]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/amd_iommu_init.c
x86, AMD IOMMU: replace TBL_SIZE macro with a function
[net-next-2.6.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
f6e2e6b6
JR
25#include <asm/pci-direct.h>
26#include <asm/amd_iommu_types.h>
c6da992e 27#include <asm/amd_iommu.h>
f6e2e6b6
JR
28#include <asm/gart.h>
29
30/*
31 * definitions for the ACPI scanning code
32 */
f6e2e6b6
JR
33#define DEVID(bus, devfn) (((bus) << 8) | (devfn))
34#define PCI_BUS(x) (((x) >> 8) & 0xff)
35#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
36
37#define ACPI_IVHD_TYPE 0x10
38#define ACPI_IVMD_TYPE_ALL 0x20
39#define ACPI_IVMD_TYPE 0x21
40#define ACPI_IVMD_TYPE_RANGE 0x22
41
42#define IVHD_DEV_ALL 0x01
43#define IVHD_DEV_SELECT 0x02
44#define IVHD_DEV_SELECT_RANGE_START 0x03
45#define IVHD_DEV_RANGE_END 0x04
46#define IVHD_DEV_ALIAS 0x42
47#define IVHD_DEV_ALIAS_RANGE 0x43
48#define IVHD_DEV_EXT_SELECT 0x46
49#define IVHD_DEV_EXT_SELECT_RANGE 0x47
50
51#define IVHD_FLAG_HT_TUN_EN 0x00
52#define IVHD_FLAG_PASSPW_EN 0x01
53#define IVHD_FLAG_RESPASSPW_EN 0x02
54#define IVHD_FLAG_ISOC_EN 0x03
55
56#define IVMD_FLAG_EXCL_RANGE 0x08
57#define IVMD_FLAG_UNITY_MAP 0x01
58
59#define ACPI_DEVFLAG_INITPASS 0x01
60#define ACPI_DEVFLAG_EXTINT 0x02
61#define ACPI_DEVFLAG_NMI 0x04
62#define ACPI_DEVFLAG_SYSMGT1 0x10
63#define ACPI_DEVFLAG_SYSMGT2 0x20
64#define ACPI_DEVFLAG_LINT0 0x40
65#define ACPI_DEVFLAG_LINT1 0x80
66#define ACPI_DEVFLAG_ATSDIS 0x10000000
67
b65233a9
JR
68/*
69 * ACPI table definitions
70 *
71 * These data structures are laid over the table to parse the important values
72 * out of it.
73 */
74
75/*
76 * structure describing one IOMMU in the ACPI table. Typically followed by one
77 * or more ivhd_entrys.
78 */
f6e2e6b6
JR
79struct ivhd_header {
80 u8 type;
81 u8 flags;
82 u16 length;
83 u16 devid;
84 u16 cap_ptr;
85 u64 mmio_phys;
86 u16 pci_seg;
87 u16 info;
88 u32 reserved;
89} __attribute__((packed));
90
b65233a9
JR
91/*
92 * A device entry describing which devices a specific IOMMU translates and
93 * which requestor ids they use.
94 */
f6e2e6b6
JR
95struct ivhd_entry {
96 u8 type;
97 u16 devid;
98 u8 flags;
99 u32 ext;
100} __attribute__((packed));
101
b65233a9
JR
102/*
103 * An AMD IOMMU memory definition structure. It defines things like exclusion
104 * ranges for devices and regions that should be unity mapped.
105 */
f6e2e6b6
JR
106struct ivmd_header {
107 u8 type;
108 u8 flags;
109 u16 length;
110 u16 devid;
111 u16 aux;
112 u64 resv;
113 u64 range_start;
114 u64 range_length;
115} __attribute__((packed));
116
c1cbebee
JR
117static int __initdata amd_iommu_detected;
118
b65233a9
JR
119u16 amd_iommu_last_bdf; /* largest PCI device id we have
120 to handle */
121struct list_head amd_iommu_unity_map; /* a list of required unity mappings
122 we find in ACPI */
123unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
124int amd_iommu_isolate; /* if 1, device isolation is enabled */
928abd25 125
b65233a9
JR
126struct list_head amd_iommu_list; /* list of all AMD IOMMUs in the
127 system */
128
129/*
130 * Pointer to the device table which is shared by all AMD IOMMUs
131 * it is indexed by the PCI device id or the HT unit id and contains
132 * information about the domain the device belongs to as well as the
133 * page table root pointer.
134 */
928abd25 135struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
136
137/*
138 * The alias table is a driver specific data structure which contains the
139 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
140 * More than one device can share the same requestor id.
141 */
928abd25 142u16 *amd_iommu_alias_table;
b65233a9
JR
143
144/*
145 * The rlookup table is used to find the IOMMU which is responsible
146 * for a specific device. It is also indexed by the PCI device id.
147 */
928abd25 148struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
149
150/*
151 * The pd table (protection domain table) is used to find the protection domain
152 * data structure a device belongs to. Indexed with the PCI device id too.
153 */
928abd25 154struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
155
156/*
157 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
158 * to know which ones are already in use.
159 */
928abd25
JR
160unsigned long *amd_iommu_pd_alloc_bitmap;
161
b65233a9
JR
162static u32 dev_table_size; /* size of the device table */
163static u32 alias_table_size; /* size of the alias table */
164static u32 rlookup_table_size; /* size if the rlookup table */
165
208ec8c9
JR
166static inline void update_last_devid(u16 devid)
167{
168 if (devid > amd_iommu_last_bdf)
169 amd_iommu_last_bdf = devid;
170}
171
c571484e
JR
172static inline unsigned long tbl_size(int entry_size)
173{
174 unsigned shift = PAGE_SHIFT +
175 get_order(amd_iommu_last_bdf * entry_size);
176
177 return 1UL << shift;
178}
179
b65233a9
JR
180/****************************************************************************
181 *
182 * AMD IOMMU MMIO register space handling functions
183 *
184 * These functions are used to program the IOMMU device registers in
185 * MMIO space required for that driver.
186 *
187 ****************************************************************************/
3e8064ba 188
b65233a9
JR
189/*
190 * This function set the exclusion range in the IOMMU. DMA accesses to the
191 * exclusion range are passed through untranslated
192 */
b2026aa2
JR
193static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
194{
195 u64 start = iommu->exclusion_start & PAGE_MASK;
196 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
197 u64 entry;
198
199 if (!iommu->exclusion_start)
200 return;
201
202 entry = start | MMIO_EXCL_ENABLE_MASK;
203 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
204 &entry, sizeof(entry));
205
206 entry = limit;
207 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
208 &entry, sizeof(entry));
209}
210
b65233a9 211/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
212static void __init iommu_set_device_table(struct amd_iommu *iommu)
213{
214 u32 entry;
215
216 BUG_ON(iommu->mmio_base == NULL);
217
218 entry = virt_to_phys(amd_iommu_dev_table);
219 entry |= (dev_table_size >> 12) - 1;
220 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
221 &entry, sizeof(entry));
222}
223
b65233a9 224/* Generic functions to enable/disable certain features of the IOMMU. */
b2026aa2
JR
225static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
226{
227 u32 ctrl;
228
229 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
230 ctrl |= (1 << bit);
231 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
232}
233
234static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
235{
236 u32 ctrl;
237
238 ctrl = (u64)readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
239 ctrl &= ~(1 << bit);
240 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
241}
242
b65233a9 243/* Function to enable the hardware */
b2026aa2
JR
244void __init iommu_enable(struct amd_iommu *iommu)
245{
b2026aa2
JR
246 printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at ");
247 print_devid(iommu->devid, 0);
248 printk(" cap 0x%hx\n", iommu->cap_ptr);
249
250 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
251}
252
b65233a9
JR
253/*
254 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
255 * the system has one.
256 */
6c56747b
JR
257static u8 * __init iommu_map_mmio_space(u64 address)
258{
259 u8 *ret;
260
261 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
262 return NULL;
263
264 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
265 if (ret != NULL)
266 return ret;
267
268 release_mem_region(address, MMIO_REGION_LENGTH);
269
270 return NULL;
271}
272
273static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
274{
275 if (iommu->mmio_base)
276 iounmap(iommu->mmio_base);
277 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
278}
279
b65233a9
JR
280/****************************************************************************
281 *
282 * The functions below belong to the first pass of AMD IOMMU ACPI table
283 * parsing. In this pass we try to find out the highest device id this
284 * code has to handle. Upon this information the size of the shared data
285 * structures is determined later.
286 *
287 ****************************************************************************/
288
289/*
290 * This function reads the last device id the IOMMU has to handle from the PCI
291 * capability header for this IOMMU
292 */
3e8064ba
JR
293static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
294{
295 u32 cap;
296
297 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
208ec8c9 298 update_last_devid(DEVID(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
299
300 return 0;
301}
302
b65233a9
JR
303/*
304 * After reading the highest device id from the IOMMU PCI capability header
305 * this function looks if there is a higher device id defined in the ACPI table
306 */
3e8064ba
JR
307static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
308{
309 u8 *p = (void *)h, *end = (void *)h;
310 struct ivhd_entry *dev;
311
312 p += sizeof(*h);
313 end += h->length;
314
315 find_last_devid_on_pci(PCI_BUS(h->devid),
316 PCI_SLOT(h->devid),
317 PCI_FUNC(h->devid),
318 h->cap_ptr);
319
320 while (p < end) {
321 dev = (struct ivhd_entry *)p;
322 switch (dev->type) {
323 case IVHD_DEV_SELECT:
324 case IVHD_DEV_RANGE_END:
325 case IVHD_DEV_ALIAS:
326 case IVHD_DEV_EXT_SELECT:
b65233a9 327 /* all the above subfield types refer to device ids */
208ec8c9 328 update_last_devid(dev->devid);
3e8064ba
JR
329 break;
330 default:
331 break;
332 }
333 p += 0x04 << (*p >> 6);
334 }
335
336 WARN_ON(p != end);
337
338 return 0;
339}
340
b65233a9
JR
341/*
342 * Iterate over all IVHD entries in the ACPI table and find the highest device
343 * id which we need to handle. This is the first of three functions which parse
344 * the ACPI table. So we check the checksum here.
345 */
3e8064ba
JR
346static int __init find_last_devid_acpi(struct acpi_table_header *table)
347{
348 int i;
349 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
350 struct ivhd_header *h;
351
352 /*
353 * Validate checksum here so we don't need to do it when
354 * we actually parse the table
355 */
356 for (i = 0; i < table->length; ++i)
357 checksum += p[i];
358 if (checksum != 0)
359 /* ACPI table corrupt */
360 return -ENODEV;
361
362 p += IVRS_HEADER_LENGTH;
363
364 end += table->length;
365 while (p < end) {
366 h = (struct ivhd_header *)p;
367 switch (h->type) {
368 case ACPI_IVHD_TYPE:
369 find_last_devid_from_ivhd(h);
370 break;
371 default:
372 break;
373 }
374 p += h->length;
375 }
376 WARN_ON(p != end);
377
378 return 0;
379}
380
b65233a9
JR
381/****************************************************************************
382 *
383 * The following functions belong the the code path which parses the ACPI table
384 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
385 * data structures, initialize the device/alias/rlookup table and also
386 * basically initialize the hardware.
387 *
388 ****************************************************************************/
389
390/*
391 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
392 * write commands to that buffer later and the IOMMU will execute them
393 * asynchronously
394 */
b36ca91e
JR
395static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
396{
397 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL,
398 get_order(CMD_BUFFER_SIZE));
399 u64 entry = 0;
400
401 if (cmd_buf == NULL)
402 return NULL;
403
404 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
405
406 memset(cmd_buf, 0, CMD_BUFFER_SIZE);
407
408 entry = (u64)virt_to_phys(cmd_buf);
409 entry |= MMIO_CMD_SIZE_512;
410 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
411 &entry, sizeof(entry));
412
413 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
414
415 return cmd_buf;
416}
417
418static void __init free_command_buffer(struct amd_iommu *iommu)
419{
420 if (iommu->cmd_buf)
421 free_pages((unsigned long)iommu->cmd_buf,
422 get_order(CMD_BUFFER_SIZE));
423}
424
b65233a9 425/* sets a specific bit in the device table entry. */
3566b778
JR
426static void set_dev_entry_bit(u16 devid, u8 bit)
427{
428 int i = (bit >> 5) & 0x07;
429 int _bit = bit & 0x1f;
430
431 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
432}
433
b65233a9
JR
434/*
435 * This function takes the device specific flags read from the ACPI
436 * table and sets up the device table entry with that information
437 */
3566b778
JR
438static void __init set_dev_entry_from_acpi(u16 devid, u32 flags, u32 ext_flags)
439{
440 if (flags & ACPI_DEVFLAG_INITPASS)
441 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
442 if (flags & ACPI_DEVFLAG_EXTINT)
443 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
444 if (flags & ACPI_DEVFLAG_NMI)
445 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
446 if (flags & ACPI_DEVFLAG_SYSMGT1)
447 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
448 if (flags & ACPI_DEVFLAG_SYSMGT2)
449 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
450 if (flags & ACPI_DEVFLAG_LINT0)
451 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
452 if (flags & ACPI_DEVFLAG_LINT1)
453 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
454}
455
b65233a9 456/* Writes the specific IOMMU for a device into the rlookup table */
3566b778
JR
457static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
458{
459 amd_iommu_rlookup_table[devid] = iommu;
460}
461
b65233a9
JR
462/*
463 * Reads the device exclusion range from ACPI and initialize IOMMU with
464 * it
465 */
3566b778
JR
466static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
467{
468 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
469
470 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
471 return;
472
473 if (iommu) {
b65233a9
JR
474 /*
475 * We only can configure exclusion ranges per IOMMU, not
476 * per device. But we can enable the exclusion range per
477 * device. This is done here
478 */
3566b778
JR
479 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
480 iommu->exclusion_start = m->range_start;
481 iommu->exclusion_length = m->range_length;
482 }
483}
484
b65233a9
JR
485/*
486 * This function reads some important data from the IOMMU PCI space and
487 * initializes the driver data structure with it. It reads the hardware
488 * capabilities and the first/last device entries
489 */
5d0c8e49
JR
490static void __init init_iommu_from_pci(struct amd_iommu *iommu)
491{
492 int bus = PCI_BUS(iommu->devid);
493 int dev = PCI_SLOT(iommu->devid);
494 int fn = PCI_FUNC(iommu->devid);
495 int cap_ptr = iommu->cap_ptr;
496 u32 range;
497
498 iommu->cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_CAP_HDR_OFFSET);
499
500 range = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
501 iommu->first_device = DEVID(MMIO_GET_BUS(range), MMIO_GET_FD(range));
502 iommu->last_device = DEVID(MMIO_GET_BUS(range), MMIO_GET_LD(range));
503}
504
b65233a9
JR
505/*
506 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
507 * initializes the hardware and our data structures with it.
508 */
5d0c8e49
JR
509static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
510 struct ivhd_header *h)
511{
512 u8 *p = (u8 *)h;
513 u8 *end = p, flags = 0;
514 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
515 u32 ext_flags = 0;
516 bool alias = 0;
517 struct ivhd_entry *e;
518
519 /*
520 * First set the recommended feature enable bits from ACPI
521 * into the IOMMU control registers
522 */
523 h->flags & IVHD_FLAG_HT_TUN_EN ?
524 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
525 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
526
527 h->flags & IVHD_FLAG_PASSPW_EN ?
528 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
529 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
530
531 h->flags & IVHD_FLAG_RESPASSPW_EN ?
532 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
533 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
534
535 h->flags & IVHD_FLAG_ISOC_EN ?
536 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
537 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
538
539 /*
540 * make IOMMU memory accesses cache coherent
541 */
542 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
543
544 /*
545 * Done. Now parse the device entries
546 */
547 p += sizeof(struct ivhd_header);
548 end += h->length;
549
550 while (p < end) {
551 e = (struct ivhd_entry *)p;
552 switch (e->type) {
553 case IVHD_DEV_ALL:
554 for (dev_i = iommu->first_device;
555 dev_i <= iommu->last_device; ++dev_i)
556 set_dev_entry_from_acpi(dev_i, e->flags, 0);
557 break;
558 case IVHD_DEV_SELECT:
559 devid = e->devid;
560 set_dev_entry_from_acpi(devid, e->flags, 0);
561 break;
562 case IVHD_DEV_SELECT_RANGE_START:
563 devid_start = e->devid;
564 flags = e->flags;
565 ext_flags = 0;
566 alias = 0;
567 break;
568 case IVHD_DEV_ALIAS:
569 devid = e->devid;
570 devid_to = e->ext >> 8;
571 set_dev_entry_from_acpi(devid, e->flags, 0);
572 amd_iommu_alias_table[devid] = devid_to;
573 break;
574 case IVHD_DEV_ALIAS_RANGE:
575 devid_start = e->devid;
576 flags = e->flags;
577 devid_to = e->ext >> 8;
578 ext_flags = 0;
579 alias = 1;
580 break;
581 case IVHD_DEV_EXT_SELECT:
582 devid = e->devid;
583 set_dev_entry_from_acpi(devid, e->flags, e->ext);
584 break;
585 case IVHD_DEV_EXT_SELECT_RANGE:
586 devid_start = e->devid;
587 flags = e->flags;
588 ext_flags = e->ext;
589 alias = 0;
590 break;
591 case IVHD_DEV_RANGE_END:
592 devid = e->devid;
593 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
594 if (alias)
595 amd_iommu_alias_table[dev_i] = devid_to;
596 set_dev_entry_from_acpi(
597 amd_iommu_alias_table[dev_i],
598 flags, ext_flags);
599 }
600 break;
601 default:
602 break;
603 }
604
605 p += 0x04 << (e->type >> 6);
606 }
607}
608
b65233a9 609/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
610static int __init init_iommu_devices(struct amd_iommu *iommu)
611{
612 u16 i;
613
614 for (i = iommu->first_device; i <= iommu->last_device; ++i)
615 set_iommu_for_device(iommu, i);
616
617 return 0;
618}
619
e47d402d
JR
620static void __init free_iommu_one(struct amd_iommu *iommu)
621{
622 free_command_buffer(iommu);
623 iommu_unmap_mmio_space(iommu);
624}
625
626static void __init free_iommu_all(void)
627{
628 struct amd_iommu *iommu, *next;
629
630 list_for_each_entry_safe(iommu, next, &amd_iommu_list, list) {
631 list_del(&iommu->list);
632 free_iommu_one(iommu);
633 kfree(iommu);
634 }
635}
636
b65233a9
JR
637/*
638 * This function clues the initialization function for one IOMMU
639 * together and also allocates the command buffer and programs the
640 * hardware. It does NOT enable the IOMMU. This is done afterwards.
641 */
e47d402d
JR
642static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
643{
644 spin_lock_init(&iommu->lock);
645 list_add_tail(&iommu->list, &amd_iommu_list);
646
647 /*
648 * Copy data from ACPI table entry to the iommu struct
649 */
650 iommu->devid = h->devid;
651 iommu->cap_ptr = h->cap_ptr;
652 iommu->mmio_phys = h->mmio_phys;
653 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
654 if (!iommu->mmio_base)
655 return -ENOMEM;
656
657 iommu_set_device_table(iommu);
658 iommu->cmd_buf = alloc_command_buffer(iommu);
659 if (!iommu->cmd_buf)
660 return -ENOMEM;
661
662 init_iommu_from_pci(iommu);
663 init_iommu_from_acpi(iommu, h);
664 init_iommu_devices(iommu);
665
666 return 0;
667}
668
b65233a9
JR
669/*
670 * Iterates over all IOMMU entries in the ACPI table, allocates the
671 * IOMMU structure and initializes it with init_iommu_one()
672 */
e47d402d
JR
673static int __init init_iommu_all(struct acpi_table_header *table)
674{
675 u8 *p = (u8 *)table, *end = (u8 *)table;
676 struct ivhd_header *h;
677 struct amd_iommu *iommu;
678 int ret;
679
680 INIT_LIST_HEAD(&amd_iommu_list);
681
682 end += table->length;
683 p += IVRS_HEADER_LENGTH;
684
685 while (p < end) {
686 h = (struct ivhd_header *)p;
687 switch (*p) {
688 case ACPI_IVHD_TYPE:
689 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
690 if (iommu == NULL)
691 return -ENOMEM;
692 ret = init_iommu_one(iommu, h);
693 if (ret)
694 return ret;
695 break;
696 default:
697 break;
698 }
699 p += h->length;
700
701 }
702 WARN_ON(p != end);
703
704 return 0;
705}
706
b65233a9
JR
707/****************************************************************************
708 *
709 * The next functions belong to the third pass of parsing the ACPI
710 * table. In this last pass the memory mapping requirements are
711 * gathered (like exclusion and unity mapping reanges).
712 *
713 ****************************************************************************/
714
be2a022c
JR
715static void __init free_unity_maps(void)
716{
717 struct unity_map_entry *entry, *next;
718
719 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
720 list_del(&entry->list);
721 kfree(entry);
722 }
723}
724
b65233a9 725/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
726static int __init init_exclusion_range(struct ivmd_header *m)
727{
728 int i;
729
730 switch (m->type) {
731 case ACPI_IVMD_TYPE:
732 set_device_exclusion_range(m->devid, m);
733 break;
734 case ACPI_IVMD_TYPE_ALL:
735 for (i = 0; i < amd_iommu_last_bdf; ++i)
736 set_device_exclusion_range(i, m);
737 break;
738 case ACPI_IVMD_TYPE_RANGE:
739 for (i = m->devid; i <= m->aux; ++i)
740 set_device_exclusion_range(i, m);
741 break;
742 default:
743 break;
744 }
745
746 return 0;
747}
748
b65233a9 749/* called for unity map ACPI definition */
be2a022c
JR
750static int __init init_unity_map_range(struct ivmd_header *m)
751{
752 struct unity_map_entry *e = 0;
753
754 e = kzalloc(sizeof(*e), GFP_KERNEL);
755 if (e == NULL)
756 return -ENOMEM;
757
758 switch (m->type) {
759 default:
760 case ACPI_IVMD_TYPE:
761 e->devid_start = e->devid_end = m->devid;
762 break;
763 case ACPI_IVMD_TYPE_ALL:
764 e->devid_start = 0;
765 e->devid_end = amd_iommu_last_bdf;
766 break;
767 case ACPI_IVMD_TYPE_RANGE:
768 e->devid_start = m->devid;
769 e->devid_end = m->aux;
770 break;
771 }
772 e->address_start = PAGE_ALIGN(m->range_start);
773 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
774 e->prot = m->flags >> 1;
775
776 list_add_tail(&e->list, &amd_iommu_unity_map);
777
778 return 0;
779}
780
b65233a9 781/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
782static int __init init_memory_definitions(struct acpi_table_header *table)
783{
784 u8 *p = (u8 *)table, *end = (u8 *)table;
785 struct ivmd_header *m;
786
787 INIT_LIST_HEAD(&amd_iommu_unity_map);
788
789 end += table->length;
790 p += IVRS_HEADER_LENGTH;
791
792 while (p < end) {
793 m = (struct ivmd_header *)p;
794 if (m->flags & IVMD_FLAG_EXCL_RANGE)
795 init_exclusion_range(m);
796 else if (m->flags & IVMD_FLAG_UNITY_MAP)
797 init_unity_map_range(m);
798
799 p += m->length;
800 }
801
802 return 0;
803}
804
b65233a9
JR
805/*
806 * This function finally enables all IOMMUs found in the system after
807 * they have been initialized
808 */
8736197b
JR
809static void __init enable_iommus(void)
810{
811 struct amd_iommu *iommu;
812
813 list_for_each_entry(iommu, &amd_iommu_list, list) {
814 iommu_set_exclusion_range(iommu);
815 iommu_enable(iommu);
816 }
817}
818
7441e9cb
JR
819/*
820 * Suspend/Resume support
821 * disable suspend until real resume implemented
822 */
823
824static int amd_iommu_resume(struct sys_device *dev)
825{
826 return 0;
827}
828
829static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
830{
831 return -EINVAL;
832}
833
834static struct sysdev_class amd_iommu_sysdev_class = {
835 .name = "amd_iommu",
836 .suspend = amd_iommu_suspend,
837 .resume = amd_iommu_resume,
838};
839
840static struct sys_device device_amd_iommu = {
841 .id = 0,
842 .cls = &amd_iommu_sysdev_class,
843};
844
b65233a9
JR
845/*
846 * This is the core init function for AMD IOMMU hardware in the system.
847 * This function is called from the generic x86 DMA layer initialization
848 * code.
849 *
850 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
851 * three times:
852 *
853 * 1 pass) Find the highest PCI device id the driver has to handle.
854 * Upon this information the size of the data structures is
855 * determined that needs to be allocated.
856 *
857 * 2 pass) Initialize the data structures just allocated with the
858 * information in the ACPI table about available AMD IOMMUs
859 * in the system. It also maps the PCI devices in the
860 * system to specific IOMMUs
861 *
862 * 3 pass) After the basic data structures are allocated and
863 * initialized we update them with information about memory
864 * remapping requirements parsed out of the ACPI table in
865 * this last pass.
866 *
867 * After that the hardware is initialized and ready to go. In the last
868 * step we do some Linux specific things like registering the driver in
869 * the dma_ops interface and initializing the suspend/resume support
870 * functions. Finally it prints some information about AMD IOMMUs and
871 * the driver state and enables the hardware.
872 */
fe74c9cf
JR
873int __init amd_iommu_init(void)
874{
875 int i, ret = 0;
876
877
8b14518f 878 if (no_iommu) {
fe74c9cf
JR
879 printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
880 return 0;
881 }
882
c1cbebee
JR
883 if (!amd_iommu_detected)
884 return -ENODEV;
885
fe74c9cf
JR
886 /*
887 * First parse ACPI tables to find the largest Bus/Dev/Func
888 * we need to handle. Upon this information the shared data
889 * structures for the IOMMUs in the system will be allocated
890 */
891 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
892 return -ENODEV;
893
c571484e
JR
894 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
895 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
896 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
897
898 ret = -ENOMEM;
899
900 /* Device table - directly used by all IOMMUs */
901 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL,
902 get_order(dev_table_size));
903 if (amd_iommu_dev_table == NULL)
904 goto out;
905
906 /*
907 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
908 * IOMMU see for that device
909 */
910 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
911 get_order(alias_table_size));
912 if (amd_iommu_alias_table == NULL)
913 goto free;
914
915 /* IOMMU rlookup table - find the IOMMU for a specific device */
916 amd_iommu_rlookup_table = (void *)__get_free_pages(GFP_KERNEL,
917 get_order(rlookup_table_size));
918 if (amd_iommu_rlookup_table == NULL)
919 goto free;
920
921 /*
922 * Protection Domain table - maps devices to protection domains
923 * This table has the same size as the rlookup_table
924 */
925 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL,
926 get_order(rlookup_table_size));
927 if (amd_iommu_pd_table == NULL)
928 goto free;
929
930 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(GFP_KERNEL,
931 get_order(MAX_DOMAIN_ID/8));
932 if (amd_iommu_pd_alloc_bitmap == NULL)
933 goto free;
934
935 /*
936 * memory is allocated now; initialize the device table with all zeroes
937 * and let all alias entries point to itself
938 */
939 memset(amd_iommu_dev_table, 0, dev_table_size);
940 for (i = 0; i < amd_iommu_last_bdf; ++i)
941 amd_iommu_alias_table[i] = i;
942
943 memset(amd_iommu_pd_table, 0, rlookup_table_size);
944 memset(amd_iommu_pd_alloc_bitmap, 0, MAX_DOMAIN_ID / 8);
945
946 /*
947 * never allocate domain 0 because its used as the non-allocated and
948 * error value placeholder
949 */
950 amd_iommu_pd_alloc_bitmap[0] = 1;
951
952 /*
953 * now the data structures are allocated and basically initialized
954 * start the real acpi table scan
955 */
956 ret = -ENODEV;
957 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
958 goto free;
959
960 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
961 goto free;
962
8736197b
JR
963 ret = amd_iommu_init_dma_ops();
964 if (ret)
965 goto free;
966
7441e9cb
JR
967 ret = sysdev_class_register(&amd_iommu_sysdev_class);
968 if (ret)
969 goto free;
970
971 ret = sysdev_register(&device_amd_iommu);
972 if (ret)
973 goto free;
974
8736197b
JR
975 enable_iommus();
976
fe74c9cf
JR
977 printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
978 (1 << (amd_iommu_aperture_order-20)));
979
980 printk(KERN_INFO "AMD IOMMU: device isolation ");
981 if (amd_iommu_isolate)
982 printk("enabled\n");
983 else
984 printk("disabled\n");
985
986out:
987 return ret;
988
989free:
990 if (amd_iommu_pd_alloc_bitmap)
991 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap, 1);
992
993 if (amd_iommu_pd_table)
994 free_pages((unsigned long)amd_iommu_pd_table,
995 get_order(rlookup_table_size));
996
997 if (amd_iommu_rlookup_table)
998 free_pages((unsigned long)amd_iommu_rlookup_table,
999 get_order(rlookup_table_size));
1000
1001 if (amd_iommu_alias_table)
1002 free_pages((unsigned long)amd_iommu_alias_table,
1003 get_order(alias_table_size));
1004
1005 if (amd_iommu_dev_table)
1006 free_pages((unsigned long)amd_iommu_dev_table,
1007 get_order(dev_table_size));
1008
1009 free_iommu_all();
1010
1011 free_unity_maps();
1012
1013 goto out;
1014}
1015
b65233a9
JR
1016/****************************************************************************
1017 *
1018 * Early detect code. This code runs at IOMMU detection time in the DMA
1019 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1020 * IOMMUs
1021 *
1022 ****************************************************************************/
ae7877de
JR
1023static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1024{
1025 return 0;
1026}
1027
1028void __init amd_iommu_detect(void)
1029{
299a140d 1030 if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1031 return;
1032
ae7877de
JR
1033 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1034 iommu_detected = 1;
c1cbebee 1035 amd_iommu_detected = 1;
92af4e29 1036#ifdef CONFIG_GART_IOMMU
ae7877de
JR
1037 gart_iommu_aperture_disabled = 1;
1038 gart_iommu_aperture = 0;
92af4e29 1039#endif
ae7877de
JR
1040 }
1041}
1042
b65233a9
JR
1043/****************************************************************************
1044 *
1045 * Parsing functions for the AMD IOMMU specific kernel command line
1046 * options.
1047 *
1048 ****************************************************************************/
1049
918ad6c5
JR
1050static int __init parse_amd_iommu_options(char *str)
1051{
1052 for (; *str; ++str) {
918ad6c5
JR
1053 if (strcmp(str, "isolate") == 0)
1054 amd_iommu_isolate = 1;
1055 }
1056
1057 return 1;
1058}
1059
1060static int __init parse_amd_iommu_size_options(char *str)
1061{
1062 for (; *str; ++str) {
1063 if (strcmp(str, "32M") == 0)
1064 amd_iommu_aperture_order = 25;
1065 if (strcmp(str, "64M") == 0)
1066 amd_iommu_aperture_order = 26;
1067 if (strcmp(str, "128M") == 0)
1068 amd_iommu_aperture_order = 27;
1069 if (strcmp(str, "256M") == 0)
1070 amd_iommu_aperture_order = 28;
1071 if (strcmp(str, "512M") == 0)
1072 amd_iommu_aperture_order = 29;
1073 if (strcmp(str, "1G") == 0)
1074 amd_iommu_aperture_order = 30;
1075 }
1076
1077 return 1;
1078}
1079
1080__setup("amd_iommu=", parse_amd_iommu_options);
1081__setup("amd_iommu_size=", parse_amd_iommu_size_options);