]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/kernel/amd_iommu.c
x86/amd-iommu: Fix passthrough mode
[net-next-2.6.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
a345b23b 60static void reset_iommu_command_buffer(struct amd_iommu *iommu);
04bfdd84 61static void update_domain(struct protection_domain *domain);
c1eee67b 62
15898bbc
JR
63/****************************************************************************
64 *
65 * Helper functions
66 *
67 ****************************************************************************/
68
69static inline u16 get_device_id(struct device *dev)
70{
71 struct pci_dev *pdev = to_pci_dev(dev);
72
73 return calc_devid(pdev->bus->number, pdev->devfn);
74}
75
657cbb6b
JR
76static struct iommu_dev_data *get_dev_data(struct device *dev)
77{
78 return dev->archdata.iommu;
79}
80
71c70984
JR
81/*
82 * In this function the list of preallocated protection domains is traversed to
83 * find the domain for a specific device
84 */
85static struct dma_ops_domain *find_protection_domain(u16 devid)
86{
87 struct dma_ops_domain *entry, *ret = NULL;
88 unsigned long flags;
89 u16 alias = amd_iommu_alias_table[devid];
90
91 if (list_empty(&iommu_pd_list))
92 return NULL;
93
94 spin_lock_irqsave(&iommu_pd_list_lock, flags);
95
96 list_for_each_entry(entry, &iommu_pd_list, list) {
97 if (entry->target_dev == devid ||
98 entry->target_dev == alias) {
99 ret = entry;
100 break;
101 }
102 }
103
104 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
105
106 return ret;
107}
108
98fc5a69
JR
109/*
110 * This function checks if the driver got a valid device from the caller to
111 * avoid dereferencing invalid pointers.
112 */
113static bool check_device(struct device *dev)
114{
115 u16 devid;
116
117 if (!dev || !dev->dma_mask)
118 return false;
119
120 /* No device or no PCI device */
121 if (!dev || dev->bus != &pci_bus_type)
122 return false;
123
124 devid = get_device_id(dev);
125
126 /* Out of our scope? */
127 if (devid > amd_iommu_last_bdf)
128 return false;
129
130 if (amd_iommu_rlookup_table[devid] == NULL)
131 return false;
132
133 return true;
134}
135
657cbb6b
JR
136static int iommu_init_device(struct device *dev)
137{
138 struct iommu_dev_data *dev_data;
139 struct pci_dev *pdev;
140 u16 devid, alias;
141
142 if (dev->archdata.iommu)
143 return 0;
144
145 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
146 if (!dev_data)
147 return -ENOMEM;
148
b00d3bcf
JR
149 dev_data->dev = dev;
150
657cbb6b
JR
151 devid = get_device_id(dev);
152 alias = amd_iommu_alias_table[devid];
153 pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
154 if (pdev)
155 dev_data->alias = &pdev->dev;
156
24100055
JR
157 atomic_set(&dev_data->bind, 0);
158
657cbb6b
JR
159 dev->archdata.iommu = dev_data;
160
161
162 return 0;
163}
164
165static void iommu_uninit_device(struct device *dev)
166{
167 kfree(dev->archdata.iommu);
168}
b7cc9554
JR
169
170void __init amd_iommu_uninit_devices(void)
171{
172 struct pci_dev *pdev = NULL;
173
174 for_each_pci_dev(pdev) {
175
176 if (!check_device(&pdev->dev))
177 continue;
178
179 iommu_uninit_device(&pdev->dev);
180 }
181}
182
183int __init amd_iommu_init_devices(void)
184{
185 struct pci_dev *pdev = NULL;
186 int ret = 0;
187
188 for_each_pci_dev(pdev) {
189
190 if (!check_device(&pdev->dev))
191 continue;
192
193 ret = iommu_init_device(&pdev->dev);
194 if (ret)
195 goto out_free;
196 }
197
198 return 0;
199
200out_free:
201
202 amd_iommu_uninit_devices();
203
204 return ret;
205}
7f26508b
JR
206#ifdef CONFIG_AMD_IOMMU_STATS
207
208/*
209 * Initialization code for statistics collection
210 */
211
da49f6df 212DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 213DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 214DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 215DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 216DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 217DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 218DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 219DECLARE_STATS_COUNTER(cross_page);
f57d98ae 220DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 221DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 222DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 223DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 224
7f26508b 225static struct dentry *stats_dir;
7f26508b
JR
226static struct dentry *de_fflush;
227
228static void amd_iommu_stats_add(struct __iommu_counter *cnt)
229{
230 if (stats_dir == NULL)
231 return;
232
233 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
234 &cnt->value);
235}
236
237static void amd_iommu_stats_init(void)
238{
239 stats_dir = debugfs_create_dir("amd-iommu", NULL);
240 if (stats_dir == NULL)
241 return;
242
7f26508b
JR
243 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
244 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
245
246 amd_iommu_stats_add(&compl_wait);
0f2a86f2 247 amd_iommu_stats_add(&cnt_map_single);
146a6917 248 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 249 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 250 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 251 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 252 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 253 amd_iommu_stats_add(&cross_page);
f57d98ae 254 amd_iommu_stats_add(&domain_flush_single);
18811f55 255 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 256 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 257 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
258}
259
260#endif
261
a80dc3e0
JR
262/****************************************************************************
263 *
264 * Interrupt handling functions
265 *
266 ****************************************************************************/
267
e3e59876
JR
268static void dump_dte_entry(u16 devid)
269{
270 int i;
271
272 for (i = 0; i < 8; ++i)
273 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
274 amd_iommu_dev_table[devid].data[i]);
275}
276
945b4ac4
JR
277static void dump_command(unsigned long phys_addr)
278{
279 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
280 int i;
281
282 for (i = 0; i < 4; ++i)
283 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
284}
285
a345b23b 286static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
287{
288 u32 *event = __evt;
289 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
290 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
291 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
292 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
293 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
294
4c6f40d4 295 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
296
297 switch (type) {
298 case EVENT_TYPE_ILL_DEV:
299 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
300 "address=0x%016llx flags=0x%04x]\n",
301 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
302 address, flags);
e3e59876 303 dump_dte_entry(devid);
90008ee4
JR
304 break;
305 case EVENT_TYPE_IO_FAULT:
306 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
307 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
308 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
309 domid, address, flags);
310 break;
311 case EVENT_TYPE_DEV_TAB_ERR:
312 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
313 "address=0x%016llx flags=0x%04x]\n",
314 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
315 address, flags);
316 break;
317 case EVENT_TYPE_PAGE_TAB_ERR:
318 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
319 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
320 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
321 domid, address, flags);
322 break;
323 case EVENT_TYPE_ILL_CMD:
324 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
8eed9833 325 iommu->reset_in_progress = true;
a345b23b 326 reset_iommu_command_buffer(iommu);
945b4ac4 327 dump_command(address);
90008ee4
JR
328 break;
329 case EVENT_TYPE_CMD_HARD_ERR:
330 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
331 "flags=0x%04x]\n", address, flags);
332 break;
333 case EVENT_TYPE_IOTLB_INV_TO:
334 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
335 "address=0x%016llx]\n",
336 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
337 address);
338 break;
339 case EVENT_TYPE_INV_DEV_REQ:
340 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
341 "address=0x%016llx flags=0x%04x]\n",
342 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
343 address, flags);
344 break;
345 default:
346 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
347 }
348}
349
350static void iommu_poll_events(struct amd_iommu *iommu)
351{
352 u32 head, tail;
353 unsigned long flags;
354
355 spin_lock_irqsave(&iommu->lock, flags);
356
357 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
358 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
359
360 while (head != tail) {
a345b23b 361 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
362 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
363 }
364
365 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
366
367 spin_unlock_irqrestore(&iommu->lock, flags);
368}
369
a80dc3e0
JR
370irqreturn_t amd_iommu_int_handler(int irq, void *data)
371{
90008ee4
JR
372 struct amd_iommu *iommu;
373
3bd22172 374 for_each_iommu(iommu)
90008ee4
JR
375 iommu_poll_events(iommu);
376
377 return IRQ_HANDLED;
a80dc3e0
JR
378}
379
431b2a20
JR
380/****************************************************************************
381 *
382 * IOMMU command queuing functions
383 *
384 ****************************************************************************/
385
386/*
387 * Writes the command to the IOMMUs command buffer and informs the
388 * hardware about the new command. Must be called with iommu->lock held.
389 */
d6449536 390static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
391{
392 u32 tail, head;
393 u8 *target;
394
395 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 396 target = iommu->cmd_buf + tail;
a19ae1ec
JR
397 memcpy_toio(target, cmd, sizeof(*cmd));
398 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
399 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
400 if (tail == head)
401 return -ENOMEM;
402 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
403
404 return 0;
405}
406
431b2a20
JR
407/*
408 * General queuing function for commands. Takes iommu->lock and calls
409 * __iommu_queue_command().
410 */
d6449536 411static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
412{
413 unsigned long flags;
414 int ret;
415
416 spin_lock_irqsave(&iommu->lock, flags);
417 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 418 if (!ret)
0cfd7aa9 419 iommu->need_sync = true;
a19ae1ec
JR
420 spin_unlock_irqrestore(&iommu->lock, flags);
421
422 return ret;
423}
424
8d201968
JR
425/*
426 * This function waits until an IOMMU has completed a completion
427 * wait command
428 */
429static void __iommu_wait_for_completion(struct amd_iommu *iommu)
430{
431 int ready = 0;
432 unsigned status = 0;
433 unsigned long i = 0;
434
da49f6df
JR
435 INC_STATS_COUNTER(compl_wait);
436
8d201968
JR
437 while (!ready && (i < EXIT_LOOP_COUNT)) {
438 ++i;
439 /* wait for the bit to become one */
440 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
441 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
442 }
443
444 /* set bit back to zero */
445 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
446 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
447
8eed9833
JR
448 if (unlikely(i == EXIT_LOOP_COUNT))
449 iommu->reset_in_progress = true;
8d201968
JR
450}
451
452/*
453 * This function queues a completion wait command into the command
454 * buffer of an IOMMU
455 */
456static int __iommu_completion_wait(struct amd_iommu *iommu)
457{
458 struct iommu_cmd cmd;
459
460 memset(&cmd, 0, sizeof(cmd));
461 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
462 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
463
464 return __iommu_queue_command(iommu, &cmd);
465}
466
431b2a20
JR
467/*
468 * This function is called whenever we need to ensure that the IOMMU has
469 * completed execution of all commands we sent. It sends a
470 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
471 * us about that by writing a value to a physical address we pass with
472 * the command.
473 */
a19ae1ec
JR
474static int iommu_completion_wait(struct amd_iommu *iommu)
475{
8d201968
JR
476 int ret = 0;
477 unsigned long flags;
a19ae1ec 478
7e4f88da
JR
479 spin_lock_irqsave(&iommu->lock, flags);
480
09ee17eb
JR
481 if (!iommu->need_sync)
482 goto out;
483
8d201968 484 ret = __iommu_completion_wait(iommu);
09ee17eb 485
0cfd7aa9 486 iommu->need_sync = false;
a19ae1ec
JR
487
488 if (ret)
7e4f88da 489 goto out;
a19ae1ec 490
8d201968 491 __iommu_wait_for_completion(iommu);
84df8175 492
7e4f88da
JR
493out:
494 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec 495
8eed9833
JR
496 if (iommu->reset_in_progress)
497 reset_iommu_command_buffer(iommu);
498
a19ae1ec
JR
499 return 0;
500}
501
0518a3a4
JR
502static void iommu_flush_complete(struct protection_domain *domain)
503{
504 int i;
505
506 for (i = 0; i < amd_iommus_present; ++i) {
507 if (!domain->dev_iommu[i])
508 continue;
509
510 /*
511 * Devices of this domain are behind this IOMMU
512 * We need to wait for completion of all commands.
513 */
514 iommu_completion_wait(amd_iommus[i]);
515 }
516}
517
431b2a20
JR
518/*
519 * Command send function for invalidating a device table entry
520 */
3fa43655
JR
521static int iommu_flush_device(struct device *dev)
522{
523 struct amd_iommu *iommu;
b00d3bcf 524 struct iommu_cmd cmd;
3fa43655
JR
525 u16 devid;
526
527 devid = get_device_id(dev);
528 iommu = amd_iommu_rlookup_table[devid];
529
b00d3bcf
JR
530 /* Build command */
531 memset(&cmd, 0, sizeof(cmd));
532 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
533 cmd.data[0] = devid;
534
535 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
536}
537
237b6f33
JR
538static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
539 u16 domid, int pde, int s)
540{
541 memset(cmd, 0, sizeof(*cmd));
542 address &= PAGE_MASK;
543 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
544 cmd->data[1] |= domid;
545 cmd->data[2] = lower_32_bits(address);
546 cmd->data[3] = upper_32_bits(address);
547 if (s) /* size bit - we flush more than one 4kb page */
548 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
549 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
550 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
551}
552
431b2a20
JR
553/*
554 * Generic command send function for invalidaing TLB entries
555 */
a19ae1ec
JR
556static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
557 u64 address, u16 domid, int pde, int s)
558{
d6449536 559 struct iommu_cmd cmd;
ee2fa743 560 int ret;
a19ae1ec 561
237b6f33 562 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 563
ee2fa743
JR
564 ret = iommu_queue_command(iommu, &cmd);
565
ee2fa743 566 return ret;
a19ae1ec
JR
567}
568
431b2a20
JR
569/*
570 * TLB invalidation function which is called from the mapping functions.
571 * It invalidates a single PTE if the range to flush is within a single
572 * page. Otherwise it flushes the whole TLB of the IOMMU.
573 */
6de8ad9b
JR
574static void __iommu_flush_pages(struct protection_domain *domain,
575 u64 address, size_t size, int pde)
a19ae1ec 576{
6de8ad9b 577 int s = 0, i;
dcd1e92e 578 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
579
580 address &= PAGE_MASK;
581
999ba417
JR
582 if (pages > 1) {
583 /*
584 * If we have to flush more than one page, flush all
585 * TLB entries for this domain
586 */
587 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
588 s = 1;
a19ae1ec
JR
589 }
590
999ba417 591
6de8ad9b
JR
592 for (i = 0; i < amd_iommus_present; ++i) {
593 if (!domain->dev_iommu[i])
594 continue;
595
596 /*
597 * Devices of this domain are behind this IOMMU
598 * We need a TLB flush
599 */
600 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
601 domain->id, pde, s);
602 }
603
604 return;
605}
606
607static void iommu_flush_pages(struct protection_domain *domain,
608 u64 address, size_t size)
609{
610 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 611}
b6c02715 612
1c655773 613/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 614static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 615{
dcd1e92e 616 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
617}
618
42a49f96 619/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 620static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 621{
dcd1e92e 622 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
623}
624
b00d3bcf 625
43f49609 626/*
b00d3bcf 627 * This function flushes the DTEs for all devices in domain
43f49609 628 */
b00d3bcf
JR
629static void iommu_flush_domain_devices(struct protection_domain *domain)
630{
631 struct iommu_dev_data *dev_data;
632 unsigned long flags;
633
634 spin_lock_irqsave(&domain->lock, flags);
635
636 list_for_each_entry(dev_data, &domain->dev_list, list)
637 iommu_flush_device(dev_data->dev);
638
639 spin_unlock_irqrestore(&domain->lock, flags);
640}
641
642static void iommu_flush_all_domain_devices(void)
43f49609 643{
09b42804 644 struct protection_domain *domain;
e394d72a 645 unsigned long flags;
18811f55 646
09b42804 647 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 648
09b42804 649 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
b00d3bcf 650 iommu_flush_domain_devices(domain);
09b42804 651 iommu_flush_complete(domain);
bfd1be18 652 }
e394d72a 653
09b42804 654 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
655}
656
b00d3bcf
JR
657void amd_iommu_flush_all_devices(void)
658{
659 iommu_flush_all_domain_devices();
660}
661
09b42804
JR
662/*
663 * This function uses heavy locking and may disable irqs for some time. But
664 * this is no issue because it is only called during resume.
665 */
bfd1be18 666void amd_iommu_flush_all_domains(void)
e394d72a 667{
e3306664 668 struct protection_domain *domain;
09b42804
JR
669 unsigned long flags;
670
671 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 672
e3306664 673 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 674 spin_lock(&domain->lock);
e3306664
JR
675 iommu_flush_tlb_pde(domain);
676 iommu_flush_complete(domain);
09b42804 677 spin_unlock(&domain->lock);
e3306664 678 }
09b42804
JR
679
680 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
681}
682
a345b23b
JR
683static void reset_iommu_command_buffer(struct amd_iommu *iommu)
684{
685 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
686
b26e81b8
JR
687 if (iommu->reset_in_progress)
688 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
689
a345b23b 690 amd_iommu_reset_cmd_buffer(iommu);
b00d3bcf
JR
691 amd_iommu_flush_all_devices();
692 amd_iommu_flush_all_domains();
b26e81b8
JR
693
694 iommu->reset_in_progress = false;
a345b23b
JR
695}
696
431b2a20
JR
697/****************************************************************************
698 *
699 * The functions below are used the create the page table mappings for
700 * unity mapped regions.
701 *
702 ****************************************************************************/
703
308973d3
JR
704/*
705 * This function is used to add another level to an IO page table. Adding
706 * another level increases the size of the address space by 9 bits to a size up
707 * to 64 bits.
708 */
709static bool increase_address_space(struct protection_domain *domain,
710 gfp_t gfp)
711{
712 u64 *pte;
713
714 if (domain->mode == PAGE_MODE_6_LEVEL)
715 /* address space already 64 bit large */
716 return false;
717
718 pte = (void *)get_zeroed_page(gfp);
719 if (!pte)
720 return false;
721
722 *pte = PM_LEVEL_PDE(domain->mode,
723 virt_to_phys(domain->pt_root));
724 domain->pt_root = pte;
725 domain->mode += 1;
726 domain->updated = true;
727
728 return true;
729}
730
731static u64 *alloc_pte(struct protection_domain *domain,
732 unsigned long address,
733 int end_lvl,
734 u64 **pte_page,
735 gfp_t gfp)
736{
737 u64 *pte, *page;
738 int level;
739
740 while (address > PM_LEVEL_SIZE(domain->mode))
741 increase_address_space(domain, gfp);
742
743 level = domain->mode - 1;
744 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
745
746 while (level > end_lvl) {
747 if (!IOMMU_PTE_PRESENT(*pte)) {
748 page = (u64 *)get_zeroed_page(gfp);
749 if (!page)
750 return NULL;
751 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
752 }
753
754 level -= 1;
755
756 pte = IOMMU_PTE_PAGE(*pte);
757
758 if (pte_page && level == end_lvl)
759 *pte_page = pte;
760
761 pte = &pte[PM_LEVEL_INDEX(level, address)];
762 }
763
764 return pte;
765}
766
767/*
768 * This function checks if there is a PTE for a given dma address. If
769 * there is one, it returns the pointer to it.
770 */
771static u64 *fetch_pte(struct protection_domain *domain,
772 unsigned long address, int map_size)
773{
774 int level;
775 u64 *pte;
776
777 level = domain->mode - 1;
778 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
779
780 while (level > map_size) {
781 if (!IOMMU_PTE_PRESENT(*pte))
782 return NULL;
783
784 level -= 1;
785
786 pte = IOMMU_PTE_PAGE(*pte);
787 pte = &pte[PM_LEVEL_INDEX(level, address)];
788
789 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
790 pte = NULL;
791 break;
792 }
793 }
794
795 return pte;
796}
797
431b2a20
JR
798/*
799 * Generic mapping functions. It maps a physical address into a DMA
800 * address space. It allocates the page table pages if necessary.
801 * In the future it can be extended to a generic mapping function
802 * supporting all features of AMD IOMMU page tables like level skipping
803 * and full 64 bit address spaces.
804 */
38e817fe
JR
805static int iommu_map_page(struct protection_domain *dom,
806 unsigned long bus_addr,
807 unsigned long phys_addr,
abdc5eb3
JR
808 int prot,
809 int map_size)
bd0e5211 810{
8bda3092 811 u64 __pte, *pte;
bd0e5211
JR
812
813 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 814 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 815
abdc5eb3
JR
816 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
817 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
818
bad1cac2 819 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
820 return -EINVAL;
821
abdc5eb3 822 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
823
824 if (IOMMU_PTE_PRESENT(*pte))
825 return -EBUSY;
826
827 __pte = phys_addr | IOMMU_PTE_P;
828 if (prot & IOMMU_PROT_IR)
829 __pte |= IOMMU_PTE_IR;
830 if (prot & IOMMU_PROT_IW)
831 __pte |= IOMMU_PTE_IW;
832
833 *pte = __pte;
834
04bfdd84
JR
835 update_domain(dom);
836
bd0e5211
JR
837 return 0;
838}
839
eb74ff6c 840static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 841 unsigned long bus_addr, int map_size)
eb74ff6c 842{
a6b256b4 843 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 844
38a76eee
JR
845 if (pte)
846 *pte = 0;
eb74ff6c 847}
eb74ff6c 848
431b2a20
JR
849/*
850 * This function checks if a specific unity mapping entry is needed for
851 * this specific IOMMU.
852 */
bd0e5211
JR
853static int iommu_for_unity_map(struct amd_iommu *iommu,
854 struct unity_map_entry *entry)
855{
856 u16 bdf, i;
857
858 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
859 bdf = amd_iommu_alias_table[i];
860 if (amd_iommu_rlookup_table[bdf] == iommu)
861 return 1;
862 }
863
864 return 0;
865}
866
431b2a20
JR
867/*
868 * This function actually applies the mapping to the page table of the
869 * dma_ops domain.
870 */
bd0e5211
JR
871static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
872 struct unity_map_entry *e)
873{
874 u64 addr;
875 int ret;
876
877 for (addr = e->address_start; addr < e->address_end;
878 addr += PAGE_SIZE) {
abdc5eb3
JR
879 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
880 PM_MAP_4k);
bd0e5211
JR
881 if (ret)
882 return ret;
883 /*
884 * if unity mapping is in aperture range mark the page
885 * as allocated in the aperture
886 */
887 if (addr < dma_dom->aperture_size)
c3239567 888 __set_bit(addr >> PAGE_SHIFT,
384de729 889 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
890 }
891
892 return 0;
893}
894
171e7b37
JR
895/*
896 * Init the unity mappings for a specific IOMMU in the system
897 *
898 * Basically iterates over all unity mapping entries and applies them to
899 * the default domain DMA of that IOMMU if necessary.
900 */
901static int iommu_init_unity_mappings(struct amd_iommu *iommu)
902{
903 struct unity_map_entry *entry;
904 int ret;
905
906 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
907 if (!iommu_for_unity_map(iommu, entry))
908 continue;
909 ret = dma_ops_unity_map(iommu->default_dom, entry);
910 if (ret)
911 return ret;
912 }
913
914 return 0;
915}
916
431b2a20
JR
917/*
918 * Inits the unity mappings required for a specific device
919 */
bd0e5211
JR
920static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
921 u16 devid)
922{
923 struct unity_map_entry *e;
924 int ret;
925
926 list_for_each_entry(e, &amd_iommu_unity_map, list) {
927 if (!(devid >= e->devid_start && devid <= e->devid_end))
928 continue;
929 ret = dma_ops_unity_map(dma_dom, e);
930 if (ret)
931 return ret;
932 }
933
934 return 0;
935}
936
431b2a20
JR
937/****************************************************************************
938 *
939 * The next functions belong to the address allocator for the dma_ops
940 * interface functions. They work like the allocators in the other IOMMU
941 * drivers. Its basically a bitmap which marks the allocated pages in
942 * the aperture. Maybe it could be enhanced in the future to a more
943 * efficient allocator.
944 *
945 ****************************************************************************/
d3086444 946
431b2a20 947/*
384de729 948 * The address allocator core functions.
431b2a20
JR
949 *
950 * called with domain->lock held
951 */
384de729 952
171e7b37
JR
953/*
954 * Used to reserve address ranges in the aperture (e.g. for exclusion
955 * ranges.
956 */
957static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
958 unsigned long start_page,
959 unsigned int pages)
960{
961 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
962
963 if (start_page + pages > last_page)
964 pages = last_page - start_page;
965
966 for (i = start_page; i < start_page + pages; ++i) {
967 int index = i / APERTURE_RANGE_PAGES;
968 int page = i % APERTURE_RANGE_PAGES;
969 __set_bit(page, dom->aperture[index]->bitmap);
970 }
971}
972
9cabe89b
JR
973/*
974 * This function is used to add a new aperture range to an existing
975 * aperture in case of dma_ops domain allocation or address allocation
976 * failure.
977 */
576175c2 978static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
979 bool populate, gfp_t gfp)
980{
981 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 982 struct amd_iommu *iommu;
00cd122a 983 int i;
9cabe89b 984
f5e9705c
JR
985#ifdef CONFIG_IOMMU_STRESS
986 populate = false;
987#endif
988
9cabe89b
JR
989 if (index >= APERTURE_MAX_RANGES)
990 return -ENOMEM;
991
992 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
993 if (!dma_dom->aperture[index])
994 return -ENOMEM;
995
996 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
997 if (!dma_dom->aperture[index]->bitmap)
998 goto out_free;
999
1000 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1001
1002 if (populate) {
1003 unsigned long address = dma_dom->aperture_size;
1004 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1005 u64 *pte, *pte_page;
1006
1007 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 1008 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
1009 &pte_page, gfp);
1010 if (!pte)
1011 goto out_free;
1012
1013 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1014
1015 address += APERTURE_RANGE_SIZE / 64;
1016 }
1017 }
1018
1019 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1020
00cd122a 1021 /* Intialize the exclusion range if necessary */
576175c2
JR
1022 for_each_iommu(iommu) {
1023 if (iommu->exclusion_start &&
1024 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1025 && iommu->exclusion_start < dma_dom->aperture_size) {
1026 unsigned long startpage;
1027 int pages = iommu_num_pages(iommu->exclusion_start,
1028 iommu->exclusion_length,
1029 PAGE_SIZE);
1030 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1031 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1032 }
00cd122a
JR
1033 }
1034
1035 /*
1036 * Check for areas already mapped as present in the new aperture
1037 * range and mark those pages as reserved in the allocator. Such
1038 * mappings may already exist as a result of requested unity
1039 * mappings for devices.
1040 */
1041 for (i = dma_dom->aperture[index]->offset;
1042 i < dma_dom->aperture_size;
1043 i += PAGE_SIZE) {
a6b256b4 1044 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
1045 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1046 continue;
1047
1048 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1049 }
1050
04bfdd84
JR
1051 update_domain(&dma_dom->domain);
1052
9cabe89b
JR
1053 return 0;
1054
1055out_free:
04bfdd84
JR
1056 update_domain(&dma_dom->domain);
1057
9cabe89b
JR
1058 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1059
1060 kfree(dma_dom->aperture[index]);
1061 dma_dom->aperture[index] = NULL;
1062
1063 return -ENOMEM;
1064}
1065
384de729
JR
1066static unsigned long dma_ops_area_alloc(struct device *dev,
1067 struct dma_ops_domain *dom,
1068 unsigned int pages,
1069 unsigned long align_mask,
1070 u64 dma_mask,
1071 unsigned long start)
1072{
803b8cb4 1073 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1074 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1075 int i = start >> APERTURE_RANGE_SHIFT;
1076 unsigned long boundary_size;
1077 unsigned long address = -1;
1078 unsigned long limit;
1079
803b8cb4
JR
1080 next_bit >>= PAGE_SHIFT;
1081
384de729
JR
1082 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1083 PAGE_SIZE) >> PAGE_SHIFT;
1084
1085 for (;i < max_index; ++i) {
1086 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1087
1088 if (dom->aperture[i]->offset >= dma_mask)
1089 break;
1090
1091 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1092 dma_mask >> PAGE_SHIFT);
1093
1094 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1095 limit, next_bit, pages, 0,
1096 boundary_size, align_mask);
1097 if (address != -1) {
1098 address = dom->aperture[i]->offset +
1099 (address << PAGE_SHIFT);
803b8cb4 1100 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1101 break;
1102 }
1103
1104 next_bit = 0;
1105 }
1106
1107 return address;
1108}
1109
d3086444
JR
1110static unsigned long dma_ops_alloc_addresses(struct device *dev,
1111 struct dma_ops_domain *dom,
6d4f343f 1112 unsigned int pages,
832a90c3
JR
1113 unsigned long align_mask,
1114 u64 dma_mask)
d3086444 1115{
d3086444 1116 unsigned long address;
d3086444 1117
fe16f088
JR
1118#ifdef CONFIG_IOMMU_STRESS
1119 dom->next_address = 0;
1120 dom->need_flush = true;
1121#endif
d3086444 1122
384de729 1123 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1124 dma_mask, dom->next_address);
d3086444 1125
1c655773 1126 if (address == -1) {
803b8cb4 1127 dom->next_address = 0;
384de729
JR
1128 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1129 dma_mask, 0);
1c655773
JR
1130 dom->need_flush = true;
1131 }
d3086444 1132
384de729 1133 if (unlikely(address == -1))
8fd524b3 1134 address = DMA_ERROR_CODE;
d3086444
JR
1135
1136 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1137
1138 return address;
1139}
1140
431b2a20
JR
1141/*
1142 * The address free function.
1143 *
1144 * called with domain->lock held
1145 */
d3086444
JR
1146static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1147 unsigned long address,
1148 unsigned int pages)
1149{
384de729
JR
1150 unsigned i = address >> APERTURE_RANGE_SHIFT;
1151 struct aperture_range *range = dom->aperture[i];
80be308d 1152
384de729
JR
1153 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1154
47bccd6b
JR
1155#ifdef CONFIG_IOMMU_STRESS
1156 if (i < 4)
1157 return;
1158#endif
80be308d 1159
803b8cb4 1160 if (address >= dom->next_address)
80be308d 1161 dom->need_flush = true;
384de729
JR
1162
1163 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1164
384de729
JR
1165 iommu_area_free(range->bitmap, address, pages);
1166
d3086444
JR
1167}
1168
431b2a20
JR
1169/****************************************************************************
1170 *
1171 * The next functions belong to the domain allocation. A domain is
1172 * allocated for every IOMMU as the default domain. If device isolation
1173 * is enabled, every device get its own domain. The most important thing
1174 * about domains is the page table mapping the DMA address space they
1175 * contain.
1176 *
1177 ****************************************************************************/
1178
aeb26f55
JR
1179/*
1180 * This function adds a protection domain to the global protection domain list
1181 */
1182static void add_domain_to_list(struct protection_domain *domain)
1183{
1184 unsigned long flags;
1185
1186 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1187 list_add(&domain->list, &amd_iommu_pd_list);
1188 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1189}
1190
1191/*
1192 * This function removes a protection domain to the global
1193 * protection domain list
1194 */
1195static void del_domain_from_list(struct protection_domain *domain)
1196{
1197 unsigned long flags;
1198
1199 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1200 list_del(&domain->list);
1201 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1202}
1203
ec487d1a
JR
1204static u16 domain_id_alloc(void)
1205{
1206 unsigned long flags;
1207 int id;
1208
1209 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1210 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1211 BUG_ON(id == 0);
1212 if (id > 0 && id < MAX_DOMAIN_ID)
1213 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1214 else
1215 id = 0;
1216 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1217
1218 return id;
1219}
1220
a2acfb75
JR
1221static void domain_id_free(int id)
1222{
1223 unsigned long flags;
1224
1225 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1226 if (id > 0 && id < MAX_DOMAIN_ID)
1227 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1228 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1229}
a2acfb75 1230
86db2e5d 1231static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1232{
1233 int i, j;
1234 u64 *p1, *p2, *p3;
1235
86db2e5d 1236 p1 = domain->pt_root;
ec487d1a
JR
1237
1238 if (!p1)
1239 return;
1240
1241 for (i = 0; i < 512; ++i) {
1242 if (!IOMMU_PTE_PRESENT(p1[i]))
1243 continue;
1244
1245 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1246 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1247 if (!IOMMU_PTE_PRESENT(p2[j]))
1248 continue;
1249 p3 = IOMMU_PTE_PAGE(p2[j]);
1250 free_page((unsigned long)p3);
1251 }
1252
1253 free_page((unsigned long)p2);
1254 }
1255
1256 free_page((unsigned long)p1);
86db2e5d
JR
1257
1258 domain->pt_root = NULL;
ec487d1a
JR
1259}
1260
431b2a20
JR
1261/*
1262 * Free a domain, only used if something went wrong in the
1263 * allocation path and we need to free an already allocated page table
1264 */
ec487d1a
JR
1265static void dma_ops_domain_free(struct dma_ops_domain *dom)
1266{
384de729
JR
1267 int i;
1268
ec487d1a
JR
1269 if (!dom)
1270 return;
1271
aeb26f55
JR
1272 del_domain_from_list(&dom->domain);
1273
86db2e5d 1274 free_pagetable(&dom->domain);
ec487d1a 1275
384de729
JR
1276 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1277 if (!dom->aperture[i])
1278 continue;
1279 free_page((unsigned long)dom->aperture[i]->bitmap);
1280 kfree(dom->aperture[i]);
1281 }
ec487d1a
JR
1282
1283 kfree(dom);
1284}
1285
431b2a20
JR
1286/*
1287 * Allocates a new protection domain usable for the dma_ops functions.
1288 * It also intializes the page table and the address allocator data
1289 * structures required for the dma_ops interface
1290 */
87a64d52 1291static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1292{
1293 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1294
1295 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1296 if (!dma_dom)
1297 return NULL;
1298
1299 spin_lock_init(&dma_dom->domain.lock);
1300
1301 dma_dom->domain.id = domain_id_alloc();
1302 if (dma_dom->domain.id == 0)
1303 goto free_dma_dom;
7c392cbe 1304 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
8f7a017c 1305 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1306 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1307 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1308 dma_dom->domain.priv = dma_dom;
1309 if (!dma_dom->domain.pt_root)
1310 goto free_dma_dom;
ec487d1a 1311
1c655773 1312 dma_dom->need_flush = false;
bd60b735 1313 dma_dom->target_dev = 0xffff;
1c655773 1314
aeb26f55
JR
1315 add_domain_to_list(&dma_dom->domain);
1316
576175c2 1317 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1318 goto free_dma_dom;
ec487d1a 1319
431b2a20 1320 /*
ec487d1a
JR
1321 * mark the first page as allocated so we never return 0 as
1322 * a valid dma-address. So we can use 0 as error value
431b2a20 1323 */
384de729 1324 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1325 dma_dom->next_address = 0;
ec487d1a 1326
ec487d1a
JR
1327
1328 return dma_dom;
1329
1330free_dma_dom:
1331 dma_ops_domain_free(dma_dom);
1332
1333 return NULL;
1334}
1335
5b28df6f
JR
1336/*
1337 * little helper function to check whether a given protection domain is a
1338 * dma_ops domain
1339 */
1340static bool dma_ops_domain(struct protection_domain *domain)
1341{
1342 return domain->flags & PD_DMA_OPS_MASK;
1343}
1344
407d733e 1345static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1346{
b20ac0d4 1347 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1348
38ddf41b
JR
1349 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1350 << DEV_ENTRY_MODE_SHIFT;
1351 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1352
b20ac0d4 1353 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1354 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1355 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
15898bbc
JR
1356}
1357
1358static void clear_dte_entry(u16 devid)
1359{
15898bbc
JR
1360 /* remove entry from the device table seen by the hardware */
1361 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1362 amd_iommu_dev_table[devid].data[1] = 0;
1363 amd_iommu_dev_table[devid].data[2] = 0;
1364
1365 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1366}
1367
1368static void do_attach(struct device *dev, struct protection_domain *domain)
1369{
1370 struct iommu_dev_data *dev_data;
1371 struct amd_iommu *iommu;
1372 u16 devid;
1373
1374 devid = get_device_id(dev);
1375 iommu = amd_iommu_rlookup_table[devid];
1376 dev_data = get_dev_data(dev);
1377
1378 /* Update data structures */
1379 dev_data->domain = domain;
1380 list_add(&dev_data->list, &domain->dev_list);
1381 set_dte_entry(devid, domain);
1382
1383 /* Do reference counting */
1384 domain->dev_iommu[iommu->index] += 1;
1385 domain->dev_cnt += 1;
1386
1387 /* Flush the DTE entry */
3fa43655 1388 iommu_flush_device(dev);
7f760ddd
JR
1389}
1390
1391static void do_detach(struct device *dev)
1392{
1393 struct iommu_dev_data *dev_data;
1394 struct amd_iommu *iommu;
1395 u16 devid;
1396
1397 devid = get_device_id(dev);
1398 iommu = amd_iommu_rlookup_table[devid];
1399 dev_data = get_dev_data(dev);
15898bbc
JR
1400
1401 /* decrease reference counters */
7f760ddd
JR
1402 dev_data->domain->dev_iommu[iommu->index] -= 1;
1403 dev_data->domain->dev_cnt -= 1;
1404
1405 /* Update data structures */
1406 dev_data->domain = NULL;
1407 list_del(&dev_data->list);
1408 clear_dte_entry(devid);
15898bbc 1409
7f760ddd 1410 /* Flush the DTE entry */
3fa43655 1411 iommu_flush_device(dev);
2b681faf
JR
1412}
1413
1414/*
1415 * If a device is not yet associated with a domain, this function does
1416 * assigns it visible for the hardware
1417 */
15898bbc
JR
1418static int __attach_device(struct device *dev,
1419 struct protection_domain *domain)
2b681faf 1420{
657cbb6b 1421 struct iommu_dev_data *dev_data, *alias_data;
657cbb6b 1422
657cbb6b
JR
1423 dev_data = get_dev_data(dev);
1424 alias_data = get_dev_data(dev_data->alias);
7f760ddd 1425
657cbb6b
JR
1426 if (!alias_data)
1427 return -EINVAL;
15898bbc 1428
2b681faf
JR
1429 /* lock domain */
1430 spin_lock(&domain->lock);
1431
15898bbc 1432 /* Some sanity checks */
657cbb6b
JR
1433 if (alias_data->domain != NULL &&
1434 alias_data->domain != domain)
15898bbc 1435 return -EBUSY;
eba6ac60 1436
657cbb6b
JR
1437 if (dev_data->domain != NULL &&
1438 dev_data->domain != domain)
15898bbc
JR
1439 return -EBUSY;
1440
1441 /* Do real assignment */
7f760ddd
JR
1442 if (dev_data->alias != dev) {
1443 alias_data = get_dev_data(dev_data->alias);
1444 if (alias_data->domain == NULL)
1445 do_attach(dev_data->alias, domain);
24100055
JR
1446
1447 atomic_inc(&alias_data->bind);
657cbb6b 1448 }
15898bbc 1449
7f760ddd
JR
1450 if (dev_data->domain == NULL)
1451 do_attach(dev, domain);
eba6ac60 1452
24100055
JR
1453 atomic_inc(&dev_data->bind);
1454
eba6ac60
JR
1455 /* ready */
1456 spin_unlock(&domain->lock);
15898bbc
JR
1457
1458 return 0;
0feae533 1459}
b20ac0d4 1460
407d733e
JR
1461/*
1462 * If a device is not yet associated with a domain, this function does
1463 * assigns it visible for the hardware
1464 */
15898bbc
JR
1465static int attach_device(struct device *dev,
1466 struct protection_domain *domain)
0feae533 1467{
eba6ac60 1468 unsigned long flags;
15898bbc 1469 int ret;
eba6ac60
JR
1470
1471 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1472 ret = __attach_device(dev, domain);
b20ac0d4
JR
1473 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1474
0feae533
JR
1475 /*
1476 * We might boot into a crash-kernel here. The crashed kernel
1477 * left the caches in the IOMMU dirty. So we have to flush
1478 * here to evict all dirty stuff.
1479 */
dcd1e92e 1480 iommu_flush_tlb_pde(domain);
15898bbc
JR
1481
1482 return ret;
b20ac0d4
JR
1483}
1484
355bf553
JR
1485/*
1486 * Removes a device from a protection domain (unlocked)
1487 */
15898bbc 1488static void __detach_device(struct device *dev)
355bf553 1489{
657cbb6b 1490 struct iommu_dev_data *dev_data = get_dev_data(dev);
24100055 1491 struct iommu_dev_data *alias_data;
7c392cbe 1492 unsigned long flags;
c4596114 1493
7f760ddd 1494 BUG_ON(!dev_data->domain);
355bf553 1495
7f760ddd 1496 spin_lock_irqsave(&dev_data->domain->lock, flags);
24100055 1497
7f760ddd 1498 if (dev_data->alias != dev) {
24100055 1499 alias_data = get_dev_data(dev_data->alias);
7f760ddd
JR
1500 if (atomic_dec_and_test(&alias_data->bind))
1501 do_detach(dev_data->alias);
24100055
JR
1502 }
1503
7f760ddd
JR
1504 if (atomic_dec_and_test(&dev_data->bind))
1505 do_detach(dev);
1506
1507 spin_unlock_irqrestore(&dev_data->domain->lock, flags);
21129f78
JR
1508
1509 /*
1510 * If we run in passthrough mode the device must be assigned to the
1511 * passthrough domain if it is detached from any other domain
1512 */
24100055 1513 if (iommu_pass_through && dev_data->domain == NULL)
15898bbc 1514 __attach_device(dev, pt_domain);
355bf553
JR
1515}
1516
1517/*
1518 * Removes a device from a protection domain (with devtable_lock held)
1519 */
15898bbc 1520static void detach_device(struct device *dev)
355bf553
JR
1521{
1522 unsigned long flags;
1523
1524 /* lock device table */
1525 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1526 __detach_device(dev);
355bf553
JR
1527 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1528}
e275a2a0 1529
15898bbc
JR
1530/*
1531 * Find out the protection domain structure for a given PCI device. This
1532 * will give us the pointer to the page table root for example.
1533 */
1534static struct protection_domain *domain_for_device(struct device *dev)
1535{
1536 struct protection_domain *dom;
657cbb6b 1537 struct iommu_dev_data *dev_data, *alias_data;
15898bbc
JR
1538 unsigned long flags;
1539 u16 devid, alias;
1540
657cbb6b
JR
1541 devid = get_device_id(dev);
1542 alias = amd_iommu_alias_table[devid];
1543 dev_data = get_dev_data(dev);
1544 alias_data = get_dev_data(dev_data->alias);
1545 if (!alias_data)
1546 return NULL;
15898bbc
JR
1547
1548 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
657cbb6b 1549 dom = dev_data->domain;
15898bbc 1550 if (dom == NULL &&
657cbb6b
JR
1551 alias_data->domain != NULL) {
1552 __attach_device(dev, alias_data->domain);
1553 dom = alias_data->domain;
15898bbc
JR
1554 }
1555
1556 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1557
1558 return dom;
1559}
1560
e275a2a0
JR
1561static int device_change_notifier(struct notifier_block *nb,
1562 unsigned long action, void *data)
1563{
1564 struct device *dev = data;
98fc5a69 1565 u16 devid;
e275a2a0
JR
1566 struct protection_domain *domain;
1567 struct dma_ops_domain *dma_domain;
1568 struct amd_iommu *iommu;
1ac4cbbc 1569 unsigned long flags;
e275a2a0 1570
98fc5a69
JR
1571 if (!check_device(dev))
1572 return 0;
e275a2a0 1573
98fc5a69
JR
1574 devid = get_device_id(dev);
1575 iommu = amd_iommu_rlookup_table[devid];
e275a2a0
JR
1576
1577 switch (action) {
c1eee67b 1578 case BUS_NOTIFY_UNBOUND_DRIVER:
657cbb6b
JR
1579
1580 domain = domain_for_device(dev);
1581
e275a2a0
JR
1582 if (!domain)
1583 goto out;
a1ca331c
JR
1584 if (iommu_pass_through)
1585 break;
15898bbc 1586 detach_device(dev);
1ac4cbbc
JR
1587 break;
1588 case BUS_NOTIFY_ADD_DEVICE:
657cbb6b
JR
1589
1590 iommu_init_device(dev);
1591
1592 domain = domain_for_device(dev);
1593
1ac4cbbc
JR
1594 /* allocate a protection domain if a device is added */
1595 dma_domain = find_protection_domain(devid);
1596 if (dma_domain)
1597 goto out;
87a64d52 1598 dma_domain = dma_ops_domain_alloc();
1ac4cbbc
JR
1599 if (!dma_domain)
1600 goto out;
1601 dma_domain->target_dev = devid;
1602
1603 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1604 list_add_tail(&dma_domain->list, &iommu_pd_list);
1605 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1606
e275a2a0 1607 break;
657cbb6b
JR
1608 case BUS_NOTIFY_DEL_DEVICE:
1609
1610 iommu_uninit_device(dev);
1611
e275a2a0
JR
1612 default:
1613 goto out;
1614 }
1615
3fa43655 1616 iommu_flush_device(dev);
e275a2a0
JR
1617 iommu_completion_wait(iommu);
1618
1619out:
1620 return 0;
1621}
1622
b25ae679 1623static struct notifier_block device_nb = {
e275a2a0
JR
1624 .notifier_call = device_change_notifier,
1625};
355bf553 1626
431b2a20
JR
1627/*****************************************************************************
1628 *
1629 * The next functions belong to the dma_ops mapping/unmapping code.
1630 *
1631 *****************************************************************************/
1632
1633/*
1634 * In the dma_ops path we only have the struct device. This function
1635 * finds the corresponding IOMMU, the protection domain and the
1636 * requestor id for a given device.
1637 * If the device is not yet associated with a domain this is also done
1638 * in this function.
1639 */
94f6d190 1640static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1641{
94f6d190 1642 struct protection_domain *domain;
b20ac0d4 1643 struct dma_ops_domain *dma_dom;
94f6d190 1644 u16 devid = get_device_id(dev);
b20ac0d4 1645
f99c0f1c 1646 if (!check_device(dev))
94f6d190 1647 return ERR_PTR(-EINVAL);
b20ac0d4 1648
94f6d190
JR
1649 domain = domain_for_device(dev);
1650 if (domain != NULL && !dma_ops_domain(domain))
1651 return ERR_PTR(-EBUSY);
f99c0f1c 1652
94f6d190
JR
1653 if (domain != NULL)
1654 return domain;
b20ac0d4 1655
15898bbc 1656 /* Device not bount yet - bind it */
94f6d190 1657 dma_dom = find_protection_domain(devid);
15898bbc 1658 if (!dma_dom)
94f6d190
JR
1659 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1660 attach_device(dev, &dma_dom->domain);
15898bbc 1661 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1662 dma_dom->domain.id, dev_name(dev));
f91ba190 1663
94f6d190 1664 return &dma_dom->domain;
b20ac0d4
JR
1665}
1666
04bfdd84
JR
1667static void update_device_table(struct protection_domain *domain)
1668{
492667da 1669 struct iommu_dev_data *dev_data;
04bfdd84 1670
492667da
JR
1671 list_for_each_entry(dev_data, &domain->dev_list, list) {
1672 u16 devid = get_device_id(dev_data->dev);
1673 set_dte_entry(devid, domain);
04bfdd84
JR
1674 }
1675}
1676
1677static void update_domain(struct protection_domain *domain)
1678{
1679 if (!domain->updated)
1680 return;
1681
1682 update_device_table(domain);
b00d3bcf 1683 iommu_flush_domain_devices(domain);
601367d7 1684 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1685
1686 domain->updated = false;
1687}
1688
8bda3092
JR
1689/*
1690 * This function fetches the PTE for a given address in the aperture
1691 */
1692static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1693 unsigned long address)
1694{
384de729 1695 struct aperture_range *aperture;
8bda3092
JR
1696 u64 *pte, *pte_page;
1697
384de729
JR
1698 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1699 if (!aperture)
1700 return NULL;
1701
1702 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1703 if (!pte) {
abdc5eb3
JR
1704 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1705 GFP_ATOMIC);
384de729
JR
1706 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1707 } else
8c8c143c 1708 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1709
04bfdd84 1710 update_domain(&dom->domain);
8bda3092
JR
1711
1712 return pte;
1713}
1714
431b2a20
JR
1715/*
1716 * This is the generic map function. It maps one 4kb page at paddr to
1717 * the given address in the DMA address space for the domain.
1718 */
680525e0 1719static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1720 unsigned long address,
1721 phys_addr_t paddr,
1722 int direction)
1723{
1724 u64 *pte, __pte;
1725
1726 WARN_ON(address > dom->aperture_size);
1727
1728 paddr &= PAGE_MASK;
1729
8bda3092 1730 pte = dma_ops_get_pte(dom, address);
53812c11 1731 if (!pte)
8fd524b3 1732 return DMA_ERROR_CODE;
cb76c322
JR
1733
1734 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1735
1736 if (direction == DMA_TO_DEVICE)
1737 __pte |= IOMMU_PTE_IR;
1738 else if (direction == DMA_FROM_DEVICE)
1739 __pte |= IOMMU_PTE_IW;
1740 else if (direction == DMA_BIDIRECTIONAL)
1741 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1742
1743 WARN_ON(*pte);
1744
1745 *pte = __pte;
1746
1747 return (dma_addr_t)address;
1748}
1749
431b2a20
JR
1750/*
1751 * The generic unmapping function for on page in the DMA address space.
1752 */
680525e0 1753static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1754 unsigned long address)
1755{
384de729 1756 struct aperture_range *aperture;
cb76c322
JR
1757 u64 *pte;
1758
1759 if (address >= dom->aperture_size)
1760 return;
1761
384de729
JR
1762 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1763 if (!aperture)
1764 return;
1765
1766 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1767 if (!pte)
1768 return;
cb76c322 1769
8c8c143c 1770 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1771
1772 WARN_ON(!*pte);
1773
1774 *pte = 0ULL;
1775}
1776
431b2a20
JR
1777/*
1778 * This function contains common code for mapping of a physically
24f81160
JR
1779 * contiguous memory region into DMA address space. It is used by all
1780 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1781 * Must be called with the domain lock held.
1782 */
cb76c322 1783static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1784 struct dma_ops_domain *dma_dom,
1785 phys_addr_t paddr,
1786 size_t size,
6d4f343f 1787 int dir,
832a90c3
JR
1788 bool align,
1789 u64 dma_mask)
cb76c322
JR
1790{
1791 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1792 dma_addr_t address, start, ret;
cb76c322 1793 unsigned int pages;
6d4f343f 1794 unsigned long align_mask = 0;
cb76c322
JR
1795 int i;
1796
e3c449f5 1797 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1798 paddr &= PAGE_MASK;
1799
8ecaf8f1
JR
1800 INC_STATS_COUNTER(total_map_requests);
1801
c1858976
JR
1802 if (pages > 1)
1803 INC_STATS_COUNTER(cross_page);
1804
6d4f343f
JR
1805 if (align)
1806 align_mask = (1UL << get_order(size)) - 1;
1807
11b83888 1808retry:
832a90c3
JR
1809 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1810 dma_mask);
8fd524b3 1811 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1812 /*
1813 * setting next_address here will let the address
1814 * allocator only scan the new allocated range in the
1815 * first run. This is a small optimization.
1816 */
1817 dma_dom->next_address = dma_dom->aperture_size;
1818
576175c2 1819 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1820 goto out;
1821
1822 /*
1823 * aperture was sucessfully enlarged by 128 MB, try
1824 * allocation again
1825 */
1826 goto retry;
1827 }
cb76c322
JR
1828
1829 start = address;
1830 for (i = 0; i < pages; ++i) {
680525e0 1831 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1832 if (ret == DMA_ERROR_CODE)
53812c11
JR
1833 goto out_unmap;
1834
cb76c322
JR
1835 paddr += PAGE_SIZE;
1836 start += PAGE_SIZE;
1837 }
1838 address += offset;
1839
5774f7c5
JR
1840 ADD_STATS_COUNTER(alloced_io_mem, size);
1841
afa9fdc2 1842 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1843 iommu_flush_tlb(&dma_dom->domain);
1c655773 1844 dma_dom->need_flush = false;
318afd41 1845 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1846 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1847
cb76c322
JR
1848out:
1849 return address;
53812c11
JR
1850
1851out_unmap:
1852
1853 for (--i; i >= 0; --i) {
1854 start -= PAGE_SIZE;
680525e0 1855 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1856 }
1857
1858 dma_ops_free_addresses(dma_dom, address, pages);
1859
8fd524b3 1860 return DMA_ERROR_CODE;
cb76c322
JR
1861}
1862
431b2a20
JR
1863/*
1864 * Does the reverse of the __map_single function. Must be called with
1865 * the domain lock held too
1866 */
cd8c82e8 1867static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1868 dma_addr_t dma_addr,
1869 size_t size,
1870 int dir)
1871{
1872 dma_addr_t i, start;
1873 unsigned int pages;
1874
8fd524b3 1875 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1876 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1877 return;
1878
e3c449f5 1879 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1880 dma_addr &= PAGE_MASK;
1881 start = dma_addr;
1882
1883 for (i = 0; i < pages; ++i) {
680525e0 1884 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1885 start += PAGE_SIZE;
1886 }
1887
5774f7c5
JR
1888 SUB_STATS_COUNTER(alloced_io_mem, size);
1889
cb76c322 1890 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1891
80be308d 1892 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1893 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1894 dma_dom->need_flush = false;
1895 }
cb76c322
JR
1896}
1897
431b2a20
JR
1898/*
1899 * The exported map_single function for dma_ops.
1900 */
51491367
FT
1901static dma_addr_t map_page(struct device *dev, struct page *page,
1902 unsigned long offset, size_t size,
1903 enum dma_data_direction dir,
1904 struct dma_attrs *attrs)
4da70b9e
JR
1905{
1906 unsigned long flags;
4da70b9e 1907 struct protection_domain *domain;
4da70b9e 1908 dma_addr_t addr;
832a90c3 1909 u64 dma_mask;
51491367 1910 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1911
0f2a86f2
JR
1912 INC_STATS_COUNTER(cnt_map_single);
1913
94f6d190
JR
1914 domain = get_domain(dev);
1915 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 1916 return (dma_addr_t)paddr;
94f6d190
JR
1917 else if (IS_ERR(domain))
1918 return DMA_ERROR_CODE;
4da70b9e 1919
f99c0f1c
JR
1920 dma_mask = *dev->dma_mask;
1921
4da70b9e 1922 spin_lock_irqsave(&domain->lock, flags);
94f6d190 1923
cd8c82e8 1924 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 1925 dma_mask);
8fd524b3 1926 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1927 goto out;
1928
0518a3a4 1929 iommu_flush_complete(domain);
4da70b9e
JR
1930
1931out:
1932 spin_unlock_irqrestore(&domain->lock, flags);
1933
1934 return addr;
1935}
1936
431b2a20
JR
1937/*
1938 * The exported unmap_single function for dma_ops.
1939 */
51491367
FT
1940static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1941 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1942{
1943 unsigned long flags;
4da70b9e 1944 struct protection_domain *domain;
4da70b9e 1945
146a6917
JR
1946 INC_STATS_COUNTER(cnt_unmap_single);
1947
94f6d190
JR
1948 domain = get_domain(dev);
1949 if (IS_ERR(domain))
5b28df6f
JR
1950 return;
1951
4da70b9e
JR
1952 spin_lock_irqsave(&domain->lock, flags);
1953
cd8c82e8 1954 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 1955
0518a3a4 1956 iommu_flush_complete(domain);
4da70b9e
JR
1957
1958 spin_unlock_irqrestore(&domain->lock, flags);
1959}
1960
431b2a20
JR
1961/*
1962 * This is a special map_sg function which is used if we should map a
1963 * device which is not handled by an AMD IOMMU in the system.
1964 */
65b050ad
JR
1965static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1966 int nelems, int dir)
1967{
1968 struct scatterlist *s;
1969 int i;
1970
1971 for_each_sg(sglist, s, nelems, i) {
1972 s->dma_address = (dma_addr_t)sg_phys(s);
1973 s->dma_length = s->length;
1974 }
1975
1976 return nelems;
1977}
1978
431b2a20
JR
1979/*
1980 * The exported map_sg function for dma_ops (handles scatter-gather
1981 * lists).
1982 */
65b050ad 1983static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1984 int nelems, enum dma_data_direction dir,
1985 struct dma_attrs *attrs)
65b050ad
JR
1986{
1987 unsigned long flags;
65b050ad 1988 struct protection_domain *domain;
65b050ad
JR
1989 int i;
1990 struct scatterlist *s;
1991 phys_addr_t paddr;
1992 int mapped_elems = 0;
832a90c3 1993 u64 dma_mask;
65b050ad 1994
d03f067a
JR
1995 INC_STATS_COUNTER(cnt_map_sg);
1996
94f6d190
JR
1997 domain = get_domain(dev);
1998 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 1999 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
2000 else if (IS_ERR(domain))
2001 return 0;
dbcc112e 2002
832a90c3 2003 dma_mask = *dev->dma_mask;
65b050ad 2004
65b050ad
JR
2005 spin_lock_irqsave(&domain->lock, flags);
2006
2007 for_each_sg(sglist, s, nelems, i) {
2008 paddr = sg_phys(s);
2009
cd8c82e8 2010 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2011 paddr, s->length, dir, false,
2012 dma_mask);
65b050ad
JR
2013
2014 if (s->dma_address) {
2015 s->dma_length = s->length;
2016 mapped_elems++;
2017 } else
2018 goto unmap;
65b050ad
JR
2019 }
2020
0518a3a4 2021 iommu_flush_complete(domain);
65b050ad
JR
2022
2023out:
2024 spin_unlock_irqrestore(&domain->lock, flags);
2025
2026 return mapped_elems;
2027unmap:
2028 for_each_sg(sglist, s, mapped_elems, i) {
2029 if (s->dma_address)
cd8c82e8 2030 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2031 s->dma_length, dir);
2032 s->dma_address = s->dma_length = 0;
2033 }
2034
2035 mapped_elems = 0;
2036
2037 goto out;
2038}
2039
431b2a20
JR
2040/*
2041 * The exported map_sg function for dma_ops (handles scatter-gather
2042 * lists).
2043 */
65b050ad 2044static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2045 int nelems, enum dma_data_direction dir,
2046 struct dma_attrs *attrs)
65b050ad
JR
2047{
2048 unsigned long flags;
65b050ad
JR
2049 struct protection_domain *domain;
2050 struct scatterlist *s;
65b050ad
JR
2051 int i;
2052
55877a6b
JR
2053 INC_STATS_COUNTER(cnt_unmap_sg);
2054
94f6d190
JR
2055 domain = get_domain(dev);
2056 if (IS_ERR(domain))
5b28df6f
JR
2057 return;
2058
65b050ad
JR
2059 spin_lock_irqsave(&domain->lock, flags);
2060
2061 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2062 __unmap_single(domain->priv, s->dma_address,
65b050ad 2063 s->dma_length, dir);
65b050ad
JR
2064 s->dma_address = s->dma_length = 0;
2065 }
2066
0518a3a4 2067 iommu_flush_complete(domain);
65b050ad
JR
2068
2069 spin_unlock_irqrestore(&domain->lock, flags);
2070}
2071
431b2a20
JR
2072/*
2073 * The exported alloc_coherent function for dma_ops.
2074 */
5d8b53cf
JR
2075static void *alloc_coherent(struct device *dev, size_t size,
2076 dma_addr_t *dma_addr, gfp_t flag)
2077{
2078 unsigned long flags;
2079 void *virt_addr;
5d8b53cf 2080 struct protection_domain *domain;
5d8b53cf 2081 phys_addr_t paddr;
832a90c3 2082 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2083
c8f0fb36
JR
2084 INC_STATS_COUNTER(cnt_alloc_coherent);
2085
94f6d190
JR
2086 domain = get_domain(dev);
2087 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2088 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2089 *dma_addr = __pa(virt_addr);
2090 return virt_addr;
94f6d190
JR
2091 } else if (IS_ERR(domain))
2092 return NULL;
5d8b53cf 2093
f99c0f1c
JR
2094 dma_mask = dev->coherent_dma_mask;
2095 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2096 flag |= __GFP_ZERO;
5d8b53cf
JR
2097
2098 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2099 if (!virt_addr)
b25ae679 2100 return NULL;
5d8b53cf 2101
5d8b53cf
JR
2102 paddr = virt_to_phys(virt_addr);
2103
832a90c3
JR
2104 if (!dma_mask)
2105 dma_mask = *dev->dma_mask;
2106
5d8b53cf
JR
2107 spin_lock_irqsave(&domain->lock, flags);
2108
cd8c82e8 2109 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2110 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2111
8fd524b3 2112 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2113 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2114 goto out_free;
367d04c4 2115 }
5d8b53cf 2116
0518a3a4 2117 iommu_flush_complete(domain);
5d8b53cf 2118
5d8b53cf
JR
2119 spin_unlock_irqrestore(&domain->lock, flags);
2120
2121 return virt_addr;
5b28df6f
JR
2122
2123out_free:
2124
2125 free_pages((unsigned long)virt_addr, get_order(size));
2126
2127 return NULL;
5d8b53cf
JR
2128}
2129
431b2a20
JR
2130/*
2131 * The exported free_coherent function for dma_ops.
431b2a20 2132 */
5d8b53cf
JR
2133static void free_coherent(struct device *dev, size_t size,
2134 void *virt_addr, dma_addr_t dma_addr)
2135{
2136 unsigned long flags;
5d8b53cf 2137 struct protection_domain *domain;
5d8b53cf 2138
5d31ee7e
JR
2139 INC_STATS_COUNTER(cnt_free_coherent);
2140
94f6d190
JR
2141 domain = get_domain(dev);
2142 if (IS_ERR(domain))
5b28df6f
JR
2143 goto free_mem;
2144
5d8b53cf
JR
2145 spin_lock_irqsave(&domain->lock, flags);
2146
cd8c82e8 2147 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2148
0518a3a4 2149 iommu_flush_complete(domain);
5d8b53cf
JR
2150
2151 spin_unlock_irqrestore(&domain->lock, flags);
2152
2153free_mem:
2154 free_pages((unsigned long)virt_addr, get_order(size));
2155}
2156
b39ba6ad
JR
2157/*
2158 * This function is called by the DMA layer to find out if we can handle a
2159 * particular device. It is part of the dma_ops.
2160 */
2161static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2162{
420aef8a 2163 return check_device(dev);
b39ba6ad
JR
2164}
2165
c432f3df 2166/*
431b2a20
JR
2167 * The function for pre-allocating protection domains.
2168 *
c432f3df
JR
2169 * If the driver core informs the DMA layer if a driver grabs a device
2170 * we don't need to preallocate the protection domains anymore.
2171 * For now we have to.
2172 */
0e93dd88 2173static void prealloc_protection_domains(void)
c432f3df
JR
2174{
2175 struct pci_dev *dev = NULL;
2176 struct dma_ops_domain *dma_dom;
98fc5a69 2177 u16 devid;
c432f3df
JR
2178
2179 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
98fc5a69
JR
2180
2181 /* Do we handle this device? */
2182 if (!check_device(&dev->dev))
c432f3df 2183 continue;
98fc5a69
JR
2184
2185 /* Is there already any domain for it? */
15898bbc 2186 if (domain_for_device(&dev->dev))
c432f3df 2187 continue;
98fc5a69
JR
2188
2189 devid = get_device_id(&dev->dev);
2190
87a64d52 2191 dma_dom = dma_ops_domain_alloc();
c432f3df
JR
2192 if (!dma_dom)
2193 continue;
2194 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2195 dma_dom->target_dev = devid;
2196
15898bbc 2197 attach_device(&dev->dev, &dma_dom->domain);
be831297 2198
bd60b735 2199 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2200 }
2201}
2202
160c1d8e 2203static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2204 .alloc_coherent = alloc_coherent,
2205 .free_coherent = free_coherent,
51491367
FT
2206 .map_page = map_page,
2207 .unmap_page = unmap_page,
6631ee9d
JR
2208 .map_sg = map_sg,
2209 .unmap_sg = unmap_sg,
b39ba6ad 2210 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2211};
2212
431b2a20
JR
2213/*
2214 * The function which clues the AMD IOMMU driver into dma_ops.
2215 */
6631ee9d
JR
2216int __init amd_iommu_init_dma_ops(void)
2217{
2218 struct amd_iommu *iommu;
6631ee9d
JR
2219 int ret;
2220
431b2a20
JR
2221 /*
2222 * first allocate a default protection domain for every IOMMU we
2223 * found in the system. Devices not assigned to any other
2224 * protection domain will be assigned to the default one.
2225 */
3bd22172 2226 for_each_iommu(iommu) {
87a64d52 2227 iommu->default_dom = dma_ops_domain_alloc();
6631ee9d
JR
2228 if (iommu->default_dom == NULL)
2229 return -ENOMEM;
e2dc14a2 2230 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2231 ret = iommu_init_unity_mappings(iommu);
2232 if (ret)
2233 goto free_domains;
2234 }
2235
431b2a20 2236 /*
8793abeb 2237 * Pre-allocate the protection domains for each device.
431b2a20 2238 */
8793abeb 2239 prealloc_protection_domains();
6631ee9d
JR
2240
2241 iommu_detected = 1;
75f1cdf1 2242 swiotlb = 0;
92af4e29 2243#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2244 gart_iommu_aperture_disabled = 1;
2245 gart_iommu_aperture = 0;
92af4e29 2246#endif
6631ee9d 2247
431b2a20 2248 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2249 dma_ops = &amd_iommu_dma_ops;
2250
26961efe 2251 register_iommu(&amd_iommu_ops);
26961efe 2252
e275a2a0
JR
2253 bus_register_notifier(&pci_bus_type, &device_nb);
2254
7f26508b
JR
2255 amd_iommu_stats_init();
2256
6631ee9d
JR
2257 return 0;
2258
2259free_domains:
2260
3bd22172 2261 for_each_iommu(iommu) {
6631ee9d
JR
2262 if (iommu->default_dom)
2263 dma_ops_domain_free(iommu->default_dom);
2264 }
2265
2266 return ret;
2267}
6d98cd80
JR
2268
2269/*****************************************************************************
2270 *
2271 * The following functions belong to the exported interface of AMD IOMMU
2272 *
2273 * This interface allows access to lower level functions of the IOMMU
2274 * like protection domain handling and assignement of devices to domains
2275 * which is not possible with the dma_ops interface.
2276 *
2277 *****************************************************************************/
2278
6d98cd80
JR
2279static void cleanup_domain(struct protection_domain *domain)
2280{
492667da 2281 struct iommu_dev_data *dev_data, *next;
6d98cd80 2282 unsigned long flags;
6d98cd80
JR
2283
2284 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2285
492667da
JR
2286 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2287 struct device *dev = dev_data->dev;
2288
2289 do_detach(dev);
2290 atomic_set(&dev_data->bind, 0);
2291 }
6d98cd80
JR
2292
2293 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2294}
2295
2650815f
JR
2296static void protection_domain_free(struct protection_domain *domain)
2297{
2298 if (!domain)
2299 return;
2300
aeb26f55
JR
2301 del_domain_from_list(domain);
2302
2650815f
JR
2303 if (domain->id)
2304 domain_id_free(domain->id);
2305
2306 kfree(domain);
2307}
2308
2309static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2310{
2311 struct protection_domain *domain;
2312
2313 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2314 if (!domain)
2650815f 2315 return NULL;
c156e347
JR
2316
2317 spin_lock_init(&domain->lock);
c156e347
JR
2318 domain->id = domain_id_alloc();
2319 if (!domain->id)
2650815f 2320 goto out_err;
7c392cbe 2321 INIT_LIST_HEAD(&domain->dev_list);
2650815f 2322
aeb26f55
JR
2323 add_domain_to_list(domain);
2324
2650815f
JR
2325 return domain;
2326
2327out_err:
2328 kfree(domain);
2329
2330 return NULL;
2331}
2332
2333static int amd_iommu_domain_init(struct iommu_domain *dom)
2334{
2335 struct protection_domain *domain;
2336
2337 domain = protection_domain_alloc();
2338 if (!domain)
c156e347 2339 goto out_free;
2650815f
JR
2340
2341 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2342 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2343 if (!domain->pt_root)
2344 goto out_free;
2345
2346 dom->priv = domain;
2347
2348 return 0;
2349
2350out_free:
2650815f 2351 protection_domain_free(domain);
c156e347
JR
2352
2353 return -ENOMEM;
2354}
2355
98383fc3
JR
2356static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2357{
2358 struct protection_domain *domain = dom->priv;
2359
2360 if (!domain)
2361 return;
2362
2363 if (domain->dev_cnt > 0)
2364 cleanup_domain(domain);
2365
2366 BUG_ON(domain->dev_cnt != 0);
2367
2368 free_pagetable(domain);
2369
2370 domain_id_free(domain->id);
2371
2372 kfree(domain);
2373
2374 dom->priv = NULL;
2375}
2376
684f2888
JR
2377static void amd_iommu_detach_device(struct iommu_domain *dom,
2378 struct device *dev)
2379{
657cbb6b 2380 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2381 struct amd_iommu *iommu;
684f2888
JR
2382 u16 devid;
2383
98fc5a69 2384 if (!check_device(dev))
684f2888
JR
2385 return;
2386
98fc5a69 2387 devid = get_device_id(dev);
684f2888 2388
657cbb6b 2389 if (dev_data->domain != NULL)
15898bbc 2390 detach_device(dev);
684f2888
JR
2391
2392 iommu = amd_iommu_rlookup_table[devid];
2393 if (!iommu)
2394 return;
2395
3fa43655 2396 iommu_flush_device(dev);
684f2888
JR
2397 iommu_completion_wait(iommu);
2398}
2399
01106066
JR
2400static int amd_iommu_attach_device(struct iommu_domain *dom,
2401 struct device *dev)
2402{
2403 struct protection_domain *domain = dom->priv;
657cbb6b 2404 struct iommu_dev_data *dev_data;
01106066 2405 struct amd_iommu *iommu;
15898bbc 2406 int ret;
01106066
JR
2407 u16 devid;
2408
98fc5a69 2409 if (!check_device(dev))
01106066
JR
2410 return -EINVAL;
2411
657cbb6b
JR
2412 dev_data = dev->archdata.iommu;
2413
98fc5a69 2414 devid = get_device_id(dev);
01106066
JR
2415
2416 iommu = amd_iommu_rlookup_table[devid];
2417 if (!iommu)
2418 return -EINVAL;
2419
657cbb6b 2420 if (dev_data->domain)
15898bbc 2421 detach_device(dev);
01106066 2422
15898bbc 2423 ret = attach_device(dev, domain);
01106066
JR
2424
2425 iommu_completion_wait(iommu);
2426
15898bbc 2427 return ret;
01106066
JR
2428}
2429
c6229ca6
JR
2430static int amd_iommu_map_range(struct iommu_domain *dom,
2431 unsigned long iova, phys_addr_t paddr,
2432 size_t size, int iommu_prot)
2433{
2434 struct protection_domain *domain = dom->priv;
2435 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2436 int prot = 0;
2437 int ret;
2438
2439 if (iommu_prot & IOMMU_READ)
2440 prot |= IOMMU_PROT_IR;
2441 if (iommu_prot & IOMMU_WRITE)
2442 prot |= IOMMU_PROT_IW;
2443
2444 iova &= PAGE_MASK;
2445 paddr &= PAGE_MASK;
2446
2447 for (i = 0; i < npages; ++i) {
abdc5eb3 2448 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2449 if (ret)
2450 return ret;
2451
2452 iova += PAGE_SIZE;
2453 paddr += PAGE_SIZE;
2454 }
2455
2456 return 0;
2457}
2458
eb74ff6c
JR
2459static void amd_iommu_unmap_range(struct iommu_domain *dom,
2460 unsigned long iova, size_t size)
2461{
2462
2463 struct protection_domain *domain = dom->priv;
2464 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2465
2466 iova &= PAGE_MASK;
2467
2468 for (i = 0; i < npages; ++i) {
a6b256b4 2469 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2470 iova += PAGE_SIZE;
2471 }
2472
601367d7 2473 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2474}
2475
645c4c8d
JR
2476static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2477 unsigned long iova)
2478{
2479 struct protection_domain *domain = dom->priv;
2480 unsigned long offset = iova & ~PAGE_MASK;
2481 phys_addr_t paddr;
2482 u64 *pte;
2483
a6b256b4 2484 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2485
a6d41a40 2486 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2487 return 0;
2488
2489 paddr = *pte & IOMMU_PAGE_MASK;
2490 paddr |= offset;
2491
2492 return paddr;
2493}
2494
dbb9fd86
SY
2495static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2496 unsigned long cap)
2497{
2498 return 0;
2499}
2500
26961efe
JR
2501static struct iommu_ops amd_iommu_ops = {
2502 .domain_init = amd_iommu_domain_init,
2503 .domain_destroy = amd_iommu_domain_destroy,
2504 .attach_dev = amd_iommu_attach_device,
2505 .detach_dev = amd_iommu_detach_device,
2506 .map = amd_iommu_map_range,
2507 .unmap = amd_iommu_unmap_range,
2508 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2509 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2510};
2511
0feae533
JR
2512/*****************************************************************************
2513 *
2514 * The next functions do a basic initialization of IOMMU for pass through
2515 * mode
2516 *
2517 * In passthrough mode the IOMMU is initialized and enabled but not used for
2518 * DMA-API translation.
2519 *
2520 *****************************************************************************/
2521
2522int __init amd_iommu_init_passthrough(void)
2523{
15898bbc 2524 struct amd_iommu *iommu;
0feae533 2525 struct pci_dev *dev = NULL;
15898bbc 2526 u16 devid;
0feae533
JR
2527
2528 /* allocate passthroug domain */
2529 pt_domain = protection_domain_alloc();
2530 if (!pt_domain)
2531 return -ENOMEM;
2532
2533 pt_domain->mode |= PAGE_MODE_NONE;
2534
2535 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
0feae533 2536
98fc5a69 2537 if (!check_device(&dev->dev))
0feae533
JR
2538 continue;
2539
98fc5a69
JR
2540 devid = get_device_id(&dev->dev);
2541
15898bbc 2542 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2543 if (!iommu)
2544 continue;
2545
15898bbc 2546 attach_device(&dev->dev, pt_domain);
0feae533
JR
2547 }
2548
2549 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2550
2551 return 0;
2552}