]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/amd_iommu_init.c
x86/amd-iommu: Separate internal interface definitions
[net-next-2.6.git] / arch / x86 / kernel / amd_iommu_init.c
CommitLineData
f6e2e6b6
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/acpi.h>
22#include <linux/gfp.h>
23#include <linux/list.h>
7441e9cb 24#include <linux/sysdev.h>
a80dc3e0
JR
25#include <linux/interrupt.h>
26#include <linux/msi.h>
f6e2e6b6 27#include <asm/pci-direct.h>
6a9401a7 28#include <asm/amd_iommu_proto.h>
f6e2e6b6 29#include <asm/amd_iommu_types.h>
c6da992e 30#include <asm/amd_iommu.h>
46a7fa27 31#include <asm/iommu.h>
1d9b16d1 32#include <asm/gart.h>
ea1b0d39 33#include <asm/x86_init.h>
f6e2e6b6
JR
34
35/*
36 * definitions for the ACPI scanning code
37 */
f6e2e6b6 38#define IVRS_HEADER_LENGTH 48
f6e2e6b6
JR
39
40#define ACPI_IVHD_TYPE 0x10
41#define ACPI_IVMD_TYPE_ALL 0x20
42#define ACPI_IVMD_TYPE 0x21
43#define ACPI_IVMD_TYPE_RANGE 0x22
44
45#define IVHD_DEV_ALL 0x01
46#define IVHD_DEV_SELECT 0x02
47#define IVHD_DEV_SELECT_RANGE_START 0x03
48#define IVHD_DEV_RANGE_END 0x04
49#define IVHD_DEV_ALIAS 0x42
50#define IVHD_DEV_ALIAS_RANGE 0x43
51#define IVHD_DEV_EXT_SELECT 0x46
52#define IVHD_DEV_EXT_SELECT_RANGE 0x47
53
6da7342f
JR
54#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
55#define IVHD_FLAG_PASSPW_EN_MASK 0x02
56#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
57#define IVHD_FLAG_ISOC_EN_MASK 0x08
f6e2e6b6
JR
58
59#define IVMD_FLAG_EXCL_RANGE 0x08
60#define IVMD_FLAG_UNITY_MAP 0x01
61
62#define ACPI_DEVFLAG_INITPASS 0x01
63#define ACPI_DEVFLAG_EXTINT 0x02
64#define ACPI_DEVFLAG_NMI 0x04
65#define ACPI_DEVFLAG_SYSMGT1 0x10
66#define ACPI_DEVFLAG_SYSMGT2 0x20
67#define ACPI_DEVFLAG_LINT0 0x40
68#define ACPI_DEVFLAG_LINT1 0x80
69#define ACPI_DEVFLAG_ATSDIS 0x10000000
70
b65233a9
JR
71/*
72 * ACPI table definitions
73 *
74 * These data structures are laid over the table to parse the important values
75 * out of it.
76 */
77
78/*
79 * structure describing one IOMMU in the ACPI table. Typically followed by one
80 * or more ivhd_entrys.
81 */
f6e2e6b6
JR
82struct ivhd_header {
83 u8 type;
84 u8 flags;
85 u16 length;
86 u16 devid;
87 u16 cap_ptr;
88 u64 mmio_phys;
89 u16 pci_seg;
90 u16 info;
91 u32 reserved;
92} __attribute__((packed));
93
b65233a9
JR
94/*
95 * A device entry describing which devices a specific IOMMU translates and
96 * which requestor ids they use.
97 */
f6e2e6b6
JR
98struct ivhd_entry {
99 u8 type;
100 u16 devid;
101 u8 flags;
102 u32 ext;
103} __attribute__((packed));
104
b65233a9
JR
105/*
106 * An AMD IOMMU memory definition structure. It defines things like exclusion
107 * ranges for devices and regions that should be unity mapped.
108 */
f6e2e6b6
JR
109struct ivmd_header {
110 u8 type;
111 u8 flags;
112 u16 length;
113 u16 devid;
114 u16 aux;
115 u64 resv;
116 u64 range_start;
117 u64 range_length;
118} __attribute__((packed));
119
fefda117
JR
120bool amd_iommu_dump;
121
c1cbebee
JR
122static int __initdata amd_iommu_detected;
123
b65233a9
JR
124u16 amd_iommu_last_bdf; /* largest PCI device id we have
125 to handle */
2e22847f 126LIST_HEAD(amd_iommu_unity_map); /* a list of required unity mappings
b65233a9 127 we find in ACPI */
2e8b5696
JR
128#ifdef CONFIG_IOMMU_STRESS
129bool amd_iommu_isolate = false;
130#else
c226f853
JR
131bool amd_iommu_isolate = true; /* if true, device isolation is
132 enabled */
2e8b5696
JR
133#endif
134
afa9fdc2 135bool amd_iommu_unmap_flush; /* if true, flush on every unmap */
928abd25 136
2e22847f 137LIST_HEAD(amd_iommu_list); /* list of all AMD IOMMUs in the
b65233a9 138 system */
928abd25 139
b65233a9
JR
140/*
141 * Pointer to the device table which is shared by all AMD IOMMUs
142 * it is indexed by the PCI device id or the HT unit id and contains
143 * information about the domain the device belongs to as well as the
144 * page table root pointer.
145 */
928abd25 146struct dev_table_entry *amd_iommu_dev_table;
b65233a9
JR
147
148/*
149 * The alias table is a driver specific data structure which contains the
150 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
151 * More than one device can share the same requestor id.
152 */
928abd25 153u16 *amd_iommu_alias_table;
b65233a9
JR
154
155/*
156 * The rlookup table is used to find the IOMMU which is responsible
157 * for a specific device. It is also indexed by the PCI device id.
158 */
928abd25 159struct amd_iommu **amd_iommu_rlookup_table;
b65233a9
JR
160
161/*
162 * The pd table (protection domain table) is used to find the protection domain
163 * data structure a device belongs to. Indexed with the PCI device id too.
164 */
928abd25 165struct protection_domain **amd_iommu_pd_table;
b65233a9
JR
166
167/*
168 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
169 * to know which ones are already in use.
170 */
928abd25
JR
171unsigned long *amd_iommu_pd_alloc_bitmap;
172
b65233a9
JR
173static u32 dev_table_size; /* size of the device table */
174static u32 alias_table_size; /* size of the alias table */
175static u32 rlookup_table_size; /* size if the rlookup table */
3e8064ba 176
208ec8c9
JR
177static inline void update_last_devid(u16 devid)
178{
179 if (devid > amd_iommu_last_bdf)
180 amd_iommu_last_bdf = devid;
181}
182
c571484e
JR
183static inline unsigned long tbl_size(int entry_size)
184{
185 unsigned shift = PAGE_SHIFT +
421f909c 186 get_order(((int)amd_iommu_last_bdf + 1) * entry_size);
c571484e
JR
187
188 return 1UL << shift;
189}
190
b65233a9
JR
191/****************************************************************************
192 *
193 * AMD IOMMU MMIO register space handling functions
194 *
195 * These functions are used to program the IOMMU device registers in
196 * MMIO space required for that driver.
197 *
198 ****************************************************************************/
3e8064ba 199
b65233a9
JR
200/*
201 * This function set the exclusion range in the IOMMU. DMA accesses to the
202 * exclusion range are passed through untranslated
203 */
05f92db9 204static void iommu_set_exclusion_range(struct amd_iommu *iommu)
b2026aa2
JR
205{
206 u64 start = iommu->exclusion_start & PAGE_MASK;
207 u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
208 u64 entry;
209
210 if (!iommu->exclusion_start)
211 return;
212
213 entry = start | MMIO_EXCL_ENABLE_MASK;
214 memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
215 &entry, sizeof(entry));
216
217 entry = limit;
218 memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
219 &entry, sizeof(entry));
220}
221
b65233a9 222/* Programs the physical address of the device table into the IOMMU hardware */
b2026aa2
JR
223static void __init iommu_set_device_table(struct amd_iommu *iommu)
224{
f609891f 225 u64 entry;
b2026aa2
JR
226
227 BUG_ON(iommu->mmio_base == NULL);
228
229 entry = virt_to_phys(amd_iommu_dev_table);
230 entry |= (dev_table_size >> 12) - 1;
231 memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
232 &entry, sizeof(entry));
233}
234
b65233a9 235/* Generic functions to enable/disable certain features of the IOMMU. */
05f92db9 236static void iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
237{
238 u32 ctrl;
239
240 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
241 ctrl |= (1 << bit);
242 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
243}
244
ca020711 245static void iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
b2026aa2
JR
246{
247 u32 ctrl;
248
199d0d50 249 ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
b2026aa2
JR
250 ctrl &= ~(1 << bit);
251 writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
252}
253
b65233a9 254/* Function to enable the hardware */
05f92db9 255static void iommu_enable(struct amd_iommu *iommu)
b2026aa2 256{
4c6f40d4 257 printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
a4e267c8 258 dev_name(&iommu->dev->dev), iommu->cap_ptr);
b2026aa2
JR
259
260 iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
b2026aa2
JR
261}
262
92ac4320 263static void iommu_disable(struct amd_iommu *iommu)
126c52be 264{
a8c485bb
CW
265 /* Disable command buffer */
266 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
267
268 /* Disable event logging and event interrupts */
269 iommu_feature_disable(iommu, CONTROL_EVT_INT_EN);
270 iommu_feature_disable(iommu, CONTROL_EVT_LOG_EN);
271
272 /* Disable IOMMU hardware itself */
92ac4320 273 iommu_feature_disable(iommu, CONTROL_IOMMU_EN);
126c52be
JR
274}
275
b65233a9
JR
276/*
277 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
278 * the system has one.
279 */
6c56747b
JR
280static u8 * __init iommu_map_mmio_space(u64 address)
281{
282 u8 *ret;
283
284 if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
285 return NULL;
286
287 ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
288 if (ret != NULL)
289 return ret;
290
291 release_mem_region(address, MMIO_REGION_LENGTH);
292
293 return NULL;
294}
295
296static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
297{
298 if (iommu->mmio_base)
299 iounmap(iommu->mmio_base);
300 release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
301}
302
b65233a9
JR
303/****************************************************************************
304 *
305 * The functions below belong to the first pass of AMD IOMMU ACPI table
306 * parsing. In this pass we try to find out the highest device id this
307 * code has to handle. Upon this information the size of the shared data
308 * structures is determined later.
309 *
310 ****************************************************************************/
311
b514e555
JR
312/*
313 * This function calculates the length of a given IVHD entry
314 */
315static inline int ivhd_entry_length(u8 *ivhd)
316{
317 return 0x04 << (*ivhd >> 6);
318}
319
b65233a9
JR
320/*
321 * This function reads the last device id the IOMMU has to handle from the PCI
322 * capability header for this IOMMU
323 */
3e8064ba
JR
324static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
325{
326 u32 cap;
327
328 cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
d591b0a3 329 update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
3e8064ba
JR
330
331 return 0;
332}
333
b65233a9
JR
334/*
335 * After reading the highest device id from the IOMMU PCI capability header
336 * this function looks if there is a higher device id defined in the ACPI table
337 */
3e8064ba
JR
338static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
339{
340 u8 *p = (void *)h, *end = (void *)h;
341 struct ivhd_entry *dev;
342
343 p += sizeof(*h);
344 end += h->length;
345
346 find_last_devid_on_pci(PCI_BUS(h->devid),
347 PCI_SLOT(h->devid),
348 PCI_FUNC(h->devid),
349 h->cap_ptr);
350
351 while (p < end) {
352 dev = (struct ivhd_entry *)p;
353 switch (dev->type) {
354 case IVHD_DEV_SELECT:
355 case IVHD_DEV_RANGE_END:
356 case IVHD_DEV_ALIAS:
357 case IVHD_DEV_EXT_SELECT:
b65233a9 358 /* all the above subfield types refer to device ids */
208ec8c9 359 update_last_devid(dev->devid);
3e8064ba
JR
360 break;
361 default:
362 break;
363 }
b514e555 364 p += ivhd_entry_length(p);
3e8064ba
JR
365 }
366
367 WARN_ON(p != end);
368
369 return 0;
370}
371
b65233a9
JR
372/*
373 * Iterate over all IVHD entries in the ACPI table and find the highest device
374 * id which we need to handle. This is the first of three functions which parse
375 * the ACPI table. So we check the checksum here.
376 */
3e8064ba
JR
377static int __init find_last_devid_acpi(struct acpi_table_header *table)
378{
379 int i;
380 u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
381 struct ivhd_header *h;
382
383 /*
384 * Validate checksum here so we don't need to do it when
385 * we actually parse the table
386 */
387 for (i = 0; i < table->length; ++i)
388 checksum += p[i];
389 if (checksum != 0)
390 /* ACPI table corrupt */
391 return -ENODEV;
392
393 p += IVRS_HEADER_LENGTH;
394
395 end += table->length;
396 while (p < end) {
397 h = (struct ivhd_header *)p;
398 switch (h->type) {
399 case ACPI_IVHD_TYPE:
400 find_last_devid_from_ivhd(h);
401 break;
402 default:
403 break;
404 }
405 p += h->length;
406 }
407 WARN_ON(p != end);
408
409 return 0;
410}
411
b65233a9
JR
412/****************************************************************************
413 *
414 * The following functions belong the the code path which parses the ACPI table
415 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
416 * data structures, initialize the device/alias/rlookup table and also
417 * basically initialize the hardware.
418 *
419 ****************************************************************************/
420
421/*
422 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
423 * write commands to that buffer later and the IOMMU will execute them
424 * asynchronously
425 */
b36ca91e
JR
426static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
427{
d0312b21 428 u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
b36ca91e 429 get_order(CMD_BUFFER_SIZE));
b36ca91e
JR
430
431 if (cmd_buf == NULL)
432 return NULL;
433
434 iommu->cmd_buf_size = CMD_BUFFER_SIZE;
435
58492e12
JR
436 return cmd_buf;
437}
438
93f1cc67
JR
439/*
440 * This function resets the command buffer if the IOMMU stopped fetching
441 * commands from it.
442 */
443void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
444{
445 iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
446
447 writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
448 writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
449
450 iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
451}
452
58492e12
JR
453/*
454 * This function writes the command buffer address to the hardware and
455 * enables it.
456 */
457static void iommu_enable_command_buffer(struct amd_iommu *iommu)
458{
459 u64 entry;
460
461 BUG_ON(iommu->cmd_buf == NULL);
462
463 entry = (u64)virt_to_phys(iommu->cmd_buf);
b36ca91e 464 entry |= MMIO_CMD_SIZE_512;
58492e12 465
b36ca91e 466 memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
58492e12 467 &entry, sizeof(entry));
b36ca91e 468
93f1cc67 469 amd_iommu_reset_cmd_buffer(iommu);
b36ca91e
JR
470}
471
472static void __init free_command_buffer(struct amd_iommu *iommu)
473{
23c1713f
JR
474 free_pages((unsigned long)iommu->cmd_buf,
475 get_order(iommu->cmd_buf_size));
b36ca91e
JR
476}
477
335503e5
JR
478/* allocates the memory where the IOMMU will log its events to */
479static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
480{
335503e5
JR
481 iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
482 get_order(EVT_BUFFER_SIZE));
483
484 if (iommu->evt_buf == NULL)
485 return NULL;
486
1bc6f838
JR
487 iommu->evt_buf_size = EVT_BUFFER_SIZE;
488
58492e12
JR
489 return iommu->evt_buf;
490}
491
492static void iommu_enable_event_buffer(struct amd_iommu *iommu)
493{
494 u64 entry;
495
496 BUG_ON(iommu->evt_buf == NULL);
497
335503e5 498 entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
58492e12 499
335503e5
JR
500 memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
501 &entry, sizeof(entry));
502
09067207
JR
503 /* set head and tail to zero manually */
504 writel(0x00, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
505 writel(0x00, iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
506
58492e12 507 iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
335503e5
JR
508}
509
510static void __init free_event_buffer(struct amd_iommu *iommu)
511{
512 free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
513}
514
b65233a9 515/* sets a specific bit in the device table entry. */
3566b778
JR
516static void set_dev_entry_bit(u16 devid, u8 bit)
517{
518 int i = (bit >> 5) & 0x07;
519 int _bit = bit & 0x1f;
520
521 amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
522}
523
c5cca146
JR
524static int get_dev_entry_bit(u16 devid, u8 bit)
525{
526 int i = (bit >> 5) & 0x07;
527 int _bit = bit & 0x1f;
528
529 return (amd_iommu_dev_table[devid].data[i] & (1 << _bit)) >> _bit;
530}
531
532
533void amd_iommu_apply_erratum_63(u16 devid)
534{
535 int sysmgt;
536
537 sysmgt = get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1) |
538 (get_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2) << 1);
539
540 if (sysmgt == 0x01)
541 set_dev_entry_bit(devid, DEV_ENTRY_IW);
542}
543
5ff4789d
JR
544/* Writes the specific IOMMU for a device into the rlookup table */
545static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
546{
547 amd_iommu_rlookup_table[devid] = iommu;
548}
549
b65233a9
JR
550/*
551 * This function takes the device specific flags read from the ACPI
552 * table and sets up the device table entry with that information
553 */
5ff4789d
JR
554static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
555 u16 devid, u32 flags, u32 ext_flags)
3566b778
JR
556{
557 if (flags & ACPI_DEVFLAG_INITPASS)
558 set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
559 if (flags & ACPI_DEVFLAG_EXTINT)
560 set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
561 if (flags & ACPI_DEVFLAG_NMI)
562 set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
563 if (flags & ACPI_DEVFLAG_SYSMGT1)
564 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
565 if (flags & ACPI_DEVFLAG_SYSMGT2)
566 set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
567 if (flags & ACPI_DEVFLAG_LINT0)
568 set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
569 if (flags & ACPI_DEVFLAG_LINT1)
570 set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);
3566b778 571
c5cca146
JR
572 amd_iommu_apply_erratum_63(devid);
573
5ff4789d 574 set_iommu_for_device(iommu, devid);
3566b778
JR
575}
576
b65233a9
JR
577/*
578 * Reads the device exclusion range from ACPI and initialize IOMMU with
579 * it
580 */
3566b778
JR
581static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
582{
583 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
584
585 if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
586 return;
587
588 if (iommu) {
b65233a9
JR
589 /*
590 * We only can configure exclusion ranges per IOMMU, not
591 * per device. But we can enable the exclusion range per
592 * device. This is done here
593 */
3566b778
JR
594 set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
595 iommu->exclusion_start = m->range_start;
596 iommu->exclusion_length = m->range_length;
597 }
598}
599
b65233a9
JR
600/*
601 * This function reads some important data from the IOMMU PCI space and
602 * initializes the driver data structure with it. It reads the hardware
603 * capabilities and the first/last device entries
604 */
5d0c8e49
JR
605static void __init init_iommu_from_pci(struct amd_iommu *iommu)
606{
5d0c8e49 607 int cap_ptr = iommu->cap_ptr;
a80dc3e0 608 u32 range, misc;
5d0c8e49 609
3eaf28a1
JR
610 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
611 &iommu->cap);
612 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
613 &range);
a80dc3e0
JR
614 pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
615 &misc);
5d0c8e49 616
d591b0a3
JR
617 iommu->first_device = calc_devid(MMIO_GET_BUS(range),
618 MMIO_GET_FD(range));
619 iommu->last_device = calc_devid(MMIO_GET_BUS(range),
620 MMIO_GET_LD(range));
a80dc3e0 621 iommu->evt_msi_num = MMIO_MSI_NUM(misc);
5d0c8e49
JR
622}
623
b65233a9
JR
624/*
625 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
626 * initializes the hardware and our data structures with it.
627 */
5d0c8e49
JR
628static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
629 struct ivhd_header *h)
630{
631 u8 *p = (u8 *)h;
632 u8 *end = p, flags = 0;
633 u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
634 u32 ext_flags = 0;
58a3bee5 635 bool alias = false;
5d0c8e49
JR
636 struct ivhd_entry *e;
637
638 /*
639 * First set the recommended feature enable bits from ACPI
640 * into the IOMMU control registers
641 */
6da7342f 642 h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
5d0c8e49
JR
643 iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
644 iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
645
6da7342f 646 h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
5d0c8e49
JR
647 iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
648 iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
649
6da7342f 650 h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
5d0c8e49
JR
651 iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
652 iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
653
6da7342f 654 h->flags & IVHD_FLAG_ISOC_EN_MASK ?
5d0c8e49
JR
655 iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
656 iommu_feature_disable(iommu, CONTROL_ISOC_EN);
657
658 /*
659 * make IOMMU memory accesses cache coherent
660 */
661 iommu_feature_enable(iommu, CONTROL_COHERENT_EN);
662
663 /*
664 * Done. Now parse the device entries
665 */
666 p += sizeof(struct ivhd_header);
667 end += h->length;
668
42a698f4 669
5d0c8e49
JR
670 while (p < end) {
671 e = (struct ivhd_entry *)p;
672 switch (e->type) {
673 case IVHD_DEV_ALL:
42a698f4
JR
674
675 DUMP_printk(" DEV_ALL\t\t\t first devid: %02x:%02x.%x"
676 " last device %02x:%02x.%x flags: %02x\n",
677 PCI_BUS(iommu->first_device),
678 PCI_SLOT(iommu->first_device),
679 PCI_FUNC(iommu->first_device),
680 PCI_BUS(iommu->last_device),
681 PCI_SLOT(iommu->last_device),
682 PCI_FUNC(iommu->last_device),
683 e->flags);
684
5d0c8e49
JR
685 for (dev_i = iommu->first_device;
686 dev_i <= iommu->last_device; ++dev_i)
5ff4789d
JR
687 set_dev_entry_from_acpi(iommu, dev_i,
688 e->flags, 0);
5d0c8e49
JR
689 break;
690 case IVHD_DEV_SELECT:
42a698f4
JR
691
692 DUMP_printk(" DEV_SELECT\t\t\t devid: %02x:%02x.%x "
693 "flags: %02x\n",
694 PCI_BUS(e->devid),
695 PCI_SLOT(e->devid),
696 PCI_FUNC(e->devid),
697 e->flags);
698
5d0c8e49 699 devid = e->devid;
5ff4789d 700 set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
5d0c8e49
JR
701 break;
702 case IVHD_DEV_SELECT_RANGE_START:
42a698f4
JR
703
704 DUMP_printk(" DEV_SELECT_RANGE_START\t "
705 "devid: %02x:%02x.%x flags: %02x\n",
706 PCI_BUS(e->devid),
707 PCI_SLOT(e->devid),
708 PCI_FUNC(e->devid),
709 e->flags);
710
5d0c8e49
JR
711 devid_start = e->devid;
712 flags = e->flags;
713 ext_flags = 0;
58a3bee5 714 alias = false;
5d0c8e49
JR
715 break;
716 case IVHD_DEV_ALIAS:
42a698f4
JR
717
718 DUMP_printk(" DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
719 "flags: %02x devid_to: %02x:%02x.%x\n",
720 PCI_BUS(e->devid),
721 PCI_SLOT(e->devid),
722 PCI_FUNC(e->devid),
723 e->flags,
724 PCI_BUS(e->ext >> 8),
725 PCI_SLOT(e->ext >> 8),
726 PCI_FUNC(e->ext >> 8));
727
5d0c8e49
JR
728 devid = e->devid;
729 devid_to = e->ext >> 8;
7a6a3a08 730 set_dev_entry_from_acpi(iommu, devid , e->flags, 0);
7455aab1 731 set_dev_entry_from_acpi(iommu, devid_to, e->flags, 0);
5d0c8e49
JR
732 amd_iommu_alias_table[devid] = devid_to;
733 break;
734 case IVHD_DEV_ALIAS_RANGE:
42a698f4
JR
735
736 DUMP_printk(" DEV_ALIAS_RANGE\t\t "
737 "devid: %02x:%02x.%x flags: %02x "
738 "devid_to: %02x:%02x.%x\n",
739 PCI_BUS(e->devid),
740 PCI_SLOT(e->devid),
741 PCI_FUNC(e->devid),
742 e->flags,
743 PCI_BUS(e->ext >> 8),
744 PCI_SLOT(e->ext >> 8),
745 PCI_FUNC(e->ext >> 8));
746
5d0c8e49
JR
747 devid_start = e->devid;
748 flags = e->flags;
749 devid_to = e->ext >> 8;
750 ext_flags = 0;
58a3bee5 751 alias = true;
5d0c8e49
JR
752 break;
753 case IVHD_DEV_EXT_SELECT:
42a698f4
JR
754
755 DUMP_printk(" DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
756 "flags: %02x ext: %08x\n",
757 PCI_BUS(e->devid),
758 PCI_SLOT(e->devid),
759 PCI_FUNC(e->devid),
760 e->flags, e->ext);
761
5d0c8e49 762 devid = e->devid;
5ff4789d
JR
763 set_dev_entry_from_acpi(iommu, devid, e->flags,
764 e->ext);
5d0c8e49
JR
765 break;
766 case IVHD_DEV_EXT_SELECT_RANGE:
42a698f4
JR
767
768 DUMP_printk(" DEV_EXT_SELECT_RANGE\t devid: "
769 "%02x:%02x.%x flags: %02x ext: %08x\n",
770 PCI_BUS(e->devid),
771 PCI_SLOT(e->devid),
772 PCI_FUNC(e->devid),
773 e->flags, e->ext);
774
5d0c8e49
JR
775 devid_start = e->devid;
776 flags = e->flags;
777 ext_flags = e->ext;
58a3bee5 778 alias = false;
5d0c8e49
JR
779 break;
780 case IVHD_DEV_RANGE_END:
42a698f4
JR
781
782 DUMP_printk(" DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
783 PCI_BUS(e->devid),
784 PCI_SLOT(e->devid),
785 PCI_FUNC(e->devid));
786
5d0c8e49
JR
787 devid = e->devid;
788 for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
7a6a3a08 789 if (alias) {
5d0c8e49 790 amd_iommu_alias_table[dev_i] = devid_to;
7a6a3a08
JR
791 set_dev_entry_from_acpi(iommu,
792 devid_to, flags, ext_flags);
793 }
794 set_dev_entry_from_acpi(iommu, dev_i,
795 flags, ext_flags);
5d0c8e49
JR
796 }
797 break;
798 default:
799 break;
800 }
801
b514e555 802 p += ivhd_entry_length(p);
5d0c8e49
JR
803 }
804}
805
b65233a9 806/* Initializes the device->iommu mapping for the driver */
5d0c8e49
JR
807static int __init init_iommu_devices(struct amd_iommu *iommu)
808{
809 u16 i;
810
811 for (i = iommu->first_device; i <= iommu->last_device; ++i)
812 set_iommu_for_device(iommu, i);
813
814 return 0;
815}
816
e47d402d
JR
817static void __init free_iommu_one(struct amd_iommu *iommu)
818{
819 free_command_buffer(iommu);
335503e5 820 free_event_buffer(iommu);
e47d402d
JR
821 iommu_unmap_mmio_space(iommu);
822}
823
824static void __init free_iommu_all(void)
825{
826 struct amd_iommu *iommu, *next;
827
3bd22172 828 for_each_iommu_safe(iommu, next) {
e47d402d
JR
829 list_del(&iommu->list);
830 free_iommu_one(iommu);
831 kfree(iommu);
832 }
833}
834
b65233a9
JR
835/*
836 * This function clues the initialization function for one IOMMU
837 * together and also allocates the command buffer and programs the
838 * hardware. It does NOT enable the IOMMU. This is done afterwards.
839 */
e47d402d
JR
840static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
841{
842 spin_lock_init(&iommu->lock);
843 list_add_tail(&iommu->list, &amd_iommu_list);
844
845 /*
846 * Copy data from ACPI table entry to the iommu struct
847 */
3eaf28a1
JR
848 iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
849 if (!iommu->dev)
850 return 1;
851
e47d402d 852 iommu->cap_ptr = h->cap_ptr;
ee893c24 853 iommu->pci_seg = h->pci_seg;
e47d402d
JR
854 iommu->mmio_phys = h->mmio_phys;
855 iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
856 if (!iommu->mmio_base)
857 return -ENOMEM;
858
e47d402d
JR
859 iommu->cmd_buf = alloc_command_buffer(iommu);
860 if (!iommu->cmd_buf)
861 return -ENOMEM;
862
335503e5
JR
863 iommu->evt_buf = alloc_event_buffer(iommu);
864 if (!iommu->evt_buf)
865 return -ENOMEM;
866
a80dc3e0
JR
867 iommu->int_enabled = false;
868
e47d402d
JR
869 init_iommu_from_pci(iommu);
870 init_iommu_from_acpi(iommu, h);
871 init_iommu_devices(iommu);
872
8a66712b 873 return pci_enable_device(iommu->dev);
e47d402d
JR
874}
875
b65233a9
JR
876/*
877 * Iterates over all IOMMU entries in the ACPI table, allocates the
878 * IOMMU structure and initializes it with init_iommu_one()
879 */
e47d402d
JR
880static int __init init_iommu_all(struct acpi_table_header *table)
881{
882 u8 *p = (u8 *)table, *end = (u8 *)table;
883 struct ivhd_header *h;
884 struct amd_iommu *iommu;
885 int ret;
886
e47d402d
JR
887 end += table->length;
888 p += IVRS_HEADER_LENGTH;
889
890 while (p < end) {
891 h = (struct ivhd_header *)p;
892 switch (*p) {
893 case ACPI_IVHD_TYPE:
9c72041f 894
ae908c22 895 DUMP_printk("device: %02x:%02x.%01x cap: %04x "
9c72041f
JR
896 "seg: %d flags: %01x info %04x\n",
897 PCI_BUS(h->devid), PCI_SLOT(h->devid),
898 PCI_FUNC(h->devid), h->cap_ptr,
899 h->pci_seg, h->flags, h->info);
900 DUMP_printk(" mmio-addr: %016llx\n",
901 h->mmio_phys);
902
e47d402d
JR
903 iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
904 if (iommu == NULL)
905 return -ENOMEM;
906 ret = init_iommu_one(iommu, h);
907 if (ret)
908 return ret;
909 break;
910 default:
911 break;
912 }
913 p += h->length;
914
915 }
916 WARN_ON(p != end);
917
918 return 0;
919}
920
a80dc3e0
JR
921/****************************************************************************
922 *
923 * The following functions initialize the MSI interrupts for all IOMMUs
924 * in the system. Its a bit challenging because there could be multiple
925 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
926 * pci_dev.
927 *
928 ****************************************************************************/
929
9f800de3 930static int iommu_setup_msi(struct amd_iommu *iommu)
a80dc3e0
JR
931{
932 int r;
a80dc3e0
JR
933
934 if (pci_enable_msi(iommu->dev))
935 return 1;
936
937 r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
938 IRQF_SAMPLE_RANDOM,
4c6f40d4 939 "AMD-Vi",
a80dc3e0
JR
940 NULL);
941
942 if (r) {
943 pci_disable_msi(iommu->dev);
944 return 1;
945 }
946
fab6afa3 947 iommu->int_enabled = true;
58492e12
JR
948 iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
949
a80dc3e0
JR
950 return 0;
951}
952
05f92db9 953static int iommu_init_msi(struct amd_iommu *iommu)
a80dc3e0
JR
954{
955 if (iommu->int_enabled)
956 return 0;
957
d91cecdd 958 if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
a80dc3e0
JR
959 return iommu_setup_msi(iommu);
960
961 return 1;
962}
963
b65233a9
JR
964/****************************************************************************
965 *
966 * The next functions belong to the third pass of parsing the ACPI
967 * table. In this last pass the memory mapping requirements are
968 * gathered (like exclusion and unity mapping reanges).
969 *
970 ****************************************************************************/
971
be2a022c
JR
972static void __init free_unity_maps(void)
973{
974 struct unity_map_entry *entry, *next;
975
976 list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
977 list_del(&entry->list);
978 kfree(entry);
979 }
980}
981
b65233a9 982/* called when we find an exclusion range definition in ACPI */
be2a022c
JR
983static int __init init_exclusion_range(struct ivmd_header *m)
984{
985 int i;
986
987 switch (m->type) {
988 case ACPI_IVMD_TYPE:
989 set_device_exclusion_range(m->devid, m);
990 break;
991 case ACPI_IVMD_TYPE_ALL:
3a61ec38 992 for (i = 0; i <= amd_iommu_last_bdf; ++i)
be2a022c
JR
993 set_device_exclusion_range(i, m);
994 break;
995 case ACPI_IVMD_TYPE_RANGE:
996 for (i = m->devid; i <= m->aux; ++i)
997 set_device_exclusion_range(i, m);
998 break;
999 default:
1000 break;
1001 }
1002
1003 return 0;
1004}
1005
b65233a9 1006/* called for unity map ACPI definition */
be2a022c
JR
1007static int __init init_unity_map_range(struct ivmd_header *m)
1008{
1009 struct unity_map_entry *e = 0;
02acc43a 1010 char *s;
be2a022c
JR
1011
1012 e = kzalloc(sizeof(*e), GFP_KERNEL);
1013 if (e == NULL)
1014 return -ENOMEM;
1015
1016 switch (m->type) {
1017 default:
0bc252f4
JR
1018 kfree(e);
1019 return 0;
be2a022c 1020 case ACPI_IVMD_TYPE:
02acc43a 1021 s = "IVMD_TYPEi\t\t\t";
be2a022c
JR
1022 e->devid_start = e->devid_end = m->devid;
1023 break;
1024 case ACPI_IVMD_TYPE_ALL:
02acc43a 1025 s = "IVMD_TYPE_ALL\t\t";
be2a022c
JR
1026 e->devid_start = 0;
1027 e->devid_end = amd_iommu_last_bdf;
1028 break;
1029 case ACPI_IVMD_TYPE_RANGE:
02acc43a 1030 s = "IVMD_TYPE_RANGE\t\t";
be2a022c
JR
1031 e->devid_start = m->devid;
1032 e->devid_end = m->aux;
1033 break;
1034 }
1035 e->address_start = PAGE_ALIGN(m->range_start);
1036 e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
1037 e->prot = m->flags >> 1;
1038
02acc43a
JR
1039 DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
1040 " range_start: %016llx range_end: %016llx flags: %x\n", s,
1041 PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
1042 PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
1043 PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
1044 e->address_start, e->address_end, m->flags);
1045
be2a022c
JR
1046 list_add_tail(&e->list, &amd_iommu_unity_map);
1047
1048 return 0;
1049}
1050
b65233a9 1051/* iterates over all memory definitions we find in the ACPI table */
be2a022c
JR
1052static int __init init_memory_definitions(struct acpi_table_header *table)
1053{
1054 u8 *p = (u8 *)table, *end = (u8 *)table;
1055 struct ivmd_header *m;
1056
be2a022c
JR
1057 end += table->length;
1058 p += IVRS_HEADER_LENGTH;
1059
1060 while (p < end) {
1061 m = (struct ivmd_header *)p;
1062 if (m->flags & IVMD_FLAG_EXCL_RANGE)
1063 init_exclusion_range(m);
1064 else if (m->flags & IVMD_FLAG_UNITY_MAP)
1065 init_unity_map_range(m);
1066
1067 p += m->length;
1068 }
1069
1070 return 0;
1071}
1072
9f5f5fb3
JR
1073/*
1074 * Init the device table to not allow DMA access for devices and
1075 * suppress all page faults
1076 */
1077static void init_device_table(void)
1078{
1079 u16 devid;
1080
1081 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
1082 set_dev_entry_bit(devid, DEV_ENTRY_VALID);
1083 set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
9f5f5fb3
JR
1084 }
1085}
1086
b65233a9
JR
1087/*
1088 * This function finally enables all IOMMUs found in the system after
1089 * they have been initialized
1090 */
05f92db9 1091static void enable_iommus(void)
8736197b
JR
1092{
1093 struct amd_iommu *iommu;
1094
3bd22172 1095 for_each_iommu(iommu) {
a8c485bb 1096 iommu_disable(iommu);
58492e12
JR
1097 iommu_set_device_table(iommu);
1098 iommu_enable_command_buffer(iommu);
1099 iommu_enable_event_buffer(iommu);
8736197b 1100 iommu_set_exclusion_range(iommu);
a80dc3e0 1101 iommu_init_msi(iommu);
8736197b
JR
1102 iommu_enable(iommu);
1103 }
1104}
1105
92ac4320
JR
1106static void disable_iommus(void)
1107{
1108 struct amd_iommu *iommu;
1109
1110 for_each_iommu(iommu)
1111 iommu_disable(iommu);
1112}
1113
7441e9cb
JR
1114/*
1115 * Suspend/Resume support
1116 * disable suspend until real resume implemented
1117 */
1118
1119static int amd_iommu_resume(struct sys_device *dev)
1120{
736501ee
JR
1121 /* re-load the hardware */
1122 enable_iommus();
1123
1124 /*
1125 * we have to flush after the IOMMUs are enabled because a
1126 * disabled IOMMU will never execute the commands we send
1127 */
736501ee 1128 amd_iommu_flush_all_devices();
6a047d8b 1129 amd_iommu_flush_all_domains();
736501ee 1130
7441e9cb
JR
1131 return 0;
1132}
1133
1134static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
1135{
736501ee
JR
1136 /* disable IOMMUs to go out of the way for BIOS */
1137 disable_iommus();
1138
1139 return 0;
7441e9cb
JR
1140}
1141
1142static struct sysdev_class amd_iommu_sysdev_class = {
1143 .name = "amd_iommu",
1144 .suspend = amd_iommu_suspend,
1145 .resume = amd_iommu_resume,
1146};
1147
1148static struct sys_device device_amd_iommu = {
1149 .id = 0,
1150 .cls = &amd_iommu_sysdev_class,
1151};
1152
b65233a9
JR
1153/*
1154 * This is the core init function for AMD IOMMU hardware in the system.
1155 * This function is called from the generic x86 DMA layer initialization
1156 * code.
1157 *
1158 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
1159 * three times:
1160 *
1161 * 1 pass) Find the highest PCI device id the driver has to handle.
1162 * Upon this information the size of the data structures is
1163 * determined that needs to be allocated.
1164 *
1165 * 2 pass) Initialize the data structures just allocated with the
1166 * information in the ACPI table about available AMD IOMMUs
1167 * in the system. It also maps the PCI devices in the
1168 * system to specific IOMMUs
1169 *
1170 * 3 pass) After the basic data structures are allocated and
1171 * initialized we update them with information about memory
1172 * remapping requirements parsed out of the ACPI table in
1173 * this last pass.
1174 *
1175 * After that the hardware is initialized and ready to go. In the last
1176 * step we do some Linux specific things like registering the driver in
1177 * the dma_ops interface and initializing the suspend/resume support
1178 * functions. Finally it prints some information about AMD IOMMUs and
1179 * the driver state and enables the hardware.
1180 */
ea1b0d39 1181static int __init amd_iommu_init(void)
fe74c9cf
JR
1182{
1183 int i, ret = 0;
1184
fe74c9cf
JR
1185 /*
1186 * First parse ACPI tables to find the largest Bus/Dev/Func
1187 * we need to handle. Upon this information the shared data
1188 * structures for the IOMMUs in the system will be allocated
1189 */
1190 if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
1191 return -ENODEV;
1192
c571484e
JR
1193 dev_table_size = tbl_size(DEV_TABLE_ENTRY_SIZE);
1194 alias_table_size = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
1195 rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
fe74c9cf
JR
1196
1197 ret = -ENOMEM;
1198
1199 /* Device table - directly used by all IOMMUs */
5dc8bff0 1200 amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1201 get_order(dev_table_size));
1202 if (amd_iommu_dev_table == NULL)
1203 goto out;
1204
1205 /*
1206 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
1207 * IOMMU see for that device
1208 */
1209 amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
1210 get_order(alias_table_size));
1211 if (amd_iommu_alias_table == NULL)
1212 goto free;
1213
1214 /* IOMMU rlookup table - find the IOMMU for a specific device */
83fd5cc6
JR
1215 amd_iommu_rlookup_table = (void *)__get_free_pages(
1216 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1217 get_order(rlookup_table_size));
1218 if (amd_iommu_rlookup_table == NULL)
1219 goto free;
1220
1221 /*
1222 * Protection Domain table - maps devices to protection domains
1223 * This table has the same size as the rlookup_table
1224 */
5dc8bff0 1225 amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1226 get_order(rlookup_table_size));
1227 if (amd_iommu_pd_table == NULL)
1228 goto free;
1229
5dc8bff0
JR
1230 amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
1231 GFP_KERNEL | __GFP_ZERO,
fe74c9cf
JR
1232 get_order(MAX_DOMAIN_ID/8));
1233 if (amd_iommu_pd_alloc_bitmap == NULL)
1234 goto free;
1235
9f5f5fb3
JR
1236 /* init the device table */
1237 init_device_table();
1238
fe74c9cf 1239 /*
5dc8bff0 1240 * let all alias entries point to itself
fe74c9cf 1241 */
3a61ec38 1242 for (i = 0; i <= amd_iommu_last_bdf; ++i)
fe74c9cf
JR
1243 amd_iommu_alias_table[i] = i;
1244
fe74c9cf
JR
1245 /*
1246 * never allocate domain 0 because its used as the non-allocated and
1247 * error value placeholder
1248 */
1249 amd_iommu_pd_alloc_bitmap[0] = 1;
1250
1251 /*
1252 * now the data structures are allocated and basically initialized
1253 * start the real acpi table scan
1254 */
1255 ret = -ENODEV;
1256 if (acpi_table_parse("IVRS", init_iommu_all) != 0)
1257 goto free;
1258
1259 if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
1260 goto free;
1261
129d6aba 1262 ret = sysdev_class_register(&amd_iommu_sysdev_class);
8736197b
JR
1263 if (ret)
1264 goto free;
1265
129d6aba 1266 ret = sysdev_register(&device_amd_iommu);
7441e9cb
JR
1267 if (ret)
1268 goto free;
1269
4751a951
JR
1270 if (iommu_pass_through)
1271 ret = amd_iommu_init_passthrough();
1272 else
1273 ret = amd_iommu_init_dma_ops();
7441e9cb
JR
1274 if (ret)
1275 goto free;
1276
8736197b
JR
1277 enable_iommus();
1278
4751a951
JR
1279 if (iommu_pass_through)
1280 goto out;
1281
4c6f40d4 1282 printk(KERN_INFO "AMD-Vi: device isolation ");
fe74c9cf
JR
1283 if (amd_iommu_isolate)
1284 printk("enabled\n");
1285 else
1286 printk("disabled\n");
1287
afa9fdc2 1288 if (amd_iommu_unmap_flush)
4c6f40d4 1289 printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
1c655773 1290 else
4c6f40d4 1291 printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
1c655773 1292
338bac52 1293 x86_platform.iommu_shutdown = disable_iommus;
fe74c9cf
JR
1294out:
1295 return ret;
1296
1297free:
d58befd3
JR
1298 free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
1299 get_order(MAX_DOMAIN_ID/8));
fe74c9cf 1300
9a836de0
JR
1301 free_pages((unsigned long)amd_iommu_pd_table,
1302 get_order(rlookup_table_size));
fe74c9cf 1303
9a836de0
JR
1304 free_pages((unsigned long)amd_iommu_rlookup_table,
1305 get_order(rlookup_table_size));
fe74c9cf 1306
9a836de0
JR
1307 free_pages((unsigned long)amd_iommu_alias_table,
1308 get_order(alias_table_size));
fe74c9cf 1309
9a836de0
JR
1310 free_pages((unsigned long)amd_iommu_dev_table,
1311 get_order(dev_table_size));
fe74c9cf
JR
1312
1313 free_iommu_all();
1314
1315 free_unity_maps();
1316
1317 goto out;
1318}
1319
b65233a9
JR
1320/****************************************************************************
1321 *
1322 * Early detect code. This code runs at IOMMU detection time in the DMA
1323 * layer. It just looks if there is an IVRS ACPI table to detect AMD
1324 * IOMMUs
1325 *
1326 ****************************************************************************/
ae7877de
JR
1327static int __init early_amd_iommu_detect(struct acpi_table_header *table)
1328{
1329 return 0;
1330}
1331
1332void __init amd_iommu_detect(void)
1333{
75f1cdf1 1334 if (no_iommu || (iommu_detected && !gart_iommu_aperture))
ae7877de
JR
1335 return;
1336
ae7877de
JR
1337 if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
1338 iommu_detected = 1;
c1cbebee 1339 amd_iommu_detected = 1;
ea1b0d39 1340 x86_init.iommu.iommu_init = amd_iommu_init;
ae7877de
JR
1341 }
1342}
1343
b65233a9
JR
1344/****************************************************************************
1345 *
1346 * Parsing functions for the AMD IOMMU specific kernel command line
1347 * options.
1348 *
1349 ****************************************************************************/
1350
fefda117
JR
1351static int __init parse_amd_iommu_dump(char *str)
1352{
1353 amd_iommu_dump = true;
1354
1355 return 1;
1356}
1357
918ad6c5
JR
1358static int __init parse_amd_iommu_options(char *str)
1359{
1360 for (; *str; ++str) {
1c655773 1361 if (strncmp(str, "isolate", 7) == 0)
c226f853 1362 amd_iommu_isolate = true;
e5e1f606 1363 if (strncmp(str, "share", 5) == 0)
c226f853 1364 amd_iommu_isolate = false;
695b5676 1365 if (strncmp(str, "fullflush", 9) == 0)
afa9fdc2 1366 amd_iommu_unmap_flush = true;
918ad6c5
JR
1367 }
1368
1369 return 1;
1370}
1371
fefda117 1372__setup("amd_iommu_dump", parse_amd_iommu_dump);
918ad6c5 1373__setup("amd_iommu=", parse_amd_iommu_options);