assume CPU is at P0... */
09b4d1ee
VP
511 perf->state = 0;
512 return perf->states[0].core_frequency * 1000;
513 }
1da177e4
LT
514}
515
09b4d1ee
VP
516/*
517 * acpi_cpufreq_early_init - initialize ACPI P-States library
518 *
519 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
520 * in order to determine correct frequency and voltage pairings. We can
521 * do _PDC and _PSD and find out the processor dependency for the
522 * actual init that will happen later...
523 */
50109292 524static int __init acpi_cpufreq_early_init(void)
09b4d1ee 525{
09b4d1ee
VP
526 dprintk("acpi_cpufreq_early_init\n");
527
50109292
FY
528 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
529 if (!acpi_perf_data) {
530 dprintk("Memory allocation error for acpi_perf_data.\n");
531 return -ENOMEM;
09b4d1ee
VP
532 }
533
534 /* Do initialization in ACPI core */
fe27cb35
VP
535 acpi_processor_preregister_performance(acpi_perf_data);
536 return 0;
09b4d1ee
VP
537}
538
95625b8f 539#ifdef CONFIG_SMP
8adcc0c6
VP
540/*
541 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
542 * or do it in BIOS firmware and won't inform about it to OS. If not
543 * detected, this has a side effect of making CPU run at a different speed
544 * than OS intended it to run at. Detect it and handle it cleanly.
545 */
546static int bios_with_sw_any_bug;
547
1855256c 548static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
549{
550 bios_with_sw_any_bug = 1;
551 return 0;
552}
553
1855256c 554static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
555 {
556 .callback = sw_any_bug_found,
557 .ident = "Supermicro Server X6DLP",
558 .matches = {
559 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
560 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
561 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
562 },
563 },
564 { }
565};
95625b8f 566#endif
8adcc0c6 567
64be7eed 568static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 569{
64be7eed
VP
570 unsigned int i;
571 unsigned int valid_states = 0;
572 unsigned int cpu = policy->cpu;
573 struct acpi_cpufreq_data *data;
64be7eed 574 unsigned int result = 0;
92cb7612 575 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 576 struct acpi_processor_performance *perf;
1da177e4 577
1da177e4 578 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 579
fe27cb35 580 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 581 if (!data)
64be7eed 582 return -ENOMEM;
1da177e4 583
50109292 584 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
ea348f3e 585 per_cpu(drv_data, cpu) = data;
1da177e4 586
95dd7227 587 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 588 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 589
fe27cb35 590 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
591 if (result)
592 goto err_free;
593
09b4d1ee 594 perf = data->acpi_data;
09b4d1ee 595 policy->shared_type = perf->shared_type;
95dd7227 596
46f18e3a 597 /*
95dd7227 598 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
599 * coordination is required.
600 */
601 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 602 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
46f18e3a 603 policy->cpus = perf->shared_cpu_map;
8adcc0c6 604 }
e8628dd0 605 policy->related_cpus = perf->shared_cpu_map;
8adcc0c6
VP
606
607#ifdef CONFIG_SMP
608 dmi_check_system(sw_any_bug_dmi_table);
609 if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
610 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
08357611 611 policy->cpus = per_cpu(cpu_core_map, cpu);
8adcc0c6
VP
612 }
613#endif
09b4d1ee 614
1da177e4 615 /* capability check */
09b4d1ee 616 if (perf->state_count <= 1) {
1da177e4
LT
617 dprintk("No P-States\n");
618 result = -ENODEV;
619 goto err_unreg;
620 }
09b4d1ee 621
fe27cb35
VP
622 if (perf->control_register.space_id != perf->status_register.space_id) {
623 result = -ENODEV;
624 goto err_unreg;
625 }
626
627 switch (perf->control_register.space_id) {
64be7eed 628 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 629 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
630 data->cpu_feature = SYSTEM_IO_CAPABLE;
631 break;
64be7eed 632 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
633 dprintk("HARDWARE addr space\n");
634 if (!check_est_cpu(cpu)) {
635 result = -ENODEV;
636 goto err_unreg;
637 }
638 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 639 break;
64be7eed 640 default:
fe27cb35 641 dprintk("Unknown addr space %d\n",
64be7eed 642 (u32) (perf->control_register.space_id));
1da177e4
LT
643 result = -ENODEV;
644 goto err_unreg;
645 }
646
95dd7227
DJ
647 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
648 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
649 if (!data->freq_table) {
650 result = -ENOMEM;
651 goto err_unreg;
652 }
653
654 /* detect transition latency */
655 policy->cpuinfo.transition_latency = 0;
95dd7227 656 for (i=0; i<perf->state_count; i++) {
64be7eed
VP
657 if ((perf->states[i].transition_latency * 1000) >
658 policy->cpuinfo.transition_latency)
659 policy->cpuinfo.transition_latency =
660 perf->states[i].transition_latency * 1000;
1da177e4 661 }
1da177e4 662
dfde5d62 663 data->max_freq = perf->states[0].core_frequency * 1000;
1da177e4 664 /* table init */
95dd7227 665 for (i=0; i<perf->state_count; i++) {
3cdf552b
ZR
666 if (i>0 && perf->states[i].core_frequency >=
667 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
668 continue;
669
670 data->freq_table[valid_states].index = i;
671 data->freq_table[valid_states].frequency =
64be7eed 672 perf->states[i].core_frequency * 1000;
fe27cb35 673 valid_states++;
1da177e4 674 }
3d4a7ef3 675 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 676 perf->state = 0;
1da177e4
LT
677
678 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 679 if (result)
1da177e4 680 goto err_freqfree;
1da177e4 681
a507ac4b 682 switch (perf->control_register.space_id) {
64be7eed 683 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
684 /* Current speed is unknown and not detectable by IO port */
685 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
686 break;
64be7eed 687 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 688 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 689 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 690 break;
64be7eed 691 default:
dde9f7ba
VP
692 break;
693 }
694
1da177e4
LT
695 /* notify BIOS that we exist */
696 acpi_processor_notify_smm(THIS_MODULE);
697
dfde5d62
VP
698 /* Check for APERF/MPERF support in hardware */
699 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
700 unsigned int ecx;
701 ecx = cpuid_ecx(6);
95dd7227 702 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 703 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
704 }
705
fe27cb35 706 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 707 for (i = 0; i < perf->state_count; i++)
1da177e4 708 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 709 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
710 (u32) perf->states[i].core_frequency,
711 (u32) perf->states[i].power,
712 (u32) perf->states[i].transition_latency);
1da177e4
LT
713
714 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 715
4b31e774
DB
716 /*
717 * the first call to ->target() should result in us actually
718 * writing something to the appropriate registers.
719 */
720 data->resume = 1;
64be7eed 721
fe27cb35 722 return result;
1da177e4 723
95dd7227 724err_freqfree:
1da177e4 725 kfree(data->freq_table);
95dd7227 726err_unreg:
09b4d1ee 727 acpi_processor_unregister_performance(perf, cpu);
95dd7227 728err_free:
1da177e4 729 kfree(data);
ea348f3e 730 per_cpu(drv_data, cpu) = NULL;
1da177e4 731
64be7eed 732 return result;
1da177e4
LT
733}
734
64be7eed 735static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 736{
ea348f3e 737 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 738
1da177e4
LT
739 dprintk("acpi_cpufreq_cpu_exit\n");
740
741 if (data) {
742 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 743 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
744 acpi_processor_unregister_performance(data->acpi_data,
745 policy->cpu);
1da177e4
LT
746 kfree(data);
747 }
748
64be7eed 749 return 0;
1da177e4
LT
750}
751
64be7eed 752static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 753{
ea348f3e 754 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 755
1da177e4
LT
756 dprintk("acpi_cpufreq_resume\n");
757
758 data->resume = 1;
759
64be7eed 760 return 0;
1da177e4
LT
761}
762
64be7eed 763static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
764 &cpufreq_freq_attr_scaling_available_freqs,
765 NULL,
766};
767
768static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
769 .verify = acpi_cpufreq_verify,
770 .target = acpi_cpufreq_target,
64be7eed
VP
771 .init = acpi_cpufreq_cpu_init,
772 .exit = acpi_cpufreq_cpu_exit,
773 .resume = acpi_cpufreq_resume,
774 .name = "acpi-cpufreq",
775 .owner = THIS_MODULE,
776 .attr = acpi_cpufreq_attr,
1da177e4
LT
777};
778
64be7eed 779static int __init acpi_cpufreq_init(void)
1da177e4 780{
50109292
FY
781 int ret;
782
ee297533
YL
783 if (acpi_disabled)
784 return 0;
785
1da177e4
LT
786 dprintk("acpi_cpufreq_init\n");
787
50109292
FY
788 ret = acpi_cpufreq_early_init();
789 if (ret)
790 return ret;
09b4d1ee 791
847aef6f
AM
792 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
793 if (ret)
794 free_percpu(acpi_perf_data);
795
796 return ret;
1da177e4
LT
797}
798
64be7eed 799static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
800{
801 dprintk("acpi_cpufreq_exit\n");
802
803 cpufreq_unregister_driver(&acpi_cpufreq_driver);
804
50109292 805 free_percpu(acpi_perf_data);
1da177e4
LT
806}
807
d395bf12 808module_param(acpi_pstate_strict, uint, 0644);
64be7eed 809MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
810 "value 0 or non-zero. non-zero -> strict ACPI checks are "
811 "performed during frequency changes.");
1da177e4
LT
812
813late_initcall(acpi_cpufreq_init);
814module_exit(acpi_cpufreq_exit);
815
816MODULE_ALIAS("acpi");