]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/cpu/cpufreq/acpi-cpufreq.c
cpumask: convert shared_cpu_map in acpi_processor* structs to cpumask_var_t
[net-next-2.6.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4 1/*
fe27cb35 2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
1da177e4
LT
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
fe27cb35 7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
1da177e4
LT
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
fe27cb35
VP
31#include <linux/smp.h>
32#include <linux/sched.h>
1da177e4 33#include <linux/cpufreq.h>
d395bf12 34#include <linux/compiler.h>
8adcc0c6 35#include <linux/dmi.h>
f3f47a67 36#include <linux/ftrace.h>
1da177e4
LT
37
38#include <linux/acpi.h>
39#include <acpi/processor.h>
40
fe27cb35 41#include <asm/io.h>
dde9f7ba 42#include <asm/msr.h>
fe27cb35
VP
43#include <asm/processor.h>
44#include <asm/cpufeature.h>
45#include <asm/delay.h>
46#include <asm/uaccess.h>
47
1da177e4
LT
48#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
49
50MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52MODULE_LICENSE("GPL");
53
dde9f7ba
VP
54enum {
55 UNDEFINED_CAPABLE = 0,
56 SYSTEM_INTEL_MSR_CAPABLE,
57 SYSTEM_IO_CAPABLE,
58};
59
60#define INTEL_MSR_RANGE (0xffff)
dfde5d62 61#define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
dde9f7ba 62
fe27cb35 63struct acpi_cpufreq_data {
64be7eed
VP
64 struct acpi_processor_performance *acpi_data;
65 struct cpufreq_frequency_table *freq_table;
dfde5d62 66 unsigned int max_freq;
64be7eed
VP
67 unsigned int resume;
68 unsigned int cpu_feature;
1da177e4
LT
69};
70
ea348f3e 71static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
72
50109292
FY
73/* acpi_perf_data is a pointer to percpu data. */
74static struct acpi_processor_performance *acpi_perf_data;
1da177e4
LT
75
76static struct cpufreq_driver acpi_cpufreq_driver;
77
d395bf12
VP
78static unsigned int acpi_pstate_strict;
79
dde9f7ba
VP
80static int check_est_cpu(unsigned int cpuid)
81{
92cb7612 82 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
dde9f7ba
VP
83
84 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
64be7eed 85 !cpu_has(cpu, X86_FEATURE_EST))
dde9f7ba
VP
86 return 0;
87
88 return 1;
89}
90
dde9f7ba 91static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
fe27cb35 92{
64be7eed
VP
93 struct acpi_processor_performance *perf;
94 int i;
fe27cb35
VP
95
96 perf = data->acpi_data;
97
95dd7227 98 for (i=0; i<perf->state_count; i++) {
fe27cb35
VP
99 if (value == perf->states[i].status)
100 return data->freq_table[i].frequency;
101 }
102 return 0;
103}
104
dde9f7ba
VP
105static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
106{
107 int i;
a6f6e6e6 108 struct acpi_processor_performance *perf;
dde9f7ba
VP
109
110 msr &= INTEL_MSR_RANGE;
a6f6e6e6
VP
111 perf = data->acpi_data;
112
95dd7227 113 for (i=0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
a6f6e6e6 114 if (msr == perf->states[data->freq_table[i].index].status)
dde9f7ba
VP
115 return data->freq_table[i].frequency;
116 }
117 return data->freq_table[0].frequency;
118}
119
dde9f7ba
VP
120static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
121{
122 switch (data->cpu_feature) {
64be7eed 123 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba 124 return extract_msr(val, data);
64be7eed 125 case SYSTEM_IO_CAPABLE:
dde9f7ba 126 return extract_io(val, data);
64be7eed 127 default:
dde9f7ba
VP
128 return 0;
129 }
130}
131
dde9f7ba
VP
132struct msr_addr {
133 u32 reg;
134};
135
fe27cb35
VP
136struct io_addr {
137 u16 port;
138 u8 bit_width;
139};
140
dde9f7ba
VP
141typedef union {
142 struct msr_addr msr;
143 struct io_addr io;
144} drv_addr_union;
145
fe27cb35 146struct drv_cmd {
dde9f7ba 147 unsigned int type;
fe27cb35 148 cpumask_t mask;
dde9f7ba 149 drv_addr_union addr;
fe27cb35
VP
150 u32 val;
151};
152
153static void do_drv_read(struct drv_cmd *cmd)
1da177e4 154{
dde9f7ba
VP
155 u32 h;
156
157 switch (cmd->type) {
64be7eed 158 case SYSTEM_INTEL_MSR_CAPABLE:
dde9f7ba
VP
159 rdmsr(cmd->addr.msr.reg, cmd->val, h);
160 break;
64be7eed 161 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
162 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
163 &cmd->val,
164 (u32)cmd->addr.io.bit_width);
dde9f7ba 165 break;
64be7eed 166 default:
dde9f7ba
VP
167 break;
168 }
fe27cb35 169}
1da177e4 170
fe27cb35
VP
171static void do_drv_write(struct drv_cmd *cmd)
172{
13424f65 173 u32 lo, hi;
dde9f7ba
VP
174
175 switch (cmd->type) {
64be7eed 176 case SYSTEM_INTEL_MSR_CAPABLE:
13424f65
VP
177 rdmsr(cmd->addr.msr.reg, lo, hi);
178 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
179 wrmsr(cmd->addr.msr.reg, lo, hi);
dde9f7ba 180 break;
64be7eed 181 case SYSTEM_IO_CAPABLE:
4e581ff1
VP
182 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
183 cmd->val,
184 (u32)cmd->addr.io.bit_width);
dde9f7ba 185 break;
64be7eed 186 default:
dde9f7ba
VP
187 break;
188 }
fe27cb35 189}
1da177e4 190
95dd7227 191static void drv_read(struct drv_cmd *cmd)
fe27cb35 192{
64be7eed 193 cpumask_t saved_mask = current->cpus_allowed;
fe27cb35
VP
194 cmd->val = 0;
195
fc0e4748 196 set_cpus_allowed_ptr(current, &cmd->mask);
fe27cb35 197 do_drv_read(cmd);
fc0e4748 198 set_cpus_allowed_ptr(current, &saved_mask);
fe27cb35
VP
199}
200
201static void drv_write(struct drv_cmd *cmd)
202{
64be7eed
VP
203 cpumask_t saved_mask = current->cpus_allowed;
204 unsigned int i;
fe27cb35 205
334ef7a7 206 for_each_cpu_mask_nr(i, cmd->mask) {
0bc3cc03 207 set_cpus_allowed_ptr(current, &cpumask_of_cpu(i));
fe27cb35 208 do_drv_write(cmd);
1da177e4
LT
209 }
210
fc0e4748 211 set_cpus_allowed_ptr(current, &saved_mask);
fe27cb35
VP
212 return;
213}
1da177e4 214
fc0e4748 215static u32 get_cur_val(const cpumask_t *mask)
fe27cb35 216{
64be7eed
VP
217 struct acpi_processor_performance *perf;
218 struct drv_cmd cmd;
1da177e4 219
fc0e4748 220 if (unlikely(cpus_empty(*mask)))
fe27cb35 221 return 0;
1da177e4 222
fc0e4748 223 switch (per_cpu(drv_data, first_cpu(*mask))->cpu_feature) {
dde9f7ba
VP
224 case SYSTEM_INTEL_MSR_CAPABLE:
225 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
226 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
227 break;
228 case SYSTEM_IO_CAPABLE:
229 cmd.type = SYSTEM_IO_CAPABLE;
fc0e4748 230 perf = per_cpu(drv_data, first_cpu(*mask))->acpi_data;
dde9f7ba
VP
231 cmd.addr.io.port = perf->control_register.address;
232 cmd.addr.io.bit_width = perf->control_register.bit_width;
233 break;
234 default:
235 return 0;
236 }
237
fc0e4748 238 cmd.mask = *mask;
1da177e4 239
fe27cb35 240 drv_read(&cmd);
1da177e4 241
fe27cb35
VP
242 dprintk("get_cur_val = %u\n", cmd.val);
243
244 return cmd.val;
245}
1da177e4 246
dfde5d62
VP
247/*
248 * Return the measured active (C0) frequency on this CPU since last call
249 * to this function.
250 * Input: cpu number
251 * Return: Average CPU frequency in terms of max frequency (zero on error)
252 *
253 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
254 * over a period of time, while CPU is in C0 state.
255 * IA32_MPERF counts at the rate of max advertised frequency
256 * IA32_APERF counts at the rate of actual CPU frequency
257 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
258 * no meaning should be associated with absolute values of these MSRs.
259 */
bf0b90e3 260static unsigned int get_measured_perf(struct cpufreq_policy *policy,
261 unsigned int cpu)
dfde5d62
VP
262{
263 union {
264 struct {
265 u32 lo;
266 u32 hi;
267 } split;
268 u64 whole;
269 } aperf_cur, mperf_cur;
270
271 cpumask_t saved_mask;
272 unsigned int perf_percent;
273 unsigned int retval;
274
275 saved_mask = current->cpus_allowed;
0bc3cc03 276 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
dfde5d62
VP
277 if (get_cpu() != cpu) {
278 /* We were not able to run on requested processor */
279 put_cpu();
280 return 0;
281 }
282
283 rdmsr(MSR_IA32_APERF, aperf_cur.split.lo, aperf_cur.split.hi);
284 rdmsr(MSR_IA32_MPERF, mperf_cur.split.lo, mperf_cur.split.hi);
285
286 wrmsr(MSR_IA32_APERF, 0,0);
287 wrmsr(MSR_IA32_MPERF, 0,0);
288
289#ifdef __i386__
290 /*
291 * We dont want to do 64 bit divide with 32 bit kernel
292 * Get an approximate value. Return failure in case we cannot get
293 * an approximate value.
294 */
295 if (unlikely(aperf_cur.split.hi || mperf_cur.split.hi)) {
296 int shift_count;
297 u32 h;
298
299 h = max_t(u32, aperf_cur.split.hi, mperf_cur.split.hi);
300 shift_count = fls(h);
301
302 aperf_cur.whole >>= shift_count;
303 mperf_cur.whole >>= shift_count;
304 }
305
306 if (((unsigned long)(-1) / 100) < aperf_cur.split.lo) {
307 int shift_count = 7;
308 aperf_cur.split.lo >>= shift_count;
309 mperf_cur.split.lo >>= shift_count;
310 }
311
95dd7227 312 if (aperf_cur.split.lo && mperf_cur.split.lo)
dfde5d62 313 perf_percent = (aperf_cur.split.lo * 100) / mperf_cur.split.lo;
95dd7227 314 else
dfde5d62 315 perf_percent = 0;
dfde5d62
VP
316
317#else
318 if (unlikely(((unsigned long)(-1) / 100) < aperf_cur.whole)) {
319 int shift_count = 7;
320 aperf_cur.whole >>= shift_count;
321 mperf_cur.whole >>= shift_count;
322 }
323
95dd7227 324 if (aperf_cur.whole && mperf_cur.whole)
dfde5d62 325 perf_percent = (aperf_cur.whole * 100) / mperf_cur.whole;
95dd7227 326 else
dfde5d62 327 perf_percent = 0;
dfde5d62
VP
328
329#endif
330
bf0b90e3 331 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
dfde5d62
VP
332
333 put_cpu();
fc0e4748 334 set_cpus_allowed_ptr(current, &saved_mask);
dfde5d62
VP
335
336 dprintk("cpu %d: performance percent %d\n", cpu, perf_percent);
337 return retval;
338}
339
fe27cb35
VP
340static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
341{
ea348f3e 342 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
64be7eed 343 unsigned int freq;
e56a727b 344 unsigned int cached_freq;
fe27cb35
VP
345
346 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
347
348 if (unlikely(data == NULL ||
64be7eed 349 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35 350 return 0;
1da177e4
LT
351 }
352
e56a727b 353 cached_freq = data->freq_table[data->acpi_data->state].frequency;
0bc3cc03 354 freq = extract_freq(get_cur_val(&cpumask_of_cpu(cpu)), data);
e56a727b
VP
355 if (freq != cached_freq) {
356 /*
357 * The dreaded BIOS frequency change behind our back.
358 * Force set the frequency on next target call.
359 */
360 data->resume = 1;
361 }
362
fe27cb35 363 dprintk("cur freq = %u\n", freq);
1da177e4 364
fe27cb35 365 return freq;
1da177e4
LT
366}
367
fc0e4748 368static unsigned int check_freqs(const cpumask_t *mask, unsigned int freq,
64be7eed 369 struct acpi_cpufreq_data *data)
fe27cb35 370{
64be7eed
VP
371 unsigned int cur_freq;
372 unsigned int i;
1da177e4 373
95dd7227 374 for (i=0; i<100; i++) {
fe27cb35
VP
375 cur_freq = extract_freq(get_cur_val(mask), data);
376 if (cur_freq == freq)
377 return 1;
378 udelay(10);
379 }
380 return 0;
381}
382
383static int acpi_cpufreq_target(struct cpufreq_policy *policy,
64be7eed 384 unsigned int target_freq, unsigned int relation)
1da177e4 385{
ea348f3e 386 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
64be7eed
VP
387 struct acpi_processor_performance *perf;
388 struct cpufreq_freqs freqs;
389 cpumask_t online_policy_cpus;
390 struct drv_cmd cmd;
8edc59d9
VP
391 unsigned int next_state = 0; /* Index into freq_table */
392 unsigned int next_perf_state = 0; /* Index into perf table */
64be7eed
VP
393 unsigned int i;
394 int result = 0;
f3f47a67 395 struct power_trace it;
fe27cb35
VP
396
397 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
398
399 if (unlikely(data == NULL ||
95dd7227 400 data->acpi_data == NULL || data->freq_table == NULL)) {
fe27cb35
VP
401 return -ENODEV;
402 }
1da177e4 403
fe27cb35 404 perf = data->acpi_data;
1da177e4 405 result = cpufreq_frequency_table_target(policy,
64be7eed
VP
406 data->freq_table,
407 target_freq,
408 relation, &next_state);
09b4d1ee 409 if (unlikely(result))
fe27cb35 410 return -ENODEV;
09b4d1ee 411
7e1f19e5 412#ifdef CONFIG_HOTPLUG_CPU
09b4d1ee
VP
413 /* cpufreq holds the hotplug lock, so we are safe from here on */
414 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
7e1f19e5
AM
415#else
416 online_policy_cpus = policy->cpus;
417#endif
1da177e4 418
fe27cb35 419 next_perf_state = data->freq_table[next_state].index;
7650b281 420 if (perf->state == next_perf_state) {
fe27cb35 421 if (unlikely(data->resume)) {
64be7eed
VP
422 dprintk("Called after resume, resetting to P%d\n",
423 next_perf_state);
fe27cb35
VP
424 data->resume = 0;
425 } else {
64be7eed
VP
426 dprintk("Already at target state (P%d)\n",
427 next_perf_state);
fe27cb35
VP
428 return 0;
429 }
09b4d1ee
VP
430 }
431
f3f47a67
AV
432 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
433
64be7eed
VP
434 switch (data->cpu_feature) {
435 case SYSTEM_INTEL_MSR_CAPABLE:
436 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
437 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
13424f65 438 cmd.val = (u32) perf->states[next_perf_state].control;
64be7eed
VP
439 break;
440 case SYSTEM_IO_CAPABLE:
441 cmd.type = SYSTEM_IO_CAPABLE;
442 cmd.addr.io.port = perf->control_register.address;
443 cmd.addr.io.bit_width = perf->control_register.bit_width;
444 cmd.val = (u32) perf->states[next_perf_state].control;
445 break;
446 default:
447 return -ENODEV;
448 }
09b4d1ee 449
fe27cb35 450 cpus_clear(cmd.mask);
09b4d1ee 451
fe27cb35
VP
452 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
453 cmd.mask = online_policy_cpus;
454 else
455 cpu_set(policy->cpu, cmd.mask);
09b4d1ee 456
8edc59d9
VP
457 freqs.old = perf->states[perf->state].core_frequency * 1000;
458 freqs.new = data->freq_table[next_state].frequency;
334ef7a7 459 for_each_cpu_mask_nr(i, cmd.mask) {
fe27cb35
VP
460 freqs.cpu = i;
461 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
09b4d1ee 462 }
1da177e4 463
fe27cb35 464 drv_write(&cmd);
09b4d1ee 465
fe27cb35 466 if (acpi_pstate_strict) {
fc0e4748 467 if (!check_freqs(&cmd.mask, freqs.new, data)) {
fe27cb35 468 dprintk("acpi_cpufreq_target failed (%d)\n",
64be7eed 469 policy->cpu);
fe27cb35 470 return -EAGAIN;
09b4d1ee
VP
471 }
472 }
473
334ef7a7 474 for_each_cpu_mask_nr(i, cmd.mask) {
fe27cb35
VP
475 freqs.cpu = i;
476 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
477 }
478 perf->state = next_perf_state;
479
480 return result;
1da177e4
LT
481}
482
64be7eed 483static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
1da177e4 484{
ea348f3e 485 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4
LT
486
487 dprintk("acpi_cpufreq_verify\n");
488
fe27cb35 489 return cpufreq_frequency_table_verify(policy, data->freq_table);
1da177e4
LT
490}
491
1da177e4 492static unsigned long
64be7eed 493acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
1da177e4 494{
64be7eed 495 struct acpi_processor_performance *perf = data->acpi_data;
09b4d1ee 496
1da177e4
LT
497 if (cpu_khz) {
498 /* search the closest match to cpu_khz */
499 unsigned int i;
500 unsigned long freq;
09b4d1ee 501 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 502
95dd7227 503 for (i=0; i<(perf->state_count-1); i++) {
1da177e4 504 freq = freqn;
95dd7227 505 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 506 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 507 perf->state = i;
64be7eed 508 return freq;
1da177e4
LT
509 }
510 }
95dd7227 511 perf->state = perf->state_count-1;
64be7eed 512 return freqn;
09b4d1ee 513 } else {
1da177e4 514 /* assume CPU is at P0... */
09b4d1ee
VP
515 perf->state = 0;
516 return perf->states[0].core_frequency * 1000;
517 }
1da177e4
LT
518}
519
2fdf66b4
RR
520static void free_acpi_perf_data(void)
521{
522 unsigned int i;
523
524 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
525 for_each_possible_cpu(i)
526 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
527 ->shared_cpu_map);
528 free_percpu(acpi_perf_data);
529}
530
09b4d1ee
VP
531/*
532 * acpi_cpufreq_early_init - initialize ACPI P-States library
533 *
534 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
535 * in order to determine correct frequency and voltage pairings. We can
536 * do _PDC and _PSD and find out the processor dependency for the
537 * actual init that will happen later...
538 */
50109292 539static int __init acpi_cpufreq_early_init(void)
09b4d1ee 540{
2fdf66b4 541 unsigned int i;
09b4d1ee
VP
542 dprintk("acpi_cpufreq_early_init\n");
543
50109292
FY
544 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
545 if (!acpi_perf_data) {
546 dprintk("Memory allocation error for acpi_perf_data.\n");
547 return -ENOMEM;
09b4d1ee 548 }
2fdf66b4
RR
549 for_each_possible_cpu(i) {
550 if (!alloc_cpumask_var(&per_cpu_ptr(acpi_perf_data, i)
551 ->shared_cpu_map, GFP_KERNEL)) {
552
553 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
554 free_acpi_perf_data();
555 return -ENOMEM;
556 }
557 }
09b4d1ee
VP
558
559 /* Do initialization in ACPI core */
fe27cb35
VP
560 acpi_processor_preregister_performance(acpi_perf_data);
561 return 0;
09b4d1ee
VP
562}
563
95625b8f 564#ifdef CONFIG_SMP
8adcc0c6
VP
565/*
566 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
567 * or do it in BIOS firmware and won't inform about it to OS. If not
568 * detected, this has a side effect of making CPU run at a different speed
569 * than OS intended it to run at. Detect it and handle it cleanly.
570 */
571static int bios_with_sw_any_bug;
572
1855256c 573static int sw_any_bug_found(const struct dmi_system_id *d)
8adcc0c6
VP
574{
575 bios_with_sw_any_bug = 1;
576 return 0;
577}
578
1855256c 579static const struct dmi_system_id sw_any_bug_dmi_table[] = {
8adcc0c6
VP
580 {
581 .callback = sw_any_bug_found,
582 .ident = "Supermicro Server X6DLP",
583 .matches = {
584 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
585 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
586 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
587 },
588 },
589 { }
590};
95625b8f 591#endif
8adcc0c6 592
64be7eed 593static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
1da177e4 594{
64be7eed
VP
595 unsigned int i;
596 unsigned int valid_states = 0;
597 unsigned int cpu = policy->cpu;
598 struct acpi_cpufreq_data *data;
64be7eed 599 unsigned int result = 0;
92cb7612 600 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
64be7eed 601 struct acpi_processor_performance *perf;
1da177e4 602
1da177e4 603 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 604
fe27cb35 605 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
1da177e4 606 if (!data)
64be7eed 607 return -ENOMEM;
1da177e4 608
50109292 609 data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
ea348f3e 610 per_cpu(drv_data, cpu) = data;
1da177e4 611
95dd7227 612 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
fe27cb35 613 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
1da177e4 614
fe27cb35 615 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
616 if (result)
617 goto err_free;
618
09b4d1ee 619 perf = data->acpi_data;
09b4d1ee 620 policy->shared_type = perf->shared_type;
95dd7227 621
46f18e3a 622 /*
95dd7227 623 * Will let policy->cpus know about dependency only when software
46f18e3a
VP
624 * coordination is required.
625 */
626 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
8adcc0c6 627 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
2fdf66b4 628 cpumask_copy(&policy->cpus, perf->shared_cpu_map);
8adcc0c6 629 }
2fdf66b4 630 cpumask_copy(&policy->related_cpus, perf->shared_cpu_map);
8adcc0c6
VP
631
632#ifdef CONFIG_SMP
633 dmi_check_system(sw_any_bug_dmi_table);
634 if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
635 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
08357611 636 policy->cpus = per_cpu(cpu_core_map, cpu);
8adcc0c6
VP
637 }
638#endif
09b4d1ee 639
1da177e4 640 /* capability check */
09b4d1ee 641 if (perf->state_count <= 1) {
1da177e4
LT
642 dprintk("No P-States\n");
643 result = -ENODEV;
644 goto err_unreg;
645 }
09b4d1ee 646
fe27cb35
VP
647 if (perf->control_register.space_id != perf->status_register.space_id) {
648 result = -ENODEV;
649 goto err_unreg;
650 }
651
652 switch (perf->control_register.space_id) {
64be7eed 653 case ACPI_ADR_SPACE_SYSTEM_IO:
fe27cb35 654 dprintk("SYSTEM IO addr space\n");
dde9f7ba
VP
655 data->cpu_feature = SYSTEM_IO_CAPABLE;
656 break;
64be7eed 657 case ACPI_ADR_SPACE_FIXED_HARDWARE:
dde9f7ba
VP
658 dprintk("HARDWARE addr space\n");
659 if (!check_est_cpu(cpu)) {
660 result = -ENODEV;
661 goto err_unreg;
662 }
663 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
fe27cb35 664 break;
64be7eed 665 default:
fe27cb35 666 dprintk("Unknown addr space %d\n",
64be7eed 667 (u32) (perf->control_register.space_id));
1da177e4
LT
668 result = -ENODEV;
669 goto err_unreg;
670 }
671
95dd7227
DJ
672 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
673 (perf->state_count+1), GFP_KERNEL);
1da177e4
LT
674 if (!data->freq_table) {
675 result = -ENOMEM;
676 goto err_unreg;
677 }
678
679 /* detect transition latency */
680 policy->cpuinfo.transition_latency = 0;
95dd7227 681 for (i=0; i<perf->state_count; i++) {
64be7eed
VP
682 if ((perf->states[i].transition_latency * 1000) >
683 policy->cpuinfo.transition_latency)
684 policy->cpuinfo.transition_latency =
685 perf->states[i].transition_latency * 1000;
1da177e4 686 }
1da177e4 687
dfde5d62 688 data->max_freq = perf->states[0].core_frequency * 1000;
1da177e4 689 /* table init */
95dd7227 690 for (i=0; i<perf->state_count; i++) {
3cdf552b
ZR
691 if (i>0 && perf->states[i].core_frequency >=
692 data->freq_table[valid_states-1].frequency / 1000)
fe27cb35
VP
693 continue;
694
695 data->freq_table[valid_states].index = i;
696 data->freq_table[valid_states].frequency =
64be7eed 697 perf->states[i].core_frequency * 1000;
fe27cb35 698 valid_states++;
1da177e4 699 }
3d4a7ef3 700 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
8edc59d9 701 perf->state = 0;
1da177e4
LT
702
703 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
95dd7227 704 if (result)
1da177e4 705 goto err_freqfree;
1da177e4 706
a507ac4b 707 switch (perf->control_register.space_id) {
64be7eed 708 case ACPI_ADR_SPACE_SYSTEM_IO:
dde9f7ba
VP
709 /* Current speed is unknown and not detectable by IO port */
710 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
711 break;
64be7eed 712 case ACPI_ADR_SPACE_FIXED_HARDWARE:
7650b281 713 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
a507ac4b 714 policy->cur = get_cur_freq_on_cpu(cpu);
dde9f7ba 715 break;
64be7eed 716 default:
dde9f7ba
VP
717 break;
718 }
719
1da177e4
LT
720 /* notify BIOS that we exist */
721 acpi_processor_notify_smm(THIS_MODULE);
722
dfde5d62
VP
723 /* Check for APERF/MPERF support in hardware */
724 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
725 unsigned int ecx;
726 ecx = cpuid_ecx(6);
95dd7227 727 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
dfde5d62 728 acpi_cpufreq_driver.getavg = get_measured_perf;
dfde5d62
VP
729 }
730
fe27cb35 731 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
09b4d1ee 732 for (i = 0; i < perf->state_count; i++)
1da177e4 733 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
64be7eed 734 (i == perf->state ? '*' : ' '), i,
09b4d1ee
VP
735 (u32) perf->states[i].core_frequency,
736 (u32) perf->states[i].power,
737 (u32) perf->states[i].transition_latency);
1da177e4
LT
738
739 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
64be7eed 740
4b31e774
DB
741 /*
742 * the first call to ->target() should result in us actually
743 * writing something to the appropriate registers.
744 */
745 data->resume = 1;
64be7eed 746
fe27cb35 747 return result;
1da177e4 748
95dd7227 749err_freqfree:
1da177e4 750 kfree(data->freq_table);
95dd7227 751err_unreg:
09b4d1ee 752 acpi_processor_unregister_performance(perf, cpu);
95dd7227 753err_free:
1da177e4 754 kfree(data);
ea348f3e 755 per_cpu(drv_data, cpu) = NULL;
1da177e4 756
64be7eed 757 return result;
1da177e4
LT
758}
759
64be7eed 760static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
1da177e4 761{
ea348f3e 762 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 763
1da177e4
LT
764 dprintk("acpi_cpufreq_cpu_exit\n");
765
766 if (data) {
767 cpufreq_frequency_table_put_attr(policy->cpu);
ea348f3e 768 per_cpu(drv_data, policy->cpu) = NULL;
64be7eed
VP
769 acpi_processor_unregister_performance(data->acpi_data,
770 policy->cpu);
1da177e4
LT
771 kfree(data);
772 }
773
64be7eed 774 return 0;
1da177e4
LT
775}
776
64be7eed 777static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
1da177e4 778{
ea348f3e 779 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
1da177e4 780
1da177e4
LT
781 dprintk("acpi_cpufreq_resume\n");
782
783 data->resume = 1;
784
64be7eed 785 return 0;
1da177e4
LT
786}
787
64be7eed 788static struct freq_attr *acpi_cpufreq_attr[] = {
1da177e4
LT
789 &cpufreq_freq_attr_scaling_available_freqs,
790 NULL,
791};
792
793static struct cpufreq_driver acpi_cpufreq_driver = {
64be7eed
VP
794 .verify = acpi_cpufreq_verify,
795 .target = acpi_cpufreq_target,
64be7eed
VP
796 .init = acpi_cpufreq_cpu_init,
797 .exit = acpi_cpufreq_cpu_exit,
798 .resume = acpi_cpufreq_resume,
799 .name = "acpi-cpufreq",
800 .owner = THIS_MODULE,
801 .attr = acpi_cpufreq_attr,
1da177e4
LT
802};
803
64be7eed 804static int __init acpi_cpufreq_init(void)
1da177e4 805{
50109292
FY
806 int ret;
807
ee297533
YL
808 if (acpi_disabled)
809 return 0;
810
1da177e4
LT
811 dprintk("acpi_cpufreq_init\n");
812
50109292
FY
813 ret = acpi_cpufreq_early_init();
814 if (ret)
815 return ret;
09b4d1ee 816
847aef6f
AM
817 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
818 if (ret)
2fdf66b4 819 free_acpi_perf_data();
847aef6f
AM
820
821 return ret;
1da177e4
LT
822}
823
64be7eed 824static void __exit acpi_cpufreq_exit(void)
1da177e4
LT
825{
826 dprintk("acpi_cpufreq_exit\n");
827
828 cpufreq_unregister_driver(&acpi_cpufreq_driver);
829
50109292 830 free_percpu(acpi_perf_data);
1da177e4
LT
831}
832
d395bf12 833module_param(acpi_pstate_strict, uint, 0644);
64be7eed 834MODULE_PARM_DESC(acpi_pstate_strict,
95dd7227
DJ
835 "value 0 or non-zero. non-zero -> strict ACPI checks are "
836 "performed during frequency changes.");
1da177e4
LT
837
838late_initcall(acpi_cpufreq_init);
839module_exit(acpi_cpufreq_exit);
840
841MODULE_ALIAS("acpi");