]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/amd_iommu_init.c
x86: GART: Convert gart_iommu_hole_init() to use iommu_init hook
[net-next-2.6.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6
JR
27#include <asm/pci-direct.h>
28#include <asm/amd_iommu_types.h>
c6da992e 29#include <asm/amd_iommu.h>
46a7fa27 30#include <asm/iommu.h>
1d9b16d1 31#include <asm/gart.h>
f6e2e6b6
JR
32
33/*
34 * definitions for the ACPI scanning code
35 */
f6e2e6b6 36#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
37
38#define ACPI_IVHD_TYPE 0x10
39#define ACPI_IVMD_TYPE_ALL 0x20
40#define ACPI_IVMD_TYPE 0x21
41#define ACPI_IVMD_TYPE_RANGE 0x22
42
43#define IVHD_DEV_ALL 0x01
44#define IVHD_DEV_SELECT 0x02
45#define IVHD_DEV_SELECT_RANGE_START 0x03
46#define IVHD_DEV_RANGE_END 0x04
47#define IVHD_DEV_ALIAS 0x42
48#define IVHD_DEV_ALIAS_RANGE 0x43
49#define IVHD_DEV_EXT_SELECT 0x46
50#define IVHD_DEV_EXT_SELECT_RANGE 0x47
51
6da7342f
JR
52#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
53#define IVHD_FLAG_PASSPW_EN_MASK 0x02
54#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
55#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
56
57#define IVMD_FLAG_EXCL_RANGE 0x08
58#define IVMD_FLAG_UNITY_MAP 0x01
59
60#define ACPI_DEVFLAG_INITPASS 0x01
61#define ACPI_DEVFLAG_EXTINT 0x02
62#define ACPI_DEVFLAG_NMI 0x04
63#define ACPI_DEVFLAG_SYSMGT1 0x10
64#define ACPI_DEVFLAG_SYSMGT2 0x20
65#define ACPI_DEVFLAG_LINT0 0x40
66#define ACPI_DEVFLAG_LINT1 0x80
67#define ACPI_DEVFLAG_ATSDIS 0x10000000
68
b65233a9
JR
69/*
70 * ACPI table definitions
71 *
72 * These data structures are laid over the table to parse the important values
73 * out of it.
74 */
75
76/*
77 * structure describing one IOMMU in the ACPI table. Typically followed by one
78 * or more ivhd_entrys.
79 */
f6e2e6b6
JR
80struct ivhd_header {
81 u8 type;
82 u8 flags;
83 u16 length;
84 u16 devid;
85 u16 cap_ptr;
86 u64 mmio_phys;
87 u16 pci_seg;
88 u16 info;
89 u32 reserved;
90} __attribute__((packed));
91
b65233a9
JR
92/*
93 * A device entry describing which devices a specific IOMMU translates and
94 * which requestor ids they use.
95 */
f6e2e6b6
JR
96struct ivhd_entry {
97 u8 type;
98 u16 devid;
99 u8 flags;
100 u32 ext;
101} __attribute__((packed));
102
b65233a9
JR
103/*
104 * An AMD IOMMU memory definition structure. It defines things like exclusion
105 * ranges for devices and regions that should be unity mapped.
106 */
f6e2e6b6
JR
107struct ivmd_header {
108 u8 type;
109 u8 flags;
110 u16 length;
111 u16 devid;
112 u16 aux;
113 u64 resv;
114 u64 range_start;
115 u64 range_length;
116} __attribute__((packed));
117
fefda117
JR
118bool amd_iommu_dump;
119
c1cbebee
JR
120static int __initdata amd_iommu_detected;
121
b65233a9
JR
122u16 amd_iommu_last_bdf; /* largest PCI device id we have
123 to handle */
2e22847f 124LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 125 we find in ACPI */
2e8b5696
JR
126#ifdef CONFIG_IOMMU_STRESS
127bool amd_iommu_isolate = false;
128#else
c226f853
JR
129bool amd_iommu_isolate = true; /* if true, device isolation is
130 enabled */
2e8b5696
JR
131#endif
132
afa9fdc2 133bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 134
2e22847f 135LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 136 system */
928abd25 137
b65233a9
JR
138/*
139 * Pointer to the device table which is shared by all AMD IOMMUs
140 * it is indexed by the PCI device id or the HT unit id and contains
141 * information about the domain the device belongs to as well as the
142 * page table root pointer.
143 */
928abd25 144struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
145
146/*
147 * The alias table is a driver specific data structure which contains the
148 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
149 * More than one device can share the same requestor id.
150 */
928abd25 151u16 *amd_iommu_alias_table;
b65233a9
JR
152
153/*
154 * The rlookup table is used to find the IOMMU which is responsible
155 * for a specific device. It is also indexed by the PCI device id.
156 */
928abd25 157struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
158
159/*
160 * The pd table (protection domain table) is used to find the protection domain
161 * data structure a device belongs to. Indexed with the PCI device id too.
162 */
928abd25 163struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
164
165/*
166 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
167 * to know which ones are already in use.
168 */
928abd25
JR
169unsigned long *amd_iommu_pd_alloc_bitmap;
170
b65233a9
JR
171static u32 dev_table_size; /* size of the device table */
172static u32 alias_table_size; /* size of the alias table */
173static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 174
208ec8c9
JR
175static inline void update_last_devid(u16 devid)
176{
177 if (devid > amd_iommu_last_bdf)
178 amd_iommu_last_bdf = devid;
179}
180
c571484e
JR
181static inline unsigned long tbl_size(int entry_size)
182{
183 unsigned shift = PAGE_SHIFT +
421f909c 184 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
185
186 return 1UL << shift;
187}
188
b65233a9
JR
189/****************************************************************************
190 *
191 * AMD IOMMU MMIO register space handling functions
192 *
193 * These functions are used to program the IOMMU device registers in
194 * MMIO space required for that driver.
195 *
196 ****************************************************************************/
3e8064ba 197
b65233a9
JR
198/*
199 * This function set the exclusion range in the IOMMU. DMA accesses to the
200 * exclusion range are passed through untranslated
201 */
05f92db9 202static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
203{
204 u64 start = iommu->exclusion_start & PAGE_MASK;
205 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
206 u64 entry;
207
208 if (!iommu->exclusion_start)
209 return;
210
211 entry = start | MMIO_EXCL_ENABLE_MASK;
212 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
213 &entry, sizeof(entry));
214
215 entry = limit;
216 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
217 &entry, sizeof(entry));
218}
219
b65233a9 220/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
221static void __init iommu_set_device_table(struct amd_iommu *iommu)
222{
f609891f 223 u64 entry;
b2026aa2
JR
224
225 BUG_ON(iommu->mmio_base == NULL);
226
227 entry = virt_to_phys(amd_iommu_dev_table);
228 entry |= (dev_table_size >> 12) - 1;
229 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
230 &entry, sizeof(entry));
231}
232
b65233a9 233/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 234static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
235{
236 u32 ctrl;
237
238 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
239 ctrl |= (1 << bit);
240 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
241}
242
ca020711 243static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
244{
245 u32 ctrl;
246
199d0d50 247 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
248 ctrl &= ~(1 << bit);
249 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
250}
251
b65233a9 252/* Function to enable the hardware */
05f92db9 253static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 254{
4c6f40d4 255 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 256 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
257
258 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
259}
260
92ac4320 261static void iommu_disable(struct amd_iommu *iommu)
126c52be 262{
a8c485bb
CW
263 /* Disable command buffer */
264 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
265
266 /* Disable event logging and event interrupts */
267 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
268 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
269
270 /* Disable IOMMU hardware itself */
92ac4320 271 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
272}
273
b65233a9
JR
274/*
275 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
276 * the system has one.
277 */
6c56747b
JR
278static u8 * __init iommu_map_mmio_space(u64 address)
279{
280 u8 *ret;
281
282 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
283 return NULL;
284
285 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
286 if (ret != NULL)
287 return ret;
288
289 release_mem_region(address, MMIO_REGION_LENGTH);
290
291 return NULL;
292}
293
294static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
295{
296 if (iommu->mmio_base)
297 iounmap(iommu->mmio_base);
298 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
299}
300
b65233a9
JR
301/****************************************************************************
302 *
303 * The functions below belong to the first pass of AMD IOMMU ACPI table
304 * parsing. In this pass we try to find out the highest device id this
305 * code has to handle. Upon this information the size of the shared data
306 * structures is determined later.
307 *
308 ****************************************************************************/
309
b514e555
JR
310/*
311 * This function calculates the length of a given IVHD entry
312 */
313static inline int ivhd_entry_length(u8 *ivhd)
314{
315 return 0x04 << (*ivhd >> 6);
316}
317
b65233a9
JR
318/*
319 * This function reads the last device id the IOMMU has to handle from the PCI
320 * capability header for this IOMMU
321 */
3e8064ba
JR
322static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
323{
324 u32 cap;
325
326 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 327 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
328
329 return 0;
330}
331
b65233a9
JR
332/*
333 * After reading the highest device id from the IOMMU PCI capability header
334 * this function looks if there is a higher device id defined in the ACPI table
335 */
3e8064ba
JR
336static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
337{
338 u8 *p = (void *)h, *end = (void *)h;
339 struct ivhd_entry *dev;
340
341 p += sizeof(*h);
342 end += h->length;
343
344 find_last_devid_on_pci(PCI_BUS(h->devid),
345 PCI_SLOT(h->devid),
346 PCI_FUNC(h->devid),
347 h->cap_ptr);
348
349 while (p < end) {
350 dev = (struct ivhd_entry *)p;
351 switch (dev->type) {
352 case IVHD_DEV_SELECT:
353 case IVHD_DEV_RANGE_END:
354 case IVHD_DEV_ALIAS:
355 case IVHD_DEV_EXT_SELECT:
b65233a9 356 /* all the above subfield types refer to device ids */
208ec8c9 357 update_last_devid(dev->devid);
3e8064ba
JR
358 break;
359 default:
360 break;
361 }
b514e555 362 p += ivhd_entry_length(p);
3e8064ba
JR
363 }
364
365 WARN_ON(p != end);
366
367 return 0;
368}
369
b65233a9
JR
370/*
371 * Iterate over all IVHD entries in the ACPI table and find the highest device
372 * id which we need to handle. This is the first of three functions which parse
373 * the ACPI table. So we check the checksum here.
374 */
3e8064ba
JR
375static int __init find_last_devid_acpi(struct acpi_table_header *table)
376{
377 int i;
378 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
379 struct ivhd_header *h;
380
381 /*
382 * Validate checksum here so we don't need to do it when
383 * we actually parse the table
384 */
385 for (i = 0; i < table->length; ++i)
386 checksum += p[i];
387 if (checksum != 0)
388 /* ACPI table corrupt */
389 return -ENODEV;
390
391 p += IVRS_HEADER_LENGTH;
392
393 end += table->length;
394 while (p < end) {
395 h = (struct ivhd_header *)p;
396 switch (h->type) {
397 case ACPI_IVHD_TYPE:
398 find_last_devid_from_ivhd(h);
399 break;
400 default:
401 break;
402 }
403 p += h->length;
404 }
405 WARN_ON(p != end);
406
407 return 0;
408}
409
b65233a9
JR
410/****************************************************************************
411 *
412 * The following functions belong the the code path which parses the ACPI table
413 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
414 * data structures, initialize the device/alias/rlookup table and also
415 * basically initialize the hardware.
416 *
417 ****************************************************************************/
418
419/*
420 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
421 * write commands to that buffer later and the IOMMU will execute them
422 * asynchronously
423 */
b36ca91e
JR
424static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
425{
d0312b21 426 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 427 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
428
429 if (cmd_buf == NULL)
430 return NULL;
431
432 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
433
58492e12
JR
434 return cmd_buf;
435}
436
93f1cc67
JR
437/*
438 * This function resets the command buffer if the IOMMU stopped fetching
439 * commands from it.
440 */
441void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
442{
443 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
444
445 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
446 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
447
448 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
449}
450
58492e12
JR
451/*
452 * This function writes the command buffer address to the hardware and
453 * enables it.
454 */
455static void iommu_enable_command_buffer(struct amd_iommu *iommu)
456{
457 u64 entry;
458
459 BUG_ON(iommu->cmd_buf == NULL);
460
461 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 462 entry |= MMIO_CMD_SIZE_512;
58492e12 463
b36ca91e 464 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 465 &entry, sizeof(entry));
b36ca91e 466
93f1cc67 467 amd_iommu_reset_cmd_buffer(iommu);
b36ca91e
JR
468}
469
470static void __init free_command_buffer(struct amd_iommu *iommu)
471{
23c1713f
JR
472 free_pages((unsigned long)iommu->cmd_buf,
473 get_order(iommu->cmd_buf_size));
b36ca91e
JR
474}
475
335503e5
JR
476/* allocates the memory where the IOMMU will log its events to */
477static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
478{
335503e5
JR
479 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
480 get_order(EVT_BUFFER_SIZE));
481
482 if (iommu->evt_buf == NULL)
483 return NULL;
484
1bc6f838
JR
485 iommu->evt_buf_size = EVT_BUFFER_SIZE;
486
58492e12
JR
487 return iommu->evt_buf;
488}
489
490static void iommu_enable_event_buffer(struct amd_iommu *iommu)
491{
492 u64 entry;
493
494 BUG_ON(iommu->evt_buf == NULL);
495
335503e5 496 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 497
335503e5
JR
498 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
499 &entry, sizeof(entry));
500
09067207
JR
501 /* set head and tail to zero manually */
502 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
503 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
504
58492e12 505 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
506}
507
508static void __init free_event_buffer(struct amd_iommu *iommu)
509{
510 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
511}
512
b65233a9 513/* sets a specific bit in the device table entry. */
3566b778
JR
514static void set_dev_entry_bit(u16 devid, u8 bit)
515{
516 int i = (bit >> 5) & 0x07;
517 int _bit = bit & 0x1f;
518
519 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
520}
521
c5cca146
JR
522static int get_dev_entry_bit(u16 devid, u8 bit)
523{
524 int i = (bit >> 5) & 0x07;
525 int _bit = bit & 0x1f;
526
527 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
528}
529
530
531void amd_iommu_apply_erratum_63(u16 devid)
532{
533 int sysmgt;
534
535 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
536 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
537
538 if (sysmgt == 0x01)
539 set_dev_entry_bit(devid, DEV_ENTRY_IW);
540}
541
5ff4789d
JR
542/* Writes the specific IOMMU for a device into the rlookup table */
543static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
544{
545 amd_iommu_rlookup_table[devid] = iommu;
546}
547
b65233a9
JR
548/*
549 * This function takes the device specific flags read from the ACPI
550 * table and sets up the device table entry with that information
551 */
5ff4789d
JR
552static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
553 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
554{
555 if (flags & ACPI_DEVFLAG_INITPASS)
556 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
557 if (flags & ACPI_DEVFLAG_EXTINT)
558 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
559 if (flags & ACPI_DEVFLAG_NMI)
560 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
561 if (flags & ACPI_DEVFLAG_SYSMGT1)
562 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
563 if (flags & ACPI_DEVFLAG_SYSMGT2)
564 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
565 if (flags & ACPI_DEVFLAG_LINT0)
566 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
567 if (flags & ACPI_DEVFLAG_LINT1)
568 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 569
c5cca146
JR
570 amd_iommu_apply_erratum_63(devid);
571
5ff4789d 572 set_iommu_for_device(iommu, devid);
3566b778
JR
573}
574
b65233a9
JR
575/*
576 * Reads the device exclusion range from ACPI and initialize IOMMU with
577 * it
578 */
3566b778
JR
579static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
580{
581 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
582
583 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
584 return;
585
586 if (iommu) {
b65233a9
JR
587 /*
588 * We only can configure exclusion ranges per IOMMU, not
589 * per device. But we can enable the exclusion range per
590 * device. This is done here
591 */
3566b778
JR
592 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
593 iommu->exclusion_start = m->range_start;
594 iommu->exclusion_length = m->range_length;
595 }
596}
597
b65233a9
JR
598/*
599 * This function reads some important data from the IOMMU PCI space and
600 * initializes the driver data structure with it. It reads the hardware
601 * capabilities and the first/last device entries
602 */
5d0c8e49
JR
603static void __init init_iommu_from_pci(struct amd_iommu *iommu)
604{
5d0c8e49 605 int cap_ptr = iommu->cap_ptr;
a80dc3e0 606 u32 range, misc;
5d0c8e49 607
3eaf28a1
JR
608 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
609 &iommu->cap);
610 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
611 &range);
a80dc3e0
JR
612 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
613 &misc);
5d0c8e49 614
d591b0a3
JR
615 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
616 MMIO_GET_FD(range));
617 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
618 MMIO_GET_LD(range));
a80dc3e0 619 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
620}
621
b65233a9
JR
622/*
623 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
624 * initializes the hardware and our data structures with it.
625 */
5d0c8e49
JR
626static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
627 struct ivhd_header *h)
628{
629 u8 *p = (u8 *)h;
630 u8 *end = p, flags = 0;
631 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
632 u32 ext_flags = 0;
58a3bee5 633 bool alias = false;
5d0c8e49
JR
634 struct ivhd_entry *e;
635
636 /*
637 * First set the recommended feature enable bits from ACPI
638 * into the IOMMU control registers
639 */
6da7342f 640 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
641 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
642 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
643
6da7342f 644 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
645 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
646 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
647
6da7342f 648 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
649 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
650 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
651
6da7342f 652 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
653 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
654 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
655
656 /*
657 * make IOMMU memory accesses cache coherent
658 */
659 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
660
661 /*
662 * Done. Now parse the device entries
663 */
664 p += sizeof(struct ivhd_header);
665 end += h->length;
666
42a698f4 667
5d0c8e49
JR
668 while (p < end) {
669 e = (struct ivhd_entry *)p;
670 switch (e->type) {
671 case IVHD_DEV_ALL:
42a698f4
JR
672
673 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
674 " last device %02x:%02x.%x flags: %02x\n",
675 PCI_BUS(iommu->first_device),
676 PCI_SLOT(iommu->first_device),
677 PCI_FUNC(iommu->first_device),
678 PCI_BUS(iommu->last_device),
679 PCI_SLOT(iommu->last_device),
680 PCI_FUNC(iommu->last_device),
681 e->flags);
682
5d0c8e49
JR
683 for (dev_i = iommu->first_device;
684 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
685 set_dev_entry_from_acpi(iommu, dev_i,
686 e->flags, 0);
5d0c8e49
JR
687 break;
688 case IVHD_DEV_SELECT:
42a698f4
JR
689
690 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
691 "flags: %02x\n",
692 PCI_BUS(e->devid),
693 PCI_SLOT(e->devid),
694 PCI_FUNC(e->devid),
695 e->flags);
696
5d0c8e49 697 devid = e->devid;
5ff4789d 698 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
699 break;
700 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
701
702 DUMP_printk(" DEV_SELECT_RANGE_START\t "
703 "devid: %02x:%02x.%x flags: %02x\n",
704 PCI_BUS(e->devid),
705 PCI_SLOT(e->devid),
706 PCI_FUNC(e->devid),
707 e->flags);
708
5d0c8e49
JR
709 devid_start = e->devid;
710 flags = e->flags;
711 ext_flags = 0;
58a3bee5 712 alias = false;
5d0c8e49
JR
713 break;
714 case IVHD_DEV_ALIAS:
42a698f4
JR
715
716 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
717 "flags: %02x devid_to: %02x:%02x.%x\n",
718 PCI_BUS(e->devid),
719 PCI_SLOT(e->devid),
720 PCI_FUNC(e->devid),
721 e->flags,
722 PCI_BUS(e->ext >> 8),
723 PCI_SLOT(e->ext >> 8),
724 PCI_FUNC(e->ext >> 8));
725
5d0c8e49
JR
726 devid = e->devid;
727 devid_to = e->ext >> 8;
7a6a3a08 728 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 729 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
730 amd_iommu_alias_table[devid] = devid_to;
731 break;
732 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
733
734 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
735 "devid: %02x:%02x.%x flags: %02x "
736 "devid_to: %02x:%02x.%x\n",
737 PCI_BUS(e->devid),
738 PCI_SLOT(e->devid),
739 PCI_FUNC(e->devid),
740 e->flags,
741 PCI_BUS(e->ext >> 8),
742 PCI_SLOT(e->ext >> 8),
743 PCI_FUNC(e->ext >> 8));
744
5d0c8e49
JR
745 devid_start = e->devid;
746 flags = e->flags;
747 devid_to = e->ext >> 8;
748 ext_flags = 0;
58a3bee5 749 alias = true;
5d0c8e49
JR
750 break;
751 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
752
753 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
754 "flags: %02x ext: %08x\n",
755 PCI_BUS(e->devid),
756 PCI_SLOT(e->devid),
757 PCI_FUNC(e->devid),
758 e->flags, e->ext);
759
5d0c8e49 760 devid = e->devid;
5ff4789d
JR
761 set_dev_entry_from_acpi(iommu, devid, e->flags,
762 e->ext);
5d0c8e49
JR
763 break;
764 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
765
766 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
767 "%02x:%02x.%x flags: %02x ext: %08x\n",
768 PCI_BUS(e->devid),
769 PCI_SLOT(e->devid),
770 PCI_FUNC(e->devid),
771 e->flags, e->ext);
772
5d0c8e49
JR
773 devid_start = e->devid;
774 flags = e->flags;
775 ext_flags = e->ext;
58a3bee5 776 alias = false;
5d0c8e49
JR
777 break;
778 case IVHD_DEV_RANGE_END:
42a698f4
JR
779
780 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
781 PCI_BUS(e->devid),
782 PCI_SLOT(e->devid),
783 PCI_FUNC(e->devid));
784
5d0c8e49
JR
785 devid = e->devid;
786 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 787 if (alias) {
5d0c8e49 788 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
789 set_dev_entry_from_acpi(iommu,
790 devid_to, flags, ext_flags);
791 }
792 set_dev_entry_from_acpi(iommu, dev_i,
793 flags, ext_flags);
5d0c8e49
JR
794 }
795 break;
796 default:
797 break;
798 }
799
b514e555 800 p += ivhd_entry_length(p);
5d0c8e49
JR
801 }
802}
803
b65233a9 804/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
805static int __init init_iommu_devices(struct amd_iommu *iommu)
806{
807 u16 i;
808
809 for (i = iommu->first_device; i <= iommu->last_device; ++i)
810 set_iommu_for_device(iommu, i);
811
812 return 0;
813}
814
e47d402d
JR
815static void __init free_iommu_one(struct amd_iommu *iommu)
816{
817 free_command_buffer(iommu);
335503e5 818 free_event_buffer(iommu);
e47d402d
JR
819 iommu_unmap_mmio_space(iommu);
820}
821
822static void __init free_iommu_all(void)
823{
824 struct amd_iommu *iommu, *next;
825
3bd22172 826 for_each_iommu_safe(iommu, next) {
e47d402d
JR
827 list_del(&iommu->list);
828 free_iommu_one(iommu);
829 kfree(iommu);
830 }
831}
832
b65233a9
JR
833/*
834 * This function clues the initialization function for one IOMMU
835 * together and also allocates the command buffer and programs the
836 * hardware. It does NOT enable the IOMMU. This is done afterwards.
837 */
e47d402d
JR
838static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
839{
840 spin_lock_init(&iommu->lock);
841 list_add_tail(&iommu->list, &amd_iommu_list);
842
843 /*
844 * Copy data from ACPI table entry to the iommu struct
845 */
3eaf28a1
JR
846 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
847 if (!iommu->dev)
848 return 1;
849
e47d402d 850 iommu->cap_ptr = h->cap_ptr;
ee893c24 851 iommu->pci_seg = h->pci_seg;
e47d402d
JR
852 iommu->mmio_phys = h->mmio_phys;
853 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
854 if (!iommu->mmio_base)
855 return -ENOMEM;
856
e47d402d
JR
857 iommu->cmd_buf = alloc_command_buffer(iommu);
858 if (!iommu->cmd_buf)
859 return -ENOMEM;
860
335503e5
JR
861 iommu->evt_buf = alloc_event_buffer(iommu);
862 if (!iommu->evt_buf)
863 return -ENOMEM;
864
a80dc3e0
JR
865 iommu->int_enabled = false;
866
e47d402d
JR
867 init_iommu_from_pci(iommu);
868 init_iommu_from_acpi(iommu, h);
869 init_iommu_devices(iommu);
870
8a66712b 871 return pci_enable_device(iommu->dev);
e47d402d
JR
872}
873
b65233a9
JR
874/*
875 * Iterates over all IOMMU entries in the ACPI table, allocates the
876 * IOMMU structure and initializes it with init_iommu_one()
877 */
e47d402d
JR
878static int __init init_iommu_all(struct acpi_table_header *table)
879{
880 u8 *p = (u8 *)table, *end = (u8 *)table;
881 struct ivhd_header *h;
882 struct amd_iommu *iommu;
883 int ret;
884
e47d402d
JR
885 end += table->length;
886 p += IVRS_HEADER_LENGTH;
887
888 while (p < end) {
889 h = (struct ivhd_header *)p;
890 switch (*p) {
891 case ACPI_IVHD_TYPE:
9c72041f 892
ae908c22 893 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
9c72041f
JR
894 "seg: %d flags: %01x info %04x\n",
895 PCI_BUS(h->devid), PCI_SLOT(h->devid),
896 PCI_FUNC(h->devid), h->cap_ptr,
897 h->pci_seg, h->flags, h->info);
898 DUMP_printk(" mmio-addr: %016llx\n",
899 h->mmio_phys);
900
e47d402d
JR
901 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
902 if (iommu == NULL)
903 return -ENOMEM;
904 ret = init_iommu_one(iommu, h);
905 if (ret)
906 return ret;
907 break;
908 default:
909 break;
910 }
911 p += h->length;
912
913 }
914 WARN_ON(p != end);
915
916 return 0;
917}
918
a80dc3e0
JR
919/****************************************************************************
920 *
921 * The following functions initialize the MSI interrupts for all IOMMUs
922 * in the system. Its a bit challenging because there could be multiple
923 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
924 * pci_dev.
925 *
926 ****************************************************************************/
927
a80dc3e0
JR
928static int __init iommu_setup_msi(struct amd_iommu *iommu)
929{
930 int r;
a80dc3e0
JR
931
932 if (pci_enable_msi(iommu->dev))
933 return 1;
934
935 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
936 IRQF_SAMPLE_RANDOM,
4c6f40d4 937 "AMD-Vi",
a80dc3e0
JR
938 NULL);
939
940 if (r) {
941 pci_disable_msi(iommu->dev);
942 return 1;
943 }
944
fab6afa3 945 iommu->int_enabled = true;
58492e12
JR
946 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
947
a80dc3e0
JR
948 return 0;
949}
950
05f92db9 951static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
952{
953 if (iommu->int_enabled)
954 return 0;
955
d91cecdd 956 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
957 return iommu_setup_msi(iommu);
958
959 return 1;
960}
961
b65233a9
JR
962/****************************************************************************
963 *
964 * The next functions belong to the third pass of parsing the ACPI
965 * table. In this last pass the memory mapping requirements are
966 * gathered (like exclusion and unity mapping reanges).
967 *
968 ****************************************************************************/
969
be2a022c
JR
970static void __init free_unity_maps(void)
971{
972 struct unity_map_entry *entry, *next;
973
974 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
975 list_del(&entry->list);
976 kfree(entry);
977 }
978}
979
b65233a9 980/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
981static int __init init_exclusion_range(struct ivmd_header *m)
982{
983 int i;
984
985 switch (m->type) {
986 case ACPI_IVMD_TYPE:
987 set_device_exclusion_range(m->devid, m);
988 break;
989 case ACPI_IVMD_TYPE_ALL:
3a61ec38 990 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
991 set_device_exclusion_range(i, m);
992 break;
993 case ACPI_IVMD_TYPE_RANGE:
994 for (i = m->devid; i <= m->aux; ++i)
995 set_device_exclusion_range(i, m);
996 break;
997 default:
998 break;
999 }
1000
1001 return 0;
1002}
1003
b65233a9 1004/* called for unity map ACPI definition */
be2a022c
JR
1005static int __init init_unity_map_range(struct ivmd_header *m)
1006{
1007 struct unity_map_entry *e = 0;
02acc43a 1008 char *s;
be2a022c
JR
1009
1010 e = kzalloc(sizeof(*e), GFP_KERNEL);
1011 if (e == NULL)
1012 return -ENOMEM;
1013
1014 switch (m->type) {
1015 default:
0bc252f4
JR
1016 kfree(e);
1017 return 0;
be2a022c 1018 case ACPI_IVMD_TYPE:
02acc43a 1019 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
1020 e->devid_start = e->devid_end = m->devid;
1021 break;
1022 case ACPI_IVMD_TYPE_ALL:
02acc43a 1023 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1024 e->devid_start = 0;
1025 e->devid_end = amd_iommu_last_bdf;
1026 break;
1027 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1028 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1029 e->devid_start = m->devid;
1030 e->devid_end = m->aux;
1031 break;
1032 }
1033 e->address_start = PAGE_ALIGN(m->range_start);
1034 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1035 e->prot = m->flags >> 1;
1036
02acc43a
JR
1037 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1038 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1039 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1040 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1041 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1042 e->address_start, e->address_end, m->flags);
1043
be2a022c
JR
1044 list_add_tail(&e->list, &amd_iommu_unity_map);
1045
1046 return 0;
1047}
1048
b65233a9 1049/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1050static int __init init_memory_definitions(struct acpi_table_header *table)
1051{
1052 u8 *p = (u8 *)table, *end = (u8 *)table;
1053 struct ivmd_header *m;
1054
be2a022c
JR
1055 end += table->length;
1056 p += IVRS_HEADER_LENGTH;
1057
1058 while (p < end) {
1059 m = (struct ivmd_header *)p;
1060 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1061 init_exclusion_range(m);
1062 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1063 init_unity_map_range(m);
1064
1065 p += m->length;
1066 }
1067
1068 return 0;
1069}
1070
9f5f5fb3
JR
1071/*
1072 * Init the device table to not allow DMA access for devices and
1073 * suppress all page faults
1074 */
1075static void init_device_table(void)
1076{
1077 u16 devid;
1078
1079 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1080 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1081 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1082 }
1083}
1084
b65233a9
JR
1085/*
1086 * This function finally enables all IOMMUs found in the system after
1087 * they have been initialized
1088 */
05f92db9 1089static void enable_iommus(void)
8736197b
JR
1090{
1091 struct amd_iommu *iommu;
1092
3bd22172 1093 for_each_iommu(iommu) {
a8c485bb 1094 iommu_disable(iommu);
58492e12
JR
1095 iommu_set_device_table(iommu);
1096 iommu_enable_command_buffer(iommu);
1097 iommu_enable_event_buffer(iommu);
8736197b 1098 iommu_set_exclusion_range(iommu);
a80dc3e0 1099 iommu_init_msi(iommu);
8736197b
JR
1100 iommu_enable(iommu);
1101 }
1102}
1103
92ac4320
JR
1104static void disable_iommus(void)
1105{
1106 struct amd_iommu *iommu;
1107
1108 for_each_iommu(iommu)
1109 iommu_disable(iommu);
1110}
1111
7441e9cb
JR
1112/*
1113 * Suspend/Resume support
1114 * disable suspend until real resume implemented
1115 */
1116
1117static int amd_iommu_resume(struct sys_device *dev)
1118{
736501ee
JR
1119 /* re-load the hardware */
1120 enable_iommus();
1121
1122 /*
1123 * we have to flush after the IOMMUs are enabled because a
1124 * disabled IOMMU will never execute the commands we send
1125 */
736501ee 1126 amd_iommu_flush_all_devices();
6a047d8b 1127 amd_iommu_flush_all_domains();
736501ee 1128
7441e9cb
JR
1129 return 0;
1130}
1131
1132static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1133{
736501ee
JR
1134 /* disable IOMMUs to go out of the way for BIOS */
1135 disable_iommus();
1136
1137 return 0;
7441e9cb
JR
1138}
1139
1140static struct sysdev_class amd_iommu_sysdev_class = {
1141 .name = "amd_iommu",
1142 .suspend = amd_iommu_suspend,
1143 .resume = amd_iommu_resume,
1144};
1145
1146static struct sys_device device_amd_iommu = {
1147 .id = 0,
1148 .cls = &amd_iommu_sysdev_class,
1149};
1150
b65233a9
JR
1151/*
1152 * This is the core init function for AMD IOMMU hardware in the system.
1153 * This function is called from the generic x86 DMA layer initialization
1154 * code.
1155 *
1156 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1157 * three times:
1158 *
1159 * 1 pass) Find the highest PCI device id the driver has to handle.
1160 * Upon this information the size of the data structures is
1161 * determined that needs to be allocated.
1162 *
1163 * 2 pass) Initialize the data structures just allocated with the
1164 * information in the ACPI table about available AMD IOMMUs
1165 * in the system. It also maps the PCI devices in the
1166 * system to specific IOMMUs
1167 *
1168 * 3 pass) After the basic data structures are allocated and
1169 * initialized we update them with information about memory
1170 * remapping requirements parsed out of the ACPI table in
1171 * this last pass.
1172 *
1173 * After that the hardware is initialized and ready to go. In the last
1174 * step we do some Linux specific things like registering the driver in
1175 * the dma_ops interface and initializing the suspend/resume support
1176 * functions. Finally it prints some information about AMD IOMMUs and
1177 * the driver state and enables the hardware.
1178 */
fe74c9cf
JR
1179int __init amd_iommu_init(void)
1180{
1181 int i, ret = 0;
1182
1183
8b14518f 1184 if (no_iommu) {
4c6f40d4 1185 printk(KERN_INFO "AMD-Vi disabled by kernel command line\n");
fe74c9cf
JR
1186 return 0;
1187 }
1188
c1cbebee
JR
1189 if (!amd_iommu_detected)
1190 return -ENODEV;
1191
fe74c9cf
JR
1192 /*
1193 * First parse ACPI tables to find the largest Bus/Dev/Func
1194 * we need to handle. Upon this information the shared data
1195 * structures for the IOMMUs in the system will be allocated
1196 */
1197 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1198 return -ENODEV;
1199
c571484e
JR
1200 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1201 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1202 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1203
1204 ret = -ENOMEM;
1205
1206 /* Device table - directly used by all IOMMUs */
5dc8bff0 1207 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1208 get_order(dev_table_size));
1209 if (amd_iommu_dev_table == NULL)
1210 goto out;
1211
1212 /*
1213 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1214 * IOMMU see for that device
1215 */
1216 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1217 get_order(alias_table_size));
1218 if (amd_iommu_alias_table == NULL)
1219 goto free;
1220
1221 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1222 amd_iommu_rlookup_table = (void *)__get_free_pages(
1223 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1224 get_order(rlookup_table_size));
1225 if (amd_iommu_rlookup_table == NULL)
1226 goto free;
1227
1228 /*
1229 * Protection Domain table - maps devices to protection domains
1230 * This table has the same size as the rlookup_table
1231 */
5dc8bff0 1232 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1233 get_order(rlookup_table_size));
1234 if (amd_iommu_pd_table == NULL)
1235 goto free;
1236
5dc8bff0
JR
1237 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1238 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1239 get_order(MAX_DOMAIN_ID/8));
1240 if (amd_iommu_pd_alloc_bitmap == NULL)
1241 goto free;
1242
9f5f5fb3
JR
1243 /* init the device table */
1244 init_device_table();
1245
fe74c9cf 1246 /*
5dc8bff0 1247 * let all alias entries point to itself
fe74c9cf 1248 */
3a61ec38 1249 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1250 amd_iommu_alias_table[i] = i;
1251
fe74c9cf
JR
1252 /*
1253 * never allocate domain 0 because its used as the non-allocated and
1254 * error value placeholder
1255 */
1256 amd_iommu_pd_alloc_bitmap[0] = 1;
1257
1258 /*
1259 * now the data structures are allocated and basically initialized
1260 * start the real acpi table scan
1261 */
1262 ret = -ENODEV;
1263 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1264 goto free;
1265
1266 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1267 goto free;
1268
129d6aba 1269 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1270 if (ret)
1271 goto free;
1272
129d6aba 1273 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1274 if (ret)
1275 goto free;
1276
4751a951
JR
1277 if (iommu_pass_through)
1278 ret = amd_iommu_init_passthrough();
1279 else
1280 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1281 if (ret)
1282 goto free;
1283
8736197b
JR
1284 enable_iommus();
1285
4751a951
JR
1286 if (iommu_pass_through)
1287 goto out;
1288
4c6f40d4 1289 printk(KERN_INFO "AMD-Vi: device isolation ");
fe74c9cf
JR
1290 if (amd_iommu_isolate)
1291 printk("enabled\n");
1292 else
1293 printk("disabled\n");
1294
afa9fdc2 1295 if (amd_iommu_unmap_flush)
4c6f40d4 1296 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1297 else
4c6f40d4 1298 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1299
338bac52 1300 x86_platform.iommu_shutdown = disable_iommus;
fe74c9cf
JR
1301out:
1302 return ret;
1303
1304free:
d58befd3
JR
1305 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1306 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1307
9a836de0
JR
1308 free_pages((unsigned long)amd_iommu_pd_table,
1309 get_order(rlookup_table_size));
fe74c9cf 1310
9a836de0
JR
1311 free_pages((unsigned long)amd_iommu_rlookup_table,
1312 get_order(rlookup_table_size));
fe74c9cf 1313
9a836de0
JR
1314 free_pages((unsigned long)amd_iommu_alias_table,
1315 get_order(alias_table_size));
fe74c9cf 1316
9a836de0
JR
1317 free_pages((unsigned long)amd_iommu_dev_table,
1318 get_order(dev_table_size));
fe74c9cf
JR
1319
1320 free_iommu_all();
1321
1322 free_unity_maps();
1323
1324 goto out;
1325}
1326
b65233a9
JR
1327/****************************************************************************
1328 *
1329 * Early detect code. This code runs at IOMMU detection time in the DMA
1330 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1331 * IOMMUs
1332 *
1333 ****************************************************************************/
ae7877de
JR
1334static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1335{
1336 return 0;
1337}
1338
1339void __init amd_iommu_detect(void)
1340{
299a140d 1341 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1342 return;
1343
ae7877de
JR
1344 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1345 iommu_detected = 1;
c1cbebee 1346 amd_iommu_detected = 1;
92af4e29 1347#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1348 gart_iommu_aperture_disabled = 1;
1349 gart_iommu_aperture = 0;
92af4e29 1350#endif
ae7877de
JR
1351 }
1352}
1353
b65233a9
JR
1354/****************************************************************************
1355 *
1356 * Parsing functions for the AMD IOMMU specific kernel command line
1357 * options.
1358 *
1359 ****************************************************************************/
1360
fefda117
JR
1361static int __init parse_amd_iommu_dump(char *str)
1362{
1363 amd_iommu_dump = true;
1364
1365 return 1;
1366}
1367
918ad6c5
JR
1368static int __init parse_amd_iommu_options(char *str)
1369{
1370 for (; *str; ++str) {
1c655773 1371 if (strncmp(str, "isolate", 7) == 0)
c226f853 1372 amd_iommu_isolate = true;
e5e1f606 1373 if (strncmp(str, "share", 5) == 0)
c226f853 1374 amd_iommu_isolate = false;
695b5676 1375 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1376 amd_iommu_unmap_flush = true;
918ad6c5
JR
1377 }
1378
1379 return 1;
1380}
1381
fefda117 1382__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1383__setup("amd_iommu=", parse_amd_iommu_options);